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A Variational Dynamic Programming Approach to 
Robot-Path Planning With a Distance-Safety 

Criterion 

Abstract-An approach to robot-path planning is developed by 
considering both the traveling distance and the safety of the robot. 
Incorporation of robot safety into path planning is important not only 
because of the uncertainties in the robot dynamics during path execution, 
but also because of the inaccuracies in the geometric modeling of 
obstacles. A computationally efficient algorithm is developed to find a 
near-optimal path with a weighted distance-safety criterion by using a 
variational calculus and dynamic programming (VCDP) method. 

The algorithm is readily applicable to any factory environment by 
representing the free workspace as channels. A method for deriving these 
channels is also proposed. Although it is developed mainly for two- 
dimensional (2D) problems, our method can be easily extended to a class 
of three-dimensional (3D) problems. Numerical examples are presented to 
demonstrate the utility and power of this method. 

I .  INTRODUCTION 
PTIMAL (in some sense) control of industrial robots is of 0 practical importance to various robot-based automation 

systems. Such a control is usually achieved through a two- 
stage optimization: off-line planning followed by on-line path 
execution. Depending on the system objective, both the path 
planning and path tracking problems have to be solved by 
optimizing suitable criteria subject to some constraints. This 
paper deals with the first stage, presenting a near-optimal 
solution to the robot-path planning problem with a weighted 
distance-safety criterion. 

The traveling distance has been the primary object to 
minimize in most conventional robot-path planning ap- 
proaches because the shortest distance path may reduce the 
robot's traveling time and the computational complexity of 
path planning. However, another factor which should not be 
ignored during robot-path planning is robot safety during path 
execution. Robot safety becomes important, especially when 
there are nonnegligible uncertainties in both the robot dy- 
namics during path execution and the environmental informa- 
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tion such as obstacles. Thus the simultaneous consideration of 
distance and safety needs to be called for during robot-path 
planning. 

The issue to be addressed in this paper can be made clear by 
comparing two well-known paths: the shortest path (SP) and 
the center-line path (CLP). An SP can be found by using a 
visibility graph in two-dimensional space [9] and is attractive 
for many cases. However, an SP may require the robot to 
travel too close to obstacles (actually, the SP touches them), 
and hence possesses a high risk of colliding with obstacles 
(Fig. 1). Thus it may not even be desirable at all when robot 
safety is a major concern. 

The safety of a robot path can be quantified by the clearance 
between the path and obstacles. Naturally, the larger its 
clearance in a room with clustered obstacles, the safer a path 
will be. If robot safety is the only concern, one would choose a 
path providing the maximum clearance from obstacles. This 
path would traverse along the CLP of free space. See Fig. 1 
for an example CLP. As illustrated in this figure, a CLP could 
be considerably longer than an SP, indicating that the CLP is 
not desirable if the robot's traversal distance is a major 
consideration in path planning. 

Following the above arguments, SP and CLP can be viewed 
as two extremes with respect to the distance and safety criteria, 
respectively; neither of the two alone may be acceptable for 
the general case. Due to the uncertainties in robot dynamics 
during path execution and the inaccuracies in geometric 
modeling of obstacles, it is important to consider both criteria 
in some weighted fashion for path planning. We shall, in this 
paper, develop a robot-path planning method by striking a 
compromise between distance and safety. 

The safety of a path has not been considered explicitly in 
almost all known path planning approaches except for those in 
[9], [13].' The path safety in [9] was obtained by first 
enlarging each obstacle by a specified amount (i.e., the margin 
of safety) and then applying the visibility graph method. A 
visibility graph is based on the necessary condition that an SP 
is made up of line segments. Though the method of growing 
obstacles and then using a visibility graph is simple and 
attractive in many cases, a potential problem with this method 
is that the only feasible path could have been eliminated as a 
result of growing obstacles [lo]. Moreover, it may be very 
difficult to determine the degree of enlargement of obstacles 

I The work in [13] will be discussed later in this section. 
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Fig. 1. CLP and SP. 

during path planning because of its dependence on the 
utilization of the workspace as well as the uncertainties in the 
robot dynamics during path execution. Moreover, since a 
visibility graph can be set up only when the starting and ending 
points are given, a new visibility graph has to be constructed 
every time the starting and ending points are changed. 

Other path planning approaches in the literature are based 
on the decomposition of free space into geometric primitives, 
such as cones and cylinders. Brooks [2] used overlapping 
generalized cones to represent the free space. Generalized 
cones are formed to allow translations and rotations. A robot 
path traverses along the cone axes and avoids obstacles 
generously, i.e., an implicit consideration of robot safety. One 
problem with this is that it is awkward to represent a large free 
space with generalized cones. As a remedy for this problem, 
Kuan et al. [5] proposed a hybrid representation of free space 
by using nonoverlapping convex polygons for large free 
spaces and generalized cones for narrow regions. Singh et al. 
[12] decomposed a free space into several rectangular areas, 
and Chatila [3] used convex polygons to represent the free 
space. 

These decomposition methods can be used to form a 
connectivity graph in which a node represents a geometric 
primitive and an arc describes the neighboring relationship 
between primitives. A graph search technique, such as the A* 
algorithm, is then used to find the minimum (or near- 
minimum) cost path. The cost between a pair of nodes is the 
length of the straight-line segment connecting the two points, 
each of which lies in the geometric primitive represented by 
each of the two nodes. The use of a straight-line segment as a 
path primitive for connecting two geometric primitives can be 
justified when path length is used as the cost function, 
although it may be necessary to remove the sharp corners on 
the resulting piecewise-straight-line path. However, if the cost 
function contains more than just path length, use of a line 
segment as the path primitive is difficult to justify, especially 
when the geometric primitive used covers a relatively large 
free space. 

To alleviate the above problem, one may reduce the 
coverage of a geometric primitive by placing a finer grid on 
the free space, which will, unfortunately, result in an 
excessive amount of computation. For example, the method in 
[ 131 placed a grid on the free space and formed a search graph 
by representing a grid point as a node with arcs to its eight 
neighboring nodes. Then, graph search is performed by using 
the A* algorithm with a cost function that keeps the path from 
getting too close to obstacles. As the grid gets finer, the 
required computation will become excessive even if heuristics 
were used. Furthermore, the path connecting the grid points 
with straight-line segments could contain as many comer 
points2 as the number of grid points that the path goes through. 

One way to overcome the above computational problem 
without sacrificing the accuracy of the solution is to use a path 
primitive or a curve connecting a pair of grid points that 
minimizes the cost function on a relatively coarse grid. To 
reduce the computational requirement, the grid size should be 
chosen as large as possible within the limit that the use of the 
path primitive can be justified. In such a case, the selection of 
a path primitive itself will become an optimization problem. 
Using a coarse grid and solving the optimization problem to 
connect the grid points, we develop, in this paper, an approach 
to robot-path planning that is accurate and computationally 
efficient. 

The path planning approach presented here is largely 
divided into two parts. The first part considers the problem of 
finding an optimal path for a bounded free space, called a 
channel, and derives the solution paths using a variational 
calculus and dynamic programming (VCDP) technique. It is 
important to note that a channel may consist of multiple 
segments. The second part deals with the problem of deriving 
the channels from the general workspace filled with obstacle 
polygons. Specifically, the paper is organized as follows. In 
Section I1 we discuss the cost function which includes both 
traveling distance and robot safety. In Section 111, the path 
planning problem is solved using VCDP. Issues of the 
computational complexity and a three-dimensional (3D) exten- 
sion are also discussed there. Section IV describes how to 
determine channels for a given workspace. The paper con- 
cludes with a few remarks in Section V. 

Throughout the paper, a robot is assumed to be a disc in 
two-dimensional (2D) space or a sphere in three-dimensional 
(3D) space, thus allowing the robot to be treated as a point by 
growing obstacles as large as the radius of the disc or sphere. 

11. COST FUNCTION 

Our path planning approach begins with the selection of the 
cost function to be used to measure the goodness of a path. Let 
a path P be described by a parameterized curve connecting the 
starting and ending points, denoted by {x(w),  WO I w I U,}, 
where w is the parameter describing the curve [ 1 11, and WO 

and wf are, respectively, initial and final values of the 
parameter. Further, let 0 be the space occupied by no 
obstacles, {O,, i = 1, - e - ,  no}. 

Denote the cost function for a path P = {x(w), WO I w I 

Those grid points where two segments of a path meet. 
For example, the parameter may represent the arc length of the path. 
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where L(x(w), w ,  0) is the cost of the robot path when the 
parameter value is 0. Then, we want to minimize (1) subject to 
the obstacle avoidance constraint 

(x(4,  0 E [WO, 4 1  n 0 = 0  (2) 

and the boundary conditions 

~ ( w o )  = S x ( w ~ )  = E  (3) 

where S and E are the starting and ending points. 
The form of the cost function characterizes the type of path 

planning. Considering both distance and safety, the cost 
function is represented by 

e ( P )  = 9 ( P )  + XS(P), A20 (4) 

where 9 ( P )  and S(P) represent costs associated the length and 
safety of P, respectively, and X is the relative weighting 
between the two. 

The distance cost of a path is defined as the arc length of the 
path. It may be natural to define the safety cost of a path in 
terms of its clearance from the obstacles 

where 11 11 represents the Euclidean norm. With this robot- 
safety metric, however, one has to face a number of 
difficulties in solving the path planning problem. The main 
difficulty arises from the fact that the distance between a path 
and obstacles has to be computed pointwise over the entire 
path. Despite the recent development of efficient methods for 
computing distances [6], [7], any numerical method requiring 
the evaluation of pointwise distances from a path to obstacles 
will introduce a serious computational problem. It can be 
easily seen that computing the distance between a point x(w) 
and no polygonal objects requires to evaluate IIx(w) - 0 11 = 
mini 11 x(w) - O,II, and for each object Oi the evaluation 
of 11 x(w) - 0,II requires considerable amount of computation 
depending on the distance computation algorithm used, and the 
obstacle avoidance condition (2) must also be checked. 
Furthermore, to obtain an optimal path minimizing the cost 
functional (9, an infinite number of paths may have to be 
evaluated since the spatial (path) planning problem is in 
essence finding a finite number of points from a set of an 
infinite number of points. Because of the above difficulties, we 
shall seek an alternative metric for the safety cost. 

An alternative chosen in this paper is to use the center-line 
path (CLP) as a reference path or the safest path, and the 
safety cost is defined as the deviation from the safest path or 
CLP. Note that an exact CLP for a given workspace 
containing polygon obstacles can be derived by a generalized 
Voronoi diagram [8], and generalized Voronoi edges are made 
up of both straight-line and curve segments. An approximate 
CLP which is made up of straight-line segments only can also 

be found by decomposing the free space into convex polygons 
and connecting the bisection points of the common edges of 
polygons as will be discussed in Section IV-B. For clarity of 
presentation, it is assumed in this section that the CLP is given 
and made up of line segments. 

Consider a CLP traversing a set of free convex polygons 
such that the starting and ending points are located, respec- 
tively, in the first and last free convex polygons. Suppose a 
path connecting the starting and ending points passes through 
these free convex polygons. Then, the path can be parameter- 
ized with respect to the CLP,4 and the path’s deviation from 
the CLP, called the center-line deviation, is defined as 

nut 

where w is the path parameter. Note that the path parameter w 
herein is the arc length of the CLP, not the path itself, as the 
path is defined with reference to the CLP. Note also that a 
safer path implies a smaller center-line deviation. 

When the safety cost of a path is defined by (6), the 
following two aspects must be taken into consideration. First, 
since the (accumulated) center-line deviation increases with 
path length, it should be normalized by, for example, the path 
length or the interval of the path parameter to avoid double 
counting the part of cost contributed by the path length. 
Second, since the CLP traverses the free spaces of varying 
clearance from obstacles, one unit center-line deviation at a 
free space would have a different degree of safety from that at 
another free space. For example, consider the two points PI 
and Pz in Fig. 2, both of which deviate from the CLP by the 
same amount. Obviously, Pi in Region 1 has a higher risk of 
collision than that of Region 2. Thus it is necessary to scale the 
normalized center-line deviation on the basis of the criticality 
of a unit center-line deviation in each region. The scaling 
constant P(w) should be inversely proportional to the clearance 
of each region. 

Considering all the aspects mentioned above, the safety cost 
of a path is defined as 

S(P)=  lw’y(w)ll CLP (w)-x(w) l l  dw (7) 
WO 

where y(w) = /3(w)/(wf - 00). Note that this safety cost is 
obtained by normalizing the center-line deviation (6) with the 
interval of the path parameter wf - wo, followed by 
multiplying the scaling constant @(a). 

In a given workspace, there could be several approximate5 
CLP’s connecting the starting (S) and ending (E) points. Let a 
channel be a bounded free space in which there exists at least 
one collision-free path between S and E. Then, there exists a 
CLP for every channel. For each channel, a minimum cost 
path, called a local minimum cost path (LMCP), may be 
found, and the global minimum cost path (GMCP) is the 
minimum among the LMCP’s. A detailed solution approach to 
the LMCP problem is presented in Section 111. The derivation 
of the GMCP will be treated in Section IV. 

The details of parameterization will be given in Section 111. 
Since the starting and ending points may not be on the center-line paths. 
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Fig. 2 .  Two points with the same deviation from the center-line path. 

111. VARIATIONAL DYNAMIC PATH EQUATIONS 

In this section, the problem of finding an optimal path for a 
given channel is dealt with. A channel is defined as a free 
space with two piecewise-straight-line boundaries, and the 
configuration of the channel is characterized by the corres- 
ponding center-line segments. Based on their number of 
center-line segments, channels are classified to be single- 
segmented or multi-segmented. First, we consider a simple 
case, called the Path Primitive Problem, where the channel 
is characterized by a single center-line segment, for which a 
closed-form solution is derived. Then, we treat a more 
complex and general case, called Multisegmented Channel 
Problem, a solution algorithm for which is developed. Issues 
on the 3D extension of our algorithm are also discussed. 

A .  Path Primitive Problem 
Suppose the robot is to move from a starting point S to an 

ending point E in a given channel described by the center-line 
segment C ,  and two obstacle boundaries U and L ,  as shown in 
Fig. 3 .  We want to find a path connecting S and E that 
minimizes a weighted distance and safety cost while avoiding 
collision with obstacles. 

Placing a rectangular coordinate frame with its origin at one 
end of C and the horizontal axis coinciding with C, a path can 
be defined as a function x of the path parameter w E [WO, of], 
coo # of,6 where S = (wo, xo) and E = (of, xf) .  Let the 
equation of the boundaries and C be given as 

L(w)=aLw+bL,  w L L ~ w ~ w L u  (8) 

U(o)  = auw + bu, (9) 

C(w)  = 0, 0 I w I wcu (10) 

wuL I w I wuu 

where a;, b; for i = L ,  U are coefficients of boundary line 
equations, oLu - wLL and wuu - our. are the curvilinear 
lengths of projected L and U on the horizontal axis, and wcu in 
(10) is the length of C .  

To show how the cost function can be obtained, consider the 
following case which corresponds to Case A in Fig. 6(a) 

w o r o  W f I W C u .  (1 1) 

If CO,, = a,, the problem becomes trivial; a line segment connecting S and 
E will be the optimal solution as it minimizes both the path length and center- 
line deviation. 

Fig. 3. Problem of determining a path primitive. 
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Since the horizontal axis of the coordinate system coincides 
with the center-line segment, the center-line deviation of the 
path becomes 

Note that the path can be computed as 

j: do. 

To express the relative criticality of a unit center-line 
deviation in each region, the scaling constant p(w)  should be 
inversely proportional to the clearance of the region. The 
scaling constant for the channel is defined as a reciprocal of 
the average clearance, which can be obtained by computing 
the distances between the midpoint of C and the upper and 
lower boundaries’ 

Note that p for different cases can be computed similarly. 

becomes 
Once the scaling constant is obtained, the cost function (4) 

e(S, E)=D+AS 

= i: [J1+x(w)2+hy(x(w)I] do  (13) 

where y = p / ( q  - wo), and the path primitive problem is to 
find X* which minimizes (13) subject to the following 
constraints: 

aLw+bLsx(w)sauw+bu ,  Vw E [ao, wf] (14) 

x(o0) = xo x ( q )  = xf. (15) 

This is a fixed-terminal point variational problem. It 
becomes an unconstrained problem since the constraint (14) 
can automatically be met as stated below. 

Proposition 1: The constraint (14) is redundant, V h  E [0, 

Proof: Suppose x*(w) sways above the upper boundary 

001, if S and E are within the free space. 

’ Notice that we are using the average clearance within a region (i.e., 
single-segmented channel), and that @(CO) = 8. Thus p(w) in (7) in the 
multisegmented channel must be thought of as a step function such as &(CO) = 
B,, V u  E [ab, CO;], where ab and w;are the parameter values of the ith center- 
line segment. 
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is used in place of 
fr 

‘0 

B1 / > B2 U 

e= j [Ix(t)-r(t)I +CYIWll dt 

where CY is a weighting constant. Decomposing the perform- 
ance index into two parts 

d \@ 
---------- C 

fr 

‘0 
Jl = ( x ( t )  - r ( t ) )2  dt 

I I I I 
I I I I L for the tracking problem, and 

w2 wf fr 
Fig. 4. Break-in and break-out points. Jz = S t ,  u2( t )  dt 

line U. Then there exist two distinct points, one to break-out, 
B1 = (01, X I ) ,  and the other to break-in, B2 = (az, xz ) ,  to the 
line, since the path must be continuous and xo, xf I U(w), VU 

E [WO, wf] (Fig. 41. For the interval [al, wz], clearly the 
straight-line path connecting B1 and Bz is superior to x* in the 
sense of both distance and the center-line deviation. Thus an 
optimal path cannot traverse over the upper boundary line. 
The same argument holds for the lower boundary line L. 
Hence, constraint (14) is met automatically. 

The solution to the unconstrained variational problem may 
be obtained by solving the Euler equation [4] 

dw [ a2 
ag 
ax 

o=- (x*(w), a*(&)), w ) - d  (x*(o), i*(o), .)I 
x* (w)  

(1 +X*Z(w))3’2 
k sig (x*(w))  = 

where g is the integrand of (13), k = Ay, and sig (x) = 1 if x 
> 0, - 1 if x < 0, and undefined if x = 0. Notice that the 
Euler equation is a nonlinear second-order differential equa- 
tion, which cannot usually be solved analytically. Thus one 
has to resort to numerical integration. However, in this case, a 
nonlinear, two-point boundary-value problem must be solved. 
The problem is in general very difficult because of both the 
split boundary values and the nonlinearity of the differential 
equation. 

For computational tractability, we use a weighted squared 
sum of the distance and safety costs in place of the cost 
functional ( 13) 

Wf 

WO 

J ( S ,  E )  = 1 [(l +XZ(w)) + AyxZ(w)] dw. (18) 

It is worth noting that the quadratic form is often employed in 
other optimal control problems for mathematical tractability, 
e.g., the LQ problem [ 11. For example, consider a minimum- 
fuel tracking problem [4]. This problem is to find the optimal 
trajectory y*(t) which can keep the system statey(t) as close as 
possible to the desired state r(t) with a minimum control or 
fuel u*(t) over the interval [to, tf]. For mathematical tractabil- 
ity, the performance index 

for the minimum-fuel problem. Note that each subproblem 
with J;, i = 1, 2 may result in the same optimal trajectory as 
that with ei, i = 1, 2, where 

Cl= )x( t ) - r ( t ) I  dt 
fr 
‘0 

and 
fr 
‘0 

e,= lu(t)l dt. 

However, it is not obvious that the optimal trajectory with J is 
the same as that with C, but clearly J(x*) # C (x*) ,  where x* 
is the optimal trajectory found with J .  

The Path Primitive Problem is symmetric to the minimum- 
fuel tracking problem because a) subproblems with 

J1= 1 (1 + X 2 ( w ) )  dw 
Wf 

WO 

and 

Jz= s x2(o)  dw 
WO 

result in the same optimal path as those with il Jl+xz(w) dw 

and jl I X ( 4  dw 

b) it is not obvious that the x*’s with cost functionals (13) and 
(18) are the same, and c) clearly, J(x*) # e (x*), where x* is 
the optimal path found with (18). In view of these aspects, the 
cost functional (18) will be used only for finding an optimal 
path x*,  but not for evaluating the quality of x*.  More 
formally, we have the following proposition. 

Proposition 2: The value of the cost functional J must be 
used only for finding an optimal path x* for a given set of 
starting and ending points within each channel, not as a means 
for evaluating the performance of x*.  Suppose x f  and xf are 
optimal paths connecting two different sets of starting and 
ending points, i.e., minimizing J(S, ,  E,)  and J(S2, E2), 
respectively, where (SI, El) # (SZ, Ez). Then, J(S1, El )  > 
J(Sz, E2) does not necessarily mean that xf is superior to xT 
(see Appendix I for the proof of this proposition). For such a 
purpose, the original cost function, C(S,, E;), must be used, 
not the weighted squared sum (1 8). 

‘r 

‘0 

In what follows, a solution to the path primitive problem 
with the cost functional (18) is derived. The Weierstrass- 

J =  1 [ ( ~ ( t )  - r(t))2 + au2]  dt 
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Fig. 5 .  Optimal paths. 

Erdmann comer conditions [4] assure that there is no comer in 
the optimal path (see Appendix 11 for a detailed description). 
The Euler equation (16) is now given as 

(19) X*(w) - Xyx*(w) = 0. 

Since (19) is linear in x* with constant coefficients, it can be 
readily solved to get 

~ * ( w ) = c ~ e ~ " + c ~ e - ~ "  (20) 

where c1 and c2 are the integration constants determined by the 
two boundary conditions (15), and k = Ay. 

Paths with the various values of X for two sets of starting 
and ending points are plotted in Fig. 5(a), (b). It is shown that 
a) all the paths are smooth as evidenced by the comer 
conditions, b) as the value of h increases (decreases) the path 
tends to be closer to the center-line (straight-line), and c) all 
the paths traverse inside the convex hull defined by the four 

In fact, b) and c) can be proved by finding an asymptotic 
curve as follows. As X + 0, the Euler equation (20) becomes 
x*(w) = 0, i.e., x*(w) = c3w + c4, VU E [ao, wf ] ,  where c3 
and c4 are determined by the two boundary conditions (15). As 
X + 00, the first term in (19) becomes negligible, implying 
that x*(w) + 0. Due to the boundary conditions (15), the 
asymptotic curve becomes 

points: (00, XO),  (WO, 01, (q, O), and (of, xf). 

xo, if w = o o  

x*(w)= I 0, ifwo<o<wf 

indicating that the asymptotes in this case are straight-line 
segments connecting four points in sequence: (ao, xo), (WO, 

Since the same reasoning as that of Proposition 1 holds for 
the weighted squared distance and safety cost, the obstacle 
boundary constraint (14) is automatically met as far as the 
calculation of x* by minimizing (18) is concerned. The 
following proposition generalizes the condition that the obsta- 
cle boundary constraint can be ignored. 

01, (q, 01, and (Wf, Xf). 

Proposition 3: The obstacle-avoidance constraint is redun- 
dant VX 2 0, if S ,  E E F, where F is a convex set 
representing the free sapce. 

Proof: Regardless of the value of A, the optimal path 
traverses inside the convex hull defined by the four points. 
Since the center-line segment traverses inside the free space, 
the four points, (WO, X O ) ,  (WO, 0), (wf, O), (q, xf) E F, if S ,  
E E F. Thus the convex hull c F, and {x*(o) ,  W O  I w I 

The use of the x* given in (20) can be generalized by the 
following proposition: 

Proposition 4: Even if the condition (1 1) is not met, the x* 
given in (20) is still an optimal path. 

Proof: Let Case A: wo 2 0, of I wcu, Case B: W O  2 0 ,  
wf 2 wcu, Case C: wo I 0, wf I wcu, and Case D: wo I 0, 

To derive the solution for Case B (Fig. 6(b)), the functional 

~ f )  E F. 

wf 1 wcLI. 

equation (1 8) is represented by 

W f  

W O  
J =  S [(1+x2(w))+XyIl(o, ~ ( w ) ) - C l ) ~ ]  dw. (21) 

Note that the center-line deviation in (21) is represented in 
terms of the distance between the point coordinate of (U, x(w)) 
and the center-line segment C. Also, the representation inside 
the norm is the same as x2(w) in (1 8 )  when 00 1 0, wf I wcLI. 
The center-line deviation is 

= 1:: Il(w, x(w))-Cc(12 dw+ Il(w, x(w))-Cll 'dw 
wCU 

= 1:; x2(w) dw + s' [x2(w) + (w - W C , ) ~ ]  dw 
O C W  

= i :x2(w) dw+ Iw' ( W - W ~ ~ ) ~  dw. 
wCW 
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Fig. 6. Four possible cases. 

Since for given ocll and uf the second term in (22) is a 
constant, indicating that the x*(o) given in (20) is also the 
solution for Case B.  Similarly, the same conclusion can be 
drawn for Cases C and D. 

As a result of Propositions 3 and 4, {x*(o), wo I o I of} 
given in (20) can be used as an optimal path primitive for any 
pair of (S, E) in a convex channel characterized by a single 
center-line segment and two obstacle boundaries. This in- 
cludes the case when the channel is given as a triangle where 
one of the obstacle boundaries is a point. 

In the next subsection, we will discuss a solution method for 
a more complex case where the channel is characterized by 
two or more center-line segments. 

B. Multisegmented Channel Problem 
Consider a free space where the CLP is composed of two 

line segments as shown in Fig. 7. Place a dividing line (called 
a barricading line or simply a barricade) passing through the 
CLP's comer point such that the CLP in each region is a 
straight-line segment. Then, a local coordinate frame is placed 
at the beginning of each center-line segment in the same 
fashion as that of Path Primitive Problem (Fig. 7). 

Since all paths must cross over each barricading line, it is 
necessary to find the "optimal" crossing point, where the 
optimal path intersects the barricade. To determine the optimal 
crossing point, a barricading line is discretized into a finite 

Fig. 7.  Dual-segmented channel 

number of equally spaced points called gates. Let G;(j) and 
M be, respectively, the jth gate of barricade i and the number 
of gates.* Then the location of G;(j) is represented by 

G;(j )=G;( l )+( j -  1)v;T (23) 

where Tis a unit vector from one end, G;(l), to the other end, 
Gi(M), and 7; = l ; / (M - 1) and 1; is the length of barricade i .  

The optimal path passing through G;(j) can be found by 
applying (19) twice with starting and ending points of (S, 
G ; ( j ) )  and (G;(j), E), and the optimal path connecting (S, E) 
is the one passing through the gate that minimizes the cost 

e(S, E)=mjn [el(& G;(j))+G(G;(j),  E11 (24) 

where Ck(P, Q), k = 1 ,  2 is the cost of path connecting P and 
Q in the kth region, and is computed by (1 3). Note that due to 
Proposition 2, (13) instead of (18) must be used for computing 
the cost of a path. 

The method used for a two-segmented channel can be 
applied to a multisegmented channel. Suppose a free space is 
characterized by Ncenter-line segments and N - 1 barricades 
(Fig. 8). For notational convenience, the starting and ending 
points are treated as barricades with M = 1. These are not real 
but pseudo barricades. Thus there is a total of N + 1 
barricades, where G1(l )  and G N + I ( ~ )  are the starting and 
ending points. 

Let I = { g l ,  . - . , g N +  } be the set of gates that a path 
traverses, where gi is the gate number in barricade i .  Then, the 
multisegmented channel problem is to find a gate set whose 
corresponding path has the minimum cost. The cost for the 
gate set I is given by 

e(I)  = e;(G;(j), G;, (k)), for some j ,  k E Z (25) 
N 

r = I  

where C;(G;(j), G;+](k)) is the cost of x,? connecting the 
gates G;(j) and G;+ (k).  

The optimal gate set is determined by the dynamic program- 

* We assumed the same number of gates for all barricades for notational 
simplicity. It is trivial to relax this assumption. 

Precisely speaking, (13) is the cost function of Case A in Proposition 4, 
and a general cost function covering the other cases needs to replace the term 
Ix(w)l by )I (0, x(w)) - C)I in (13). For convenience, (13) will henceforth be 
referred to as a cost function for all the cases. 
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BZ BN- 1 form equation can be used: 

cos e -sin 01 [;I + [;:I 
"?, - E. (27) 

where R is the transform matrix representing the rotation of 
the local coordinate frame relative to the world coordinate 

Fig. 8.  Multisegmented channel. 

ming (DP). The optimization procedure starts at barricade N. 
(Recall that barricade N + 1 is the ending point.) The cost of a 
path passing through gatej on barricade N, denoted by eN(j), 
can be computed once x & ( j )  is determined using G N ( j )  and 
GN+I(l) as the starting and ending points, respectively, i.e., 
e&) = e N ( G N ( j ) ,  GN+l(l)), and the next gate pointer at 
gate j on barricade N, d N ( j )  = 1, v j  = 1, 

The cost at ga t e j  on barricade N - 1 becomes 

e ~ - ~ ( j ) = m i n  [ ~ N - I ( G , v - I ( ~ ) ,  Gdk) )+  e,~(k)l ,  

* e ,  M.  

k = l ,  e . . ,  M (26) 

and the pointer d N - l ( j )  will be the k that minimizes the 
magnitude of [ e ]  in (26). Recursive equations can be obtained 
by replacing N and N - 1 in the above with i + 1 and i ,  
respectively. 

The DP algorithm is summarized as follows: 

Step 1: Initialization. 
1) Read in center-line segments and barricades data. 
2) Formgates:G,(j) , i= l , . * . , N +  l ; j =  l , . . . ,  

3) Set i : = N. 
4) F o r j  = 1, * * * ,  M, lo set d i ( j )  : = 1, and compute 

M.  

W j )  = e;(G(j), 0 
Step 2: Termination check. 
S e t i :  = i - 1. 
If i = 0, stop. Otherwise go to Step 3. 
Step 3: Continuation. 
F o r j  = 1, 

1) Set C i ( j )  : = 00. 
2) F o r k  = 1, e . . ,  M 
Compute X = ei(G;(j) ,  G;+l(Q) + e;+l@). 

If X e e;(j) ,  then ei ( j )  : = X and d ; ( j )  : = k 
Go to Step 2. 

The computational complexity of the DP algorithm is as 
follows. For each region bounded by two barricades, there are 
@ pairs of gates except for the first and last regions in each of 
which there are Mpairs of gates. Thus, there are 2M + (N - 
2)@ pairs of gates for which the cost function (13) is 
evaluated. Note, however, that since the path equation is given 
in closed form, the computational cost is very low. 

Since the path equation is given with reference to a local 

frame, and 8 is the rotational angle of the local coordinate 
frame defined as the counter-clockwise angle between the 
center-line segment C and the horizontal axis of the world 
coordinate frame, and (as, xs) represents the translation of C 
from the origin of the world frame. 

An example of the behavior of optimal paths with respect to 
a rectangular obstacle, while varying the weighing factor X, is 
shown in Fig. 9. There is a three-segmented channel in this 
example, which was simulated with 20 gates on each of the 
two barricading lines. It is shown that an optimal path tends to 
traverse away from (close to) the obstacle as the value of X 
increases (decreases). The paths with X close to the extreme 
values have visual corners, since in such cases the paths are 
approaching the asymptotes, i.e., SP or CLP. However, they 
are relatively smooth for mid-range values of A. Observe that 
regardless of the value of X, there do not exist ridges around 
the gates where the two path primitives are joined, since such a 
path cannot be optimal. 

C. 3 0  Extension 
We have presented the VCDP algorithm to determine an 

optimal path in 2D. In 2D the primitive of the safest path is a 
straight line, i.e., the CLP. In case of 3D, however, the CLP 
is not a line but a plane in general. Therefore, the VCDP 
algorithm is difficult to apply to general 3D problems. 
However, if 3D problems are restricted to the safest paths that 
are represented by line segments only, the VCDP algorithm 
can be used for them with a minor modification. 

Consider a room filled with polyhedral objects. Suppose an 
articulated cylinder is placed as shown in Fig. 10. Regard the 
axis of the cylinder as a CLP and its cross-sectional diameter 
as the clearance. Then, the cross-sectional circle where the 
CLP is bent becomes a barricade. The articulated cylinder may 
be thought of as a channel. Note, however, that the approxi- 
mation of the free space with an articulated cylinder wastes the 
free space. To minimize the wasted volume, the articulated 
cylinder should be placed such that the largest diameter can be 
obtained. 

With the above arrangement in 3D, the VCDP algorithm 
can be directly applied to 3D problems. The differences are: a) 
gates are generated by discretizing the barricading plane (Fig. 
1 I), and b) the path equation is derived such that the following 
functional is minimized: 

Wf 

00 
J =  S [(I +%'(U) +?'(a)) + Xy(x'(a) +y'(o))]  dw (28) 

where y = P / ( w ~  - W O ) ,  and P is the reciprocal of the average 
diameter of each cylinder. Details of the solution to this 3D 
problem are omitted since it is very similar to the 2D case. 

coordinate frame whose origin is at one end of the center-line 

the path in the local coordinate frame into the one in the world 
coordinate frame W. For this purpose, the following trans- 

segment, a coordinate transform may be necessary to convert 

Io IfN = 1 ,  let M = 1. 
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Fig. 10. Articulated cylinder. 
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Fig. 11. Barricading circles and axis nomenclature. 

IV. DERIVATION OF CHANNELS 

The VCDP algorithm developed in the previous section is 
used to determine the optimal path equations for a given 
channel characterized by the channel parameters, the CLP, 
and barricades. To derive channel parameters, it is necessary 
to represent the free space with channels. As discussed in 
Section I, Kuan et al. [5] represented the free space with 
nonoverlapping convex polygons for large free regions and 
generalized cones for narrow regions. However, their method 
is not applicable to our path planning because we must not only 
partition the free space but also derive channel parameters. 

In this section we shall develop a method for deriving 

channels and their parameters for the workspace. Note that, 
though the material in this section can be used independently 
for other path planning methods, it is mainly intended for the 
VCDP algorithm. 

A .  Describing Free Space as Channels 
To apply the VCDP algorithm, it is necessary to describe 

the free space as channels, each of which is defined as a closed 
free space that can be accessed only through its two entrances. 
Boundaries of a channel are two piecewise straight lines 
connecting its two entrance edges. It is important to note that 
the free space inside the boundaries of a channel must be 
completely free of islands of forbidden area (generated by 
obstacles). In other words, holeless channels are to be placed 
in the punched-hole shape of the free space. Thus to describe 
an open free space (the complement of the areas occupied by 
obstacles) in terms of channels, the workspace is divided into 
two areas (Fig. 12): the obstacle-cluster area (OCA) which is 
the convex hull of obstacle polygons, and the corridor area 
which is the complement of the OCA. Then, the free space in 
the corridor area can be described by a single channel whose 
boundaries are defined by the OCA and the workspace itself. 

In contrast with the corridor area, it is usually difficult to 
describe the free space in OCA with a single channel. Since 
those edges of the obstacle-cluster convex hull which are not 
the edges of obstacle polygons” can be considered as the 
entrances to OCA, the free space in OCA is represented by 
several channels, one for each pair of entrances to the area. 

For a given pair of entrances, channel boundaries are 
determined in two stages. The first stage is to identify 
polygons which define the shape of the channel. This is 
necessary since there may exist polygons which play nolor a 
minor role in determining the shape of the “main road” of the 
free space connecting the channel’s two entrances. Then, the 
channel boundaries are determined in the second stage by 
using the bounding polygons obtained in the first stage. The 
details of the two stages are given in the following subsection. 
For simplicity of presentation, we assume that two entrances 
are at top and bottom, and that the channel boundaries to be 
determined are at left and right. 

1) Identification of Bounding Obstacles: Bounding poly- 
gons of a channel must be identified such that the free space 
within the channel is maximized. Such bounding polygons are 
iteratively obtained, each time by drawing a convex hull with 
previously identified bounding polygons and checking the 
relationship between the edges of the convex hull and obstacle 
polygons to be identified. The set of polygons defining the two 
entrances of a channel, called entrance-defining polygons 
(EDP’s), is used as the initial set of bounding polygons. In the 
discussion that will follow, it is assumed that the OCA 
contains polygons other than EDP’s. If it contains only EDP’s, 
then the identification process will terminate at this point. 

Suppose the two entrances of the convex hull, CH(EDP’s), 

I ’  Specifically, an entrance is defined as an edge whose two endpoints do 
not belong to the same OCA-defining polygon. Note that the above definition 
is valid for the OCA consisting of both convex and concave obstacle polygons. 

I’ Distinction between “top,” “bottom,” ‘‘left,’’ and “right” edges is 
immaterial but used for the convenience of presentation. 
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Fig. 12. Two areas and entrances. 
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Fig. 13. Entrances, edges, island of forbidden area. 

are located at top and bottom, and the two nonentrance edges 
are located at left and right, i.e., “left” and “right” edges 
(Fig. 13(a)). Note that there exists only one edge if an obstacle 
polygon is used for defining both the top and bottom entrances 
(Fig. 13(b)). The initial bounding polygon set, = {EDP}, 
can be decomposed into and Cap, where CBf(Cap) is the set 
of left-(right-) bounding polygons that define the left (right), 
LI(RI)  of CH(ai). 

Now, it is necessary to identify and then label three different 
types of obstacle polygons: left-bounding polygons, right- 
bounding polygons, and island-bounding polygons. Since the 
method of identifying right-bounding polygons is symmetric to 
that of left-bounding polygons, it is sufficient to describe those 
steps necessary to identify left-bounding and island-bounding 
polygons. 

Identification of left-bounding polygons: Let EDPL 
and EDPR be those polygons defining L I  and R I ,  respectively. 
Then, the initial set of left-(right-) bounding polygons are 03: 
= {EDPL} and 63: = {EDPR}. The set of left-bounding 
polygons is then expanded by adding those unlabeled obstacle 
polygons (excluding EDP’s) that satisfy the conditions de- 
scribed below. When i = l ,  an unlabeled obstacle polygon, 
Oj, is labeled “L” (“R” in the steps of identifying right- 
bounding polygons) if 0, f l  L, # 0. This is to find those 
obstacle polygons that intersect L, between the two obstacle 
polygons defining L,. When i > 1, the following condition is 
necessary to label 0,: 

0, n {CH ( ~ , ) - c H  (a,4}+0. (29) 

This additional condition is needed to identify obstacle 
polygons lying between Li and L,- 1. Note that it is necessary 
to differentiate the labeling conditions for the cases of i = 1 
and i > 1, since in the former case the additional condition 
(29) is used to identify the island of forbidden area as will be 
seen later in this subsection. 

By applying the above conditions for every unlabeled 
polygon, a new expanded set of left-bounding poygons is 
formed. Termination conditions are: a) 63: # 6 3 - 1 ,  i.e., 
there is at least one obstacle polygon labeled in the ith 
iteration, and b) L, C CH (OCA), i.e., no more obstacle 
polygons left with which the current convex hull, CH(a,), can 
be enlarged. If any of the termination conditions is satisfied, 
then go to the steps of identifying right-bounding polygons. 
Otherwise, let i : = i + 1, and form a new expanded set of 
left-bounding polygons, a:, consisting of and unlabeled 
OCA-defining polygon(s) l 3  each located le!? to the top/ 
bottom-leftmost OCA-defining polygons in 63,- Then, re- 
peat the steps of identifying left-bounding polygons. This 
process can be thought of as an attempt of “maximally 
expanding” the left-bounding polygon set. 

Identification of island-bounding polygons: After 
identifying left- and right-bounding polygons, the polygons 
inside the original convex hull, CH(EDP’s), must be identi- 
fied. Note that this process does not deal with those obstacle 
polygons that reside inside the convex hull and do not intersect 
all nonentrance edges, i.e., L1 and R1. Similarly to the above, 

l 3  Two polygons if exist or one if not. 
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island-bounding polygons are identified by the convex hull 
operation. The first step is to merge more than one polygon (if 
exist) into one polygon (an “island” of forbidden area) by 
the convex hull operation. The merged polygon is then treated 
as a single obstacle polygon and is labeled “RL” (Fig. 13(c)). 
Thus in such a case, some free space (the shaded region in Fig. 
13(c)) between obstacle polygons in the island is wasted. 
When the free space between obstacles inside the island is 
nonnegligible, one may treat the “forbidden island” as a sub- 
OCA recursively until no island contains more than one 
obstacles (or until the pair-wise minimum distances between 
all obstacles in the island become less than some parameter). 
But this could increase the computational burden. l 4  Note, 
however, that the merging operation is applied not to create 
unnecessarily many narrow channels which may exist other- 
wise. In other words, by the merging operation, the maximum 
number of channels to be defined in the free space for any pair 
of entrances is two as will be described in the following 
subsection. 

2) Determination of Channel Boundaries: Channel 
boundaries are determined by the entrance-defining polygons 
and those labeled “L,” “R,” and “RL.” Depending on the 
presence of island of forbidden area, two possible cases need 
to be considered. First, consider the case when there is no 
island of forbidden area. In this case, a single channel is 
defined as follows. Let CH(L, R,  EDP’s) and O(L, R, EDP’s) 
be, respectively, the convex hull and the occupied space of the 
obstacle polygons labeled“L,” “R,” and the entrance- 
defining polygons. Then, the configuration of channel can be 
represented as the convex hull complement of the forbidden 
area, i.e., CH(L, R,  EDP’s) - O(L, R,  EDP’s). Thus the left 
(right) channel boundary in this case is obtained by connecting 
the vertex corresponding to the left (right) end of the top 
entrance edge to that of the left (right) end of the bottom 
entrance edge. Fig. 14(a)-(d) shows three channels for an 
OCA consisting of three polygons, and one channel for the 
corridor area in Fig. 12. Note that the corridor area can be 
viewed as a special type of channel whose two entrances are 
identical. 

In the case when there exists an island of forbidden area, 
two channels-left and right channels-are defined from the 
configuration of the free space, CH(L, R,  EDP’s) - O(L, R, 
RL, EDP’s). The left (right) channel configuration is defined 
with obstacle polygons labeled L,  RL, and EDP’s (RL, R, 
and EDP’s). In what follows, we describe a method to 
determine the configuration of the left channel only, since a) 
channel boundaries are determined by connecting the vertices 
along the contour of the configuration as described above, and 
b) a method symmetric to that of the left channel is applied to 
the right channel. 

An exact configuration of the free space to be covered by 
the left channel is CH(L, RL, EDP’s) - O(L, RL, EDP’s). 
Since an island of forbidden area labeled RL is always located 
inside the convex hull, the free space between RL and the right 
edge of the convex hull CH(L, RL, EDP’s) must be removed 
so that the right channel boundary can be determined. The 

l4 This was brought to our attention by an anonymous referee. 

- Channel Boundary 
Entrance 

Fig. 14. Channel boundaries with various entrances. 

(a) (b) 
Fig. 15. Channel boundaries for left (a) and right (b) channels. 

removal is done by placing two bounding edges, each 
connecting two vertices-one from RL and the other from the 
top-right EDP or bottom-right EDP-such that the removed 
space is minimal. Fig. 15(a), (b) shows the boundaries of the 
left and right channels derived from the layout in Fig. 13(c). 

B. Determining Channel Parameters 
The channel boundaries obtained above may zigzag, and the 

free space within these boundaries may contain many “outly- 
ing” regions of the free space as shown in Figs. 14(a)-(c) and 
15(a), (b). These regions can be removed when the channel 
parameters, i.e., the CLP and barricades, are determined. 
Before discussing how to determine the channel parameters, it 
is worth noting that i) the CLP should be determined to be the 
safest path in every free space because the VCDP algorithm is 
developed based on such an assumption, ii) the free space 
between two successive barricades must be convex (due to 
Proposition 3), and iii) the least number of barricades is 
desired for computational reasons. 

There is a tradeoff between i) and iii), since the CLP’s 
accuracy increases with the number of barricades used. For 

I s  Note that the amount of computation required for the VCDP algorithm is 
approximately proportional to the number of barricades as mentioned in 
Section 111-B. 
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(b) 
Fig. 16. Two CLP’s. 

instance, the CLP connecting the bisection points of seven 
barricades in Fig. 16(a) is considered to be more accurate and, 
thus, safer than that of two barricades in Fig. 16(b). In 
general, as the number of edges of each basic convex polygon 
(in the free space) increases, the number of barricades 
decreases at the cost of the CLP’s accuracy. We deal with this 
aspect by decomposing the free space into convex quadrilater- 
als and triangles, and keeping the number of quadrilaterals 
maximum. 

The channel parameters are determined by decomposing the 
free space into nonoverlapping convex polygons followed by 
labeling the edges of the decomposed polygons. This decom- 
position is straightforward: choose the largest concave angle in 
the free space bounded by all the edges, and try to include as 
many (up to four) contiguous vertices as possible to form a 
convex polygon in the free space. Thus the basic convex 
polygon is either a triangle or a quadrilateral. The decomposi- 
tion process will continue until the entire free space is divided 
into triangles and quadrilaterals only. 

Then, the labeling process begins. Initially, all the polygon 
edges on channel boundaries are labeled “ W’ (indicating a 
wall) and the two entrance edges are labeled “B” (indicating 
barricades). Labeling is done on those polygons in which only 
one edge is not labeled. The unlabeled edge in a basic convex 
polygon is labeled “ W,” if all its other edges are labeled 
“ W ’  (the polygonal free space is thus removed since it is an 
outlying region). Otherwise, it is 1abeled“B.” The labeling 
process continues until all the edges are labeled. The edges 
labeled “B” then become barricades, and the straight-line 
segment connecting the bisection points of barricades becomes 
the CLP. The same method is applied to the channels 
representing the corridor area. In such a case, there is only one 
entrance edge which can be formed by taking a vertex from the 
workspace boundaries and connecting it to the nearest vertex 
in the obstacle-cluster convex hull. Fig. 17 illustrates the 
above method by using the same example in Fig. 14. 

C. Setting Up a Graph 
Since the CLP and the configuration of (the “main road” 

of) a channel are completely specified by barricades, it is 
necessary to store only the barricade edges to describe a 

channel. Since there are 

pairs of entrances, where n, is the number of entrances in 
OCA, l 6  and a maximum of two channels are defined for each 
pair, the entire workspace including the corridor area can be 
described by at most 

sets of barricades. 
To describe the workspace systematically, a graph is set up 

where each node represents the free convex polygon in the 
corridor area or the free space in OCA. Two nodes are joined 
by an arc if the nodes share a common barricade. Fig. 18(b) 
shows such a graph obtained from the layout of Fig. 12. Note 
that the arcs connected to a node of OCA are entrances to the 
free space represented by the node, and supplementary 
information between these arcs is given in the form of the 
ordered set of barricades as shown in Fig. 18(c). Note that the 
graph is set up only once for a given workspace, and contains a 
relatively small number of nodes since the free space of OCA 
is represented by a single node. 

D. Applying VCDP Algorithm 
With the graph and the supplementary information men- 

tioned above, an optimal path connecting the starting ( S )  and 
ending (E)  points is derived by applying the VCDP algorithm 
described in Section 111. Initially, S and E are identified in the 
graph. Then, a direction of each edge is determined as 
follows. Starting from the node that represents E ,  all the arcs 
connected to the node must come “into” the node. Then, for 
each node whose one arc has an outgoing (incoming) 
direction, all the other arcs connected to the node must be 
incoming (outgoing). Note that some arcs representing the 
entrances may have bidirections. Based on the directed graph 
obtained as above, sets of ordered barricades are determined. 
If either S or E is inside the OCA, then ordered sets of 
barricades within the OCA are obtained from the supplemen- 
tary information. These sets will be added to the ordered sets 
of barricades outside the OCA to form complete sets of 
barricades. Fig. 19 shows the directed graph and four sets of 
barricades with the same starting and ending points in Fig. 20. 

To determine an optimal path, it is necessary to evaluate 
every ordered set of barricades by computing the path costs 
with the VCDP algorithm. Note that the number of ordered 
sets of barricades is approximately greater than that of 
channels by one, since there are two sets of barricades in the 
corridor area. Each set of barricades determines a channel and 
its associated CLP. The local optimal path (LMCP) is derived 
by applying the VCDP algorithm. The required computation 
time can be reduced by ordering barricade sets to be evaluated 
in such a way that the set with the least number of elements is 

l6 Note that the number of entrances is equal to that of the obstacle polygons 
defining the obstacle-cluster convex hull. 
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W 
(d) 

Labeling for corridor region. 
Fig. 17. (a) Labeling with entrances e,  and ez. (b) Labeling with entrances e, and e3. (c) Labeling with entrances ez and e3. (d) 

Entrance Pair Barricades 

(a) 
Fig. 18. (a) Notation. (b) Regional graph. (c) Supplementary information. 
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No. Ordered Barricades 

(b) 
Fig. 19. Directed graph (a) and four sets of barricades (b). 

GMCP LMCP-I 

Fig. 20. (a) GMCP and LMCP’s (A = 4.0). (b) GMCP and LMCP’s (A = 1.0). (c) GMCP and LMCP’s (A = 0.1). 

evaluated first, that with the second least number of elements 
next, and so on. 

Fig. 20(a)-(c) shows the four LMCP’s, one for each of the 
four channels, and one global optimal path (GMCP) for three 
different values of the weighting factor A, using the example of 
Fig. 19. This example is simulated with 15 gates on each 
barricade. This also shows that the channel where the GMCP 
is located changes with A. As illustrated in this figure, when 
the safety factor becomes large, e.g., h = 3, the GMCP tends 
to traverse the most spacious channel (channel I), while the 
GMCP traverses in an appropriate region (channel 3) to 
minimize the traveling distance as the safety factor becomes 
smaller, e.g., h = 0.1. 

As the safety factor becomes large, the LMCP tends not to 
deviate too much from the CLP to minimize the safety cost, 
especially when the LMCP traverses through a narrow- 
channel region (see LMCP I1 and I11 in Fig. 20(a)). As a 

result, the LMCP bends itself several times and yields visual 
comers. As mentioned earlier, these visual comers disappear 
in the mid-range values of the weighing factor (Fig. 20(b)). On 
the other hand, when the safety factor becomes small, the 
LMCP will be made up of straight-line segments to minimize 
the cost associated with distance (Fig. 20(c)). Note that a bend 
around the beginning part of LMCP I1 in Fig. 20(c) is due to 
the discretization of barricades. 

V. CONCLUDING REMARKS 
In this paper, a robot-path planning problem with both 

distance and safety is considered. Incorporation of robot safety 
into path planning is practically important not only because of 
the uncertainties in robot dynamics during path execution, but 
also because of the inaccuracy in the geometric modeling of 
obstacles. Another way to view the inclusion of robot safety is 
to remedy the potential problems that the shortest path has: it 
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requires a robot to traverse too close to obstacles and make 
very sharp turns. By considering robot safety during path 
planning, more realistic paths can be obtained, thus reducing/ 
removing the difficulties during path execution caused by, for 
example, the uncertainties in robot dynamics. 

If the distance from the obstacle walls and/or the parameter- 
ization of a path with its arc length were used for robot-path 
planning, then one has to face a number of difficulties. 
Parameterizing an unknown path with its arc length is difficult 
and has little use in deriving the solution. Hence, any optimal 
path planning may have to rely on a space-discretization 
method, such as that in 1131. As discussed earlier, the 

X 

f slLew s2 Fig. 21 Two paths. 

. -  

computational requirement in the space-discretization method 
is very high even if heuristics were used. Moreover, evalua- 
tion of the distance from every point Pi on the grid to the set of 
obstacles, )I Pi - 0 11, may be computationally intractable. 

Such a path can be formed by connecting the bisection points 
of the barricades retrieved from a database, which requires 
only a small amount of time. 

.. . 

Due mainly to the above difficulties, we used a weighted 
distance and center-line deviation for the robot-path planning 
problem which is then solved by the VCDP algorithm. It is 
computationally efficient and yields a near-optimal path in 
closed form for the channel characterized by the barricades 
and CLP. The behavior of the VCDP solution has been 
examined through various numerical examples. As the safety 
factor increases, the solution path gets closer to the safest path, 
CLP, while it gets closer to an SP as the safety factor 
decreases. For the mid-range values of the safety factor, the 
solution path is smooth and traverses between the two extreme 
paths, i.e., CLP and SP. Thus the VCDP algorithm has high 
potential use for obtaining a more realistic path by selecting an 
appropriate value of the safety factor. The number of gates on 
each barricade (i.e., M) determines the accuracy of the 
solution and the amount of computation. As the number of 
gates increases, the more accurate solution will result at the 
expense of computational costs. Our experience with this 
optimization algorithm shows that M = 20 is usually more 
than sufficient. The VCDP algorithm is also shown to be 
readily extensible to a class of 3D problems. 

The VCDP algorithm is applied to solve the path planning 
problem by representing the free space as channels. Channel 
boundaries are determined by convex hull operations, and the 
channel parameters: CLP and barricades for the main road of 
each channel are derived by decomposing the concave polygon 
into nonoverlapping convex polygons. Robot-path planning is 
simply an application of the VCDP algorithm with the set of 
barricades identified by forming a directed graph for the 
decomposed workspace. 

Our path planning approach has several advantages: a) the 
workspace is represented in compact form by a few nodes 
(since the obstacle-cluster area is represented by only one 
node) in the graph, b) only the “main road” part of each 
channel is considered for path planning, c) the configuration of 
the free space is concisely described by a set of barricades, d) 
the graph representing the workspace is formed only once and 
can be repeatedly used for the entire path planning, and e) the 
directed graph reduces the required search effort significantly. 
Note that the path planning method in Section IV can also be 

APPENDIX I 
PROOF OF PROPOSITION 2 

This proposition can be proved by showing a counter- 
example. Consider two different paths connecting two sets of 
starting and ending points. Suppose that the optimal paths are 
straight-line segments, i.e., X = 0 (Fig. 21). The equations 
for paths A and B are 

x(w)=  -2w+2, w E [O, 11 

and 

x(w)=3/4w, w E [O, 21 

respectively. 
Computing J for these two paths, we get 

J A =  1’ (1+(-2)2) d 0 = 5  

and 

J B =  l2 (1 +(3/4)2) d ~ = 2 5 / 8 .  

The actual path lengths 

and 

J O  

Clearly, J A  > J B ,  but e A  < e,. 

APPENDIX I1 
W-E CORNER CONDITIONS 

Applying the Weierstrass-Erdmann (W-E) corner condi- 
tions [4] to the functional (1 8) of the Path Primitive Problem 

(AI) used independently of the first half of this paper; one can use it ag ag 
for finding a path avoiding collision with obstacles generously. (x*(wl)’ x*(w ““=z (x*(wl)’ x*(w :)’ 
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and K. G. Shin and N. D. Mckay, “Selection of near-minimum time 
geometric paths for robotic manipulators,” IEEE Trans. Automat. 
Contr., vol. AC-31, no. 6, pp. 501-511, lune 1986. 

g(X*(wl), a*(&),), w1) - [ $ (X*(O~), a*(&);), 01) X*(O,) [12] J. S. Singh and M. D. Wagh, “Robot path planning using intersecting 
convex shapes: Analysis and simulation,’’ IEEE J. Robotics Auto- 
mat., vol. RA-3, no. 2, pp. 101-108, Apr. 1987. 
C. E. Thrope, “Path relaxation: Path planning for a mobile robot,” 
Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-RI-TR-84- 
5, 1984. 

[ l l ]  

[I31 

1 
(A2) 

where g(.) is the integrand in (18). From (Al) and (A2), we 
get 

2X*(O ) = 2 X * ( W T  ) (‘43) 

[ 1 + R*2(W , )] + Xyx*2(0, ) = [ 2X*2(w ; )I x * y w  ; ) 
[ 1 + X * 2 ( ~  :)] + A ~ x * ~ ( o ~ )  = [2X* (U : )]X* (0 ). (A4) 

From (A3), **(U;)  = A!*(@:), i.e., no corners exist. 
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