
334 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 3, JUNE 1988

A Variational Dynamic Programming Approach to
Robot-Path Planning With a Distance-Safety

Criterion

Abstract-An approach to robot-path planning is developed by
considering both the traveling distance and the safety of the robot.
Incorporation of robot safety into path planning is important not only
because of the uncertainties in the robot dynamics during path execution,
but also because of the inaccuracies in the geometric modeling of
obstacles. A computationally efficient algorithm is developed to find a
near-optimal path with a weighted distance-safety criterion by using a
variational calculus and dynamic programming (VCDP) method.

The algorithm is readily applicable to any factory environment by
representing the free workspace as channels. A method for deriving these
channels is also proposed. Although it is developed mainly for two-
dimensional (2D) problems, our method can be easily extended to a class
of three-dimensional (3D) problems. Numerical examples are presented to
demonstrate the utility and power of this method.

I . INTRODUCTION
PTIMAL (in some sense) control of industrial robots is of 0 practical importance to various robot-based automation

systems. Such a control is usually achieved through a two-
stage optimization: off-line planning followed by on-line path
execution. Depending on the system objective, both the path
planning and path tracking problems have to be solved by
optimizing suitable criteria subject to some constraints. This
paper deals with the first stage, presenting a near-optimal
solution to the robot-path planning problem with a weighted
distance-safety criterion.

The traveling distance has been the primary object to
minimize in most conventional robot-path planning ap-
proaches because the shortest distance path may reduce the
robot's traveling time and the computational complexity of
path planning. However, another factor which should not be
ignored during robot-path planning is robot safety during path
execution. Robot safety becomes important, especially when
there are nonnegligible uncertainties in both the robot dy-
namics during path execution and the environmental informa-

Manuscript received August 18, 1987; revised December 31, 1987. Part of
the material in this paper was presented at the 26th Conference on Decision
and Control, Los Angeles, CA, December 1987. This work was supported in
part by the NASA Johnson Space Center under Grant NCC-9-16, the NSF
under Grant ECS-8409938, the U.S. Air Force Office of Scientific Research
under Contract F33615-85-C-5105, and the Industrial Affiliates Program
Robot Systems Division, Center for Research on Integrated Manufacturing
(CRIM), The University of Michigan. All correspondence regarding this
paper should be addressed to K. G. Shin.

S. H. Suh is with the Department of Industrial Engineering, FQSTECH,
Pohang, Korea 680.

K. G. Shin is with the Department of Electrical Engineering and Computer
Science, The University of Michigan, Ann Arbor, MI 48109-2122.

IEEE Log Number 8820152.

tion such as obstacles. Thus the simultaneous consideration of
distance and safety needs to be called for during robot-path
planning.

The issue to be addressed in this paper can be made clear by
comparing two well-known paths: the shortest path (SP) and
the center-line path (CLP). An SP can be found by using a
visibility graph in two-dimensional space [9] and is attractive
for many cases. However, an SP may require the robot to
travel too close to obstacles (actually, the SP touches them),
and hence possesses a high risk of colliding with obstacles
(Fig. 1). Thus it may not even be desirable at all when robot
safety is a major concern.

The safety of a robot path can be quantified by the clearance
between the path and obstacles. Naturally, the larger its
clearance in a room with clustered obstacles, the safer a path
will be. If robot safety is the only concern, one would choose a
path providing the maximum clearance from obstacles. This
path would traverse along the CLP of free space. See Fig. 1
for an example CLP. As illustrated in this figure, a CLP could
be considerably longer than an SP, indicating that the CLP is
not desirable if the robot's traversal distance is a major
consideration in path planning.

Following the above arguments, SP and CLP can be viewed
as two extremes with respect to the distance and safety criteria,
respectively; neither of the two alone may be acceptable for
the general case. Due to the uncertainties in robot dynamics
during path execution and the inaccuracies in geometric
modeling of obstacles, it is important to consider both criteria
in some weighted fashion for path planning. We shall, in this
paper, develop a robot-path planning method by striking a
compromise between distance and safety.

The safety of a path has not been considered explicitly in
almost all known path planning approaches except for those in
[9], [13].' The path safety in [9] was obtained by first
enlarging each obstacle by a specified amount (i.e., the margin
of safety) and then applying the visibility graph method. A
visibility graph is based on the necessary condition that an SP
is made up of line segments. Though the method of growing
obstacles and then using a visibility graph is simple and
attractive in many cases, a potential problem with this method
is that the only feasible path could have been eliminated as a
result of growing obstacles [lo]. Moreover, it may be very
difficult to determine the degree of enlargement of obstacles

I The work in [13] will be discussed later in this section.

0882-4967/88/0600-0334$01 .OO O 1988 IEEE

SUH AND SHIN: ROBOT-PATH PLANNING 335

f- I
I

I

CLP
SP

--_

Fig. 1. CLP and SP.

during path planning because of its dependence on the
utilization of the workspace as well as the uncertainties in the
robot dynamics during path execution. Moreover, since a
visibility graph can be set up only when the starting and ending
points are given, a new visibility graph has to be constructed
every time the starting and ending points are changed.

Other path planning approaches in the literature are based
on the decomposition of free space into geometric primitives,
such as cones and cylinders. Brooks [2] used overlapping
generalized cones to represent the free space. Generalized
cones are formed to allow translations and rotations. A robot
path traverses along the cone axes and avoids obstacles
generously, i.e., an implicit consideration of robot safety. One
problem with this is that it is awkward to represent a large free
space with generalized cones. As a remedy for this problem,
Kuan et al. [5] proposed a hybrid representation of free space
by using nonoverlapping convex polygons for large free
spaces and generalized cones for narrow regions. Singh et al.
[12] decomposed a free space into several rectangular areas,
and Chatila [3] used convex polygons to represent the free
space.

These decomposition methods can be used to form a
connectivity graph in which a node represents a geometric
primitive and an arc describes the neighboring relationship
between primitives. A graph search technique, such as the A*
algorithm, is then used to find the minimum (or near-
minimum) cost path. The cost between a pair of nodes is the
length of the straight-line segment connecting the two points,
each of which lies in the geometric primitive represented by
each of the two nodes. The use of a straight-line segment as a
path primitive for connecting two geometric primitives can be
justified when path length is used as the cost function,
although it may be necessary to remove the sharp corners on
the resulting piecewise-straight-line path. However, if the cost
function contains more than just path length, use of a line
segment as the path primitive is difficult to justify, especially
when the geometric primitive used covers a relatively large
free space.

To alleviate the above problem, one may reduce the
coverage of a geometric primitive by placing a finer grid on
the free space, which will, unfortunately, result in an
excessive amount of computation. For example, the method in
[131 placed a grid on the free space and formed a search graph
by representing a grid point as a node with arcs to its eight
neighboring nodes. Then, graph search is performed by using
the A* algorithm with a cost function that keeps the path from
getting too close to obstacles. As the grid gets finer, the
required computation will become excessive even if heuristics
were used. Furthermore, the path connecting the grid points
with straight-line segments could contain as many comer
points2 as the number of grid points that the path goes through.

One way to overcome the above computational problem
without sacrificing the accuracy of the solution is to use a path
primitive or a curve connecting a pair of grid points that
minimizes the cost function on a relatively coarse grid. To
reduce the computational requirement, the grid size should be
chosen as large as possible within the limit that the use of the
path primitive can be justified. In such a case, the selection of
a path primitive itself will become an optimization problem.
Using a coarse grid and solving the optimization problem to
connect the grid points, we develop, in this paper, an approach
to robot-path planning that is accurate and computationally
efficient.

The path planning approach presented here is largely
divided into two parts. The first part considers the problem of
finding an optimal path for a bounded free space, called a
channel, and derives the solution paths using a variational
calculus and dynamic programming (VCDP) technique. It is
important to note that a channel may consist of multiple
segments. The second part deals with the problem of deriving
the channels from the general workspace filled with obstacle
polygons. Specifically, the paper is organized as follows. In
Section I1 we discuss the cost function which includes both
traveling distance and robot safety. In Section 111, the path
planning problem is solved using VCDP. Issues of the
computational complexity and a three-dimensional (3D) exten-
sion are also discussed there. Section IV describes how to
determine channels for a given workspace. The paper con-
cludes with a few remarks in Section V.

Throughout the paper, a robot is assumed to be a disc in
two-dimensional (2D) space or a sphere in three-dimensional
(3D) space, thus allowing the robot to be treated as a point by
growing obstacles as large as the radius of the disc or sphere.

11. COST FUNCTION

Our path planning approach begins with the selection of the
cost function to be used to measure the goodness of a path. Let
a path P be described by a parameterized curve connecting the
starting and ending points, denoted by {x(w), WO I w I U,},
where w is the parameter describing the curve [1 11, and WO

and wf are, respectively, initial and final values of the
parameter. Further, let 0 be the space occupied by no
obstacles, {O,, i = 1, - e - , no}.

Denote the cost function for a path P = {x(w), WO I w I

Those grid points where two segments of a path meet.
For example, the parameter may represent the arc length of the path.

336 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 3, JUNE 1988

where L(x(w), w , 0) is the cost of the robot path when the
parameter value is 0. Then, we want to minimize (1) subject to
the obstacle avoidance constraint

(x(4, 0 E [WO, 4 1 n 0 = 0 (2)

and the boundary conditions

~ (w o) = S x (w ~) = E (3)

where S and E are the starting and ending points.
The form of the cost function characterizes the type of path

planning. Considering both distance and safety, the cost
function is represented by

e (P) = 9 (P) + XS(P), A20 (4)

where 9 (P) and S(P) represent costs associated the length and
safety of P, respectively, and X is the relative weighting
between the two.

The distance cost of a path is defined as the arc length of the
path. It may be natural to define the safety cost of a path in
terms of its clearance from the obstacles

where 11 11 represents the Euclidean norm. With this robot-
safety metric, however, one has to face a number of
difficulties in solving the path planning problem. The main
difficulty arises from the fact that the distance between a path
and obstacles has to be computed pointwise over the entire
path. Despite the recent development of efficient methods for
computing distances [6], [7], any numerical method requiring
the evaluation of pointwise distances from a path to obstacles
will introduce a serious computational problem. It can be
easily seen that computing the distance between a point x(w)
and no polygonal objects requires to evaluate IIx(w) - 0 11 =
mini 11 x(w) - O,II, and for each object Oi the evaluation
of 11 x(w) - 0,II requires considerable amount of computation
depending on the distance computation algorithm used, and the
obstacle avoidance condition (2) must also be checked.
Furthermore, to obtain an optimal path minimizing the cost
functional (9, an infinite number of paths may have to be
evaluated since the spatial (path) planning problem is in
essence finding a finite number of points from a set of an
infinite number of points. Because of the above difficulties, we
shall seek an alternative metric for the safety cost.

An alternative chosen in this paper is to use the center-line
path (CLP) as a reference path or the safest path, and the
safety cost is defined as the deviation from the safest path or
CLP. Note that an exact CLP for a given workspace
containing polygon obstacles can be derived by a generalized
Voronoi diagram [8], and generalized Voronoi edges are made
up of both straight-line and curve segments. An approximate
CLP which is made up of straight-line segments only can also

be found by decomposing the free space into convex polygons
and connecting the bisection points of the common edges of
polygons as will be discussed in Section IV-B. For clarity of
presentation, it is assumed in this section that the CLP is given
and made up of line segments.

Consider a CLP traversing a set of free convex polygons
such that the starting and ending points are located, respec-
tively, in the first and last free convex polygons. Suppose a
path connecting the starting and ending points passes through
these free convex polygons. Then, the path can be parameter-
ized with respect to the CLP,4 and the path’s deviation from
the CLP, called the center-line deviation, is defined as

nut

where w is the path parameter. Note that the path parameter w
herein is the arc length of the CLP, not the path itself, as the
path is defined with reference to the CLP. Note also that a
safer path implies a smaller center-line deviation.

When the safety cost of a path is defined by (6), the
following two aspects must be taken into consideration. First,
since the (accumulated) center-line deviation increases with
path length, it should be normalized by, for example, the path
length or the interval of the path parameter to avoid double
counting the part of cost contributed by the path length.
Second, since the CLP traverses the free spaces of varying
clearance from obstacles, one unit center-line deviation at a
free space would have a different degree of safety from that at
another free space. For example, consider the two points PI
and Pz in Fig. 2, both of which deviate from the CLP by the
same amount. Obviously, Pi in Region 1 has a higher risk of
collision than that of Region 2. Thus it is necessary to scale the
normalized center-line deviation on the basis of the criticality
of a unit center-line deviation in each region. The scaling
constant P(w) should be inversely proportional to the clearance
of each region.

Considering all the aspects mentioned above, the safety cost
of a path is defined as

S(P)= lw’y(w)ll CLP (w)-x(w) l l dw (7)
WO

where y(w) = /3(w)/(wf - 00). Note that this safety cost is
obtained by normalizing the center-line deviation (6) with the
interval of the path parameter wf - wo, followed by
multiplying the scaling constant @(a).

In a given workspace, there could be several approximate5
CLP’s connecting the starting (S) and ending (E) points. Let a
channel be a bounded free space in which there exists at least
one collision-free path between S and E. Then, there exists a
CLP for every channel. For each channel, a minimum cost
path, called a local minimum cost path (LMCP), may be
found, and the global minimum cost path (GMCP) is the
minimum among the LMCP’s. A detailed solution approach to
the LMCP problem is presented in Section 111. The derivation
of the GMCP will be treated in Section IV.

The details of parameterization will be given in Section 111.
Since the starting and ending points may not be on the center-line paths.

SUH AND SHIN: ROBOT-PATH PLANNING

Region 2 \
W K- - - -.- - p2 - - - -

Fig. 2 . Two points with the same deviation from the center-line path.

111. VARIATIONAL DYNAMIC PATH EQUATIONS

In this section, the problem of finding an optimal path for a
given channel is dealt with. A channel is defined as a free
space with two piecewise-straight-line boundaries, and the
configuration of the channel is characterized by the corres-
ponding center-line segments. Based on their number of
center-line segments, channels are classified to be single-
segmented or multi-segmented. First, we consider a simple
case, called the Path Primitive Problem, where the channel
is characterized by a single center-line segment, for which a
closed-form solution is derived. Then, we treat a more
complex and general case, called Multisegmented Channel
Problem, a solution algorithm for which is developed. Issues
on the 3D extension of our algorithm are also discussed.

A . Path Primitive Problem
Suppose the robot is to move from a starting point S to an

ending point E in a given channel described by the center-line
segment C , and two obstacle boundaries U and L , as shown in
Fig. 3 . We want to find a path connecting S and E that
minimizes a weighted distance and safety cost while avoiding
collision with obstacles.

Placing a rectangular coordinate frame with its origin at one
end of C and the horizontal axis coinciding with C, a path can
be defined as a function x of the path parameter w E [WO, of],
coo # of,6 where S = (wo, xo) and E = (of, xf) . Let the
equation of the boundaries and C be given as

L(w)=aLw+bL, w L L ~ w ~ w L u (8)

U(o) = auw + bu, (9)

C(w) = 0, 0 I w I wcu (10)

wuL I w I wuu

where a;, b; for i = L , U are coefficients of boundary line
equations, oLu - wLL and wuu - our. are the curvilinear
lengths of projected L and U on the horizontal axis, and wcu in
(10) is the length of C .

To show how the cost function can be obtained, consider the
following case which corresponds to Case A in Fig. 6(a)

w o r o W f I W C u . (1 1)

If CO,, = a,, the problem becomes trivial; a line segment connecting S and
E will be the optimal solution as it minimizes both the path length and center-
line deviation.

Fig. 3. Problem of determining a path primitive.

337

U

C

L

Since the horizontal axis of the coordinate system coincides
with the center-line segment, the center-line deviation of the
path becomes

Note that the path can be computed as

j: do.

To express the relative criticality of a unit center-line
deviation in each region, the scaling constant p(w) should be
inversely proportional to the clearance of the region. The
scaling constant for the channel is defined as a reciprocal of
the average clearance, which can be obtained by computing
the distances between the midpoint of C and the upper and
lower boundaries’

Note that p for different cases can be computed similarly.

becomes
Once the scaling constant is obtained, the cost function (4)

e(S, E)=D+AS

= i: [J1+x(w)2+hy(x(w)I] do (13)

where y = p / (q - wo), and the path primitive problem is to
find X* which minimizes (13) subject to the following
constraints:

aLw+bLsx(w)sauw+bu , Vw E [ao, wf] (14)

x(o0) = xo x (q) = xf. (15)

This is a fixed-terminal point variational problem. It
becomes an unconstrained problem since the constraint (14)
can automatically be met as stated below.

Proposition 1: The constraint (14) is redundant, V h E [0,

Proof: Suppose x*(w) sways above the upper boundary

001, if S and E are within the free space.

’ Notice that we are using the average clearance within a region (i.e.,
single-segmented channel), and that @(CO) = 8. Thus p(w) in (7) in the
multisegmented channel must be thought of as a step function such as &(CO) =
B,, V u E [ab, CO;], where ab and w;are the parameter values of the ith center-
line segment.

338 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 3, JUNE 1988

is used in place of
fr

‘0

B1 / > B2 U

e= j [Ix(t)-r(t)I +CYIWll dt

where CY is a weighting constant. Decomposing the perform-
ance index into two parts

d \@
---------- C

fr

‘0
Jl = (x (t) - r (t))2 dt

I I I I
I I I I L for the tracking problem, and

w2 wf fr
Fig. 4. Break-in and break-out points. Jz = S t , u2(t) dt

line U. Then there exist two distinct points, one to break-out,
B1 = (01, X I) , and the other to break-in, B2 = (az, xz) , to the
line, since the path must be continuous and xo, xf I U(w), VU

E [WO, wf] (Fig. 41. For the interval [al, wz], clearly the
straight-line path connecting B1 and Bz is superior to x* in the
sense of both distance and the center-line deviation. Thus an
optimal path cannot traverse over the upper boundary line.
The same argument holds for the lower boundary line L.
Hence, constraint (14) is met automatically.

The solution to the unconstrained variational problem may
be obtained by solving the Euler equation [4]

dw [a2
ag
ax

o=- (x*(w), a*(&)), w) - d (x*(o), i*(o), .)I
x* (w)

(1 +X*Z(w))3’2
k sig (x*(w)) =

where g is the integrand of (13), k = Ay, and sig (x) = 1 if x
> 0, - 1 if x < 0, and undefined if x = 0. Notice that the
Euler equation is a nonlinear second-order differential equa-
tion, which cannot usually be solved analytically. Thus one
has to resort to numerical integration. However, in this case, a
nonlinear, two-point boundary-value problem must be solved.
The problem is in general very difficult because of both the
split boundary values and the nonlinearity of the differential
equation.

For computational tractability, we use a weighted squared
sum of the distance and safety costs in place of the cost
functional (13)

Wf

WO

J (S , E) = 1 [(l +XZ(w)) + AyxZ(w)] dw. (18)

It is worth noting that the quadratic form is often employed in
other optimal control problems for mathematical tractability,
e.g., the LQ problem [11. For example, consider a minimum-
fuel tracking problem [4]. This problem is to find the optimal
trajectory y*(t) which can keep the system statey(t) as close as
possible to the desired state r(t) with a minimum control or
fuel u*(t) over the interval [to, tf]. For mathematical tractabil-
ity, the performance index

for the minimum-fuel problem. Note that each subproblem
with J;, i = 1, 2 may result in the same optimal trajectory as
that with ei, i = 1, 2, where

Cl=)x(t) - r (t) I dt
fr
‘0

and
fr
‘0

e,= lu(t)l dt.

However, it is not obvious that the optimal trajectory with J is
the same as that with C, but clearly J(x*) # C (x*) , where x*
is the optimal trajectory found with J .

The Path Primitive Problem is symmetric to the minimum-
fuel tracking problem because a) subproblems with

J1= 1 (1 + X 2 (w)) dw
Wf

WO

and

Jz= s x2(o) dw
WO

result in the same optimal path as those with il Jl+xz(w) dw

and jl I X (4 dw

b) it is not obvious that the x*’s with cost functionals (13) and
(18) are the same, and c) clearly, J(x*) # e (x*), where x* is
the optimal path found with (18). In view of these aspects, the
cost functional (18) will be used only for finding an optimal
path x*, but not for evaluating the quality of x*. More
formally, we have the following proposition.

Proposition 2: The value of the cost functional J must be
used only for finding an optimal path x* for a given set of
starting and ending points within each channel, not as a means
for evaluating the performance of x*. Suppose x f and xf are
optimal paths connecting two different sets of starting and
ending points, i.e., minimizing J(S, , E,) and J(S2, E2),
respectively, where (SI, El) # (SZ, Ez). Then, J(S1, El) >
J(Sz, E2) does not necessarily mean that xf is superior to xT
(see Appendix I for the proof of this proposition). For such a
purpose, the original cost function, C(S,, E;), must be used,
not the weighted squared sum (1 8).

‘r

‘0

In what follows, a solution to the path primitive problem
with the cost functional (18) is derived. The Weierstrass-

J = 1 [(~ (t) - r(t))2 + au2] dt

SUH AND SHIN: ROBOT-PATH PLANNING 339

I I
I
I
I
I

I
I
I

I I " U

1-0.1 -4 & h 10.4
-04 2 1 1.0 D 0 X=2.3
444- h =Q.O

Fig. 5 . Optimal paths.

Erdmann comer conditions [4] assure that there is no comer in
the optimal path (see Appendix 11 for a detailed description).
The Euler equation (16) is now given as

(19) X*(w) - Xyx*(w) = 0.

Since (19) is linear in x* with constant coefficients, it can be
readily solved to get

~ * (w) = c ~ e ~ " + c ~ e - ~ " (20)

where c1 and c2 are the integration constants determined by the
two boundary conditions (15), and k = Ay.

Paths with the various values of X for two sets of starting
and ending points are plotted in Fig. 5(a), (b). It is shown that
a) all the paths are smooth as evidenced by the comer
conditions, b) as the value of h increases (decreases) the path
tends to be closer to the center-line (straight-line), and c) all
the paths traverse inside the convex hull defined by the four

In fact, b) and c) can be proved by finding an asymptotic
curve as follows. As X + 0, the Euler equation (20) becomes
x*(w) = 0, i.e., x*(w) = c3w + c4, VU E [ao, wf] , where c3
and c4 are determined by the two boundary conditions (15). As
X + 00, the first term in (19) becomes negligible, implying
that x*(w) + 0. Due to the boundary conditions (15), the
asymptotic curve becomes

points: (00, XO), (WO, 01, (q, O), and (of, xf).

xo, if w = o o

x*(w)= I 0, ifwo<o<wf

indicating that the asymptotes in this case are straight-line
segments connecting four points in sequence: (ao, xo), (WO,

Since the same reasoning as that of Proposition 1 holds for
the weighted squared distance and safety cost, the obstacle
boundary constraint (14) is automatically met as far as the
calculation of x* by minimizing (18) is concerned. The
following proposition generalizes the condition that the obsta-
cle boundary constraint can be ignored.

01, (q, 01, and (Wf, Xf).

Proposition 3: The obstacle-avoidance constraint is redun-
dant VX 2 0, if S , E E F, where F is a convex set
representing the free sapce.

Proof: Regardless of the value of A, the optimal path
traverses inside the convex hull defined by the four points.
Since the center-line segment traverses inside the free space,
the four points, (WO, X O) , (WO, 0), (wf, O), (q, xf) E F, if S ,
E E F. Thus the convex hull c F, and {x*(o) , W O I w I

The use of the x* given in (20) can be generalized by the
following proposition:

Proposition 4: Even if the condition (1 1) is not met, the x*
given in (20) is still an optimal path.

Proof: Let Case A: wo 2 0, of I wcu, Case B: W O 2 0 ,
wf 2 wcu, Case C: wo I 0, wf I wcu, and Case D: wo I 0,

To derive the solution for Case B (Fig. 6(b)), the functional

~ f) E F.

wf 1 wcLI.

equation (1 8) is represented by

W f

W O
J = S [(1+x2(w))+XyIl(o, ~ (w)) - C l) ~] dw. (21)

Note that the center-line deviation in (21) is represented in
terms of the distance between the point coordinate of (U, x(w))
and the center-line segment C. Also, the representation inside
the norm is the same as x2(w) in (1 8) when 00 1 0, wf I wcLI.
The center-line deviation is

= 1:: Il(w, x(w))-Cc(12 dw+ Il(w, x(w))-Cll 'dw
wCU

= 1:; x2(w) dw + s' [x2(w) + (w - W C ,) ~] dw
O C W

= i :x2(w) dw+ Iw' (W - W ~ ~) ~ dw.
wCW

340

8
I

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 3, JUNE 1988

I

lr-----

8
I

@
I

"0 "f

I

1 -----
@ I-

(d)
Fig. 6. Four possible cases.

Since for given ocll and uf the second term in (22) is a
constant, indicating that the x*(o) given in (20) is also the
solution for Case B. Similarly, the same conclusion can be
drawn for Cases C and D.

As a result of Propositions 3 and 4, {x*(o), wo I o I of}
given in (20) can be used as an optimal path primitive for any
pair of (S, E) in a convex channel characterized by a single
center-line segment and two obstacle boundaries. This in-
cludes the case when the channel is given as a triangle where
one of the obstacle boundaries is a point.

In the next subsection, we will discuss a solution method for
a more complex case where the channel is characterized by
two or more center-line segments.

B. Multisegmented Channel Problem
Consider a free space where the CLP is composed of two

line segments as shown in Fig. 7. Place a dividing line (called
a barricading line or simply a barricade) passing through the
CLP's comer point such that the CLP in each region is a
straight-line segment. Then, a local coordinate frame is placed
at the beginning of each center-line segment in the same
fashion as that of Path Primitive Problem (Fig. 7).

Since all paths must cross over each barricading line, it is
necessary to find the "optimal" crossing point, where the
optimal path intersects the barricade. To determine the optimal
crossing point, a barricading line is discretized into a finite

Fig. 7. Dual-segmented channel

number of equally spaced points called gates. Let G;(j) and
M be, respectively, the jth gate of barricade i and the number
of gates.* Then the location of G;(j) is represented by

G;(j)=G;(l)+(j - 1)v;T (23)

where Tis a unit vector from one end, G;(l), to the other end,
Gi(M), and 7; = l ; / (M - 1) and 1; is the length of barricade i .

The optimal path passing through G;(j) can be found by
applying (19) twice with starting and ending points of (S,
G ; (j)) and (G;(j), E), and the optimal path connecting (S, E)
is the one passing through the gate that minimizes the cost

e(S, E)=mjn [el(& G;(j))+G(G;(j), E11 (24)

where Ck(P, Q), k = 1 , 2 is the cost of path connecting P and
Q in the kth region, and is computed by (1 3). Note that due to
Proposition 2, (13) instead of (18) must be used for computing
the cost of a path.

The method used for a two-segmented channel can be
applied to a multisegmented channel. Suppose a free space is
characterized by Ncenter-line segments and N - 1 barricades
(Fig. 8). For notational convenience, the starting and ending
points are treated as barricades with M = 1. These are not real
but pseudo barricades. Thus there is a total of N + 1
barricades, where G1(l) and G N + I (~) are the starting and
ending points.

Let I = { g l , . - . , g N + } be the set of gates that a path
traverses, where gi is the gate number in barricade i . Then, the
multisegmented channel problem is to find a gate set whose
corresponding path has the minimum cost. The cost for the
gate set I is given by

e(I) = e;(G;(j), G;, (k)), for some j , k E Z (25)
N

r = I

where C;(G;(j), G;+](k)) is the cost of x,? connecting the
gates G;(j) and G;+ (k).

The optimal gate set is determined by the dynamic program-

* We assumed the same number of gates for all barricades for notational
simplicity. It is trivial to relax this assumption.

Precisely speaking, (13) is the cost function of Case A in Proposition 4,
and a general cost function covering the other cases needs to replace the term
Ix(w)l by)I (0, x(w)) - C)I in (13). For convenience, (13) will henceforth be
referred to as a cost function for all the cases.

SUH AND SHIN: ROBOT-PATH PLANNING 34 1

BZ BN- 1 form equation can be used:

cos e -sin 01 [;I + [;:I
"?, - E. (27)

where R is the transform matrix representing the rotation of
the local coordinate frame relative to the world coordinate

Fig. 8. Multisegmented channel.

ming (DP). The optimization procedure starts at barricade N.
(Recall that barricade N + 1 is the ending point.) The cost of a
path passing through gatej on barricade N, denoted by eN(j),
can be computed once x & (j) is determined using G N (j) and
GN+I(l) as the starting and ending points, respectively, i.e.,
e&) = e N (G N (j) , GN+l(l)), and the next gate pointer at
gate j on barricade N, d N (j) = 1, v j = 1,

The cost at ga t e j on barricade N - 1 becomes

e ~ - ~ (j) = m i n [~ N - I (G , v - I (~) , Gdk))+ e,~(k)l ,

* e , M.

k = l , e . . , M (26)

and the pointer d N - l (j) will be the k that minimizes the
magnitude of [e] in (26). Recursive equations can be obtained
by replacing N and N - 1 in the above with i + 1 and i ,
respectively.

The DP algorithm is summarized as follows:

Step 1: Initialization.
1) Read in center-line segments and barricades data.
2) Formgates:G,(j) , i= l , . * . , N + l ; j = l , . . . ,

3) Set i : = N.
4) F o r j = 1, * * * , M, lo set d i (j) : = 1, and compute

M.

W j) = e;(G(j), 0
Step 2: Termination check.
S e t i : = i - 1.
If i = 0, stop. Otherwise go to Step 3.
Step 3: Continuation.
F o r j = 1,

1) Set C i (j) : = 00.
2) F o r k = 1, e . . , M
Compute X = ei(G;(j) , G;+l(Q) + e;+l@).

If X e e;(j) , then ei (j) : = X and d ; (j) : = k
Go to Step 2.

The computational complexity of the DP algorithm is as
follows. For each region bounded by two barricades, there are
@ pairs of gates except for the first and last regions in each of
which there are Mpairs of gates. Thus, there are 2M + (N -
2)@ pairs of gates for which the cost function (13) is
evaluated. Note, however, that since the path equation is given
in closed form, the computational cost is very low.

Since the path equation is given with reference to a local

frame, and 8 is the rotational angle of the local coordinate
frame defined as the counter-clockwise angle between the
center-line segment C and the horizontal axis of the world
coordinate frame, and (as, xs) represents the translation of C
from the origin of the world frame.

An example of the behavior of optimal paths with respect to
a rectangular obstacle, while varying the weighing factor X, is
shown in Fig. 9. There is a three-segmented channel in this
example, which was simulated with 20 gates on each of the
two barricading lines. It is shown that an optimal path tends to
traverse away from (close to) the obstacle as the value of X
increases (decreases). The paths with X close to the extreme
values have visual corners, since in such cases the paths are
approaching the asymptotes, i.e., SP or CLP. However, they
are relatively smooth for mid-range values of A. Observe that
regardless of the value of X, there do not exist ridges around
the gates where the two path primitives are joined, since such a
path cannot be optimal.

C. 3 0 Extension
We have presented the VCDP algorithm to determine an

optimal path in 2D. In 2D the primitive of the safest path is a
straight line, i.e., the CLP. In case of 3D, however, the CLP
is not a line but a plane in general. Therefore, the VCDP
algorithm is difficult to apply to general 3D problems.
However, if 3D problems are restricted to the safest paths that
are represented by line segments only, the VCDP algorithm
can be used for them with a minor modification.

Consider a room filled with polyhedral objects. Suppose an
articulated cylinder is placed as shown in Fig. 10. Regard the
axis of the cylinder as a CLP and its cross-sectional diameter
as the clearance. Then, the cross-sectional circle where the
CLP is bent becomes a barricade. The articulated cylinder may
be thought of as a channel. Note, however, that the approxi-
mation of the free space with an articulated cylinder wastes the
free space. To minimize the wasted volume, the articulated
cylinder should be placed such that the largest diameter can be
obtained.

With the above arrangement in 3D, the VCDP algorithm
can be directly applied to 3D problems. The differences are: a)
gates are generated by discretizing the barricading plane (Fig.
1 I), and b) the path equation is derived such that the following
functional is minimized:

Wf

00
J = S [(I +%'(U) +?'(a)) + Xy(x'(a) +y'(o))] dw (28)

where y = P / (w ~ - W O) , and P is the reciprocal of the average
diameter of each cylinder. Details of the solution to this 3D
problem are omitted since it is very similar to the 2D case.

coordinate frame whose origin is at one end of the center-line

the path in the local coordinate frame into the one in the world
coordinate frame W. For this purpose, the following trans-

segment, a coordinate transform may be necessary to convert

Io IfN = 1 , let M = 1.

342 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 3, JUNE 1988

- Banicad- 1 s4.0

A = 1.0 1 10.3

A -0.1 -* A =0.01

-

Fig. 9. Example 1

Fig. 10. Articulated cylinder.

X

4

J

Fig. 11. Barricading circles and axis nomenclature.

IV. DERIVATION OF CHANNELS

The VCDP algorithm developed in the previous section is
used to determine the optimal path equations for a given
channel characterized by the channel parameters, the CLP,
and barricades. To derive channel parameters, it is necessary
to represent the free space with channels. As discussed in
Section I, Kuan et al. [5] represented the free space with
nonoverlapping convex polygons for large free regions and
generalized cones for narrow regions. However, their method
is not applicable to our path planning because we must not only
partition the free space but also derive channel parameters.

In this section we shall develop a method for deriving

channels and their parameters for the workspace. Note that,
though the material in this section can be used independently
for other path planning methods, it is mainly intended for the
VCDP algorithm.

A . Describing Free Space as Channels
To apply the VCDP algorithm, it is necessary to describe

the free space as channels, each of which is defined as a closed
free space that can be accessed only through its two entrances.
Boundaries of a channel are two piecewise straight lines
connecting its two entrance edges. It is important to note that
the free space inside the boundaries of a channel must be
completely free of islands of forbidden area (generated by
obstacles). In other words, holeless channels are to be placed
in the punched-hole shape of the free space. Thus to describe
an open free space (the complement of the areas occupied by
obstacles) in terms of channels, the workspace is divided into
two areas (Fig. 12): the obstacle-cluster area (OCA) which is
the convex hull of obstacle polygons, and the corridor area
which is the complement of the OCA. Then, the free space in
the corridor area can be described by a single channel whose
boundaries are defined by the OCA and the workspace itself.

In contrast with the corridor area, it is usually difficult to
describe the free space in OCA with a single channel. Since
those edges of the obstacle-cluster convex hull which are not
the edges of obstacle polygons” can be considered as the
entrances to OCA, the free space in OCA is represented by
several channels, one for each pair of entrances to the area.

For a given pair of entrances, channel boundaries are
determined in two stages. The first stage is to identify
polygons which define the shape of the channel. This is
necessary since there may exist polygons which play nolor a
minor role in determining the shape of the “main road” of the
free space connecting the channel’s two entrances. Then, the
channel boundaries are determined in the second stage by
using the bounding polygons obtained in the first stage. The
details of the two stages are given in the following subsection.
For simplicity of presentation, we assume that two entrances
are at top and bottom, and that the channel boundaries to be
determined are at left and right.

1) Identification of Bounding Obstacles: Bounding poly-
gons of a channel must be identified such that the free space
within the channel is maximized. Such bounding polygons are
iteratively obtained, each time by drawing a convex hull with
previously identified bounding polygons and checking the
relationship between the edges of the convex hull and obstacle
polygons to be identified. The set of polygons defining the two
entrances of a channel, called entrance-defining polygons
(EDP’s), is used as the initial set of bounding polygons. In the
discussion that will follow, it is assumed that the OCA
contains polygons other than EDP’s. If it contains only EDP’s,
then the identification process will terminate at this point.

Suppose the two entrances of the convex hull, CH(EDP’s),

I ’ Specifically, an entrance is defined as an edge whose two endpoints do
not belong to the same OCA-defining polygon. Note that the above definition
is valid for the OCA consisting of both convex and concave obstacle polygons.

I’ Distinction between “top,” “bottom,” ‘‘left,’’ and “right” edges is
immaterial but used for the convenience of presentation.

SUH AND SHIN: ROBOT-PATH PLANNING 343

I Corridor Area

- Entrance

Fig. 12. Two areas and entrances.

(a) (b)
- r n t t ~ ~ ~ ~ ~ n m n a - TopEmtnmce

* -- *wra*

m y ISlMddFolMddcnAra

Fig. 13. Entrances, edges, island of forbidden area.

are located at top and bottom, and the two nonentrance edges
are located at left and right, i.e., “left” and “right” edges
(Fig. 13(a)). Note that there exists only one edge if an obstacle
polygon is used for defining both the top and bottom entrances
(Fig. 13(b)). The initial bounding polygon set, = {EDP},
can be decomposed into and Cap, where CBf(Cap) is the set
of left-(right-) bounding polygons that define the left (right),
LI(RI) of CH(ai).

Now, it is necessary to identify and then label three different
types of obstacle polygons: left-bounding polygons, right-
bounding polygons, and island-bounding polygons. Since the
method of identifying right-bounding polygons is symmetric to
that of left-bounding polygons, it is sufficient to describe those
steps necessary to identify left-bounding and island-bounding
polygons.

Identification of left-bounding polygons: Let EDPL
and EDPR be those polygons defining L I and R I , respectively.
Then, the initial set of left-(right-) bounding polygons are 03:
= {EDPL} and 63: = {EDPR}. The set of left-bounding
polygons is then expanded by adding those unlabeled obstacle
polygons (excluding EDP’s) that satisfy the conditions de-
scribed below. When i = l , an unlabeled obstacle polygon,
Oj, is labeled “L” (“R” in the steps of identifying right-
bounding polygons) if 0, f l L, # 0. This is to find those
obstacle polygons that intersect L, between the two obstacle
polygons defining L,. When i > 1, the following condition is
necessary to label 0,:

0, n {CH (~ ,) - c H (a,4}+0. (29)

This additional condition is needed to identify obstacle
polygons lying between Li and L,- 1. Note that it is necessary
to differentiate the labeling conditions for the cases of i = 1
and i > 1, since in the former case the additional condition
(29) is used to identify the island of forbidden area as will be
seen later in this subsection.

By applying the above conditions for every unlabeled
polygon, a new expanded set of left-bounding poygons is
formed. Termination conditions are: a) 63: # 6 3 - 1 , i.e.,
there is at least one obstacle polygon labeled in the ith
iteration, and b) L, C CH (OCA), i.e., no more obstacle
polygons left with which the current convex hull, CH(a,), can
be enlarged. If any of the termination conditions is satisfied,
then go to the steps of identifying right-bounding polygons.
Otherwise, let i : = i + 1, and form a new expanded set of
left-bounding polygons, a:, consisting of and unlabeled
OCA-defining polygon(s) l 3 each located le!? to the top/
bottom-leftmost OCA-defining polygons in 63,- Then, re-
peat the steps of identifying left-bounding polygons. This
process can be thought of as an attempt of “maximally
expanding” the left-bounding polygon set.

Identification of island-bounding polygons: After
identifying left- and right-bounding polygons, the polygons
inside the original convex hull, CH(EDP’s), must be identi-
fied. Note that this process does not deal with those obstacle
polygons that reside inside the convex hull and do not intersect
all nonentrance edges, i.e., L1 and R1. Similarly to the above,

l 3 Two polygons if exist or one if not.

344 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 3, JUNE 1988

island-bounding polygons are identified by the convex hull
operation. The first step is to merge more than one polygon (if
exist) into one polygon (an “island” of forbidden area) by
the convex hull operation. The merged polygon is then treated
as a single obstacle polygon and is labeled “RL” (Fig. 13(c)).
Thus in such a case, some free space (the shaded region in Fig.
13(c)) between obstacle polygons in the island is wasted.
When the free space between obstacles inside the island is
nonnegligible, one may treat the “forbidden island” as a sub-
OCA recursively until no island contains more than one
obstacles (or until the pair-wise minimum distances between
all obstacles in the island become less than some parameter).
But this could increase the computational burden. l 4 Note,
however, that the merging operation is applied not to create
unnecessarily many narrow channels which may exist other-
wise. In other words, by the merging operation, the maximum
number of channels to be defined in the free space for any pair
of entrances is two as will be described in the following
subsection.

2) Determination of Channel Boundaries: Channel
boundaries are determined by the entrance-defining polygons
and those labeled “L,” “R,” and “RL.” Depending on the
presence of island of forbidden area, two possible cases need
to be considered. First, consider the case when there is no
island of forbidden area. In this case, a single channel is
defined as follows. Let CH(L, R, EDP’s) and O(L, R, EDP’s)
be, respectively, the convex hull and the occupied space of the
obstacle polygons labeled“L,” “R,” and the entrance-
defining polygons. Then, the configuration of channel can be
represented as the convex hull complement of the forbidden
area, i.e., CH(L, R, EDP’s) - O(L, R, EDP’s). Thus the left
(right) channel boundary in this case is obtained by connecting
the vertex corresponding to the left (right) end of the top
entrance edge to that of the left (right) end of the bottom
entrance edge. Fig. 14(a)-(d) shows three channels for an
OCA consisting of three polygons, and one channel for the
corridor area in Fig. 12. Note that the corridor area can be
viewed as a special type of channel whose two entrances are
identical.

In the case when there exists an island of forbidden area,
two channels-left and right channels-are defined from the
configuration of the free space, CH(L, R, EDP’s) - O(L, R,
RL, EDP’s). The left (right) channel configuration is defined
with obstacle polygons labeled L, RL, and EDP’s (RL, R,
and EDP’s). In what follows, we describe a method to
determine the configuration of the left channel only, since a)
channel boundaries are determined by connecting the vertices
along the contour of the configuration as described above, and
b) a method symmetric to that of the left channel is applied to
the right channel.

An exact configuration of the free space to be covered by
the left channel is CH(L, RL, EDP’s) - O(L, RL, EDP’s).
Since an island of forbidden area labeled RL is always located
inside the convex hull, the free space between RL and the right
edge of the convex hull CH(L, RL, EDP’s) must be removed
so that the right channel boundary can be determined. The

l4 This was brought to our attention by an anonymous referee.

- Channel Boundary
Entrance

Fig. 14. Channel boundaries with various entrances.

(a) (b)
Fig. 15. Channel boundaries for left (a) and right (b) channels.

removal is done by placing two bounding edges, each
connecting two vertices-one from RL and the other from the
top-right EDP or bottom-right EDP-such that the removed
space is minimal. Fig. 15(a), (b) shows the boundaries of the
left and right channels derived from the layout in Fig. 13(c).

B. Determining Channel Parameters
The channel boundaries obtained above may zigzag, and the

free space within these boundaries may contain many “outly-
ing” regions of the free space as shown in Figs. 14(a)-(c) and
15(a), (b). These regions can be removed when the channel
parameters, i.e., the CLP and barricades, are determined.
Before discussing how to determine the channel parameters, it
is worth noting that i) the CLP should be determined to be the
safest path in every free space because the VCDP algorithm is
developed based on such an assumption, ii) the free space
between two successive barricades must be convex (due to
Proposition 3), and iii) the least number of barricades is
desired for computational reasons.

There is a tradeoff between i) and iii), since the CLP’s
accuracy increases with the number of barricades used. For

I s Note that the amount of computation required for the VCDP algorithm is
approximately proportional to the number of barricades as mentioned in
Section 111-B.

SUH AND SHIN: ROBOT-PATH PLANNING 345

(b)
Fig. 16. Two CLP’s.

instance, the CLP connecting the bisection points of seven
barricades in Fig. 16(a) is considered to be more accurate and,
thus, safer than that of two barricades in Fig. 16(b). In
general, as the number of edges of each basic convex polygon
(in the free space) increases, the number of barricades
decreases at the cost of the CLP’s accuracy. We deal with this
aspect by decomposing the free space into convex quadrilater-
als and triangles, and keeping the number of quadrilaterals
maximum.

The channel parameters are determined by decomposing the
free space into nonoverlapping convex polygons followed by
labeling the edges of the decomposed polygons. This decom-
position is straightforward: choose the largest concave angle in
the free space bounded by all the edges, and try to include as
many (up to four) contiguous vertices as possible to form a
convex polygon in the free space. Thus the basic convex
polygon is either a triangle or a quadrilateral. The decomposi-
tion process will continue until the entire free space is divided
into triangles and quadrilaterals only.

Then, the labeling process begins. Initially, all the polygon
edges on channel boundaries are labeled “ W’ (indicating a
wall) and the two entrance edges are labeled “B” (indicating
barricades). Labeling is done on those polygons in which only
one edge is not labeled. The unlabeled edge in a basic convex
polygon is labeled “ W,” if all its other edges are labeled
“ W ’ (the polygonal free space is thus removed since it is an
outlying region). Otherwise, it is 1abeled“B.” The labeling
process continues until all the edges are labeled. The edges
labeled “B” then become barricades, and the straight-line
segment connecting the bisection points of barricades becomes
the CLP. The same method is applied to the channels
representing the corridor area. In such a case, there is only one
entrance edge which can be formed by taking a vertex from the
workspace boundaries and connecting it to the nearest vertex
in the obstacle-cluster convex hull. Fig. 17 illustrates the
above method by using the same example in Fig. 14.

C. Setting Up a Graph
Since the CLP and the configuration of (the “main road”

of) a channel are completely specified by barricades, it is
necessary to store only the barricade edges to describe a

channel. Since there are

pairs of entrances, where n, is the number of entrances in
OCA, l 6 and a maximum of two channels are defined for each
pair, the entire workspace including the corridor area can be
described by at most

sets of barricades.
To describe the workspace systematically, a graph is set up

where each node represents the free convex polygon in the
corridor area or the free space in OCA. Two nodes are joined
by an arc if the nodes share a common barricade. Fig. 18(b)
shows such a graph obtained from the layout of Fig. 12. Note
that the arcs connected to a node of OCA are entrances to the
free space represented by the node, and supplementary
information between these arcs is given in the form of the
ordered set of barricades as shown in Fig. 18(c). Note that the
graph is set up only once for a given workspace, and contains a
relatively small number of nodes since the free space of OCA
is represented by a single node.

D. Applying VCDP Algorithm
With the graph and the supplementary information men-

tioned above, an optimal path connecting the starting (S) and
ending (E) points is derived by applying the VCDP algorithm
described in Section 111. Initially, S and E are identified in the
graph. Then, a direction of each edge is determined as
follows. Starting from the node that represents E , all the arcs
connected to the node must come “into” the node. Then, for
each node whose one arc has an outgoing (incoming)
direction, all the other arcs connected to the node must be
incoming (outgoing). Note that some arcs representing the
entrances may have bidirections. Based on the directed graph
obtained as above, sets of ordered barricades are determined.
If either S or E is inside the OCA, then ordered sets of
barricades within the OCA are obtained from the supplemen-
tary information. These sets will be added to the ordered sets
of barricades outside the OCA to form complete sets of
barricades. Fig. 19 shows the directed graph and four sets of
barricades with the same starting and ending points in Fig. 20.

To determine an optimal path, it is necessary to evaluate
every ordered set of barricades by computing the path costs
with the VCDP algorithm. Note that the number of ordered
sets of barricades is approximately greater than that of
channels by one, since there are two sets of barricades in the
corridor area. Each set of barricades determines a channel and
its associated CLP. The local optimal path (LMCP) is derived
by applying the VCDP algorithm. The required computation
time can be reduced by ordering barricade sets to be evaluated
in such a way that the set with the least number of elements is

l6 Note that the number of entrances is equal to that of the obstacle polygons
defining the obstacle-cluster convex hull.

346 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 3, JUNE 1988

W
(d)

Labeling for corridor region.
Fig. 17. (a) Labeling with entrances e, and ez. (b) Labeling with entrances e, and e3. (c) Labeling with entrances ez and e3. (d)

Entrance Pair Barricades

(a)
Fig. 18. (a) Notation. (b) Regional graph. (c) Supplementary information.

SUH AND SHIN: ROBOT-PATH PLANNING 347

No. Ordered Barricades

(b)
Fig. 19. Directed graph (a) and four sets of barricades (b).

GMCP LMCP-I

Fig. 20. (a) GMCP and LMCP’s (A = 4.0). (b) GMCP and LMCP’s (A = 1.0). (c) GMCP and LMCP’s (A = 0.1).

evaluated first, that with the second least number of elements
next, and so on.

Fig. 20(a)-(c) shows the four LMCP’s, one for each of the
four channels, and one global optimal path (GMCP) for three
different values of the weighting factor A, using the example of
Fig. 19. This example is simulated with 15 gates on each
barricade. This also shows that the channel where the GMCP
is located changes with A. As illustrated in this figure, when
the safety factor becomes large, e.g., h = 3, the GMCP tends
to traverse the most spacious channel (channel I), while the
GMCP traverses in an appropriate region (channel 3) to
minimize the traveling distance as the safety factor becomes
smaller, e.g., h = 0.1.

As the safety factor becomes large, the LMCP tends not to
deviate too much from the CLP to minimize the safety cost,
especially when the LMCP traverses through a narrow-
channel region (see LMCP I1 and I11 in Fig. 20(a)). As a

result, the LMCP bends itself several times and yields visual
comers. As mentioned earlier, these visual comers disappear
in the mid-range values of the weighing factor (Fig. 20(b)). On
the other hand, when the safety factor becomes small, the
LMCP will be made up of straight-line segments to minimize
the cost associated with distance (Fig. 20(c)). Note that a bend
around the beginning part of LMCP I1 in Fig. 20(c) is due to
the discretization of barricades.

V. CONCLUDING REMARKS
In this paper, a robot-path planning problem with both

distance and safety is considered. Incorporation of robot safety
into path planning is practically important not only because of
the uncertainties in robot dynamics during path execution, but
also because of the inaccuracy in the geometric modeling of
obstacles. Another way to view the inclusion of robot safety is
to remedy the potential problems that the shortest path has: it

348 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 3, JUNE 1988

requires a robot to traverse too close to obstacles and make
very sharp turns. By considering robot safety during path
planning, more realistic paths can be obtained, thus reducing/
removing the difficulties during path execution caused by, for
example, the uncertainties in robot dynamics.

If the distance from the obstacle walls and/or the parameter-
ization of a path with its arc length were used for robot-path
planning, then one has to face a number of difficulties.
Parameterizing an unknown path with its arc length is difficult
and has little use in deriving the solution. Hence, any optimal
path planning may have to rely on a space-discretization
method, such as that in 1131. As discussed earlier, the

X

f slLew s2 Fig. 21 Two paths.

. -

computational requirement in the space-discretization method
is very high even if heuristics were used. Moreover, evalua-
tion of the distance from every point Pi on the grid to the set of
obstacles,)I Pi - 0 11, may be computationally intractable.

Such a path can be formed by connecting the bisection points
of the barricades retrieved from a database, which requires
only a small amount of time.

.. .

Due mainly to the above difficulties, we used a weighted
distance and center-line deviation for the robot-path planning
problem which is then solved by the VCDP algorithm. It is
computationally efficient and yields a near-optimal path in
closed form for the channel characterized by the barricades
and CLP. The behavior of the VCDP solution has been
examined through various numerical examples. As the safety
factor increases, the solution path gets closer to the safest path,
CLP, while it gets closer to an SP as the safety factor
decreases. For the mid-range values of the safety factor, the
solution path is smooth and traverses between the two extreme
paths, i.e., CLP and SP. Thus the VCDP algorithm has high
potential use for obtaining a more realistic path by selecting an
appropriate value of the safety factor. The number of gates on
each barricade (i.e., M) determines the accuracy of the
solution and the amount of computation. As the number of
gates increases, the more accurate solution will result at the
expense of computational costs. Our experience with this
optimization algorithm shows that M = 20 is usually more
than sufficient. The VCDP algorithm is also shown to be
readily extensible to a class of 3D problems.

The VCDP algorithm is applied to solve the path planning
problem by representing the free space as channels. Channel
boundaries are determined by convex hull operations, and the
channel parameters: CLP and barricades for the main road of
each channel are derived by decomposing the concave polygon
into nonoverlapping convex polygons. Robot-path planning is
simply an application of the VCDP algorithm with the set of
barricades identified by forming a directed graph for the
decomposed workspace.

Our path planning approach has several advantages: a) the
workspace is represented in compact form by a few nodes
(since the obstacle-cluster area is represented by only one
node) in the graph, b) only the “main road” part of each
channel is considered for path planning, c) the configuration of
the free space is concisely described by a set of barricades, d)
the graph representing the workspace is formed only once and
can be repeatedly used for the entire path planning, and e) the
directed graph reduces the required search effort significantly.
Note that the path planning method in Section IV can also be

APPENDIX I
PROOF OF PROPOSITION 2

This proposition can be proved by showing a counter-
example. Consider two different paths connecting two sets of
starting and ending points. Suppose that the optimal paths are
straight-line segments, i.e., X = 0 (Fig. 21). The equations
for paths A and B are

x(w)= -2w+2, w E [O, 11

and

x(w)=3/4w, w E [O, 21

respectively.
Computing J for these two paths, we get

J A = 1’ (1+(-2)2) d 0 = 5

and

J B = l2 (1 +(3/4)2) d ~ = 2 5 / 8 .

The actual path lengths

and

J O

Clearly, J A > J B , but e A < e,.

APPENDIX I1
W-E CORNER CONDITIONS

Applying the Weierstrass-Erdmann (W-E) corner condi-
tions [4] to the functional (1 8) of the Path Primitive Problem

(AI) used independently of the first half of this paper; one can use it ag ag
for finding a path avoiding collision with obstacles generously. (x*(wl)’ x*(w ““=z (x*(wl)’ x*(w :)’

SUH AND SHIN: ROBOT-PATH PLANNING 349

and K. G. Shin and N. D. Mckay, “Selection of near-minimum time
geometric paths for robotic manipulators,” IEEE Trans. Automat.
Contr., vol. AC-31, no. 6, pp. 501-511, lune 1986.

g(X*(wl), a*(&),), w1) - [$ (X*(O~), a*(&);), 01) X*(O,) [12] J. S. Singh and M. D. Wagh, “Robot path planning using intersecting
convex shapes: Analysis and simulation,’’ IEEE J. Robotics Auto-
mat., vol. RA-3, no. 2, pp. 101-108, Apr. 1987.
C. E. Thrope, “Path relaxation: Path planning for a mobile robot,”
Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-RI-TR-84-
5, 1984.

[l l]

[I31

1
(A2)

where g(.) is the integrand in (18). From (Al) and (A2), we
get

2X*(O) = 2 X * (W T) (‘43)

[1 + R*2(W ,)] + Xyx*2(0,) = [2X*2(w ;)I x * y w ;)
[1 + X * 2 (~ :)] + A ~ x * ~ (o ~) = [2X* (U :)]X* (0). (A4)

From (A3), **(U;) = A!*(@:), i.e., no corners exist.

ACKNOWLEDGMENT
The authors would like to thank anonymous reviewers and

E. Gilbert of the University of Michigan for their constructive
comments on the first draft of this paper.

[31

[41

[51

REFERENCES
M. Athans and P. L. Falb, Optimal Control, A n Introduction to the
Theory and Its Application. New York, NY: McGraw-Hill, 1966.
R. A. Brooks, “Solving the find-path problem by good representation
of free space,” IEEE Trans. Syst., Man, Cybern., vol. SMC-13, no.
3, pp. 190-197, Mar./Apr. 1983.
R. Chatila, “Path planning and environmental learning in a mobile
robot system,’’ in Proc. European Conf. on Artificial Intelligence
(Orsay, France, 1982).
D. E. Kirk, Optimal Control Theory: An Introduction. Engle-
wood Cliffs, NJ: Prentice-Hall, 1970.
D. T. Kuan, J. C. Zamiska, and R. A. Brooks, “Natural decomposition
of free space for path planning,” in Proc. Int. ConJ on Robotics
Automation (St. Louis, MO, Mar. 1985), pp. 168-173.
E. G. Gilbert and D. W. Johnson, “Distance functions and their
application to robot path planning in the presence of obstacles,” IEEE
J. RoboticsAutomat., vol. RA-I, no. 1, pp. 21-30, Mar. 1985.
E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE J . Robotics Automat., vol. 4, no. 2, pp. 193-203,
Apr. 1988.
D. T. Lee and R. L. Drysdale, “Generalization of Voronoi diagrams in
the plane,” SIAM J . Comput., vol. 10, no. 1, pp. 73-87, Feb. 1981.
T. Lozano-Perez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Commun. ACM,
vol. 22, no. 10, pp. 560-570, Oct. 1979.
J. Mitchell and C. Papadimitriou, “Planning shortest paths,” Tech.
Rep., Dept. Operations Research, Stanford Univ., Stanford, CA.

Suk-Hwan Suh (S’86-M’86) received the B.S. and
M.S. degrees in industrial engineering respectively
from the Korea University and KAIST, Seoul,
Korea, in 1976 and 1978, and the Ph.D. degree
from the Ohio State University, Columbus, in 1986.

During 1978-1981, he was a Project Analyst in
the Department of Planning and Research at Hyun-
dai Motor Company, Seoul, Korea. From 1986 to
1987, he was with the Center for Research on
Integrated Manufacturing (CRIM) at the University
of Michigan, Ann Arbor, as a Post-Doctoral Re-

searcher. He is now with the Department of Industrial Engineering, Pohang
Institute of Science and Technology as an Assistant Professor. His research
interests include robot-pathhjectory planning and control, computer-aided
manufacturing, and manufacturing processes.

Kang G. Shin (S’75-M’78-SM173) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea, in 1970, and
both the M.S. and Ph.D. degrees in electrical
engineering from Cornell university, Ithaca, NY, in
1976 and 1978, respectively.

From 1970 to 1972 he served in the Korean Army
as an ROTC officer and from 1972 to 1974 he was
on the research staff of the Korea Institute of
Science and Technology, Seoul, working on the
design of VHFIUHF communication systems. From

1978 to 1982 he was an Assistant Professor at Rensselaer Polytechnic
Institute, Troy, NY. He was also a visiting scientist at the U.S. Airforce Flight
Dynamics Laboratory in the Summer of 1979 and at Bell Laboratories,
Holmdel, NJ, in the Summer of 1980. He joined the Department of Electrical
Engineering and Computer Science, The University of Michigan, Ann Arbor,
in 1982, and is now a Professor in this department. He has been very active
and has authoredkoauthored over 120 technical papers in the areas of fault-
tolerant real-time computing, computer architecture, and robotics and
automation. In 1987, he received the Outstanding Paper Award from the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL for a paper on robot trajectory
planning. In 1985, he founded the Real-Time Computing Laboratory, where
he and his students are currently building a 19-node hexagonal mesh
multiprocessor, called HARTS, to validate various architectures and analytic
results in the area of distributed real-time computing.

Dr. Shin was the Program Chairman of the 1986 IEEE Real-Time Systems
Symposium (RTSS) the General Chairman of the 1987 RTSS and the Guest
Editor of the 1987 August special issue of IEEE TRANSACTIONS ON
COMPUTERS on Real-Time Systems. He is a member of ACM, Sigma Xi, and
Phi Kappa Phi.

