
IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 11, NOVEMBER 1988 1465

t

Fig. 6. Reduced BD tree for Example II.

f~,f~o, andfll have the lowest score. Let US choosefl. At nodes 2 and
3, f12 and fI4, respectively, have the lowest score. Continuing the
process, the reduced BD tree of Fig. 6 is obtained. If only polarity
tests are used, four tests will be required on some paths. If f10 had
been selected at node 1, a reduced tree having some paths with length
4 would have been obtained, because at one of the level 3 nodes an
even qi for one of the output states is split into an odd qi+ and qi- by
all the npf‘s. In such cases, it might be worthwhile to go back to the
predecessor node and select another test npf.

[8] E. Cerny, D. Mange, and E. Sanchez, “Synthesis of minimal binary
decision algorithms,” IEEE Trans, Comput., vol. C-28, pp. 472-
482, July 1979.

[9] M. Silva and R. David, “Binary-decision graphs for implementation of
Boolean functions,” IEEE Proc. E, Comput. Digital Tech., vol. 32,
pp. 175-185, May 1985.
S. B.
vol. C-27, pp. 509-516, June 1978.

,,Binary decision diagrams,., IEEE Trans.

V. CONCLUSION
The properties of the class of parity test functions have been

considered. The polarity test BD system is a subset of the parity test
system. Thus, for a given system, the parity test BD algorithm can
generally have less instructions and hence lower average number of
cycles to reach an output than the equivalent polarity test algorithm.
However, the parity test version requires wider memory, but this may
be offset by the fewer number of instructions required. More
importantly, the advantage of faster operation while still maintaining
programming flexibility will in some cases outweigh the disadvantage
of wider words. A heuristic method of reducing parity test based BD
trees was also considered. While this method does not guarantee a
minimal tree, indications are that it is a useful means of parity tree
reduction. Since the method is heuristic, more testing, especially on
large systems needs to be done.

BD-based systems are an alternative method of providing solution
to logic design problems. They are not meant as a replacement of the
other logic methods, but as one more tool for the solution of logic
problem. In some cases, the BD solution may be the best one. In the
same vein, this paper aims at enhancing the scope of BD systems and
the range of tools available for providing BD based solutions to logic
system Droblems.

REFERENCES
C. Y. Lee, “Representation of switching circuits by binary-decision
programs”, Bell Syst. Tech. J. , vol. 38, pp. 985-999, July 1959.
R. T. Boute, “The binary-decision machine as a programmable
controller,” Euromicro Newsletter, vol. 1, no. 2, pp. 16-22, 1976.
P. J. A. Zsombor-Murray, L. J. Vroom, R. D. Hudson, and T. Le-
Ngoc, “Binary-decision-based programmable controllers, Part I,”
IEEE Micro, vol. 3, pp. 67-83, Aug. 1983.
-, “Binary-decision-based programmable controllers, Part 11,”
IEEE Micro, vol. 3 , pp. 16-26, Oct. 1983.
-, “Binary-decision-based programmable controllers, Part III,”
IEEE Micro, vol. 3, pp. 24-39, Dec. 1983.
A. Thayse, “Optimization of binary decision algorithms,” MBLE Res.
Lab., Brussels, Rep. R348, May 1977.
M. Davio and A. Thayse, “Optimization of multivalued decision
algorithms,” Philips J. Res., vol. 33, pp. 31-65, 1978.

Transmission Delays in Hardware Clock Synchronization

KANG G. SHIN AND P. RAMANATHAN

Abstract-Various methods, both with software and hardware, have
been proposed to synchronize a set of physical clocks in the system.
Software methods are very flexible and economical but suffer an excessive
time overhead, whereas hardware methods require no time overhead but
are unable to handle transmission delays in clock signals.

The effects of nonzero transmission delays in synchronization have
been studied extensively in the communication area in the absence of
malicious or Byzantine faults. We show that it is easy to incorporate the
idem from the communication area into the existing hardware clock
synchronization algorithms in order to take into account the presence of
both malicious faults and nonzero transmission delays.

Index Tern-Fault-tolerant clock synchronization, malicious faults,
phase-locked clocks, transmission delays.

I. INTRODUCTION
The problem of synchronizing a set of physical clocks in the

presence of malicious or Byzantine’ faults has been studied
extensively in recent years [1]-[4]. There are both softwore and

Manuscript received June 22, 1986; revised December 2, 1986. This work
was supported in part by NASA under Grants NAG-1-296 and NAG-1492.
Any opinions, findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the view of
NASA.

The authors are with the Real Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
AM Arbor, MI 48109.

IEEE Log Number 87 1843 1. ’ A clock is said to be. malicious if it lies by providing different values to
different parts of the system.

OO18-9340/88/11OO-1465$01 .OO 0 1988 IEEE

1466 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 11, NOVEMBER 1988

.
’ .

N-I=

hardware solutions to this problem. The software solutions [I], [SI
treat the clock values as data values and exchange them periodically
in order to ensure proper synchronization. However, as pointed out in
[6] , this kind of synchronization requires an excessive time overhead,
thereby making it impossible to exchange the clock values often
enough to achieve a tight synchronization between the clocks.

On the other hand, the hardware solutions [2]-[4] use the principle
of phase-locked loops in order to achieve a tight synchronization
between the clocks with almost no time overhead. However, unlike
the software solutions, none of the existing hardware solutions
consider the transmission delays in clock signals. They assume that
the transmission delays are small enough to have little effect on the
system. This, however, is not valid in a large multiprocessor system,
where the physical distance between two clocks could be substantial.

The effects of nonzero transmission delays in phase-locked loops
have been studied in great detail in the communication area [7], [8] ,
but not in the presence of malicious faults. In this correspondence, we
show that it is easy to incorporate the ideas from the communication
area into the existing hardware solutions in order to take into account
the presence of both malicious faults and nonzero transmission
delays.

This correspondence is organized as follows. Section II reviews the
basic principle of a phase-locked loop and the problems encountered
by it in the presence of nonzero transmission delays. Section 111
begins with an introduction of the notation to be used and then
proposes a hardware solution to overcome the problem of transmis-
sion delays. Finally, Section IV presents a brief analysis of the
complexity of the solution proposed in Section III.

II. A BRIEF REVIEW OF PHASE-LOCKED CLOCKS
The basic operating principle of a phase-locked loop is simple.

Each clock is an output of a voltage-controlled oscillator. The voltage
applied to this oscillator is the output of a phase detector which is
proportional to the phase error between the two signals at its input.
The two inputs to the phase detector are usually the output of the
oscillator it controls and a reference signal with respect to which the
oscillator has to be synchronized.

The various hardware synchronization solutions differ from each
other in the way the reference signal is chosen. In [2], the reference
signal for a four-clock system2 is chosen to be the median signal
among the other three clocks. As evidenced in [3], use of the median
signal becomes invalid for a system with more than four clocks. A
more complicated means for selecting the reference signal is thus
necessary to tolerate more than one malicious fault in the system. In
[3], the reference signal is chosen by using a more complicated
function on the other clocks in the system. In [4], there is no phase
detector. Instead, the control voltage to the oscillator is based on how
many of the other clocks are faster than its own output. In the
communication area, where malicious faults are not considered, the
control voltage fed to the oscillator is directly proportional to the
average phase difference between its clock and all other clocks in the
system [9].

However, all of the above algorithms are affected by the presence
of nonzero transmission delays between the clocks. In the presence of
nonzero transmission delays, it is not possible to determine either the
relative ordering of the clocks as required in [3] and [4] or the exact
phase difference between any two clocks. As a result, none of the
above algorithms will achieve the desired objective in the presence of
both malicious faults and transmission delays.

III. THE SOLUTION
Before presenting our solution to the delay problem in clock

N
m
c,
T Desired clock period.

synchronization, we need to introduce the following notation.
Total number of clocks in the system.
Maximum number of malicious faults to be tolerated.
The signal from clock i .

Synch. __
Block

Interface Delay

Block
Elimination . Block

N-1 7 N-1

0 0
0

Fig. 1. Block diagram of hardware clock synchronization.

C,

CJ .
PD? ’”

Fig. 2. The jth subblock of the delay elimination block.

dii Transmission delay for the signal from clock j to reach
clock i.

rij Phase difference between clock i and clock j expressed in
time units.

7- Maximum phase difference between any two nonfaulty
clocks in the system, i.e., max;,j 1

The block diagram of the clock synchronization scheme is shown
in Fig. 1. It comprises three basic blocks: the delay elimination
block, the interface block, and the synchronization block. The delay
elimination block receives all the other clocks as inputs and returns
analog voltages3 proportional to the exact phase difference between
the input clocks and its own clock. The interface block converts these
analog voltages into a form suitable for the synchronization block.
The synchronization block could be any one of the existing hardware
synchronization circuits mentioned above. The synchronization block
will not be discussed here; see [4] and [lo] for details of this block.

A. The Delay Himination Block
For clarity of presentation, consider the delay elimination block in

clock i . The delay elimination block consists of N - 1 identical
subblocks, i.e., one for each other clock in the system. Consider the
subblock corresponding to clock j (see Fig. 2). It has two phase
detectors and an averager. The inputs to the first phase detector PDI
are the clock signals ci and c, . Since the signal cj encounters a delay in
reaching clock i , the phase difference detected by PDI does not
represent the true phase difference T ~ .

The inputs to the second phase detector PD2 are signals cj and ci
returning from clock j. Due to the transmission delays between the
two clocks, the signal ci returning from clock j will be a delayed
version of c; . Since a delay in time is equivalent to a phase difference,
the output of the second phase detector will also depend on the
transmission delays. However, if the following four assumptions
hold, then it is shown in the theorem below that the average of the
outputs of these two phase detectors is proportional to 7ii irrespective
of the transmission delays between the two clocks.
AO. The two phase detectors in each subblock are identical to each

Al. dii = dji for all i , j.
A2. 7,- < T/2.
A3. For all i , j , nT < dii < nT + (T/2) - 7- for some integer

1.

other.

n.

* To tolerate at most one malicious fault. one for each of the other clocks.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 1 1 , NOVEMBER 1988 1467

Assumptions A0 and A1 are easy to implement. A1 can be easily
satisfied if the signals ci , c, and their returning signals are routed via
almost identical paths. A2 is usually a requirement rather than an
assumption. Since hardware synchronization algorithms achieve lock
step synchronization, r- 6 T/2. A3 should be treated as a design
constraint. Even though two clocks can be physicdy far apart from
each other, they should not be allowed to be at arbitrary distances.
The physical distance between any two clocks should be such that the
transmission delays satisfy A3.

A3 is not mentioned in [7], because the output of the phase detector
is assumed to always vary linearly with phase difference. This,
however, is not realistic since phase differences between r and r +
nT, for some integer n, cannot be distinguished from each other by
just considering the two signals. Hence, outputs of phase detectors
have a sawtooth relationship with phase difference rather than a linear
relationship [8]. The need for assumption A3 in the presence of such
a sawtooth relationship becomes clear from the theorem below.

Lemma: If integers nl and n2 satisfy the following two conditions

- T T
a) -sri ,+d,i+nlT<- 2 2

b) - ~ r ~ , - d , ~ + n z T < - , - T T
2 2

thennl = -n2.

n T + (T /2) - r-. We now show that nl = -nand n2 = n.
Proof: From A3, there exists an integer n such that nT < dji <

By definition, -rmx I < r-. Hence,

T
2 nT- 7- < rij + dji< nT+ - (1)

T
2 - nT- -< rij - dji< - nT+ r-. (2)

Substituting for ri + d,i and TO - dji from (1) and (2), it is easy to
verify that nl = - n and n2 = n satisfy conditions a) and b) (i.e., use
A2). Since integers satisfying a) and b) are unique, it follows that nl
= -n2. U

Theorem: If the assumptions AO-A3 hold, then the output of the
averager eij = Kro for some constant K .

Proof: Let U: and U; denote the outputs of the first and the
second phase detectors, respectively. Then for a sawtooth phase
detector [8],

(3)

u$= K2 { ri, + do- (dij + dji) + n2 T }

= K2(ri, - dji + n2 T) (4)

where Kl and K2 are constants and nl and n2 are integers so chosen
that - (T / 2) I + dji + nl T < (T /2) and - (T / 2) 5 rii - dji
+ n2 T < (T /2) , respectively. From (3) and (4), the output of the
averager is

1
2 eij = - [Kl (ri, + do + nl T) + K2 (ri, - d,i + n2 T)] . (5)

will consider the interface block for two of the existing hardware
synchronization circuits in [l] and [4]. In [4], control voltage to the
voltage-controlled oscillator depends on whether more than m clocks
are faster than the output of the oscillator, where m is the maximum
number of malicious faults to be tolerated. From the description of
the delay elimination block, we know that a clockj is faster than a
clock i if the voltage ei is negative. A comparator that outputs a TTL
high voltage when the input is negative and a TTL low when the input
is positive can be used along with the “greater than m detector”
described in [4] to convert the output of the delay elimination block
into the desired form.

On the other hand, if a hardware implementation of the algorithm
in [11 is being used, then the interface block should chop off all input
voltages that are greater in magnitude than Kr- . The outputs of the
interface block can then be averaged and used to correct the oscillator
just as in [11.

IV. CONCLUSION

By using the scheme described in this paper, it is possible to
incorporate the presence of nonzero transmission delays into the
existing hardware synchronization algorithms. However, the pro-
posed scheme increases the complexity of hardware synchronization
to some extent. Instead of just N - 1 inputs in the existing
algorithms, each clock now has 2N - 2 inputs. This increases the
complexity of the interconnection network by almost 100 percent.
Also, instead of just one phase detector, the proposed scheme
requires 2N - 1 phase detectors at each clock. This increases the
complexity of the synchronization circuitry at each clock.

However, by partitioning the system into clusters, it is possible to
reduce the number of inputs to each clock as in [lo]. This will not
only reduce the total number of interconnections in the system, but
also decrease the number of phase detectors required in each clock.
As a result, large multiprocessor systems can be synchronized by
using the scheme proposed here.

REFERENCES

[l] L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the
presence of faults,” J. ACM, vol. 32, pp. 52-78, Jan. 1985.

[2] T. B. Smith and J. H. Lala, “Development and evaluation of a fault-
tolerant multiprocessor (FTMP) computer Volume I: FTMP principles
of operation,” NASA Contractor Rep. 166071, May 1983.

[3] C. M. Krishna, K. G. Shin, and R. W. Butler, “Ensuring fault
tolerance of phase-locked clocks,” ZEEE Trans. Comput., vol. C-34,

[4] J . L. W. Kessels, “Two designs of a fault-tolerant clocking system,”
ZEEE Trans. Comput., vol. C-33, Oct. 1984.

[5] J. Lundelius and N. Lynch, “A new fault-tolerant algorithm for clock
synchronization,” in Proc. Principles Distributed. Comput., June

[6] C. M. Krishna, K. G. Shin, and R. W. Butler, “Synchronization and
fault-masking in redundant real time systems,” in Dig. Papers, FTCS-

[7] W. C. Lindsey, A. V. Kantak, and A. Dobrogowski, “Network
synchronization by means of a returnable timing system,” ZEEE
Trans. Commun., vol. COM-26, pp. 892-896, June 1978.
M. W. Willard, “Analysis of a system of mutually synchronized
oscillators,” ZEEE Trans. Commun. Technol., vol. COM-18, pp.
467-483, Oct. 1970.
H. hose, T. Saito, and H. Fujisaki, “Theory of mutually synchronized
systems,” Electron. Commun. Japan, vol. 49, pp. 263-272, Apr.
1966.

p ~ . 752-756, Aug. 1985.

1984, pp. 75-88.

14, 1984, pp. 152-157.

[8]

[9]

[lo] K. G . Shin and P. Ramanathan, “Clock synchronization of a large
multiprocessor system in the presence of malicious faults,” in Proc.
I985 Real-Time Syst. Symp., pp. 13-24. (Also in ZEEE Trans.
Comput., vol. C-36, Jan. 1987.).

From AO, K1 = K2 = K. From the lemma above, nl = -nz.
Substituting these relations in (3, we get eo = Krc + (K /2) (do -
dji). The theorem then follows from A l .

B. The Interface Block
As stated earlier, the interface block depends on the synchroniza-

tion block being used. However, for the purpose of illustration, we
4 Since we know that the maximum skew between any two nonfaulty clocks

is less than or equal to T-.

