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Fig. 6. Reduced BD tree for Example II. 

f~,f~o, andfll have the lowest score. Let US choosefl. At nodes 2 and 
3, f12 and fI4, respectively, have the lowest score. Continuing the 
process, the reduced BD tree of Fig. 6 is obtained. If only polarity 
tests are used, four tests will be required on some paths. If f10 had 
been selected at node 1, a reduced tree having some paths with length 
4 would have been obtained, because at one of the level 3 nodes an 
even qi for one of the output states is split into an odd qi+ and qi- by 
all the npf‘s. In such cases, it might be worthwhile to go back to the 
predecessor node and select another test npf. 
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V. CONCLUSION 
The properties of the class of parity test functions have been 

considered. The polarity test BD system is a subset of the parity test 
system. Thus, for a given system, the parity test BD algorithm can 
generally have less instructions and hence lower average number of 
cycles to reach an output than the equivalent polarity test algorithm. 
However, the parity test version requires wider memory, but this may 
be offset by the fewer number of instructions required. More 
importantly, the advantage of faster operation while still maintaining 
programming flexibility will in some cases outweigh the disadvantage 
of wider words. A heuristic method of reducing parity test based BD 
trees was also considered. While this method does not guarantee a 
minimal tree, indications are that it is a useful means of parity tree 
reduction. Since the method is heuristic, more testing, especially on 
large systems needs to be done. 

BD-based systems are an alternative method of providing solution 
to logic design problems. They are not meant as a replacement of the 
other logic methods, but as one more tool for the solution of logic 
problem. In some cases, the BD solution may be the best one. In the 
same vein, this paper aims at enhancing the scope of BD systems and 
the range of tools available for providing BD based solutions to logic 
system Droblems. 
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Transmission Delays in Hardware Clock Synchronization 

KANG G. SHIN AND P. RAMANATHAN 

Abstract-Various methods, both with software and hardware, have 
been proposed to synchronize a set of physical clocks in the system. 
Software methods are very flexible and economical but suffer an excessive 
time overhead, whereas hardware methods require no time overhead but 
are unable to handle transmission delays in clock signals. 

The effects of nonzero transmission delays in synchronization have 
been studied extensively in the communication area in the absence of 
malicious or Byzantine faults. We show that it is easy to incorporate the 
idem from the communication area into the existing hardware clock 
synchronization algorithms in order to take into account the presence of 
both malicious faults and nonzero transmission delays. 

Index Tern-Fault-tolerant clock synchronization, malicious faults, 
phase-locked clocks, transmission delays. 

I. INTRODUCTION 
The problem of synchronizing a set of physical clocks in the 

presence of malicious or Byzantine’ faults has been studied 
extensively in recent years [1]-[4]. There are both softwore and 
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hardware solutions to this problem. The software solutions [I], [SI 
treat the clock values as data values and exchange them periodically 
in order to ensure proper synchronization. However, as pointed out in 
[6] ,  this kind of synchronization requires an excessive time overhead, 
thereby making it impossible to exchange the clock values often 
enough to achieve a tight synchronization between the clocks. 

On the other hand, the hardware solutions [2]-[4] use the principle 
of phase-locked loops in order to achieve a tight synchronization 
between the clocks with almost no time overhead. However, unlike 
the software solutions, none of the existing hardware solutions 
consider the transmission delays in clock signals. They assume that 
the transmission delays are small enough to have little effect on the 
system. This, however, is not valid in a large multiprocessor system, 
where the physical distance between two clocks could be substantial. 

The effects of nonzero transmission delays in phase-locked loops 
have been studied in great detail in the communication area [7], [8] ,  
but not in the presence of malicious faults. In this correspondence, we 
show that it is easy to incorporate the ideas from the communication 
area into the existing hardware solutions in order to take into account 
the presence of both malicious faults and nonzero transmission 
delays. 

This correspondence is organized as follows. Section II reviews the 
basic principle of a phase-locked loop and the problems encountered 
by it in the presence of nonzero transmission delays. Section 111 
begins with an introduction of the notation to be used and then 
proposes a hardware solution to overcome the problem of transmis- 
sion delays. Finally, Section IV presents a brief analysis of the 
complexity of the solution proposed in Section III. 

II. A BRIEF REVIEW OF PHASE-LOCKED CLOCKS 
The basic operating principle of a phase-locked loop is simple. 

Each clock is an output of a voltage-controlled oscillator. The voltage 
applied to this oscillator is the output of a phase detector which is 
proportional to the phase error between the two signals at its input. 
The two inputs to the phase detector are usually the output of the 
oscillator it controls and a reference signal with respect to which the 
oscillator has to be synchronized. 

The various hardware synchronization solutions differ from each 
other in the way the reference signal is chosen. In [2], the reference 
signal for a four-clock system2 is chosen to be the median signal 
among the other three clocks. As evidenced in [3], use of the median 
signal becomes invalid for a system with more than four clocks. A 
more complicated means for selecting the reference signal is thus 
necessary to tolerate more than one malicious fault in the system. In 
[3], the reference signal is chosen by using a more complicated 
function on the other clocks in the system. In [4], there is no phase 
detector. Instead, the control voltage to the oscillator is based on how 
many of the other clocks are faster than its own output. In the 
communication area, where malicious faults are not considered, the 
control voltage fed to the oscillator is directly proportional to the 
average phase difference between its clock and all other clocks in the 
system [9]. 

However, all of the above algorithms are affected by the presence 
of nonzero transmission delays between the clocks. In the presence of 
nonzero transmission delays, it is not possible to determine either the 
relative ordering of the clocks as required in [3] and [4] or the exact 
phase difference between any two clocks. As a result, none of the 
above algorithms will achieve the desired objective in the presence of 
both malicious faults and transmission delays. 

III. THE SOLUTION 
Before presenting our solution to the delay problem in clock 

N 
m 
c, 
T Desired clock period. 

synchronization, we need to introduce the following notation. 
Total number of clocks in the system. 
Maximum number of malicious faults to be tolerated. 
The signal from clock i .  

Synch. __ 
Block 

Interface Delay 

Block 
Elimination . Block 

N-1 7 N-1 

0 0 
0 

Fig. 1. Block diagram of hardware clock synchronization. 

C, 
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Fig. 2. The jth subblock of the delay elimination block. 

dii Transmission delay for the signal from clock j to reach 
clock i. 

rij Phase difference between clock i and clock j expressed in 
time units. 

7- Maximum phase difference between any two nonfaulty 
clocks in the system, i.e., max;,j 1 

The block diagram of the clock synchronization scheme is shown 
in Fig. 1. It comprises three basic blocks: the delay elimination 
block, the interface block, and the synchronization block. The delay 
elimination block receives all the other clocks as inputs and returns 
analog voltages3 proportional to the exact phase difference between 
the input clocks and its own clock. The interface block converts these 
analog voltages into a form suitable for the synchronization block. 
The synchronization block could be any one of the existing hardware 
synchronization circuits mentioned above. The synchronization block 
will not be discussed here; see [4] and [lo] for details of this block. 

A.  The Delay Himination Block 
For clarity of presentation, consider the delay elimination block in 

clock i .  The delay elimination block consists of N - 1 identical 
subblocks, i.e., one for each other clock in the system. Consider the 
subblock corresponding to clock j (see Fig. 2). It has two phase 
detectors and an averager. The inputs to the first phase detector PDI 
are the clock signals ci and c, . Since the signal cj encounters a delay in 
reaching clock i ,  the phase difference detected by PDI does not 
represent the true phase difference T ~ .  

The inputs to the second phase detector PD2 are signals cj and ci 
returning from clock j. Due to the transmission delays between the 
two clocks, the signal ci returning from clock j will be a delayed 
version of c; . Since a delay in time is equivalent to a phase difference, 
the output of the second phase detector will also depend on the 
transmission delays. However, if the following four assumptions 
hold, then it is shown in the theorem below that the average of the 
outputs of these two phase detectors is proportional to 7ii irrespective 
of the transmission delays between the two clocks. 
AO. The two phase detectors in each subblock are identical to each 

Al. dii = dji for all i ,  j. 
A2. 7,- < T/2. 
A3. For all i ,  j ,  nT < dii < nT + ( T/2) - 7- for some integer 

1. 

other. 

n.  

* To tolerate at most one malicious fault. one for each of the other clocks. 
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Assumptions A0 and A1 are easy to implement. A1 can be easily 
satisfied if the signals ci , c, and their returning signals are routed via 
almost identical paths. A2 is usually a requirement rather than an 
assumption. Since hardware synchronization algorithms achieve lock 
step synchronization, r- 6 T/2.  A3 should be treated as a design 
constraint. Even though two clocks can be physicdy far apart from 
each other, they should not be allowed to be at arbitrary distances. 
The physical distance between any two clocks should be such that the 
transmission delays satisfy A3. 

A3 is not mentioned in [7], because the output of the phase detector 
is assumed to always vary linearly with phase difference. This, 
however, is not realistic since phase differences between r and r + 
nT, for some integer n, cannot be distinguished from each other by 
just considering the two signals. Hence, outputs of phase detectors 
have a sawtooth relationship with phase difference rather than a linear 
relationship [8]. The need for assumption A3 in the presence of such 
a sawtooth relationship becomes clear from the theorem below. 

Lemma: If integers nl and n2 satisfy the following two conditions 

- T  T 
a) -sri ,+d,i+nlT<- 2 2 

b) - ~ r ~ , - d , ~ + n z T < - ,  - T  T 
2 2 

thennl = -n2. 

n T  + (T /2 )  - r-. We now show that nl = -nand  n2 = n. 
Proof: From A3, there exists an integer n such that nT < dji < 

By definition, -rmx I < r-. Hence, 

T 
2 nT-  7- < rij + dji< nT+ - (1) 

T 
2 - nT- -< rij - dji< - nT+ r-. (2) 

Substituting for ri + d,i and TO - dji from (1) and (2),  it is easy to 
verify that nl = - n and n2 = n satisfy conditions a) and b) (i.e., use 
A2). Since integers satisfying a) and b) are unique, it follows that nl 
= -n2. U 

Theorem: If the assumptions AO-A3 hold, then the output of the 
averager eij = Kro for some constant K .  

Proof: Let U: and U; denote the outputs of the first and the 
second phase detectors, respectively. Then for a sawtooth phase 
detector [8], 

(3) 

u$= K2 { ri, + do- (dij + dji) + n2 T }  

= K2(ri, - dji + n2 T )  (4) 

where Kl and K2 are constants and nl and n2 are integers so chosen 
that - ( T / 2 )  I + dji + nl T < (T /2 )  and - ( T / 2 )  5 rii - dji 
+ n2 T < (T /2 ) ,  respectively. From (3) and (4), the output of the 
averager is 

1 
2 eij = - [Kl (ri, + do + nl T )  + K2 (ri, - d,i + n2 T ) ]  . ( 5 )  

will consider the interface block for two of the existing hardware 
synchronization circuits in [ l ]  and [4]. In [4], control voltage to the 
voltage-controlled oscillator depends on whether more than m clocks 
are faster than the output of the oscillator, where m is the maximum 
number of malicious faults to be tolerated. From the description of 
the delay elimination block, we know that a clockj is faster than a 
clock i if the voltage ei is negative. A comparator that outputs a TTL 
high voltage when the input is negative and a TTL low when the input 
is positive can be used along with the “greater than m detector” 
described in [4] to convert the output of the delay elimination block 
into the desired form. 

On the other hand, if a hardware implementation of the algorithm 
in [ 11 is being used, then the interface block should chop off all input 
voltages that are greater in magnitude than Kr- . The outputs of the 
interface block can then be averaged and used to correct the oscillator 
just as in [ 11. 

IV. CONCLUSION 

By using the scheme described in this paper, it is possible to 
incorporate the presence of nonzero transmission delays into the 
existing hardware synchronization algorithms. However, the pro- 
posed scheme increases the complexity of hardware synchronization 
to some extent. Instead of just N - 1 inputs in the existing 
algorithms, each clock now has 2N - 2 inputs. This increases the 
complexity of the interconnection network by almost 100 percent. 
Also, instead of just one phase detector, the proposed scheme 
requires 2N - 1 phase detectors at each clock. This increases the 
complexity of the synchronization circuitry at each clock. 

However, by partitioning the system into clusters, it is possible to 
reduce the number of inputs to each clock as in [lo]. This will not 
only reduce the total number of interconnections in the system, but 
also decrease the number of phase detectors required in each clock. 
As a result, large multiprocessor systems can be synchronized by 
using the scheme proposed here. 
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From AO, K1 = K2 = K.  From the lemma above, nl = -nz. 
Substituting these relations in (3, we get eo = Krc + (K /2 )  (do - 
dji). The theorem then follows from A l .  

B. The Interface Block 
As stated earlier, the interface block depends on the synchroniza- 

tion block being used. However, for the purpose of illustration, we 
4 Since we know that the maximum skew between any two nonfaulty clocks 

is less than or equal to T-. 


