
IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 9, SEPTEMBER 1988 1053

Modeling and Measurement of Error Propagation
in a Multimodule Computing System

KANG G. SHIN, SENIOR MEMBER, IEEE, AND TEIN-HSIANG LIN, STUDENT MEMBER, IEEE

Abstract-Because of excessive resource requirements, error
detection mechanisms in real computing systems cannot usually
be made complete, i.e., their coverage is less than 100 percent.
This fact in turn implies that an error may propagate through
system components before it is detected. The main purpose of
this paper is to develop an error propagation model and methods
to compute and measure the model parameters, i.e., distributions
of error propagation times, rather than applying the model to
various design and analysis problems.

A digraph model is used to represent a multimodule comput-
ing system and error propagation in the system is modeled by
general distributions of error propagation times between all pairs
of modules. Two algorithms are developed to systematically and
efficiently compute the distributions of error propagation times.
Experiments are also conducted to measure the distributions of
error propagation times within the fault-tolerant multiprocessor
(FTMP). Statistical analysis of experimental data shows that the
error propagation times in FTMP do not follow a well-known
distribution, the Weibull distribution, thus justifying the use of
general distributions in our model.

Index Terms-Digraph, distribution and density functions
of error propagation times, error propagation, experiment on
FTMP, statistical analysis.

I. INTRODUCTION

N ANY computing system, it is practically impossible to I install a perfect detection mechanism with which all types
of errors can always be detected before they propagate to
other parts of the system. Thus, upon detection of an error,
it is difficult to tell whether the error is induced by a fault
that occurred in the same part of the system where the error
is detected or it is the propagation of an error induced by a
fault in some other part of the system. In other words, an
error may propagate through the system components before it
is detected.

To clarify the terminology used in this paper, an error is
defined as an incorrect state of the system which could be
an incorrect data, an incorrect control signal, or an abnormal
system behavior, and a fault is the source of an error, e.g. , a
broken wire, an electrical short, or a bug in a program. The
effects of error propagation on fault location, reconfiguration,

Manuscript received April 21, 1987: revised August 25, 1987. This work
was supported in part by NASA Grant NAG-1-296 and ONR Contract
N00014-85-K-053 1 , Any opinions, findings, and conclusions or recommen-
dations expressed in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science. The University of Michigan,
Ann Arbor, MI 48109.

IEEE Log Number 87 1842 1.

and error recovery are significant, because of the uncertainty
as to which components are really faulty and/or erroneous
[11. Most approaches reported in the literature circumvent the
problem of error propagation by assuming a perfect coverage
in detecting errors. However, such an assumption is unreal-
istic and, often, unacceptable for real systems, since even a
near-perfect detection mechanism is very difficult to obtain
without entailing an excessive amount of resources or per-
formance degradation. It is therefore necessary to consider
the error propagation problem in the design and analysis of
fault-tolerant systems. As a first step to meet such a need, we
propose, in this paper, a general error propagation model and
examine its power and limitations.

Error propagation was first recognized and utilized in test-
ing combinational circuits. The famous D-algorithm is an ex-
ample of using the error propagation property of logic gates
to generate test patterns for combinational circuits [2] . Re-
cently, error propagation properties at the logic gate level [3]
and the transistor level [4] have been derived for the design of
totally self-checking integrated circuits. In [5], error propaga-
tion at the register level has been considered for the design of
a strongly fault secure processor. Zielinski [6] has proposed a
model of error propagation among communicating processes
in a distributed computer system and used it to express an
error recovery method with the recovery block scheme.

All the previous error propagation models are deterrninis-
tic in nature, because they are based on a specific fault/error
model or the system is assumed to have some restricted, pre-
dictable behavior. However, there is in practice very little a
priori information on the behavior of faults and errors, and in-
tercomponent communications may take place in an arbitrary
fashion. So, error propagation cannot in general be modeled
deterministically. In this paper, we propose a stochastic model
where the primary parameters- error propagation times be-
tween all pairs of system components- are random variables.
We shall also show how the distributions of error propagation
times can be determined systematically and efficiently.

In addition to the development of an error propagation
model, we shall show by example a method to get the error
propagation times for real systems, i.e., direct measurement
on a target system. This method is in sharp contrast with that
in [7] , where the authors measured the distribution of error
propagation times via a gate level simulation for the CPU in
an avionic miniprocessor. We focus here only on the modeling
and measurement of error propagation. Application of the er-
ror propagation model for fault location, damage assessment,
and error recovery will be addressed in forthcoming papers.

0018-9340/88/0900-10.53$01 .OO O 1988 IEEE

1054 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 9. SEPTEMBER 1988

In Section 11, our error propagation model is described
along with its justification. The system consists of multiple
components and is represented by a digraph. The error prop-
agation time between a pair of components in the system is the
minimum of propagation times over all paths between the two
components. Thus, it is necessary to systematically enumerate
all paths between any pair of components. Because some of
these paths have nodes and edges in common, the distribution
functions of their propagation times are dependent on one an-
other and, thus, very complex to derive. Two algorithms are
presented in Section I11 to systematically enumerate propaga-
tion paths and efficiently compute the distribution functions.
Section IV describes an experiment to measure the error prop-
agation times on the fault-tolerant multiprocessor (FTMP) [SI.
The experimental results are analyzed to obtain the distribu-
tion functions of error propagation times. The paper concludes
with some remarks in Section V.

11. ERROR PROPAGATION MODEL

Consider a computing system composed of multiple com-
ponents, each of which is called a module. A module repre-
sents any well-defined component of the system; it could be
a hardware or software unit or even a combination of hard-
ware or software. Each module is a self-contained entity with
input/output from/to others.

Definition I : A module is said to be faulty if a fault has
occurred in the module and is said to have been contaminated
if it contains one or more errors.

Definition 2: For each module in the system, the faulty
moment is the time instant a fault occurs within the mod-
ule, and the contaminating moment is the time instant the
first error occurs due to either the manifestation of a fault
within the module or the propagation of error(s) from other
module(s).

Definition 3: For a module, the interval between the faulty
moment and the contaminating moment is called the fault
latency of the module.

The Error Propagation Time
Error propagation among the modules can best be described

by a digraph, denoted by D = (V , E) , where N is the num-
ber of modules in the system, V = { U , , . . . , u N } is the set
of nodes, and E = {eij: 1 I i , j 5 N } is the set of directed
edges. Each node in D represents a module in the system, and
the directed edge ejj represents the communication link from
ui to U,. Typical methods of communication between software
modules are message passing and shared memory. Hardware
modules can communicate via control and data signals. If
there is no communication link from ui to u j , then E will
not contain e,,, or eij is a null edge. A propagation path
from U; to U k , written as (vi, . . . , u k) , is a directed path in D
where all nodes in the path are distinct so that an error may
propagate from ui to uk through the path. It is meaningless to
consider the case of error propagation into a module which
has already been contaminated; this is the very reason why
the nodes in a propagation path are distinct. Errors may prop-
agate from ui to uk if there exists at least one propagation path
from ui to Uk.

Process v, n
I

T i- detection
I 1

I I
I T I
1 1
I I , ,

Process uJ I n

Global tune
T, TJ T

Fig. 1. Timing diagram of processes U, and U,.

Definition 4: The error propagation time from ui to u j ,
denoted by Xi,, is defined as the time interval between the
contaminating moment of U; and that of u j . The density func-
tion and cumulative distribution function of Xi j are denoted
by gi,(.) and G , , (*) , respectively.

Clearly, X,j holds a physical meaning only when Xi j 2 0.
Thus, the definition of Xij is usually made under the assump-
tion that U; is the only faulty module or the first module to be
contaminated in the system. If the system is assumed to have
at most one fault at a given time, the faulty module will be
the first module to be contaminated.

Many useful pieces of information can be derived from
gij’s and Go’s. For example, gij’s and G,’s can be used for
evaluating the rollback recovery block scheme for concur-
rent cooperating processes [9]. Let each node (edge) in our
graph model represent a process (interprocess communica-
tion). Each process is assumed to establish its own recovery
point asynchronously with respect to the other processes. Be-
fore establishing a recovery point, an acceptance test is per-
formed which is assumed to detect all types of errors, i.e.,
perfect coverage. Assume that an error is detected at time
T by process Uk during the acceptance test and that process
U; is diagnosed to be the source of the error. Then, for the
subsequent recovery, it is useful to calculate the probability
of some other process U, being contaminated, i.e., damage
assessment. Let the most recent recovery points of vi and
u j be established at time Ti and T,, respectively, as shown
in Fig. 1 . Since all the acceptance tests are assumed to have
perfect coverage, the U, ’s contaminating moment, denoted by
CZ, must lie within the interval [T,, TI and the uj’s contam-
inating moment, denoted by CJ, must be within the interval
[Tj, T I . The probability of u j being contaminated can then be
computed as

l T
+ i , - dx.

The knowledge of this probability can help us decide whether
or not to roll U, back in case of u, ’s detection of an error.

SHIN AND LIN: ERROR PROPAGATION IN MULTIMODE COMPUTING SYSTEM 1055

The contaminated region within the system can be estimated
from the collection of all modules' contaminating probabili-
ties, which are determined by gij and Go as shown above.

Direct Error Propagation Time
Although error propagation times contain complete infor-

mation on the behavior of error propagation and can be di-
rectly measured experimentally, there are several drawbacks
as follows.

It is very costly to measure error propagation times for
all pairs of modules. For a system with N modules, N(N - 1)
error propagation times must be measured experimentally re-
gardless of the number of communication links in the system.

The distribution of any error propagation time is fixed
under a specific fault model. However, should a new fault
model be needed, all error propagation times must be mea-
sured again under the new fault model, since the distributions
change with the fault model.

The error propagation times over different paths are de-
pendent on one another whenever they have some path seg-
ments in common. Also, the dependencies among the error
propagation times are very difficult to experimentally mea-
sure but necessary to compute their joint distribution. A useful
joint distribution, for example, is

Prob [X; , I X I , . . . , X ; N 5 X N]

which characterizes the spread of error(s) in the system from
a faulty module U,.

To overcome the above drawbacks, a direct propagation
time is defined as follows.

Definition 5: If ei, is a nonnull edge in E , then the direct
propagation time, denoted by B,,, is the time for an error
to propagate from U; to U, via e;;. The density function and
the cumulative distribution function of B;;, denoted by p;; and
Pij, respectively, are called the direct propagation functions
of eIj .

The differences between an error propagation time and a
direct propagation time lie in that 1) the latter is associated
with a directed edge while the former is defined for every
ordered pair of modules, and 2) the latter accounts for er-
ror propagation through a particular edge while the former
is the minimum propagation time over all propagation paths
between the given pair of modules. We shall show later how
to systematically and efficiently compute error propagation
times from direct propagation times. Since direct propagation
times are defined for the communication links in the system,
without loss of generality, one can assume that they are inde-
pendent of one another and their distributions will not change
with the underlying fault models. Moreover, this assumption
greatly reduces the experimental cost to measure propagation
times. For example, a five-node-eight-edge system would re-
quire 20 measurements of error propagation times for each
fault model, but would require only eight measurements of
direct propagation times for a// fault models.

From the direct propagation functions, another useful func-
tion called the error containment function, ECi(t), is defined
for a module U ; as the probability that errors have not propa-
gated from U; to other modules up to time t (measuring from

Fig. 2. An example graph.

the u ; ' s contaminating moment). For example, if U, has out-
going communications with u j , u k , and U,, then EC;(t) can be
calculated as

EC;(t) = Prob [Bij > t , Bik > t , Bim > t]

= (1 - Pij(t))(l - Pik(t))(l - Pi,(t))

because B;, , Bik , and B,, are independent of one another.

Join, Meet, and Conditioning Operations
We have discussed the advantages of measuring direct prop-

agation times instead of error propagation times. The immedi-
ate problem is then to compute error propagation times from
direct propagation times. Consider an example system shown
in Fig. 2 . To get X,j, one must first find all propagation paths
from U, to U,. The propagation time along a propagation path
is the sum of all the direct propagation times of the edges in
the path. Then, Xi; is the minimum propagation time over all
propagation paths, i.e.,

X;; = min (B,k + Bk;, B;, + Brnj).

The distribution of Xi, can be calculated by the following
lemmas, since direct propagation times are independent of
each other.

Lemma 1: If Z = Y, + . . . + Y, and Y; , i = l , . . . , n ,
are independent, the density function of Z can be calculated
by

f z (t) = f v , (t) * . * * *fY,(t)
where * denotes the convolution andfyj(t) is the density func-
tion of Y;.

Lemma2:IfZ = min (Y , , . . . , Yn)and Y; , i = l , . . . , n ,
are independent, the cumulative distribution function of Z can
be calculated by

F Z (0 = 1 - (1 - F Y , (t)) ' "(1 - FY,,(t))

where Fy<(t) is the cumulative distribution function of Y;.
We shall call the computation in Lemma 1 a join op-

eration and that in Lemma 2 a meet operation. Usually,
the join operation is performed over the direct propagation
times of all the edges in a propagation path and the meet
operation is performed over a propagation path between a
given pair of modules. However, because of the indepen-
dence requirement in the meet operation, only disjoint propa-
gation paths can become the operands of a meet operation.
(Propagation paths with no common edges are said to be
disjoint.) If propagation paths are not disjoint, i.e., some
paths have common edges, the meet operation is not appli-
cable since some operands are dependent. The dependence

1056 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 9, SEPTEMBER 1988

problem could sometimes be eliminated by rearranging the
order of join and meet operations so that the operands in
the meet operation can be made independent. For example,
min (X + Y , X + 2) = X + min (Y , Z) , where X, Y ,
and 2 are independent variables. The meet operation can be
applied on Y and 2, but not on X + Y and X + 2.

Unfortunately, rearranging the order of operations cannot
always solve the dependence problem. Consider, for example,
the distribution of a random variable V = min (X + Y , X +
2, Y + W) , where W , X , Y , and 2, are independent. It is
impossible to obtainfv(t), the density function of I/, by using
the join and meet operations only. Nevertheless, f v (t) can be
calculated by conditioning V on X , i.e.,

m

f v (0 = 5
=

fv lx=x(t) * f x (x) d x
-m

f m i n (x + Y , x + z . Y + w)(t) * f x (x) dx
- m

m

= J f m i n (x + Z . Y + m l n (x , W)) (f) * f x (x) d x
-m

and the distribution of the conditional random variable VIX is
obtainable by the join and meet operations since W , Y, 2 are
independent and x is a constant. The above calculation will
henceforth be called a conditioning operation on the variable
X .

The distribution of any X;j can be calculated by applying
the conditioning operations on all the B;j’s involved in the
calculation. But this is equivalent to an exhaustive approach
which is time consuming and should be avoided. In the next
section, we shall derive two algorithms for 1) generating all
propagation paths systematically and 2) rearranging the order
of operations so as to minimize the number of conditioning
operations.

111. ALGORITHMS FOR COMPUTING gij AND G ,
Let M be the number of directed edges and N be the num-

ber of nodes in a digraph D representing a multimodule com-
puting system. Then, D can be represented by an adjacency
matrix A , where A: is the entry of the ith row and the j th
column of A , A{ # 0 means the existence of a nonnull edge
from U; to U, and A: = 0 means the absence of an edge in
D. Also, let A, and A’ denote the ith row vector and the
j th column vector of A , respectively. The number of nonzero
entries‘in Ai (A’) is represented by ~ ~ A ; J (\ ~ A j ~ ~) , and if S is
a set, llSll denotes the cardinality of the set. To simplify the
notation for the edges in A , they are numbered from 1 to M
first by their row positions then by their column positions so
that e;, is also called the A:th edge or, more conveniently, e,
if m =A: # 0. For the example graph DI shown in Fig. 3,
N = 5 , M = 8, and the adjacency matrix is

Fig. 3. The graph D,.

where e23 is called the third edge or e3. D1 will be used
repeatedly as an example in the discussions that follow.

In order to calculate gij and G,,, two algorithms are de-
veloped: one, called PG, for systematically enumerating all
propagation paths from vi to U, tl i, j and the other, called OR,
for computing distribution and density functions using the
results from PG.

Path Generation

The basic idea of PG is to simulate internode communica-
tions by passing pa th tokens around. A path token is repre-
sented by [SI, s2, . . . , s,], where SI, . . . , s, are the ordered
sequence of nodes traversed thus far. This path token was
originally sent by node s1 as [si, s2] to node s2, and finally
received by node Sm. Recall that, by definition of a propaga-
tion path, SI, . . . , s, should all be distinct. After receiving the
path token, node Sm records this path as a new propagation
path from U,, to U,, and will attempt to append a new next
node, if any, to the path token by checking both the adjacency
matrix and the path token itself, and then pass the new path
token to the next node. A path token stops generating new to-
kens when it cannot progress any further without visiting any
node twice. Therefore, the algorithm will end when there are
no path tokens being passed around. A node, denoted by node
0, is designated to keep track of the number of path tokens be-
ing passed around. The token count in node 0 is updated by all
the other nodes by sending a count update message to node 0.
Upon detection of no path tokens being passed around, node
0 issues a stop message to all the other nodes to terminate the
algorithm.

A parallel implementation of PG can be accomplished by
assigning a processing unit to each node provided that there
are some communication mechanisms among the processing
units for passing tokens around. The number of propagation
paths between a pair of source and destination nodes, (U;, U,),
is stored in NPG. Initially, it is assumed that the adjacency
matrix A is available to every node and all NP,,’s are set to
zero.

Algorithm PG:
For node 0

1. count : = 0.
2 . Wait and receive any count update cp from other

3. count : = count + cp.
4. If count # 0, go to step 2 .
5 . Send a stop message to all the other nodes.
6. Stop.

nodes.

SHIN AND LIN: ERROR PROPAGATION IN MULTIMODE COMPUTING SYSTEM 1057

TABLE I
A RECORD OF RUNNING ALGORITHM PG

I Node 1

send

Node 2

receive send

Node 3

For node k , 1 I k I N ,
1. Send cp = llAk 11 as a count update to node 0.
2. For j E { l , . . . , N } and Ajk # 0, send path

token [k, j] to node j .
3. Wait and receive messages or path tokens from

other nodes.
4. If a stop message is received from node 0, then

stop.
5 . If a path token [SI, s2, . . . , s, = k] is received,

record the path, increment NP,,k by 1,
and let cp : = - 1 .

6. For j E { I I i I N:A;(# 0, i @

{sI,...,s,,}}, send [s,,...,~, = k , j l to
node j , and let cp : = cp + 1.

7. Send cp to node 0 if cp # 0.
8. Go to step 3 .

It is easy to show that PG actually generates all possible
paths in D as follows. Let P be any path in D which starts
at sI , goes through s2, s3, . . . , s,- I , and ends at s,. In PG,
sI initializes the path token [sl,s2] and sends it to s2. Node
s2 will then send the path token [sI, s2, s3] to s3, and so on.
Eventually, there will be a path token [SI, . . . , s,] received
by s, that represents exactly the path P.

As an example, a complete record of running PG for the
example graph D I is given in Table I where the path tokens
received and sent by each node are shown.

Operation Rearrangement
Conditioning is necessary whenever there are common

edges among the paths for a given pair of modules (U;, u j) .

So, the primary step in OR is to choose a minimum number
of common edges to be conditioned upon so that the rest can
be rearranged as operands of join and meet operations. Since
the same algorithm applies to every source-destination pair
and algorithms for different pairs do not need to communi-
cate, they can be executed in parallel.

send

Node 4

receive send

Node 5

receive send

The output from OR is the order of operations to be per-
formed. A prefix polish notation is used to represent the order
of operations. The three operations defined earlier are denoted
as

/ Z : conditioning on Z
+,: join with n operands

&,: meet with n operands.

For convenience, let B , be the direct error propagation time
for the mth edge.' If B , is the operand of a conditioning
operation, then the sample value of B , after the conditioning
is denoted by b, . For example, the following two expressions
have the same meaning:

A constant operand (e.g., b l) of the join or meet operation
will be treated as a discrete random variable with only one
point mass.

During the execution of PG, the propagation paths for each
pair of modules are recorded in two matrices: 1) the node
traverse matrix VT and 2) the edge traverse matrix ET. The
columns of VT correspond to nodes, whereas the columns of
ET correspond to edges numbered as in A . The rows of both
matrices correspond to propagation paths so that there will be
m rows in both matrices if the total number of propagation
paths is m for a given pair of modules. The order of rows
(paths) is irrelevant for OR as long as the same rows in both
matrices correspond to the same path. In the discussion that
follows, the path corresponding to the kth row will be called
the kth path or path k. The entries of VT and ET are such that

I B, is the same as B,, defined earlier if A: = m # 0, where A is the
adjacency matrix.

1058 lEEE TRANSACTIONS ON COMPUTERS. VOL 37. NO 9. SEPTEMBER 1988

if eij belongs to the kth Propagation Path and A; = *1 > 0,
then V T ; = j and ET? = 1. In other words, there is a
nonnull edge in the kth path from U , to U , where j = VT; # 0.
For example, the node and edge traverse matrices for (U , , ui)

employing the divide-and-conquer principle. The initial work-
ing group is the set of all propagation paths between a given
pair of nodes. For example, the status vectors from the initial
working group for (U I , u 3) of DI are

of DI are
(2 3 0 0 o-)

v T = [; i ;
E T = [1 0 0 1 0 1 0 1

1 0 1 0 0 0 0 0
0 1 0 0 0 1 0 1

0 1 1 0 0 1 1 0 1
The fourth path for the pair (u t , u 3) is [ul , U ? , u s , U ? , U ?] which
includes edges e?, e3, e6, and e?.

A few new terms are necessary to explain OR. A partial
path is a subset of all the edges in a propagation path, whereas
a subpath is a segment of the propagation path. Clearly, for
a given propagation path, a subpath is a partial path, but the
converse is not always true. A working group (subgroup)
for a given pair of nodes is defined as a collection of partial
paths of all propagation paths between the two nodes and is
evaluated as

where every entry in min is associated with a partial path
of a distinct propagation path. Let NS, ES, and PS repre-
sent the node status vector, the edge status vector, and the
path status vector, respectively, where NS and ES are col-
umn vectors and PS is a row vector. A working group can
be derived from these status vectors and the node and edge
traverse matrices. An edge is in a working group if it belongs
to at least one partial path in the group. An edge starts from
a node called source and ends at a node called sink. A node
is said to belong to a working group if it is the source or
sink of an edge in the group. The node status vector holds a
physical meaning only if all partial paths in a working group
are subpaths. These vectors for a working group are defined
as follows:

0
1
-1

-2

if U ; is not in the working group
if U , is in the working group
if U , is the source node of all subpaths in

the working group
if U , is the destination node of all

subpaths in the working group

0
-1

1

if thej th edge is not in the working group
if thejth edge is a constant edge in the

if thej th edge is a variable edgc in the
working group

working group

1 NS; =

0

1 otherwise.

if no partial path of the kth path belongs to
the working group

ES, =

i psk =

A variable edge B, becomes a constant edge bJ following a
conditioning operation.

Basically, OR is a recursive algorithm on working groups

NS' = [-1 1 -2 1 11,

E S T = [l l 1 1 0 1 1 1 1 ,

PS = [1 1 1 11.

A working group is said to be trivial if thc group contains
only one edge or only one path or only constant edges. OR
first checks whether or not the initial working group is triv-
ial. If the initial working group is not trivial, OR will attempt
to divide the working group into several working subgroups
so that a join operation may be performed on the resulting
subgroups. If such a division is not possible, then OR will
condition on one or more edges to make the division possi-
ble. The same procedure will be applied recursively to all thc
subgroups until they all become trivial.

The division to allow for a join operation is possible if 1)
all edges in the group are variable edges and there is at least
one common intermediate node among the paths in the group,
and 2) there is at least one common edge among the paths in
the group. For the latter case, each common edge becomes a
working subgroup and the original group minus all common
edges becomes the final working subgroup. For the former
case, the division is based on the following theorem.

Theorem 1: Suppose all edges in a group are variable
edges. Then the common nodes, which include the common
intermediate nodes as well as the source and destination nodes,
will be visited by all the paths of the group in the same order.
Besides, if any intermediate node u j that is not common is
visited by a path between a pair of common nodes, say U , and
u k , u j can only be visited by all the other paths of the group
in the same order as it was visited by the path.

Proof: Let u l and U ? be the source and the destination.
respectively, and U , and uJ be any two common intermediate
nodes. Suppose all paths visit these nodes in the order u I +

U ; + uj + u2 except for the path which visits these nodes in
the order u I + U , --f uI + U ? . Then the group must contain
the path u I 4 U , + U ? which does not visit U , , and the path
U I + U , 4 U ? which does not visit U,. since all edges in the
group are variable edges. It would be impossible to separate
the above two paths from other paths of the group without
conditioning on some edges in the group. This contradicts
the assumption that U , and u j are common nodes. The other

W
According to this theorem, if all edges in a group are vari-

able edges and there are K common intermediate nodes. the
group can be divided into K + 1 subgroups each contain-
ing all nodes and edges between every pair of adjacent com-
mon nodes. Each subgroup inherits all paths from the original
group, but some paths in a subgroup may contain the same
nodes and edges and, thus, are identical, since thesc paths
traverse the same path segment in this subgroup but different
segments in other subgroups. The identical or redundant paths
are deleted before applying OR recursively on these sub-
groups.

assertion of the theorem can be proved similarly.

SHIN AND LIN: ERROR PROPAGATION IN MULTIMODE COMPUTING SYSTEM 1059

If the current working group cannot be divided to allow for
a join operation, OR will divide the group to allow for a meet
operation even if conditioning on a few edges is required.
The division for a meet operation is possible if there exists at
least one dominant edge2 which does not intersect any other
variable edge in the working group.

Definition 6: For a working group, a variable edge i is said
to be dominated by another variable edge j if for all the paths
of the group the inclusion of edge i implies the inclusion of
edge j .

Definition 7: For a working group, a dominant edge is a
variable edge which is not dominated by any other variable
edges, and a dominant subgroup associated with a domi-
nant edge consists of the dominant edge and all edges being
dominated and all paths containing these edges.

Definition 8: For a working group, two variable edges in-
tersect if both are included in at least one path of the group
and neither of them dominates the other.

Theorem 2: If a dominant edge does not intersect other
variable edges, then any edge in the associated dominant sub-
group will not intersect edges outside the subgroup.

Proof: Suppose edge j is dominated by a nonintersecting
dominant edge i, but intersects edge k which is not dominated
by edge i. Then edge k should intersect edge i because if a path
edge containsj and k , then it has to contain edge i too. This
contradicts the assumption that edge i is nonintersecting.

The division for a meet operation is done as follows: each
nonintersecting dominant subgroup forms a working subgroup
and the original group minus all nonintersecting dominant sub-
groups forms the final working subgroup.

If no nonintersecting dominant edges can be found, then
some edges have to be conditioned on to create a noninter-
secting dominant edge. This is done by inspecting edge dom-
inance and intersection vectors.

column vector defined as
Definition 9: The edge dominance vector, DOM, is

n if edge i is a dominant edge which
dominates n - 1 other variable
edges i 0 if edge i is not a variable edge DOM; =

-n if edge i is a variable edge which is
dominated by n other edges

where n is a positive integer.

column vector defined as
Definition 10: The edge intersection vector, INT, is

n

0

if edge i is a dominant edge which
intersects n variable edges

if edge i is not a variable edge
ZNT;

where n is a positive integer.
For example, consider the initial working group for (u1 , u3)

of D1. The DOM and ZNT vectors are

D0MT = [2 -1 2 -3 0 5 -3 -11,

Z N T ~ = 13 2 3 o o 2 o 21.

To be defined below.

If DOMk > 0 and INTk = 0, then edge k is a nonintersect-
ing dominant edge.

The rules of choosing an edge to be conditioned on are the
following.

1) If the set

Cl = { i : 1 I i I M , DOM; > 0, INT; = max INT,}
1 sjs M

has only one element k , choose edge k .

of the set
2) If IJC1 1) > 1, choose edge k where k is the first element

C, = {i : ~ I ~ s M , ~ E C ~ , D O M ~ = max DOMj}.
J &I

After a new edge is conditioned on, DOM and ZNT should be
recalculated. In the above example, edge 1 will be conditioned
on first, and DOM and INT become

DOMT = [0 -1 2 - 2 0 5 -3 -11,

I N T ~ = [o 2 2 o o 1 o 11.

The second pick is then edge 3. This process is repeated until a
nonintersecting dominant edge emerges or the working group
becomes trivial.

This rule is based on the fact that the total number of in-
tersections among variable edges are maximally reduced by
conditioning on a dominant edge k E C1 to maximize the
chance for a nonintersecting dominant edge to emerge. When
11 C1 11 > 1, the edge dominating the most number of edges is
chosen because the probability that one of those dominated
edges becomes a nonintersecting dominant edge would be
higher.

The output of this algorithm will be stored in an operation
buffer Obuf which is empty initially. Adding something to
Obuf is denoted by * Obuf in OR.

Algorithm OR.

1 . If JIESJJ # 1, then go to step 2 else do the following.

if ESj = 1 then Bj * Obuf,
if ES, = - 1 then bj * Obuf.

2. If llPSll # 1, then go to step 3 else do the following.

F o r j E (1 ; . . , M } ,

Let n : = lJESll and +n * Obuf.
For i E { 1,. . . , NP } and j E { 1 , . . . , M } ,

if Ps i - ESj- ET/ = 1 then B; * Obuf,
if Psi* ESj. ET/ = -1 then b; * Obuf.

3. Calculate Var, the number of distinct variable edges in

4. If Vir # 0, then go to step 5 else do the following.

the working group.

Let n : = IIPS(I and if n > 1, &" * Obuf.
For each path (the ith path) in the working group,

let C; := { j : 1 I j I M , E T / - E S J =

+m * Obuf, and for all k E C, , bk =)

-11,m = IIGll,

Obuf.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 9. SEPTEMBER 1988

~

1060

5 .

6.

7.

8.

If Var # (IES((, then go to step 6 else
let C := { i : l 5 i I M , NS, = I , PS x

VT’ = IlPSll}.
If llCll = 0, then go to step 6 else

let n : = \IC((+ 1 and +n * Obuf .
Divide the group into n working subgroups according

Run OR on every resulting subgroup.

Let C : = {i:l I i I M , ES, # 0, PS x ET‘ =

If JICJJ = 0, then go to step 7 else do the following.
Let n : = (lCll + 1 and +n * Obuf.
For all i E C,

to Theorem I.

l lP~ll1~

if ES, = 1 then B, * Obuf,
if ES, = -1 then b, * Obuf,
let ES, : = 0.

Calculate DOM and INT.
Let C : = {i:1 i i I M , DOM, > 0, INTI = O}.
Let D := { j : l I j I NP, PSJ = I , E S l * E T j I

If)IC)) + \ID)\ = 0, go to step 8.
Let n : = ((CII + llDll + 1 and &,, * Obuf.
Divide the group into n working subgroups according

Run OR on every resulting subgroup.

Let C1 := {i : l I i i M , DOM, > 0 , ZNT, =

LetC2 : = { i : l ~ i ~ M , i E C l , D O M , = maxJEC,

If k is the first element of C2, /Bk * Obuf and let

Go to step 7.

O v i } .

to Theorem 2.

maxIsJ5M ZNT,}.

DOM,}.

ES, -1.

As an example, the result of applying OR on the pair (u I , u3)

of D1 is

X 1 3 = min { B I + B3,B2 + B6 + B8,BI + B4 + B6

+ Bg,B2 4 B3 + B6 + B7}

= /BI/B3&2 +2 bib2 +2 B6/B2&2 +3 bZb3B7

+2 B8&2 b2 + 2 biB4.

IV. MEASUREMENT OF PROPAGATION TIMES
ON FTMP

In this section, we will describe the measurement and anal-
ysis of our error propagation model for an experimental sys-
tem, the fault-tolerant multiprocessor (FTMP) at the NASA
Airlab [8], [lo]-[14]. The purpose of performing such an
experiment is twofold. First, we want to show the feasibil-
ity of experimentally determining the key parameters of the
model, i.e., the distributions of direct propagation times. Sec-
ond, it would be interesting and important to know the type
of distribution that the direct propagation time follows in a
real system. If the distribution is exponential or near expo-
nential, such as Weibull distribution, a Markov model would
be better suited to model the error propagation. Otherwise,
general distributions should be used in the propagation model.

The choice of FTMP is based on the availability as well as
its facilities of injecting faults and collecting the subsequent
data. Another advantage of FTMP is that an error detection
circuitry is easier to build since it is a tightly synchronized
triple modular system.

FTMP System Organization

FTMP consists of ten identical line replaceable units
(LRU’s) each of which contains a processor module with lo-
cal cache memory, a 16K system memory module, a 1553 I/O
port, two bus guardian units (BGU’s), a clock generator, and a
power subsystem module. Nine of the ten processor modules
are grouped into three triads with the remaining one being
a spare. The system memory modules are also grouped into
triads. The communications between processors and system
memory modules are accomplished via three sets of system
buses: a polling bus (P bus) for resolving bus contention, a
data transmit bus (T bus), and a data receive bus (R bus).
Each set of buses includes five bus lines for redundancy, but
only three of them are activated for the triad’s communication.

All three members of a triad are running in tight synchrony,
which is achieved by another set of system buses, the clock
bus (C bus). Four of the ten clocks are phase-locked together
through the clock bus, while the other six clocks simply lock
into one of these four clocks.

The access to system buses in each LRU is controlled by
BGU‘s which operate in dyad. Associated with each system
bus in an LRU is a voter. Whenever a module in the LRU
reads data from system buses (i.e., T bus, R bus, or P bus),
the voter will take a majority vote on the data received from
the three active bus lines. If a disagreement is found during
the voting, it will be recorded on error latches for later fault
identification. The complete hardware description of FTMP
can be found in [1 I].

From the software point of view, FTMP can be regarded
as a three-processor system with a shared memory of 48K.
Since FTMP is designed mainly for real-time control appli-
cations, every task (or process) runs periodically in one of
three rate groups: R I (3.125 Hz), R 3 (12.5 Hz), and R 4 (25
Hz). Critical tasks, such as task dispatching, are running in
the R4 group, while normal application tasks are running in
the R 3 group. The system configuration controller (SCC),
which is an executive program handling fault detection, iden-
tification, and system reconfiguration, is dispatched in the R 1
group to minimize the performance degradation. Currently,
FTMP includes only two application tasks: an autopilot pro-
gram and a display program. See [12] for more details on
FTMP software.

To validate FTMP’s fault-tolerance capability, a hardware
fault injection system has been built which is controlled by
a host computer VAX-11/750. This system uses injection im-
plants inserted between any chips on LRU3 and their sockets
to control the electrical connections between the pins and the
circuit board. A special circuit board extender is also needed
to make space for the injection implants. Three types of per-
manent faults at the pin level can be injected, i.e., inverted
signal, stuck-at-I, and stuck-at-0. To operate this injection
system, a customized version of the SCC program, called

SHIN AND LIN: ERROR PROPAGATION IN MULTIMODE COMPUTING SYSTEM 1061

~ ~

BCO SB

- Timer -
C
A R
P s I Mapper 1- + PROM

- CCR RAM
~ ~

_ _ ~ __

CAPS-6
Processor T i e r

M (CC)

c
System Bus (BIR.BIT.BIPC) I

I
t

Slave
System Bus

Coupler
(SBC)

Sub System Bus

Control &
Communication

Registers
(SCW

Fig. 4. Functional block diagram of an LRU.

Processor Region Transfer Bus

FSCC, must be loaded which will receive queries from the
host before every injection, issue proper reconfiguration com-
mands to ensure that LRU3 is in an active triad, and then send
a ready signal back to the host. With this protocol between the
host and FTMP, one can inject faults repetitively under pro-
gram control. The complete description of the fault injection
system is in [131.

Experimental Model
The organization of hardware components in an LRU is

shown in Fig. 4. The abbreviation(s) shown in the parenthe-
sis of each block indicates the circuit board(s) implementing
that functional block. (For a more detailed description of each
functional block, see [l 11.) By treating each functional block
and each bus in Fig. 4 as a module, the error propagation
model in Section I1 can be constructed to study error propa-
gation within an LRU. Since FTMP performs a TMR voting
on data going out of the system bus module, it is assumed
that no errors can propagate through the system bus. Thus,
we can isolate the processor region of an LRU which in-
cludes the following modules: 8K RAM, 8K PROM, timer,
mapper, CAPS-6 processor, control and communication reg-
isters (CCR), processor region transfer bus (PRTB), system
bus coupler (BCO), and system bus (SB). It is also assumed
that no errors will come from the system bus or the subsystem
bus. The resulting model is shown in Fig. 4.

In Fig. 5, there are nine modules, 17 directed edges, and
hence 72 error propagation functions. To determine these
functions, all 17 direct propagation times have to be mea-
sured and fed into the computation described in Section 11.

Fig. 5 . FTMP's experimental error propagation model.

In this experiment, only one direct propagation time will be
measured to show the feasibility of performing such an ex-
periment. The one we chose is for the edge from module
BCO to module SB. The other direct propagation times can
be measured similarly. We assume that a module in Fig. 5 gets
contaminated whenever it receives an erroneous input signal.
Thus, the direct error propagation time from BCO to SB is
equivalent to the time for errors to propagate from any input
of BCO to its output to SB.

The experiment is set up as follows. A circuit to detect
errors on the input and output of BCO is custom built. The
design of this detection circuit is simplified by the triad orga-
nization of FTMP and the fact that each triad is tightly syn-
chronized. First, the signal lines which constitute the input
and output of BCO are identified. Then, the input and output
lines in LRUO and LRU3 are tapped out to the detection cir-
cuit for comparison. If LRUO and LRU3 are in the same triad,
an error is detected whenever their line values disagree. Using
LRUO as a reference, faults are injected into LRU3 and error
propagation times from the input to the output of BCO are
measured. In order to make a valid comparison, LRUO and
LRU3 must be in the same triad during fault injection. So, the
FSCC program is modified to group LRUO and LRU3 into the
same triad before each injection. Experiments are performed
under the normal FTMP workload.

Data Analysis

Faults are injected into the circuit board CPUD which is a
part of the data section of the CAPS-6 processor and is in-
side the module CAPS in Fig. 5 . Selection of IC chips and
pins for fault injection is arbitrarily made. The chips selected
are U2, U7, and U32. U2 (54LS253) is a dual 4-to-1 multi-
plexer and U7 (54LS51) is a dual AND-OR-INVERT gate; both
are among the chips for selection of carry-in signals for ALU.
U32 (54LS257) is a quad 2-to-1 multiplexer which can select
a right-shifted output from ALU. Faults were injected at pin
2, 6, and 7 of U2; pin 3, 4 , and 6 of U7; and pin 4 of
U32. For each selected pin, three types of faults are injected:
stuck-at-1, stuck-at-0, and inverted signal. Each type of fault
is injected 500 times, so there would be 1500 faults injected
for each selected pin. The sample density functions for each
pin and each type of fault are plotted for the range of 0-1 ms
in an interval of 40 ps. However, only the plots for inverted
faults are shown in Figs. 6-12, since the plots for the other
two types of faults are very similar.

Now we want to see if our data can fit the Weibull distribu-
tion which has been widely used for reliability modeling and
life testing. The Weibull distribution has two parameters: 01

(the shape parameter) and X (the scale parameter). The prob-

~

1062

0

0

U

2 s

9::

U m
+-
U

a

0

0

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 9. SEPTEMBER 1988

200 400 600 800 W O
Time (usec)

Fig. 6 . Error propagation time distribution for CPUD U2 P2.

0 lli_

C U

C

U

2 s

9 %

U m
c

U

a

0

0

Fig. I

L

71, L , u u - , -
200 400 600 800 1000

Error propagation time distribution for CPUD U2 P6.
Time (usec)

n

SHIN AND LIN. ERROR PROPAGATION IN MULI‘1MOI)E COMPUTING SYSTEM

0

1063

.-

U

“I

0 i

1

Fig

I

200 400 600 aoo 1000
Time (usec)

9 Error propagation time distribution for CPUD U32 P4.

Time (usec)

Fig. I O . Error propagation time distribution for CPUD U7 P3.

Time (usec)

Fig. 11. Error propagation time distribution for CPUD U7 P4.

1064 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 9, SEPTEMBER 1988

n

200 400 600 800 1000
Time (usec)

Fig. 12. Error propagation time distribution for CPUD U7 P6.

ability density function of the Weibull distribution is

The exponential distribution is a special case of the Weibull
distribution with CY = 1.

Various methods have been proposed to estimate the shape
and scale parameters of the Weibull distribution [151-[181.
We adopt the maximum likelihood estimator (MLE) method
developed in [151. The MLE shape estimator a! must satisfy
the equation

LI “i

where x i , i = 1, . . . , n , represent the sample data. This equa-
tion can be solved by the Newton-Raphson method as shown
in [15]. Once a! is known, the MLE scale estimator can be
calculated as

The chi-square goodness-of-fit test is used after the param-
eter estimation to determine how well our data fit the Weibull
distribution [19], [20]. In this test, the positive real line is
divided into rn intervals, ZI , . . . , Z, . Let 0, be the number of
data points appearing in Z,, and let E, be the expected number
of data points in I i computed according to the hypothesized
Weibull distribution. The statistic C = ?= (0, - E,)’/E,
has a chi-square distribution with the degree of freedom rn -3,
since two parameters have been estimated from the same set
of data. For the accuracy of the test, the intervals have to be
such that E, 2 5 for all i. Given a significance level 0, the
threshold value xi can be determined from a chi-square distri-
bution table. If C 2 xi, we conclude with a significant level
p that the data do not fit the Weibull distribution.

The results from the parameter estimation and goodness-
of-fit test are tabulated in Table I1 with a significance level
0.05. The observation intervals are basically the same as the

TEST
TABLE I1

RESULT OF FITTING THE WEIBULL DISTRIBUTION

intervals used to plot density functions, i.e., 40 ps per interval.
However, to meet the requirement that E; I 5 for all i, several
intervals may be merged into a single interval; this is the
reason why the degree of freedom (dof) may differ as shown
in Table 11.

Clearly, none of the data sets fit the Weibull distribution.
For some data sets, their density functions show more than one
major peak, suggesting that the error propagation time will
most likely be one of several discrete values. This also indi-
cates that the shape of the distributions for error propagation

SHIN AND LIN: ERROR PROPAGATION IN MULTIMODE COMPUTING SYSTEM

times are strongly related to a module’s functionality. Hence,
our conclusion from this experiment and analysis is that 1) it
would be unrealistic to assume error propagation times fol-
low any well-known distribution and 2) our error propagation
model which assumes a general distribution is justified. (Use
of Markov models for error propagation is unrealistic!)

Remarks:
Although it is easier experimentally to measure the direct

error propagation times on FTMP, the same principle can be
applied to other systems. In our experiment, a good unit and
the fault-injected unit are running synchronously so that er-
ror detection can be accomplished by directly comparing both
units’ signals in real time. In some other systems, there may
not be hardware or software redundancy. In that case, experi-
ments can be performed using time redundancy, i.e., running
the same unit twice under the same workload and then com-
paring the results from both runs to detect errors. A drawback
of this approach is that a large number of intermediate results
along with timing information have to be stored for compar-
ison. If a prototype system is not available, this experiment
can still be done by simulation as in [7].

Intuitively, errors propagate due to the communications
between modules. So, errors would propagate faster if there
are frequent communications between modules. If the work-
load contains more I/O bound tasks, the error propagation
time would be generally shorter.

V. CONCLUSION

Although the problem of error propagation in distributed
fault-tolerant systems has been mentioned frequently by many
researchers, very little on this has been reported in the liter-
ature. In this paper, we have developed an error propagation
model for multimodule computing systems where the main
parameters are the distribution functions of error propagation
times. We have also derived two algorithms to systematically
and efficiently calculate these functions. Finally, to show that
the parameters of our model are obtainable from real systems,
we have conducted experiments on FTMP. Statistical analy-
ses of experimental data show that none of the measured er-
ror propagation times follow the Weibull distribution. In fact,
different faults at different locations exhibit different distri-
butions, justifying the necessity and reality of using general
distributions in our model.

The reason that errors can propagate from module to mod-
ule is the imperfect detection mechanisms implemented on
each module. Thus, an error propagation model should be
coupled with an error detection model. In this paper, how-
ever, we have focused specifically on the modeling of the
error propagation in order to characterize the behavior of er-
ror propagation. Application of the error propagation model
along with an error detection model for fault location, dam-
age assessment, and error recovery is a matter of our future
inquiry.

REFERENCES

[l]

[2]

T. Anderson and P. A. Lee, Fault Tolerance: Principles and Prac-
tice.
J. P. Roth, W. G . Bouricius, and P. R. Schneider, “Programmed

Englewood Cliffs, NJ: Prentice-Hall, 1981.

1065

algorithms to compute tests to detect between failures in logic cir-
cuits,” IEEE Trans. Electron. Comput., vol. EC-16, pp. 567-580,
Oct. 1967.
J. E. Smith and G. Metze, “The design of totally self-checking com-
binatorial circuits,” in Dig. FTCS-7, June 1977.
M. Nicolaidis and B. Courtois, “Design of self-checking systems
based on analytical fault hypotheses,” Res. Rep. RR-353, IMAG,
Mar. 1983.
T. Nanya and T. Kawamura, “Error secureipropagation concept and
its application to the design of strongly fault secure processors,” in
Dig. FTCS-15, June 1985, pp. 19-21.
K. Zielinski, “Model of error propagation in systems of communicat-
ing processes,” Sci. Comput. Program., vol. 6, pp. 191-205, Mar.
1986.
D. Lomelino and R. K. Iyer, “Error propagation in a digital avionic
processor: A simulated-based study,” Contractor Rep. 176501,
NASA, 1986.
A. L. Hopkins, T. B. Smith, and J . H. Lala, “FTMP-A highly
reliable fault-tolerant multiprocessor for aircraft,” Proc. IEEE, vol.
66, pp. 1221-1240, Oct. 1978.
K. G . Shin and Y.-H. Lee, “Evaluation of error recovery blocks used
for cooperating processes,” IEEE Trans. Software Eng., vol. SE-10,

J. H. Lala, “Fault detection, isolation and reconfiguration in ftmp:
Methods and experimental results,” in Proc. 5th IEEE/AIAA Digi-
tal Avion. Syst. Conf., Nov. 1983.
T. B. Smith and J . H. Lala. “Development and evaluation of a fault-
tolerant multiprocessor (FTMP) computer Volume I: Principles of
operation,” Contractor Rep. 166071, NASA, May 1983.
- , “Development and evaluation of a fault-tolerant multiproces-
sor (FTMP) computer Volume 11: FTMP software,” Contractor Rep.
166072, NASA, May 1983.
- , “Development and evaluation of a fault-tolerant multiprocessor
(FTMP) computer Volume 111: FTMP test and evaluation,” Contractor
Rep. 166073, NASA, May 1983.
- , “Development and evaluation of a fault-tolerant multiprocessor
(FTMP) computer Volume IV: FTMP executive summary,” Contrac-
tor Rep. 172286, NASA, February 1984.
D. R. Thomas, L. J . Bain, and C. E. Antle, “Inferences on the
parameters of the Weibull distribution,” Technometrics, vol. 11, pp.
4 4 4 6 0 , Aug. 1969.
L. J. Bain and C. E. Antle, “Estimation of parameters in the Weibull
distribution,” Technornetrics, vol. 9 , pp. 621-627, Nov. 1967.
A. C. Cohen, “Maximum likelihood estimation in the Weibull distri-
bution based on complete and on censored samples, ” Technometrics,

M. V. Menon, “Estimation of the shape and scale parameters of
the Weibull distribution,” Technometrics, vol. 5, pp. 175-182, May
1963.
S. Dowdy and S. Wearden, Statistics for Research. New York:
Wiley, 1983.
R. J. Larsen and M. L. Marx, An Introduction to Mathematical
Statistics and its Applications. Englewood Cliffs, NJ: Prentice-
Hall, 1981

pp. 692-700, NOV. 1984.

vol. 7, pp. 579-588, NOV. 1965.

Kang G . Shin (S’75-M’78-SM’83) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea in 1970, and the
M.S. and Ph.D. degrees in electrical engineering
from Cornell University, Ithaca, NY, in 1976 and
1978, respectively.

He is a Professor in the Department of Electrical
Engineering and Computer Science, The University
of Michigan, Ann Arbor, which he joined in 1982.
He has been very active and authoredicoauthored
over 120 technical DaDers in the areas of fault- I L

tolerant real-time computing, computer architecture, and robotics and
automation. In 1985, he founded the Real-Time Computing Laboratory,
where he and his students are currently building a 19-node hexagonal mesh
multiprocessor, called HARTS, to validate various architectures and analytic
results in the area of distributed real-time computing. From 1970 to 1972, he
served in the Korean Army as an ROTC officer and from 1972 to 1974, he
was on the research staff of the Korea Institute of Science and Technology,

1066 IEEE TRANSACTIONS ON COMPUTERS. VOL. 3 7 . NO. 9, SEPTEMBER 1988

Seoul, Korea, working on the design of VHF/UHF communication systems
From 1978 to 1982, he was an Assistant Professor at Rensselaer Polytechnic
Institute, Troy, NY. He was also a Visiting Scientist at the U.S Airforce
Flight Dynamics Laboratory in Summer 1979 and at Bell Laboratories,
Holmdel, NJ, in Summer 1980

Dr Shin was the Program Chairman of the 1986 IEEE Real-Time Systems
Symposium (RTSS), the General Chdirman of the 1987 RTSS, and the Gue\t
Editor of the 1987 August special issue of IEEE TRANSACTIONS ON
COMPUTERS on Real-Time Systems He IS a member of the Association for
Computing Machinery, Sigma XI, and Phi Kappa Phi In 1987, he received
the Outstanding Paper Award from the IEEE TRANSACTIONS ON AUTO-
MATIC CONTROL for a paper on robust trajectory planning tolerant computing.

Tein-Hsiang Lin (S’83) received the B.S. degree
from the National Taiwan University, Taipei. Tai-
wan, in 1980, the M.S. degree from Iowa State
University. Ames, in 1984 and the Ph.D. degree
from the University of Michigan, Ann Arbor, 1988,
all in electrical engineering.

He is currently an Assistant Professor in the
Department of Electrical and Computer Engineer-
ing, State University of New York at Buffalo. His
research interests include multiprocessor and dia-
tributed systems, performance evaluation, and fault-

