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Modeling and Measurement of Error Propagation 
in a Multimodule Computing System 
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Abstract-Because of excessive resource requirements, error 
detection mechanisms in real computing systems cannot usually 
be made complete, i.e., their coverage is less than 100 percent. 
This fact in turn implies that an error may propagate through 
system components before it is detected. The main purpose of 
this paper is to develop an error propagation model and methods 
to compute and measure the model parameters, i.e., distributions 
of error propagation times, rather than applying the model to 
various design and analysis problems. 

A digraph model is used to represent a multimodule comput- 
ing system and error propagation in the system is modeled by 
general distributions of error propagation times between all pairs 
of modules. Two algorithms are developed to systematically and 
efficiently compute the distributions of error propagation times. 
Experiments are also conducted to measure the distributions of 
error propagation times within the fault-tolerant multiprocessor 
(FTMP). Statistical analysis of experimental data shows that the 
error propagation times in FTMP do not follow a well-known 
distribution, the Weibull distribution, thus justifying the use of 
general distributions in our model. 

Index Terms-Digraph, distribution and density functions 
of error propagation times, error propagation, experiment on 
FTMP, statistical analysis. 

I. INTRODUCTION 

N ANY computing system, it is practically impossible to I install a perfect detection mechanism with which all types 
of errors can always be detected before they propagate to 
other parts of the system. Thus, upon detection of an error, 
it is difficult to tell whether the error is induced by a fault 
that occurred in the same part of the system where the error 
is detected or it is the propagation of an error induced by a 
fault in some other part of the system. In other words, an 
error may propagate through the system components before it 
is detected. 

To clarify the terminology used in this paper, an error is 
defined as an incorrect state of the system which could be 
an incorrect data, an incorrect control signal, or an abnormal 
system behavior, and a fault is the source of an error, e.g. ,  a 
broken wire, an electrical short, or a bug in a program. The 
effects of error propagation on fault location, reconfiguration, 
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and error recovery are significant, because of the uncertainty 
as to which components are really faulty and/or erroneous 
[ 11. Most approaches reported in the literature circumvent the 
problem of error propagation by assuming a perfect coverage 
in detecting errors. However, such an assumption is unreal- 
istic and, often, unacceptable for real systems, since even a 
near-perfect detection mechanism is very difficult to obtain 
without entailing an excessive amount of resources or per- 
formance degradation. It is therefore necessary to consider 
the error propagation problem in the design and analysis of 
fault-tolerant systems. As a first step to meet such a need, we 
propose, in this paper, a general error propagation model and 
examine its power and limitations. 

Error propagation was first recognized and utilized in test- 
ing combinational circuits. The famous D-algorithm is an ex- 
ample of using the error propagation property of logic gates 
to generate test patterns for combinational circuits [ 2 ] .  Re- 
cently, error propagation properties at the logic gate level [3] 
and the transistor level [4] have been derived for the design of 
totally self-checking integrated circuits. In [5], error propaga- 
tion at the register level has been considered for the design of 
a strongly fault secure processor. Zielinski [6] has proposed a 
model of error propagation among communicating processes 
in a distributed computer system and used it to express an 
error recovery method with the recovery block scheme. 

All the previous error propagation models are deterrninis- 
tic in nature, because they are based on a specific fault/error 
model or the system is assumed to have some restricted, pre- 
dictable behavior. However, there is in practice very little a 
priori information on the behavior of faults and errors, and in- 
tercomponent communications may take place in an arbitrary 
fashion. So, error propagation cannot in general be modeled 
deterministically. In this paper, we propose a stochastic model 
where the primary parameters- error propagation times be- 
tween all pairs of system components- are random variables. 
We shall also show how the distributions of error propagation 
times can be determined systematically and efficiently. 

In addition to the development of an error propagation 
model, we shall show by example a method to get the error 
propagation times for real systems, i.e., direct measurement 
on a target system. This method is in sharp contrast with that 
in [7 ] ,  where the authors measured the distribution of error 
propagation times via a gate level simulation for the CPU in 
an avionic miniprocessor. We focus here only on the modeling 
and measurement of error propagation. Application of the er- 
ror propagation model for fault location, damage assessment, 
and error recovery will be addressed in forthcoming papers. 
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In Section 11, our error propagation model is described 
along with its justification. The system consists of multiple 
components and is represented by a digraph. The error prop- 
agation time between a pair of components in the system is the 
minimum of propagation times over all paths between the two 
components. Thus, it is necessary to systematically enumerate 
all paths between any pair of components. Because some of 
these paths have nodes and edges in common, the distribution 
functions of their propagation times are dependent on one an- 
other and, thus, very complex to derive. Two algorithms are 
presented in Section I11 to systematically enumerate propaga- 
tion paths and efficiently compute the distribution functions. 
Section IV describes an experiment to measure the error prop- 
agation times on the fault-tolerant multiprocessor (FTMP) [SI. 
The experimental results are analyzed to obtain the distribu- 
tion functions of error propagation times. The paper concludes 
with some remarks in Section V. 

11. ERROR PROPAGATION MODEL 

Consider a computing system composed of multiple com- 
ponents, each of which is called a module. A module repre- 
sents any well-defined component of the system; it could be 
a hardware or software unit or even a combination of hard- 
ware or software. Each module is a self-contained entity with 
input/output from/to others. 

Definition I :  A module is said to be faulty if a fault has 
occurred in the module and is said to have been contaminated 
if it contains one or more errors. 

Definition 2: For each module in the system, the faulty 
moment is the time instant a fault occurs within the mod- 
ule, and the contaminating moment is the time instant the 
first error occurs due to either the manifestation of a fault 
within the module or the propagation of error(s) from other 
module(s). 

Definition 3: For a module, the interval between the faulty 
moment and the contaminating moment is called the fault 
latency of the module. 

The Error Propagation Time 
Error propagation among the modules can best be described 

by a digraph, denoted by D = ( V ,  E ) ,  where N is the num- 
ber of modules in the system, V = { U , ,  . . . , u N }  is the set 
of nodes, and E = {eij: 1 I i ,  j 5 N } is the set of directed 
edges. Each node in D represents a module in the system, and 
the directed edge ejj represents the communication link from 
ui to U,. Typical methods of communication between software 
modules are message passing and shared memory. Hardware 
modules can communicate via control and data signals. If 
there is no communication link from ui to u j ,  then E will 
not contain e,,, or eij is a null edge. A propagation path 
from U; to U k ,  written as (vi, . . . , u k ) ,  is a directed path in D 
where all nodes in the path are distinct so that an error may 
propagate from ui to uk through the path. It is meaningless to 
consider the case of error propagation into a module which 
has already been contaminated; this is the very reason why 
the nodes in a propagation path are distinct. Errors may prop- 
agate from ui to uk if there exists at least one propagation path 
from ui to Uk. 

Process v, n 
I 

T i- detection 
I 1 

I I 
I T I 
1 1 
I I , , 

Process uJ I n 

Global tune 
T, TJ T 

Fig. 1. Timing diagram of processes U, and U,. 

Definition 4: The error propagation time from ui to u j ,  
denoted by Xi,, is defined as the time interval between the 
contaminating moment of U; and that of u j .  The density func- 
tion and cumulative distribution function of Xi j  are denoted 
by gi,(.) and G , , ( * ) ,  respectively. 

Clearly, X,j holds a physical meaning only when Xi j  2 0. 
Thus, the definition of Xij is usually made under the assump- 
tion that U; is the only faulty module or the first module to be 
contaminated in the system. If the system is assumed to have 
at most one fault at a given time, the faulty module will be 
the first module to be contaminated. 

Many useful pieces of information can be derived from 
gij’s and Go’s. For example, gij’s and G,’s can be used for 
evaluating the rollback recovery block scheme for concur- 
rent cooperating processes [9]. Let each node (edge) in our 
graph model represent a process (interprocess communica- 
tion). Each process is assumed to establish its own recovery 
point asynchronously with respect to the other processes. Be- 
fore establishing a recovery point, an acceptance test is per- 
formed which is assumed to detect all types of errors, i.e., 
perfect coverage. Assume that an error is detected at time 
T by process Uk during the acceptance test and that process 
U; is diagnosed to be the source of the error. Then, for the 
subsequent recovery, it is useful to calculate the probability 
of some other process U, being contaminated, i.e., damage 
assessment. Let the most recent recovery points of vi and 
u j  be established at time Ti and T,, respectively, as shown 
in Fig. 1 .  Since all the acceptance tests are assumed to have 
perfect coverage, the U, ’s contaminating moment, denoted by 
CZ, must lie within the interval [T,, TI and the uj’s contam- 
inating moment, denoted by CJ,  must be within the interval 
[Tj, T I .  The probability of u j  being contaminated can then be 
computed as 

l T  
+ i ,  - dx. 

The knowledge of this probability can help us decide whether 
or not to roll U, back in case of u, ’s  detection of an error. 
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The contaminated region within the system can be estimated 
from the collection of all modules' contaminating probabili- 
ties, which are determined by gij and Go as shown above. 

Direct Error Propagation Time 
Although error propagation times contain complete infor- 

mation on the behavior of error propagation and can be di- 
rectly measured experimentally, there are several drawbacks 
as follows. 

It is very costly to measure error propagation times for 
all pairs of modules. For a system with N modules, N(N - 1)  
error propagation times must be measured experimentally re- 
gardless of the number of communication links in the system. 

The distribution of any error propagation time is fixed 
under a specific fault model. However, should a new fault 
model be needed, all error propagation times must be mea- 
sured again under the new fault model, since the distributions 
change with the fault model. 

The error propagation times over different paths are de- 
pendent on one another whenever they have some path seg- 
ments in common. Also, the dependencies among the error 
propagation times are very difficult to experimentally mea- 
sure but necessary to compute their joint distribution. A useful 
joint distribution, for example, is 

Prob [X; ,  I X I ,  . . . , X ; N  5 X N ]  

which characterizes the spread of error(s) in the system from 
a faulty module U,. 

To overcome the above drawbacks, a direct propagation 
time is defined as follows. 

Definition 5: If ei, is a nonnull edge in E ,  then the direct 
propagation time, denoted by B,,, is the time for an error 
to propagate from U; to U, via e;;. The density function and 
the cumulative distribution function of B;;, denoted by p;; and 
Pij, respectively, are called the direct propagation functions 
of eIj .  

The differences between an error propagation time and a 
direct propagation time lie in that 1) the latter is associated 
with a directed edge while the former is defined for every 
ordered pair of modules, and 2) the latter accounts for er- 
ror propagation through a particular edge while the former 
is the minimum propagation time over all propagation paths 
between the given pair of modules. We shall show later how 
to systematically and efficiently compute error propagation 
times from direct propagation times. Since direct propagation 
times are defined for the communication links in the system, 
without loss of generality, one can assume that they are inde- 
pendent of one another and their distributions will not change 
with the underlying fault models. Moreover, this assumption 
greatly reduces the experimental cost to measure propagation 
times. For example, a five-node-eight-edge system would re- 
quire 20 measurements of error propagation times for each 
fault model, but would require only eight measurements of 
direct propagation times for a// fault models. 

From the direct propagation functions, another useful func- 
tion called the error containment function, ECi(t), is defined 
for a module U ;  as the probability that errors have not propa- 
gated from U; to other modules up to time t (measuring from 

Fig. 2.  An example graph. 

the u ; ' s  contaminating moment). For example, if U, has out- 
going communications with u j ,  u k ,  and U,, then EC;(t) can be 
calculated as 

EC;(t) = Prob [Bij > t ,  Bik > t ,  Bim > t ]  

= (1  - Pij(t))(l - Pik(t))(l - Pi,(t)) 

because B;, , Bik  , and B,, are independent of one another. 

Join, Meet, and Conditioning Operations 
We have discussed the advantages of measuring direct prop- 

agation times instead of error propagation times. The immedi- 
ate problem is then to compute error propagation times from 
direct propagation times. Consider an example system shown 
in Fig. 2 .  To get X,j, one must first find all propagation paths 
from U, to U,. The propagation time along a propagation path 
is the sum of all the direct propagation times of the edges in 
the path. Then, Xi; is the minimum propagation time over all 
propagation paths, i.e., 

X;; = min (B,k + Bk;, B;,  + Brnj). 

The distribution of Xi, can be calculated by the following 
lemmas, since direct propagation times are independent of 
each other. 

Lemma 1: If Z = Y, + . . .  + Y, and Y; , i  = l , . . . , n ,  
are independent, the density function of Z can be calculated 
by 

f z ( t ) = f v , ( t )  * . * *  *fY,( t )  
where * denotes the convolution andfyj(t) is the density func- 
tion of Y;. 

Lemma2:IfZ = min ( Y , , . . . ,  Yn)and Y; , i  = l , . . . , n ,  
are independent, the cumulative distribution function of Z can 
be calculated by 

F Z ( 0  = 1 - ( 1  - F Y , ( t ) ) '  "(1 - FY,,(t))  

where Fy<(t )  is the cumulative distribution function of Y;.  
We shall call the computation in Lemma 1 a join op- 

eration and that in Lemma 2 a meet operation. Usually, 
the join operation is performed over the direct propagation 
times of all the edges in a propagation path and the meet 
operation is performed over a propagation path between a 
given pair of modules. However, because of the indepen- 
dence requirement in the meet operation, only disjoint propa- 
gation paths can become the operands of a meet operation. 
(Propagation paths with no common edges are said to be 
disjoint.) If propagation paths are not disjoint, i.e., some 
paths have common edges, the meet operation is not appli- 
cable since some operands are dependent. The dependence 
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problem could sometimes be eliminated by rearranging the 
order of join and meet operations so that the operands in 
the meet operation can be made independent. For example, 
min (X  + Y , X  + 2 )  = X + min ( Y ,  Z ) ,  where X, Y ,  
and 2 are independent variables. The meet operation can be 
applied on Y and 2, but not on X + Y and X + 2. 

Unfortunately, rearranging the order of operations cannot 
always solve the dependence problem. Consider, for example, 
the distribution of a random variable V = min ( X  + Y ,  X + 
2, Y + W ) ,  where W , X ,  Y ,  and 2, are independent. It is 
impossible to obtainfv(t), the density function of I/, by using 
the join and meet operations only. Nevertheless, f v ( t )  can be 
calculated by conditioning V on X ,  i.e., 

m 

f v ( 0  = 5 
= 

fv lx=x( t )  * f x ( x ) d x  
-m 

f m i n ( x +  Y , x + z . Y +  w )(t) * f x ( x )  dx 
- m  

m 

= J f m i n ( x + Z . Y + m l n ( x , W ) ) ( f )  * f x ( x ) d x  
-m 

and the distribution of the conditional random variable VIX is 
obtainable by the join and meet operations since W ,  Y, 2 are 
independent and x is a constant. The above calculation will 
henceforth be called a conditioning operation on the variable 
X .  

The distribution of any X;j can be calculated by applying 
the conditioning operations on all the B;j’s involved in the 
calculation. But this is equivalent to an exhaustive approach 
which is time consuming and should be avoided. In the next 
section, we shall derive two algorithms for 1)  generating all 
propagation paths systematically and 2 )  rearranging the order 
of operations so as to minimize the number of conditioning 
operations. 

111. ALGORITHMS FOR COMPUTING gij AND G ,  
Let M be the number of directed edges and N be the num- 

ber of nodes in a digraph D representing a multimodule com- 
puting system. Then, D can be represented by an adjacency 
matrix A ,  where A: is the entry of the ith row and the j th  
column of A ,  A{ # 0 means the existence of a nonnull edge 
from U; to U, and A: = 0 means the absence of an edge in 
D. Also, let A,  and A’ denote the ith row vector and the 
j th  column vector of A ,  respectively. The number of nonzero 
entries‘in Ai (A’) is represented by ~ ~ A ; J ( \ ~ A j ~ ~ ) ,  and if S is 
a set, llSll denotes the cardinality of the set. To simplify the 
notation for the edges in A ,  they are numbered from 1 to M 
first by their row positions then by their column positions so 
that e;, is also called the A:th edge or, more conveniently, e, 
if m =A: # 0. For the example graph DI shown in Fig. 3, 
N = 5 , M  = 8,  and the adjacency matrix is 

Fig. 3.  The graph D,. 

where e23 is called the third edge or e3. D1 will be used 
repeatedly as an example in the discussions that follow. 

In order to calculate gij and G,,, two algorithms are de- 
veloped: one, called PG, for systematically enumerating all 
propagation paths from vi to U, tl i, j and the other, called OR, 
for computing distribution and density functions using the 
results from PG. 

Path Generation 

The basic idea of PG is to simulate internode communica- 
tions by passing pa th  tokens around. A path token is repre- 
sented by [SI, s2, . . . , s,], where SI, . . . , s, are the ordered 
sequence of nodes traversed thus far. This path token was 
originally sent by node s1 as [si, s2] to node s2, and finally 
received by node Sm. Recall that, by definition of a propaga- 
tion path, SI, . . . , s, should all be distinct. After receiving the 
path token, node Sm records this path as a new propagation 
path from U,, to U,, and will attempt to append a new next 
node, if any, to the path token by checking both the adjacency 
matrix and the path token itself, and then pass the new path 
token to the next node. A path token stops generating new to- 
kens when it cannot progress any further without visiting any 
node twice. Therefore, the algorithm will end when there are 
no path tokens being passed around. A node, denoted by node 
0, is designated to keep track of the number of path tokens be- 
ing passed around. The token count in node 0 is updated by all 
the other nodes by sending a count update message to node 0. 
Upon detection of no path tokens being passed around, node 
0 issues a stop message to all the other nodes to terminate the 
algorithm. 

A parallel implementation of PG can be accomplished by 
assigning a processing unit to each node provided that there 
are some communication mechanisms among the processing 
units for passing tokens around. The number of propagation 
paths between a pair of source and destination nodes, (U;, U,), 
is stored in NPG. Initially, it is assumed that the adjacency 
matrix A is available to every node and all NP,,’s are set to 
zero. 

Algorithm PG: 
For node 0 

1. count : = 0. 
2 .  Wait and receive any count update cp from other 

3. count : = count + cp. 
4. If count # 0, go to step 2 .  
5 .  Send a stop message to all the other nodes. 
6. Stop. 

nodes. 
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TABLE I 
A RECORD OF RUNNING ALGORITHM PG 

I Node 1 

send 

Node 2 

receive send 

Node 3 

For node k ,  1 I k I N ,  
1. Send cp = llAk 11 as a count update to node 0. 
2. For j E { l , . . . , N }  and Ajk # 0, send path 

token [k,  j ]  to node j .  
3. Wait and receive messages or path tokens from 

other nodes. 
4. If a stop message is received from node 0, then 

stop. 
5 .  If a path token [SI, s2, . . . , s, = k] is received, 

record the path, increment NP,,k by 1,  
and let cp : = - 1 .  

6. For j E { I  I i I N:A;( # 0, i  @ 

{sI,...,s,,}}, send [s,,...,~, = k , j l  to 
node j ,  and let cp : = cp + 1. 

7. Send cp to node 0 if cp # 0. 
8. Go to step 3 .  

It is easy to show that PG actually generates all possible 
paths in D as follows. Let P be any path in D which starts 
at sI , goes through s2, s3, . . . , s,- I ,  and ends at s,. In PG, 
sI initializes the path token [sl,s2] and sends it to s2. Node 
s2 will then send the path token [sI, s2, s3] to s3, and so on. 
Eventually, there will be a path token [SI, . . . , s,] received 
by s, that represents exactly the path P.  

As an example, a complete record of running PG for the 
example graph D I  is given in Table I where the path tokens 
received and sent by each node are shown. 

Operation Rearrangement 
Conditioning is necessary whenever there are common 

edges among the paths for a given pair of modules (U;, u j ) .  

So, the primary step in OR is to choose a minimum number 
of common edges to be conditioned upon so that the rest can 
be rearranged as operands of join and meet operations. Since 
the same algorithm applies to every source-destination pair 
and algorithms for different pairs do not need to communi- 
cate, they can be executed in parallel. 

send 

Node 4 

receive send 

Node 5 

receive send 

The output from OR is the order of operations to be per- 
formed. A prefix polish notation is used to represent the order 
of operations. The three operations defined earlier are denoted 
as 

/ Z :  conditioning on Z 
+,: join with n operands 

&,: meet with n operands. 

For convenience, let B ,  be the direct error propagation time 
for the mth edge.' If B ,  is the operand of a conditioning 
operation, then the sample value of B ,  after the conditioning 
is denoted by b, . For example, the following two expressions 
have the same meaning: 

A constant operand (e.g., b l )  of the join or meet operation 
will be treated as a discrete random variable with only one 
point mass. 

During the execution of PG, the propagation paths for each 
pair of modules are recorded in two matrices: 1) the node 
traverse matrix VT and 2 )  the edge traverse matrix ET.  The 
columns of VT correspond to nodes, whereas the columns of 
ET correspond to edges numbered as in A .  The rows of both 
matrices correspond to propagation paths so that there will be 
m rows in both matrices if the total number of propagation 
paths is m for a given pair of modules. The order of rows 
(paths) is irrelevant for OR as long as the same rows in both 
matrices correspond to the same path. In the discussion that 
follows, the path corresponding to the kth row will be called 
the kth path or path k. The entries of VT and ET are such that 

I B, is the same as B,, defined earlier if A: = m # 0, where A is the 
adjacency matrix. 
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if eij belongs to the kth Propagation Path and A; = *1 > 0, 
then V T ;  = j and ET? = 1. In other words, there is a 
nonnull edge in the kth path from U ,  to U ,  where j = VT; # 0. 
For example, the node and edge traverse matrices for ( U , ,  ui) 

employing the divide-and-conquer principle. The initial work- 
ing group is the set of all propagation paths between a given 
pair of nodes. For example, the status vectors from the initial 
working group for ( U I  , u 3 )  of DI are 

of DI are 
( 2  3 0 0 o-) 

v T = [ ;  i ; 
E T =  [ 1 0 0 1 0 1 0 1  

1 0 1 0 0 0 0 0  
0 1 0 0 0 1 0 1  

0 1 1 0 0 1 1 0  1 
The fourth path for the pair ( u t ,  u 3 )  is [ul ,  U ? ,  u s ,  U ? ,  U ? ]  which 
includes edges e?, e3, e6,  and e?. 

A few new terms are necessary to explain OR. A partial 
path is a subset of all the edges in a propagation path, whereas 
a subpath is a segment of the propagation path. Clearly, for 
a given propagation path, a subpath is a partial path, but the 
converse is not always true. A working group (subgroup) 
for a given pair of nodes is defined as a collection of partial 
paths of all propagation paths between the two nodes and is 
evaluated as 

where every entry in min is associated with a partial path 
of a distinct propagation path. Let NS, ES, and PS repre- 
sent the node status vector, the edge status vector, and the 
path status vector, respectively, where NS and ES are col- 
umn vectors and PS is a row vector. A working group can 
be derived from these status vectors and the node and edge 
traverse matrices. An edge is in a working group if it belongs 
to at least one partial path in the group. An edge starts from 
a node called source and ends at a node called sink. A node 
is said to belong to a working group if it is the source or 
sink of an edge in the group. The node status vector holds a 
physical meaning only if all partial paths in a working group 
are subpaths. These vectors for a working group are defined 
as follows: 

0 
1 
-1  

-2 

if U ;  is not in the working group 
if U ,  is in the working group 
if U ,  is the source node of all subpaths in 

the working group 
if U ,  is the destination node of all 

subpaths in the working group 

0 
-1 

1 

if thej th  edge is not in the working group 
if thejth edge is a constant edge in the 

if thej th  edge is a variable edgc in the 
working group 

working group 

1 NS; = 

0 

1 otherwise. 

if no partial path of the kth path belongs to 
the working group 

ES, = 

i psk = 

A variable edge B, becomes a constant edge bJ following a 
conditioning operation. 

Basically, OR is a recursive algorithm on working groups 

NS' = [ -1  1 -2 1 11, 

E S T = [ l l  1 1  0 1 1 1 1 ,  

PS = [ 1 1 1 11. 

A working group is said to be trivial if thc group contains 
only one edge or only one path or only constant edges. OR 
first checks whether or not the initial working group is triv- 
ial. If the initial working group is not trivial, OR will attempt 
to divide the working group into several working subgroups 
so that a join operation may be performed on the resulting 
subgroups. If such a division is not possible, then OR will 
condition on one or more edges to make the division possi- 
ble. The same procedure will be applied recursively to all thc 
subgroups until they all become trivial. 

The division to allow for a join operation is possible if 1 )  
all edges in the group are variable edges and there is at least 
one common intermediate node among the paths in the group, 
and 2) there is at least one common edge among the paths in 
the group. For the latter case, each common edge becomes a 
working subgroup and the original group minus all common 
edges becomes the final working subgroup. For the former 
case, the division is based on the following theorem. 

Theorem 1: Suppose all edges in a group are variable 
edges. Then the common nodes, which include the common 
intermediate nodes as well as the source and destination nodes, 
will be visited by all the paths of the group in the same order. 
Besides, if any intermediate node u j  that is not common is 
visited by a path between a pair of common nodes, say U ,  and 
u k ,  u j  can only be visited by all the other paths of the group 
in the same order as it was visited by the path. 

Proof: Let u l  and U ?  be the source and the destination. 
respectively, and U ,  and uJ be any two common intermediate 
nodes. Suppose all paths visit these nodes in the order u I  + 

U ;  + uj + u2 except for the path which visits these nodes in 
the order u I  + U ,  --f uI + U ? .  Then the group must contain 
the path u I  4 U ,  + U ?  which does not visit U , ,  and the path 
U I  + U ,  4 U ?  which does not visit U,. since all edges in the 
group are variable edges. It would be impossible to separate 
the above two paths from other paths of the group without 
conditioning on some edges in the group. This contradicts 
the assumption that U ,  and u j  are common nodes. The other 

W 
According to this theorem, if all edges in a group are vari- 

able edges and there are K common intermediate nodes. the 
group can be divided into K + 1 subgroups each contain- 
ing all nodes and edges between every pair of adjacent com- 
mon nodes. Each subgroup inherits all paths from the original 
group, but some paths in a subgroup may contain the same 
nodes and edges and, thus, are identical, since thesc paths 
traverse the same path segment in this subgroup but different 
segments in other subgroups. The identical or redundant paths 
are deleted before applying OR recursively on these sub- 
groups. 

assertion of the theorem can be proved similarly. 
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If the current working group cannot be divided to allow for 
a join operation, OR will divide the group to allow for a meet 
operation even if conditioning on a few edges is required. 
The division for a meet operation is possible if there exists at 
least one dominant edge2 which does not intersect any other 
variable edge in the working group. 

Definition 6: For a working group, a variable edge i is said 
to be dominated by another variable edge j if for all the paths 
of the group the inclusion of edge i implies the inclusion of 
edge j .  

Definition 7: For a working group, a dominant edge is a 
variable edge which is not dominated by any other variable 
edges, and a dominant subgroup associated with a domi- 
nant edge consists of the dominant edge and all edges being 
dominated and all paths containing these edges. 

Definition 8: For a working group, two variable edges in- 
tersect if both are included in at least one path of the group 
and neither of them dominates the other. 

Theorem 2: If a dominant edge does not intersect other 
variable edges, then any edge in the associated dominant sub- 
group will not intersect edges outside the subgroup. 

Proof: Suppose edge j is dominated by a nonintersecting 
dominant edge i, but intersects edge k which is not dominated 
by edge i. Then edge k should intersect edge i because if a path 
edge containsj and k ,  then it has to contain edge i too. This 
contradicts the assumption that edge i is nonintersecting. 

The division for a meet operation is done as follows: each 
nonintersecting dominant subgroup forms a working subgroup 
and the original group minus all nonintersecting dominant sub- 
groups forms the final working subgroup. 

If no nonintersecting dominant edges can be found, then 
some edges have to be conditioned on to create a noninter- 
secting dominant edge. This is done by inspecting edge dom- 
inance and intersection vectors. 

column vector defined as 
Definition 9: The edge dominance vector, DOM, is 

n if edge i is a dominant edge which 
dominates n - 1 other variable 
edges i 0 if edge i is not a variable edge DOM; = 

-n if edge i is a variable edge which is 
dominated by n other edges 

where n is a positive integer. 

column vector defined as 
Definition 10: The edge intersection vector, INT, is 

n 

0 

if edge i is a dominant edge which 
intersects n variable edges 

if edge i is not a variable edge 
ZNT; 

where n is a positive integer. 
For example, consider the initial working group for (u1 , u3) 

of D1.  The DOM and ZNT vectors are 

D0MT = [2 -1 2 -3 0 5 -3 -11, 

Z N T ~  = 13 2 3 o o 2 o 21. 

To be defined below. 

If DOMk > 0 and INTk = 0, then edge k is a nonintersect- 
ing dominant edge. 

The rules of choosing an edge to be conditioned on are the 
following. 

1 )  If the set 

Cl = { i  : 1 I i I M ,  DOM; > 0, INT; = max INT,} 
1 sjs M 

has only one element k ,  choose edge k .  

of the set 
2) If IJC1 1) > 1, choose edge k where k is the first element 

C, = {i  : ~ I ~ s M , ~ E C ~ , D O M ~  = max DOMj}. 
J &I 

After a new edge is conditioned on, DOM and ZNT should be 
recalculated. In the above example, edge 1 will be conditioned 
on first, and DOM and INT become 

DOMT = [0 -1 2 - 2  0 5 -3 -11, 

I N T ~  = [o 2 2 o o 1 o 11. 

The second pick is then edge 3. This process is repeated until a 
nonintersecting dominant edge emerges or the working group 
becomes trivial. 

This rule is based on the fact that the total number of in- 
tersections among variable edges are maximally reduced by 
conditioning on a dominant edge k E C1 to maximize the 
chance for a nonintersecting dominant edge to emerge. When 
11 C1 11 > 1, the edge dominating the most number of edges is 
chosen because the probability that one of those dominated 
edges becomes a nonintersecting dominant edge would be 
higher. 

The output of this algorithm will be stored in an operation 
buffer Obuf which is empty initially. Adding something to 
Obuf is denoted by * Obuf in OR. 

Algorithm OR. 

1 .  If JIESJJ # 1, then go to step 2 else do the following. 

if ESj = 1 then Bj * Obuf, 
if ES, = - 1 then bj * Obuf. 

2. If llPSll # 1, then go to step 3 else do the following. 

F o r j  E ( 1 ; .  . , M } ,  

Let n : = lJESll and +n * Obuf. 
For i E { 1,. . . , NP } and j E { 1 , .  . . , M } ,  

if Ps i -  ESj- ET/ = 1 then B; * Obuf, 
if Psi* ESj. ET/ = -1 then b; * Obuf. 

3. Calculate Var, the number of distinct variable edges in 

4. If Vir # 0, then go to step 5 else do the following. 

the working group. 

Let n : = IIPS(I and if n > 1, &" * Obuf. 
For each path (the ith path) in the working group, 

let C; :=  { j : 1  I j I M ,  E T / - E S J  = 

+m * Obuf, and for all k E C, ,  bk =) 

-11,m = IIGll, 

Obuf. 
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5 .  

6. 

7. 

8. 

If Var # (IES((, then go to step 6 else 
let C := { i : l  5 i I M ,  NS, = I ,  PS x 

VT’ = IlPSll}. 
If llCll = 0, then go to step 6 else 

let n : =  \IC(( + 1 and +n * Obuf .  
Divide the group into n working subgroups according 

Run OR on every resulting subgroup. 

Let C : =  {i:l  I i I M ,  ES, # 0, PS x ET‘  = 

If JICJJ = 0, then go to step 7 else do the following. 
Let n : = (lCll + 1 and +n * Obuf. 
For all i E C, 

to Theorem I. 

l lP~ll1~ 

if ES, = 1 then B, * Obuf, 
if ES, = -1 then b, * Obuf, 
let ES, : = 0. 

Calculate DOM and INT. 
Let C : = {i:1 i i I M ,  DOM, > 0, INTI = O}. 
Let D :=  { j : l  I j I NP,  PSJ = I ,  E S l * E T j  I 

If )IC)) + \ID)\ = 0, go to step 8. 
Let n : = ((CII + llDll + 1 and &,, * Obuf. 
Divide the group into n working subgroups according 

Run OR on every resulting subgroup. 

Let C1 :=  {i : l  I i i M ,  DOM, > 0 ,  ZNT, = 

LetC2 : =  { i : l ~ i ~ M , i E C l , D O M ,  = maxJEC, 

If k is the first element of C2, /Bk * Obuf and let 

Go to step 7. 

O v i } .  

to Theorem 2. 

maxIsJ5M ZNT,}. 

DOM,}. 

ES, -1. 

As an example, the result of applying OR on the pair ( u I  , u3)  

of D1 is 

X 1 3  = min { B I  + B3,B2 + B6 + B8,BI + B4 + B6 

+ Bg,B2 4 B3 + B6 + B7} 

= /BI/B3&2 +2 bib2 +2 B6/B2&2 +3 bZb3B7 

+2 B8&2 b2 + 2  biB4. 

IV. MEASUREMENT OF PROPAGATION TIMES 
ON FTMP 

In this section, we will describe the measurement and anal- 
ysis of our error propagation model for an experimental sys- 
tem, the fault-tolerant multiprocessor (FTMP) at the NASA 
Airlab [8], [lo]-[14]. The purpose of performing such an 
experiment is twofold. First, we want to show the feasibil- 
ity of experimentally determining the key parameters of the 
model, i.e., the distributions of direct propagation times. Sec- 
ond, it would be interesting and important to know the type 
of distribution that the direct propagation time follows in a 
real system. If the distribution is exponential or near expo- 
nential, such as Weibull distribution, a Markov model would 
be better suited to model the error propagation. Otherwise, 
general distributions should be used in the propagation model. 

The choice of FTMP is based on the availability as well as 
its facilities of injecting faults and collecting the subsequent 
data. Another advantage of FTMP is that an error detection 
circuitry is easier to build since it is a tightly synchronized 
triple modular system. 

FTMP System Organization 

FTMP consists of ten identical line replaceable units 
(LRU’s) each of which contains a processor module with lo- 
cal cache memory, a 16K system memory module, a 1553 I/O 
port, two bus guardian units (BGU’s), a clock generator, and a 
power subsystem module. Nine of the ten processor modules 
are grouped into three triads with the remaining one being 
a spare. The system memory modules are also grouped into 
triads. The communications between processors and system 
memory modules are accomplished via three sets of system 
buses: a polling bus (P  bus) for resolving bus contention, a 
data transmit bus ( T  bus), and a data receive bus (R bus). 
Each set of buses includes five bus lines for redundancy, but 
only three of them are activated for the triad’s communication. 

All three members of a triad are running in tight synchrony, 
which is achieved by another set of system buses, the clock 
bus (C bus). Four of the ten clocks are phase-locked together 
through the clock bus, while the other six clocks simply lock 
into one of these four clocks. 

The access to system buses in each LRU is controlled by 
BGU‘s which operate in dyad. Associated with each system 
bus in an LRU is a voter. Whenever a module in the LRU 
reads data from system buses (i.e., T bus, R bus, or P bus), 
the voter will take a majority vote on the data received from 
the three active bus lines. If a disagreement is found during 
the voting, it will be recorded on error latches for later fault 
identification. The complete hardware description of FTMP 
can be found in [ 1 I]. 

From the software point of view, FTMP can be regarded 
as a three-processor system with a shared memory of 48K. 
Since FTMP is designed mainly for real-time control appli- 
cations, every task (or process) runs periodically in one of 
three rate groups: R I  (3.125 Hz), R 3  (12.5 Hz), and R 4  (25 
Hz). Critical tasks, such as task dispatching, are running in 
the R4 group, while normal application tasks are running in 
the R 3  group. The system configuration controller (SCC), 
which is an executive program handling fault detection, iden- 
tification, and system reconfiguration, is dispatched in the R 1 
group to minimize the performance degradation. Currently, 
FTMP includes only two application tasks: an autopilot pro- 
gram and a display program. See [12] for more details on 
FTMP software. 

To validate FTMP’s fault-tolerance capability, a hardware 
fault injection system has been built which is controlled by 
a host computer VAX-11/750. This system uses injection im- 
plants inserted between any chips on LRU3 and their sockets 
to control the electrical connections between the pins and the 
circuit board. A special circuit board extender is also needed 
to make space for the injection implants. Three types of per- 
manent faults at the pin level can be injected, i.e., inverted 
signal, stuck-at-I, and stuck-at-0. To operate this injection 
system, a customized version of the SCC program, called 
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Processor Region Transfer Bus 

FSCC, must be loaded which will receive queries from the 
host before every injection, issue proper reconfiguration com- 
mands to ensure that LRU3 is in an active triad, and then send 
a ready signal back to the host. With this protocol between the 
host and FTMP, one can inject faults repetitively under pro- 
gram control. The complete description of the fault injection 
system is in [ 131. 

Experimental Model 
The organization of hardware components in an LRU is 

shown in Fig. 4. The abbreviation(s) shown in the parenthe- 
sis of each block indicates the circuit board(s) implementing 
that functional block. (For a more detailed description of each 
functional block, see [ l  11.) By treating each functional block 
and each bus in Fig. 4 as a module, the error propagation 
model in Section I1 can be constructed to study error propa- 
gation within an LRU. Since FTMP performs a TMR voting 
on data going out of the system bus module, it is assumed 
that no errors can propagate through the system bus. Thus, 
we can isolate the processor region of an LRU which in- 
cludes the following modules: 8K RAM, 8K PROM, timer, 
mapper, CAPS-6 processor, control and communication reg- 
isters (CCR), processor region transfer bus (PRTB), system 
bus coupler (BCO), and system bus (SB). It is also assumed 
that no errors will come from the system bus or the subsystem 
bus. The resulting model is shown in Fig. 4. 

In Fig. 5, there are nine modules, 17 directed edges, and 
hence 72 error propagation functions. To determine these 
functions, all 17 direct propagation times have to be mea- 
sured and fed into the computation described in Section 11. 

Fig. 5 .  FTMP's experimental error propagation model. 

In this experiment, only one direct propagation time will be 
measured to show the feasibility of performing such an ex- 
periment. The one we chose is for the edge from module 
BCO to module SB. The other direct propagation times can 
be measured similarly. We assume that a module in Fig. 5 gets 
contaminated whenever it receives an erroneous input signal. 
Thus, the direct error propagation time from BCO to SB is 
equivalent to the time for errors to propagate from any input 
of BCO to its output to SB. 

The experiment is set up as follows. A circuit to detect 
errors on the input and output of BCO is custom built. The 
design of this detection circuit is simplified by the triad orga- 
nization of FTMP and the fact that each triad is tightly syn- 
chronized. First, the signal lines which constitute the input 
and output of BCO are identified. Then, the input and output 
lines in LRUO and LRU3 are tapped out to the detection cir- 
cuit for comparison. If LRUO and LRU3 are in the same triad, 
an error is detected whenever their line values disagree. Using 
LRUO as a reference, faults are injected into LRU3 and error 
propagation times from the input to the output of BCO are 
measured. In order to make a valid comparison, LRUO and 
LRU3 must be in the same triad during fault injection. So, the 
FSCC program is modified to group LRUO and LRU3 into the 
same triad before each injection. Experiments are performed 
under the normal FTMP workload. 

Data Analysis 

Faults are injected into the circuit board CPUD which is a 
part of the data section of the CAPS-6 processor and is in- 
side the module CAPS in Fig. 5 .  Selection of IC chips and 
pins for fault injection is arbitrarily made. The chips selected 
are U2, U7, and U32. U2 (54LS253) is a dual 4-to-1 multi- 
plexer and U7 (54LS51) is a dual AND-OR-INVERT gate; both 
are among the chips for selection of carry-in signals for ALU. 
U32 (54LS257) is a quad 2-to-1 multiplexer which can select 
a right-shifted output from ALU. Faults were injected at pin 
2, 6, and 7 of U2; pin 3, 4 ,  and 6 of U7; and pin 4 of 
U32. For each selected pin, three types of faults are injected: 
stuck-at-1, stuck-at-0, and inverted signal. Each type of fault 
is injected 500 times, so there would be 1500 faults injected 
for each selected pin. The sample density functions for each 
pin and each type of fault are plotted for the range of 0-1 ms 
in an interval of 40 ps. However, only the plots for inverted 
faults are shown in Figs. 6-12, since the plots for the other 
two types of faults are very similar. 

Now we want to see if our data can fit the Weibull distribu- 
tion which has been widely used for reliability modeling and 
life testing. The Weibull distribution has two parameters: 01 

(the shape parameter) and X (the scale parameter). The prob- 
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ability density function of the Weibull distribution is 

The exponential distribution is a special case of the Weibull 
distribution with CY = 1. 

Various methods have been proposed to estimate the shape 
and scale parameters of the Weibull distribution [ 151-[ 181. 
We adopt the maximum likelihood estimator (MLE) method 
developed in [ 151. The MLE shape estimator a! must satisfy 
the equation 

LI “i 

where x i ,  i = 1, . . . , n ,  represent the sample data. This equa- 
tion can be solved by the Newton-Raphson method as shown 
in [15]. Once a! is known, the MLE scale estimator can be 
calculated as 

The chi-square goodness-of-fit test is used after the param- 
eter estimation to determine how well our data fit the Weibull 
distribution [19], [20]. In this test, the positive real line is 
divided into rn intervals, ZI , . . . , Z, . Let 0, be the number of 
data points appearing in Z,, and let E, be the expected number 
of data points in I i  computed according to the hypothesized 
Weibull distribution. The statistic C = ?= (0, - E,)’/E, 
has a chi-square distribution with the degree of freedom rn -3, 
since two parameters have been estimated from the same set 
of data. For the accuracy of the test, the intervals have to be 
such that E, 2 5 for all i. Given a significance level 0, the 
threshold value xi can be determined from a chi-square distri- 
bution table. If C 2 xi, we conclude with a significant level 
p that the data do not fit the Weibull distribution. 

The results from the parameter estimation and goodness- 
of-fit test are tabulated in Table I1 with a significance level 
0.05. The observation intervals are basically the same as the 

TEST 
TABLE I1 

RESULT OF FITTING THE WEIBULL DISTRIBUTION 

intervals used to plot density functions, i.e.,  40 ps per interval. 
However, to meet the requirement that E; I 5 for all i, several 
intervals may be merged into a single interval; this is the 
reason why the degree of freedom (dof) may differ as shown 
in Table 11. 

Clearly, none of the data sets fit the Weibull distribution. 
For some data sets, their density functions show more than one 
major peak, suggesting that the error propagation time will 
most likely be one of several discrete values. This also indi- 
cates that the shape of the distributions for error propagation 
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times are strongly related to a module’s functionality. Hence, 
our conclusion from this experiment and analysis is that 1) it 
would be unrealistic to assume error propagation times fol- 
low any well-known distribution and 2 )  our error propagation 
model which assumes a general distribution is justified. (Use 
of Markov models for error propagation is unrealistic!) 

Remarks: 
Although it is easier experimentally to measure the direct 

error propagation times on FTMP, the same principle can be 
applied to other systems. In our experiment, a good unit and 
the fault-injected unit are running synchronously so that er- 
ror detection can be accomplished by directly comparing both 
units’ signals in real time. In some other systems, there may 
not be hardware or software redundancy. In that case, experi- 
ments can be performed using time redundancy, i.e., running 
the same unit twice under the same workload and then com- 
paring the results from both runs to detect errors. A drawback 
of this approach is that a large number of intermediate results 
along with timing information have to be stored for compar- 
ison. If a prototype system is not available, this experiment 
can still be done by simulation as in [7]. 

Intuitively, errors propagate due to the communications 
between modules. So, errors would propagate faster if there 
are frequent communications between modules. If the work- 
load contains more I/O bound tasks, the error propagation 
time would be generally shorter. 

V. CONCLUSION 

Although the problem of error propagation in distributed 
fault-tolerant systems has been mentioned frequently by many 
researchers, very little on this has been reported in the liter- 
ature. In this paper, we have developed an error propagation 
model for multimodule computing systems where the main 
parameters are the distribution functions of error propagation 
times. We have also derived two algorithms to systematically 
and efficiently calculate these functions. Finally, to show that 
the parameters of our model are obtainable from real systems, 
we have conducted experiments on FTMP. Statistical analy- 
ses of experimental data show that none of the measured er- 
ror propagation times follow the Weibull distribution. In fact, 
different faults at different locations exhibit different distri- 
butions, justifying the necessity and reality of using general 
distributions in our model. 

The reason that errors can propagate from module to mod- 
ule is the imperfect detection mechanisms implemented on 
each module. Thus, an error propagation model should be 
coupled with an error detection model. In this paper, how- 
ever, we have focused specifically on the modeling of the 
error propagation in order to characterize the behavior of er- 
ror propagation. Application of the error propagation model 
along with an error detection model for fault location, dam- 
age assessment, and error recovery is a matter of our future 
inquiry. 
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