
HYPERCUBEMANAGEMENTINTHEPRESENCE
OFNODEFAILURES*

Dilip D. Kandlur and Kang G. Shin

Real-time Computing Laboratory
Department of Electrical Engineering & Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

Abstract

The problem of allocation and release of subcubes
from a hypercube with node failures is addressed.
Two algorithms are presented, both based on the
Buddy allocation scheme for memory management
which is also used by the AXIS operating system of
the NCUBE hypercube computer. The first algorithm
is a simple variation of the Buddy algorithm which
permits the efficient allocation of subcubes in the pres-
ence of a single faulty node. The second algorithm,
which effectively subsumes the first, tries to reduce the
fragmentation caused by multiple failed nodes. It uses
a relabeling scheme to group the failed nodes so that
large non-faulty subcubes can be detected using the
Buddy allocation scheme. The relative performance
of these algorithms is studied using simulation and the
proposed algorithms are shown to have a consistently
better performance. Issues relating to the detection of
faulty nodes on the NCUBE computer and the conse-
quences of the relabeling on message passing are also
discussed.

1 Introduction

In recent years, hypercube multicomputers have
emerged as a very important class of distributed mem-
ory multiprocessors. The popularity of this archi-
tecture can be attributed to its regular structure and

*This work is suppotied in part by the Office of Naval Re-
search under contracts NOW14-85-K-0122 and NOOO14-85-K-
0531.

its rich interconnection topology which facilitates the
efficient embedding of many useful structures like
meshes, trees, and rings of even length [1,2]. It
also yields simple and efficient algorithms for node-
node communication, broadcasting, scattering, etc.
[3], which are important for the development of par-
allel algorithms. Numerous research efforts related to
hypercube architectures, operating systems, program-
ming languages, and scientific computation [4,5,6]
have been undertaken, and several research and com-
mercial hypercube multicomputers have been built.

In a multi-tasking environment, it is essential to al-
locate processors in the hypercube to requesting tasks.
The unit of allocation is a subcube with size varying
from 0 to D, the size of the hypercube, so that users
see their own, albeit smaller, hypercube computers.
Since the hypercube nodes are the most important re-
source in the system, the management of the node
processors is an important problem. The subcube allo-
cation problem is similar to the conventional dynamic
memory allocation problem in which processes make
requests to allocate and release contiguous blocks of
memory. An important difference however, is that the
connectivity of the hypercube makes it possible for
processors to be “contiguous” in many ways. In fact,
there are 2D-k. (f) distinct (but not disjoint) subcubes
of size k in a D-dimensional hypercube, QD. How-
ever, the procedures available for detection of these
possibilities, like the method of prime implicants [7],
are in general very compiex. In [8], Chen and Shin
have proposed strategies based on the Buddy alloca-
tion scheme for memory management [9] and on Gray

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 ACM 1988 O-89791-278-0/88/0007/0328 $1.50 328

codes which try to improve the ability to detect sub-
cubes while maintaining a low time complexity. On
the other hand, Dutt and Hayes [lo] have proposed a
heuristic algorithm which focuses on the coalescing of
the cube when a subcube is released. This algorithm
however, has an exponential worst case complexity.

This paper addresses the problem of subcube allo-
cation when there are some faulty nodes present in
the hypercube. Since practical implementation has
been an important consideration, only algorithms with
a low worst case complexity have been considered.
Faults in the hypercube can be classihed as link faults
and node faults. In this paper, we will deal with node
faults in which a node and all its communication links
are not available for use. Furthermore, our study is re-
stricted to static reconfiguration in which node faults
are detected at system initialization and the recontigu-
ration takes place at that time. The problem of detec-
tion of faulty nodes is discussed briefly in Section 4.

In this paper, two processor allocation strategies are
presented in Section 2 and a comparison of their per-
formance can be found in Section 3. In Section 4,
issues relating to the detection of faulty nodes and the
implications of node relabeling on the communica-
tion scheme as related to the NCUBE/six hypercube
computer are discussed. Conclusions are drawn in
Section 5.

2 Allocation Algorithms

The subcube allocation problem, with request sizes in
powers of 2, fits in well with the Buddy allocation
scheme. The hypercube graph can be represented by
a bit vector indicating allocated and free nodes where
the position i corresponds to the node labeled i in the
hypercube. Whenever a request is made for a subcube
of dimension k, the bit vector is searched for a region
of contiguous free nodes of length 2k starting at posi-
tions i.2k where i = 0,1,2,. . . . This is the form used
in the AXIS operating system. This scheme has been
proved to be statically optimal, that is, optimal when
processor relinquishment is not considered [8]. An
allocation strategy is said to be statically optimal if it
can accommodate any input request sequence {I;}F=t
iff Et, 211ii < 2O where]Iil is the dimension of the -
requeiied subcube.

Allocation Vector with node 4 faulty:

00001000

l-cube allocated:

11001000

Now, a Z-cube cannot be allocated

(4 : Ax18 r11oartion dzrrtrpy

Lists of free subcubes when node 4 is faulty

list 0: I

list 1: 6

list 2: 0

list 3: -

Request l-cube: subcube at 6 allocated

Request Z-cube: subcube at 0 allocated

(b) Sturdrrd Snddy Nloaation l tratrgy

Figure 1: A 3-cube with node 4 faulty and request
sequence {QI, Q2)

Initial state of the Allocation Vector:

10001000

The faulty nodes have labels: 0 0 0
100

Direction: 321

which differ in direction 3

Map the faulty directions to the low directions

dim: 1 -> 2
2 -> 3
3 -> 1

The new labels of the faulty nodes are: 0 0 0

001

The Allocation Vector for the new labelling is:

11000000

Figure 2: A 3-cube with 2 faulty nodes showing
fragmentation

329

This algorithm can handle faulty nodes by treating
them as permanently allocated. We will call this mod-
ified scheme Algorithm 1 in the rest of the paper. Al-
though the algorithm is statically optimal, in the case
of node failures it loses this property. For example in
Fig. 1, which shows a 43 with node 4 faulty, the al-
location request sequence (Qt ,Qz) cannot be granted.
This property can be preserved for single node fail-
ure by the use of a standard Buddy allocation scheme
with separate lists for subcubes of different sizes. The
procedures for allocation and release in this scheme
are given in Fig. 3. Using this algorithm, as shown in
Fig. 1, the request sequence (Qt ,Qz) can be satisfied.
The proof of static optimality is easy and follows the
lines of the proof for the static optimality given in [8].
The basic steps in the proof are:

Step 1 There can be no more than one free node in
any list.

Step 2 Since)&’ ‘<j 2’ < 2j, the total number of nodes
in a subcube of size j is greater than the number
of nodes in all free subcubes of size less than j.

Step 3 For a valid request, 211rI 5 the number of free
nodes and by Steps 1,2 the free nodes cannot all
be contained in subcubes of size less that JI, 1.
Hence, there exists a free subcube of size 2 II, 1.

This ensures that every valid request can be honored
and so, the algorithm is statically optimal.

When there is more than one node fault, the faulty
nodes may be widely dispersed in the bit vector, al-
though they may be neighbors in the hypercube graph.
This results in fragmentation of the bit vector with a
consequent reduction in the ability to grant requests.
This can be seen in the example shown in Fig. 2
in which no Q2 can be allocated. This fragmen-
tation is in part a result of the poor ability of the
Buddy system in recognizing subcubes. It recognizes
only those subcubes whose labelings are of the form
bDbD-1 . . . b&k*k. Thus, fragmentation would be
minimized if the faulty nodes differ in the small num-
bered bit positions since they would be closely packed
in the bit vector (Fig. 2). This suggests that a logi-
cal relabeling of nodes could be used to reduce the
fragmentation which is the central idea used in the

Algorithm Allocate (dim);
P

maintains separate lists for subcubes of different sires
with listji] containing the subcubcs of dimension i.
D is the dimension of the hypercube.

*/

if (list[dim] not EMPTY)
allocate the subcube from the head of list[dim]:

else

begin
search=dhu+l;
wblle (search 5 D) and (list[seaxch] EMPTY)

search = search + 1;

if (search > D)
/* no subcube can be allocated */
return(FALSE);

else

b@
remove the subcube at the head of the list,
let b be the start addnxs of this subcube
allocate uodes pb, b + 2dirn - I] to the requestor.
split = search - 1;
while (split 2 dim)

insert a subcube at the head of list[split]
with start address (b + 2’P”‘);

end,
end;

end; (allocate}

Algorithm Release (dim, cubeaddr);
P

tries to form as big a subcube as possible by coalescing
the released subcube with its buddy if that is available.

*/

buddy = cubeaddr bitnor 2ni’n;
search list[dhn] for a subcube with start address = buddy;

if (found)

begin
remove the buddy subcube from list[dim];
cube-addr = min(cube-addr,buddy);
Release((dim+l), cubeaddr);

end:
else

add a subcube with start address = cube-addr
to the head of list[dim];

end; {release)

Figure 3: Buddy Allocation and Release

330

algorithm described in Fig. 4. The main steps in this
algorithm which is referred to as Algorithm 2 are:

Step 1 Find the minimal subcube which contains all
the faulty nodes. This is done by finding the

Algorithm Relabel (num-f;\ults, fault&t);
f!+ first determine the fault directions */
dim = 0:
fault-1 = faultlist[l];
for i = 2 to numfaults

dim = dim bit-or (fault-l bitxor faultJist[i]);

set of directions in which the labels of the faulty
nodes differ.

if(dim=O)or(dirn=2D - 1)
/* none or all are fnult directions: Identity mapping */
for d = 1 to D

Step 2 Map these directions to the low order bit posi-
tions to obtain a direction transformation. For ex-
ample, in Fig. 5, where the faulty nodes are num-
bered 21,29, and 5, the transformation would be
from 654321 to 643215. Apply the transforma-
tion to the old labels to obtain new node labels.

map[dJ = d;
else

hi@
/* map the directions */
num3irns = number-of-ones(dim);

/* number of fault directions *J
good-dim = numAims + 1;
bad&n = 1;
for d = 1 to D

If (dim bitand Zd - 1) /* is direction d faulty ? */

begin
maprd] = bad-dim:
bad&n = baddim + 1;

end;
else

besin

end;

map[d] = good-dii;
goodAim = good-dim + 1;

end;

Step 3 Allocate all nodes from the hypercube as sub-
cubes of size 0 and reiease only those which
are not faulty. The standard Buddy allocation
scheme described in Fig. 3 is used for these
and subsequent allocation and release opera-
tions. The subcube release algorithm automat-
ically forms lists of subcubes of different sizes.

The faulty nodes then remain permanently allocated
until the hypercube is re-initialized. It can be seen that
the new labeling is consistent and any two nodes with
labels differing in only one bit position have an edge
between them. This is because the transformation is

/* now map all faulty no&s *f
for i = 0 to 2D - 1

basically a permutation of the bits of the labeling.

faulty[i] = FALSE; 3 Simulation Results
for i = I to num-faults

faulty[mapfault(faultJist[i]map)] = TRUQ
The processor allocation algorithms discussed iu the
previous section have been simulated on a DEC VAX-
lln80 computer. Their relative performance was in-
vestigated using two different performance measures.
The first measure is R, the percentage of valid incom-
ing requests for which subcubes were allocated. A
valid request is defined as one where the number of
processors requested is less than or equal to the num-
ber of free processors. The second measure is U, the
average utilization of a processor. This is the per-
centage of the total time for which a processor was
allocated.

/* allocate all nodes and release only the good no&s */
addr = Allocate(D);
for j = 0 to 2O - 1

if (not faultyu])
Release(Oj);

end, {relabel}

Routine mapfault(node. map) does a permutation on
the bits of the no& label with the ith
bit transformed to map[i].

Figure 4: The Node Relabeling Algorithm

In all the experiments, the incoming requests had
an inter-arrival time taken from an exponential dis-
tribution with a mean of 5 time units. The dimen-
sions of the subcubes requested followed a uniform

331

distribution between 0 and D, the dimension of the
hypercube. The subcube residence time, that is, the
length of time an allocated subcube is occupied, fol-
lowed an exponential distribution with a given mean
which varied with the experiment. The experiments
were aimed at finding the range of variation in per-
formance between the two algorithms. The measure

#grCZTh
U is computed as c 2l*~~,t;/(T x 2D) where [I;1

i=l
and t; are respectively the dimension and residence
time of the subcube acquired by 11; I, and T is the total
simulation time.

The cases which favor the first algorithm are those
in which the faulty nodes are “contiguous” in the orig-
inal bit vector and form a subcube. In this case,
the mapping function is identity and the only differ-
ence between the two algorithms is that Algorithm 2
uses a best-fit approach in that it maintains sepa-
rate lists for subcubes of different sizes, while Al-
gorithm 1 uses a first-fit approach. Ln this case, the
experiments showed no discernible difference in per-
formance which is consistent with reported observa-
tions on the relative performance of best-fit andfirst-fit
strategies for dynamic memory allocation [11 J.

The cases which favor Algorithm 2 are those in
which the fauhy nodes differ in the high order bits,
for example, nodes 0 and 32 in a 46. Tables 1 and 2
summarize the results of the experiments in this cat-
egory where the number of faulty nodes is 2 and the
size of the hypercube is varied from 5 to 10. (In
Tables l-4, the first figure in each entry is for Algo-
rithm 1 while the second is for Algorithm 2.) Since
the arrival rate is held constant, the residence time de-
termines the load on the system. It is observed that as
the load increases, U increases and R decreases. Al-
gorithm 2 performs better than Algorithm 1 by 5-15 %
on both measures. The average utilization decreases
as the size of Q,, increases because the ratio: average
number of nodes requested to total number of nodes
decreases,

For the average case analysis, the mean residence
time was fixed at 20 time units. Faulty nodes were
determined using a uniform random number genera-
tor and for each Q,, and number of faulty nodes, the
experiment was repeated 50 times with different sets
of faulty nodes. The performance measures R and U

were averaged over these experiments. Tables 3 and
4 give a summary of the results for cases where the
number of faulty nodes varies from 1 to 4. Some of
the results are also shown in graphical form in Fig. 6
and Fig. 7. When the number of failed nodes was Less
than four, the performance figures for both algorithms
were close to their “extreme case” values. This could
be explained for the 2 faulty node case as follows.

Assuming a uniform distribution, the expected sep-
aration between two faulty nodes in the bit vector is
292 = 2D-‘. At the same time, the mean Ham-

ming distance between them is e d .

since there are (y) nodes at a distance d from a given
node. When Algorithm 2 is used, the two faulty nodes
would be packed into a subcube of expected size D/2
and so, their expected separation would be 2D/2 which
is small compared to 2 D-*. Hence, fragmentation is
reduced considerably by the use of Algorithm 2.

When the number of faulty nodes is four, the re-
sults show large fluctuations but even in this case,
Algorithm 2 always performs better. Assuming a con-
stant reliability figure for the nodes, the probability of
occurrence of k node faults decreases rapidly as k in-
creases. Hence the cases where the number of node
faults is small are of more practical importance. In
these cases, it is observed that Algorithm 2 performs
consistently better than Algorithm 1.

332

rau1ty nOdo* are: 1: 010101
2! 011101
3: 000101

eitriss oxclusivo-or or nodes I.2 gives: 0 0 1 0 0 0

of nodes 1,3 gives: 0 1 0 0 0 0

The full set of directions is: 0 1 1 0 0 0 and,

the smallest cube which contains the faulty nodes is!

OIIlOl

The faulty directions are mawed to the low directions:

dim,: 4 -> 1
5 -> 2
1 -> 3
2 -> 4

3 -> 5
6 -> 6

“*“as, the new labelling of the subcutn containing the

faulty nodes is: OlOlrr

Table 2:

Figure 5: Relabeling of a 6-cube with 3 faulty nodes

Table

Cube Mean Residence Time
Size 20 40 80

5 80.03 79.65 74.02
89.76 85.93 78.71

6 84.46 84.60 81.41
93.53 90.55 87.14

7 84.88 85.69 84.77
95.54 92.08 89.56

8 88.26 90.02 88.37
96.84 95.47 93.03

9 88.80 88.58 89.07
98.65 95.96 94.21

10 89.72 90.61 90.58
99.03 96.09 93.65

1: Requests granted R: “extreme” case for 2
faulty nodes.

IMean Residence

38.63

-+
10 19.98

35.62

40
49.82
60.26
48.87
57.10
43.18
56.50
44.14
53.34
37.96
52.06
36.74
49.65

80
64.07
71.14
65.86
72.05
64.24
70.05
59.54
69.69
57.44
65.49
58.86
63.87

Node Utilization U : “extreme” case for 2
faulty nodes.

95.44 91.44 87.85 78.32
7 88.99 84.47 81.62 78.62

96.74 94.61 90.31 83.65
8 90.46 88.30 85.36 83.05

Table 3: Requests granted R: average case.

333

Cube
Size

5

6

7

8

9

10

I Nu
I 1

37.53
46.41
33.81
43.88 40.53
32.53 26.98
41.95
27.24
38.21
27.48
37.51
26.54
35.28

nber of
2

33.04
43.93
30.06

40.51
24.93
36.07
24.25
36.69
21.61
33.89

raulty nodes
3 ,4

29.65 23.65
38.90 40.01
25.93 22.47
35.69 25.31
23.79 20.67
36.47 27.30
21.98 19.75
31.73 27.06
20.89 17.76
33.73 32.70
19.43 17.38
32.02 25.78

Table 4: Node Utilization U: average case.

4 Practical Considerations

The AXIS operating system which runs on the host
processor treats the hypercube as a device, /del)/ncube ,
and the subcube allocation and release operations are
performed using the open and close system calls on
this device. These operations are executed by the de-
vice driver for this device. The management strategy
presented in tbis paper can be implemented by modi-
fying this device driver.

The detection of faulty nodes is linked to the con-
figuration of the NCUBE machine and the interface
between the host processor and the hypercube array.
In the NCUBE/six system, there are 16 I/O proces-
sors on the host processor card which have one link
each to a node in the processor array (Fig. 8). On
the other hand, the host and I/O processors communi-
cate via shared memory. The system is initialized in
stages with the I/O processors initialized in the first
stage. In the next stage, processors directly connected
to an I/O processor are initialized. The initialization
of nodes at a distance of 2 and 3 communication links
from the nearest I/O processor takes place in subse-
quent stages. At the end of each stage, the processors
which were initialized in that stage send a message
back to the host. Using this mechanism, faulty nodes
can be detected as those which fail to report back to
the host.

A faulty node can affect the host-node communica-

Anfval: Exp. wllh mean 6 ms

Resldenoe: Exp. with mean 20 ms

loo e----yI
90

j_

.._.... _ ..-,....... ^ . .._..... -_ _ ~ ̂

4.
1
. \Y?

+- 4
201. I. I. 1. I. I. 1.t

4 5 6 7 8 9 10 11

Ske of the hyparcube

4 % Grants: old
+ 56 Grants: new Number of faulty nodes: 1
4 Node utll.: oki
4 Nod+ ~61.: new

Average Case results

Figure 6: Single Faulty Node

Antval: Exp. with mean 5 ms

Resldanca: Exp. wflh mean 20 ma

40 ._............^, -.

I-

.... - ...
20 _-.YY!l..
OI.,.,.,~,.,.,.,

4 5 6 7 8 9 10 II

Ske of lhe hypercuba

0 % Gfants: old
+ % Grants: new
4 Node uttl.: okl
+ Node utll.: new

Number of faulty nodes: 2

Average Case results

Figure 7: Two Faulty Nodes

334

tions and interfere with the initialization process since
its communication links are not available for use. For
example, in Fig. 9, the failure of node 0 would affect
the initialization of nodes 1, 2 and 3. The host would
then have to compute an alternate route to get to these
nodes, say using nodes 4, 5. This is essentially the
problem of host - node communication in the pres-
ence of faulty nodes. In the case of the NCUBE/six,
this could probably be solved by examining and eval-
uating the different possibilities and providing apriori
alternate routes to handle the situations.

A related problem is that of node-node commu-
nication within a subcube. The VERTEX operating
system, which nms on the nodes in the hypercube,
uses a deterministic routing scheme which associates
the logical node numbers with the physical commu-
nication channels. For example, a message from
bbD--1 . . . bzbl to bDbD-1 . . . b2b; would be transmit-
ted on channel 1. This routing scheme would have to
be modified to include a mapping from the new logi-
cal node numbers to the communication channels. An
array giving the map of the old directions to the new
would provide the information necessary for the rout-
ing.

5 Conclusions

An algorithm which tries to reduce the fragmentation
caused by node failures by an appropriate relabeling
of the nodes has been presented. This algorithm has
the same time complexity as the Buddy allocation al-
gorithm which is used by the AXIS operating sys-
tem on the NCUBE. Simulation results have shown
that this algorithm performs significantly better than
the NCUBE algorithm when there are very few faulty
nodes. To implement this algorithm on the NCUBE,
the AXIS operating system and the VERTEX commu-
nication kernel would have to be modified. Although
the changes required are significant, many of them
relate to detection of node faults, a task which is es-
sential to any algorithm handling node faults.

host u=
n

Figure 8: NCUBE/six Configuration

Figure 9: Effects of node failure on communication

335

References

[l] F. Harary, J. P. Hayes, and H. J. Wu, “A survey
of the theory of hypercube graphs”, Comprcters
and Math. with Applications, 1988, to appear.

[2] Y. Saad and M. Schultz, Topological Proper-
ties of Hypercubes, Technical Report 389, De-
p‘artment of Computer Science, Yale University,
June 1985.

[3] Y. Saad and M. Schultz, Data Communications
in Hypercubes, Technical Report 428, Depart-
ment of Computer Science, Yale University, Oc-
tober 1985.

[4] D. Jefferson ‘and B. Beckman, “Virtual Time
and Time Warp on the JPL Hypercube”, in
SIAM Conference on Hypercube Muitiproces-
sors, pp. 111-122, 1986.

[5] N. Carrier0 and D. Gelertner, “Linda on Hyper-
cube Multicomputers”, in SIAM Conference on

Hypercube Multiprocessors, pp. 45-56, 1986.

[6] D. Knmime, K. Venkataraman, and G. Cybenko,
“Hypercube Embedding is NP-Complete”, in
SIAM Conference on Hypercube Multiproces-
sors, pp. 148-160, 1986.

[7] Z. Kohavi, Switching and Finite Arctomata The-
ory, McGraw Hill, 1978.

[8] M. -S. Chen and K. G. Shin, “Processor Allo-
cation in an n-cube multiprocessor using Gray
codes”, IEEE Transactions on Computers, vol.
C-36, no. 12, pp. 1396-1407, December 1987.

[9] D. E. Knuth, The Art of Computer Program-
ming, Fundamental Algorithms, Addison Wes-
ley, 1969, pp 442445.

[lo] S. Dutt and J. P. Hayes, “On Allocating Sub-
cubes in a Hypercube Multiprocessor”, in Third
Conference on Hypercrrbe Computers and Appli-
cations, Pasadena, California, January 1988.

[l I] J. E. Shore, “On the External Storage Fragmen-
tation produced by First-fit and Best-fit Alloca-
tion Strategies”, Communications of the ACM,
vol. 18, no. 8, pp. 43-0, 1975.

336

