
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Multiprocessor Systems For High
Performance High Reliability
Applications

John P Hayes, John F Meyer, Kang G Shin

John P Hayes, John F Meyer, Kang G Shin, "Multiprocessor Systems For
High Performance High Reliability Applications," Proc. SPIE 0880, High
Speed Computing,  (20 April 1988); doi: 10.1117/12.944045

Event: 1988 Los Angeles Symposium: O-E/LASE '88, 1988, Los Angeles, CA,
United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Multiprocessor systems for high performance
high reliability applications

John P. Hayes, John F. Meyer and Kang G. Shin

Dept. of Electrical Engineering and Computer Science, University of Michigan
Ann Arbor, Michigan, 48109 -2122

ABSTRACT

The paper describes results 9f recent research on the design, test-
ing, and evaluation of high performance, high reliabilty mutiproces-
sor systems at the University of Michigan. This work is aimed at the
fundamental problem of realizing systems which perform extremely
well and, moreover, are able to sustain satisfactory performance in
the presence of faults. In our view, such work, if it is to be suc-
cessful, must deal simultaneously with a variety of related issues.
The presentation supports this position and, thus, covers a relatively
broad range of topics. More detailed descriptions of these results are
available in most instances and are referenced as part the discussion.

1 INTRODUCTION

Demands for high performance, highly reliable multiprocessor sys-
tems are increasing in a variety of application domains. Moreover,
the role of such systems is often mission -critical in the sense that
application objectives cannot be met if computer performance -reli-
ability requirements are not satisfied. The design problem to be
overcome is the realization of both high performance (very high pro-
cessing rates, very low response times) and high reliability (fault
tolerance, degradable performance) in a manner that optimizes the
coexistence of these competing attributes. In the case of mission -
critical systems, means of validating such systems with respect to
specified performance- reliability requirements is likewise an impor-
tant problem that calls for innovative methods and tools for both
theoretical and experimental validation.

The discussion that follows describes aspects of recent work on
these basic problems at the University of Michigan. With regard to
high performance, the design techniques being explored involve ar-
chitecture and algorithm considerations that permit highly parallel
computation with fast I/O and interprocessor communication. To
permit simultaneous achievement of high reliability, our approach
is the development of techniques for error detection, fault location.
and system reconfiguration that minimize performance degradation.
On the testing side, both external and internal (self -testing) meth-
ods are being investigated in an effort to overcome existing problems
of inadequate fault coverage, excessive testing time, and high hard-
ware overhead. In the evaluation area, we seek improved methods
and tools for evaluating a system's performance, dependability (re-
liability, availability), and, in general, its ability to perform ;n the
presence of faults (performability). Evaluation studies are also an
integral part of our research on design and testing techniques.

2 DESIGN

2.1 Hypercube Multiprocessors
Much of our work concerning design issues has focused on hy-

percube multiprocessors and related architectures [1,2,3,4,5,6,7]. A
particular advantage of hypercubes is that they can support multi-
ple users, each of which can be assigned an independent subcube of
processors by the operating system. In such an environment, espe-
cially one where requests for cubes of various dimensions arrive very
frequently, it is important to make judicious allocations of subcubes,
so that the hypercube does not become badly fragmented. AXIS,
the host operating system of the NCUBE hypercube series, for ex-
ample, supports such a multiuser environment [1]. AXIS maintains
a bit -vector for allocating the hypercube nodes (processors), where a
0 (1) in position i means the node with address i is free (allocated).
When a k- dimensional cube is requested, AXIS searches in the bit -
vector for the first integer m such that all nodes with addresses from
m x 2k to (m+ 1) x 2k are free; it then allocates the k -cube composed
of these nodes. This "linear" strategy recognizes only a fraction of
the total number of free subcubes and does not attempt to pack the
hypercube tightly.

Another allocation scheme that is well known in memory alloca-
tion and can also be used for subcube allocation is the buddy strategy
[8]. We have examined properties of this strategy and have compared
them with those of a new strategy using Gray Codes, referred to sim-
ply as the GC Strategy [4]. In this study, the buddy strategy is proved
to be statically optimal in the sense that only minimal subcubes are
used by the strategy to accommodate each sequence of incoming re-
quests when processor relinquishment is not considered, i.e., static
allocation. However, in the case when processor relinquishment is
taken into account, the buddy strategy is shown to be poor in rec-
ognizing or detecting the availability of subcubes in the hypercube.
Due to the special structure of the hypercube, the availability of
some subcubes cannot be detected by the buddy strategy, and the
processor utilization is thus degraded. The ability of detecting the
availability of subcubes is termed as subcube recognition ability. The
Go strategy was proposed to remedy the processor under -utilization
problem of the buddy strategy.

In [4], performances of both the buddy and GC strategies are com-
pared. It is shown that the GC method is also optimal for the static
allocation problem. Furthermore, it is proved that subcube recogni-
tion ability is enhanced significantly by the GC strategy; the number
of recognizable subcubes using the GC strategy is twice that of the
buddy strategy. Note that there are many different GCs for a hyper-
cube, each of which is associated with a set of recognizable subcubes.
An allocation strategy using more than one GC can usually recognize
a greater number of available subcubes (and thus improve processor
utilization) than can a strategy using only one GC. The relationship
between the GCs employed and their subcube recognition ability has
also been derived and used to determine an allocation strategy with
multiple GCs.

Although the GC strategy recognizes more subcubes than the
buddy method, it does not significantly reduce the fragmentation

'This work was supported by the Office of Naval Research under Contract No. N00014 -85 -K -0531

142 / SPIE Vol. 880 High Speed Computing (1988)

Multiprocessor systems for high performance 
high reliability applications *

John P. Hayes, John F. Meyer and Rang G. Shin

Dept. of Electrical Engineering and Computer Science, University of Michigan 
Ann Arbor, Michigan, 48109-2122

ABSTRACT percube multiprocessors and related architectures [1,2,3,4,5,6,7]. A
	particular advantage of hypercubes is that they can support multi-

The paper describes results of recent research on the design, test- ple userS) each of which can be assigned an independent subcube of 
ing, and evaluation of high performance, high reliabilty mutiproces- process0rs by the operating system. In such an environment, espe- 
sor systems at the University of Michigan. This work is aimed at the cially one where requests for cubes of various dimensions arrive very 
fundamental problem of realizing systems which perform extremely frequently, it is important to make judicious allocations of subcubes, 
well and, moreover, are able to sustain satisfactory performance in 8O that tne hypercube does not become badly fragmented. AXIS, 
the presence of faults. In our view, such work, if it is to be sue- the host operating system of the NCUBE hypercube series, for ex- 
cessful, must deal simultaneously with a variety of related issues. ampie> supports such a multiuser environment [1]. AXIS maintains 
The presentation supports this position and, thus, covers a relatively a bit-vector for allocating the hypercube nodes (processors), where a 
broad range of topics. More detailed descriptions of these results are 0 (1) in position t means the node with address t is free (allocated), 
available in most instances and are referenced as part the discussion. when a fc-dimensional cube is requested, AXIS searches in the bit- 

	vector for the first integer m such that all nodes with addresses from 
1 INTRODUCTION m x 2* to (m+1) x 2* are free; it then allocates the fc-cube composed

of these nodes. This "linear" strategy recognizes only a fraction of 
Demands for high performance, highly reliable multiprocessor sys- the ^^ number of free 8ubcubes and does not attempt ^ pack the
terns are increasing in a variety of application domains. Moreover, hypercube tightly 
the role of such systems is often mission-critical in the sense that
application objectives cannot be met if computer performance-reli- An(jther taoa/&m Kheme that ^ well known in memory ^^ 
ability requirements are not satisfied. The design problem to be ^ ̂  can ^ fce ^ fof 8ubcube Moc&ti<M ig the buddy ftr<ttegy 
overcome is the realization of both high performance (very high pro- [g] We haye examined propertie8 of this 8trategy md have ^^^^ 
cessing rates, very low response times) and high reliability (fault them with those of a new strategy using Gray Codes, referred to sim- 
tolerance, degradable performance) in a manner that optimizes the ply M the QC strategy (4) ,n ^ s^dy> ^ buddy gtrategy ig proved 
coexistence of these competing attributes. In the case of mission- tQ ^ statically optimai in the ^ that only ^^ subcubes ^ 
critical systems, means of validating such systems with respect to uged by the strategy to taeaamoi^ each seq^^ of j^^g re_ 
specified performance-reliabihty requirements is likewise an impor- questg wfaen processor re^^h^t fc not Con8idered, i.e., static 
tant problem that calls for innovative methods and tools for both ^^j^. However) ^ the CMC when proce8sor re,inquishment   
theoretical and experimental validation. taken ^ ̂ ^ ̂  bud(Jy gtrategy ig 8nown ^ fce poof b ^

 ,, ,..,. , - f ognizing or detecting the availability of subcubes in the hypercube. 
The discussion that follows describes aspects of recent work on Due ^ ^ ̂ ^ ̂ ^ rf ^ h ube> the availability of

these basic problems at the University of Michigan With regard to some 8ubcube8 cannot be detected by the buddy strategy, and the 
high performance, the design techniques being explored involve ar- processor utilization is thus degraded. The ability of detecting the 
chitecture and algorithm considerations that permit highly parallel availabilit of 8ubcubes is termed as subcube recognition ability. The 
computation with fast I/O and mterprocessor communication. To Qr gt y ^ proposed ^ reme ^ ^ under.utilization 
permit simultaneous achievement of high reliability, our approach problem of the buddy strategy, 
is the development of techniques for error detection, fault location,
and system reconfiguration that minimize performance degradation. In ^ performances of both the buddy and GC strategies are corn- 
On the testing side, both external and internal (self-testing) meth- pared. It is shown that the GC method is also optimal for the static 
ods are being investigated in an effort to overcome existing problems allocation problem. Furthermore, it is proved that subcube recogni- 
of inadequate fault coverage, excessive testing time, and high hard- tion ability is enhanced significantly by the GC strategy; the number 
ware overhead. In the evaluation area, we seek improved methods Of recognizable subcubes using the GC strategy is twice that of the 
and tools for evaluating a system's performance, dependability (re- buddy strategy. Note that there are many different GCs for a hyper- 
liability, availability), and, in general, its ability to perform in the cube, each of which is associated with a set of recognizable subcubes. 
presence of faults (performability). Evaluation studies are also an An allocation strategy uging more than one GC can usually recognize 
integral part of our research on design and testing techniques. a greater number of available subcubes (and thus improve processor

utilization) than can a strategy using only one GC. The relationship
between the GCs employed and their subcube recognition ability has

2 DESIGN also been derived and used to determine an allocation strategy with
multiple GCs. 

2.1 Hypercube Multiprocessors

Much of our work concerning design issues has focused on hy- Although the GC strategy recognizes more subcubes than the 
____________________ buddy method, it does not significantly reduce the fragmentation

*This work was supported by the Office of Naval Research under Contract No. N00014-85-K-0531

142 / SPIE Vol. 880 High Speed Computing (1988)

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



of the hypercube. In the latter regard, we have developed new al-
location and coalescing algorithms that have the goal of minimizing
fragmentation [5]. The approach used here is based on identifying
a class of disjoint subcubes called maximal set of subcubes (MSS),
which are useful in making allocations that result in a tightly packed
hypercube. The problems of allocating subcubes and of forming
MSS's have been formulated as decision problems, and shown to be
NP -hard. We have developed optimal algorithms for allocating sub -
cubes and for forming an MSS. To form an MSS requires generation
of the largest maximal set of disjoint prime cubes of a particular
dimension, and generation of a new set of prime cubes for the free
nodes that do not compose this largest maximal set. Heuristic proce-
dures have been devised to reduce the cost of the first of these tasks.
For the second task, a data structure called the consensus graph is
used as a means of quickly forming the new set of prime cubes from
the current set of prime cubes.

In this allocation scheme, the free nodes of the hypercube are main-
tained in the form of a free list of disjoint cubes, which serves as an
approximation to the current MSS. When cubes are released it is
important that they be coalesced with the subcubes in the free list,
so as to form the biggest possible subcube. We have constructed
a heuristic algorithm for coalescing released subcubes in this man-
ner. This algorithm, coupled with a simple allocation scheme, gives
a performance improvement in hit ratio of up to 55% over the buddy
strategy. Though the worst -case complexity of this algorithm is ex-
ponential in the dimension of the hypercube, simulation results show
that it is at most two to four times slower than the buddy method.

We have also carried out simulation studies comparing three differ-
ent allocation and coalescing strategies under various distributions
of subcube request dimensions and allocation times (times for which
a subcube remains allocated before being released) for a Poisson ar-
rival of requests. These results show that the algorithms based on
MSS identification provide a marked improvement in performance
over previously proposed hypercube allocation schemes.

With their relatively. large numbers of links and nodes, hypercube
computers are good candidates for constructing large fault -tolerant
multiprocessor systems. To make a hypercube fault- tolerant requires
a basic interprocessor communication capability that functions in the
presence of faults. Most of the message -passing algorithms proposed
to date for hypercubes computers break down when nodes or links
fail [9]. We have designed a new scheme for near -optimal routing
and broadcasting algorithms based on the systematic avoidance of
certain problem nodes [3].

We first observe that an optimal routing strategy which finds a
minimal "safe" path for each message, i.e., a shortest path contain-
ing no faulty nodes, can be easily achieved when each node stores
complete (global) information about the faults present in the system
and performs an exhaustive search of the available safe paths. How-
ever, the potentially high storage and computational costs involved
make this approach unattractive. We consider instead providing each
node with local information about the faults in the system. We have
shown that with this approach, low -cost routing algorithms can be
designed to tolerate node faults that meet a specified separation cri-
terion.

For certain complex fault patterns, the foregoing algorithms may
cause excessively long routing delays. To reduce these delays, we
have introduced the concept of unsafe nodes. There are nodes in
the hypercube Qn that can cause excessive routing delay, and so are
avoided during message passing. A non -faulty node is defined to be

unsafe if it satisfies either of the following conditions: (1) it has more
than one faulty neighbor; or (2) it has at least two faulty or unsafe
neighbors. A distributed algorithm with communication complexity
0(n3) has been devised to identify all unsafe nodes in Qn. An effi-
cient algorithm can then be given to route messages in a faulty Qn
containing no more than Ín /21 faulty nodes. The maximum length
of routing paths used by this algorithm is p + 2, where p is the mini-
mum safe distance from the source to the destination. If the routing
path length is exactly p + 2, then the source and destination nodes
form a subcube containing only unsafe or faulty nodes; we call this
an unsafe subcube.

We have obtained simulation results which show that the average
percentage of the unsafe nodes present in the system is less than 15%
if the number of faulty nodes is no greater than fn /21 , for n > 5.
This indicates that the percentage of messages which experience the
worst -case (p 2) -hop routing delay is fairly small. We have further
shown that broadcasting can be achieved under the same fault con-
ditions with n + 1 steps, which is only one more step than required
when no faults are present.

2.2 Networks
In addition to hypercube multiprocessors, we have also been ex-

amining local area network architectures where the hosts (nodes)
are computers (possibly hypercubes) which communicate via shared
buses. As is the case in the work cited above, we seek designs which
are able to perform well in the presence of faults. The use of mul-
tiple buses between hosts is a natural consideration in this regard.
Moreover, a relatively general class of host -bus connection alterna-
tives can be formulated via the mathematical notion of a balanced
incomplete block design (BIBD) [10,11]. This is an arrangement of v
distinct objects into b blocks such that each block contains exactly
k objects, each object occurs in exactly r different blocks, and every
pair of distinct objects a;,aa occurs together in exactly A blocks.

A specific BIBD is thus determined by an instantiation of the 5-
tuple (v, b, r, k, A). These five parameters are not independent, how-
ever, due to the following basic relations.

bk = yr

r(k - 1) = A(v - 1)
Given the values of three of the parameters, the other two are implied
by he above relations. Accordingly, a BIBD is often specified by
the values of v, k, and A. The objects assigned to each block are
described by its incidence matriz A = [a;,j], where if the objects of
the BIBD are a;, ... , a and the blocks are B1, ... , Bb then

1 a;EB1
a, 0 a; B1

Given some BIBD, its corresponding BIBD network is defined by
taking the hosts of the network to be the objects of the design and by
associating a bus with each block. A host is connected to a bus if and
only if it is in the block corresponding to that bus. A (y, b, r, k, A)-
BIBD thus determines a network with v hosts and b buses. Each
host is connected to r of the buses, each bus has k hosts connected
to it, and each pair of hosts share A buses. When A > 1, the multiple
channels between hosts can be used to increase bandwidth and pro-
vide a degradable communication structure in the presence of faults.

The class of BIBD networks is therefore quite general and includes
n number of popular interconnection schemes. For example, a v -host,
single -bus network such as Ethernet corresponds to a BIBD with pa-

SPIE Vol. 880 High Speed Computing (1988) / 143

of the hypercube. In the latter regard, we have developed new al 
location and coalescing algorithms that have the goal of minimizing 
fragmentation [5]. The approach used here is based on identifying 
a class of disjoint subcubes called maximal set of subcubes (MSS), 
which are useful in making allocations that result in a tightly packed 
hypercube. The problems of allocating subcubes and of forming 
MSS's have been formulated as decision problems, and shown to be 
NP-hard. We have developed optimal algorithms for allocating sub- 
cubes and for forming an MSS. To form an MSS requires generation 
of the largest maximal set of disjoint prime cubes of a particular 
dimension, and generation of a new set of prime cubes for the free 
nodes that do not compose this largest maximal set. Heuristic proce 
dures have been devised to reduce the cost of the first of these tasks. 
For the second task, a data structure called the consensus graph is 
used as a means of quickly forming the new set of prime cubes from 
the current set of prime cubes.

In this allocation scheme, the free nodes of the hypercube are main 
tained in the form of a free list of disjoint cubes, which serves as an 
approximation to the current MSS. When cubes are released it is 
important that they be coalesced with the subcubes in the free list, 
so as to form the biggest possible subcube. We have constructed 
a heuristic algorithm for coalescing released subcubes in this man 
ner. This algorithm, coupled with a simple allocation scheme, *ives 
a performance improvement in hit ratio of up to 55% over the buddy
strategy. Though the worst-case complexity of this algorithm is ex 
ponential in the dimension of the hypercube, simulation results show 
that it is at most two to four times slower than the buddy method.

We have also carried out simulation studies comparing three differ 
ent allocation and coalescing strategies under various distributions 
of subcube request dimensions and allocation times (times for which 
a subcube remains allocated before being released) for a Poisson ar 
rival of requests. These results show that the algorithms based on 
MSS identification provide a marked improvement in performance 
over previously proposed hypercube allocation schemes.

With their relatively, large numbers of links and nodes, hypercube 
computers are good candidates for constructing large fault-tolerant 
multiprocessor systems. To make a hypercube fault-tolerant requires 
a basic interprocessor communication capability that functions in the 
presence of faults. Most of the message-passing algorithms proposed 
to date for hypercubes computers break down when nodes or links 
fail [9]. We have designed a new scheme for near-optimal routing 
and broadcasting algorithms based on the systematic avoidance of 
certain problem nodes [3].

We first observe that an optimal routing strategy which finds a 
minimal "safe" path for each message, i.e., a shortest path contain 
ing no faulty nodes, can be easily achieved when each node stores 
complete (global) information about the faults present in the system 
and performs an exhaustive search of the available safe paths. How 
ever, the potentially high storage and computational costs involved 
make this approach unattractive. We consider instead providing each 
node with local information about the faults in the system. We have 
shown that with this approach, low-cost routing algorithms can be 
designed to tolerate node faults that meet a specified separation cri 
terion.

For certain complex fault patterns, the foregoing algorithms may 
cause excessively long routing delays. To reduce these delays, we 
have introduced the concept of unsafe nodes. There are nodes in 
the hypercube Qn that can cause excessive routing delay, and so are 
avoided during message passing. A non-faulty node is defined to be

unsafe if it satisfies either of the following conditions: (1) it has more 
than one faulty neighbor; or (2) it has at least two faulty or unsafe 
neighbors. A distributed algorithm with communication complexity 
O(n3 ) has been devised to identify all unsafe nodes in Qn . An effi 
cient algorithm can then be given to route messages in a faulty Qn 
containing no more than [n/2] faulty nodes. The maximum length 
of routing paths used by this algorithm is p + 2, where p is the mini 
mum safe distance from the source to the destination. If the routing 
path length is exactly p + 2, then the source and destination nodes 
form a subcube containing only unsafe or faulty nodes; we call this 
an unsafe subcube.

We have obtained simulation results which show that the average 
percentage of the unsafe nodes present in the system is less than 15% 
if the number of faulty nodes is no greater than [n/2] , for n > 5. 
This indicates that the percentage of messages which experience the 
worst-case (p + 2)-hop routing delay is fairly small. We have further 
shown that broadcasting can be achieved under the same fault con 
ditions with n + 1 steps, which is only one more step than required 
when no faults are present.

2.2 Networks

In addition to hypercube multiprocessors, we have also been ex 
amining local area network architectures where the hosts (nodes) 
are computers (possibly hypercubes) which communicate via shared 
buses. As is the case in the work cited above, we seek designs which 
are able to perform well in the presence of faults. The use of mul 
tiple buses between hosts is a natural consideration in this regard. 
Moreover, a relatively general class of host-bus connection alterna 
tives can be formulated via the mathematical notion of a balanced 
incomplete block design (BIBD) [10,11]. This is an arrangement of v 
distinct objects into b blocks such that each block contains exactly 
k objects, each object occurs in exactly r different blocks, and every 
pair of distinct objects a,, ay occurs together in exactly A blocks.

A specific BIBD is thus determined by an instantiation of the 5- 
tuple (v, 6, r, k, A). These five parameters are not independent, how 
ever, due to the following basic relations.

r(k - 1) = A(v - 1)

Given the values of three of the parameters, the other two are implied 
by 'he above relations. Accordingly, a BIBD is often specified by 
the values of v,fc, and A. The objects assigned to each block are 
described by its incidence matrix A = [o,-j], where if the objects of 
the BIBD are a,-, . . . , av and the blocks are BI, . . . , Bb then

**>
f 1

\ 0
O,   By

ca £ By

Given some BIBD, its corresponding BIBD network is defined by 
taking the hosts of the network to be the objects of the design and by 
associating a bus with each block. A host is connected to a bus if and 
only if it is in the block corresponding to that bus. A (v,6,r,fc, A)- 
BIBD thus determines a network with v hosts and 6 buses. Each 
host is connected to r of the buses, each bus has k hosts connected 
to it, and each pair of hosts share A buses. When A > 1, the multiple 
channels between hosts can be used to increase bandwidth and pro 
vide a degradable communication structure in the presence of faults.

The class of BIBD networks is therefore quite general and includes 
a number of popular interconnection schemes. For example, a v-host, 
single-bus network such as Ethernet corresponds to a BIBD with pa-

SPIE Vol. 880 High Speed Computing (1988) / 143

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



rameter values k = y and b = r = a = 1. A multiple bus version
of this architecture with M parallel buses, referred to in [12] as an
M -LAN, is a BIBD network with k = y and b = r = A = M. A
fully interconnected architecture with y hosts and a dedicated bus
between each pair of hosts is also BIBD -determined; in this case
b = (2), r = v - 1, k = 2, and .A = 1. A hypercube, on the other
hand, is not a BIBD network since the number of host pairs sharing
a common bus can be either 0 or 1.

The use of BIBDs in a computer network design context is rel-
atively new [13], although earlier work has dealt with special sub-
classes of BIBDs. For example, the kind of projective planes con-
sidered in [14] are equivalent to symmetric BIBDa (i.e., y = b; see
[101) with a = 1. Our use of this formalism is aimed at obtaining
designs which, under specified workload and fault assumptions and
with respect to designated measures of performability, perform well
in the presence of faults. Initial work in this regard [15] has con-
cerned recursive methods of designing fault -tolerant BIBD networks
from smaller networks which need not be fault -tolerant. An example
of such a network, based on an (8,14,7,4,3) -BIBD, is shown in Fig.
1. Using stochastic activity network models, the performability of
this network has been compared with that of M -LANs (see above).
In each of two distinct application scenarios, the design in aneat;nn
performed better in the presence of faults than did M -LANs of com-
parable complexity.

o 2 3 4 6 7

Fig. 1: An (8,14,7,4,3) - BIBD Network.

3 ERROR PROPAGATION

In any computing system, it is practically impossible to install a
perfect detection mechanism with which all types of errors can al-
ways be detected before they propagate to other parts of the system.
Thus, upon detection of an error, it is difficult to tell whether the
error is induced by a fault that occurred in the same part of the sys-
tem where the error is detected or it is the propagation of an error
induced by a fault in some other part of the system.

To clarify the terminology used here, an error is defined as an
incorrect state of the system which could be an incorrect data, an

144 / SPIE Vol. 880 High Speed Computing (1988)

incorrect control signal, or an abnormal system behavior, and a fault
is the source of an error, e.g., a broken wire, an electrical short,
or a bug in a program. The effects of error propagation on fault
location, reconfiguration and error recovery are significant, because
of the uncertainty as to which components are really faulty and /or
erroneous[16]. Most approaches reported in the literature circumvent
the problem of error propagation by assuming a perfect coverage in
detecting errors. However, such an assumption is unrealistic and,
often, unacceptable for real systems, since even a near -perfect detec-
tion mechanism is very difficult to obtain without entailing excessive
amount of resources or performance degradation. It is therefore nec-
essary to consider the error propagation problem in the design and
analysis of fault -tolerant systems. As a first step to meet such a
need, we propose a general error propagation model and examine its
power and limitations.

Error propagation was first recognized and utilized in testing com-
binational circuits. The D- algorithm is an example of using the error
propagation property of logic gates to generate test patterns for com-
binational circuits [17]. Recently, error propagation properties at the
logic gate level [18] and the transistor level [19] have been derived
for the design of totally self- checking integrated circuits. In [20],
error propagation at the register level has been considered for the
design of a strongly fault secure processor. Zielinski [21] has pro-
posed a model of error propagation among communicating processes
i, a distributed computer system and used it to express an error
recovery method with the recovery block scheme.

All the previous error propagation models are deterministic in na-
ture, because they are based on a specific fault /error model or the
system is assumed to have some restricted, predictable behavior.
However, there is, in practice, very little a priori information on
the behavior of faults and errors, and inter -component communica-
tions may take place in an arbitrary fashion. So, error propagation
cannot in general be modeled deterministically. We have proposed
a stochastic model where the primary parameters - error propaga-
tion times between all pairs of system components - are random
variables. We shall also comment on how the distributions of error
propagation times can be determined systematically and efficiently.

We focus here only on the modeling of error propagation in a
multi -module computing system. Application of the error propaga-
tion model for fault location, damage assessment and error recovery
will be addressed in other papers [22].

Consider a computing system composed of multiple components,
each of which is called a module. A module represents any well-
defined component of the system; it could be a hardware or software
unit or even a combination of hardware or software. Each module is
a self -contained entity with input /output from /to others. A module
is said to be faulty if a fault has occurred in the module and is said
to have been contaminated if it contains one or more errors. For each
module in the system, the faulty moment is the time instant a fault
occurs within the module, and the contaminating moment is the time
instant the first error occurs due to either the manifestation of a fault
within the module or the propagation of error(s) from other mod -
ule(s). For a module, the interval between the faulty moment and
the contaminating moment is called the fault latency of the module.

Error propagation among the modules can best be described by a
digraph, denoted by D = (V, E), where N is the number of modules
in the system, V = {vl, ... , vN} is the set of nodes and E = {e;f
1 < i, j < N} is the set of directed edges. Each node in D represents
a module in the system, and the directed edge e11 represents the

rameter values k   v and & = r = A = 1. A multiple bus version 
of this architecture with M parallel buses, referred to in [12] as an 
M-LANy is a BIBD network with A; = v and 6 = r = A = M. A 
fully interconnected architecture with v hosts and a dedicated bus 
between each pair of hosts is also BIBD-determined; in this case 
6 = Q, r = v - 1, k = 2, and A = 1. A hypercube, on the other 
hand, is not a BIBD network since the number of host pairs sharing 
a common bus can be either 0 or 1.

The use of BIBDs in a computer network design context is rel 
atively new [13], although earlier work has dealt with special sub 
classes of BIBDs. For example, the kind of projective planes con 
sidered in [14] are equivalent to symmetric BIBDs (i.e., v = 6; see 
[10]) with A = 1. Our use of this formalism is aimed at obtaining 
designs which, under specified workload and fault assumptions and 
with respect to designated measures of performability, perform well 
in the presence of faults. Initial work in this regard [15] has con 
cerned recursive methods of designing fault-tolerant BIBD networks 
from smaller networks which need not be fault-tolerant. An example 
of such a network, based on an (8,14,7,4,3)-BIBD, is shown in Fig. 
1. Using stochastic activity network models, the performability of 
this network has been compared with that of M-LANs (see above). 
In each of two distinct application scenarios, the design in one^on 
performed better in the presence of faults than did M-LANs of com 
parable complexity.

Fig. 1: An (8,14,7,4,3) - BIBD Network.

3 ERROR PROPAGATION

In any computing system, it is practically impossible to install a 
perfect detection mechanism with which all types of errors can al 
ways be detected before they propagate to other parts of the system. 
Thus, upon detection of an error, it is difficult to tell whether the 
error is induced by a fault that occurred in the same part of the sys 
tem where the error is detected or it is the propagation of an error 
induced by a fault in some other part of the system.

To clarify the terminology used here, an error is defined as an 
incorrect state of the system which could be an incorrect data, an

incorrect control signal, or an abnormal system behavior, and a fault 
is the source of an error, e.g., a broken wire, an electrical short, 
or a bug in a program. The effects of error propagation on fault 
location, reconfiguration and error recovery are significant, because 
of the uncertainty as to which components are really faulty and/or 
erroneous [16]. Most approaches reported in the literature circumvent 
the problem of error propagation by assuming a perfect coverage in 
detecting errors. However, such an assumption is unrealistic and, 
often, unacceptable for real systems, since even a near-perfect detec 
tion mechanism is very difficult to obtain without entailing excessive 
amount of resources or performance degradation. It is therefore nec 
essary to consider the error propagation problem in the design and 
analysis of fault-tolerant systems. As a first step to meet such a 
need, we propose a general error propagation model and examine its 
power and limitations.

Error propagation was first recognized and utilized in testing com 
binational circuits. The D-algorithm is an example of using the error 
propagation property of logic gates to generate test patterns for com 
binational circuits [17]. Recently, error propagation properties at the 
logic gate level [18] and the transistor level [19] have been derived 
for the design of totally self-checking integrated circuits. In [20], 
error propagation at the register level has been considered for the 
design of a strongly fault secure processor. Zielinski [21] has pro 
posed a model of error propagation among communicating processes 
i? a distributed computer system and used it to express an error 
recovery method with the recovery block scheme.

All the previous error propagation models are deterministic in na 
ture, because they are based on a specific fault/error model or the 
system is assumed to have some restricted, predictable behavior. 
However, there is, in practice, very little a priori information on 
the behavior of faults and errors, and inter-component communica 
tions may take place in an arbitrary fashion. So, error propagation 
cannot in general be modeled deterministically. We have proposed 
a stochastic model where the primary parameters   error propaga 
tion times between all pairs of system components   are random 
variables. We shall also comment on how the distributions of error 
propagation times can be determined systematically and efficiently.

We focus here only on the modeling of error propagation in a 
multi-module computing system. Application of the error propaga 
tion model for fault location, damage assessment and error recovery 
will be addressed in other papers [22].

Consider a computing system composed of multiple components, 
each of which is called a module. A module represents any well- 
defined component of the system; it could be a hardware or software 
unit or even a combination of hardware or software. Each module is 
a self-contained entity with input/output from/to others. A module 
is said to be faulty if a fault has occurred in the module and is said 
to have been contaminated if it contains one or more errors. For each 
module in the system, the faulty moment is the time instant a fault 
occurs within the module, and the contaminating moment is the time 
instant the first error occurs due to either the manifestation of a fault 
within the module or the propagation of error(s) from other mod 
ule (s). For a module, the interval between the faulty moment and 
the contaminating moment is called the fault latency of the module.

Error propagation among the modules can best be described by a 
digraph, denoted by D = (V, E), where N is the number of modules 
in the system, V = {vi,..., vjy} is the set of nodes and E = {e,-,- : 
1 < t, j < N} is the set of directed edges. Each node in D represents 
a module in the system, and the directed edge ct-y represents the

144 / SPIE Vol. 880 High Speed Computing (1988)

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



communication link from vi to vj . Typical means of communication
between software modules are message passing or shared memory.
Hardware modules can communicate via control and data signals. If
there is no communication link from vi to vi, then E will not contain

or eij is a null edge. A propagation path from vi to vk, written
as (vi, ... , vk), is a directed path in D where all nodes in the path
are distinct so that an error may propagate from v, to vk through
the path. It is meaningless to consider the case of error propagation
into a module which has already been contaminated; this is the very
reason why the nodes in a propagation path are distinct. Errors may
propagate from vi to vk if there exists at least one propagation path
from vi to vk.

The error propagation time from vi to vi, denoted by Xij, is de-
fined as the time interval between the contaminating moment of vi
and that of vi. The density function and cumulative distribution
function of Xij are denoted by gij () and Gij (), respectively. Clearly,
Xij holds a physical meaning only when Xij > O. Thus, the defini-
tion of Xij is usually made under the assumption that vi is the only
faulty module or the first module to be contaminated in the system.
If the system is assumed to have at most one fault at a given time,
the faulty module will be the first module to be contaminated.

Many useful pieces of information can be derived from the gi1's
and Gi1's. For example, they can be used for evaluating the rollback
recovery block scheme for concurrent cooperating processes[23].

Although error propagation times contain complete information
on the behavior of error propagation and can be directly measured
experimentally, there are several drawbacks as follows:

It is very costly to measure error propagation times for all pairs
of modules. For a system with N modules, N(N - 1) error
propagation times must be measured experimentally regardless
of the number of communication links in the system.

The distribution of any error propagation time is fixed under
a specific fault model. However, should a new fault model be
needed, all error propagation times must be measured again
under the new fault model, since the distributions change with
the fault model.

The error propagation times over different paths are dependent
on one another whenever they have some path segments in
common. Also, the dependencies among the error propagation
times are very difficult to experimentally measure but necessary
to compute their joint distribution. A useful joint distribution
for example, is

Prob[Xit. < xi, , XiN < x.N]

which characterizes the spread of error(s) in the system from a
faulty module vi.

To overcome the above drawbacks, a direct propagation time is
defined as follows. If eij is a non -null edge in E, then the direct
propagation time, denoted by Bij, is the time for an error to propa-
gate from vi to vj via eij . The density function and the cumulative
distribution function of Bij, denoted by pij and Pij, respectively, are
called the direct propagation functions of eq.

The differences between an error propagation time and a direct
propagation time lie in that (1) the latter is associated with a di-
rected edge while the former is defined for every ordered pair of
modules, and (2) the latter accounts for error propagation through
a particular edge while the former is the minimum propagation time

over all propagation paths between the given pair of modules. We
showed in [24] how to systematically and efficiently compute error
propagation times from direct propagation times. Since direct prop-
agation times are defined for the communication links in the system,
without loss of generality, one can assume that they are indepen-
dent of one another and their distributions will not change with the
underlying fault models. Moreover, this assumption greatly reduces
the experimental cost to measure propagation times. For example, a
five -node- eight -edge system would require 20 measurements of error
propagation times for each fault model, but would require only 8
measurements of direct propagation times for all fault models.

From the direct propagation functions, another useful function
called the error containment function, ECi(t), is defined for a mod-
ule vi as the probability that errors have not propagated from v; to
other modules up to time t (measuring from the vi's contaminating
moment). For example, if vi has outgoing communications only with
vj, vk, and v,n, then ECi(t) can be calculated as

ECi (t) = Prob[Bij > t, Bik > t, > t]

= (1 - Pij (t)) (1 - Pik(t)) (1 - P,m(t))

because Bij, Bik, and B1,,, are independent of one another.

4 SELF -TESTING VLSI CIRCUITS

Despite the substantial research effort devoted to digital system
testing over the past two decades, it continues to be one of the most
difficult and costly problems facing industry today. Rapid develop-
ments in VLSI technology, as well as the increasing use of micropro-
cessors, have rendered many standard testing techniques obsolete.
The problems of testing VLSI circuits are mainly due to the large
number of possible failures, and the difficulty of obtaining access to
internal circuits. They result in excessive testing time, costly test
generation and application procedures, and a lower than desirable
percentage of detected faults (fault coverage). Self -testing or built -
in testing attempts to place the main testing processes, including
test pattern generation and response verification, in the system un-
der test, and is an important way of improving the testability of
VLSI circuits [25].

Self -testing techniques can be grouped under two broad headings:
concurrent methods where testing is performed concurrently with
normal operation, and non -concurrent methods where testing is done
off-line in a special test mode of operation. Concurrent self -testing
is represented by the use of error -detecting codes. The fault cover-
age of error -detecting codes is less than 100%, and hard to measure.
Moreover, such codes are applicable only to a few types of computer
components. Non -concurrent self -testing, which is the focus of our
research, has the advantage of allowing high levels of fault coverage
to be achieved, possibly at the expense of high circuit overhead and
slow detection of faults.

It has long been recognized that iterative circuits composed of
identical subcircuits (cells) with regular interconnection structures
are easily testable. For instance, an n -bit ripple -carry adder com-
posed of n full -adder cells, can be tested for all faults within a single
cell using just 8 test patterns. These input patterns exhaustively test
each 3 -input cell, while ensuring that the test results are propagated
to the observable outputs. The property of being able to detect all
single -cell faults with a constant number of test patterns indepen-
dent of the array size n is termed C- testability. A related testability
property that is especially suited to selftesting is I- testability which
requires all single -cell faults in an n -cell array to be detectable by a
set of tests (I- tests) that produce identical responses from all cells.

SPIE Vol 880 High Speed Computing (1988) / 145

communication link from vt- to vy. Typical means of communication over all propagation paths between the given pair of modules. We 
between software modules are message passing or shared memory, showed in [24] how to systematically and efficiently compute error 
Hardware modules can communicate via control and data signals. If propagation times from direct propagation times. Since direct prop- 
there is no communication link from vt to vy, then E will not contain agation times are defined for the communication links in the system, 
e,-y, or eij is a null edge. A propagation path from vt- to v*, written without loss of generality, one can assume that they are indepen- 
as (v,-,..., Vfc), is a directed path in D where all nodes in the path dent of one another and their distributions will not change with the 
are distinct so that an error may propagate from v, to v^ through underlying fault models. Moreover, this assumption greatly reduces 
the path. It is meaningless to consider the case of error propagation the experimental cost to measure propagation times. For example, a 
into a module which has already been contaminated; this is the very five-node-eight-edge system would require 20 measurements of error 
reason why the nodes in a propagation path are distinct. Errors may propagation times for each fault model, but would require only 8 
propagate from vt- to v^ if there exists at least one propagation path measurements of direct propagation times for all fault models, 
from Vi to Vjt.

From the direct propagation functions, another useful function
The error propagation time from v,- to vy, denoted by -X,-y, is de- called the error containment function, 2?C,-(t), is defined for a mod- 

fined as the time interval between the contaminating moment of v,- ule vt- as the probability that errors have not propagated from v,- to 
and that of vy. The density function and cumulative distribution other modules up to time t (measuring from the v,-'s contaminating 
function of X{j are denoted by <7t;(*) anc^ ^*«j(')> respectively. Clearly, moment). For example, if vt- has outgoing communications only with 
Xij holds a physical meaning only when X,-y > 0. Thus, the defini- Vj) Vjb , and vm , then ECi(i) can be calculated as 
tion of X^ is usually made under the assumption that v,- is the only
faulty module or the first module to be contaminated in the system. ECi(t) = Prob[B,-y > *, B^ > t, Btm > t] 
If the system is assumed to have at most one fault at a given time, = (1 - PijW) (1 - ̂ fc(O) (* ~ p*m(t)) 
the faulty module will be the first module to be contaminated.

Jberause J5,-y, B,-*, and B,-^ are independent of one another.
Many useful pieces of information can be derived from the pt-y's 4 SELF-TESTING VLSI CIRCUITS 

and Cray's. For example, they can be used for evaluating the rollback
recovery block scheme for concurrent cooperating processes[23]. Despite the substantial research effort devoted to digital system

testing over the past two decades, it continues to be one of the most
Although error propagation times contain complete information difficult and costly problems facing industry today. Rapid develop- 

on the behavior of error propagation and can be directly measured ments in VLSI technology, as well as the increasing use of micropro- 
experimentally, there are several drawbacks as follows: cessors, have rendered many standard testing techniques obsolete.

  It is very costly to measure error propagation times for all pairs The problems of testing VLSI circuits are mainly due to the large 
of modules. For a system with N modules, N(N - 1) error number of possible failures, and the difficulty of obtaining access to 
propagation times must be measured experimentally regardless internal circuits. They result in excessive testing time, costly test 
of the number of communication links in the system. generation and application procedures, and a lower than desirable

percentage of detected faults (fault coverage). Self-testing or built-
  The distribution of any error propagation time is fixed under in testing attempts to place the main testing processes, including 

a specific fault model. However, should a new fault model be test pattern generation and response verification, in the system un- 
needed, all error propagation times must be measured again der test, and is an important way of improving the testability of 
under the new fault model, since the distributions change with VLSI circuits [25]. 
the fault model.

' _. . ,._ x A , , , ^ Self-testing techniques can be grouped under two broad headings:  The error propagation times over different paths are dependent , , , . . , °, , , . . concurrent methods where testing is performed concurrently withon one another whenever they have some path segments in , . , , , , . .: , . normal operation, and non-concurrent methods where testing is donecommon. Also the dependenc.es among the error propagation ^^ ̂  & g ^ mode rf tion Concurrent ^.^tir*
times are very difficult to experimentally measure but necessary ig represented by the use of error_detecting codes. The fault cover.
to compute their joint distribution. A useful joint distribute ^ rf error.detecting codes is leas than 100%> ^ hafd to measure

or examp e, is Moreover, such codes are applicable only to a few types of computer
p__ K fv <  ~ Y <? ~ l components. Non-concurrent self-testing, which is the focus of our
XTOD^ft ^ XI, • • • ,J\iN ^ XJVJ . ,. , , , ..,

research, has the advantage of allowing high levels of fault coverage
which characterizes the spread of error(s) in the system from a to De achieved, possibly at the expense of high circuit overhead and 
faulty module vt-. slow detection of faults.

To overcome the above drawbacks, a direct propagation time is It has long been recognized that iterative circuits composed of 
defined as follows. If e,-y is a non-null edge in E, then the direct identical subcircuits (cells) with regular interconnection structures 
propagation time, denoted by £,-y, is the time for an error to propa- are easily testable. For instance, an n-bit ripple-carry adder corn- 
gate from Vi to vy via et-y. The density function and the cumulative posed of n full-adder cells, can be tested for all faults within a single 
distribution function of B,y, denoted by pt-y and Pij, respectively, are cell using just 8 test patterns. These input patterns exhaustively test 
called the direct propagation functions of e,-y. each 3-input cell, while ensuring that the test results are propagated

to the observable outputs. The property of being able to detect all
The differences between an error propagation time and a direct single-cell faults with a constant number of test patterns indepen- 

propagation time lie in that (1) the latter is associated with a di- dent of the array size n is termed C-testability. A related testability 
rected edge while the former is defined for every ordered pair of property that is especially suited to selftesting is I-testability which 
modules, and (2) the latter accounts for error propagation through requires all single-cell faults in an n-cell array to be detectable by a 
a particular edge while the former is the minimum propagation time set of tests (I-tests) that produce identical responses from all cells.

SPIE Vol. 880 High Speed Computing (1988) / 145

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



An n -cell array is CI- testable if it is both C- and I- testable Gen-
eral iterative arrays, including the ripple-carry adder, can readily be
modified to make them I- testable or CI- testable [26].

We have recently developed a novel approach to nonconcurrent
self -testing design which attempts to encompass a broad range of
computer components, from arithmetic -logic units to main memo-
ries [27,28]. It is based on the observation that VLSI circuits exhibit
some degree of regularity, e.g., due to the use of a small set of cells as
building blocks and the need for simple interconnections. Most large
circuits contain enough irregularities to make them difficult to test.
However, it may be possible to "regularize" them by introducing
small amounts of special control logic to reconfigure them as itera-
tive arrays during testing. The reconfigured circuits then have the
appearance of replicated circuits, but with a much lower overhead
in extra circuitry. Their array -like structure permits the CI- testing
concepts mentioned above to be applied, yielding high fault coverage
with relatively short testing times.

The proposed design methodology is applied to a given moder-
ately irregular circuit C in several steps illustrated in Fig. 2. First
C is partitioned into a set of similar subcircuits (partitions) xi, x2,
. . . , x which may correspond to cells or bit slices in original design.
Next the x;'s are made approximately identical (regularization) by
systematically adding redundant data and control logic, so that the
final circuit (Fig. 2) is essentially an iterative logic array. The added
control inputs permit the redundancy, and hence the regularity, to
be disabled during normal operation, and to be enabled only dur-
ing testing. Other input control circuits are introduced to allow a
common set of test patterns to be applied to all w;'s simultaneously.
Thus the size of the test set and the corresponding test time are de-
termined by the partition size rather than the overall circuit size.

The main design problem in the foregoing process is the regu-
larization step, which varies from trivial in the case of pure itera-
tive circuits like a ripple -carry adder, to intractable in the case of
randomly -structured logic circuits. There appears, however to be a
fairly large class of nearly regular iterative circuits which can usefully
be regularized via heuristic techniques [27]. We illustrate this for the
case of a dynamic random-access memory (DRAM) which is a key
component in computer design.

DRAM's are composed of very large regular arrays of storage cells,
with a small amount of control logic. The latter includes on -chip re-
freshing logic to prevent the loss of data due to the stored- charge leak-
age effects that are characteristic of dynamic memories. Although
they are quite regular, large RAM chips are normally quite hard to
test. For example, the traditional RAM test procedure GALPAT
may require several days to test a 1 -Mbit RAM. Moreover, the fault
coverage of such heuristic procedures drops sharply when complex
failure modes like pattern sensitivity are taken into account.

A typical DRAM comprises addressing logic, data storage arrays,
control and timing logic, and data input /output circuits, as illus-
trated by the unshaded part of the design of Fig. 3 [29). To minimize
the layout area, the storage cells, address decoders, and sense ampli-
fiers are organized into several large two-dimensional iterative arrays.
The remaining peripheral circuits may be irregular, but occupy only a
small fraction of the chip area. The partitioning procedure discussed
above applies only to the regular circuits; the rest of the DRAM can
be regularized by duplication. A partition is therefore taken to be
a set of one or more storage -cell arrays with their common address
decoding logic and sense amplifiers. In the representative DRAM
shown in Fig 3, there are two identical partitions, each containing a

146 / SPIE Vol 880 High Speed Computing (1988)

pair of storage subarrays and a sense amplifier array.

A standard one -transistor design is assumed for the DRAM stor-
age cell. The test patterns for the cell are derived from analysis of
its major failure modes, such as neighborhood interference, bit -line
imbalance, and transmission -line effects [30]. The tests for an en-
tire partition are obtained by systematically superimposing the test
pattern sequences required by the individual cells. Many cells in the
partitions may be tested concurrently, in order to minimize the over-
all testing time for the DRAM. The tests for each partition require
the following sequence of operations: (1) write a background data
pattern for the set of cells Sr under test; (2) apply an excitation
sequence of write and read operations to Sr; (3) read and verify the
contents of Sr; (4) modify the background data patterns for testing
another set of cells Sr +i. These four operations must be performed
repeatedly until all the cells of the partition have been tested.

Normal outputs

t
Partition

nn-1f
Error signal

Equality
checker

I

Output control circuits

Partition
Hl

Partition

no

Input control circuits

Normal inputs

Cl -test

logic

1
Set test mode

Fig. 2: A self- testing bit -sliced system based on CI- testability.

An n-cell array is Cl-testable if it is both C- and I-testable Gen 
eral iterative arrays, including the ripple-carry adder, can readily be 
modified to make them I-testable or Cl-testable [26].

We have recently developed a novel approach to nonconcurrent 
self-testing design which attempts to encompass a broad range of 
computer components, from arithmetic-logic units to main memo 
ries [27,28]. It is based on the observation that VLSI circuits exhibit 
some degree of regularity, e.g., due to the use of a small set of cells as 
building blocks and the need for simple interconnections. Most large 
circuits contain enough irregularities to make them difficult to test. 
However, it may be possible to "regularize" them by introducing 
small amounts of special control logic to reconfigure them as itera 
tive arrays during testing. The reconfigured circuits then have the 
appearance of replicated circuits, but with a much lower overhead 
in extra circuitry. Their array-like structure permits the Cl-testing 
concepts mentioned above to be applied, yielding high fault coverage 
with relatively short testing times.

The proposed design methodology is applied to a given moder 
ately irregular circuit C in several steps illustrated in Fig. 2. First 
C is partitioned into a set of similar subcircuits (partitions) *\ , x^ , 
..., n-n which may correspond to cells or bit slices in original design. 
Next the TC^'S are made approximately identical (regularization) by 
systematically adding redundant data and control logic, so that the 
final circuit (Fig. 2) is essentially an iterative logic array. The added 
control inputs permit the redundancy, and hence the regularity, to 
be disabled during normal operation, and to be enabled only dur 
ing testing. Other input control circuits are introduced to allow a 
common set of test patterns to be applied to all TT,- 's simultaneously. 
Thus the size of the test set and the corresponding test time are de 
termined by the partition size rather than the overall circuit size.

The main design problem in the foregoing process is the regu 
larization step, which varies from trivial in the case of pure itera 
tive circuits like a ripple-carry adder, to intractable in the case of 
randomly-structured logic circuits. There appears, however to be a 
fairly large class of nearly regular iterative circuits which can usefully 
be regularized via heuristic techniques [27]. We illustrate this for the 
case of a dynamic random-access memory (DRAM) which is a key 
component in computer design.

D RAM's are composed of very large regular arrays of storage cells, 
with a small amount of control logic. The latter includes on-chip re 
freshing logic to prevent the loss of data due to the stored-charge leak 
age effects that are characteristic of dynamic memories. Although 
they are quite regular, large RAM chips are normally quite hard to 
test. For example, the traditional RAM test procedure GALPAT 
may require several days to test a 1-Mbit RAM. Moreover, the fault 
coverage of such heuristic procedures drops sharply when complex 
failure modes like pattern sensitivity are taken into account.

A typical DRAM comprises addressing logic, data storage arrays, 
control and timing logic, and data input/output circuits, as illus 
trated by the unshaded part of the design of Fig. 3 [29]. To minimize 
the layout area, the storage cells, address decoders, and sense ampli 
fiers are organized into several large two-dimensional iterative arrays. 
The remaining peripheral circuits may be irregular, but occupy only a 
small fraction of the chip area. The partitioning procedure discussed 
above applies only to the regular circuits; the rest of the DRAM can 
be regularized by duplication. A partition is therefore taken to be 
a set of one or more storage-cell arrays with their common address 
decoding logic and sense amplifiers. In the representative DRAM 
shown in Fig 3, there are two identical partitions, each containing a

pair of storage subarrays and a sense amplifier array.

A standard one-transistor design is assumed for the DRAM stor 
age cell. The test patterns for the cell are derived from analysis of 
its major failure modes, such as neighborhood interference, bit-line 
imbalance, and transmission-line effects [30]. The tests for an en 
tire partition are obtained by systematically superimposing the test 
pattern sequences required by the individual cells. Many cells in the 
partitions may be tested concurrently, in order to minimize the over 
all testing time for the DRAM. The tests for each partition require 
the following sequence of operations: (1) write a background data 
pattern for the set of cells ST under test; (2) apply an excitation 
sequence of write and read operations to 5r ; (3) read and verify the 
contents of 5T ; (4) modify the background data patterns for testing 
another set of cells SV+i- These four operations must be performed 
repeatedly until all the cells of the partition have been tested.

11 t
Original 
circuit C

T T

t
Partition

t
Partition

n0

Normal outputs Error signal

Equality 
checker

t
Output control circuitst

Partition
nn-i

r

T
Partition

ni
Partition

n0

r T
Input control circuits

n t
Cl-test
logic

T
Normal inputs Set test mode

Fig. 2: A self-testing bit-sliced system based on CI-testability

146 / SPIE Vol. 880 High Speed Computing (1988)

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



The foregoing write, read and modify steps can be implemented by
a single on -chip shift operation, which employs the original refresh
logic and a slightly modified sense amplifier array. When a word line
in a p x q -bit storage array is activated by a row address, the signals
at the q -cell row are transferred to hit lines and Sensed by q sense
amplifiers. In normal operation, the contents of the q sense amplifiers
are then returned to the original cells. In the modified design, how-
ever, the sensed data is sent to, and stored in, the adjacent cells of
the selected row during testing. By saving the data shifted out from
the rightmost sense amplifier and returning it to the leftmost cell in
the next shifting operation, the entire p x q -bit cell array becomes
a pq -bit circular shift register. A circular shift produces a new test
pattern for each partition. 2q + 1 shift operations suffice to produce
the test patterns necessary to test all the cells in the partition.

Address

Address
buffer

Storage cell array

Sense amplifier array

Storage cell array

Refresh
control

t
Control

''////%%/ tt %%/in

%%////llfdatr/AIML
Column decoder (self -testing)

Data iNout

Storage cell array

Sense amplifier array

Storage cell array nt

Data
buffer

VA/A. WAWA

Test genera-
tion and

control logic

T1
Set Error

test mode

Fig. 3: A self- testing dynamic RAM chip.

As in the general case of Fig. 3, the DRAM partitions are tested
in parallel, and a duplicated equality checker is used to compare the
sense amplifier outputs from the two cell partitions; this comparison
is done during the shift operation, and two entire rows are checked
at a time. This significantly reduces the testing time. In the 64-Kbit
DRAM case, for example, q = 256, so 256 cells are tested simultane-
ously per partition. Conventional external testing methods can only
test one DRAM cell at a time. The peripheral circuits, test gener-
ator, the refresh and timing control logic, and the data buffers are
made self- testing by duplication. Alternatively, parity checking may
be used to detect errors in the peripheral circuits.

An important feature of our self -testing DRAM design is that the
testing time need not increase with the memory size, if the number
of partitions rather than the partition size in increased. The cir-
cuit overhead, which is indicated by shading in Fig. 3, is mainly
limited to the sense amplifier modifications and the equality check-
ers. Clearly this overhead decreases as the number of cells increases.
We expect about 5% circuit overhead in a 1 -Mbit DRAM, which is
lower than other self -testing methods, such as the more than 20%
overhead found in [31]. Since our test patterns are derived from the
major physical failure modes, higher fault coverage than standard
test procedures such as GALPAT or error -detecting codes can be ex-
pected.

t METASAN is a Trademark of the Industrial Technology Institute.

5 EVALUATION
Much of our effort in the evaluation area concerns the various tech-
niques we are exploring to improve multiprocessor system performa-
bility, including specific aspects of both performance and reliability.
Indeed, evaluation studies, of either a model -based or experimental
nature, have accompanied most of our design- oriented investigations.
Such studies have also addressed techniques developed by others, e.g.,
in examining the the influence of workload on transient fault recov-
ery in random access memories [32], we evaluated a self- exercising,
self -checking memory design proposed by Rennels and Chau [33].

Another significant part of this effort concerns evaluation methods
and tools, per se, which are suited to the performability evaluation of
distributed real-time systems. Such methods /tools can assist com-
parative evaluations of design alternatives (as in the specific studies
cited above) or, when performability requirements are specified, can
serve as a means of system validation. In this regard, we are con-
tinuing to explore the utility of stochastic activity network (SAN)
models [34,35,36] and a SAN -based performability evaluation tool
called METASANt [37]. We are also concerned with modeling meth-
ods [38] which permit more definitive evaluations of how workload
affects dependability and, more generally, performability.

In the case of dependability, prior studies of workload influence
have, for the most part, dealt with specific systems and have been
based on measurement or simulation data. Although studies such as
this will continue to be useful, there is need to gain a more funda-
mental understanding of how workload, through its interaction with
faults, relates to system failure. Our approach in the latter regard
is analytical and is based on a general type of stochastic model re-
ferred to as a Markov renewal process (see [39], for example). In the
current version of the model [38], the faults considered are transient
(i.e., temporary external faults) which, in turn, result in dormant,
soft internal faults. Such faults can accumulate in the system and
be activated by computational demands or internal exercising. An
error occurs when a dormant fault in the system is activated. De-
pending on the severity of the faults and the source of activation, a
soft fault can be corrected, remain in the system, or cause an error
that corresponds to system failure, i.e., the system fails to perform
as required.

The workload we consider consists of arrivals of various types of
tasks which have different processing requirements. The relationship
between workload and the system is such that for each type of task,
say type i, there corresponds a threshold value m;. If the total
number of (dormant) faults in the system does not exceed m;, an
arrival of a task of type i activates and corrects any existing faults in
the system (via fault tolerance mechanisms provided by the system)
and brings the system back to the fault -free state. On the other hand,
if the total number of faults in the system exceeds m;, the service
request of a type i task cannot be met; accordingly, an arrival of
such a task causes the system to fail. This threshold value m; is the
fault margin associated with type i tasks. The set of fault margiur
characterizes the fault tolerance of the system.

In many cases fault margins will be small integers indicating lim-
ited fault tolerance with respect to the processing of such tasks. In
certain cases, however, it is possible for a fault margin to be infi-
nite, i.e., a task of this type is impervious to an arbitrary number of
faults. For example, a write operation in a memory system corrects
all existing dormant faults at the accessed location and hence, under
the above assumptions, can never cause a system failure. Workload
in such systems may play opposing roles depending on the num-
ber of accumulated dormant faults. On the one hand, it can favor

SPIE Vol. 880 High Speed Computing (1988) / 147

The foregoing write, read and modify steps can be implemented by 
a single on-chip shift operation, which employs the original refresh 
logic and a slightly modified sense amplifier array. When a word line 
in a p x q-bit storage array is activated by a row address, the signals 
at the $-cell row are transferred to bit lines and sensed by q sense 
amplifiers. In normal operation, the contents of the q sense amplifiers 
are then returned to the original cells. In the modified design, how 
ever, the sensed data is sent to, and stored in, the adjacent cells of 
the selected row during testing. By saving the data shifted out from 
the rightmost sense amplifier and returning it to the leftmost cell in 
the next shifting operation, the entire p x q-bit cell array becomes 
a pq-bit circular shift register. A circular shift produces a new test 
pattern for each partition. 2q + 1 shift operations suffice to produce 
the test patterns necessary to test all the cells in the partition.

Data in/outStorage cell array
mmnmm
Sense amplifier array 

Storage call array

Storage cell array
••••••••••••••

Sense amplifier array
MtMMHMHMMIMHtHMMMHMH!

Storage cell array
Control

Set Error 
test mode

Fig. 3: A self-testing dynamic RAM chip.

As in the general case of Fig. 3, the DRAM partitions are tested 
in parallel, and a duplicated equality checker is used to compare the 
sense amplifier outputs from the two cell partitions; this comparison 
is done during the shift operation, and two entire rows are checked 
at a time. This significantly reduces the testing time. In the 64-Kbit 
DRAM case, for example, q = 256, so 256 cells are tested simultane 
ously per partition. Conventional external testing methods can only 
test one DRAM cell at a time. The peripheral circuits, test gener 
ator, the refresh and timing control logic, and the data buffers are 
made self-testing by duplication. Alternatively, parity checking may 
be used to detect errors in the peripheral circuits.

An important feature of our self-testing DRAM design is that the 
testing time need not increase with the memory size, if the number 
of partitions rather than the partition size in increased. The cir 
cuit overhead, which is indicated by shading in Fig. 3, is mainly 
limited to the sense amplifier modifications and the equality check 
ers. Clearly this overhead decreases as the number of cells increases. 
We expect about 5% circuit overhead in a 1-Mbit DRAM, which is 
lower than other self-testing methods, such as the more than 20% 
overhead found in [31]. Since our test patterns are derived from the 
major physical failure modes, higher fault coverage than standard 
test procedures such as GALPAT or error-detecting codes can be ex 
pected.

5 EVALUATION

Much of our effort in the evaluation area concerns the various tech 
niques we are exploring to improve multiprocessor system performa- 
bility, including specific aspects of both performance and reliability. 
Indeed, evaluation studies, of either a model-based or experimental 
nature, have accompanied most of our design-oriented investigations. 
Such studies have also addressed techniques developed by others, e.g., 
in examining the the influence of workload on transient fault recov 
ery in random access memories [32], we evaluated a self-exercising, 
self-checking memory design proposed by Rennels and Chau [33].

Another significant part of this effort concerns evaluation methods 
and tools, per se, which are suited to the performability evaluation of 
distributed real-time systems. Such methods/tools can assist com 
parative evaluations of design alternatives (as in the specific studies 
cited above) or, when performability requirements are specified, can 
serve as a means of system validation. In this regard, we are con 
tinuing to explore the utility of stochastic activity network (SAN) 
models [34,35,36] and a SAN-based performability evaluation tool 
called METASANt [37]. We are also concerned with modeling meth 
ods [38] which permit more definitive evaluations of how workload 
affects dependability and, more generally, performability.

In the case of dependability, prior studies of workload influence 
have, for the most part, dealt with specific systems and have been 
based on measurement or simulation data. Although studies such as 
this will continue to be useful, there is need to gain a more funda 
mental understanding of how workload, through its interaction with 
faults, relates to system failure. Our approach in the latter regard 
is analytical and is based on a general type of stochastic model re 
ferred to as a Markov renewal process (see [39], for example). In the 
current version of the model [38], the faults considered are transient 
(i.e., temporary external faults) which, in turn, result in dormant, 
soft internal faults. Such faults can accumulate in the system and 
be activated by computational demands or internal exercising. An 
error occurs when a dormant fault in the system is activated. De 
pending on the severity of the faults and the source of activation, a 
soft fault can be corrected, remain in the system, or cause an error 
that corresponds to system failure, i.e., the system fails to perform 
as required.

The workload we consider consists of arrivals of various types of 
tasks which have different processing requirements. The relationship 
between workload and the system is such that for each type of task, 
say type t, there corresponds a threshold value m,-. If the total 
number of (dormant) faults in the system does not exceed m,-, an 
arrival of a task of type t activates and corrects any existing faults in 
the system (via fault tolerance mechanisms provided by the system) 
and brings the system back to the fault-free state. On the other hand, 
if the total number of faults in the system exceeds m,-, the service 
request of a type t task cannot be met; accordingly, an arrival of 
such a task causes the system to fail. This threshold value m,- is the 
fault margin associated with type t tasks. The set of fault margins 
characterizes the fault tolerance of the system.

In many cases fault margins will be small integers indicating lim 
ited fault tolerance with respect to the processing of such tasks. In 
certain cases, however, it is possible for a fault margin to be infi 
nite, i.e., a task of this type is impervious to an arbitrary number of 
faults. For example, a write operation in a memory system corrects 
all existing dormant faults at the accessed location and hence, under 
the above assumptions, can never cause a system failure. Workload 
in such systems may play opposing roles depending on the num 
ber of accumulated dormant faults. On the one hand, it can favor

t METASAN is a Trademark of the Industrial Technology Institute.

SP/E Vol. 880 High Speed Computing (1988) / 147

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



fault tolerance by detecting dormant faults and triggering correction
mechanisms. On the other hand, when faults have accumulated in
the system to an extent that exceeds the fault margin of some task
type, then an arrival of such a task causes the system to fail.

Under the above assumptions, states of the system can be rep-
resented by the set E _ {0, 1, ..., m }, where m is determined by
the set of fault margin values {m;), i.e., m = m + 2, where m =
max {m; ] m; < oo }. Thus an input task type having the largest
finite fault margin determines the size of the state space. For i = 0,
1, ... , m - 2, state i means there are i faults the system; state m -1
means there are at least m - 1 faults in the system; state m corre-
sponds to system failure. State transitions are caused by "events"
where, in the current version of the model, an event is either an ar-
rival of a task or an occurrence of a transient fault. The resulting
model is a Markov renewal process. Moreover, the state behavior of
this process is influenced by both workload (task arrivals) and faults
in a manner that can be determined analytically.

In particular, if dependability is the issue and the variable in ques-
tion is T1, the "time to system failure ", then one can derive a general
expression for the Laplace -Stieltjes transformation of the probabil-
ity distribution function (PDF) of T1. Moreover, in more special
cases, e.g., when interarrival times between input tasks and between
faults are exponentially distributed, we've been able to obtain closed -
form, time -domain solutions of the PDF of TI. Formulations of the
mean and variance of T1 have likewise been derived and, for certain
instances of the model, we've shown that, to a close first approxima-
tion, T1 is exponentially distributed. This result is significant since,
as demonstrated in [38], it permits larger systems, comprised of sub-
systems that fail in this manner, to be evaluated without having to
deal with an exceedingly large state space. Possible extensions o' she
basic renewal process model are currently under investigation; these,
in turn, should yield additional results of the type described above,

References

[1] J.P. Hayes, T.N. Mudge, Q.F. Stout, S. Colley and J. Palmer,
"A microprocessor -based hypercube computer," IEEE Micro,
vol. 6, no. 5, pp 6-17, October 1986.

[2] M.S. Chen and K.G. Shin, "Embedding of interacting task mod-
ules into a hypercube multiprocessor," in Hypercube Multipro-
cessors 1987, pp. 122 -129, SIAM, Philadelphia, 1987.

[3] T.C. Lee and J.P. Hayes, "Routing and broadcasting in faulty
hypercube computers," Third Conf. on Hypercube Concurrent
Computers and Applications, 1988, to appear.

[4] M.S. Chen, and K.G. Shin, " Processor allocation in an N -cube
multiprocessor using Gray codes," in IEEE Trans. on Comput.,
vol. C -36, no. 12, pp. 1396 -1407, December 1987.

[5] S. Dutt and J.P. Hayes, "On allocating subcubea in a hypercube
multiprocessor," Third Conf. on Hypercube Concurrent Comput -
era and Applications, 1988,W to appear.

[6] F. Harary, J. Hayes and H.-J. Wu, "A survey of the theory
of hypercube graphs," Computer and Math. with Applications,
1988, to appear.

[7] T.N. Mudge, J.P. Hayes, and D.C. Winsor, "Multiple bus archi-
tectures," Computer, vol. 20, no. 6, pp. 42 -48, June 1987.

[8] K.C. Knowlton, "A fast storage allocator," in Commun. of
ACM, vol. 8, no. 10, pp. 623 -625, October 1965.

148 / SPIE Vol. 880 High Speed Computing (1988)

Pi Y. Saad and M.H. Schultz, "Data communication in hyper -
cubes," Tech. Rept. YALEU /DC5 /RR -389, Department of
Computer Science, Yale University, June 1985.

[10] M. Hall, Jr., Combinatorial Theory, Blaisdell, 1967.

[11] R. Mathon and A. Rosa, "Tables of parameters of BIBDs with
r < 41 including existence, enumeration, and resolvability re-
sults," Annals of Discrete Mathematics, vol. 26, pp. 275 -308,
1985.

[LI] I] M. Ajmone Marsan, "Multichannel local area networks," en
Proc. COMPCON Fall '82, Washington, D.C., September 20-
22, 1982, pp. 493 -502.

[13] J. Opatrny, N. Srinivasan, and V. S. Alagar, "Construction of
large fault -tolerant communication network models," in Proc.
16th Int'l Symp. on Fault- Tolerant Comput., Vienna, Austria,
July 1986, pp. 110 -116.

[14] M. D. Mickunas, "Using projective geometry to design bus con-
nection networks," in Proc. Workshop on Interconnection Net-
works, West Lafayette, IN, April 21 -22, 1980, pp. 47 -55.

[15] B.E. Aupperle and J.F. Meyer, "Fault -tolerant BIBD networks,"
Comput. Res. Lab., Univ. of Michigan, Ann Arbor, MI, Tech.
Rep. CRL-TR -14-87, December 1987 (submitted to 18th Int'l
Symp. on Fault- Tolerant Comput.).

[16] T.Anderson and P.A. Lee, Fault Tolerance: Principles and Prac-
tice, Prentice -Hall, 1981.

[17] J.P. Roth, W.G. Bouricius, and P.R. Schneider, "Programmed
algorithms to compute tests to detect between failures in logic
circuits," in IEEE Trans. on Electron. Comput., vol. EC-16, no.
10, pp. 567 -580, October 1967.

[18] J.E. Smith and G. Metze, "The design of totally self- checking
combinatorial circuits," in Proc. Int'l Symp. on Fault- Tolerant
Comp., June 1977.

[19] M. Nicolaidis and B. Courtois, "Design of self- checking systems
based on analytical fault hypotheses," Research Report RR -353,
IMAG, March 1983.

[20] T. Nanya and T. Kawamura, "Error secure /propagation con-
cept and its application to the design of strongly fault secure
processors," in Proc. Intl Symp. on Fault - Tolerant Comp., pp.
19-21, June 1985.

[21] K. Zielinski, "Model of error propagation in systems of commu-
nicating processes," in Sei. Comput. Program., vol. 6, no. 2, pp
191 -205, March 1986.

[22] T.-H. Lin and K.G. Shin, "Location of faulty module in a com-
puting system," submitted to IEEE Trans. on Comput.

[23! K.G. Shin and Y.H. Lee, "Evaluation of error recovery blocks
used for cooperating processes," IEEE Trans. Soft. Eng., vol.
SE-10, no. 6, pp. 692- 700,-November 1984.

[24] K.G. Shin and T.-H. Lin, "Modeling and measurement oferror
propagation in a multi -module computing system," to appear
in IEEE Trans. on Comput., vol. C-37, no. 9, September 1988.

[25] E.J. McCluskey, "Built -in self -test techniques," IEEE Design
and Test, vol. 2, no. 2, pp. 21 -28, April 1985.

fault tolerance by detecting dormant faults and triggering correction 
mechanisms. On the other hand, when faults have accumulated in 
the system to an extent that exceeds the fault margin of some task 
type, then an arrival of such a task causes the system to fail.

Under the above assumptions, states of the system can be rep 
resented by the set E = {0,1,...,m}, where m is determined by 
the set of fault margin values {mi}, i-e., m = m + 2, where m = 
max {m,- | m,- < oo}. Thus an input task type having the largest 
finite fault margin determines the size of the state space. For t = 0, 
1, ..., m   2, state t means there are i faults the system; state m   1 
means there are at least m   1 faults in the system; state m corre 
sponds to system failure. State transitions are caused by "events" 
where, in the current version of the model, an event is either an ar 
rival of a task or an occurrence of a transient fault. The resulting 
model is a Markov renewal process. Moreover, the state behavior of 
this process is influenced by both workload (task arrivals) and faults 
in a manner that can be determined analytically.

In particular, if dependability is the issue and the variable in ques 
tion is Tf, the "time to system failure", then one can derive a general 
expression for the Laplace-Stieltjes transformation of the probabil 
ity distribution function (PDF) of Tf. Moreover, in more special 
cases, e.g., when interarrival times between input tasks and between 
faults are exponentially distributed, we've been able to obtain closed- 
form, time-domain solutions of the PDF of Tf. Formulations of the 
mean and variance of Tf have likewise been derived and, for certain 
instances of the model, we've shown that, to a close first approxima 
tion, Tf is exponentially distributed. This result is significant since, 
as demonstrated in [38], it permits larger systems, comprised of sub 
systems that fail in this manner, to be evaluated without having to 
deal with an exceedingly large state space. Possible extensions o? the 
basic renewal process model are currently under investigation; these, 
in turn, should yield additional results of the type described above.

References

[1] J.P. Hayes, T.N. Mudge, Q.F. Stout, S. Colley and J. Palmer, 
"A microprocessor-based hypercube computer," IEEE Micro, 
vol. 6, no. 5, pp 6-17, October 1986.

[2] M.S. Chen and K.G. Shin, "Embedding of interacting task mod 
ules into a hypercube multiprocessor," in Hypercube Multipro 
cessors 1987, pp. 122-129, SIAM, Philadelphia, 1987.

[3] T.C. Lee and J.P. Hayes, "Routing and broadcasting in faulty 
hypercube computers," Third Conf. on Hypercube Concurrent 
Computers and Applications, 1988, to appear.

[4] M.S. Chen, and K.G. Shin, " Processor allocation in an N-cube 
multiprocessor using Gray codes," in IEEE Trans. on Comput., 
vol. C-36, no. 12, pp. 1396-1407, December 1987.

[5] S. Dutt and J.P. Hayes, "On allocating subcubes in a hypercube 
multiprocessor," Third Conf. on Hypercube Concurrent Comput 
ers and Applications, 1988,W to appear.

[6] F. Harary, J. Hayes and H.-J. Wu, "A survey of the theory 
of hypercube graphs," Computer and Math, with Applications, 
1988, to appear.

[7] T.N. Mudge, J.P. Hayes, and D.C. Winsor, "Multiple bus archi 
tectures," Computer, vol. 20, no. 6, pp. 42-48, June 1987.

[8] K.C. Knowlton, "A fast storage allocator," in Commun. of 
ACM, vol. 8, no. 10, pp. 623-625, October 1965.

[9j Y. Saad and M.H. Schultz, "Data communication in hyper- 
cubes," Tech. Kept. YALEU/DC5/RR-389, Department of 
Computer Science, Yale University, June 1985.

[10] M. Hall, Jr., Combinatorial Theory, Blaisdell, 1967.

[11] R. Mathon and A. Rosa, "Tables of parameters of BIBDs with 
r < 41 including existence, enumeration, and resolvability re 
sults," Annals of Discrete Mathematics, vol. 26, pp. 275-308, 
1985.

[12\ M. Ajmone Marsan, "Multichannel local area networks," m 
Proc. COMPCON Fall '82, Washington, D.C., September 20- 
22, 1982, pp. 493-502.

[13] J. Opatrny, N. Srinivasan, and V. S. Alagar, "Construction of 
large fault-tolerant communication network models," in Proc. 
16th Int'l Symp. on Fault-Tolerant Comput., Vienna, Austria, 
July 1986, pp. 110-116.

[14] M. D. Mickunas, "Using protective geometry to design bus con 
nection networks," in Proc. Workshop on Interconnection Net 
works, West Lafayette, IN, April 21-22, 1980, pp. 47-55.

[15] B.E. Aupperle and J.F. Meyer, "Fault-tolerant BIBD networks," 
Comput. Res. Lab., Univ. of Michigan, Ann Arbor, MI, Tech. 
Rep. CRL-TR-14-87, December 1987 (submitted to 18th Int'l 
Symp. on Fault-Tolerant Comput.).

[16] T.Anderson and P.A. Lee, Fault Tolerance: Principles and Prac 
tice, Prentice-Hall, 1981.

[17] J.P. Roth, W.G. Bouricius, and P.R. Schneider, "Programmed 
algorithms to compute tests to detect between failures in logic 
circuits," in IEEE Trans. on Electron. Comput., vol. EC-16, no. 
10, pp. 567-580, October 1967.

[18] J.E. Smith and G. Metze, "The design of totally self-checking 
combinatorial circuits," in Proc. Int'l Symp. on Fault-Tolerant 
Comp., June 1977.

[19] M. Nicolaidis and B. Courtois, "Design of self-checking systems 
based on analytical fault hypotheses," Research Report RR-353, 
IMAG, March 1983.

[20] T. Nanya and T. Kawamura, "Error secure/propagation con 
cept and its application to the design of strongly fault secure 
processors," in Proc. Int'l Symp. on Fault-Tolerant Comp., pp. 
19-21, June 1985.

[21] K. Zielinski, "Model of error propagation in systems of commu 
nicating processes," in Sci. Comput. Program., vol. 6, no. 2, pp 
191-205, March 1986.

[22] T.-H. Lin and K.G. Shin, "Location of faulty module in a com 
puting system," submitted to IEEE Trans. on Comput.

[23J K.G. Shin and Y.H. Lee, "Evaluation of error recovery blocks 
used for cooperating processes," IEEE Trans. Soft. Eng., vol. 
SE-10, no. 6, pp. 692-700rNovember 1984.

[24] K.G. Shin and T.-H. Lin, "Modeling and measurement of error 
propagation in a multi-module computing system," to appear 
in IEEE Trans. on Comput., vol. C-37, no. 9, September 1988.

[25] E.J. McCluskey, "Built-in self-test techniques," IEEE Design 
and Test, vol. 2, no. 2, pp. 21-28, April 1985.

148 / SPIE Vol. 880 High Speed Computing (1988)

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[261 T. Sridhar and J.P. Hayes, "Design of easily testable bit-sliced 1331 D. Rennels and S. Chau, "A self -exercising, self -checking mem-
systems," IEEE Trans. Circuits and Systems, vol. CAS -28, pp
1046 -1058, Nov. 1981.

ory design," in Digest 16th Int'l Symp. on Fault- Tolerant Com-
puting , Vienna, Austria, July 1986, pp. 358 -363.

[27] Y. You, "Self -testing VLSI circuits," Ph.D. Dissertation, Dept. [34] A. Movaghar and J. F. Meyer, "Performability modeling with
of Electrical Engineering and Computer Science, University of stochastic activity networks," in Proc. Real -Time Systems Sym

posium, Austin, TX, December 4 -6 1984, pp. 215 -224.Michigan, 1986.

[281 Y. You and J.P. Hayes, "A built -in testing approach for regu-
lar VLSI circuits," Proc. Int'l Conf. on Circuits and Systems,
(ISCAS 85), Kyoto, pp. 1309 -1312, June 1985.

[29] T.C. Lo et al., "A 64K FET dynamic random access memory:
Design consideration and description," IBM J. Res. Develop.,
vol. 21, pp. 318 -327, May 1980.

[30] Y.You and J.P. Hayes, "A self -testing dynamic RAM chip," in
IEEE Jour. Solid -State Circuits, vol. SC -20, pp. 428 -435, Febru-
ary 1985.

[31] J. Yamada et al., "A submicron VLSI memory with a 4b -at -a-
time built -in ECC circuit," Proc. Int'l Solid State Circuit Conf.,
pp. 104 -105 and p. 325, February 1984.

[32] J.F. Meyer and L. Wei, "Influence of workload on error recov-
ery in random access memories," to appear in IEEE Trans. on
Comput., vol. C -37, no. 4, April 1988.

[351 J. F. Meyer, A. Movaghar, and W. H. Sanders, "Stochastic ac
tivity networks: Structure, behavior, and application," in Proc.
Int'l Workshop on Timed Petri Nets, Torino Italy, July 1 -3 1985,
pp. 106 -115.

[361 W. H. Sanders and J. F. Meyer, "Performability evaluation of
distributed systems using stochastic activity networks," in Proc.
Int'l. Workshop on Petri Nets and Performance Models, Madi-
son, WI, August 24-26 1987, pp. 111 -120.

[37] W. H. Sanders and J. F. Meyer, "METASAN: A performabil-
ity evaluation tool based on stochastic activity networks," in
Proc. ACM -IEEE Fall Joint Computer Conference, Dallas, TX,
November 2 -6 1986, pp. 807 -816.

[381 J.F. Meyer and L. Wei, "Analysis of workload influence on de-
pendability," Comput. Res. Lab, Univ. of Michigan, Ann Arbor,
MI, Tech. Rep. CRL- TR- 15 -87, December 1987 (submitted to
18th Int'l Symp. on Fault - Tolerant Comput.).

[391 E. Cinlar, Introduction to Stochastic Processes, Prentice Hall,
Inc., Englewood Cliffs, New Jersey, 1975.

SPIE Vol. 880 High Speed Computing (1988) / 149

[26] T. Sridhar and J.P. Hayes, "Design of easily testable bit-sliced (33I D - Rennels and S. Chau, "A self-exercising, self-checking mem- 
systems," IEEE Trans. Circuits and Systems, vol. GAS-28, pp ory design," in Digest 16th Int'l Symp. on Fault-Tolerant Com- 
1046-1058, Nov. 1981. puting , Vienna, Austria, July 1986, pp. 358-363.

[27] Y. You, "Self-testing VLSI circuits," Ph.D. Dissertation, Dept. (341 A- Movaghar and J. F. Meyer, "Performability modeling with 
of Electrical Engineering and Computer Science, University of stochastic activity networks," in Proc. Real-Time Systems Syrr< 
Michigan, 1986. posium, Austin, TX, December 4-6 1984, pp. 215-224.

[28] Y. You and J.P. Hayes, "A built-in testing approach for regu- [35] J. F. Meyer, A. Movaghar, and W. H. Sanders, "Stochastic ac
lar VLSI circuits," Proc. Int'l Conf. on Circuits and Systems, tivity networks: Structure, behavior, and application," in Proc.
(ISCAS 85), Kyoto, pp. 1309-1312, June 1985. Int'l Workshop on Timed Petri Nets, Torino Italy, July 1-3 1985,

pp. 106-115. [29] T.C. Lo et a/., "A 64K FET dynamic random access memory:
Design consideration and description," IBM J. Res. Develop., [36] W. H. Sanders and J. F. Meyer, "Performability evaluation of 
vol. 21, pp. 318-327, May 1980. distributed systems using stochastic activity networks," in Proc.

Int'l. Workshop on Petri Nets and Performance Models, Madi-[30] Y.You and J.P. Hayes, "A self-testing dynamic RAM chip," in son WI August 24-26 1987, pp. 111-120. 
IEEE Jour. Solid-State Circuits, vol. SC-20, pp. 428-435, Febru 
ary 1985. [37] W. H. Sanders and J. F. Meyer, "METASAN: A performabil-

ity evaluation tool based on stochastic activity networks," in[31] J. Yamada et a/., "A submicron VLSI memory with a 4b-at-a- Proc . ACM-IEEE Fall Joint Computer Conference, Dallas, TX, time built-in ECC circuit," Proc. Int'l Solid State Circuit Conf., November 2-6 1986 pp 807-816 
pp. 104-105 and p. 325, February 1984.

[38] J.F. Meyer and L. Wei, "Analysis of workload influence on de-[32] J.F. Meyer and L. Wei, "Influence of workload on error recov- pendability," Comput. Res. Lab, Univ. of Michigan, Ann Arbor, 
ery in random access memories," to appear in IEEE Trans. on MI> Tech . Rep . CRL-TR-15-87, December 1987 (submitted to 
Comput., vol. C-37, no. 4, April 1988. mh Intn Symp . on Fault-Tolerant Comput.).

[39] E. Cinlar, Introduction to Stochastic Processes, Prentice Hall, 
Inc., Englewood Cliffs, New Jersey, 1975.

SPIE Vol. 880 High Speed Computing (1988) / 149

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


