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Abstract. In this paper, a new method is presented for (i) determining an optimal retry policy and 
(ii) using retry for fault characterization, which is defined as classification of the fault type and 
determination of fault durations. First, an optimal retry policy is derived for a given fault characteristic, 
which determines the maximum allowable retry durations so as to minimize the total task completion 
time. Then, the combined fault characterization and retry decision, in which the characteristic of a fault 
is estimated simultaneously with the determination of the optimal retry policy, are carried out. Two 
solution approaches are developed: one is based on point estimation and the other on Bayes sequential 
decision analysis. 

Numerical examples are presented in which all the durations associated with faults (i.e., active, 
benign, and interfailure durations) have monotone hazard rate functions (e.g., exponential Weibull and 
gamma distributions). These are standard distributions commonly used for modeling and analyses of 
faults. 
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1. Introduction 
Faults in computer systems are usually classified into three types: transient, 
intermittent, and permanent [23]. Transient faults die within a certain time of their 
generation, intermittent faults cycle between being active and inactive, and per- 
manent faults are (as the term indicates) permanent. When an error induced by an 
existing fault is detected, ’ the system retries to recover from the fault. The executing 

’ Normally, errors are detected but faults are not. However, if an error is defined as incorrectness in the 
user’s program, then the manifestation of a fault captured by built-in detection mechanisms is not the 
detection of an error, since the fault did not yet induce an error. In order to avoid an endless pedantry, 
we use the term “failure detection” for detection of an error or manifestation of a fault, and sometimes 
the term “fault detection” for detection of a fault manifestation. 
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tasks can be continued if retry is successful, or other recovery methods are applied 
if retry is not successful. 

As the term implies, retry consists of restoring the affected process to some fault- 
free initial state and then rerunning it on the same processor. Retry will become 
successful after the existing fault disappears. Clearly, retry is only applicable when 
the manifestation of a fault is confined and the process can be restored to integrity. 
Although restart and rollback recovery can be viewed as a sort of retry, the retry 
used in most computer systems means the repetition of microinstruction(s) or an 
instruction. The latter type of retry is typically hardware controlled [4, 51 and thus 
has advantages of requiring small time overhead. The time-consuming diagnosis 
and reconfiguration of the system can be avoided in the case of a successful retry. 
Moreover, such retries are reported to be highly successful owing to the fact that 
only a small percentage of faults are permanent [ 1,261. Consequently, we focus in 
this paper on hardware-controlled retry in which a failure is detected immediately 
upon its occurrence by certain signal-level detection mechanisms [2 I]. We assume 
there are some scratchpad memories used in restoring the process to integrity. 
Results obtained by Carter et al. [5] indicate that self-checking and retry mecha- 
nisms can be incorporated into processors inexpensively and without substantially 
degrading performance. 

Currently, several commerical machines incorporate retry. In the Honeywell 
6000 [ 171, instruction retry is reported to approach an effectiveness rate of 100 
percent. Retry in the IBM 360 and 370 series machines is widely used in the 
peripheral areas (I/O and storage), as well as in the central processor [ 121. The 
UNIVAC 1100/60 uses a hardware timer that goes off after an interval judged to 
be long enough to allow transient faults to die out, upon which retry can be effected 
[3]. However, we are provided with no discussion or justification regarding the 
detailed design of retry, for example, number of retry attempts. This can be seen 
more clearly when we consider the statement in [4]: “If successful, computer 
operation proceeds; if unsuccessful the above process [i.e., reexecution of the 
previous instruction] is usually repeated N times before diagnosis begins.” 

Clearly, the usefulness of retry mechanisms arises, as we have noted, from (i) the 
smallness of the proportion of permanent faults in any computer system, and (ii) 
the fast recovery from nonpermanent faults and thus the small task completion 
time and recovery overhead. In the case of a permanent fault, to retry a process on 
the affected processor is worse than useless; it is a waste of time. Thus, the number 
of retry attempts or retry duration within which retry is applied should be controlled 
to maximize the difference between the expected gain in performance that results 
from using retry when the fault is transient or intermittent, and the expected loss 
that results from using it when the fault is permanent. In this paper, we focus on 
the determination of the maximum allowable retry duration r* for the purpose of 
reducing expected task completion time. If the retry succeeds within this duration, 
the execution continues. If not, other methods for failure recovery, for 
example, rollback or restart following the system reconfiguration, must be used. 
(See Figure 1 for a standard procedure for task execution under the occurrence 
of fault.) 

In addition to the performance gain in case of a successful retry, the characteristic 
of a fault can be monitored through retries. That is, a retry that succeeds within 
the retry duration r* implies that the active duration of the fault following its 
detection is also less than or equal to r*. Even when the retry fails, it indicates that 
the active duration of the fault following its detection is greater than r*. On the 
other hand, the detection of a failure gives information regarding the duration 
between fault occurrences and the benign duration of an intermittent fault. Thus, 
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FIG. 1. Standard procedure for handling failures during task execution. 

it becomes possible to observe the nature of a fault through both retry and detection 
mechanisms. Note that due to nonzero fault latency [ 19-2 I], the observed nature 
of a fault may not be the same as its true nature. Although fault latency can be 
measured [22], we ignore this latency in the rest of the paper, since it has no effect 
on retry. In the discussion that follows, we treat a fault on the basis of its observed 
behavior and its effects on the system. For example, we use the term active duration 
of a fault to mean the active duration of a fault following its detection. 

Section 2 presents a brief description of the fault model along with necessary 
assumptions and an informal statement of the problem. It should be obvious that 
r* depends on fault behavior, and in Section 3, we show how to derive it, given 
the fault characteristics. When quantitative descriptions of fault behavior are hard 
to come by in the real environments, the combination of retry and detection 
enables us to observe the fault characteristics, while determining the optimal retry 
policy. We counter this in Section 4 by showing how to use statistical estimation 
theory to create a system that learns the fault characteristics as it goes, via retry, 
and therefore becomes increasingly more “optimal” in the sense of minimizing the 
expected task completion time. In Section 5 we apply Bayes sequential decision 
analysis to fault characterization and retry decision. The backward induction for 
testing hypotheses is also presented as an example solution to the sequential decision 
problem. The paper concludes with Section 6. 

In what follows, we use continuous retry instead of the number of retry attempts. 
A continuous retry can be understood easily when one considers the following two 
cases: detection mechanisms can monitor the presence of a fault continuously or 
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retry can be performed instantaneously. Conversion between a continuous retry 
and its corresponding number of retry attempts is not difficult and is discussed in 
Section 6. 

2. Fault Model, Assumptions, and Objectives 
Consider the behavior of faults in a computer system. Assume that arrival of faults 
is a time-invariant Poisson process with rate X. When a fault occurs, it is assumed 
to be transient, intermittent, or permanent with probability pt, pi, or pP, respec- 
tively. If a permanent fault occurs, it will remain constantly in the system until the 
component containing the fault is removed. Once a transient fault occurs in the 
system, it will disappear after an active duration, Ty . On the other hand, in case 
of an intermittent fault, it may become benign after an active duration, Tq, and 
then reappear after a benign duration, Tf’. That is, an intermittent fault cycles 
between active and benign states. For simplicity, we assume that Ty , T4, and TF 
are mutually independent random varibles with distribution function FF, Fy , and 
Ff and density functionsff , x, and fp, respectively. Thus, the characteristic of a 
fault can be represented by a 7-tuple 

GE ((Pz, Pi, up, A, FP, F4, f’fk PI + Pi + Pp = 11. 

Since the interarrival time of faults is usually much larger than any other 
durations, it is reasonably accurate to assume that there is at most a single fault in 
the system at any moment. Thus, the above behavior of faults enables us to model 
the system with a stochastic process shown in Figure 2. Denote the three possible 
states, namely, nonfaulty, fault-active, and fault-benign by NF, F, and FB. When 
a fault occurs, the system state changes from NF to F. The system moves back to 
NF if the fault is transient and disappears. It remains at F if the fault is permanent. 
If the fault is intermittent and becomes benign following an active duration, the 
system state changes from F to FB. The system may move back to F when this 
intermittent fault recurs-this is referred to as the reappearance of the intermittent 
fault. Models similar to this have been widely used in reliability analyses and the 
modeling of faults [ 14, 2 1, 251. 

When a failure is detected (i.e., the system is in fault-active state), retry is usually 
applied as a first-step recovery means. Retry will be successful if the fault disappears 
during the retry period, that is, if the system changes to either nonfaulty or fault- 
benign state during retry. Otherwise, the system is reconfigured and the executing 
task is migrated to a nonfaulty component and then recovered via the other means 
such as rollback or restart. The advantages of a successful retry are twofold. One is 
the avoidance of complicated, time-consuming recovery actions, such as fault- 
isolation, system reconfiguration, and task recovery. The other attractive gain 
from retry is to rescue an executing task. Consider a practical case in which a 
system (i) becomes faulty once and gets back to normal during execution of a task, 
and (ii) never becomes faulty again before the task is completed. In such a case, it 
is possible to avoid the overhead of migrating and restarting the task by means of 
a successful retry, leading to a faster completion of the task. 

In what follows, we derive an optimal retry policy that minimizes the expected 
task completion time when failures are detected during the task execution. We 
assume that initially no task is started on any faulty or potentially faulty module 
(having a benign intermittent fault) and that the system has enough redundancy 
so it can be reconfigured and made operational again when retry recovery fails. In 
such a case, the associated task is restarted following system reconfiguration. 
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FIG. 2. The fault model. NF = nonfaulty, 
F = faulty, FB = fault-benign. 

When the system enters fault-active state, there is no way to determine whether 
the fault is transient, intermittent, or permanent. If retry becomes successful, the 
fault is either transient or intermittent. Under the assumption that the benign 
duration of an intermittent fault is much smaller than the fault interarrival time, 
the fault is declared to be intermittent if the system fails again within a short period 
after the disappearance of the previous fault. Thus, a retry policy should specify 
two maximum allowable retry durations: one for a new fault and the other for an 
old recurring intermittent fault. 

Our problem is to derive an optimal retry policy that minimizes task completion 
time under the occurrence of faults. When the characteristics of faults (e.g., the 
durations associated with the above fault model) are not known a priori, the 
problem calls for an adaptive optimization in which the system decides a retry 
policy to minimize the task completion time while learning about the fault 
characteristics via retry. We solve this problem beginning with a simple case in 
Section 3 where the fault characteristics are known, and then the general case 
in Sections 4 and 5 where the fault characteristics are unknown. 

3. Optimal Retry Policy for Given Cf 

3.1 EXPECTED TASK COMPLETION TIME. Let x0 denote the computation time 
initially needed to complete the task under a fault-free condition. A failure may be 
detected when the amount of computation remaining to complete the task, that is, 
residual computation, is reduced to x, where 0 < x < x0. A retry policy is defined 
as R = ((r,(x, C’), rz(x, Cf)); 0 C x < XO), where the maximum retry durations are 
rl(x, C,) and r2(x, C,), respectively, for the detection of a new fault and an old 
intermittent fault when the residual computation is x and the fault characteristic 
is C’. For notational simplicity, we shall use ri, whenever convenient, in the sequel, 
to represent ri(x, Cf), i = 1, 2. 

Let the expected times needed to complete the residual computation x be denoted 
by V,(x, C,, R), VZ(x, C,, R), V,(x, Cf, R), and V.(x, Cf, R) when the retry policy 
R is adopted and the system is in the following situations: execution starts/resumes 
on a nonfaulty system, a new fault is detected, an old intermittent fault is detected 
again, and execution continues following a successful retry for an intermittent 
fault, respectively. Based on transitions among these situations, one can derive the 
following recursive equations for V,(x, C,, R) through V,(x, C’, R). For example, 
when the residual computation is x, the task completion time needed following the 
task resumption would be x if no new fault occurs within the duration x or would 
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be the sum oft and the time needed for completing the computation if a new fault 
occurs at the residual time x - t, that is, VX(X - t, C’, R). 

x 
V,(x, c,, R) = PXx + s (t + v2(x - t, C’, R))AemM dt, (1) 

0 

v,tx, c,, RI = Pr s o” tt + VI@, c,, RI1 CV) 

8 

II 
+ Pi (t + v,tx, c,, NJ @Xt) 

+ (1 ‘p,Ff(r1) - piF4(r*)){V*(XO, Cf, R) + rl + ts), (2) 

V&G C/v RI = (1 - F3~2)1~~1@0, c,, R) + r2 + tsl 

+ 
s 

oQ (t + v4tX, c,, RN dW), 
(3) 

fx 
J’4k C,, R) = (1 - F;(x))x + Jo (t + V~(X - t, c,, R)) dF;(t), (4) 

where ts is the set-up time necessary for system reconfiguration and task reinitiali- 
zation. The optimization problem can be defined as follows: Find an optimal retry 
PoficY, 

R* = Kr:tx, c,), $6, c/N; 0 c x < x01, 
such that Vx V2(x, C’, R*) = minR V2(x, C’, R) and V3(x, C’, R*) = minR V,(x, 
C’, R). Obviously, this optimal policy also minimizes V,(x, C’, R) and 
J’4(x, c,, RI. 

Since the mean time between failures is usually much longer than the other 
durations, V,(x, C’, R) can be accurately approximated by x. The bounds of 
V,(x, CJ, R) under the optimal retry policy are derived in the Appendix A. Note 
that the difference between the upper and lower bounds of V,(x, Cf, R*) is 
negligible. Thus, the approximation is used throughout the rest of the paper. 

In general, there are no closed-form solutions for r:(x, Cf) and r:(x, Cf). 
However, these optimal retry durations can be calculated numerically as explained 
below. Let Ax be an arbitrarily small positive value. With the initial condition 
K,(O, C’, R) = 0, V,(kAx, C,, R) with k = 0 and any r2 can be computed. Then, 
rz is chosen to minimize v,(kAx, C’, R) for the residual computation kAx, k = 1. 
By incrementing k we can recursively compute V4(kAx, C’, R), vs(kAx, Cf, R), 
and r: for the residual computation kAx. Once V4(x, Cf, R) is known, one can 
compute V2(x, C’, R) for any rl and can therefore determine r:(x, Cf). 

Define the recovery overhead as the total time required to resume normal 
operation following the detection of a failure. When the recovery overhead in place 
of the task completion time is to be minimized, rz(x, C’) = 0, Vx E (0, x0), because 
the recovery overhead will accrue during reappearances of an intermittent fault. In 
this case, the recovery overhead can be expressed as 6(x, CJ, R) - V,(x, C’, R), 
which is the time spent to restore the system to its state immediately before the 
failure is detected. The optimal retry duration r:(x, C,) can be determined from 
eq. (2) just as we can compute that for minimizing the task completion time. 

3.2 FAULT ACXIVE DURATIONS WITH MONOTONE HAZARD RATE FUNCTIONS. 
Since Ty is a continuous random variable, one can assume thatfT(t) is continuous 
in [0, 00). The hazard rate function of the active duration of an intermittent fault 
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is defined by u;(t) =fl(t)/( 1 - F;(t)). When the hazard rate function of the active 
duration of an intermittent fault is monotonically increasing, constant, or mono- 
tonically decreasing, the optimal retry duration r: exhibits interesting properties. 
These properties play a significant role in determining the optimal retry policy, 
since the time durations associated with faults are usually modeled to have 
monotone hazard rate functions. Typical distributions with monotonically increas- 
ing hazard rate functions include the gamma and the Weibull distributions with 
the shape parameters greater than 1. When their shape parameters are less than 1, 
they have monotonically decreasing hazard rate functions. The exponential distri- 
bution has a constant hazard rate. Consider first the nondecreasing hazard rate 
function that leads to the following theorem. 

THEOREM 1. When up(t) is monotonically nondecreasing in t and VI(x, C’, R) 
b x, r: = 0 or r* = 00 2 * 

PROOF. Using the approximation V,(x, C’, R) e x and differentiating eq. (3) 
with respect to r2, we obtain 

Since Vd(x, Cf, R) is independent of the past and current retry durations’ 
My, G), where Y 2 x, V~(X, Cf, R) + ( 1/up(r2)) - (XO + t,) is nonincreasing 
in r2(x, C’). Thus, V3(x, Cf, R) is a concave function of r2. The optimal retry 
duration r-z is then equal to 0 or 00. Cl 

Following the definition of r:(x, C’), rr(x, C’) = 0 implies that no retry be 
attempted for reappearing intermittent faults, whereas r:(x, C’) = 0~) means that 
retry should be applied until the intermittent fault becomes benign. 

COROLLARY 1. When uf(t) is monotonically nondecreasing in t, and if there 
exists an xz such that x0 + tS - xz - Rf(xT)E[ q] = 0, where R!(x) is the renewal 
function [7] corresponding to the distribution F:(t), then rT(x, C’) = 00 tfx 5 xz 
and rT(x, C,-) = 0, otherwise. 

PROOF. From Theorem 1, rz(x, C’) is either 00 or 0. When r:(x, C,) = CQ, there 
exists an r such that the integral JLj (a V,(x, C’, R)/dr2) dr2 becomes negative. Since 
V, (x, C,-, R*) is a monotonically nondecreasing function of x, there also exists an 
r such that the integral J6 (aV3( y, C’, R)/ar2) dr2 becomes negative when 
y 5 x. Thus, r:( y, C,) = 00 Vy 5 x. Using the assumption that the active and 
benign durations are mutually independent, we get V4(x, C’, R*) = x + 
(E[ZV(x)] - 1 )E[ Ty 1, where N(x) is the number of reappearances of the intermittent 
fault during the residual computation x, namely, N(x) = inf(n; )=I=, Tpk L x), 
where T$ is the benign duration following the kth occurrence of the intermittent 
fault. The expected value of N(x), E[N(x)], is equivalent to the renewal function 

’ Note that the probability of having a zero benign duration of an intermittent fault should lx zero, that 
is, Pr(Tf = 0) = 0. Otherwise, no useful computation can be done. 
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R:(x) corresponding to the distribution F:(t). Also, V,(x, C’, R) ] r2iDm 5 V,(x, C,, 
RI I yo if r:(x, C’) = CQ, that is, 

s 

m 

0 
(t + V,(x, C’, R*)) dF;(t) = E[T;] + V‘,(x, C,, R*) 5 a@,,) + ts. 

From the equality in the right-hand side of the above equation, we obtain xz and 
thus the corollary is proved. Cl 

Theorem 1 can also be viewed as below using the concept of stochastic ordering 
between two random variables. A random variable X is said to be stochastically 
larger than the other random variable Y if Pr(X > t) 2: Pr(Y > t) V t [ 181. Let 
c( ] r) be the remaining life of the intermittent fault after retry has been applied 
for the duration r. When the hazard rate function is nondecreasing, c( ] r) is 
stochastically larger than c( ] s), provided r I s. Thus, Vs 2 r; if it is worth 
continuing retry beyond the retry duration r (in the sense of minimizing the task 
completion time), then we should continue the retry even after the retry duration 
s. Consequently, the retry continues until the intermittent fault disappears. 

Note that when the hazard rate function is nondecreasing, xt is determined by 
the mean active duration and is independent of the shape of the distribution. xr 
could become negative when E[ 71 is large, that is, intermittent faults have a long 
active duration. In such a case, Corollary 1 implies that no retry be applied for 
intermittent faults. On the other hand, if the set-up overhead ts is large, x: could 
be even larger than ~0, implying that retry be used as a sole means of recovering 
from an intermittent fault. 

When the hazard rate u;(t) is decreasing, the nice properties stated in both 
Theorem 1 and Corollary 1 do not exist. However, there exists at most one root of 
eq. (5) that minimizes I’+ In such a case, since there is no closed-form expression 
of V,(x, C,, R*), we have to resort to numerical techniques for determining both 
r:(x, Cf) and rr(x, C’), as was previously mentioned. 

Several numerical examples are shown in Figures 3-5, where the durations are 
normalized with respect to ~0, and the active duration of the intermittent fault is 
assumed to have the gamma or Weibull distribution. Figure 3 presents xz’s when 
the shape parameter cl!‘s of the gamma and Weibull distributions, respectively, 
are greater than or equal to 1. Figures 4 and 5 show the optimal retry duration 
r:(x, C’); the solid lines for (Y < 1 and the dashed lines for (Y = 1. Note that for the 
gamma distribution u:(t) approaches l/j3 as t + 00, where p is the scale parameter. 
Thus, it is possible for the derivative of V, to be negative, (i.e., eq. (5) becomes 
negative), implying rr(x, Cf) = 00. For the Weibull distribution with (Y < 1, rz 
never becomes 03 since u;(w) = 0. 

Consider the case where Tl, v, and TF are all exponentially distributed with the 
parameters 7, p, v for the transient fault disappearance rate, the intermittent fault 
disappearance and reappearance rates, respectively. SincefF(t) = ve-“‘, the renewal 
function R;(x) becomes 1 + vx. From Corollary 1, we have r:(x, Cf) = 00 if 
xrxtand 

where 

$(x, Cf) = 0 if x>x:, 
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FIG. 3. x&x, Cl) versus the shape parameter a when the hazard rate is 
increasing andf, (t) = 3e-“. Case 1: Gamma distribution, B = 0.1. Case 2: 
Weibull distribution, @ = 0.1. Case 3: Weibull distribution, fJ = 0.2. Case 4: 
Gamma distribution, @ = 0.2. 

V,(x, Cf, R*) then becomes 

if x5x:, 

V,(x, C,, R*) = (6) 

if x>x:. 

The derivative of VZ(X, C’, R) with respect to rl becomes 

aV2(x, C,, R) 

ah 
= pP + pmp(-m)tl - (XI + ts - ~171 

+ piexp(-prl)[l - ixo + ts - V,(X, C’, RIbI. (7) 

With rz(x, C’) determined as in Corollary 1 and V4(x, C,, R*) as in eq. (6), eq. (7) 
can have at most two roots. The optimal retry duration r:(x, C’) can be obtained 
by examining VZ(X, C’, R) at the boundaries, rl = 0 and rI = ~0, and the roots of 
eq. (7). Note that t-7 cannot be infinite as long as pP C 0. Unlike r:, r: does not 
have to be zero when x > xr. Several cases of V2(x, C,, R) as a function of rl are 
shown in Figure 6 where all parameters are normalized with respect to x0. The 
case 2 in Figure 6 shows an example for which two positive roots of eq. (7) exist. 
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FIG. 4. The optimal retry duration rt(x, CJ) for Weibull distributions 
with increasing hazard rate. The density function of the active duration 
f;(t) = (u/p Pexp(-P/p). /3 = 0.2;fP(t) = 36”‘. 
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FIG. 5. The optimal retry duration rT(x, C,) for Gamma distributions 
with decreasing hazard rate. The density function of active duration 
f?(t) l/(B”r(a))ta-‘exp(-to). ,8 = 0.4;fP(t) = 3e-“. 
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FIG. 6. V,(x, Cl, R) - x versus the retry during r, for exponentially distributed 
durations, x = 0.8, T = 10, p = 12. Case 1: pp = 0.1, p, = 0.5, p, = 0.4, Y = 6. 
Case 2: pp = 0.05, p, = 0.55, p, = 0.4, Y = 12. Case 3: pp = 0.05, p, = 0.6, 
p, = 0.35, Y = 6. 

Figure 7 presents some numerical results on r:(x, C’) as a function of x. Note that 
XT depends upon the ratio of Y to cc, whereas r: varies as pl, pi, and pp change. 

4. Optimal Retry Policy and Parameter Estimation 
In Section 3, we have derived an optimal retry policy for a given fault characteristic 
C’. It is, however, very difftcult in practice to know a priori the fault characteristic. 
Even if the fault characteristic is measured during device manufacture, it may well 
vary as the execution environment and the executing tasks change. Another factor 
that makes the fault characteristics time variant is the aging of components, for 
example, the bathtub curve of the failure rate as a function of time [23]. Thus, it 
is important to determine an optimal retry policy for uncertain fault characteristics. 

Detection mechanisms can be useful in collecting data of the duration between 
two successive fault occurrences or the benign duration of an intermittent fault for 
characterizing the behavior of fault occurrence and reappearance. Retry may lead 
to an indication of the active duration of a transient or intermittent fault, which 
is, on the other hand, affected by the retry policy applied. More specifically, when 
C, is unknown, C, has to be estimated first with the observation of system state 
transitions (as shown in the model of Figure 2) with retry and detection mecha- 
nisms. Then, the retry duration will be determined based on an estimated Cf. In 
such a case, the computer system has to adjust its retry policy using the information 
on the fault behavior collected during its past and current retries. See Figure 8 for 
a block diagram of such an adaptive optimization. 
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FIG. 7. The optimal retry duration r:(x, C,) for exponentially distributed 
durations. Case 1: p,, = 0.1, p, = 0.3, pi = 0.6, T = 6, P = 5, y = 3. Ca 2: pP 
= 0.1, pt = 0.6, pi = 0.3, T = 6, p = 5, Y = 3. Case 3: pP = 0.1, p, = 0.3, 
~i=0.6,7=12,~=10,v=6.Case4:p,=0.1,p,=0.6,~~=0.3,r=12, 
p = 10, Y = 6. 
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FIG. 8. Block diagram of the adaptive optimization. 

In what follows, we shall limit the discussion only to the characterization of the 
active duration of intermittent faults and the simultaneous determination of an 
optimal retry policy that minimizes the task-completion time. The reasons for such 
a limit are 

(1) When Tf, Ty, TT, and Tf are mutually independent, the estimation of these 
durations can be treated separately and individually with the same approach. 
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(2) Unlike the probabilities of having different types of fault and the fault occur- 
rence interval, the behavior of an intermittent fault is difficult to measure. 

(3) The fault occurrence interval and the benign duration of an intermittent fault 
can be observed completely via detection mechanisms, whereas the information 
collected through retry may become incomplete when the retry stops unsuc- 
cessfully. 

(4) When retry is applied, the current sample has effects on the current retry 
decision during its collection. Thus, simultaneous estimation and decision 
must be performed continuously during retry. 

Let the active duration of an intermittent fault have the density function form 
fl(t ] 8) with the parameter 0 unknown. (0 could be a vector if there are two or 
more parameters, for example, the shape parameter (Y and the scale parameter @ 
for the Weibull and gamma distributions.) If the form of the density function is 
not known a priori, we can assume several possible forms and perform a test of fit, 
for example, a chi-square test of tit, or hypotheses testing, as is discussed in the 
next section. 

The samples obtained for the active duration can be represented by a 2-tuple 
(Z, t) where Z is a single-bit flag and t indicates a duration. Z = 0 represents a 
successful retry, and hence t indicates the active duration of the fault. On the other 
hand, when a retry fail, Z = 1 and t is the retry duration. Let (Zi, ti), i = 1, 2, . . . n, 
denote the past samples related to the active duration of an intermittent fault. 
These resulting samples are type Z progressively censored, following Cohen’s defi- 
nition in [8] with continuous censoring times. There are several different types of 
estimators conceivable for estimating the parameter B on the basis of these pro- 
gressively censored samples. For the Weibull and gamma distributions, the maxi- 
mum likelihood estimators have been widely studied as in [8-lo], [ 161, and [28] 
when the samples are progressively censored. 

When the fault is still active even after the current retry duration r, we shall have 
collected an additional sample (1, r) via the current retry. Let e(r) be the maximum 
likelihood estimator of B which is based on the samples up to and including 
the current sample (1, r). Note that the dependency of 0 on the current sample 
(1, r) is expressed explicitly, since the current retry duration will depend on this 
estimated e^. 

Let the optimal retry durations based on the estimated e*(r) be denoted by rt(x, 
i(r)), k = 1,2, for a newly detected fault and an old intermittent fault, respectively. 
Use the notation C’(e^(r)) to indicate that the active durations of intermittent faults 
have the density function fl(t ] e*(r)), and let R(r) denote the policy that the 
maximum allowable retry duration for the current retry is r. Then, the direct 
solution of the optimal retry duration is to find the minimum of Vk(x, C/(6(r)), 
R(r)), k = 1,2, 3,4. Notice that the retry duration r not only appears in the integral 
equations (2) and (3), but also affects the fault characteristic Cf. 

Under certain conditions, it can be proved that r:(x, i(r)) is a nonincreasing 
function of r. We first derive the results under such conditions and then discuss its 
application later in this section. 

THEOREM 2. When (a) the active duration of an intermittent fad< has the 
density function f y(t ] 0), and (b) for tj ?I tk the ratio (fl(t ] e(tj)))/( f y(t I e(&)))-a 
likelihood ratio [ 15]-is nondecreasing in t, then the optimal retry duration is 
determined by 

rk* = infir; r,*(x, g(r)) 5 rJ. U-3) 
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To prove this theorem, we need the following three lemmas. 

LEMMA 1. Under the same conditions as in Theorem z, let q and Tk be random 
variables with the density functionsfl(t 1 B(tj)) andfl(t 1 e(tk)), respectively, and let 
9(t) be a nondecreasing function oft; then E[*(Tj)] L E[P( Tk)], provided tj Z tk. 

PROOF. Proof of this lemma follows immediately from Lemma 2 of Chapter 3 
in [15]. Cl 

Let_z((t 1 l(G)) be the hazard rate function when the density*function of Tf is 
{i(tl O(G)). The following lemma gives the ordering of uy(t I e(tj)) with respect 

I’ 

LEMMA 2. Under the same conditions as in Theorem 2, uy(t I e^(tj)) is a non- 
increasing function of tj for every fuced t. 

PROOF. For b 5 tk, we have 

fF(t I &t, )I .fY<S I htj 1) 
fi(t 1 e^(tk)) s fl(s I e^(tk)) 

for all s 2 t. This inequality implies that 

fl(t 1 e^(tj)) Jrfl(U I e^(tj)) du 1 - Fy(t I e^(tj)) 

f;(t 1 &t,)) S j.:fl(u 1 e*(a)) du = 1 - F;(t 1 e^(t,)) ’ 

Thus, Uy(t I e*(Cj)) I Up(t 1 &tk)) if Cj 2 tk. 0 

I$ V,*(x, i(t)) = minR vk(x, b(t), R), k = 2, 3, 4, where f?(t) iS used in place of 
C,@(t)). Note in this case that the active duration of the intermittent fault is 
distributed with the parameter i(t) and that all the other distributions are known. 

LEMMA 3. Under the same conditions defined as in Theorem 2, ift, > t2, then 

(i) V,*(x, &t,)) L V,*(x, &t2)), k = 2, 3, 4, 
(ii) r,*(x, e^(t,)) s rz(x, &t2)), k = 1, 2. 

PROOF. The proof for k = 3, 4 is done by mathematical induction. Let I/k&, 
f(tj), r2(n, j)), k = 3, 4, be the expected times needed to complete the residual 
computation x when there are at most n retries to be attempted following the 
current one, and let r&z, j) be the maximum retry duration allowed. Also, let 
the optimal rep duration to achieve the minimum V&(x, $tj)) be rz(n, j). For 
n = 0, V&(x, Q)) = x and 

f30(x, htl)) - V,,O(~, &t), $(O, 1)) 

S 
OD 

= 
0 

W, x, $YO, l))MYt I &hN - fl<t I &d)I 4 

where q(t, x, y) = t + x when t I y and y + ~0 + ts when t > y. Since *(t, x, ry) 
is nondecreasing in t, the right-hand side of the above equation is nonnegative as 
a result of Lemma 2. Also, since Vz,(x, d(t2)) is the minimum when the active 
duration of the intermittent fault has the density functionfl(t I &a)), we get 

vt,(x, htl)) 22 V,,O&, @t2), $64 1)) 2 ~f,(x, ht2)). 

Suppose that Y:Jx, 8(t,)) 2 V!,&, &td) and C,,(x, &tlN 2 V&(x, &a)) 
Vx, provided tl L t2. It is obvious to see from eq. (4) that V&+,(x, &cl)) L 
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C,,,+,(X, e^W) vx. Thus, 

59 

v&+,(x, &tl)) - V3,n+1k @2), rZ(n + 1, 1)) 

s 

Ca 

E 
0 

w9 cJ+l (x, @tl)), rz*(n + 1, l))lfX I &tl)) - fl<t I &))I dt. 

wt, c,n+l (x, e^(t,)), rz(n + 1, 1)) is nondecreasing in t 5 r:(n + 1, 1). Also, since 
r:(n + 1, 1) is the optimal retry duration, V&+,(X, &t,)) 5 x0 + ts. Hence, 
wt9 Jqn+, (x, @I)), rr(n + 1, 1)) is always nondecreasing in t. The right-hand 
side of the above equation becomes nonnegative, resulting in V:,+,(x, e^(t,)) h 
V3,,+lk i(t2), rT(n + 1, 1)) 2 V* 3,n+l (x, &t2)). By mathematical’ induction, we 
have V,*(x, @t,)) I VE(x, e^(t,)) for k = 3, 4. 

To prove rz(x, e^(t,)) 5 rF(x, t?(Q), the following cases are examined. When 
r:(x, &t,)) = 0, the relation is always true. When rz(x,Ae^(tl)) > 0, using Lemma 2 
and the first part of this proof, the derivative of V3(x, B(tj), R) with respect to the 
retry duration r has the following ordering relationship Vr and t, 2 tz. 

1 
CYX, e^@l 1) + 7 

ui tr I OttI )) 
- @iI + ts) = wx, e^(t*)) + 4- - (x0 + ts), 

ui tr I e(tZ)) 

where all retries after the current one are assumed to employ the optimal policy. 
Thus, for tl 2 t2, r2(x, &t2)) = UJ when r-:(x, &t,)) = 03, and r2(x, e^(t,)) L 
rz(x, &t,)) when r:(x, e^(t,)) is finite. 

For the case of k = 2, it is easy to see that V~(X, e^(t, ), R) is a linear combination 
of the effects of both transient and intermittent faults. Thus, VZ(X, e*(tj), R*) 2 
V2(x, e(tk), R*). Also, the handling of I’2 with respect to ri hy the same 
ordering relationship as >hat of V3&with respect to r2. Thus, VZ(X, e(tj ), R*) 2 
V2(x, fl(tk), R*), and r:(e(tj)) 5 r:(e(tk)) when tj 2 tk. 0 

Lemma 3 shows that r,*(x, e^(tj)), k = 1, 2, is nonincreasing in tj. Thus, there 
exists an r such that r 2 rE(x, g(r)). The proof of Theorem 2 is given as follows: 

PROOF OF THEOREM 2. Suppose that the retry has been applied for the period r 
but the fault is still active. When r:(x, 8(r)) > r, the retry should be 
continued since it decreases the expected task completion time. Thus, r,*(x) > 
sup(r; t-:(x, g(r)) > r}. Suppose there is an rj E (r; r-:(x, i(r)) 5 r). Then 
I/k’(x, &r,), 6) 2 V,*.(x, e^(rj)) 2 Vz,(x, f?(r,*)), where rz is defined as in 
eq. (8) and k ’ = k + 1. Thus, the theorem follows. 0 

If the maximum likelihood estimator is chosen for g(r), it maximizes the 
likelihood function: 

where ~(1, t, 0) is defined as 

?a 6 6) = 
if I = 0, 
if I=l. 

(9) 

For the same example in Section 3.2, suppose the active duration of an intermittent 
fault is exponentially distributed with an unknown disappearance rate cc. Using a 
method similar to the Cohen’s derivation in [8], the maximum likelihood estimator 
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ii(r) for an exponential distribution- which maximizes log &)-is obtained as 

Theorem 2 gives the optimal stopping time for the current retry. Note that the 
true value of p is unknown and its maximum likelihood estimator is to determine 
the optimal retry duration. In the case of retry for a reappearing intermittent 
fault, the optimal retry duration for a given or is either 0 or 03 as shown in 
Corollary 1. Using Theorem 2 and eq. (lo), we get the optimal retry duration 
as follows 

(11) 

Note that the gamma distribution has a nondecreasing likelihood ratio for both 
LY and /3 [ 151. Furthermore, the estimators provided by Cohen [lo] show that 
both the estimated cy and B are increasing in the current retry period r. Thus, 
Theorem 2 can be applied directly when the active duration of the intermittent 
fault has the gamma distribution. When the distribution of the active duration is 
Weibull, Theorem 2 cannot be applied directly due to the fact that the Weibull 
distribution has a nondecreasing likelihood ratio with respect to its scale parameter 
only. A reasonably good approximation can be obtained by assuming that (Y is 
constant during the current retry and /3 is estimated using both the past and current 
samples as discussed above. 

There are some shortcomings when the maximum likelihood estimator is used 
for the progressively censored samples. Particularly, the estimator is biased when 
the samples are censored. Also, in the case of the exponential distribution, fi does 
not contain sufficient statistics of p when the samples are censored and incomplete, 
that is, when there exists at least one sample (Ii, ti) with Zi = 1. These shortcomings 
can be seen easily from a trivial example: 6 becomes zero when Ii = 1 for all i = 1, 
2 9-**, n. In fact, as shown by van Zwet [27], for most practical cases it is impossible 
to obtain unbiased estimators when the samples are Type I censored in a semi- 
infinite interval. Note, however, that there is no restriction about which estimator 
to be used in the foregoing determination of the optimal retry policy, meaning that 
estimators other than the maximum likelihood estimator can be used without 
altering our method described thus far. 

5. Bayes Sequential Analysis and Optimal Retry 

In the previous section, the unknown parameters of a distribution are estimated 
first, and the optimal retry policy is then determined using the estimated results. 
Notice that there could be more subsequent retries for the same intermittent fault 
before the task completion. Since the estimated parameter, 8, changes with the 
samples obtained via these retries, the usage of constant e(r) for further retries 
throughout the rest of the computation to determine r: is not accurate. In other 
words, the point estimation approach treated in Section 4 does not include the 
possible variation of e^ during the subsequent retries in determining rz. In this 
section, we shall take the Bayes approach to remedy this problem. 

5.1 OPTIMAL RETRY AND BAYES DECISION. &.et the distribution of Tq be 
governed by some unknown parameters Wi. The a priori information concerning 
Wi is expressed in terms of a probability distribution function defined on Q. Let 
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the density function of Wi be [i(w). Denote further the fault characteristics, given 
Wi and the prior density function ti, by CJ, ,,,, and Cf, b, respectively. 

To apply the Bayes decision theory for the retry of an intermittent fault, we 
define the risk with a retry policy R, given & and the residual computation x, as 
follows: 

PI& ti, R) z s v& Gy, R)&(W) dw, k = 3, 4. (12) n 

Thus, the (optimal) Bayes risk is given as 

P,*<x, Et) r i;fd& ti, RI, k = 3, 4. (13) 

The optimal retry duration in case of the detection of an old intermittent fault, 
r:(x, C’l[,), abbreviated by r:(x, [i), yields the Bayes risk p:(x, [i). Similarly, the 
Bayes risk of the retry for a newly detected fault can be defined by eqs. ( 12) and 
(13). However, the determination of rr(x, [i) is a one-stage Bayes decision problem. 
Once p4(x, [i) and rz(x, Ei) are obtained, the normal form of analysis [2] can be 
applied directly for the solution of r:(x, [i). 

Following a retry attempt for an intermittent fault, regardless of whether it fails 
or succeeds, an event related to the fault active duration Tq is observed. The event 
observed during a retry of the duration r is either “success” or “fail.” The “success” 
event, denoted by e”(t), occurs when the detected fault disappears after the retry 
duration t, which is less than or equal to the maximum allowable retry duration r. 
The “fail” event, denoted by e/(r), occurs when the detected fault does not 
disappear by the end of the retry duration r. Let S(r) = (es(t); t I r] U {e/(r)). 
With the prior density function [i(W), the posterior density function following the 
observation of e E S(r), denoted by [i( W ] e), i = 1, 2, becomes 

de I wEi 

‘i(w ’ e, = Jn g(e 1 w)[i(W) dw ’ (14) 

where g(e ] w) is the generalized conditional density function for the event e as in 
[ 111, that is, 

g(e ’ w, = 
the density function of Tq at t 
Pr(e/(r)) 

;; ; 1 ;,:&and t 5 r, (15) 
. 

This posterior density function will become the prior density for the next retry. 
Consequently, the system’s behavior is similar to a sequential decision procedure 
which determines first a retry policy and then observes the resulting sample. The 
procedure will be repeated with a new prior distribution which is determined on 
the basis of the new sample observed and the old prior distribution. The decision 
on retry and the sampling for fault characterization will continue as long as there 
is an occurrence of fault. 

The problem of selecting the optimal retry policy can also be treated as the 
optimal stopping problem with continuous observations [ 131. Suppose an inter- 
mittent fault is detected again when the residual computation is x. Then, retry is 
applied for a specified stopping time r. The task will be continued, without applying 
recovery methods other than retry, if the fault disappears during the retry period r. 
Otherwise, it has to be restarted from the beginning.’ The posterior density function 

3 For simplicity, it is assumed that there is only one alternative to the retry recovery, that is, restart. 
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of Wi becomes Ei( W ] e”(t)) or [i( W l e/(r)), depending on the outcome of retry. The 
cost of an observation is the amount of time used for monitoring the fault until its 
disappearance (i.e., c(e”(t)) = t) or until the end of retry (i.e., c(e/(r)) = r). The 
costs associated with the termination of retry are defined as the amount of time 
necessary to complete the residual computation x as follows: 

UX, i, ti I e”(O) = PZYX, Ei(w I fW)), 

L(X, r, [i 1 e/(r)) = X0 + ts. 

The expected loss for the stopping time r: is the same as the Bayes risk defined 
in eq. (13). According to the theory presented by Irle and Schmitz in [ 131, there 
always exists an optimal stopping time, r2* E [0, m), satisfying eq. (13). 

In the next section we solve the sequential decision problem using the backward 
induction [ 1 l] for testing hypotheses where the prior and posterior information is 
described by discrete probability distributions. Note that the minimax method in 
[2] cannot be used to solve eqs. (12) and (13), since the decision space-which 
consists of all possible maximum retry durations-is neither countable nor finite. 

5.2 OPTIMAL RETRY AND HYPOTHESES TESTING. Suppose that there are a 
primary and some alternative hypotheses concerning the active duration of an 
intermittent fault. Consider the sequential testing of these hypotheses and the 
simultaneous determination of the optimal retry policy; this is not difficult to solve 
since both the prior and posterior probabilities lie in the same unit interval (0, I). 
For given hypotheses, the initial prior distribution can be assumed to be equally 
likely among the hypotheses. 

To be more specific, consider an example in which the active duration of an 
intermittent fault is assumed to be exponentially distributed with an unknown 
parameter I*. Let there be two hypotheses on P, Ho and H1 for CL = CLO and P = pl, 
respectively, and let clo > pI. The uncertainty associated with these hypotheses can 
be represented by the probability h of having p = h. We first determine the optimal 
retry policy Vh E (0, 1). Then, we consider the problem of testing hypotheses as 
well as estimating the expected sample size to reach a certain significance level 
under the optimal retry policy. 

Consider the optimal retry duration rz(x, h) upon detection of an old inter- 
mittent fault. In this case, we get the posterior probabilities given the events e”(t) 
and ef(r), denoted by h(t) and Z(r), respectively, as follows: 

h(t) = 
hhoe-“’ 

hme-“’ + (1 - h)p,e-“1’ ’ 

‘(6 = he-,.,,’ :t”I h)e-,‘,’ ’ 

where t 5 r, (16) 

(17) 

As was discussed in Section 3.2, we can compute xz for a given pi, denoted 
by $(pi) i = 0, 1, such that (i) r:(x, 1) = CQ if x 5 xz(c(o), or 0 otherwise, and 
(ii) r:(x, 0) = 03 if x 5 x:(~,), or 0 otherwise. Since x:(h) > xf~,), r:(x, h) = a~ if 
x I x&), and rz(x, h) = 0 if x 2 x:(m). Note that the above represents extreme 
cases of retry, that is, retries of duration zero or infinite. 

For the nonextreme case, that is, the case of x&) < x < xF(po), let h* = 
sup(h; r:(x, h) = 01. Since rT(x, 1) = 00 and r:(x, 0) = 0 for x:(h) < x < x:(~,), 
we get 0 5 h * < 1. For all h > h *, r-:(x, h) > 0, that is, retry must be applied upon 
detection of a failure. Suppose retry has been applied for a small duration 
6r < r:(x, h). Then, the memoryless property of the exponential distribution leads 
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to the following equation: 

p;(x, h) = (1 - F;@r 

l-r 
+ J o m I h)(t + ~46, h(t)) dt. (184 

By letting 6r + 0 and changing variables, eq. (18a) becomes 

d/C@, h) 
dh 

(1W 
On the other hand, p:(x, h) = ~0 + tS Vh % h*. Using the same approach as in 
Theorem 1, we can prove that h* satisfies the following equation: 

P:(x, h*(O)) = x0 + ts - 
1 

h*j4, + (1 - h*)Pl - (19) 

From eq. (4) and the definition of pz in eq. (13), p:(x, h) is expressed as 

p:(x, h) = i (1 - eeYX) + emyX 
8 

x 
veYYp f( y, h) dy. (20) 

0 

With the initial conditions r:(x, 1) = 00, pT(x, h) and p:(x, h) for x I X&Q), and 
eqs. (l&00), we can calculate p:(x, h) k = 3, 4 Vx E (x:(p,), x:(m)) with the 
following numerical algorithm: 

Al. Seth= 1. 
A2. Calculate p:(x, 1) and p:(x, 1) Vx E (x:(p,), x&& 
A3. Calculate d&x, h)/dh using eq. (18) and p:(x, h - 6h) Vx E (x3rd, x%d). (Note 

pT(x, h) and p:(x, h(O)) are both known.) 
A4. Calculate p4+(x, h - ah) using eq. (20) Vx E (x&), x:(&). (Note p:(x, h - 6h) is 

known Vx.) 
A5. Set h = h - I% If h 5 0, terminate the algorithm. 
A6. If p:(x, h(O)) < x,, + fs - (l/(h~ + (1 - h)p,)), go to A3. Otherwise, set p:(x, h - ah) 

= ~0 + ts and go to A4. 

From the test at A6, one can determine h* Vx E (x:(p,), x:(h)) so as to satisfy 
eq. (19). Owing to the memoryless property of the exponential distribution, 
r:(x, h) = 0 when h s h* or satisfies eq. (17) with E(r) = h* if h > h*. In 
Figure 9, r: versus the prior probability h is plotted for various values of the 
residual computation x. Intersections of the curves in Figure 9 with the horizontal 
axis give the values of h* for different values of x. 

Remark 1. In case the active duration of an intermittent fault has a general 
distribution (instead of an exponential distribution), a differential equation similar 
to eq. (18b) cannot be obtained. In such a case, the original integral equation of 
PS(X, &), i.e., the combination of eqs. (3) and (12), has to be used instead. 

From the foregoing discussion we can determine the optimal retry policy that is 
based on the prior probabilty h. Under this optimal retry policy, we can also 
determine trajectories of the posterior probabilities after a large number of occur- 
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z=O.48 

FIG. 9. The optimal retry duration r:(x, h) versus the prior probability h with 
w = 10, P, = 5, and Y = 5. x:(h) = 0.63. x&,) = 0.43. 

rences and reappearances of intermittent faults have been observed. Let each retry 
be numbered by a two-tuple (m, n,) on the basis of occurrences and reappearances 
of intermittent faults. The (m, n,)th retry is used to recover from the mth 
occurrence of fault in case of1 n, = 0 or from the n,th reappearance of the 
mth intermittent fault if n, # 0. For the hypotheses Hi i = 0, 1, let h&n, n,) 
represent the posterior probability after the (m, n,)th retry is applied. Also, let nk 
be the total number of reappearances of an intermittent fault during the execution 
of a task and hi(m) be the prior probability before the mth occurrence of fault, 
which is equal to hi(m - 1, nk-, ) by definition. There are now two main problems 
to be addressed: (i) Will hi(m) converge to either 0 or 1, namely to the true fault 
characteristic as m + a~?; (ii) If converges, how fast will it converge? For conver- 
gence, we get the following theorem: 

THEOREM 3. Let A4 = inf(m; hi(m) > 1 - t, or hi(m) < E), where 0 < E < 1. If 
0 < hi(O) < 1, and ~0 + tS - (l/pi) > 0 for all hypotheses Hi and all tasks, then 
Pr(A4 < 00) = 1 and E[A4-J < 0~. 

PROOF. Let Si(m) = log(hi(m)/hj(m)) for j # i. Thus, M can be defined as 
inf{m; 1 Si(m)l > KJ, where K = log((1 - 6)/t). Let 

where e(m, n,) is the event observed at the (m, n,)th retry and g(e 1 pj) is the 
generalized conditional density function defined in eq. (15). (When the retry 
duration defined by a retry policy is zero, e(m, n,) is null and zi(m, n,) = 0. Also, 
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when n, = 0, the retry duration is rr since the fault type is not known at its first 
occurrence.) From Bayes theorem, we have 

&(m’) = Si(m’ - 1) + ‘$ Zi(m’, n) 
n=O 

= :, 4 Zi(WZ, n) + log z. 
= a J 

Let yi(m) = C$o zi(m, n) under the optimal retry policy. Si(m) becomes the 
sum of independent random variables. After an event is observed, the expected 
value of Zi(m, n,) is the Kullback-Leibler information number and is greater than 
or equal to zero when Hi is true [6]. In this case, E[zi(m, n,)] = 0 if and only if 
the prior probability before the (m, n,)th retry is 0 or 1. Since xo + ts - (l/pi) > 0 
for all hypotheses Hi and all tasks executed, Pr(ri # 0) > 0 i = 1,2. Hence, Pr[ vi(m) 
= 0] < 1 Vm c M. Following the proof in [24] that the sampling of a sequential 
probability-ratio test (SPRT) terminates with probability 1, Pr(M < 00) = 1 and 
E[M’l < 00 are obtained. 0 

Remark 2. Since the tasks affected by intermittent faults do not have to be 
identical, the random variables yi( l), yi(2), are independently but not identically 
distributed. Moreover, for a fixed m, z,(m, n,)‘s are dependent on one another 
because the events observed are controlled by the retry duration that is in turn a 
function of the moment of reappearance. However, all zi(m, n,) 2 0 when Hi is 
true. The condition, xo + ts - (l/pi) > 0 for all hypotheses Hi and all tasks executed, 
indicates that retry is always a useful recovery when an intermittent fault is detected. 
In fact, this condition is not necessarily true for all tasks, but Theorem 3 holds as 
long as Pr(rt > 0) # 0. 

Theorem 3 shows that the expected number of faults observed-that makes the 
posterior probability reach either e or 1 - +-is finite. This also holds for other 
distributions and retry policies as long as rl # 0 and rz # 0 for some x. However, 
it does not provide the average sample size, E[M ] Hi] that is necessary to reach 
these termination boundaries K and -K. Also, one has to justify whether or not 
the posterior probability at the termination implies the true fault characteristic. In 
other words, it is important to know the error probability, Pr(Si(M) < -K ] Hi). 

There are two difficult aspects in the evaluation of E[M ] Hi] and Pr(Si(M) < 
-K] Hi); one is that yi(m)‘s are not identically distributed, and the other is the 
nonexistence of closed-form solutions for both r: and r:. If the same task is 
executed repeatedly under the condition x0 + t, - (l/pi) > 0 for all hypotheses, 
then yi(m)‘s become independently and identically distributed. Assume further 
that initially, both hypotheses are equally likely, that is, ho(O) = h,(O) = 0.5. Using 
the characteristics of SPRT in [ 111, the error probability is approximated by 

1 -K 

Pr(Si(M) C -K] Hi) x eK- e -K 
- e-K =e . 

Even if the same task is executed repeatedly, it is difficult to obtain an exact 
solution for E[ yi] because of the dependency between the optimal retry durations 
and the observed samples of the active durations. This fact in turn makes it 
impossible to obtain the exact solution of E[M ] Hi]. Owing to the above difliculties, 
in what follows, we shall derive upper and lower bounds of E[M ] Hi] instead of an 
exact solution. 

Suppose there are two retry policies R” and R’ with the retry durations (r?, r!) 
and (rt , r:), respectively. r?(x, h) and rt (x, h) are defined the same as rr(x, h). 
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ri@, h) is equal to m if x s X:(pj) and 0 otherwise forj = 0, 1. Let y:(m) and Mj 
be C”h ( n=O Zi my n) and the number of faults observed to reach the termination 
boundaries under the retry policy Rj, respectively. Then, (i) Pr(Mj < 00) = 1 and 
E[Mj] < CQ, and (ii) E[ yf ] I E[ yi] I E[ yp]. (Note that the indices m are omitted 
because of the distributions being identical.) Once E[ y! ] Hi] j = 0, 1 is calculated 
as in the Appendix 2, the expected sample size to reach the boundaries 1 - c and 
c is bounded by 

where 

E[Mo ] Hi] 5 E[M] Hi] I E[M’ ] Hi] 

E[M’]Hi] x K 
E[Y: I HiI’ 

j=o, 1 

(see DeGroot [ 1 l] for more on this). 

The above equations give the error probability and the bounds of the expected 
sample size when a certain level of signilicance is to be achieved. These bounds of 
E[M] Hi] become tight when the difference between cco and ~1~ is small. Of course, 
the expected sample size under the optimal retry policy is larger than that for the 
case when the complete information about active duration is observed, that is, 
r1 = r2 = co. 

Thus far, we have discussed solutions to the problem of sequential retry decision 
and hypotheses testing only for the case of exponentially distributed durations. 
Notice, however, that (i) the same method, with little modification, can be applied 
to the cases with any other kind of distributions, and (ii) Theorem 3 holds as long 
as Pr[y&z) = 0] < 1. Moreover, the method can be extended to the testing of 
multiple alternative hypotheses by specifying the prior and posterior probabilities 
as a vector, each element of which represents the probability that the corresponding 
hypothesis is true. 

6. Conclusion 
In this paper, we have investigated optimal retry policies and demonstrated the use 
of retry to estimate the unknown fault characteristics. Although the data obtaining 
from retries are censored, they are the only significant means of monitoring the 
fault characteristics. By combining the estimation of fault characteristics and 
the decision of retry, the computer system performs an adaptive optimization of 
task completion times. 

In the discussion of retry policies, retries are assumed to be continuously applied. 
In fact, the retry durations should be discrete since the time required for repeated 
execution of an operation cannot be cascaded into a single continuous duration. 
Since the expected risk is a continuous function of the retry duration, it is not 
difficult to find the optimal retry policy that is specified as a number of retry 
attempts. 

As was pointed out in the discussion of the expected sample size for reaching a 
certain level of confidence in hypothesis testing, the test under the optimal retry 
policy turns out to be inefficient in the sense of maximizing the information 
observed. This is due to the fact that the optimal retry policy is defined to minimize 
the total completion time of the task affected by the occurrence of fault. Thus, the 
retry policy is a local optimum, that is, “optimal” only for the task involved. 
Clearly, the retry policy that gives complete maximum information should have 
infinite retry durations, although such a retry policy is totally unacceptable in 
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reality. It would be interesting to examine the trade-off between the two extreme 
objectives, that is, minimizing the local task completion time and maximizing the 
information to be collected. This problem can be formulated as the minimization 
of the asymptotically accumulated risk, lim,,,( l/m) CFl E[~k(x, C{)], where j 
and m are used to number the successive retries and C{ is the measured fault 
characteristic at the jth retry. It also indicates that the global optimal retry policy 
should collect more information (it is definitely not complete though) from the 
beginning to speed up the estimation of the true fault characteristics and then 
implement the local optimal retry policy once the true characteristics are obtained. 

Another important aspect is the choice of an accurate model for the fault 
behavior. As was discussed in Sections 4 and 5, the optimal retry policy and the 
measurement of the fault characteristics are dependent on the family of density 
functions that are initially selected. The suitability of chosen models can be 
validated through goodness-of-fit tests, for example, chi-square goodness-of-fit. 
Although sometimes the expected task completion time may not be minimized 
because of the poor choice of model, the information collected via retries can still 
be used to check the suitability of the model. Thus, after a sufficiently large number 
of samples have been obtained, it is possible to select an appropriate form of 
density function and then achieve the minimum task completion time. The other 
approach is to begin with hypotheses of various forms of density functions. As 
sampling progresses, the parameters associated with the density function forms are 
estimated and then the hypotheses are tested. 

The work presented in this paper is to incorporate the capability of on-line 
estimation (of the fault characteristics) and decision (on optimal retry policies) into 
the computer system. The results are a self-adjustable (thus intelligent) system and 
a powerful measurement of the fault characteristics. This idea can also be extended 
to other applications, for example, the measurement of program behavior and the 
simultaneous decision of system configuration or scheduling. Such extensions 
would be significant contributions toward the construction of highly intelligent 
computer systems. 

Appendix A. Bounds of V, (x, Cf, R*) 

Clearly, x is a lower bound of V,(x, Cf, R*). To find an upper bound of 
V,(x, C,, R*), consider a policy R ’ under which only restart recovery is used 
upon detection of a failure. Since rl = 0 under R ‘, we get 

VI&, C,, R*) = V,(x, C’, R’) 5 x + F/(x)V~:(xo, C,, R’) 

These bounds are very tight. For example, given that the fault occurrence process 
is exponentially distributed with MTBF = one week and the task execution 
time = one minute, the largest difference between the upper and lower bounds is 
less than 0.0001 minute. 

Appendix B. The Expression of E[ y{ 1 Hi] 
The retry duration ri under the retry policy Rj is equal to CQ if x I XT(pj), and 0 
otherwise. Thus, the complete information will be gathered if an old intermittent 
fault is detected again at x 5 x?(gj ) and no information will be obtained if it is 
detected at x > X;(pj). Hence, if the retry for a newly detected intermittent fault 
when the residual computation is x succeeds, we expect to collect information 
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from the successive retries before the task completion as follows: 

v 
4 

log; _ cci if X Q X&j), 
J b4 ) 

= 

exp[-v(x - Xf(/Jj))]~XT(Pj) otherwise. 

Let the maximum retry duration for a newly detected fault be r:(x) when the 
residual computation is x. Also, let #(xd) be the density function of the detection 
time of a new intermittent fault, xd, given that it is detected during the task 
execution. Then, +(xd) = Xiexp[-Xixd]/( 1 - exp[-hi-]), where Xi = PiX. Thus, 
we have E [ v{ ] Hi] a~ follows: 

E[yj] Hi] = 
s o* ~60 - x)exP[-clirl(x)lZ~(rt(x)) fh 

x0 

ss 

r:(x) 
+ MW(-ptt)$Go - x)(Zi(t) + E[Zz 1 x]) dt G!X, 

0 0 

where Z{(r) = -(pi - pj)r is the information collected from an unsuccessful retry 
of the maximum retry duration r and Zi (r) = log(pi/pj ) - [(pi - pj )/pi]r is the 
resulting information when the retry succeeds after the duration r. 
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