
EMBEDDING TRIPLE-MODULAR REDUNDANCY
INTO A HYPERCUBE ARCHITECTURE*

Daniel L. Kiskis and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

Abstract

This paper describes an embedding of Triple Mod-
ular Redundancy (TMR) into a binary hypercube.
The goal is to improve fault tolerance by masking
any single-point faults. Each module of an appli-
cation task is triplicated and executed in parallel on
three nodes of a 2-dimensional subcube (Q2) of the
hypercube. Each of these nodes also executes a voter
process. The remaining node is used for message
passing only. All outputs from the triplicated mod-
ules are voted on, and the voting results are transmit-
ted to the appropriate destination. Thus, all interunit
messages are also triplicated.

We propose an embedding of TMR into a hyper-
cube which can be implemented in a manner trans-
parent to the application program. Subcubes are al-
located so that the address space for the TMR units
is also a hypercube. Hence, the subcube allocation
and intermodule communication schemes are defined
to be analogous to the schemes used in the nonre-
dundant system. The embedded system is proven to
mask all single-point faults.

‘This work is supported in part by the NASA under Ihe grants
NAG-l-492 and NAG-l-296. Any opinions, findings, and con-
clusions or recommendations expressed in this paper are those of
tie authors and do not reflect the view of NASA.

1 Introduction

The hypercube architecture is shown to be well
suited for a large number of applications. Some of
these applications come from areas such as real-time
computing where reliability is crucial. However,
current commercially available hypercubes have lit-
tle or no fault-tolerant capabilities. What is required
is a means whereby the system can be made more
reliable while still providing all the benefits of the
hypercube topology.

The implementation of fault tolerant techniques on
a hypercube architecture has not been investigated
extensively. Two hardware approaches are notable.
The first is a modification of the hypercube topology
proposed by Rennels [8]. Spare nodes are added to
the hypercube in such a way as to provide replace-
ments for any node which may be determined to
be faulty. The second is a hybrid system suggested
by Harper [S]. This system would consist of clus-
ters of the Fault Tolerant Parallel Processor (FTPP)
connected to one another in a hypercube topology.
Applicable software solutions, e.g., [lo], tend to be
those which are intended for any distributed archi-
tecture which possesses specified characteristics, not
for a hypercube topology in particular.

Both of the hardware approaches preserve the hy-
percube topology. Rennels’ system, however, as-
sumes that a faulty processor can be identified. This
is a strong assumption, and as such, the solution is
incomplete. Harper’s system is more robust; it can
tolerate all types of faults. However, this degree of

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 ACM 1988 O-89791-278-0/88/0007/0337 $1.50

337

reliability comes at a great cost in hardware. This
cost may be justified for critical applications, but it
is prohibitive for less critical applications where the
cost of reliability must be much lower.

The software solution mentioned above may be
useful for some applications, but it is not designed
specifically for the hypercube topology. Thus, it
is not optimized for that topology, nor is it guar-
anteed to preserve the topology as seen by the ap-
plication. While other research is being performed
to provide fault-tolerant message routing or alloca-
tion of processors and subcubes in the presence of
known faulty nodes, these efforts, although impor-
tant, do not provide a comprehensive solution to the
reliability problem.

Al: Only nonmalicious operational faults are
considered.

In this paper we present initial results in the devel-
opment of a comprehensive system for providing a
reliable computing environment on a hypercube ar-
chitecture. In particular, we show how TMR can be
embedded into a hypercube so as to provide single
fault masking while preserving the observed topol-
ogy of the system. This paper is organized as fol-
lows. Section 2 presents the problem statement and
assumptions. Section 3 gives a brief description of
the areas to be discussed. Section 4 describes the
form of Triple-Modular Redundancy (TMR) to be
used. Section 5 shows how TMR is embedded into
a hypercube and presents a proof that the embedding
preserves the fault masking properties of ThIR. We
conclude with Section 6.

2 Problem Statement

Our goal is to describe an embedding of TMR into
a hypercube architecture. The embedding should be
transparent to the application program, i.e., it pre-
serves the perceived topology of the system. The
embedding must also preserve the fault masking
properties of TMR. It must mask all single-point
faults, except for malicious/Byzantine faults. Using
an appropriate representation scheme we show that
the embedding meets these criteria.

TMR was chosen for two reasons. First, it pro-
vides fault tolerance via spatial redundancy. Al-
though spatial redundancy increases the hardware
overhead, it reduces the time overhead. ReIiabil-
ity techniques such as checkpointing with rollback

or temporal redundancy require less hardware but
more time. In many systems requiring reliability,
such as real-time systems, time is also critical. Thus,
a fault-tolerance technique which reduces the time
overhead is preferred. Second, it is a simple means
of providing fault masking at the task level and it
has well-known properties which can be exploited.

We will use the following assumptions.

A2: Faults are independent random events,

A3: Messages between processors always
travel along a minimum length path in the
hypercube if such a path exists.

A4: Errors generated by faults in the commu-
nication subsystem of the hypercube can
be detected.

Operationalfaults are those which occur after the
system has been put into service; faults in the sys-
tem’s design are not considered. Al serves to restrict
the fault class to those faults which can be masked
by TMR techniques.

Given that the probability of a single component
failing is low, by A2 the probability of more than
one component failing at or near the same time is
negligible. Thus, it can be further assumed that once
a fault has occurred, no other fault will occur until
recovery from the first fault is completed.

A3 provides minimum length paths for messages.
Unless otherwise specified, we require that the path
be defined as follows. Compare the binary addresses
of the source and destination nodes. Beginning with
either the high order or the low order bit of the
source address, successively change each differing
bit in the address until the destination address is ob-
tained. The addresses generated at each step deter-
mine the path 191. We will refer to the two possi-
ble routings as high-to-low and low-to-high, respec-
tively. This routing scheme is required in section
5.2 to insure that all single-point faults are masked.

A4 assumes that an aknowledgement based pro-
tocol is present which utilizes error detecting codes.
Such mechanisms are sufficient for detecting non-
malicious faults in the communication medium.

338

3 Overview

Application programs consist of fuskr which can
be executed on separate node processors. Tasks are
independent in that they may be executed in parallel.
However, data and control dependencies may exist
between tasks. These dependencies can be repre-
sented using an undirected task graph where nodes
and edges represent tasks and intertask communica-
tions, respectively. It is at the task level of granu-
larity that we define the degree of fault tolerance of
the system. The only faults considered will be those
which affect the output of the task. Such faults can
manifest themselves in two ways: incorrect data and
no data [3]. This classification encompasses faults
in processors which produce data and faults in pro-
cessors or links which transmit data.

The problem is to triplicate a task and assign it to
three processors. Output from the different instanti-
ations of the task will be voted on by a triplicated
voter. All output from the tasks is voted. This in-
cludes data, control, and I/O request messages. The
combination of the triplicated task and the triplicated
voter will henceforth be referred to as the TA4R unit.

The hypercube topology has the property that a
hypercube of a given size can be subdivided into
some number of disjoint subcubes of smaller dimen-
sions. In order to preserve and take advantage of
this property, it is desired to embed the Th4R unit
into some subcube of a given size. The problem
is to determine the smallest subcube into which the
TMR unit can be embedded without compromising
its fault masking capabilities.

4 Topology of the TMR unit

The TMR unit will consist of the three replicated
versions of the task (which will be referred to as
modules) and three voters. In some TMR systems
only one voter is used, and that voter is assumed to
be fault-free. Since our voters are to be implemented
through software on general purpose hardware, this
assumption cannot be made. A single voter would
have the same probability of being faulty as a mod-
ule. Hence, a single voter system would be no more

Figure 1: Graph of the TMR unit.

fault-tolerant than a single nonreplicated task.

In order to provide masking of errors from a sin-
gle fault, three voters are required. In a fault-free
system, each voter receives the output from all three
modules. The data are voted and the majority re-
sult is sent to the destination TMR unit. Although a
faulty voter may provide erroneous data to another
TMR unit, it will provide the data to only one mod-
ule in that unit. The effects of that data will be
masked by the voters of the module which received
and then used the data.

The Th4R unit can be represented by an undi-
rected graph, as shown in Figure 1, where rni are
the modules and vi are the voters, i = 1,2,3. Edges
represent necessary communication paths between
modules and voters.

We can describe the TMR unit using a repre-
sentation scheme as defined in [63. We will use
the representation scheme (S, R, p), where S is the
specification class, R is the realization class, and
p : R + S maps realizations to specifications. For
a given R E 72, if p(R) = S E S, then R realizes S.
Since we are considering only operational faults, we
can let S = R = {S]S is a network of sequential
switching systems } and p is the identity function on
R, that is, all realizations meet their specifications.
In this discussion, we are considering S = the TMR
unit, and R = an implementation of the TMR unit
using dedicated hardware.

The TMR unit is a system with faults (S, F, 4)
where S E S, F is a set of faults, and C$: F -+ R is
a function which maps a fault to the system resulting
from the fault. f E F is benign if p(+(f)) = 5’.

For the TMR unit we define F = (0, 1}i5. f E F
is a 15tuple representing the 15 components in the

339

c TMR unit component’
number iden t.

1 ml
2 m2

3 m3

4 Vl
5 212

6 v3

7 - mlvl
8 - mlv2

9 - mlv3

10 m2vl

11 - m2v2

12 - m2v3

13 =Yzi
14 - m3v2

15 m3v3

7
P2

P3

Pl

Pz
P3

Pl

P2

P2P3 --
P2PO,PO,POPl

P2P3

P3

PIP3

popl,Po,popz

plp3

Pl

Table 1: TMR unit embedding function

TMR unit, where f = (f15,fi4,. . . , fi) such that
fori=1,2 ,..., 15,

fi =
{

0 if component i is fault-free
1 if component i is faulty.

The numbering of the components is given in Ta-
ble 1. The embedding function F will be defined
in Section 5.1; v denotes the edge connecting
module i and voter j.

In the following discussion, we will use X to de-
note a data value which is assumed to be erroneous
or missing, therefore, its value is immaterial.

Definition 1 Given three data values x1, x2, and x3,
let

zj if xj = tj,i # j,

Mm(xl, x2,23) =
4.i E 11~31

X if xl,xz,and x3 are
all distinct

be the majority function on those data values.

Note that if xi = xj = X, for some i # j, then
MAJ(~I, 22, 3 x)=X.

Definition 2 Given a voter v, let OUTPUT(v) de-
note the output produced by V, where

(MAJ(ml,m2,m3) if vi is

OuTPuT = x

I

fault-free
if vi is
faulty

i = 1,2,3. If either mj or the link connecting mj
and vi is faulty, then mj =X.

Definition 3 We define P(R) = (OUTPUT(q),
OUTPUT(OUTPUT(to be tie behavior of
R E R, where R is the TMR unit.

Definition 4 A tolerance relation is a mapping r :
R + S such that RrS, i.e., R is within tolerance of
S, if a majority of the voters in R produce correct
and equal outputs. This can alternately be stated as:
M4J(ouTPuT(v&xJTPuT(v&x7TPuT(v3)) #
X a RrS.

A fault f E F is r-tolerated if +(f)TS. Given
this definition, it can be seen that $(f)TS if f is a
single-point fault. Formally, a single-point fault is
the case where, given f E F, f = (fi5, f14,. . . , fi),

ctzl fi = 1.

5 Embedding TMR

5.1 Embedding the TMR unit

In order to implement TMR on a hypercube, it
is necessary to embed the TMR graph, GTMR, into
the i-dimensional hypercube graph, Qi. This embed-
ding is a function T : GT~~R -+ Q;, which maps
modules and voters to processors in the hypcrcube.
Edges in the TMR unit map to individual links or
paths in the hypercube.

In order to best preserve the properties of TMR,
the function F should be one-to-one. The simplest
such embedding is an isomorphic embedding. Mod-
ules and voters would be assigned to unique proces-
sors and edges would map to single links. In such
a case, a single-point fault in the Qi would corre-
spond exactly to a single-point fault in the TMR
unit. Hence, it is obvious that all single-point faults
would be tolerated.

340

thatr=(&f+,...,fj)where

P2

PO

P3

Figure 2: Embedding of TMR unit into Q2.

It can be seen that GTM~ will not embed isomor-
phically into any Qi. However, by allowing dilation
of edges a homeomorphic embedding into a Q4 can
be found. Depending on the application, it may not
be very cost-effective to require a Q4 to implement
the TMR unit. Such an embedding would reduce the
computing power of a Q,, to that of a Qn+ We
propose an embedding of GTMR into a Q2. Such an
embedding is not one-to-one, but we will show that
such a system will tolerate all single-point faults.

The embedding is shown in Figure 2. ~0 is not
assigned modules or voters from this TMR unit. To
each of the other three processors in the Q-J is as-
signed a module and a voter. Each of these is
marked with mizli to indicate which module and

fi’= {
0 if component i is fault-free
1 if component i is faulty.

The numbering of the subscripts corresponds to the
numbering of the components in Figure 2. For ex-
ample, f’ = (0, 0, 0, 1, 0, 0, 0,O) is the case where
popl is faulty and all other components are fault-
free. #(f’) is the realization resulting from fault
f’.

P’ = (OUTPUT(VI), OuTPuT(v2),
OUTPUT(is defined exactly as p,

Our goal is to show that, given the presence of a
single-point fault f’ E F’, qY(f’)TS. That is, a fault
in R’ is r-tolerated. In order to show this, we must
demonstrate that any single-point fault in the Q2 is
r-tolerated.

From Table 2 we can state the following theorem.

Theorem 1 If f’ E F’ such that f’ is a single-point
fault then #(f ‘)TS.

The success of this embedding relies on the fact
that a TMR unit can actually mask a number of mul-
tiple faults. The embedding was selected such that
single-point faults in the Q2 correspond to tolerated
multiple faults.

5.2 Embedding a Task Graph

voter are assigned to it. The embedding of edges
is shown by arrows from modules to voters. The

5.2.1 TMR Version of the Task Graph

embedding function F is given in Table 1.

In general, this embedding is static, but there is
one exception. If a fault is detected in the path
between pl and p2, all subsequent messages between
these processors will be sent via p3. This exception
is necessary for the proof of Theorem 3.

We have shown how a single task is triplicated
to form a TMR unit, which can then be embedded
into a Q2. We can generalize this process to task
graphs. Each task, t;, in a task graph is replaced by
a TMR unit, TMRi. If an edge connects two tasks,
ti and tj, in the task graph, then an edge connects
each voter in TMRi with a unique module in TMRj.

This embedded system can be described within the
An example is shown in Figure 3.

same (S, R,p). Now, we are considering R’ E 7% The problem which remains is to embed the TMR
where R’ is the implementation of the TMR unit on version of the task graph into the hypercube topol-
the Q2 and p(R’) = S = the TMR unit. The system ogy induced by the F embedding. We will lirst
with faults, (S, F’, 4’) is defined such that the fault state some properties of the hypercube which we
set F’ = (0, l}“, where f’ E F’ is an 8-tuple such will need.

341

Table 2: p’ in the presence of single-point faults

5.2.2 Properties of the Hypercube Topology

It is well-known that the hypercube can be defined
recursively as follows [4]:

1. QO = the trivial graph consisting of one node

2. Qn=Qn--10K2

where 0 is the Cartesian product of two graphs, and
KP is the complete graph with p nodes. Every node
in an n-dimensional hypercube has associated with
it an address. An address is a string z E (0, 1)“. A
subcube of the Qn can be identified by an address
string s E (0, 1, *}n, where * is the don’t care sym-
bol. For example, the address of the 2dimensional
subcube of a Q4 formed by nodes 0010,0011,0110,
and 0111 is O*l*. The number of *‘s in s is the di-
mension of the subcube [l].

Given this address scheme and the recursive def-
inition of a hypercube, it follows that the Q2’s with
addresses of the form z * *, z E (0, l}n-2, form an
(n - 2)-dimensional hypercube with relation to each
other. The Q2’s form the “nodes” of this (n - 2)-
dimensional hypercube. Each such “node” is con-
nected to its neighbors by four edges.

In the 3 embedding, pc is only used for com-
munication. Thus, one-fourth of the processors in
each Q2 are virtually idle. In order to utilize the
computing power of that node, we make use of the
following observation. Given a Q2 with address
3: * *, the address of p. for that Q2 is ZOO. For
w E {0,1}n-2, the set {y 1 y = WOO} defines a
Qnm2. Within that Qn-2 we have a set of Q2’s
with addresses z * *OO, I E (0, l}n-4 which defines

an (n -4)-dimensional hypercube into which we can
embed TMR units as was done above.

If we apply this argument inductively we see that
there are n/2 such levels of the hypercube, each
one-fourth the size of the next larger one. The total
number of usable Q2’s, i.e., the number of TMR
units which can be supported, is thus

LTJ

c 22” = 2n 1 ---
k=O

3 3’

if n is an even integer. The l/3 in this equation
is because the node 0” is not actively used in any
TMR unit except for message passing.

Hence, we have a series of nested hypercubes,
which logically can be considered as either disjoint
or connected, whichever is more convenient for a
given application. The embedding of the TMR ver-
sion of the task graph into the hypercube can now be
defined. If the task graph will embed into a Qnm2,
then choose any level of sufficient dimension. Em-
bed the graph in a manner analogous to the embed-
ding of the simplex task graph. Except, TMR units
will be embedded using the 3 embedding into Q2’s
with addresses of the form z * *Ok, where L is an
even integer. Edges will be embedded into paths
defined by either the high-to-low or the low-to-high
routing strategy.

If the task graph will not embed into a Qn -2, e.g.,
because it requires more than 2n-2 processors, then
a new embedding must be found which will embed
the task graph into multiple levels. As in the above,
TMR units are embedded into Q2’s in their respec-
tive levels. Within each level, paths are embedded as

342

2

@SE!+ 1 3 5

4

(4
TMR4

(b)

Figure 3: (a) nonredundant task graph (b) TMR version.

above. Paths between levels are defined as specified
by the high-to-low strategy if going from a higher
level to a lower level. That is, if going from a voter
in a Q2 with address * * Ok to a module in the Q2
with address y * *O’ where k c 1. When going from
a lower level to a higher level, i.e., k > 1, then the
path defined by the low-to-high routing is used.

Theorem 2 Given three embedded TMR units
TMRl, TMR2, and TMRa where TMRz and TMRa
both send data to TMRl, let voter v+ in TM& send
data to module ml,, in TMRr and ‘~3,~ in TM&
send dam to ml,-, in Th4R1. If (Y # 7 then the
paths from ~2,~ to ml,, and from ~3,~ to ml,, are
disjoint.

Proof: Let the addresses of TMRr, TMR2, and
TMR3 be q * *Ok, c2 * *O’, and t3 * *Om, respec-
tively, where k, 1, and m are even non-negative in-
tegers. Without loss of generality, we let v2,a =
z2100$J3,r = z3110”, ya = x1100”, and

m1j-l = qllOk. The following three cases need
to bc considered.

Case 1: k = 1 = m. The Th4R units are on the
same level. Then, all nodes in the path from ~2,~ to
ml,, have low order bits lOOr. Likewise, all nodes
in the path from ‘u~,~ to ml,, have low order bits
11 Om. Hence, the paths are disjoint.

Case 2: 1, m -c k or 1, m > k. Due to symmetry,
these subcases are identical, so we will consider the
case of I, m > k.

The paths we are considering have the following
form:

22100’ + 22100’~“-2100” + 21100”
23110” + 23110”-~-2110~ -+ CrllOk

where transitions (denoted 4) may involve multi-
ple intermediate steps. In the source address, and
during the lirst transition, the high order n - k bits
distinguish the paths. During the second transition,
the low order k + 2 bits distinguish the paths. Thus,
the paths are disjoint.

Case 3: 1 > m = k,l < m = k, m > 1 = k,
or m < 1 = k. Again, because of symmetry these

343

subcases are identical. We will consider the case of a TMR unit. Thus, the errors generated by any
where 1 > m = k. such fault will be masked.

The paths in this case are of the form: Case 3: In general, this case is subsumed by

22100’ + ~~100’-~-~100~ + ZllOOk
Cases 1 and 2. One special case needs to be consid-

t3llOk + 2illO”.
ered. Consider a fault which occurs in a processor
which is a po for one Q2 and a p3 for another Q2

The high order 12 - k bits distinguish all nodes
generated in the first transition of ~~100~ to
~z100’-‘-~100~ from the node ~~110”. During the
next transition the low order k + 2 bits distinguish
the nodes. Hence the paths are disjoint. n

Corollary 1 Given two embedded TMR units,
TMRl and TMRz, such that TMRi sends data to
TMR2, then the paths between the voters in TMRi
and the modules of TM& are disjoint.

at a different level, and the lower level Q2 senhs
data to the higher level Qz. In the higher level Q2,
such a fault will cause the module in p3 to receive
erroneous data. It will also cause the path between
pl and p2 to be faulty. Hence, none of the voters
would produce correct output. However, we have
assumed that a fault in a path can be detected, and
in section 5.1 we showed how to reroute messages
around this particular fault. Once this rerouting is
performed, ‘ul and v3 will receive at least two correct
outputs each and will then produce correct outputs.
Therefore, this fault is also tolerated.

Proof: This is a special case of Theorem 2 where Therefore, all single-point faults are masked by
TMR2= TMR3, i.e., x2 = tg and I = m. n the embedded TMR version of the task graph. n

Theorem 3 The embedded TMR version of the task
Note that this result is independent of the scheme

graph masks any single-point fault.
used to embed the task graph. Hence, embedding the
TMR version of the task graph is equivalent Co em-
bedding the nonredundant version of the task graph

Proof: If no two TMR units are executing on the into a restricted address space. Thus, any embedding
same Qz, then by Theorems 1 and 2, the embedding algorithm for the nonredundant embedding may be
preserves the structure and fault masking properties used.

of the TMR version of the task graph. By the defi-
nition of TMR we know that all single-point faults

This result can be generalized to having any num-

will thus be masked. ber of TMR units (even the whole task graph) ex-
ecuted on a single Qz. However, such a system

If multiple TMR units are executing on the same would not take advantage of parallelism afforded by
Q2, then a single-point fault acts as simultaneous the distributed system. Thus, such an embedding
multiple faults. A single-point fault can logically oc- would be an inefficient use of resources.
cur within a TMR unit, along a path between TMR
units, or both. These cases will be considered sepa-
rately. 6 Conclusions

Case 1: If two or more affected voters (executing
on the same processor) send messages to the same We have described a system for increasing the
TMR unit, the communication scheme guarantees fault tolerance of a binary hypercube architecture
that only one module in the destination TMR unit system. For simplicity we have chosen TMR units as
will be affected. Thus, the fault will be masked. the building blocks of our system. We have shown

Case 2: The fault occurs along the path between
how to embed a TMR unit and the corresponding

two TMR units. In this case one module of the des-
TMR task graph into the hypercube. This embedded

tination TMR unit will receive erroneous data and
system was shown to tolerate all single-point faults.

the voters of the TMR unit will mask the error. By Our goal was to improve the reliability of the sys-
Theorem 2, it is not possible for a single faulty com- tern in a manner which was flexible, simple, and
pcment to affect the inputs to more than one module which was transparent to the application. The pro-

344

posed method meets this goal. The system is in-
tended to be implemented in software, Thus, imple-
mentation will require a protocol for synchronization
of data at the voters. Only loose synchronization
implemented via the message passing mechanisms
of the system is required. Synchronization will take
place at all points where data is sent out of the TMR
unit. The protocol is required to provide data syn-
chronous voting. It must also be capable of detecting
lost or out-of-sequence messages. Such a protocol
is specified by Gunningberg [2] and verified to meet
specifications by Gunningberg and Pehrson [3].

However, by implementing the system in soft-
ware, we incur expensive overhead. The modules
must sit idle as they await the receipt of acknowl-
edgements from the voters. This wait is prolonged
by communication delays and the execution times
of the protocol and voting algorithm. Furthermore,
due to the necessity of executing tasks on separate
processors, implementation of the system reduces
the usable computing power of the hypercube by
a power of 4.

However, a software implementation allows
greater control of the degree of reliability by the ap
plications programmer. For example, an implemen-
tation of the TMR system may allow an application
to choose whether it will run in simplex or TMR
mode. Simplex mode may be chosen by less critical
applications in order to better utilize resources. It
can be seen that a system can support simplex and
TMR modes simultaneously.

The next step in this research should be to model
the system and analyze it. Desired characteristics
to determine are correctness, performance, and reli-
ability. It is especially important to determine the
degree to which the performance of the system is
degraded by the introduction of the specified fault
tolerance techniques. Promising candidates for the
modelling technique are the Timed Petri Net model
or the Stochastic Activity Net model [7]. Such a
models will allow the behavior of the protocol and
voting algorithms to be modelled while providing
timing information for performance analysis.

References

VI

131

r41

El

161

[I

WI

PI

1101

of a minimal subcube for interacting task mod-
ules”. Proceedings of the 2nd Conference on
Hypercube Multiprocessors, 122-129, 1987.

P. Gunningberg. “Voting and redundancy
management implemented by protocols in dis-
tributed systems”. Proceedings of rhe 13th Zn-
ternational Symposium on Fault-Tolerant Com-
puting, 182-185, 1983.

P. Gunningberg and B. Pehrson. “Specifica-
tion and verification of a synchronization pro-
tocol for comparison of results”. Proceedings
of the 15th International Symposium on Fault-
Tolerant Computing, 172-177, 1985.

F. Harary, J. P. Hayes, and H.-J. Wu. ‘A
survey of the theory of cube graphs”. Tech-
nical Report, Computing Research Laboratory
- University of Michigan and Computing Re-
search Laboratory - New Mexico State Univer-
sity, September 1986.

R. E. Harper. Critical issues in ultra-reliable
parallel processing. PhD thesis, Massachusetts
Institute of Technology, June 1987.

J. F. Meyer. “Reliable design of software”.
In R. Saeks and S. R. Liberty, editors, Reliable
Fault Analysis, pages 112-123, Marcel Dekker,
NY, 1977.

J. F. Meyer, A. Movaghar, and W. H. Sanders.
“Stochastic activity networks: structure, be-
havior, and application”. Technical Re-
port, Industrial Technology Institute, December
1984. ITI 84-7.

D. A. Rennels. “On implementing fault-
tolerance in binary hypercubes”. Proceedings
of the 16th International Symposium on Fault-
Tolerant Computing, 344-349, 1986.

Y. Saad and M. H. Schultz. Data communi-
cation in hypercubes. Technical Report, Yale
University, October 1985. YALEU/DCS/RR-
428.

N. Theuretzbacher. “‘VOTRICS’: voting triple
modular computing system”. Proceedings of
the 16th International Symposium on Fault-
Tolerant Computing, 144-150, 1986.

[1] M.-S. Chen and K. G. Shin. “Determination

345

