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Abstract 

This paper describes an embedding of Triple Mod- 
ular Redundancy (TMR) into a binary hypercube. 
The goal is to improve fault tolerance by masking 
any single-point faults. Each module of an appli- 
cation task is triplicated and executed in parallel on 
three nodes of a 2-dimensional subcube (Q2) of the 
hypercube. Each of these nodes also executes a voter 
process. The remaining node is used for message 
passing only. All outputs from the triplicated mod- 
ules are voted on, and the voting results are transmit- 
ted to the appropriate destination. Thus, all interunit 
messages are also triplicated. 

We propose an embedding of TMR into a hyper- 
cube which can be implemented in a manner trans- 
parent to the application program. Subcubes are al- 
located so that the address space for the TMR units 
is also a hypercube. Hence, the subcube allocation 
and intermodule communication schemes are defined 
to be analogous to the schemes used in the nonre- 
dundant system. The embedded system is proven to 
mask all single-point faults. 

‘This work is supported in part by the NASA under Ihe grants 
NAG-l-492 and NAG-l-296. Any opinions, findings, and con- 
clusions or recommendations expressed in this paper are those of 
tie authors and do not reflect the view of NASA. 

1 Introduction 

The hypercube architecture is shown to be well 
suited for a large number of applications. Some of 
these applications come from areas such as real-time 
computing where reliability is crucial. However, 
current commercially available hypercubes have lit- 
tle or no fault-tolerant capabilities. What is required 
is a means whereby the system can be made more 
reliable while still providing all the benefits of the 
hypercube topology. 

The implementation of fault tolerant techniques on 
a hypercube architecture has not been investigated 
extensively. Two hardware approaches are notable. 
The first is a modification of the hypercube topology 
proposed by Rennels [8]. Spare nodes are added to 
the hypercube in such a way as to provide replace- 
ments for any node which may be determined to 
be faulty. The second is a hybrid system suggested 
by Harper [S]. This system would consist of clus- 
ters of the Fault Tolerant Parallel Processor (FTPP) 
connected to one another in a hypercube topology. 
Applicable software solutions, e.g., [lo], tend to be 
those which are intended for any distributed archi- 
tecture which possesses specified characteristics, not 
for a hypercube topology in particular. 

Both of the hardware approaches preserve the hy- 
percube topology. Rennels’ system, however, as- 
sumes that a faulty processor can be identified. This 
is a strong assumption, and as such, the solution is 
incomplete. Harper’s system is more robust; it can 
tolerate all types of faults. However, this degree of 
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reliability comes at a great cost in hardware. This 
cost may be justified for critical applications, but it 
is prohibitive for less critical applications where the 
cost of reliability must be much lower. 

The software solution mentioned above may be 
useful for some applications, but it is not designed 
specifically for the hypercube topology. Thus, it 
is not optimized for that topology, nor is it guar- 
anteed to preserve the topology as seen by the ap- 
plication. While other research is being performed 
to provide fault-tolerant message routing or alloca- 
tion of processors and subcubes in the presence of 
known faulty nodes, these efforts, although impor- 
tant, do not provide a comprehensive solution to the 
reliability problem. 

Al: Only nonmalicious operational faults are 
considered. 

In this paper we present initial results in the devel- 
opment of a comprehensive system for providing a 
reliable computing environment on a hypercube ar- 
chitecture. In particular, we show how TMR can be 
embedded into a hypercube so as to provide single 
fault masking while preserving the observed topol- 
ogy of the system. This paper is organized as fol- 
lows. Section 2 presents the problem statement and 
assumptions. Section 3 gives a brief description of 
the areas to be discussed. Section 4 describes the 
form of Triple-Modular Redundancy (TMR) to be 
used. Section 5 shows how TMR is embedded into 
a hypercube and presents a proof that the embedding 
preserves the fault masking properties of ThIR. We 
conclude with Section 6. 

2 Problem Statement 

Our goal is to describe an embedding of TMR into 
a hypercube architecture. The embedding should be 
transparent to the application program, i.e., it pre- 
serves the perceived topology of the system. The 
embedding must also preserve the fault masking 
properties of TMR. It must mask all single-point 
faults, except for malicious/Byzantine faults. Using 
an appropriate representation scheme we show that 
the embedding meets these criteria. 

TMR was chosen for two reasons. First, it pro- 
vides fault tolerance via spatial redundancy. Al- 
though spatial redundancy increases the hardware 
overhead, it reduces the time overhead. ReIiabil- 
ity techniques such as checkpointing with rollback 

or temporal redundancy require less hardware but 
more time. In many systems requiring reliability, 
such as real-time systems, time is also critical. Thus, 
a fault-tolerance technique which reduces the time 
overhead is preferred. Second, it is a simple means 
of providing fault masking at the task level and it 
has well-known properties which can be exploited. 

We will use the following assumptions. 

A2: Faults are independent random events, 

A3: Messages between processors always 
travel along a minimum length path in the 
hypercube if such a path exists. 

A4: Errors generated by faults in the commu- 
nication subsystem of the hypercube can 
be detected. 

Operationalfaults are those which occur after the 
system has been put into service; faults in the sys- 
tem’s design are not considered. Al serves to restrict 
the fault class to those faults which can be masked 
by TMR techniques. 

Given that the probability of a single component 
failing is low, by A2 the probability of more than 
one component failing at or near the same time is 
negligible. Thus, it can be further assumed that once 
a fault has occurred, no other fault will occur until 
recovery from the first fault is completed. 

A3 provides minimum length paths for messages. 
Unless otherwise specified, we require that the path 
be defined as follows. Compare the binary addresses 
of the source and destination nodes. Beginning with 
either the high order or the low order bit of the 
source address, successively change each differing 
bit in the address until the destination address is ob- 
tained. The addresses generated at each step deter- 
mine the path 191. We will refer to the two possi- 
ble routings as high-to-low and low-to-high, respec- 
tively. This routing scheme is required in section 
5.2 to insure that all single-point faults are masked. 

A4 assumes that an aknowledgement based pro- 
tocol is present which utilizes error detecting codes. 
Such mechanisms are sufficient for detecting non- 
malicious faults in the communication medium. 
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3 Overview 

Application programs consist of fuskr which can 
be executed on separate node processors. Tasks are 
independent in that they may be executed in parallel. 
However, data and control dependencies may exist 
between tasks. These dependencies can be repre- 
sented using an undirected task graph where nodes 
and edges represent tasks and intertask communica- 
tions, respectively. It is at the task level of granu- 
larity that we define the degree of fault tolerance of 
the system. The only faults considered will be those 
which affect the output of the task. Such faults can 
manifest themselves in two ways: incorrect data and 
no data [3]. This classification encompasses faults 
in processors which produce data and faults in pro- 
cessors or links which transmit data. 

The problem is to triplicate a task and assign it to 
three processors. Output from the different instanti- 
ations of the task will be voted on by a triplicated 
voter. All output from the tasks is voted. This in- 
cludes data, control, and I/O request messages. The 
combination of the triplicated task and the triplicated 
voter will henceforth be referred to as the TA4R unit. 

The hypercube topology has the property that a 
hypercube of a given size can be subdivided into 
some number of disjoint subcubes of smaller dimen- 
sions. In order to preserve and take advantage of 
this property, it is desired to embed the Th4R unit 
into some subcube of a given size. The problem 
is to determine the smallest subcube into which the 
TMR unit can be embedded without compromising 
its fault masking capabilities. 

4 Topology of the TMR unit 

The TMR unit will consist of the three replicated 
versions of the task (which will be referred to as 
modules) and three voters. In some TMR systems 
only one voter is used, and that voter is assumed to 
be fault-free. Since our voters are to be implemented 
through software on general purpose hardware, this 
assumption cannot be made. A single voter would 
have the same probability of being faulty as a mod- 
ule. Hence, a single voter system would be no more 

Figure 1: Graph of the TMR unit. 

fault-tolerant than a single nonreplicated task. 

In order to provide masking of errors from a sin- 
gle fault, three voters are required. In a fault-free 
system, each voter receives the output from all three 
modules. The data are voted and the majority re- 
sult is sent to the destination TMR unit. Although a 
faulty voter may provide erroneous data to another 
TMR unit, it will provide the data to only one mod- 
ule in that unit. The effects of that data will be 
masked by the voters of the module which received 
and then used the data. 

The Th4R unit can be represented by an undi- 
rected graph, as shown in Figure 1, where rni are 
the modules and vi are the voters, i = 1,2,3. Edges 
represent necessary communication paths between 
modules and voters. 

We can describe the TMR unit using a repre- 
sentation scheme as defined in [63. We will use 
the representation scheme (S, R, p), where S is the 
specification class, R is the realization class, and 
p : R + S maps realizations to specifications. For 
a given R E 72, if p(R) = S E S, then R realizes S. 
Since we are considering only operational faults, we 
can let S = R = {S]S is a network of sequential 
switching systems } and p is the identity function on 
R, that is, all realizations meet their specifications. 
In this discussion, we are considering S = the TMR 
unit, and R = an implementation of the TMR unit 
using dedicated hardware. 

The TMR unit is a system with faults (S, F, 4) 
where S E S, F is a set of faults, and C$ : F -+ R is 
a function which maps a fault to the system resulting 
from the fault. f E F is benign if p(+(f)) = 5’. 

For the TMR unit we define F = (0, 1}i5. f E F 
is a 15tuple representing the 15 components in the 
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c TMR unit component’ 
number iden t. 

1 ml 
2 m2 

3 m3 

4 Vl 
5 212 

6 v3 

7 - mlvl 
8 - mlv2 

9 - mlv3 

10 m2vl 

11 - m2v2 

12 - m2v3 

13 =Yzi 
14 - m3v2 

15 m3v3 

7 
P2 

P3 

Pl 

Pz 
P3 

Pl 

P2 

P2P3 -- 
P2PO,PO,POPl 

P2P3 

P3 

PIP3 

popl,Po,popz 

plp3 

Pl 

Table 1: TMR unit embedding function 

TMR unit, where f = (f15,fi4,. . . , fi) such that 
fori=1,2 ,..., 15, 

fi = 
{ 

0 if component i is fault-free 
1 if component i is faulty. 

The numbering of the components is given in Ta- 
ble 1. The embedding function F will be defined 
in Section 5.1; v denotes the edge connecting 
module i and voter j. 

In the following discussion, we will use X to de- 
note a data value which is assumed to be erroneous 
or missing, therefore, its value is immaterial. 

Definition 1 Given three data values x1, x2, and x3, 
let 

zj if xj = tj,i # j, 

Mm(xl, x2,23) = 
4.i E 11~31 

X if xl,xz,and x3 are 
all distinct 

be the majority function on those data values. 

Note that if xi = xj = X, for some i # j, then 
MAJ(~I, 22, 3 x)=X. 

Definition 2 Given a voter v, let OUTPUT(v) de- 
note the output produced by V, where 

( MAJ(ml,m2,m3) if vi is 

OuTPuT = x 

I 

fault-free 
if vi is 
faulty 

i = 1,2,3. If either mj or the link connecting mj 
and vi is faulty, then mj =X. 

Definition 3 We define P(R) = (OUTPUT(q), 
OUTPUT( OUTPUT( to be tie behavior of 
R E R, where R is the TMR unit. 

Definition 4 A tolerance relation is a mapping r : 
R + S such that RrS, i.e., R is within tolerance of 
S, if a majority of the voters in R produce correct 
and equal outputs. This can alternately be stated as: 
M4J(ouTPuT(v&xJTPuT(v&x7TPuT(v3)) # 
X a RrS. 

A fault f E F is r-tolerated if +(f)TS. Given 
this definition, it can be seen that $( f)TS if f is a 
single-point fault. Formally, a single-point fault is 
the case where, given f E F, f = ( fi5, f14,. . . , fi), 

ctzl fi = 1. 

5 Embedding TMR 

5.1 Embedding the TMR unit 

In order to implement TMR on a hypercube, it 
is necessary to embed the TMR graph, GTMR, into 
the i-dimensional hypercube graph, Qi. This embed- 
ding is a function T : GT~~R -+ Q;, which maps 
modules and voters to processors in the hypcrcube. 
Edges in the TMR unit map to individual links or 
paths in the hypercube. 

In order to best preserve the properties of TMR, 
the function F should be one-to-one. The simplest 
such embedding is an isomorphic embedding. Mod- 
ules and voters would be assigned to unique proces- 
sors and edges would map to single links. In such 
a case, a single-point fault in the Qi would corre- 
spond exactly to a single-point fault in the TMR 
unit. Hence, it is obvious that all single-point faults 
would be tolerated. 
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thatr=(&f+,...,fj)where 

P2 

PO 

P3 

Figure 2: Embedding of TMR unit into Q2. 

It can be seen that GTM~ will not embed isomor- 
phically into any Qi. However, by allowing dilation 
of edges a homeomorphic embedding into a Q4 can 
be found. Depending on the application, it may not 
be very cost-effective to require a Q4 to implement 
the TMR unit. Such an embedding would reduce the 
computing power of a Q,, to that of a Qn+ We 
propose an embedding of GTMR into a Q2. Such an 
embedding is not one-to-one, but we will show that 
such a system will tolerate all single-point faults. 

The embedding is shown in Figure 2. ~0 is not 
assigned modules or voters from this TMR unit. To 
each of the other three processors in the Q-J is as- 
signed a module and a voter. Each of these is 
marked with mizli to indicate which module and 

fi’= { 
0 if component i is fault-free 
1 if component i is faulty. 

The numbering of the subscripts corresponds to the 
numbering of the components in Figure 2. For ex- 
ample, f’ = (0, 0, 0, 1, 0, 0, 0,O) is the case where 
popl is faulty and all other components are fault- 
free. #(f’) is the realization resulting from fault 
f’. 

P’ = (OUTPUT(VI), OuTPuT(v2), 
OUTPUT( is defined exactly as p, 

Our goal is to show that, given the presence of a 
single-point fault f’ E F’, qY(f’)TS. That is, a fault 
in R’ is r-tolerated. In order to show this, we must 
demonstrate that any single-point fault in the Q2 is 
r-tolerated. 

From Table 2 we can state the following theorem. 

Theorem 1 If f’ E F’ such that f’ is a single-point 
fault then #(f ‘)TS. 

The success of this embedding relies on the fact 
that a TMR unit can actually mask a number of mul- 
tiple faults. The embedding was selected such that 
single-point faults in the Q2 correspond to tolerated 
multiple faults. 

5.2 Embedding a Task Graph 

voter are assigned to it. The embedding of edges 
is shown by arrows from modules to voters. The 

5.2.1 TMR Version of the Task Graph 

embedding function F is given in Table 1. 

In general, this embedding is static, but there is 
one exception. If a fault is detected in the path 
between pl and p2, all subsequent messages between 
these processors will be sent via p3. This exception 
is necessary for the proof of Theorem 3. 

We have shown how a single task is triplicated 
to form a TMR unit, which can then be embedded 
into a Q2. We can generalize this process to task 
graphs. Each task, t;, in a task graph is replaced by 
a TMR unit, TMRi. If an edge connects two tasks, 
ti and tj, in the task graph, then an edge connects 
each voter in TMRi with a unique module in TMRj. 

This embedded system can be described within the 
An example is shown in Figure 3. 

same (S, R,p). Now, we are considering R’ E 7% The problem which remains is to embed the TMR 
where R’ is the implementation of the TMR unit on version of the task graph into the hypercube topol- 
the Q2 and p(R’) = S = the TMR unit. The system ogy induced by the F embedding. We will lirst 
with faults, (S, F’, 4’) is defined such that the fault state some properties of the hypercube which we 
set F’ = (0, l}“, where f’ E F’ is an 8-tuple such will need. 
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Table 2: p’ in the presence of single-point faults 

5.2.2 Properties of the Hypercube Topology 

It is well-known that the hypercube can be defined 
recursively as follows [4]: 

1. QO = the trivial graph consisting of one node 

2. Qn=Qn--10K2 

where 0 is the Cartesian product of two graphs, and 
KP is the complete graph with p nodes. Every node 
in an n-dimensional hypercube has associated with 
it an address. An address is a string z E (0, 1)“. A 
subcube of the Qn can be identified by an address 
string s E (0, 1, *}n, where * is the don’t care sym- 
bol. For example, the address of the 2dimensional 
subcube of a Q4 formed by nodes 0010,0011,0110, 
and 0111 is O*l*. The number of *‘s in s is the di- 
mension of the subcube [l]. 

Given this address scheme and the recursive def- 
inition of a hypercube, it follows that the Q2’s with 
addresses of the form z * *, z E (0, l}n-2, form an 
(n - 2)-dimensional hypercube with relation to each 
other. The Q2’s form the “nodes” of this (n - 2)- 
dimensional hypercube. Each such “node” is con- 
nected to its neighbors by four edges. 

In the 3 embedding, pc is only used for com- 
munication. Thus, one-fourth of the processors in 
each Q2 are virtually idle. In order to utilize the 
computing power of that node, we make use of the 
following observation. Given a Q2 with address 
3: * *, the address of p. for that Q2 is ZOO. For 
w E {0,1}n-2, the set {y 1 y = WOO} defines a 
Qnm2. Within that Qn-2 we have a set of Q2’s 
with addresses z * *OO, I E (0, l}n-4 which defines 

an (n -4)-dimensional hypercube into which we can 
embed TMR units as was done above. 

If we apply this argument inductively we see that 
there are n/2 such levels of the hypercube, each 
one-fourth the size of the next larger one. The total 
number of usable Q2’s, i.e., the number of TMR 
units which can be supported, is thus 

LTJ 

c 22” = 2n 1 --- 
k=O 

3 3’ 

if n is an even integer. The l/3 in this equation 
is because the node 0” is not actively used in any 
TMR unit except for message passing. 

Hence, we have a series of nested hypercubes, 
which logically can be considered as either disjoint 
or connected, whichever is more convenient for a 
given application. The embedding of the TMR ver- 
sion of the task graph into the hypercube can now be 
defined. If the task graph will embed into a Qnm2, 
then choose any level of sufficient dimension. Em- 
bed the graph in a manner analogous to the embed- 
ding of the simplex task graph. Except, TMR units 
will be embedded using the 3 embedding into Q2’s 
with addresses of the form z * *Ok, where L is an 
even integer. Edges will be embedded into paths 
defined by either the high-to-low or the low-to-high 
routing strategy. 

If the task graph will not embed into a Qn -2, e.g., 
because it requires more than 2n-2 processors, then 
a new embedding must be found which will embed 
the task graph into multiple levels. As in the above, 
TMR units are embedded into Q2’s in their respec- 
tive levels. Within each level, paths are embedded as 
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Figure 3: (a) nonredundant task graph (b) TMR version. 

above. Paths between levels are defined as specified 
by the high-to-low strategy if going from a higher 
level to a lower level. That is, if going from a voter 
in a Q2 with address * * Ok to a module in the Q2 
with address y * *O’ where k c 1. When going from 
a lower level to a higher level, i.e., k > 1, then the 
path defined by the low-to-high routing is used. 

Theorem 2 Given three embedded TMR units 
TMRl, TMR2, and TMRa where TMRz and TMRa 
both send data to TMRl, let voter v+ in TM& send 
data to module ml,, in TMRr and ‘~3,~ in TM& 
send dam to ml,-, in Th4R1. If (Y # 7 then the 
paths from ~2,~ to ml,, and from ~3,~ to ml,, are 
disjoint. 

Proof: Let the addresses of TMRr, TMR2, and 
TMR3 be q * *Ok, c2 * *O’, and t3 * *Om, respec- 
tively, where k, 1, and m are even non-negative in- 
tegers. Without loss of generality, we let v2,a = 
z2100$J3,r = z3110”, ya = x1100”, and 

m1j-l = qllOk. The following three cases need 
to bc considered. 

Case 1: k = 1 = m. The Th4R units are on the 
same level. Then, all nodes in the path from ~2,~ to 
ml,, have low order bits lOOr. Likewise, all nodes 
in the path from ‘u~,~ to ml,, have low order bits 
11 Om. Hence, the paths are disjoint. 

Case 2: 1, m -c k or 1, m > k. Due to symmetry, 
these subcases are identical, so we will consider the 
case of I, m > k. 

The paths we are considering have the following 
form: 

22100’ + 22100’~“-2100” + 21100” 
23110” + 23110”-~-2110~ -+ CrllOk 

where transitions (denoted 4) may involve multi- 
ple intermediate steps. In the source address, and 
during the lirst transition, the high order n - k bits 
distinguish the paths. During the second transition, 
the low order k + 2 bits distinguish the paths. Thus, 
the paths are disjoint. 

Case 3: 1 > m = k,l < m = k, m > 1 = k, 
or m < 1 = k. Again, because of symmetry these 
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subcases are identical. We will consider the case of a TMR unit. Thus, the errors generated by any 
where 1 > m = k. such fault will be masked. 

The paths in this case are of the form: Case 3: In general, this case is subsumed by 

22100’ + ~~100’-~-~100~ + ZllOOk 
Cases 1 and 2. One special case needs to be consid- 

t3llOk + 2illO”. 
ered. Consider a fault which occurs in a processor 
which is a po for one Q2 and a p3 for another Q2 

The high order 12 - k bits distinguish all nodes 
generated in the first transition of ~~100~ to 
~z100’-‘-~100~ from the node ~~110”. During the 
next transition the low order k + 2 bits distinguish 
the nodes. Hence the paths are disjoint. n 

Corollary 1 Given two embedded TMR units, 
TMRl and TMRz, such that TMRi sends data to 
TMR2, then the paths between the voters in TMRi 
and the modules of TM& are disjoint. 

at a different level, and the lower level Q2 senhs 
data to the higher level Qz. In the higher level Q2, 
such a fault will cause the module in p3 to receive 
erroneous data. It will also cause the path between 
pl and p2 to be faulty. Hence, none of the voters 
would produce correct output. However, we have 
assumed that a fault in a path can be detected, and 
in section 5.1 we showed how to reroute messages 
around this particular fault. Once this rerouting is 
performed, ‘ul and v3 will receive at least two correct 
outputs each and will then produce correct outputs. 
Therefore, this fault is also tolerated. 

Proof: This is a special case of Theorem 2 where Therefore, all single-point faults are masked by 
TMR2= TMR3, i.e., x2 = tg and I = m. n the embedded TMR version of the task graph. n 

Theorem 3 The embedded TMR version of the task 
Note that this result is independent of the scheme 

graph masks any single-point fault. 
used to embed the task graph. Hence, embedding the 
TMR version of the task graph is equivalent Co em- 
bedding the nonredundant version of the task graph 

Proof: If no two TMR units are executing on the into a restricted address space. Thus, any embedding 
same Qz, then by Theorems 1 and 2, the embedding algorithm for the nonredundant embedding may be 
preserves the structure and fault masking properties used. 

of the TMR version of the task graph. By the defi- 
nition of TMR we know that all single-point faults 

This result can be generalized to having any num- 

will thus be masked. ber of TMR units (even the whole task graph) ex- 
ecuted on a single Qz. However, such a system 

If multiple TMR units are executing on the same would not take advantage of parallelism afforded by 
Q2, then a single-point fault acts as simultaneous the distributed system. Thus, such an embedding 
multiple faults. A single-point fault can logically oc- would be an inefficient use of resources. 
cur within a TMR unit, along a path between TMR 
units, or both. These cases will be considered sepa- 
rately. 6 Conclusions 

Case 1: If two or more affected voters (executing 
on the same processor) send messages to the same We have described a system for increasing the 
TMR unit, the communication scheme guarantees fault tolerance of a binary hypercube architecture 
that only one module in the destination TMR unit system. For simplicity we have chosen TMR units as 
will be affected. Thus, the fault will be masked. the building blocks of our system. We have shown 

Case 2: The fault occurs along the path between 
how to embed a TMR unit and the corresponding 

two TMR units. In this case one module of the des- 
TMR task graph into the hypercube. This embedded 

tination TMR unit will receive erroneous data and 
system was shown to tolerate all single-point faults. 

the voters of the TMR unit will mask the error. By Our goal was to improve the reliability of the sys- 
Theorem 2, it is not possible for a single faulty com- tern in a manner which was flexible, simple, and 
pcment to affect the inputs to more than one module which was transparent to the application. The pro- 
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posed method meets this goal. The system is in- 
tended to be implemented in software, Thus, imple- 
mentation will require a protocol for synchronization 
of data at the voters. Only loose synchronization 
implemented via the message passing mechanisms 
of the system is required. Synchronization will take 
place at all points where data is sent out of the TMR 
unit. The protocol is required to provide data syn- 
chronous voting. It must also be capable of detecting 
lost or out-of-sequence messages. Such a protocol 
is specified by Gunningberg [2] and verified to meet 
specifications by Gunningberg and Pehrson [3]. 

However, by implementing the system in soft- 
ware, we incur expensive overhead. The modules 
must sit idle as they await the receipt of acknowl- 
edgements from the voters. This wait is prolonged 
by communication delays and the execution times 
of the protocol and voting algorithm. Furthermore, 
due to the necessity of executing tasks on separate 
processors, implementation of the system reduces 
the usable computing power of the hypercube by 
a power of 4. 

However, a software implementation allows 
greater control of the degree of reliability by the ap 
plications programmer. For example, an implemen- 
tation of the TMR system may allow an application 
to choose whether it will run in simplex or TMR 
mode. Simplex mode may be chosen by less critical 
applications in order to better utilize resources. It 
can be seen that a system can support simplex and 
TMR modes simultaneously. 

The next step in this research should be to model 
the system and analyze it. Desired characteristics 
to determine are correctness, performance, and reli- 
ability. It is especially important to determine the 
degree to which the performance of the system is 
degraded by the introduction of the specified fault 
tolerance techniques. Promising candidates for the 
modelling technique are the Timed Petri Net model 
or the Stochastic Activity Net model [7]. Such a 
models will allow the behavior of the protocol and 
voting algorithms to be modelled while providing 
timing information for performance analysis. 
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