
A PROBABLISTIC APPROACH TO COLLISION-FREE ROBOT PATH PLANNING’

Sungtaeg Jun and Kang G. Shin

Department of Electrical Engineering and Computer Science
The University of Michigan

AM Arbor. Michigan 481W-2122

ABSTRACT

One of the major problems with collision-free path planning
for robots is the amount and complexity of computation required.
The severity of this problem often leads to the design of unintelli-
gent robots which simply follow pre-planned paths. The reason
for this computalional difficulty lies in that all obstacles in the
workspace are treated uniformly regardless of their size and shape.

To remedy the above problem, we have developed a new
method that takes into consideration the size and shape of the obs-
tacles as well as the distance from the robot’s current position to
the obstacles. First, the workspace is divided into a finite number
of cubes. An obstacle is represented by the set of cubes it occu-
pies. Second, the probability of each cube becoming a deadend is
calculated under the assumption that both the starting and destina-
tion points are randomly located in the workspace with a known
distribution. Third, these probabilities are used to determine an
oyiimal robot path that minimizes some cost associated with the
path. Finally, several illustrative examples are presented. Our
method is intended to be used for 3D problems and simple enough
to be implemented for on-line robot path planning.

1. INTRODUCTION
The expectation of productivity increase and product quality

iniprovement with industrial robots has been outgrowing the
advances in robot technology. It is important to develop intelli-
gent robots that can perform sophisticated tasks, rather than simply
following precalculated trajectories. One of the major problems
with the development of such intelligent robots is on-line obstacle
detection ‘and avoidance. There are several proposed algorithms
for this problem, but few of them are acceptable in practice due
mainly to their computational complexity.

The Configuration Space Approach (CSA) was used first in
[l] and furthered in [2]. The CSA applies growing transformation
on obstacles until the robot shrinks to a point. This transformation
has siniplilied the search for collision-free regions considerably.
The CSA only identifies safe regions in the workspace and does
not generate any path for a given origin-destination pair. Lozano-
Perez used the V-graph method to find a path [2]. The problem
with the V-graph method is that it always generates a path very
close to obstacles. Oue way to avoid [his problem is to establish
guarded areas in the vicinity of the obstacles. However, this

‘The work reported in this paper was supported in psrt by the Airforce
Office of Scientific Kesealch under contract No. F33615-85-C-5 105.

solution presents another problem: use of large guarded areas may
eliminate those paths that would be safe if smaller guarded areas
were used. On the other hand, the use of small guarded areas
would increase the danger of collision with obstacles.

O’Dunlaing and Yap 131 proposed an algorithm based on the
Voronoi diagram. It usually Ends the safest path by following the
middle line between obstacles but has the following drawbacks.
First, the safest path is not always the most desirable path; for
example, it could be very long [4]. Second, the complexity of this
algorithm grows rapidly as the number of obstacles in the
workspace increases. The second drawback becomes more serious
when this algorithm is to be used for 3D workspaces.

Kharib [5] proposed an approach using the arrifrciul field.
In this approach, the obstacles generate repelling forces while the
destination generates attracting forces. The robot follows the line
with the most attracting forces. The problem with this approach,
however, is that search usually ends up with local maxima. Gil-
bert and Johnson [6] used the distance function to generate palhs
as well as trajectories. Though use of the distance function is
quite elegant for off-line path planning, it takes too much time to
be used for on-line robot path planning.

Kambhampati and Davis [7] proposed an algorithm using the
A’ search for mobile robot path planning. As a heuristic cost
function, they used the sum of traveling distance and accumulated
clearance from the nearest obstacle. During the course of search,
they used tltc Puclidcnn distance bctween the destination and the
curreii~ best t d c ns the cnct-to-go. Since t l i i c rticasiire is a lower
bound of the actual cost, the search is guaranteed to find the
oplimal solution for their heuristic cost function. However, the
Euclide,an distance estimator is the lower bound of traveling dis-
tance only and does not include the accumulated clearance. There-
foie, almost every region has to be searched (i.e., an exhaustive
search) until the destination is reached. To alleviate the need of an
exhaustive search, they proposed to use a pruned quadtree that
limits access to certain regions. This solution suffers from the
same drawbacks found in the approach based on the guarded
regions.

The computational complexity associated with conventional
algonthnis is due mainly to their inability to differentiate the vari-
ous sizes, shapes, and orientations of obstacles. Figure 1 shows
three pairs of cases which may occur during the search for a robot
path. Conventional search methods using the distance -to -go
and/or the drsrarice -f rom -ohstacie treat all these cases indiscrim-
inately, although case (a) requires a special care to avoid the obs-
tacle when compared with case (b). In fact, it is not easy to
dirferentiate all possible cases. Instead of trying to classify all the

220
CH2555-1/88/0000/0220$01.00 0 1988 IEEE

a

0 0

0 : Destination

a a

0 0

Figure 1. Various possible situations during the search.

factors that affect the search decision, we shall develop a single
measure that subsumes all possible cases.

Almost every search algorithm uses the expand-and-select
paradigm to reach a goal node from a starting node. When a node
is expanded, the search tests whether it is a goal or not. If it is,
the search will end, and if it is not, the search will choose another
node from those nodes already generated and the procedure con-
liriues. Depending on the search strategy used, it may or may not
choose one of the nodes generated most recently. When the next
node chosen is not one of the nodes generated most recently, the
most recent node expamion may become useless. In certain cases,
the chosen node may not have any successor, thus reaching a
deadend .2

"lie search will generate more nodes and, thus, wastes more
time as the number of deadends encountered in the search
increases. To reduce the search time, the number of deadends
encountered during the search must be minimized. The measure
used in our path planning algorithm is the probability of meeting a
deadend. Clearly, the nodes in Fig. l(a) have a higher probability
of meeting deadends than those in Fig. l(b). In general, the nodes
in the vicinity of a larger obstacle have higher probabilities of
meeting deadends than those near a smaller obstacle. (This holds
for both convex and concave obstacles.) We shall present a search
algorithm based on these probabilities to find an optimal robot
path that minimizes the path cost.

The paper is organized as tollows. Section 2 describes how
to determine the probabilities of meeting deadends. Section 3
presents a search algorithm that utilizes these probabilities and an
example workspace. In Section 4, our search algorithm is simu-
lated for this example workspace and compared with the A' algo-

*A deadend is nfemd to as a node that does not have any childrrn.

rithm, and the paper concludes with Section 5. Although our
algorithm is developed for robot path planning in 3D, only 2D
examples are presented for the ease of understanding.

2. PROBABlLITJES OF MEETING DEADENDS
It is assumed that there are a set of obstacle9 and a robot in

the workspace. The goal of a robot path planner is to determine a
curve or a set of points for the robot to follow from a starting
point or an ongin to a destination without colliding with any obs-
tacle in the workspace. There are two sources of the difliculty
associated witn robot path planning: (i) an infinite number of paths
exist for each given origin-destination pair, and (ii) it is in general
difficult to represent an obstacle of arbitrary dupe in the
workspace One way of circumventing these sources of difficulty
is to divide the workspace into a finite number of cells. Such a
division not only reduces the infinite number of possible paths to a
finite number of paths, but also allows an obstacle to be
represented by the set of cells it occupies.

Following the above approach, let the workspace be divided
into rn xn xl identical cubes, each of which is represented by its
center point. As mentioned above, an obstacle in the workspace
is then represented by the set of cubes (Le., points) it occupies.
Without loss of generality, we can assume that a robot is shrunk
to a point by expanding obstacles. A robot moves towards the
destination by advancing one point each time. The goal of the
robot path planner is to find a sequence of neighboring points or
cubes from the origin to the destination while minimizing certain
cost associated with the path. Here, we define the cost of a path
as the total number of points or cubes in the path. i.e., actual path
length. It should be noted that the cost of a path will increase if
the path runs sideways or backward instead of moving toward the
destination. The main strategy of our algorithm is to minimize
such encouuters.

For a given destination, a point is said to be a deadend
when (i) all of its neighbors are occupied by obstacles, or (ii)
moving to any of its unoccupied neighbors increases3 the path
cost. A point is said to meet a deadend when its neighbor which
is chosen to move to is a deadend, or its chosen neighbor meets a
deadend.

Unlike conventional methods: no prior knowledge on the
origin-destination is assumed. Instead, each origindestination pair
will be given to the path planner at the beginning of ifs real exe-
cution. However, the probability distribution of locating the
origin-destination pair is assumed to be given prior to the execu-
tion. This probability dislribution can in general be arbitrary, i.e.,
it does not have to be any well-known distribution.

For the clarity of presentation, it is necessary lo introduce
the following symbols.
V : The set of all points or cubes in the workspace.

vi,&: The (i , j , k) - t h point in the workspace.

PI()+): The set of points that are neighbors of vj jk , i.e., Uie
robot CM move to one of these points from vijk without
passing through any other point in between.
The set of destinations for which vijk becomes a
deadend.

'That is, taking sideways instead of moving towardv the destinntion.

%cy ale concerned with the de5. lopnienl of M algorithm for finding 8

Pdhl1 wnell dlr Wlgla-dckstmatioii patr is giveii. If a new pair 18 given, then the

e n t k algorithm must repent.

22 1

(a) D i a g o n a l allowed. (b) Diagonal mve is not allowed.

0 Points that are not obstructed.

Current position.

Points that are occupied by obstacle.

Destinations that should be detoured
from current position.

Figure 2. Examples of obtaining V i j .

~. -
Cijk:
Di jk :

R$":

The event that vijk becomes a deadend.
The event that the search meets a deadend if vijk belongs
to the chosen path.
The event that vijk precedes qmn on a path. These two
points are not necessarily neighbors to each other on the
path.
The probability that vijk becomes a destination.
The probability that vijk becomes a deadend.
The probability that the search will meet a deadend later
if the path passes though v i jk .

dijk :
pijk :

qijk:

Obviously, only the points that are adjacent to obstacles
could be deadends. The average probability that a point v t I k

becomes a deadend is P,]k = E, drmn. For example, if destina-
"h. E V#,h

tions are uniformly distributed throughout the workspace, then

dilk = - ' for all destinations in c,,, where K is the number

of points that are occupied by the obstacles and 1 is the cardinal-
ity of the set A . Then, the average probability of I J , , ~ becoming a

deadend is p,]k = Note that C ,] k depends not only on the

definition of N (V ,] ~) , but also on the path cost. Generally, the
neighbor of a point is defined as the set of all points that are hor-
isontally, vertically, and diagonally adjacent to Uiat point. The
neighbor of a point can also be restricted to oiily those points that
are vertically or horizontally adjacent, but not diagonally, to the
point. With the two different definitions of neighbor, the exam-
ples of Figure 2 show the set of destinations that require a back-
wack from the current position when the number of points in a

lvl - K

Ivi kl

[VI - K '

path is used as the path cost.
The probability that a path containing 1 1 . . meets a deadend

can be calculated by P [D i j k] = P [U (R$?&Crmn)]. Since a

robot palhi consists of a sequence of successive neighboring points,
we get

U R;PM&') n C i m n I I .

VI- E v

P [~ i j k I = P [cijk U I (
VI-EV v o p q € N (I ' i / k)

The went tliat a point hecomes R deadcnd nnd the event that
a point leads srtlwqrreritly to a tlrndcnd are mutually exclusive:
Thus, the above equation becomes:

P [Dijk I = P [Cijk I + P [U I (U Ri;SqnR::J)nCr,,,, I]
v i m E V vom E N (~ , l k)

= P i j k + p [U U R $ q n R & ')nCf,,,, I1

I (U RqnRJ) n c i m , I I

3.1- E V vOpq EN (*,I' 1

= Pijk + P [U
vnPq E N (*,jh) VI- E V

= p i j k + P [U (R ; f q n (U (R & n C i m n)) ~ ~

= Pijk + P [U (R ; P n D o p q)I. (2.1)

V l M E V "qq E N (v V k 1

** E N (vijk)

Since the search algorithm always chooses only one neighbor
each time, the events R;fq's for all i ~ , ~ ~ N (v j j ~) are mutually
exclusive. Thus, Eq. (2.1) becomes:

p Pijk] = pijk + C p [R$fqnDOW I
vWq E N (v,jr)

= pijk + P [RiJq I Dopq IP [Dop, I .
v , , ~ N (v , , k)

(2.2)

It should be noted that R;P depends on the search strategy
used. For example, in a blind search, R;$q is independent of
D,,W. When RGfq is independent of D , , RiTq can be obtained by
the same method used to calculate p i j k .

Most logical search strategies utilizing the probabilities of
meeting deadends must choose a point that is least likely to lead
to a deadend as long as such a choice does not increase the path
cost. However, it is difficult to derive P [R;fq 1 D,,] in Eq. (2.2)
because D,, is unknown and depends on R;?. Moreover, the
path cost depends on the probabilities of meeting deadends. To
overcome these difficulties, it is necessary to introduce a new
event, denoted by D;k, that v j j k will meet a deadend in n steps.
Then, Eq. (2.2) can be rewritten as:

By using mathematical induction and Eq. (2.3), P [D $] can be
calculated for any n 2 2. Since Dijk = n Zim +- D;k, we can derive

P [Dip] = n lim +- P [D;k] by applying Eq. (2.3) recursively.

In what follows, we shall develop a search algorithm to
determine an optimal robot path between an arbitrary pair of
points based on the probability of each point being a deadend in
the workspace.

222

3. THE ROBOT PATH PLANNER
The robot path planner consists of two phases. In the first

phase, the path planner transforms the workspace infomiation into
the probabilities of meeting deadends which are computed off-line
as discussed in the previous section. 2D examples of the output
of the first phase using the number of points in a path as the path
cost are shown in Fig. 3. In these examples, the workspace con-
sists of 32x32 points and the neighbor of a point in the workspace
is defined as the set of all points that are horizontally, vertically,
and diagonally adjacent to the point. Since robot motions are usu-
ally performed through rotary joints, diagonal movements are
more natural than strict horizontal and/or vertical movements in
many cases. The destinations used in these examples are assumed
to be distributed uniformlJ over the entire workspace. 108 points
in Fig. 3a are occupied by the obstacles while 144 points in Fig.
Ib are occupied by the obstacles, i.e., more obstacles in Pig

than in Fig. 3a. The obstacle data is shown on the left and P [D i j k]

at the right of the Egure~.

Upon receiving the workspace information, the first phasc of
the path planner transforms the obstacle data into the probabilities
of meeting deadends using the procedure P1 below.

Procedure P1

1. Computepijk for all v i jkeV using pijk = - Ivijk I
IVl - K

2. Initialize P * [Dijk] := pijk, error := 0.001. and

3.
ma-error := W.

Repeat 3a-c until mux-error < error.
3a. For all vi E V , compute

P'[RiFq(D,] using P * [D , 1, and
P [Dijk 1 := P i j k + P Pq [RGP I Do, IP * [Dopq I .

V O + . p N (V I / d

3b. Set

3c. Set P* toijk] := P [oijk].

mux-error := min (ma-error , max (I P pijk) - P' [oijk1 I).
>',*EV

The second phase of the path planner converts an origin-
destination pair to a collision-free optimal path. Tile hill-clin1bmg
method is chosen as our search strategy. The main advantage of
the hill-clhnbmg method is Umt it may converge to a good solu-
tion very quickly. However, it may waste a great deal of time
when a successor that leads to a local maximum or a deadend is
chosen. Since our algorithm is designed to choose a successor
that is least likely to lead to a deadend, this disadvantage of the
hill climbing method is minimized.

Although our method chooses a point that will least likely
lead to a deadend, it may still lead to a deadend. Furthermore,
there are some origin-destination pairs that will always lead to
deadends due to a large obstacle between them. Oue way of deal-
ing with this problem is to backtrack to an earlier point and
choose some other direction from there on. Decisions to be made
in the backtracking are: the number of points to backtrack and the
existence of a path without taking sideways. The former is impor-
tant because a smaller number of backtrack steps will often lead to
the same deadend while a larger number of backtrack steps will
waste search time and may also lead to another deadend that the
original path has already avoided. The latter presents a more criti-
cal problem than the former. The existence of a path can be

'As mentioned earlier, any other distiibutions CM be assumed.

verified only after all combinations of points are tested. Accord-
ing to the simulation results obtained thus far, our method is
shown to avoid deadends very well when there exists a path con-
necting the origin and the destination without taking sideways.
That is, if the first attempt to find a path for a given origin-
destination pair meets a deadend, the second attempt usually ends
up with going to a deadend again.

To remedy the above situation, we adopted the following
backtracking policy. For a partially constructed path
Pk = vovl . . . vk, where v0 is the origin, vk the point that
becomes a deadend, and qi is the probability of vi leading to a
deadend!
Step 1: Find the first vi' such that vi' is a sibling of vi and

Set the path to

Step 2: If no such point is found, set the path
Pi := vYv I * * . vi v:; where v: and v̂ are the first pair of

points such that v̂ is a child of vi' and is less

than Uie projected distance7 between the destination and
v: for i = k-1, k-2, . . . ,O.

It should be noted that path cost will increase when the backtrack
point is not found in Step 1.

Another key issue associated with the efficiency of any
search method is the search direction. Backward search is usually
more efficient than forward search when there are more initial
states (i.e.. origins) than final states (i.e., goals). Note that this
usual selection of search direction is not directly applicable to
robot path planning, since one and only one origin-destination pair
needs to be considered each time in robot path planning. How-
ever, a simple modification in accordance with the following
observation will make the usual selection applicable to robot path
planning: there are more ways to reach a point when the probabil-
ity of the point meeting a deadend is small than when this proba-
bility is large. In other words, backward search is more efficient
than forward search when the destination has a higher probability
of meeting a deadend than the origin. Our experiments show that
on the average, 30% of deadends can be avoided by exchanging'
the origin and the destination based on their probabilities of meet-
ing deadends.

The procedure P2 described below constructs two paths each
time: FPATH starling from the origin and BPATH from the desti-
nation. Out of these two paths, a path which is less probable to
meet a deadend will be expanded first. The search will continue
to reduce the differences between the two paths, FPAI'H and
BPATH, until the two paths intersect.

Procedure PZ
1.

2.

q i ' < qi+ for i = k-I , k-2, . * . ,I.
pi := y"vl . f . v . I?.'. 1-1 I

1 - 4.'
4 -Qi

Initialize the origin with FORWARD and the destination
with BACKWARD. Set FPATH and BPATH to null sets.
Repeat 2 a d until FPATHnBPATH f 0:

2a. Select a node which has a lower probability of meeting a
deadend from FORWARD or BACKWARD. Call ulat
node CURRENT.

nob,imal convenience, we used n shigk. instead of tl.iPh subscriPt
to rrpnsent a point 01 cube in the wokspnce.

7That is, nl~i,,l,,,,l of points between 11: nnd the k d ~ i a t i o n

the absence of obstacles.
~ swi~c~ l i i l g between backward searti ald folwud se:ucli.

223

2b.

2c.

Insert CURRENT to the corresponding set, FPATH or
BPATH.
Choose a successor of CURRENT from its neighbor. A
node which mininiizes the path cost is selected as the
successor. If there is more than one node with the
minimal path cost, a node which has the lowest proba-
bility of meeting a deaderid is chosen as the successor. If
there is no successor for CURRENT, backtrack to an
earlier node.

2d. Call the successor FORWARD or BACKWARD,
depending on its predecessor.

4. RESULTS
The workspace model used in our simulation consists of

32x32 points. The simulation is performed using the obstacle data
in Fig. 3a arid Fig. 3b. Origindestination pairs are generated by a
uniform random number generator. The entire simulation is per-
formed on the Sun 3/50 running a FranzLlSP interpreter. Hence,
the processing time shown in Table 1 corresponds to the CPU
time of the Sun 3/50.

We also generated paths using the A* algorithm for the pur-
pose of comparison. The heuristic used in the A’ algorithm is
f (p) = g(p) + h (p), where g @) is the number of points from
the origin to the node p and h e) represents the estimated cost
from p to the destination. The estimated cost from p to the desti-
nation q is obtained as h @) = D@, q) - C@), where DO). q)
represents the minimal number of points between p and q and
C (p) is the minimum clearance between obstacles and p . The
reasons we have chosen this heuristic estimator are: (i) D (p , q) is
the lower bound of the actual path cost, and (ii) the A* search
will choose a point that is not likely to be wasted, i.e., a point that
is far from obstacles. Since h @) is an under-estimate of the
actual cost, the A* algorithm guarantees the optimal solution that
maximizes the clearance.

To ensure the parity between the two simulations, the ran-
dom number generator produces exactly the same sequence of
origin-destination pairs for both our method and the A algorithm.
The simulation results for both methods are tabulated in Table 1 .
The paths generated by our method require slightly higher costs (=
1%) than those generated by the A* algorithm. However, the
total processing time taken heavily favors our method over the A
algorilfim. Furthermore, the average time taken to find each path
in our method is small enough to be used for on-line path plan-
ning.

A1 : Simulation using our algorithm.
A2 : Simulation using the A * algorithm.

(Each data is based on 100 origin-destination pairs.)

5. CONCLUSION
In this paper, we have developed an objective measure of

describing the effects of obstacles on collision-free. robot path
PhMing. This measure is then used for a search method similar to
the hill climbing method. The hill climbing method generates solu-
tions very fast if it does not encounter deadends. Although it is
not possible to avoid deadends completely during the search, we
can minimize the probability of encountering deadends based on
the measure developed here. The quality of the path obtaine:
from our method was shown to be comparable to that from the A
algorithm. More importantly, the computational cost is reduced
substantially (to less than 1/10) when compared with the A’
search.

The main advantage of our algorithm will become more
vivid if it is implemented for a 3D environment. The complexity
of conventional algorithms increases dramatically when it is to be
implemented for 3D problems. For example, the A* algorilhm
will suffer greatly from the computational complexity when every
node generates 26 successors in case of 3D, rather than 8 succes-
sors in case of 2D. Since more number of successors imply more
number of ways of avoiding deadends, our algorithm will work far
better when there are more successors to choose.

REFERENCES

S . M. Udupa, “Collision Detection and Avoidance in
Computer Controller Manipulators,” Proc. 5th Int’l Joint
Con6 Artijicial Intelligence, 1977.

T. hir;lno-Perez, “Spatial Planning: A Configuration
Space Approach,” IEEE Trans. Cony., vol. C-32, no. 2,
pp. 108-119, Feburary 1983.

C. O’Dunlaing and C. K. Yap, “The Voronoi Diagram
method of motion-planning: I. The case of a disc.,”. J.
Algorithm, vol. 6, pp. 104-111, 1985.

S. - H. Suh and K. G. Shin, “Robot Path Planning with a
Weighted Distance-Safety,” Proc. 2 6 4 Cor$ on Deci-
sion and Control, pp. 634-641, December 1987 (An
improved version will also appear in IEEE J. Robotics
and Automation).

0. Khatib, “Real-Time Obstacle Avoidance For Manipu-
lators and Mobile Robots,’’ IEEE Int. Conf on Robotics
and Automation, pp. 500-505, March 1985.

E. G. Gilbert and D. W. Johnson, “Distance Functionv:
Their Application to Robot Path Planning in the Presence
of Obstacles,” IEEE Journal Robor. Automar., vol. RA-1,
pp. 21-30, March 1985.

S . Kambhampati and L. S . Davis, “Multiresolution Path
Planning for Mobile Robots,” IEEE Journal of Robon’cs
and Automation, vol. RA-2, pp. 135-145, sept. 1986.

Table 1 . Simulation results using the example in Figs. 4a and 4b.

224

225

