
WP4 - 3:30

ROBOT TRAJECTORY TRACKING WITH
SELF-TUNING PREDICTED CONTROL

Xianzhong Cui and Kang G. Shin

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

ABSTRA(CT

A controller that combines self-tuning prediction and
control is proposed as a new approach to robot trajectory
traking. The controller has two feedback loops: One is used
to minimize the prediction error and the other is designed to
make te system output crk the set point input. Because the
velocity and position along the desired trajectory are given
and the future output of the system is predictable, a feedfor-
ward loop can be designed for robot trajectry tking with
self-tuning predicted control (STPC). Parameters are
estimated on-line to account for the model uncertainty and the
time-varying property of the system.

We have descnbed the principle of STPC, analyzed the
system performance. and discussed the simplification of the
robot dynamic equations. To demonstrate its utility and
power, the controller is simulated for a Stanford arm.

Index Terms - Robot trajectory tacwking, self-tuning predicted
contol (STPC), auto-regressive moving average.

1. INTRODUCTION
Because of their flexibility and capabiity, computer

contolled robots have become an essental component of
modern ma ufactring systems. "Opdmal" (in some sense)
trajectory control of such a robot is very important for
improving manufacturing productivity and product quality.

When the robot moves with high speed or requires
accurate positioning or is driven by high torque motors, one
must consider its nonlinear characteristics and parameter
uncertainties. Moreover, the controller's computational
requirements are an important issue for real-time implementa-
tion. It is well-known that an industrial robot is a nonlinear,
time-varying and highly-coupled multiple input multiple out-
put (MIMO) system. For such a system, adaptive control
appears to have advantages in handling the parameter uncer-
tinties and stringent requirements on the positioning accu-
racy and motion speed.

Adaptive robot control techniques can be categorized
into two types: model reference adaptive control (MRAC)
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and self-tuning control (STC). For STC, the dynamics of a
robotic manipulator must be described by a controlled auto-
regressive moving average (ARMAX) model. If the dynamic
coupling is neglected, then the model becomes multiple single
input single output (SISO) systems. The work described in
[1] is a typical example of multiple decoupled STC's, one for
each joint This design method may also be extended to
MIfMO systems, as discussed in [1] and [2].

Although the STC in [1] has the advantages of imple-
mentation simplicity and good performance. the chokce of the
weight coefficient ei is crucial to system performance. It
decides not only system unsient responses but also system
stability. When 4 ), the controller becomes a minimum vari-
ance controller, which is unstable for non-minium phase
systems. If Ei is too small, the system wil have large oscilla-
tions. On the other hand, if ei is too large, the system
response will be very slow. The only way of choosing Si is
trial and error. To remedy the difficulty in choosing the
weight coefficient, one can attempt to use a pole placement
self-tuning controller. Closed-loop system poles are assigned
to predesigned positions. The work in [3] is a good example
of direct application of Ue pole placement to control a Stan-
ford arm.

The STC can be realized in either joint or Cartesian
space. Because it is the robot's end-effector, not the robot's
joints, that performs the task, the performance may not be
acceptable at the end-effector, even if it is acceptable at the
joints. Therefore, it is highly desirable to formulate a control
law directly in the task coordinate frame [4]. An example of
hybrid control can be foumd in [51, where the position and
force errors were transformed first from the end-effector's
Cartesian coordinates to those in joint space. Then, the posi-
tion and force errors at each joint were combined into one
hybrid error which was eliminated using the pole placement
STC.

Some researchers presented the results of combining the
STC with other techniques. For example, path control was
combined with visual information [6]. The position and orien-
tation of an object were determined from a binary image, and
the extracted infornation was used for a self-tuning con-
troller. The ideas of "resolved motion rate control"' and
"resolved acceleration control" were used to design a feed-
forward loop [7]. They resolved the specified positions, velo-
cities and accelerations of the robot's hand into a set of
values of joint positionss velocities and accelerations from
which the joint torques were computed. The feedback loop
was then designed using the STC to reduce the errors in the
hand's position and velocity.
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The drawback of the pole placement STC is thai a time
delay appears in the closed-loop characteristic equation
which affects system performance. This is especially true for
a system with long delays.

In this paper, we present a new approach to robot tra-
jectory tracking that combines the self-tuning prediction and
control (STPC), thus resulting in two feedback loops. One is
used to minimize the prediction error and the other is
designed to make the system outpt rck the set point input,
i.e., the desired robot trajectory. Using a separate predictor,
the negative effect of time delay is elimiated from the con-
troller. This controller, unlike the one in [I], does not require
to choose any weight coefficient. The performance of the
controller depends only on the convergence of the predictor,
regardless of whether or not the system is in minium phase,
thereby making the controller more suitable for a time-
varying system like indutrial robots. Because the future velo-
city and position along the desired trajectory are given and
the future output of the system is predictable, a feedforward
loop can be added to speed up the backing operation. Unlike
the resolved motion rate or acceleration algorithms, the com-
putation of this feedforward loop is very simple, which is
important for real-time implementation.

In Section 2, an ARMAX model is derived from the
robot dynamic equations. on which the STPC wil be based.
The self-tuning predictor and parameter estimation are
described in Section 3. A predicted controller with a feedfor-
ward loop is presented in Section 4. Section 5 deals with the
analysis of system performance and the deteminaton of the
controller parameters. Section 6 presents the simulation
results for fie STPC of a Stanford arm, and the conclusion
follows in Section 7.

2. ROBOT DYNAMIC EQUATIONS AND TEIR SIN-
P IFICATION

An ARMAX model of a system has the following form:

A(z-') y(k) = B1(z) u(k - d) + C(z-')e(k), (2.1)

where A(z)= I + A, z-1 + + A,, z',

B(z-1) = Bo + B, z-' + ..... + 8,,: '

C(zfl-=I+ClztA +..... +Cz
yt) and u(t) are repectively the n -dimensional outw and
input of the system at a discrete time r, d is the tim delay,
and eQt) is a random sequence with zero mean and cr= I
that describes the model uncerainty. A(--'), B(z-') and
C(- ) are nxn matrix polynmials of z1 with the or of
n., nb and n, respectvely. If the STC is to be used for
robot trajectory tacing, the robot dynamic equations shod
be converted to the same form as Eq. (2.1).

The robot dnamics are described by noliner second-
order differential equations:

A n x .
, D (0) Oj + z,xhg()OSi + Gi(O)= ;,

j=I j=tk=t

1St n

the second term represents the Coriolis and centrifugal forces
and the third term is the gravitational loading. The major
difficulty associated with the conversion of Eq. (2.2) to the

form of (2.1) is the nonliear term, X Xhj,(O) kj0k, and
j=lk=l

the coupling parameters, Dqi (O), i j, and GC (O).
Rewrite Eq. (2.2) in the foUowing matrix form:

D(O)9+ H(O9 O) + G() = t. (2.3)

Let the operating point be the current position and velocity,
denoted by Q0 = (On On), and assume that the changes of D
around Qo is negligible, i.e., D(00 + q) = D(0O), where (q, 4)
is a small pefturbation around Qo. Then, using the Taylor
series expansion of Eq. (2.3) about Qo and neglecting the
second and higher order terms, we get a lird form Of
Eq. (2.3):

where

q(t) = u(t), (2.4)

Do= D(8o), H% = .9 I;w i
G q=2k I + G;,and ucR is the differenta

joint torque resulting from the perturbation.
Change the differential equation (2.4) to a difference

equation using
g(k +T)_-g(k)q(t) = T

Assuming the samping interval T = 1, if Do is noasingular,
then we can get a MIMO difference equation:

A(,-&-) q(k) = B(z-1) n(k - d),

where A(z-') = I + AI :r- + A, Z-2

= I + Dj7' (H0 - 2 DO) z-1 + D&' (D - H0 + G) z-2

B(-')=B=D-1 and d =2.

Accong to [81, Eq. (23) for a Stanford arm can be
written as a simpled set of under the
thatOO=O,1Si,j 56, andd ,=O for allisj. Tlr.we
get

DNS) 0 + G(O) =-c (25)
where D(I) = diag (d4) intal terms, and
G(O) = Col(g,) a gravity terms. Again expanding (2.5) with
a Taylor series arund the nominal position %Q(t) and neglect-
ing the seond and higher order terms, we get:

Do0(t) + Go q(t) =u(t) (2.6)

wher Do = di dia(8o)] G = [gj It I<i,jC56.
If the interacting effects of gravity among joints are

neglected,' i.e., assume Go to be a diagonal matrix, Eq. (2.6)
will become uncoupled,

(2.2)

where 0 = (O.1,9 . n )T is the vectorrepreentingjoint
angledisplacements, n is the number of joints of the robot, 0
and 9 are the joint velocity and acceleration vectors, respec-
tively, and r = (Ts, t, .... ,,) is t joint torqu/force vec-
tor. The first term of Eq. (2.2) represents the ineril torque,

d1i 4i(t) + goij qi (t) = u (t), I S i S 6. (2.7)

'The error rewirng from this apmoximaton will be cmpensatd for
by inro&ing an ad&tial term into each joint ARMAX modet
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Replacing differential with difference leads to:

d q (k + 2T) - 2 qi(k + T) + q1(k) j +g q,(k-) =
di oiqf.() P k)

Again by letting the sampling interval T = 1, we get

A('-) q,(k) = B(z1-) ui(k - d)

where

(2.8)

A(=lI +a --+a,t-2, B(z-')= bo,

d = 2, a, = -2, a, = , and bo = - . (Note that
d,i d,,

dii * 0 for all i.) Considering the modeling error and system
disturbance, a disturbance term C (Z-1) e (k ) is added to Eq.
(2.8), where e (k) is an uncorrelated random sequence with
zero mean, and C'(z-) is a polynomial of z- with unknown
coefficients. A scalar term h (k) can be added to this equation
to express the gravity coupling effects [3]. Then the final
equation becomes

A(z1)q (k) = B(') ui(k - d) + C< )e(k) + h(k).

(2.9)

Because the linearization is achieved around the operat-
ing point, if the operating point is changed, the linearization
should be repeated, i.e., the parameters of Eq. (2.9) are time-
varying. For a time-varying system, the application of adap
tive control algorithms is natural. Note, however, that for the
STPC we do not linearize the robot dynamic equations every
time the operating point is changed. Instead, the change of
the operating point is handled by on-line estimation of the
model parameters.

3. SELF-TUNING PREDICTOR AND PARAMETER
ESTIMATION

For a SISO system described by

(3.1)A(z-') y(t) = B(.--') u(t-d) + C(.--l3 e(t)
define the prediction error

e(trk) = yQ+k) - 9(t+klt)

Substituting (3.2) into (3.1), we get [9]
A t(t) = B u(t-d) - A 9(tlt-k) + C e(t).

(3.2)

(3.3)
Eq. (3.3) represents a new system in which the input is the
prediction 9 (tI-k), the output is the prediction error £(t),
u(t-d) is a measurable noise and e(t) is an unmeasurable
noise. We want to determine an input 9(e/r-k) to minmize
some cost functional resulting from the prediction error.

For the system (3.3), the expected squared prediction
error is used as the cost functional, i.e.,

J = E [s-(t+k)].
Define an identity

C =EOA +t- F

(3.4)

(3.5)
where Eo and F are polynomials of §-, and
deg (EO)=k - 1, deg (F) = n - 1 and n is the order of
system (3.3). Now, the problem is to derive the optimal input
by minimizing J, which is a typical minimum variance con-
trol problem. To minimnize J, we get the optimal predictor

(t+kt) = -B u(t+k)+ EF (rg).A E0A
The prediction error associated with Eq. (3.6) is

e(r+k) = Eo e(t+k).

(3.6)

(3.7)

Since deg (EO) = k - 1 , the prediction error is a k - I-th
order moving average sum of e (t).

Although Eq. (3.6) gives the optimal predictor, the
parameters, A, B, E0 and F, are unknown. These parameters
are estimated on-line as outlined below. If C in Eq. (3.5) is

equal to 1, then A = 1- z F Pluggg this into Eq.Eo
(3.3), we get

-(t+k)=- Eo A 9(t+k/t) + F E(t) +

B Eo u(t+k--d) +Eo e(t+k).
Let F =P, EoA =-Q and B Eo = R, where
deg (P)=n -1, deg (Q)=n +k-1, and
deg (R) - n + k - 1. Then, the parameter estimation model
becomes

e(t+k) =Q j(t+klt) + P £(t) + R uu(t-k-d) + rl(t+k),

(3.8)
where (tQ+k)=E0 e(t+k). The recursive least squares
(RLS) method can be used to estimate the parameters in Eq.
(3.8). The number of estimated parameters is 3n + 2k - 1.
Let P, Q and R be the estimates of P, Q, andR, respec-
tively. Then, using the estimated parameters, the predictor
Eq. (3.6) becomes

y9(t+k/t) = (1 + Q) 9(t+k/t) + P E(t) + R u (t+k-d). (3.9)

4. THE PREDICTED CONTROLLER WITH A FEED-
FORWARD LOOP

For the system (3.1), define a performance index

J =E y{[(t+d)-lby(t)]2+ [A (]
2

} (4.1)

The problem is then to choose an input to minimie (4.1).
Because y(t+d)=e(t+d)+ (t+d/t) and E(t+d) is only
related to the noise input e(t), Eq. (4.1) becomes

= {[r y(t+dl t) -0 Yr(t) + AOU (t)] }+

E {[re(t+)]2}> E {[r(t+d) }

J becomes the minimum when the first term attains the
minimum. The first term is only related to the measured sys-
tem input and output. The problem then becomes to choose
an input to minimize

i1 = {r 9(t+dlt)- Yr(t) }+ {Ao u (t)}.

The control that minimizes J1 is given by

(D y,(t) - r 9(t+dlt) AO s1
uy(tr)= - +l where A=

A rO yo

(4.2)

(4.3)

From Eq. (4.3) and considering Eq. (3.6) and (3.1), the
closed-loop system can be written as

y(t)=
If Y, t)

--

F B -d

e(e)+- e (e).AA +rB A Eo (AA + rB) A

(4.4)
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UTsing Eq. (3.5) and £(t) = Eo e (t), we get

B 04 C A+E0B r

y At)= A r+B- e(t)

lim yfQ)=im Z AIB+B Z(
t-+ :-[ & AA +Br

(4.5)

The characteristic equation is A A + r B = O for whkih A
and r' can be chosen to make the system stable and provide
the desired performance. Block diagrams for the system dis-
cussed thus far are given in Fig. 1.

In the case of robot trajectory trackng, the future set
point input of the system is given as the desired motion tra-
jectory of the robot's end-effector. and the system's futu
output is predictable (via the predicted controller). Thus,
the'e. two signals can be combined into a feedforward loop,
tkwAni uiilproves the system's tracking speed and accuracy.

A feedforward loop is added to the controller (4.3) so
that the new control becomes

u*(t) = ul(t) + u,Q) (4.6)

D yr(t) - r '(t+dlt)Y + {Yr(t+l) - y(t+d+l/t)} G.
The linearity of the conomiled system allows this loop to be
analyzed separately fom the rest of the system. For exam-
ple, one can simply choose G (-t) = Go = constant. Then

ui*t) = {Yr(tO+1) 9(t+d+lIt) GO. (4.7)

and the closed-loop system becomes

B z-~ f(+)l(++I)t+fe(t). (4.8)-A y{(t+l) - (t+d+llt) iGo AC () 48

The system block diagram is shown in Fig. 2.

5. DETERMINATION OF THE CONTROLLER
PARAMETERS

The performance of the closed-loop system (4.5) is
determined by the characteristic equation

AA +B r=o. (5.1)

The pole placement method can be used to move poles in the
z-plane. Let the desired characteristic equatio be

T =1- -2T= I+t1z-+t+2 z (5.2)

To get the desired performance, choose A and r such that
AA + B r= T. Recal tha

A(z)=_1 +at'- +a2 z-2 B(z-1) = bo.
We can choose deg (A) = 0 and deg (r') = 1 to get

( O+boyo 3+( AOa, boTy,)A,-' + ( oa2 ) -2

= ti Z- + U7 .~

I bo o
or at 0 bo io = hi

0 oJoy J, Lz2]

(5.3)

(5.4)

The solution of Eq. (5A) would be the desired parameters.
The stationary gain of the closed-loop system can be

determined by the 0 in Eq. (4.7). Apply the final-value
theorem of z-transform to y(r):

Suppose yr(t) is a unit step input, or Z(y, r))=
Then we get lim y(t)= 8(1)0(1) . uf one

wants to let the output track the set point input yr(t), he can

choose 0(l)= A(1) A (l) + B (1 r(l)
8 (1)

The feedforward gain, G0, determines the feedforward
effects on system performance. The value of Go should be
chosen experimentally using the amplitude of set point
changes and the open-loop gain of the system.

6. SIMULATION RESULTS
The STPC algorithm is applied to conol a Stanford

arm, which is modeled as multiple SISO systems, one for
each joint, as follows.

Ai (z') qi (t) = B,( -') ui (t-d) + k* (t) + ei (t)

where AjW(z')= 1 +a1jz +ai22,2 B,i(z')=bbi
d=2, a11=-2, 1SiS6

d, g0d 14, 4o

(6.1)

Refer to (81 for the vahles of du and gi, and we that the
values are for the case of "no load" in the robot's hand.
Inputs are joint torques/forces and outpts are joint angular

The desired end-effector path is a strght line segment,
P I- P-2 P1, where P =( -80.95, 10.6, 40.9, ) and
P, = ( -31.2, -1.2, 50.0). Tne time of motion is 0.66
second. The initial and final speeds are set to zero and the
sampling interval is chosen to be 0.01 sec.

The predictor for the system (6.1) is written as

4, (t+k/t) = Biui(+k-d) + -A hit+k) + E , (t)
A, Ai ENiA,e

(6.2)

When compared with Eq. (3.6), Eq. (6.2) has only one
additional term, hi(t). Simhrly, the parameter estimaton
model can be obtained as:

E, (t) = 1i 4i (tt-k ) + Pi £i(t-k) + R, ui (t-d) + Hi + i1 (t ).

(6.3)
Since na = 2 and nb = 0, we get

4=-XIs~+ 4,* +.+ 4k+l zA§k+l

R=-r, + i,+I .r;

Pi =PioI.pi, I l-1

Hi = H,0o +Hi -

Then, the vector of estimated parameters becomes

L-=(4i''j ''ik+, Pan Pi, r.O,. rJ,,,...' rik-1, H11T

(6.4)
and the vector of measured values is:

= (41 (t-lI-l-k),.4* (t-l-k/t-2k-1), 4,(tlk),

4, (t-l-k), uQ(t-d),., u,QI+ -k-d), 1T. (6.5)
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That is, i(t)=-4i(t/t-k)+,i Xi +,i(t).
The number of estimated parameters is 3 + 2k + 1.

Since we have already obtained the one and two step-
ahead prbdcfion, to reduce the computation time, a three
step-ahead predictor can be obtined as:

q (t+3/t) = -ai,l Qi(t+2Jt) - ai, q(t+1t) + bi,O u1(t) + hi.

(6.7)
The one step ahead predictor is used for the pole plcement
calculaion based on Eq. (5.4). Because deg (EoN) = k - 1, if
k = 1, thenR =B and1,= -Ai. Thus, the parameters in
Eq. (6.7) become L. = VGij, %a' Pi,o Pi,, bi,O' H, T.
Two and three step-ahead predictors are respectively used to
calculate the feedback and feedforward parts of the controller.

Some of simulation results are plotted in Figs. 3 - 5.
Figs. 3(a) and 4 are the trajectories of joint 3 and 4 with the
desired closed-loop characteristic equation
T =- -1.5 f'+ 0.69 -2, and Fig. 3(b) is with
T = 1 - 1.5 -' + 0.65 z-2 The results for the other joints
are similar to these and, thus, omitted. From these plots, it is
obvious that the feedforward loop improves the behavior of
the controller. The square root average errors of each joint
are tabulated below.

Joint No feedforward With feedforward

__1 7|| 0.002 rad 0.001 rad
2 0.010 rad 0.005 rad
3 0.361 cm 0.145 cm
4 0.006 rad 0.001 rad
5 0.012 rad 0.008 rad
6 ^ _ 0.005 rad 0.002 rad

Table 1. Square root average position error of each joint.

Fig. 5 shows the convergence of 1 and 2 step-ahead
predictors for joint 3. The 1 step-ahead predictor needed
about 6 sampling intervals for settling, whereas the 2 step-
ahead predictor needed about 9 intervals. In the beginning of
operation, we can even open the controller loop and keep the
predictors only. After the predictors have converged, the con-
toler loop is closed so that any large fluctuation is avoided
during the initial ansient period.

The computation time required by the controller is an
important consideration for real-time implementation. Table 2
shows the number of multiplications and additions for each
joint controller in one sampling interval. When popular 32-
bit microprocessors, such as MC68020 and NS 32132, are
used, the required computation time for the STPC algorithm
is listed in Table 3.
These figures indicate the feasibility of implementing the
STPC algorithms in real-time on popular 32-bit microproces-
sors.

Subroutine Multiplication Addition

1 step-ahead predictor 99 74
& p eter estimator =_ _
2 step-ahead predictor 156 121
& parameter estimator
3 step-ahead p_dictor 3 3

controller with t10 8
feedforward __ ________

Total 268 203

Table 2. Number of multiplications and additions.

Micro- Multiplication Addition Required
processor computing time

MC68020 5.68 1.2 10.6 ms
(32 bit,
12.5 MHZ)
NS32132 3.6,us 0.8ps 6.76 ms
(32 bit,
10 MHZ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Table 3. Required computation time.

7. CONCLUSION
The self-tuning predicted control is presented as an

atractive method for robot trajectory tracking. Using the
information of future position, a feedforward loop is shown
to improve the system performance. Because of the separation
between the predictor and the controller, the system is easily
adjustable. The controller does not require any prior
knowledge on the manipulator dynamic parameters. The
computation time analysis shows that this algorithm can be
implemented in real-time by using a popular 32-bit micropro-
cessor.
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