
Message Routing in an Injured Hypercube

Ming-Syan Chen and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Compuier Science

The University of Michigan
AM Arbor, MI 48109-2122

ABSTRACT

A connected hypercube containing faulty components
(nodes or links) is called an injured hypercube. To enable non-
faulty nodes to communicate with each other in an injured
hypercube, the information of component failures must be made
available to those non-faulty nodes for them lo route messages
around the faulty components.

We develop a fault-tolerant routing scheme which requires
each node to know only the information on the failure of its own
links. Performance of this scheme is rigorously analyzed. This
scheme is not only shown to be capable of routing messages
successfully in injured hypercubes when the number of com-
ponent failures is less than n, but also proved to be able to
choose a shortcut path with a very high probability.

1. INTRODUCTION

Due to their structural regularity and high potential for the
parallel execution of various algorithms, hypercube multicomput-
ers have drawn considerable attention in recent years from both
academic and industrial communities [I]. Several research [2]
and commercial (by Intel, NCUBE [3], Floating Point System,
Ametek, Thinking Machine) hypercube multicomputers have
been built, and significant research efforts have been made on
hypercube architectures [4,5,6,7,8].

Efficient routing of messages is a key to the performance
of any multiprocessor or multicomputer system. Especially, the
increasing use of multiprocessor/multicomputer systems for
reliability-critical applications has made it essential to design
fault-tolerant routing strategies for such systems. By fault-
tolerant routing, we mean the successful routing of messages
between any pair of non-faulty nodes in the presence of faulty
components (links or nodes) in the system. Several interesting

This work was supported in pan by the Office of Naval Keuearch under
contracts NOOO14-85-K-0122 and NCOOW85-K-0531, and !hc NASA under
grant NAG-l-296. Any opinions, findings, and conclusions or recommenda-

tions exprcased in this publication arc those of the authors and do not neces-
drily reflect the view of the funding agencies.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

G ACM 1988 0-89791-273-X/88/0007/0312 $1.50

results on lhe fault-tolerant routing in various networks have
been reported [9,10,11]. As a partial effort in making hyper-
cube multicomputers attractive for reliability-critical applications,
we shall in this paper address the development of fault-tolerant
routing schemes for hypercubes. Notice that to route messages
in an injured hypercube, we incorporate network information into
the message to be transmitted without using additional hardware.
This fact distinguishes our work from others, such as 191.

A connected hypercube containing faulty components is
called an injured hypercube, whereas a hypercube without faulty
components is called a healrhy hyyercuk It is well-known that
routing in a healthy hypercube can be handled by a systematic
procedure [4]. Routing in an incomplete hypercube is also
shown to be straightforward [12]. In a healthy hypercube, each
intermediate node can determine the next hop of a message by
examining the message’s destination address and choosing, from
at1 its neighboring nodes, the one which is closest to the destina-
tion. Clearly, this can be accomplished by aligning the address
of the source node with that of the destination node from right to
left and bit by bit [1.7]. However, this scheme becomes invalid
in an injured hypercube, since the message may be routed to the
faulty components. In order to enable non-faulty nodes in an
injured hypercube (0 communicate with one another, each node
has (0 be equipped with enough information to route messages lo
bypass the faulty components. Obviously, it will be very costly
for each node to keep and update complete information of the
entire hypcrcube, although, in that case, each node CNI always
find a fault-free path to another node as long as the hypercube
remains to be connected. Instead, we would like to incorporate
only a small amount of info;maGon into each node Ihal is essen-
tial for the node to make correct routing decisions.

For the above reasons, we shall develop an adaptive fault-
tolerant routing scheme in which each node is required 10 know
only the condition of each link attached to it. This scheme is
proven to be capable of routing messages between any pair of
non-faulty nodes as long as the total number of faulty com-
ponents is less than n in a Q,,. More importanily, this scheme,
despite of its simplicily, is shown to be very powerful in that the
probability of routing messages via shortest paths is very high
and the expected length of each routmg path is very close to the
optimal one.

The paper is organized as follows. Necessary nolalion and
definitions are introduced in Section 2. We shall present in Sec-
tion 3 an adaptive fault-tolerant routing scheme. Performance of
this scheme will be rigorously analyzed in Section 4 in terms of
the probability of the shortest path routing and the expected
length of each resulting path. This paper concludes with Section
5.

312

2. PRELlMINARlES

Let x be the ternary symbol set 10, 1, *), where * is a
don’t care symbol, and every subcube in a Q,, can then be
uniquely represented by a string of symbols in C . Such a suing

of ternary symbols is called the address of the corresponding
subcube. Fig. 1 shows a Q2 with address O*l* in a Q4. Note
that the number of *‘s in the address of a subcube is the same as
the dimension of that subcube. The rightmost coordinate of the
address of a subcube in the n-cube will be referred to as dimert-
sion 1, and the second rightmost coordinate as dimension 2, and
so on. For each hypercube node, the communication link in
dimension i is also called the i-th link of this node. For nota-
tional simplicity, we denote the link between nodes WW and
0010 as W-O. Each link is then represented by a “-” symbol in
the corresponding binary string.

The Hamming distance between two hypercube nodes is
the number of bits where their addresses differ from each other.
For the nature of distributed routing strategies to be presented, it
is necessary to introduce the concept of relative address between
two hypercube nodes.

Definition 1: The relative address of a node
9 = Win-1 . . .91 with respect to another node
m = rn,rnnbl * * * ml. denoted_ by q,,,, = r,r,, * * a r,. is defined
asb=qiifmi=Oandri= qiifmi=lforlSiSn.

Moreover, the relative address of a subcube with respect to
a node u can be determined by the relative addresses (with
respect to u) of all the nodes it contains. For ex‘ample,
WIO,,oo, = 1011, Wll,,,, = 1010, and O*l*,,oo, = l*l*. Also,
the spanning subcube of two hypercube nodes is defined as fol-
lows.

Definition 2: The spanning subcube of two nodes
ll=u,l.&-l’. . u, and w = w,w,, . . . WI in a Q,,, denoted by
SQ(u.w) = s,s,~ . . . sl, is defined as si = Ui if Ui = Wi. and
si = * if ui * wi for 1 S i S n.

For example, suppose u = 0010 and w = 0111, then
H(u,w) = 2 and SQ(u,w) = O*l*. It is easy to see that SQ(u,w)
is the smallest subcube that contains both u and w, and H(u,w)
is the dimension of SQ(u,w).

A parh in a hypercube is represented as a sequence of
nodes in which every two consecutive nodes are physically adja-
cent to each other in the hypercube. The number of links on a
path is called the length of the path. An optimal path is a path
whose length is identical to the Hamming distance between the
source and destination nodes. Nole that due to the special struc-
ture of a hypercube, once the source node of a path is given, the
path can be described by a coordinate sequence that represents
the order of the dimensions to be traveled. As shown in Fig. 2,
[OOOl, 0011, 0010, lOlO] is an optimal path from lhe source
node 0001 to the destination node 1010, and can also be
represented by a coordinate sequence [2, 1, 41. In the rest of
this paper, we shall assume the source and destination nodes are
non-faulty and the injured hypercube is connected.

3. A FAULT TOLERANT ROUTING SCHEME

In this section, we present a fault tolerant routing scheme.
Every node in this scheme is required to know only the fault
conditions of its own links. As will be shown later, this scheme
can successfully route messages between any pair of non-faulty
nodes if the number of faulty components is less than n in a Q,,
although the path chosen by this scheme may not always be the
shortest.

Before we describe the routing algorithm, it is necessary to

Figure 1. A Q2 with address O*l* in a $.

Figure 2. AXI optimal path from 0001 to 1010 .

introduce the following lemma which determines the relative
addresses of those nodes in the coordinate sequence of a path.

Lemma 1: Let [c,, c2, * . * , c,J be the coordinate
sequence of a path in a Q, starting from node II, and
W,” = W”W,, . . . w, denote the relative address of node w with
respect to II. Then, the path specified by [c,, c2. . * * , c,] ends
at w if and only if j appears in [cl, ~2, . . . , ck] an even (odd)
number of times when Wj = 0 (l), for 1 S j S n.

313

Proof Traversal of a message along the i-th dimension is
the same as inverting the bit in the i-th coordinate of the relative
address of its destination. Therefore, traveling along a certain
dimension an even number of times has the same effect as not
traveling along that dimension at all. Since w/. is the relative
address of w with respect to u, this lemma follows. Q.E.D.

For example, a path with the coordinate sequence [3, 4, 21
from 0110 will traverse nodes 0010, 1010 and then 1000. When
a lii becomes faulty, the information abouk this faulty link can
be broadcast to all the other nodes in the hypercube. Several
algorithms for accomplishing this were proposed in [11,14]. If
each node is equipped with the entire information of the whole
network, then Lemma 1 can be used to determine the coordinate
sequence of a path which is free of faulty components. How-
ever, it is usually too costly (in space and time) to equip each
node with information on all failures in the entire network.
Instead. in the following subsection we shall develop a fault-
tolerant routing scheme which requires each node to know only
the condition of its own links.

3.1. Description of Algorithm

To indicate the destination of a message, the coordinate
sequence of a path is sent along with the message. Besides,
each message is accompanied with an n-bit vector
rag=d&-, --* dt which keeps track of “spare dimensions”
that are used to bypass faulty components. All bits in the tag are
reset to zeros when the source node begins routing of a message.
Therefore, such a message can be represented as (k,
Ic,, c2. . . . 1 ck], message, tag), where k is the length of the

remaining portion of the path and updated as the message travels
towards the destinalion. A message reaches its destination when
k becomes zero.

When a node receives a message, it will check the value of
k to see if the node is the destination of the message. if not, the
node will try to send the message along one of those dimensions
specified in the remaining coordinate sequence. (Note that the
coordinate sequence will also be updated as the message travels
through the hypercube.) Each node will, of course, atlempt to
route messages via shortest paths first. However, if all the links
in those dimensions leading to shortest paths are faulty, the node
will use the spare dimension to route the message via an allema-
tive path. (Recall that the spare dimension is kept track of by the
tag.) More formally, this routing scheme can be described in an
algorithm form as follows.

Algorithm A: An adaptive fault-tolerant routing.
(Each node receiving (k, [c,. c2, . 1 * , ck]. message, tag) must
execute the following.]
if k=O then (the destination is reached1)

else begin

for j := 1, k do

if (the cj-th link is not faulty) then

begin

send (k-l,[c,, . . . Cj-l,Cj+l, . * . , c&message,tag)
along the Cj-~ lhlk;

stop; (terminate Algorithm A 1

end-begin

end-do

\lf the algorithm is not terminated yet, all dimensions in
the coordinate sequence are blocked because of faulty com-
ponents.)

for j := 1, k do (record all blocked dimensions in tug.)

d’, := 1

end-do;

h := min (i : di = 0, 1 5 i 5 n); [choose a spare dimen-
sion)
d,, := 1;
send (k+l. [cI,cl . . . , ck, h], message, tag) along the h-
rh link;
stop; (terminate Algorithm A)

end-begin

Consider the 44 in Fig. 3, where links O-01, I-01 and lOO-
are faulty. Suppose a message, fm, is routed from u = 0110 to
w = 1001. The original message in u = 0110 is (4, [1,2,3.4], fm.
0000). Following the execution of Algorithm A, the node u
sends (3, [2,3,4], fm, 0000) to node 0111 which then sends (2,
[3,4], fm. 0000) to node 0101. Since the 3-rd dimensional link
of 0101 is faulty, 0101 will route (1, [3], fm. 0000) to 1101.
However, since the 3-rd dimensional link of 1101 is faulty, 1101
will use the I-st dimension (tag = 0100 then), and send (2, [3,1],
fm, 0101) to 1100, which will, in turn, send (1, [l], fm, 0101) to
1000. Again, the first link of node 1000 is faulty. The 2-nd
dimension (tag= 0101 then) will be used and (2, [1,2], fm, 0111)
is routed to 1010. After this, the message will reach the destina-
tion 1001 via 1011. The length of the resulting path is 8.

1110 1111

Figure 3. An injured Q4 where links O-01,
l-01 and lOO- are faulty.

4. Analysis of Algorithm A

As it will be proved below, Algorithm A can route mes-
sages between any two non-faulty nodes if the number of faulty
components is less than n.

314

Theorem 2: Algorithm A can always route messages
between any two non-faulty nodes successfully as long as the
number of faulty components is less than n, i.e., f + g < n,
where f and g are the numbers of faulty links and faulty nodes
in a Q,, respectively.

Proof: Note that each node will use a spare dimension only
when faulty components are encountered in all the dimensions
specilied by the coordinate sequence. Call the first node which
is forced to use a spare dimension the obsrrucred node. For
example, the obstructed node in the example of Fig. 3 is 1101.
A faulty component is said to be type A if it is (i) adjacent to the
obsltucted node, say x, and (ii) within SQ(x,w) where w is the
destination node. A faulty component is said to be rype B if it is
the first faulty component encountered after the message left the
obstructed node. For the example routing in Fig. 3, l-01 is a
type A blocking component and lOO- is a type B blocking com-
ponent, whereas the faulty link O-01 is neither type A nor type
B. Therefore, it can be seen that in the mute determined by A,
the number of blocking components (including type A and type
B) may increase as the message travels towards its destination.

Let bh denote the blocking component which is encoun-
tered first after using a new spare dimension h, Consider two
possible cases of b,: (i) bt, is a link of the destination node, and
(ii) bh is not a link of the destination node. In the case of (i), b,,
is the h-th link of the destination node, Since dt, was 0 before
the spare dimeusion h is used, this faulty link had definitely not
been encountered before. In the case of (ii), since bh is the
blocking component encountered tlrst after using the spare
dimension h, bh and the set of previous blocking components are
placed in the two different Q,,-t’s separated by the dimension h.
Therefore, from both cases we know the blocking component bt,
does not belong to the set of those blocking components that had
already been encountered before. Since there are n spare dimen-
sions, we need at least n blocking components to fail the routing.
In other words, the routing scheme based on A will never fail as
long as the number of faulty components is less than n. This
theorem thus follows. Q.E.D.

From Theorem 2 and the fact that the number of hops is
increased by two whenever a spare dimension is used, the length
of the resulting path is H(u,w) + 2k if k spare dimensions are
used for routing a message from node u to node w by A. Also,
it can be easily verified that the worst case of A needs
H(u,w) + 2(n-1) steps to send a message from u to w. In addi-
tion, to analyze the performance of A further, we need the fol-
lowing lemma.

Lemma 2: Suppose there are f faulty links in a Q,, and a
message is sent from node u to node w where H(u,w) = k. Let
mA be the Hamming distance between the obstructed node and
the destination node. Also, assume Algorithm A is used for
routing messages. Then, P(m, = j) 5 C$/Ck if 1 <j < k, and
P(mA = j) = 0 if j > k, where L = n2”-l is the number of links in

a a.
Proof: It can be seen that the case mA > k is not possible,

because according to A a message is approaching the destination
before encountering the obstructed node. Therefore,
P(m, > k) = 0.

Consider the case when 1 < j 5 k. An injured Q,, with f
faulty links is called a configuration. There are CL, different
configurations where L = n2”-‘. Without loss of generality, we
can let u = 0” and w = Opklk. The problem of obtaining
P(m, = j) is then reduced to that of counting the number of
configurations which lead to the case of mA = j. We claim that
the number of such configurations is less than or equal to C&.

When mA = j, the obstructed node must be within the sub-
cube Oh-k*k, and all of its j links towards w must bc faulty (j
type A blocking components). Although there are many possible
locations of the obstructed node, according to the systematic pro-
cedure of A, the location of the obstructed node is determined by
those non-ty e-A faulty links which are not within O”-k*k. Sup-
pose x = on-r+j k-j 1 is the obstructed node, then the locations of
those j type A blocking components are determined, meaning
that there are Cr$j different distributions of those non-type-A
faulty links. In the case that the distribution of those non-type-A
faulty links causes node y, instead of x, to be the obstructed
node, we exchange the links (including faulty links) in SQ(y,w)
with those in SQ(x,w), and obtain a configuration which leads to
the case of mA = j. Notice that some of those Cry different dis-
tributions of non-type-A faulty links may result in mA > j, mean-
ing that the number of conligurations leading to mA = j is less
than or equal to Cry. This lemma thus follows. Q.E.D.

From Lemma 2, we can obtain the following theorem
which shows that A can route a message to its destination via an
optimal path with a very high probability in the presence of link
failures.

Theorem 3: Suppose there are f faulty links in a Q., and a
message is sent from node u to node w where H(u,w) = k.
Algorithm A will route a message to its destination via an
optimal p;th (i.e., a path of length k) with a probability greater

than 1 - ~C!&‘t/C~, where L= n2”-‘.
j=l

Proof From Lemma 2, the pr;babiIity that A has to use
k

spare dimensions is p(mA = j) ZZ ~Cr&$$. Thus, the proba-
j=l i-1

bility that A will not use spare dimensions is 1 - iP(m, = j) 2

1 - &;$C;. Q.E.D.
j=l

j=l

The following corollary can be derived from Theorem 3.

Corollary 3.1: Suppose there are n-l faulty links in a Q”,
and a message is sent from node u to node w where H(u,w)=k.
Algorithm A will route a message to the destination via an

r,(l - 47 optimal path with a probability greater than 1 - -

where r, = -!?!, &II-l .

(l-r,) ’

Proof: From Theorem 3, we have

k ($/-j _ n-1
z- -- + . ..+ (n-l)(n-2) . . (n-k)
j=l C,Ll L L(L-1) . . . (L-k-+1) ’

Notice that r, = y > 2: > . n-k . . - . Therefore,
L-k+1

- <r, + rf + . 3 .
rl(t - I-:)

+r:=-
(l-r11 ’

k CL-f .
*1-x rdl - 47 2’ >I--,

j=l CL, (I-rd

This corollary thus follows. Q.E.D.

Similarly to the above, the performance of A can be
analyzed in terms of node failures as follows.

Lemma 3: Suppose there are g faulty nodes in a Q,, and a
message is sent from node u to node w, where H(u,w) = k. Let
ma be the Hamming distance between the obstructed node and

315

the destination node. Then, P(mn := j) < c;-3-j/c;-z if
2Sj4k,andP(mn=j)=Oifj=lorj>k, whereN=2”is
the number of nodes in a Q,.

From Lemma 3 and the reasoning in the proof of Theorem
3, we can obtain Theorem 4 and its corollary. These state that
Algorithm A can also route a message to its destination via an
optimal path with a rather high probability in the presence of
node failures.

Theorem 4: Suppose there are g faulty nodes iu a Q,,, and
a message is sent from node u to node w where H&w) = k.
Algorithm A will route the message from u to w via au optimal
path, of length k with a probability greater than

j=2

Corollary 4.1: Suppose there are n-l faulty nodes in a Q,,
and a message is sent from node u to node w where H(u,w) = k.
Algorithm A wilt route a message to its destination via an
optimal pa& with a probability greater than
1 _ (n-W2(1 - rzk-‘) , where r = n-2

(2”-2)(1-r2) 2 2”-3 .

Furthermore, as it will be shown below, the expected
length of a path resulting from A is very close to that of the
optimal path, i.e., the Hamming distance between the source and
destination nodes. Before we proceed, we need to introduce the
following proposition.

Proposition 1: Let (pilEt and (qt]:, be respectively two
decreasing seqzf”ces with pn z-t,, = 0. Suppose p; 5 qi. for 1 9

i 5 n-l, then Ci(pt - pi+,) < xi(qi - q&t).
i=l i=l

Theorem 5: Suppose a message is routed from node u to
node w in a Q, which consists of n-l faulty links where
H(u,w) = n. Let Ht be the length of a path resulting from A and

AH, = H,-n. Then, E(AH,) 5 e
2"-2.

n-i

Proofi Notice that P(AHt t 2i) < xP(rn* = j). Then,
j=l

n-l
E(AH,) = 22iP(AHt = 2i)

i=l

n-l

= z2i[P(AHt > 2i) - P(AHt .? 2(i+l))]
i=l

n-l n-i n-i- I

5 22i[xP(m, = j) - 2 P(m, = j)]
i=l j=l j=l

n-l

= z2iP(m, = n-i) (By Proposition 1.)
i=l

n-l
5 zZ(n-i)&-t/CL, (By Lemma 2.)

i=l

n-l n-l n-l

< x2(n-i)r;l = 2nzri - 2Ciri (rt = T)
i=l i=l i=l

= 2nr, + 2nr,(r, + . . - + rp2)

- 2(r, + * . . + (n-l)r;-‘)

<2nr,=-
2"-2'

(Since nrl < 1.) Q.E.D.

Also, from Lemma 3 and the reasoning in the proof of
Theorem 5, we can obtain the following corollary for the
expected length of a path chosen by A in the presence of node
failures.

Corollary 5.1: Suppose a message is routed from node u
to node w in a Q, which consists of n-l faulty nodes where
H(u,w) = n. Let Hz be the length of a path resulting from A and

A, = Hz-n. ‘l&n,-E(AH2) 5 2n@-1)‘n-2) .
(2”-2)(2”3)

From Theorem 5 and its corollary, it can be verified that
the expected length of a path chosen by A is very close to that
of the optimal path. Note that due to the absence of global
information, the resulting path may not, albeit rare, be the shor-
teat. Clearly, the efficiency of routing can be improved if every
non-faulty node is equipped with some more information in
addition to those on its own links, since in that case those faulty
components on ita way to the destination can be foreseen, and
thus those faulty components can be bypassed. This, however,
will require additional overhead in collecting and maintaining the
global information.

5. CONCLUSION

In this paper, we have proposed a distributed fault-tolerant
routing scheme for an injured hypercube multicomputer. This
scheme is developed in light of the topology of a hypercube and
intended to fully use its abundant connections. Performance of
this scheme has been rigorously analyzed. We showed that this
scheme is not only capable of routing messages successfully in
an injured Q,, when the number of component failures is less
than n, but also able to choose a shortest path with a very high
probability.

VI

121

[31

[41

[51

WI

L71

REFERENCES

P. Wiley, “A Parallel Architecture Comes of Age at
Last,” IEEE Spetrum. pp. 46-50, Jun. 1987.

C. L. Seitz, “The Cosmic Cube,” Commun. of the
Assoc. Comp. Mach., vol. 28, no. 1, pp. 22-33, Jan.
1985.

NCUBE Corp., “NCUBE/ten: an overview”, Beaverton,
OR., Nov. 1985.

Y. Saad and M. H. Schultz, Data Communication in
Hypercubes. Dep. Comput. Sci., Yale Univ. Res. Rep.
428185.. 1985.

T. F. Chau and Y. Saad, “Multigrid Algorithms on the
Hypercube Multiprocessor,” IEEE Trans. on Comput.,
vol. C-35, no. 11, pp. 969-977, Nov. 1986.

L. G. Valiant, “A Scheme for Fast Parallel Communica-
tion,” SIAM J. on Computing, vol. 11, no. 2, pp. 350-
361, May, 1982.

B. Becker and H. U. Simon, “How Robust is the n-
Cube?,” Proc. 27-th Annual Symposium on Foundations
of Computer Science, pp. 283-291, Oct. 1986.

316

PI

PI

M. S. Chen and K. G. Shin, “Processor Allocation in
an N-Cube Multiprocessor Using Gray Codes,” IEEE
Trans. on Cornput., vol. C-36, no. 12, pp. 1396-1407.
Dec. 1987.
E. Chow, H. S. Mad‘an, and J. C. Peterson, “An Adap-
tive Message-Routing Network for the Hypercube Com-
puler,” Proc. of the Third Conf. on Hypercube Con-
current Computers and Applications, Jan. 19-20, 1988.

UOI D. K. Pradhan, “Fault-Tolerant Multiprocessor Link and
Bus Network Architectures,” IEEE Trans. on Comput.,
vol. C-34, no. 1, pp. 33-45, Jan. 1985.

1111 J. G. Kuhl and S. M. Reddy, “Distributed Fault Toler-
ance for Large Multiprocessor Systems,” Proc. 7-t/1
Annual Int’l Symposium on Computer Architecture, pp.
23-30, May 1980.

WI H. Katseff, “Incomplete Hypercube,” Proc. of Second
Hypercube Conf., pp. 258-264, Oct. 1986.

1131

1141

C. T. HO and S. L. Johnsson. “Distributed Routing
Algorithms for Broadcasting and Personalized COmmWI-
ication in Hypercubes,” proc. Int’l Conf. on Parallel
Processing, pp. 640-648, Aug. 1986.

J. R. Armstrong and F. G. Gray, “Fault Diagnosis in a
Boolean n Cube Array of Microprocessors,” IEEE
Trans. on Comp., vol. C-30, no. 8, pp. 587-590, Aug.
1981.

317

