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Abstract 

Euclidean  distance is the most popular criterion  for robot path planning. 
However, the shortest  path  (SP) is dangerous in some  cases because such 
a path drives the robot too close to obstacles.  When  safety is  the main 
concern,  a  center-line path (CLP)  providing the maximum  clearance  from 
obstacles would be preferable  over the SP, although the length of a  CLP 
could be considerably  longer than t h a t  of a  SP.  Since the SP and CLP are 
two extremes with respect to the  distance and safety  criteria,  respectively, 
it would be useful in practice to strike  a  compromise  between the two 
criteria. 

The purpose of this paper is to develop  a  method  for  determining  an 
optimal path with a  weighted  distance-safety  criterion.  The method is 
composed of three parts:  (i) consmction of a  region  map by dividing 'he 
workspace,  (ii)  inter-region  optimization to determine the entry and depar- 
ture points of the  path in each  region, and (iii)  intra-region  optimization 
for  determining the (optimal)  path segment within each region.  The  region 
map is generated by using an approximate Voronoi diagram, and the inter- 
(intra-)  region  optimization is achieved by using the variational dynamic 
programming. Although it is  developed  for 2D problems, our method can 
be easily extended to a  class of 3D  problems.  Numerical  examples  are  also 
presented to demonstrate the method. 

1 Introduction 

Robot path planning is concerned with the determination of collision-free 
paths for a robot by connecting the starting  and  destination points in the 
workspace  cluttered  with  obstacles. An optimal path is the  one that o p  
timizes a  desired  performance  criterion. The usual performance  criterion 
adopted in the literature  is  Euclidean  distance, Le., the minimum-distance 
path or shortest path (SP) problem. 

The SP problem has  been  studied  extensively by many researchers 
from a variety of points of view. In  2D, the SP is determined by using 
the visibility  graph or V-graph [8]. Use of the visibility  graph  is based on 
me property that the SP passes through some of  the vertices of polvgon 
obstacles.  However, this is  not always valid for 3D problems since the 
SP around  polyhedral  obstacles do not pass through just  a  sequence of 
vertices, but may pass through a  sequence of edges as well. Thus, the SP 
in 3D is  determined by finding the points of contact with those edges t h a t  
the SP passes [1,9,10]. In both 2D and 3D, the SP problem has  essentially 
been solved;  the main remaining  issue is  to develop efficient algorithms 
for  computing the SP. 

Since the SP minimizes the Euclidean  distance to travel, it certainly  is 
an  attractive  path  for many cases.  The  SP,  however, requires the robot to 
be too  close to the obstacles (actually, it touches the obstacles)  and  hence 
possesses high  potential  for  collision  with obstacles. Thus, it  may  not even 
be desirable  for  certain  cases.  One may, of course, argue that the  obstacles 
can  be  artificially enlarged to "some" extent to provide a leeway between 
the robot and obstacles.  However, it is usually very difficult to determine 
the degree of enlargement of the obstacles  during path planning because of 
its  dependence on the utilization of the workspace as well as the uncertainty 
in robot dynamics during path execution. 
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The sufety of a robot path can be quantified by the distance or  clearance 
between the path and obstacles.  Naturally, the larger its clearance, the safer 
the path will be. In contrast with the SP problem, if the safety of a path is 
the only concern, one would choose  a path which provides the maximum 
clearance  from  obstacles. This path, which we will henceforth term a 
center-line  path (CLP), would travel  along  a Voronoi diagram. A simple 
example  showing  both the SP  and  CLP is given in Fig. 1. A CLP could be 
considerably  longer than a SP, indicating t h a t  the CLP  is not desirable at all 
if the robot's  traversal  distance is a major consideration  in path planning. 
X larger clearance  (thus  safer)  from the obstacles usually results in a  longer 
path than  a  SP. The Voronoi disgram  method  [7,11,13,17] may be used  for 
the safest path  planning. 

h e  safety of a robot path has not been fully considered  in almost all 
known path planning approaches  except for the one in [8]. The path safety 
was obtained in [8] by  first growing each  obstacle by a specified amount 
(margin of safety) and then applying  the shortest path algorithm.  There 
are two  problems in this approach.  First, as pointed out in [9], the only 
feasible  path could have been eliminated by growing obstacles.  Second, the 
collision risk is represented by a  simple binary variable; 1 within the safety 
margin and 0 beyond the safety margin. This is not realistic  because of  the 
uncertainty in robot dynamics  during  path  execution, as mentioned  earlier. 
In fact,  the safety (or  collision-risk) of a path varies with its  clearance from 
the obstacles. 

Since both the SP  and CLP are two interesting and useful  extremes  with 
respect to the distance and safety  criteria,  respectively, one may wish, for 
practical  reasons, to strike  a  compromise between these two paths. In other 
wxds, an  optimal path that minimizes  a  weighted  distance-safety  criterion 
needs to be derived.  Clearly,  neither of the visibility graph and  the  Voronoi 
diagram  alone  can  determine the optimal path. A new solution  method 
must be called  for. The main purpose of this paper is to develop  a  solution 
approach to the robot path planning problem with a  weighted  distance- 
safety  criterion.  The  approach  consists of three major steps.  The first 
step  is  concerned  with the determination of a  region  map. The workspace 
is divided into  a set of iegions using an  approximate Voronoi diagram. 
The second  step,  called inter-region  optimization, is  to determine the entry 
and departure points of the  optimal path in each  region.  The third step 
is concerned  with the determination of the optimal path segment  within 
each  region and is called intra-region  optimi:ation. Closed-form solutions 
are  obtained for the third step and a  dynamic  programming  approach  is 
developed  for the second step. 

Throughout the paper,  a  robot is assumed to be a disk in the 2D case 
or  a  sphere in the 3D case. thus allowing the robot to become  a point by 
enlarging  obstacles as much as the radius of the disk or sphere. 

2 Problem Statement 

The problem of fmdmg a minimum-cost path (MCP) for  a  robot is of 
practical  importance to various  robot-based  automation  systems.  The MCP 
problem can be loosely stated as follows:  Find  a  collision-free path to steer 
the robot to a  destination  from  a  starting  position,  while  minimizing some 
form of cost such as distance and traversal time. 

In a room filled with obstacles, the robot is to move from  a  starting point 
to a  destination  point,  denoted by S and E ,  respectively. Let  +(w), UQ 5 
w 5 w f ,  be a path parameterized' with the curvilinear  distance, and 0 = 

MCP problem is then to minimize the cost  functional 
{ p  I p E 0;: i = I , .  . . ,no} be the space  occupied by no obstacles. The 



c = 1:’ L ( z ( z ) , s . O )  d d .  (1) 

subject to  the following constraints: 

E ( W 0 )  = s: Z(;L.f) = E ;  ( 2 )  

{z(w)} r 0 = 6) 7 w  E [ W O . d f ] .  (3) 

Note  that  the MCP problem is characterized by the form Of the Cost 
inte_erand, L(z(~). i ~ ’ ,  0). For example, the MCP problem becomes a sp 
problem if L ( z ( L ) . ~ .  0) = 1, while it becomes a safest path problem if 
L ( ~ ( ~ ) ,  d. (3) = - E ( & )  - 0 ‘ 1  E - minPEo q ( w )  - p ;  . In the latter case. 

. represents Euclidean distance and the CLP will become the optimal 
path. 

m e n  both distance and safety are used as a criterion for the MCP 
problem - the main problem to be dealt with in this  paper - the Cost 
integrand may  be  defined as follows: 

L(T(;Y.) , ;Y.> 0) = 11- - (1 - It’) ’ z (w)  - (3 ~ i’(s.f - GO). (4) 

Note that minimization of  this cost integrand  is equivalent to minimizing 
Jijtance and  mxyimizing the awruge clearance of the path with a weighting 
faclor 11.. o 5 11. 5 I .  .\veraging  the clearance is necessary to mold 
Jouble counting  the  part of the cost contributed by the path length. 

The e\~~,...,IC.[I 01 , I  z ( a )  - 0 ~, usually requires a significant amount 
of computation to an extent that  findmg  of the optimal path z is intractable 
even by numerical methods. One way to side step such a problem is  to  use 
the CLP as a reference path for measuring the safety. For any region of a 
collision-free space, the CLP  can always be considered as  the safest path. 
Consequently. an alternative way to handle the safety of a path is to use 
the deviation from the CLP. namely center-line deviation, ~ E(W) - C L P  ,,. 
Hence a safer path is  meant  to have less center-line deviation. 

Since the CLP passes through regions of varying clearance, a u n i t  
center-line deviation at a region would have a different degree of safety 
from that  at another region. For example, consider the two points PI and 
P2 in Fig. 2. b0.h of which deviate from the CLP by the same amount. 
Obviously, PI in Region 1 has higher collision-risk than Pz in Region 2 .  
since the clearance of Region 1 is smaller than that  of Region 2. Thus, it  is 
necessary to scalc the center-line deviation on the basis of the criricaliry of 
a u n i t  center-line deviation in each region when the center-line deviation 
is  used as the safety metric for a path. The scaling constant 3(w) should 
be inversely proportional to  the clearance between obstacles and the CLP. 

Considering all  the aspects mentioned above, the  global MCP (GMCP) 
problem with a weighted distance-safety criterion can now be stated as: 
Find a path { z ( u ) :  CLP, 5 s. 5 CLP,,} that minimizes the cost 

C‘LP,, 

= L P W ,  
[ W  + ( I  - IV) r(u) ’ z(w) - C L P  ] A: ( 5 )  

where CLP,  5 w 5 CLP,, is the parameter describing the curvilinear 
distance along the CLP and y(w) = S(w)/(CLP,,  - CLP,,), subject  to 
constraints ( 2 )  ani (3). 

In a given wcrkspace. there could be several approximate‘ CLPs con- 
necting the starting and destination points. L e t  an open-space be a space 
in which at least one collision-free path between the starting and destina- 
tion points exists. Then, there exists a CLP  for every open-space. Thus, 
the GMCP problem is decomposed into a set of local MCP (LMCP) prob- 
lems, one  for  each open-space. Let CLP’ be the CLP for open-space i. 
The LMCP problem for open-space i can then be stated as: Find a path 
E ’ ( & ) ,  CLP4 5 u 5 CLP,,, minimizing the cost 

subject to constraints ( 2 )  and (3). 
Since the GMCP problem can  be solved by solving the LMCP problem 

Q times, where Q is  the number of open-spaces, it  is  sufficient  to consider 
the LMCP problem only. In the following section, a detailed solution 
approach to  the LhlCP problem is presented. 

J sulce  the stvtlng and  destrnation  points  may  not be on the center-line paths 

3 The Solution Approach 

GUI d u t i o n  approach to  the LMCP problem in 2D is composed of  three 
parts: a) construction of a region map, b) inter-region optimization for 
finding the entry and departure points of the path at each region, and 
c) intra-region optimization for determining the optimal path within each 
region. In what follows, each part  of  the solution will be discussed in 
detail. An extension of the solution to a class of 3D problems will also be 
discussed later in  this section. 

Our approach is  based on a modified version  of  the dynamic program- 
ming (DP), which  is  briefly described below. Suppose that an open-space 
Is divided into a discrete grid (Fig. 3). As the  grid becomes h e r .  the 
choice of a curve to connect two adjacent points on the grid  matters l r s s  as 
long as  the curve is smooth. T h u s ,  one can choose any smooth curve that 
eases the computation of the cost4 of connecting two adjacent grid  points. 
A curve connecting two adjacent grid points is defined as a parh primitwe. 
It is  easy  to see that if a straight line segment is  used  as the path primitive, 
then  the cost of  going from one point on the grid  to  the next can readily 
be computed. Once all incremental costs are computed, the minimum coqt 
path can be constructed backward from the  destination  point  to the starting 
point. However, such a DP approach will  not be attractive, because the 
accuracy of the DP solution often requires the gnd to be too fine to be 
computationally tragable. Thus, one way to overcome the computational 
problem without  sacrificing  the accuracy of the solution is  to use a path 
primitive that minimizes the cost functional in a relatively coarse grid. To 
reduce the computational amount. the grid size should be enlarged to a 
maximum extent  that  the use of the path  primitive can  be justified. In such 
a n s e ,  the selection of a path primitive itself  will become an optimization 
problem. 

In what follows, we shall develop a computationally efficient solution to 
the LMCP problem on the basis of  the  latter form of dynamic programwing. 
The solution begins with the construction of a discrete grid, called a region 
map, which  is followed by the determination of  entry and departure points 
of the optimal path in each region. Finally, an optimal path primitive  will 
be determined to  connect  the entry and departure points w i h  each region. 

3.1 Region Map 

Consider an open-space bounded by the edge of  polygon obstacles. X set 
of barricading-line  segments or simply barricudes can be placed such  that 
all collision-free paths must pass through them. The barricades may  be 
formed in such a way that a straight-line segment connecting the bisection 
points  of  the  two successive barricades is a part of the CLP. By connecting 
a pair  of vertices of two neighboring polygons not  to cross each other, 
the barricades and CLP  can  be determined as shown in Fig. 4(a). If 
the CLP intersects obstacles, or one wishes to obtaia a more accurate 
CLP, additional barricades can be introduced by connecting various pairs 
of vertices. Some of these barricades may produce infeasible or poor 
CLP’s  as shown in Fig. 4(b), while others may produce more accurate 
CLP’s as shown in Fig. 4(c). The most accurate CLP  can be found by an 
impractical, exhaustive checking of a l l  possible  pairs of vertices.  However. 
such ar; exhaustive checking is unnecessary for our problem, since it needs 
Only an approximate CLP.’ An example region map will  be given later in 
Fig. 13. It is important to note that a region is always either a triangle or 
a quadrilateral. 

Since all collision-free paths pass through the barricades, the LMCP 
problem now becomes tha t  of finding  the optimal points on each of the 
barricading lines and an optimal inter-barricade path primitive. n u s ,  the 
problem of finding the LMCP is divided into two pans:  (i) inter-region 
Opt~iZatiOn  for finding two optimal points on two adjacent barricades, 
and (ii) intra-region optimization to determine an optimal path primitive 
connecting the two points. 

3.2 Inter-Region Optimization 

Suppose an open-space is characterized by N center-line segments and 
3‘ - 1 ‘qmcades (Fig. 5) .  To apply the dynamic programming to  the 

‘This is an incrementd cost in the dynamic programming. 
J .  uslng an approximate  Voronoi  diagram  that is similar to the one used in [4,6.13]. An 

exact Voronoi diagram  is  made up of straight-line an- curve  segments. and can be obtained 
by the generolked Vorunoi  diagram [7]. 
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inter-region  optimization, the barricading  lines  must be divided  into  a finite 
number of equally  spaced points or gates. L e t  G;(j) and M > 1  be 
respectively the j t h  gate and  the number of gates on barricade i. Then the 
location of G;(j) is represented as: 

G;(j) = G;(l) + ( j  - 1 ) ~ ;  i; (7) 

where ? is a unit vector from the one  end, G;(l), to the other  end,  G;(Al), 
of barricade i, and 7; = Do;/(hl - 1) and D, is the  length of barricade i. 
For notational  convenience,  the  starting and destination  points  =e  treated 
as barricades  with )hi = 1. These  are not real  but pseudo barricades.  Thus. 
there  are a total of N + 1 barricades,  where Gl(1) and G,v+I(l) represent 
the starting and destination  points. 

L e t  I = {gl , . . . , gJv+l} be  the  set of gates that a path passes  through, 
where g; is the gate  number of barricade i. Then, the inter-region  optimiza- 
tion  is  to  find a  gate  set  such that  the corresponding  path has the minimum 
cost.  The  cost  for  the gate  set I is given by 

where j, k E I ,  and C;(G;(j),  G;+l(k)) is the  cost of the  optimal path prim- 
itive, z;, connecting  the gates G;(j) and Gttl(k). With the  cost  functional 
(6). 

where C; is  the i th center-line  segment.  Finding  the  optimal path primitive, 
z', is the  intra-region  optimization  which  will  be  discussed in the  next 
subsection. 

The  inter-region  optimization  procedure  starts at barricade N .  (Note 
that barricade N + 1 is  the destination  point.) At barricade IV,  the  cost of 
gate j. denoted by C N ( ~ ) .  can  be  computed  once zi ,( j)  is determined  using 
G,v(j) and GN+I(l) as the  starting'and  destination  points,  respectively,  Le., 
CN(j )  = c , v ( G ~ ( j ) , G ~ + l ( l ) ) ,  and  the  pointer6 at gate j on  barricade ,V, 
d,v( j )  = 1, V j  = 1 , . . . , A [ .  

The  cost at gate j on barricade N - 1  becomes 

and  the  pointer d N - l ( j )  will  be  the k that minimizes the magnitude of 
[.] in E q .  (10).  Recursive  equations  for  barricade i can  be  obtained by 
replacing N and N - 1  in the above  with i + 1 and i, respectively. 

The DP algorithm  for the inter-region  optimization is summarized  as 
follows: 

Step 1: Initialization 

1.  Read  in the center-line  and  barricade  data. 
2. Form  gates: G;(j), i = 1 , .  . . , N + 1; j = 1 , .  . . , M .  

3. Set I := N .  
4. For j = 1 :... ,121,' set := 1, and  compute C ; ( j )  = 

Ci(Gr(j) ,  E).  

Step 2 Termination  Check 
Set I := I - 1. 
If I = 0, stop.  Otherwise  go to Step 3. 

Step 3 Continuation 
F o r j = l ,  . . . ,  M ;  

1. Set C;( j )  := co. 
2.  For k = 1, .  . . , Ai, 

Compute X = Cj(Gz(j),  Gltl(k)) + C;+!( j)  
If X < C;(j),  then C;( j )  := X and d r ( 3 )  := k. 

Go to Step 2. 

3.3 Intra-Region Optimization 

Intra-region  optimization is  to  find an optimal  path  primitive  connecting 

two  adjacent  gates,  each  located on a barricadmg  line.  A  region is defined 
as the convex hltll of the two  barricades.  Then,  the  region is  ei!her a triangle 
or a  quadrilateral  with two edges of barricading  lines. Let  L and C' denote 
the non-barricading  edges of the region.  One of L and I; will  be a point if 
the region is a  triangle;  othenvise L and Lr represent  the  upper and lower 
(with  respect to the  center-line  segment of the region)  obstacle-boundary 
lines. 

Consider  a  plane  using  a  rectangular  coordinate  system  with  origin 
at one  end of the center-line  segment and  the horizontal  axis  coinciding 
with the center-line  segment that connects  the  bisection  points of  the two 
ird~i~'~...., oarricades. Let the two gates S,(j) and G;+l(k) in this coordmnte 
system be represented  as ("0: 10) and ( w f .  zf), respectively,  and  equations 
of the boundary  lines  and the center-line  segment be 

L(u)  = QLW + bL, W L ~  5 w 5 W L ~ ,  (1 1) 

U(w) = aLrw + b U ,  wuL 5 w 5 wcu,  (12) 

C(w) = 0, 0 5 W 5 WCur (13) 

where a,! b; for i = L ,  U are  coefficients of boundary  line  equations, 
UL~.  - UL' and wuu - wuL are the projected  curvilinear  lengths of L and 
C on the horizontal  axis,  respectively, and  in Eq.  (13) is the  length 
of  the center-line  segment C of this region. 

Define  a  path z as a  function of w such that  the coordinate of a  point 
z(w)  is represented by ( w ,   z ( w ) ) .  Consider  the  following  case  which  cor- 
responds to Case A in  Fig.  8(a) 

wo 2 0, "f 5 wcu.  (14) 

Since  the  horizontal  axis of the  coordinate  system  coincides  with the 
center-line  segment,  the  center-line  deviation of the point z(w)  becomes 

' 1  Z ( W )  - c , ,  = ~ z(w)  ,, v w E [WO:Uf]. (15) 

The length of a  path {z(w): wo 5 w 5 u t }  can  be computed as 
J: d m  dy, where z = dz/du. The  scaling  constant  for  the  region 
is defined as a  reciprocal of the clearance,  which may be  obtained by 
computing  the  distance  between the midpoint of C and the  upper  and  lower 
boundary lines:' 

To find the  optimal path primitive { ~ ' ( w ) ,  wg 5 w 5 wf}, it is neces- 
sary  to  solve  the  following  problem  called  the Path  Primitive  Problem. 

P a t h  Primitive  Problem : Find z x  minimizing the following  func- 
tional 

J = /;'[ W(1+ t Z ( w ) )  + (1 - IV) -f z2(w) ] a b ,  ( 1 7 )  

where y = a / ( w f  - WO),  subject to constraints: 

z(w0) = TO, I ( W f )  = " f :  (18) 

U L W  + bL 5 ~ ( w )  5 acw+ bu, V w E [ u o , w ~ ] .  (19) 

It  is worth  noting  that  the  quadratic  form in (17) is used for  mathematical 
tractability  (e.g.,  the LQ problem [ 5 ] ) ,  and CL, UC: C ~ + A U ~ C L L  to  the  problem 
of finding  the  path  primitive, 2'. 

The  Weierstrass-Edermann  corner  conditions [5 ]  assure  that  there is no 
comer in the  optimal path of this  problem as long  as W + 0 (see  Appendix 
A  for  a  detailed  description).  The  solution  to  the  Path  Primitive  Problem 
can  be  obtained by solving  the  Euler  equation,  and  the  necessary  condition 
for  the  optimality is given  as: 

0 = -(z-(w)> a - ( w ) ; w )  - &l 
82 

6for the next gate. 
'E N = 1, let M = 1. 
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[wo,.tl. 



Since Eq. (20) is linear in E' with constant coefficients, it can  be readily 
solved. The optimal path within a region, E - ( w ) ,  is obtained as follows. 

C a s e  1 : It7 = 0 : The Euler equation (20) becomes ~ ~ ( w )  = 0. 
indicating that  the optimal path  is  the same as the center-line segment. 
With the boundary conditions (IS).  the optimal path becomes: 

&'" if L = q 
0 if i o  < d < df (21) 
Lf if& = ' i f  

Notice that  the optimal path  in  this case is straight-line segments connecting 
j(litr pomrs in sequence; ( j o .  ro). ( ,do .  0) .  ( i f .  0). and (A,!. I f ) .  Therefore. 
there are two comer points if ro * z f .  

C a s e  2 : IT- = 1 : The Euler equation (20) becomes z ' (w )  = 0. i.e.. 

E - ( L )  = C I S  + c: ;  d o  5 d 5 "f.  (22) 

where c I : c 2  are determined by  the two boundary conditions (18). Note 
that the optimal path in this case is a straight line segment connecting the 
entry and departure gates. 

C a s e  3 : 0 < IT- < 1 : 

E - ( d )  = c3eV'z' +c4e-VS",  3 0  5 w 5 df, (23) 

where c3 and 4 are the integration constants determined by  the two bound- 
ary conditions (18). and k = (1 - TI.) 7 / I i - .  

Optimal paths with various  values of IT' for two sets of entry and 
departure gates are plotted in Figs.  6(a)-(b).  Fig. S shows that as the value 
of IT- increases (decreases), the  path  tends to be closer to a straight line 
(center line). Also. all  the  paths  traverse inside the convex hull defined by 
the fourpoints, ( ~ o , r o ) . ( d o , o ) , ( w f , o ) , ( w ~ ~ z t ) .  

It is worth mentioning that  the necssary condition (20) is derived as if 
we waere dealing with an unconstrained optimization problem.  Le., ignoring 
the constraint (191. T h s  is valid under a certain condition as stated below. 

T h e o r e m  1: The constraint ( 1 9 )  is redundant, YIT' E [0, 11, if the enmy 
and departure gates, Gl( j ) ,  G c + ~ ( j ) ,  are within the collision-free space. 

P r o o f :  Consider the upper-boundary line C. Suppose +'(w) sways 
above the line c'. Then there exist two distinct points, one to break-out, 
Bl = ( w l ~  11). and the other to break-in, Bz = ( ~ 2 :  q), to the line, since 
the  path must be continuous and 1 0 ;  zf  5 c ' (w) ,  Y w E [ w o , w f ]  (see Fig. 
7). For the in tend  [ w l : w r ] .  clearly the straight line  path connecting Bi 
and B? is superior to the E -  in the sense of both distance and center-line 
deviation. Thus, an optimal path cannot traverse over the upper boundary 
line. The same argument holds for the  lower boundary line L.  Hence, 
constraint (19) is  met automatically. 3 

C o r o l l a r y  1: If a collision-free space is a convex set F ,  the obstacle- 
avoidance constraint is redundant Y It- E [ O :  11 ifY Gt(j),  Gi+,(j) E F .  

P r o o f :  The optimal path traverses inside the convex hull defined by 
the four points V 111 E [O :  11. Since the center-line segment traverses inside 
the collision-free sapce, the four points, (wo. E O ) ,  (wo;  0),  ( u f ,  O), (ut;  I f ) ,  
iEf Gt(j).  G>+l(j) E F .  Thus, the convex hull E F ,  and {zx(w)l wo 5 d 5 

The obstacle avoidance constraints can  be ignored when I= is deter- 
mined by  the intra-region optimization since every region is either a triangle 
or a quadrilateral, i.e., a convex set. 

The use of  the E -  given in Eqs. (21)-(23) can  be generalized by the 
following theorem. 

T h e o r e m  2 : Even if the condition (14) is not met, the I' given in 
Eqs. (21)-(23) is  still an optimal path. 

Proof  : Let C a s e  A : wo 2 0. u f  5 wcL ,  C a s e  B : wo _> 
0 ,  u f  2 utr: C a s e  C : (L'O 5 0, wf 5 utL7, and C a s e  D : "0 5 

Consider C a s e  B (see  Fig. 81%)). To derive the solution for C a s e  B ,  

d f }  E F. - - 

0:  " f  2 utL-. 

the functional (17) is represented by: 

J = ~ ' [ l t ' ( l + Z ' ( ~ ) ) + ( l  - ~ V ) T  ~ ( ~ . r ( d ) ) - C  i 2 ] h .  (24) 

Note that  the center-line deviation in (24) is represented in terms of  the 

distance between the  point coordinate of (d. E ( & ) )  and the center-lve seg- 
ment c. Also, the representation inside the norm is the same as I-(*,) in 
(17) when wo 2 0:  wf 5 wcL.. The center-line deviation is 

Since for given and df the second term in (25)  is a constant. indicating 
that  the E(L)' given m Eqs. i21)-(24) is also the solution for C a s e  .4. 
Similiarily, the same concluslon can be drawn for Cases C and  D. Z 

4 s  a result  of Theorem 2, { z=(w),  wo 5 w 5 ut } given  in Eqs.  
(21)-(24) can be used as an optimal path primitive for any pair  of  gates. 

Since the path equation is  given in a local coordinate frame whose 
origm is at  one  end of  the center-line segment, a coordinate transform may 
he necessary to convert the path  in the local coordinate frame into  the one 
in the world coordinate frame. For this purpose, the following transform 
equation can  be used. 

case - s i n s ]  [: ] + [ d ]  
sine case 

L J L  J 

where R(0) is the rotation matrix corresponding to  the  local coordinate 
frame relative to the world coordinate system, and 0 is  the  rotational an- 
gle  of the local  Coordinate frame defined as the counter-clockwise angle 
between C and the horizontal axis of the world coordinate frame, and 
(us. zS) represents the translation of C from the origin of the world frame. 

3.4 3D Extension 

We have presented above a method to determine an optimal path in 2D. In 
2D. the safest path is represented as a straight line,  i.e., center-line path, 
and the  coLlision-free space is divided into regions by  the barricades and 
obstacle boundaries. These barricades are placed in such a way that all the 
collision-free paths must pass  through all of the barricades. In case of 3D, 
however, the CLP is not a line but a plane in general. 

Consider a room filled with polyhedral objects. Suppose an aniculured 
cylinder is placed as shown in Fig. 9.  Then  we may consider the axial 
symmetry of the cylinder as a CLP and its cross-sectional hameter  as the 
clearance. The barricade may be  the cross-sectional circle where the CLP 
is  bent. The articulated cylinder may be thought  of as an open-space. 
Note, however, that  the approximation of the collision-free space by the 
articulated cylinder wastes the collision-free space. 

With  the above analogy, our DP algorithm can be directly applied to 3D 
problems. The differences are: a) the gates are generated by discretizing 
the barricading plane (see Fig.  lo), and b) the intra-region optimization to 
determine an inter-gate path primitive is performed with the functional 

J = /If [ W(1 + Z(W)' t y ( ~ ) ~ )  + (1 - W) y (z(w)' + y ( w ) ' ) ]  h, (27) 

where 7 = J ] ( w f  - GO), and 3 is  the reciprocal of  the average diameter of 
each cylinder. Details of the solution to thls problem are omitted since it 
is very similar to the 2D  case. 

4 Xumerical Examples 

Several path planning examples are presented to demonstrate the  use of 
the path planning algorithm dscussed thus far.  The algorithm was coded 
in FORTRAN and rn on a VAX-1 1/7809 under the UNM'04.2 operating 
system. 

The first example in Fig. 11 is to show the  behavior of optimal paths 
with respect to an obstacle whle varying the weighting factor, W .  The 

''uND( is a aademd of AT&T Bell Laboratories. 
'VAX is a trademadr of the Digital Equipment Corpomtion 
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example is simulated  with  two  barricading  lines and 20  gates  along  each 
barricade.  Fig.  11  illustrates that the  optimal path tends to traverse  away 
from  (close to) the  obstacles  as  the  value of IV decreases  (increases).  The 
paths  with W close  to  either 0 or 1  have  visible  comers, but they  are 
relatively  smooth  with  mid-range  values of W .  Note that there do not 
exist  ridges  around the gates  where the  two path  primitives  are  joined 
regardless of W value,  since  such  a  path  cannot  be  optimal. 

The  second  example in  Fig.  12 is to  show that  the open-space  where 
the GMCP is found  can be changed  with the value of W .  This example is 
simulated  with 15 gates on each  barricade. As shown in Fig.  13,  there  are 
4 open-spaces.  Figs.  14(a)-(c)  show the plots of LMCP’s  for  three  different 
values of W .  As illustrated in these  figures, when  the safety  factor is large, 
e.g.. Ct’ = 0.25, the GMCP tends to traverse the most  spacious  open-space 
(open-space l),  while  the  GMCP  traverses  in any region to minimize the 
traveling  distance as  the weighting  factor gets large, e&, W = 0.9. 

As the  safety  factor gets large, the LMCP  tends not to  deviate  from 
the safest  path (i.e., CLP) to minimize  the  safety  cost,  especially when  the 
LMCP  traverses through a  narrow-channel  region  (see the LMCP II and 
I11 in  Fig.  14(a)). As a  result, the LMCP bends  itself several  times  and 
yields  visual  comers. As mentioned  before, these visual comers  disappear 
in  the  mid-range  values of the  weighing  factor  (see  Fig.  14(b)).  On the 
other  hand,  when the distance  factor gets large, the LMCP is made  up 
of straight-line  segments to minimize  the  distance  cost  (See  Fig.  14(c)). 
Note that a bend around the beginning part of the  LMCP Il is due to the 
discretization of  the barricades. 

5 Concluding  Remarks 

In this paper  we  presented  a new method  for  optimal robot path  planning 
with  a  weighted  distance-safety  criterion.  Path  planning  with this criterion 
has practical  importance  but  calls  for  a new solution  approach.  Neither of 
the  visibility graph  and  Voronoi diagram  alone  can  determine  an  optimal 
path.  Our  solution  method is composed of three parts:  a)  construction of a 
region  map, b) inter-region  optimization, and c)  intra-region  optimization. 
It was  also  shown that  the method can be  readily  extended to a  class of 
3D  problems. 

The key  idea of the method is to  coarsen the grid  resolution of the 
dynamic  programming by decomposing  the  optimization  procedure  into 
two parts.  The  decomposition turns out to reduce the computational  re- 
quirements  significantly.  Furthermore,  since  a  closed  form  solution  for the 
intra-regon optimization is derived, the computational  amount is quite  low. 
The  total CPU  time per  open-space  for the examples  shown  in  Section 4 
is approximately  10  seconds  for  the first example  and 20 seconds  for the 
second  example.  Note that  the  CPU  time  is  in general  a  nondecreasing 
function of the  number of gates on each  barricade,  the  number of barricades 
in  each  open-space,  and  the  number  of  open-spaces in  the workspace.  Since 
all these  factors  are  related to the  region  map  used,  developing  a  structured 
method for constructing  an  efficient  region map is important. An efficient 
region  map  should  minimize  the  number of barricades  while  satisfying the 
required  accuracy of the  center-line  path. This is a  matter of  our future 
inquiry. 

References 

C. Bajaj, ”An Efficient Parallel  Solution  for  Euclidean  Shortest  Path 
in  Three  Dimensions,” Proc.  IEEE  Int’l. Conf. Robotics  Automat., pp. 
1897-1900,  San  Francisco,  April  1986. 

C. 0. Dulaing  and C. K. Yap, ’The Voronoi Method  for  Motion 
Planning: I. The  Case of a  Disk,” J .  Algorithm, vol. 6, pp.  104-1  11, 
1985. 

E. G. Gilbert and D. W. Johnson,  ”Distance  Functions and Their 
Application to Robot  Path  Planning  in  the  Presence of Obstacles,” 
IEEE J .  Robot. Automat., vol.  RA-1, no. 1, pp.  21-30,  March  1985. 

K.  Kant  and S. W. Zucker, ”Toward  Efficient Trajectory  Planning: 
The Path-Velocity Decomposition,” Int’l .  J .  Robot.  Res., vol. 5 ,  no. 3, 
pp. 72-89,  Fall  1986. 

D. E. Kirk, Optimal Control Theory:  An  Introduction, Englewood 
Cliffs:  Prentice  Hall, hc., 1970. 

[6]  D. G. Kirkpatrick,  ”Efficient  Computation of Continuous  Skeletons.” 
Proc. 20th IEEE Symp. Foundations Comp. Science, San  Juan, pp. 
18-27.  1979. 

[7] D. T. Lee  and  R. L. Drysdale,  ”Generalization of Voronoi Diagrams 
in the Plane,” SIAM J .  Comput., vol.  10,  no. 1, pp.  73-87,  February 
1981. 

[8] T. Lozano-Perez  and M. A.  Wesley,  “An  Algorithm  for  Planning 
Collision-Free  Paths  Among  Polyhedral  Obstacles,” Comm. ACM. vol. 
22,  no.  10,  pp.  560-570,  October  1979. 

[9] J. Mitchell and  C. Papadimitriou,  ”Planning  Shortest  Paths,” Technical 
Report,  Dept.  Operations  Research,  Stanford  University. 

[lo]  C. H. Papadimitriou, ”An Algorithm  for  Shortest-Path Motion in 
Three  Dimensions,”  Technical  Report,  Dept.  Operations  Research. 
Stanford  University. 

[ l l ]  F. P. Preparata and M. I .  Shamos, Computational  Geometry:  An  In- 
troduction, New York: Springer-Verlag,  1985. 

[12]  K. G. Shin  and N. D. McKay,  ”Selection of Near-Minimum  Time 
Geometric  Paths for Robotic  Manipulators,” IEEE Trans.  Automat. 
Contr., vol.  AC-31,  no. 6, pp.  501-511,  June  1986. 

[13]  K. G. Shin and R.  D.  Throne,  ”Robot  Path  Planning  Using  Geodesics 
m d  Straight  Line  Segments  with Voronoi Diagram,”  CRIM  Technical 
Report  RSD-TR-27-86,  Center  for  Robotics and Integrated  Manufac- 
turing,  The  University of Michigan,  December  1986. 

[14] S. H. Suh, ”Development of an Algorithm  for  a  Minimum-Time  Tra- 
jectory  Planning  Problem Under Practical  Considerations,”  Ph.D  Dis- 
sertation,  The  Ohio  State  University,  1986. 

[15] S. H. Suh and A. B.  Bishop,  ‘Tube  Concept  and Its Application to 
the  Obstacle-Avoiding  Minimum-Time  Trajectory  Planning  Problem.” 
publication  pending. 

[16] S .  H. Suh and  K. G. Shin, ”Tube  Parameters  for  the  Planning of the 

[ 171 C.  K. Yap, ”An  O(n  log n) Algorithm  for the  Voronoi Diagram of a  Set 
of Simple  Curve  Segments  (Preliminary  Version),” Technical Report 
161,  Dept.  Computer  Science, New York University, May 1985. 

Optimal  Robot  Trajectories,” in preparation. 

A Appendix A 

Applying  the  Weierstrass-Erdmann  comer  conditions  [5] to the  functional 
(17) of  the Path  Primitive  Problem: 
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Fig. 2: Two points 

Fig. 3: Grid for  a simple dynamic programming 

- - _ _  Barricades 
- x *  Midpoints 

- CLP 

Fig. +a):  CLP and barricades 

0 Infeasible CLP 

0 Poor CLP 

Fig. J(b): Infeasible and poor CLP 

Fig. 4(c): Modified CLP 

Fig. 5 :  Collision-free space with N center-line segments 
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Fig. 6: Optimal  paths 
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Fig. 8: Four possible cues  

Fig. 9: A blended  articulated  cylinder 
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Fig. 10: Barricading  circles  and axis nomenclature 
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Fig. 1 I :  Example 1 
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Fig. 12: Region map for Example 1 
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Fig. 14: GMCP and LMCPs (a)W = 0.25 (b)W = 0.50 (c) W = 0.90 
Fig. 13: Open-spaces for Example 2 
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