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Robust  Trajectory  Planning for Robotic 
Manipulators  Under  Payload  Uncertainties 

Abstract-A number of trajectory planning algorithms are available 
for determining the joint torques, positions, and velocities required to 
move a  manipnlator  along  a given geometric path in minimum time. 
These schemes require knowledge of the  robot’s dynamics, which in turn 
depend upon  the characteristics of  the payload which the  robot is 
carrying. In practice, the  dynamic  properties of the payload will not be 
known exactly, so that the  dynamics of the robot, and hence the required 
joint torques, must he calculated for a  nominal set of payload characteris- 
tics. But since these trajectory  planners generate nominal joint torques 
which are at the limits of the robot’s capabilities, moving the  robot along 
the desired geometric path at  speeds calculated for the nominal payload 
may require torques which  exceed the robot’s capabilities. 

Io this  paper,  bounds on joint  torque uncertainties are derived in terms 
of payload uncerlainties. Using these bounds,  a new trajectory planner is 
developed to incorporate payload nncertainties such that all the  trajecto- 
ries generated can be realized with given joint torques. Finally, the 
trajectory  planner is applied to the  first  three joints of the Bendix PACS 
arm, a cylindrical robot  to demonstrate  its use and power. 

€3 
I. INTRODUCTION 

ECAUSE their dynamics are highly nonlinear and coupled, 
optimal control of robots is a very difficult problem. In order 

to simplify the problem, a common approach is to divide the 
control of the robot into two sequential segments: off-line 
trajectory planning and on-line tracking. Using a geometric path 
as its input, the trajectory planner generates positions, velocities, 
accelerations, and joint torques as functions of time; the tracker 
makes adjustments, in real-time, to the nominal inputs to the robot 
in an attempt to make the robot’s actions coincide with those 
described by the trajectory planner. 

Various algorithms are available for performing trajectory 
planning for robots, i.e., generating desired positions, velocities, 
accelerations, and torques as functions of time Ill-[3]. These 
trajectory planners require knowledge of the robot’s dynamics, 
which in turn depend upon the characteristics of the payload being 
carried. In practice, the exact characteristics of the payload will 
not  be known; since the trajectory planners referenced above need 
to know the exact dynamics of the robot, the trajectory planning 
process must be carried out with dynamics which are calculated 
for a nominal payload. This practice can lead to difficulties. To 
see why this is the case, note that these trajectory planners 
generate nominal torques which are at the limits of the robot’s 
capabilities for the given dynamics. Moving the robot along the 
desired path at speeds calculated for the nominal payload may 
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therefore require torques which are beyond the robot’s capabili- 
ties if the payload differs from the nominal one. If the robot’s 
joints are controlled by independent servos. as is usually the case, 
then attempting to make the robot move along the nominal 
trajectory will result in one or more joints “falling behind,” so 
that the robot strays from the desired geometric path. In other 
words, the trajectory generated by the planner is realizable  for the 
nominal payload, but  not for the actual payload. 

These are a number of adaptive controllers which can compen- 
sate for the changes in load, provided that the plant (i.e. ~ the robot 
joint drive) does not saturate [4], [5 ] .  However, if the plant 
saturates, as may  happen  if the actual and nominal payloads differ 
too much, then these controllers cannot possibly compensate for 
load changes. It is the objective of this paper to present an analysis 
of the torque errors caused by payload changes, and incorporate 
the error information into the trajectory planning process so as to 
avoid saturation of the individual actuators. 

Changes in payload characteristics will be expressed as errors 
in the pseudo-inertia of the payload; the pseudo-inertia is a 
matrix containing the mass and first and second moments of the 
payload. It will be shown that bounds on the joint torque errors 
can be calculated in terms of the norm of the error in the pseudo- 
inertia of the payload, given the robot’s kinematics. A trajectory 
planning algorithm will then be presented which can handle 
uncertainties in the dynamics caused by the payload. If the actual 
and nominal payloads are described by the pseudo-inertias IA and 
JV, respectively, then for a given positive real number E,  the 
algorithm generates a trajectory which is realizable for all 
payloads ZA for which lllA - [ % r l l  5 E. 

The rest  of the paper is organized as follows. The robust 
trajectory planning problem is stated in Section II. In Section m, 
torque errors are calculated in terms of changes to the payload 
pseudo-inertia. In Section N bounds on the joint torque errors are 
derived in terms of bounds on the norm of the pseudo-inertia 
error. Section V describes a trajectory planning algorithm in detail 
which takes into account payload uncertainties. Section VI 
presents a numerical example, and the paper concludes with 
Section VII. 

II. PROBLEM FORMULATION 

In order to determine errors in the torques, the dynamic 
equations of the robot are required. In tensor notation, the 
dynamic equations describing the behavior of a robot take the 
general form 

u.- I -  J . . “ J + c ~ ~ ~ J Q ~ + R ~ Q ~ + ~ ;  r,9 (2.1) 

where ui is the ith generalized force, q‘ is the ith generalized 
coordinate, Jij is the inertia matrix, and C u k  is an array of Coriolis 
coefficients, defined by 

The matrix R, is the viscous friction matrix, and gj is the 
gravitational force.  The Einstein summation convention has been 
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used here, so that all product terms in (2.1) are summed from 1 to 
N over repeated indexes, where N is the number of degrees of 
freedom of the robot. The inertia matrix Jw, the Coriolis array 
Cuk, and the gravitational loading vector g; are functions of the 
position of the robot and the payload pseudo-inertia. 

The path  which  the robot is expected to follow is assumed to be 
given as a parameterized curve in joint space, i.e., the joint 
coordinates qi  are given in terms of a single scalar X by the 
equations 

q’=f (X) ,  O ~ h ~ h , , , .  (2.3) 

This allows all  of the joint positions, velocities, and accelerations 
to be expressed in terms of the scalar parameter h and its time 
derivatives. Plugging these relations into the dynamic equations 
(2.1) gives torque in terms of these quantities as follows: 

where p E is the pseudo-velocity. (See [2] for a detailed 
derivation of these equations.) The quantities Jjj, Cok, and gi 
depend upon the masses and moments of inertia of the robot’s 
links. The robot’s payload is fixed to the last link, and hence must 
be regarded as part of the last link for purposes of calculating the 
dynamic coefficient. Therefore, J;,, c i j k ,  and gi will change as the 
characteristics of the payload vary. 

We may write (2.4) as 

u ~ = M ; ( x ,  zN)i + Q~(x, rAr)p2++Ri(h)p+si(h, zA,) (2.5) 

where the coefficients Mi, Q;, R;, and S, are given by Mi = 

Ri 3 R,dfj/dh, and Si 3 gj(IAr). The functional dependence of 
Jij, Cjjk, and g; on the nominal payload tv has been shown 
explicitly. Then, the dynamics of the system after the payload has 
been perturbed may be written 

&j(rN)dp/dA, Qi Jg(rN)dyJ/dh’ + cck(IN)df’/dhdfk/dh, 

U; =Mi(X, Zn;+AZN)/i+Qi(h, ZN+AZ,V)~’ 
+ R;(k)p -k s;(h, 1At-k Azhr). (2.6) 

In order to avoid excessive torque requirements, we wish to 
compute a set of velocities and accelerations p and ,ti such that, for 
all payload inertia errors AZLv within the constraint set, if the 
nominal torques ui are given by (2.5), then the actual torques u /  
given by (2.6) will be realizable, i.e., 

u p  (X, p ) I u ;  s u y  (h, p). (2.7) 

Also, there may be jerk (or equivalent) constraints in terms of 
positions, velocities, and accelerations, 

where E R N  X R” X R N  4 R is a jerk function, and Ki a 
constant. Formally, the robust trajectory planning (RTP) 
problem can be stated as follows. 

Given a geometric path described as a parameterized curve 
(2.3), the torque limits u?” and u y  as functions of h and p ,  the 
dynamics of the robot when carrying the nominal payload IN, and 
a bound E on the norm of the difference between the pseudo- 
inertias of the actual and nominal payloads, determine the fastest 
trajectory (sequence of (A, p )  pairs) such that the torques u /  given 
by (2.6) satisfy the constraints (2.7) for all points on the trajectory 
and for all payload errors A Z N  such that l l A Z . v l l  cc E.  

We  will solve this problem by calculating the worst-case torque 
error, as a function of X, p, and i, for a given payload error, and 
decreasing the torque limits by this amount when doing trajectory 
planning. 

III. CALCULATION OF DYNAMIC COEFFICIENT ERRORS 

For a given geometric path, we need to know the changes to the 
coefficients Mi, Qi,  Ri, and Si in (2.5) which result from changes 
in the robot dynamics. In the sequel, changes in dynamics will be 
assumed to come from changes in payload characteristics, 
although the methods presented apply equally well to  errors 
caused by uncertainties in the mass distribution of other links and 
to uncertainties in friction coefficients. 

Differences between nominal and actual payload characteristics 
cause changes in the coefficients Jv, C,,, and g; in (2.1). Here we 
determine the relationship between changes in these coefficients 
and changes in payload characteristics. 

Changes in payload Characteristics will result in changes to the 
pseudo-inertia tensor of the last joint of the robot, i.e., the pseudo- 
inertia tensor will have the value fhr + A Z N  instead of Ih:. The 
coefficients in the inertia matrix are given in [6] as 

where Tp is the 4 X 4 homogeneous transformation matrix which 
transforms vectors given in the coordinate system associated with 
the pth link of the robot to world or base coordinates, and Ip is the 
pseudo-inertia of the pth link given in the pth link’s coordinate 
frame. 

Introducing an error AIN into the pseudo-inertia of the last joint 
gives 

Ju(ZN+AIN)= Tr ( $ I p $ )  
N- 1 a T r  

P = max(i,j) 

+ Tr (s (IN+ AZN) - aT:) .  (3.2) 
a4J aqi 

Subtracting (3.1) from (3.2) gives 

Note that the error in the inertia matrix is linear in the pseudo- 
inertia error, and is independent of the nominal payload. 

Determining the change to Mi, we have 

6 M j ( Z N ,  AZN) s hfi(ZN+AZ~)-hfi(rN) 

To find SMi, simply plug (3.3) into (3.4), giving 

(3.4) 

(3.5) 

Computation of the errors SQi follows the same pattern as the 
computation of SMi. The  errors in the Coriolis terms can be 
determined in much the same way as the errors in the inertia 
matrix. From [6] we have 

The errors in the Coriolis terms  due to errors in payload 
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characteristics are therefore given by 

Now  we  need to know the error in the gravitational terms. The 
gravitational forces gi are given by [6] as 

(3.9) 

where G = [0 0 g 01 is the gravitational force vector, mk is the 
mass of the kth link, g is the acceleration due to gravity, and Fk = 
[X J z I] is the center of mass of the kth link given in the 
coordinates of the kth frame. If we define wk = m&, then we 
have 

(3.10) 

But wk is just the last column of the pseudo-inertia matrix Ik, so 
that 

As before, introducing an error into the pseudo-inertia of the last 
link gives 

(3.12) 

1'1 
We may  now calculate the error in ui by adding up the 

individual components, giving 

6ui=6M&+6Qip2+6Si. (3.13) 

Iv. CALCULATION OF TORQUE ERROR BOUNDS 

If the errors AIN were known exactly, then the torque errors 
could also be computed exactly. Of course, in practice AI,v will 
not be known exactly. However, if constraints on A I N  can be 
obtained, then we  may find bounds on 6ui. We will write t h e e  
constraints as bounds on the norm of the error A T N .  

To obtain these bounds, note that &Mi, SQi, and ASi are all 
functions of the pseudo-inertia error AI,,,; in  fact, they are linear 
in A I N ,  SO that 6ui is also linear in A I N .  If we write 

~ u ~ = Z ( A I N )  (4.1) 

then we wish to maximize or minimize the linear function 2 with 
respect to A I N ,  subject to a set of constraints of the form 

I ~ A Z N ~ ~  < E .  (4.2) 

At this point, some observations are in  order.  First, as we noted 

before, the errors in the 6ui depend linearly upon the pseudo- 
inertia error AI.,. Second, 6ui depends only on the kinematics of 
the robot and on the desired velocity and acceleration, not on the 
nominal dynamics. These facts are easilp proven from the 
linearity of the Lagrangian equations of motion and the facts that 
both kinetic and potential energy are linear in mass. One 
consequence of this linearity in mass is that the errors 6ui do not 
depend upon the nominal dynamics, as shown above. The 
implication of this is that much of the error analysis can proceed 
without regard to the nominal dynamics of the robot. 

The linearity of the 6ui in the pseudo-inertia has some other 
practical consequences as well. Consider the maximization which 
must be performed in order to evaluate 6ui. This maximization 
requires that the space 4 X 4 symmetric matrices with norm less 
than E be searched, which in general is a rather formidable 
problem. However, by limiting the form of the error constraints, 
i.e., choosing a particular class of matrix norms, the problem can 
be made quite simple; in fact, it can be transformed into a linear 
programming problem. 

To see how this transformation can be performed, consider the 
problem of maximizing the function Z in (4. l),  namely 

Problem A: 

maximize Z(M)  = &Mu (4.3) 
i j  

subject  to 11 MI1 5 E and M= Mr. (4.4) 

Treatment of the minimization problem proceeds analogously to 
Problem A. We will show that Problem A transforms into a linear 
programming problem if the norm used to constrain the matrix M 
in (4.4) is chosen properly. This will be accomplished by 
eliminating some absolute values from the constraints. 

Z(M), the function to be maximized, is a linear function of M. 
It remains to be shown that the constraints can be made linear. Of 
course, if the norm used in Problem A is arbitrary, then in general 
the constraints will not be linear. However,  there is a set of 
norms, all very easy to calculate, which will yield linear 
constraints. Consider the class of functions + R + given 
by F(M) = maxi q ( M )  where ui(M) = (YijklMjkl. 
The matrix I-norm and 03-norm, maxi,j IMU I and IMijl, are all 
functions of this form.  It i s  shown in the lemma of the Appendix 
that if cyyiik 2 0 for all i, j ,  and k,  and  if for every pair of indexes 
( j ,  k) there is an i such that cyuk # 0, then F(M) is a norm. Note 
that this class of norms detemunes balls in the underlying space 
which are convex polyhedra; since any convex set can be 
approximated to any desired degree by a polyhedron, this 
assumption does not result in any significant loss of generality. 

Problem A with this class of norms becomes the following. 
Problem B: 

maximize Z ( M )  = &Mu 
i j  

subject tom? x (Yi jk(kf ,kI  I E a n d  Mjk=Mkj. (4.5) 
' ( j : I  k : l  

This problem obviously is equivalent to the following. 
Problem C: 

maximize Z ( M )  = &Mu 
i j  

4 4  

subject  to x (Yijk I Mjk 1 < E  for d i and Mjk = Mk,. (4.6) 
j = 1  k = l  

Problem C may be transformed into a standard linear program- 
ming problem by making the substitutions Mij = PU - Nu and 
IMUI = Po + Nu, where Po and Nil are nonnegative real 
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numbers. The theorem in the Appendix proves that this transfor- 
mation gives the  correct result. 

Now that torque error bounds can be obtained from pseudo- 
inertia errors, these results must be incorporated into the 
trajectory planning process. In the next section, we will describe a 
trajectory planner which can handle the uncertainties in ui which 
result from payload variations and can meet constraints on  jerk as 
well as constraints on torque. 

v. ROBUST TRAJECTORY PLANNING ALGORITHh4 

As a solution to the RTP problem, we  will develop a simple 
trajectory planning algorithm called the perturbation trajectory 
improvement  algorithm (PTIA). 
In practice, a trajectory planner must deal with a variety of 

arbitrary parametric curves; two representations for curves which 
immediately suggest themselves are splines and simple sequences 
of (interpolation) points. We choose to use the latter representa- 
tion, i.e., the curve (2.3) is represented as an ordered sequence of 
points (& q(k)); this proves to be the most natural representation 
for the application of the PTIA. 

The trajectory planning process consists of assigning values of 
the “velocity” p and “acceleration” C; at each point. For the sake 
of simplicity, consider only those constraints which can be 
expressed in terms of position- and velocitydependent bounds on 
the torque, i.e., ignore jerk constraints for the time being. Then 
all constraints can ultimately be given as X- and p-dependent 
constraints on ,i, or equivalently constraints on dpldh as shown in 
[2]. In terms of the (X, p)  plot, each point is assigned a range of 
allowable slopes. The phase trajectories must, at every point  of 
the phase plane, point in a direction which lies within this range. 

In the discrete approximation, having the maximum and 
minimum slope sets limits on the differences between the values 
of p at adjacent interpolation points. The process of trajectory 
planning requires that the initial and fmal points of the curve have 
zero velocity (or some other fixed velocity) and that the velocities 
at all the intermediate points be as large  as possible, consistent 
with the slope constraint that the velocities at neighboring points 
not differ too much. 

One approach to the solution of this problem is to try to push the 
speed higher at each individual point. The value of p can be 
pushed higher at each point in succession until none of the 
velocities can be made any larger. If we call this Algorithm A, 
then we have the following. 

Algorithm A: 
AI: Set all velocities to values which are realizable (usually all 

zeros). 
A2: Push each intermediate point of the  curve as high as 

possible consistent with the slope constraints. 
A3: If any  of the velocities were changed in step A 2 ,  go back to 

step A 2 ,  otherwise exit. 
As a practical matter, the search required to find the highest 

possible velocity in step A2 of Algorithm A may be fairly 
expensive, especially since it may be repeated many times for a 
single point. A simpler approach is to just try adding a particular 
increment to each velocity, and then make the increment smaller 
on successive passes of the algorithm. This gives the following. 

Algorithm A ’: 
AI’: Set all velocities to values which are realizable (usually all 

A2’: Set the current velocity increment to the robot’s maximum 
speed. 

A3’: Push each intermediate point of the curve up by  an amount 
equal to the current velocity increment, if this is consistent with 
the slope constraints. 

A4’: If any of the velocities were changed in Step A3’, go back 
to step A3’. 

AS’: If the current velocity increment is smaller than the 
desired tolerance, stop. Otherwise halve the increment and go  to 
A3’. 

zeros). 

Algorithm A‘ is really just a combination of gradient and 
binary search techniques. The direction in which the curve must 
move (i.e., the gradient direction) is known a  priori, since 
increasing the velocity always decreases the traversal time, and 
the amount of the change is successively halved, as in a binary 
search, until some desired accuracy is achieved. Clearly, this 
algorithm will terminate in a finite number of steps. Algorithm A‘ 
is very simple, except possibly for the slope constraint check 
required in step A3’. This requires a knowledge of the dynamics 
and actuators characteristics of the robot. However, this check is a 
simple “goho go” check, and can be isolated as a single function 
call. (This function will henceforth be called the constraint 
function.) 

An important characteristic of the constraint function is 
locality. In the  case discussed above, the constraints are ex- 
pressed in terms of X, p ,  and dp/dX. We need two points to 
determine the slope dpldX, so the constraint depends only upon 
two points. Therefore, when a point of the curve has its p value 
changed, it is constrained only  by the two adjacent points (due to 
the slope constraints); the rest of the curve has no influence. This 
allows much calculation to proceed in parallel. Step A3’ of 
Algorithm A‘ can be divided into two sequential steps, one which 
increments the odd numbered points and one which increments the 
even numbered ones. Since the even numbered points stay the 
same while the odd numbered ones are being incremented, and 
vice versa, the points either side of the incremented points remain 
stationary, so that the constraint checks are valid. (If all points 
were tested simultaneously, then it is possible, for example, to 
increment two adjacent points; since in each case the constraint 
check would be made on the assumption that the other point was 
remaining stationary, it is possible that the new configuration 
would  not meet the required constraints.) 

It is easily seen that the process in Algorithm A‘ can be 
extended to more complicated constraints. For example, con- 
straints on the jerk (the derivative of the torque or acceleration) 
only require a more complicated constraint function, i.e., both 
(2.7) and (2.8). Of course, in this case the constraint function 
needs three points to calculate second derivatives of the speed. 
Thus, the constraints on a single point will be functions of two 
points either  side of the point being checked, rather than one point 
(see [7] for more details). This affects the degree of parallelism 
which can be achieved; step A3’ would require three passes 
instead of two. 

As a simple illustration of  how the algorithm works, consider a 
simple onedimensional problem. Suppose we  wish  to move an 
object of mass M from x = 0 to x = 4. Further, suppose that 
there is no friction, and that there  are constant bounds on the 
magnitude of the applied force.  There will be only one parametric 
functionf, which may be taken to be the identity function, so that 
X = x. We then have 

If we consider X-intervals of length 1, then the discrete approxi- 
mation to the parameterized “curve” will have 5 points. The 
acceleration i = pdpldh can be approximated as 

(5.2) 
The torque constraints then become 

(5.3) 

If we use m = 1 ,  F,,, = 2, and X;,, - X; = 1 for all i, this 

’ Thus, step A7’ requires two passes 
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Now consider what happens if Algorithm A is applied. We may 
look at the intermediate points of the curve in sequence. First, 
point 1 can be raised by 2, since the adjacent points have p values 
of zero (i.e., = p2 = 0), and 122 - 02(  = 4. Raising the 
middle point, point 2, we are constrained by the fact that p3 = 0, 
which limits p2 to 2 also. Likewise, we  may change p3 to 2. This 
completes step 2 of Algorithm A. Since some of the p values 
changed, we try to increase them again. This time only  point 2 can 
be raised, giving a value of p2 = 2 a  On the next pass, no p 
values change, so Algorithm A terminates. It is easily verified that 
the solution obtained from Algorithm A is  indeed  the optimal 
solution to the discretized problem. Fig. 1 shows the discretized 
trajectory after passes zero,  one, and two of Algorithm A. 

Now look at what happens when  we use Algorithm A ' . Say we 
start with  an increment of 2. Then the result of the first pass  of 
Algorithm A ' is the same as the result of the first pass  of 
Algorithm A, namely p ,  = p 2  = p 3  = 2. If the increment is cut to 
1, then there is no change. Cutting the increment to 1/2, we  may 
raise the middle point to 2.5. Continuing in this fashion, the 
middle point gets closer and closer to 2 a  the correct result. Fig. 
2 shows the trajectory after passes zero, one, three, and four of 
Algorithm A ' . 

The robust trajectory planner only needs to have available a test 
function which determines whether or not a given (X, p,  /.) triple 
requires excessive torque; in effect, they automatically perform 
the numerical search for  the allowable values of I.i. But such a 
function is easily constructed, since for a given (X, p,  d) we can 
easily minimize or maximize 6ui in (3.13), and see if ui + 6uy" 
exceeds uyM(h, p )  or ui + 6u$" falls below uimin(h, p) .  In 
particular, the following algorithm checks to see if a particular (X, 
p,  /.) triple meets all the torque constraints: 

It should be noted that this function is called for each (X, p )  
pair; it does not, for  example, reject a (X, p,  I.) triple based on an 
error which is computed for ail positions or all velocities. As a 
consequence, speed is sacrificed only when absolutely necessary 
to guarantee that the trajectory will be realizable for all payloads 
within the allowable range. 

The PTIA, unlike dynamic programming [3], requires rela- 
tively little memory; it requires only one floating point number 
per interpolation point. However, computation of the CPU time 
requirements is interesting. 

Obviously, the computation time must increase at least linearly 
with  the number of interpolation points on the curve, that is, the 
size of X intervals. In fact, the time increases as the square of the 
number of interpolation points. To see why this is soI consider 
what happens when the number of interpolation points is doubled. 
Since there are twice as many points to check on each pass of the 
algorithm, the computation time must increase by a factor of two. 
Recalling that the torque constraints translate into slope con- 
straints, it  is clear that the ratio of the amount by which a p-value 
may  be raised to the distance between X-values  will  be approxi- 
mately constant. Therefore, halving the spacing of the interpola- 
tion points halves the size of the steps which can be taken in the p 
direction, thus doubling the number of steps. This factor of two 
times the factor of two which results directly from doubling the 
number of points gives a factor of four increase in  Computation 
time. If doubling the number of interpolation points quadruples 
the computation time, then the time dependence is quadratic in  the 
number of points, i.e., O(Wk) where Nk is  the number of the X 
intervals. 

It is obvious from the discussion that the fineness of the h 
intervals will have a significant impact on the running time of the 
algorithm. It will also affect the accuracy of the results. Similarly 
to the convergence proof of the trajectory planning with dynamic 
programming in [3], we can treat the effect of the grid density on 
the accuracy of our solution in a quantitative manner. 

for each joint i do 
begin 

compute uN=M;(h)/. + Q;(X)p2 +RiX),u + &(X) 
compute 6u- = maxlMd <E { 6M;(X: AIN)k + SQi(X, AIN)p2 + 6S;(X, M.v)} 
compute 6u"" = n+lN,,,rE { 6Mi(X, MN)I. + 6Qi(X, M N ) p 2  + 6Si(X, A I A r )  ] 
i f u r + + u F < u y ( x ,  p) ,  then return REJECT 
if u~++Gu~>ui""(X,  p),  then return RETECT 

end 
return ACCEPT. 
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TABLE I 
, Parameter I Desaiption I Value I 
' ;"!Y I Saturation toroue of B motor 2.0 Nt.-M. 1 r3 ~~ ~ ~ I ~ -  ' i 0.05 Xt.-M. I 

-.,I 
Saturation  torque of r motor 
Saturation torque of z motor 2.0 St.-M. 
Lower voltage limit for 0 joint -40 v. 
Lower voltage  limit  for r joint -40 v. 
Lower  voltage  limit  for z joint -40 v. 

40 v. 
40 v. 

v i =  
V,mm 
Vzmm 

V,-U Upper  voltage  limit  for 8 joint 
V,m= Upper  voltage  limit  for r joint 
V,m= Upper  voltage  limit  for z joint 40 v. 

k l  Gear  ratio for 0 drive 0.01176 
k.! I Gear  ratio  for r drile ! 0.00318 hletersjradian 
k: I Gear  ratio  for z drive 0.00318 Metersjradian 

k." I Motor  constant for 0 ioint ! 0.0397 Nt.-hi./amp 

I k; 
k? Motor  mnstant for r joint ' 0,79557 x 10" Nt.-hf.,'amp 

R," M o t o r  and power supply  resistance, 0 joint ' 1 R  
R,'" 
R." 

Motor  and  power  supply  resistance, r joint ' 1 R  

40.0 Kg. M a  of z joint .rr, 
10.0 Kg. M a s  01 r joint .ut 

1.0 Kg./sec. I Friction  coeficient of z joint kz 
k 
k e  

1 R  Yotor  and power supply resistance, z joint  

hfota mnstant for i joint I 0.0397 St.-M./amp 

Friction coefficient of 8 joint 
4.0 Kg.!sec. Friction c d u i e n t  of r joint 

8.0 Kg.-.U.z/sec./rad. I 

K 
J, I Moment of inertia  around 0 axis 12.3183 Kg.-M.' 

Moment of inertia  offset  term 3.0 Kg.-M. 

VI. NUMERICAL EXAMPLES 

As an example, we will apply the methods of the previous 
section to the first three joints of the Bendix PACS robot arms. 
This arm is cylindrical in configuration and is driven by  DC 
servos. Its dynamics and actuator characteristics are described in 
Table I. 

The kinematics of the PACS arm are quite simple. If the 
coordinate frames of the base and hand are as shown in Fig. 3, 
then the coordinate transform T3 is easily shown to be 

cos0 0 -sin0 - r s in0  

T3= [ sine 0 - 1  0 cose 0 r y e ]  
0 0  0 1 

The partial derivatives of T3 are easily computed, and are then 
used to compute the SM;. If we let H = A I A r  and define mu = Tr 
(aT,/i3qJHaT~./aqi), then we have SMi = modqJ /dL .  The 
nonzero mij are then found to be 

We can now find the 6Mj. We have 

6Ma = (H,  + H33 + 2rHM + r2HM) - + Hl4 - d0 dr 
d h  d h  

y $ r 3 / p 3  y 3  

2 

z O  

f 

x O  YO 
Fig. 3 

We now compute the cijk. Only six cases need to be considered, 
since all but two of the second partials of T3 are zero. Of these, 
only two of the Cgk are nonzero 

+,o,=Tr ( $ H z ) =  -H34-H44r 

cae,=Tr (2 H $ ) = H 3 , + H - r .  

Calculating the SQi, 

d2z 
dh2 SQ,= H u  - 

6Q~=(H11+H33+2rH34+r2H44)  
d 20 
d l  

d 2r dr dB + H14 1 + 2(H3, + rH-) - - 
d h  d h  d h  

d20 d2r 
SQ, = HI4  1 d k  + H u  dh2 - - ( H34 + rH-) 

The SS;, the gravitational error coefficients, are easily found to 
be SSz = H44g m d  SSe = SS, = 0, where g is the acceleration due 
to gravity. 

We will use the norm IlHll = E:= C4= I aijlHijl, where aij > 
0. This makes the problem of finding the error bounds very 
simple. It can be s h o b  that if the functional to be maximized is Z 
= EiEj&Hij, then the maximum over H for IlHll 5 E occurs 
when all the Hij are zero except for those values of i and j for 
which l & / c r i i l  is a maximum; this number times E is also the 
maximum value of Z .  If we use 

d0 dr 
d h   d h  6Mr=H14 -+HU - . "ij= i # j  

1 i = j  
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then the resulting bounds on the 11 6ui 1 are 
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The joint torques that can be applied to the PACS arm are limited 
by saturation of the  drive motors, which give a constant torque or 
force limit for each joint. In addition, there are limits on the 
voltages which can be applied to the motors, so we need to know 
how the errors in the joint torques translate into errors in the 
motor voltages. It will be assumed that the back-EMF constant, 
winding resistance, and voltage source resistance are known 
exactly, although this is not necessary. Since for a given speed 
voltage is a linear function of torque, i.e., Vi = Aiui + Bi, the 
change in voltage wiU be 6 6  = A&. These changes in voltage 
can then be added to the nominal voltage and tested against the 
motor voltage limits in much the same way  that the torques are 
checked against the motor torque saturation limits. 

The perturbation to the nominal dynamics of the manipulator 
will be caused by placing a cube with edges of length L and 
uniform mass density p in the gripper of the robot, with its center 
of mass coincident with the origin of the end effector coordinate 
system. The pseudo-inertia of this cube is 

AZ3 = 

- - 
1 
12 
- p L 5  0 0 0 

0 - p L S  0 
1 
12 

0 

0 
1 
12 

0 - p L 5  0 

0 0 0 P L  - - 

The norm of this “error” is l l A I 3 I I  = pL3 + 1/4 pL5. The 
maximum torque error for a given range of pseudo-inertia errors 
occurs when the error bound E is precisely equal to the norm of 
the actual pseudo-inertia error. Therefore,  the most stringent test 
of the results of the previous section is to use a tight error bound, 
i.e., E = ~ ~ A z 3 ~ ~ .  This has been done for a cube with sides of 5 crn 
and densities of 0, 6, 12, 1 8 ,  24, and 30 g k c .  The path traversed 
is a straight line from the (Cartesian) point (0.7, 0.7, 0.1) to 
(0.4,-0.4, 0.4). For comparison, the true optimal solution has 
been calculated, using the actual dynamics (including the effects 
of the cube in the gripper). The results are summarized in Tables 
&VI. Table II gives traversal time for the true optimal solution 
and for the case in which errors are included. The “percent 
difference” column gives the percentage by which the true 
optimal traversal time is exceeded. Tables III and N give 
minimum and maximum voltages, respectively. The actual and 
nominal values are both computed for the “nomial” trajectory, 
i.e., the trajectory which is calculated with errors included. The 

TABLE II 

! 
0 

6 

12 

18 

24 

30 

1.789 

1.934 

2.076 

2.213 

2.340 

2.459 

1.789 

1.844 

1.898 

1.950 

2.002 

2.054 

TABLE III 

0 

4.9% 

9.4% 

13.5% 

16.9% 

19.7% 

Minimum Voltages 

Density I joint 0 joint E joint 

, Nominal Actual  Nominal  Actual  Nominal Actual 

0 i 29.86 
29.86 

-39.98 -36.12  -33.51 -33.05 31.67  30.54 12 

-40.00 -37.94  -38.52  -38.26  30.91 30.34 6 

-40.00  -40.00  -39.93  -39.93 

- 

18 

-16.80 33.73 30.86 30 

-40.00 -33.01 -20.36  -19.94  33.07 30.78  24 

-39.99 -34.47 -25.37 -24.92 32.39  30.67 

-17.18 I -31.70 
-39.96 

TABLE IV 

Maximum Voltages 

E joint I joint 0 joint 

Nominal 

37.64 

36.79 

35.78 

24 35.12 

30 34.69 

1 I 

Actual Actual  Nominal  Actual Nominal 

37.64 

27.48 27.01 18.25 17.64  38.04 

32.60  32.62  37.73  37.14  38.03 

40.00 40.00 39.86 39.86 

37.61 

22.39 19.51 5.98 5.39 37.69 

23.41  21.39 7.89 7.30 37.54 

24.94  23.79  11.21  10.61 



SHIN AND MC KAY: ROBUST TRAECTORY PLANNLNG FOR ROBOTIC MANIPULATORS 105 1 

TABLE V 

Minimum TorquesfForm 

)ensity 

1 Limit = -629 Nt.  ! Limit = -170  Nt.-M. I Limit  -15.7  Nt. 

0 joint  (Newton-Meters) ' r joint  (Newtons) z joint (Newtons) 

Xominal liomioal Actual Nominal Actual 
.. - 

0 -9.99 -112.29 -112.29 333.52  333.52 

6 -9.47 -105.71 -104.78 342.20  335.91 

12 -9.02 -89.26 -87.70  363.02 I 376.62 

18 373.03 : 394.00 

24  377.84 j 406.17  -48.15 , -49.55 1 -8.24 

-62.91 ~ -64.43  -8.61 

30 I 380.11 I 415.72 I -39.14  -40.43  -7.92 

I 

~. - I - 

TABLE VI 

- 

Actual 
- - 

-9.99 

-9.99 

-9.99 
- 

-9.99 

-9.99 

-9.98 
___ 

Maximum  Torques/forces -7 
Limit = 629  Nt. 

~ Nominal  Actual 

0 I 421.31 

430.04 12  414.50 

426.52 6 I 418.68 

~ 421.31 

I 

18 406.68 I 429.55 

24 402.17 i 432.31 

I I 
I 

i , 30 I 400.42 j 437.96 

tl joint  (Newton-Meters) T joint  (Newtons) 

Nominal  Actual  Nominal  Actual 

161.72 

150.39 

10.03 10.03 161.72 

80.48  6.76  78.43 

bls 8.15  152.36 

6.89 1 I 

51.39  53.41 I 5.96 

38.18 , 40.19 

6.25 

30.20 i 32.20  4.89 I 5.61 

actual voltages are those required to move the robot with the cube 
in the gripper, while the nominal values are those which are 
required without the cube, Le., with the nominal payload. The 
minimum and maximum voltages available are -40 and 40 V, 
and it  is easily seen that these limits are not exceeded for any joint 
or for either payload. Tables V and VI give the minimum and 
maximum torques or forces  for each joint.  The torque or force 
limits are given at the head  of the column for the appropriate joint; 
again, the limits are not exceeded. 

The phase plane (X versus p)  plot and motor voltage versus time 
plot for the zerodensity case are shown in Fig. 4(a) and (b). Since 
the error is zero in this case, the results are exact. For a density of 
12 g/cc, the optimal and nominal (i.e., with errors included) 
phase plane plots are shown in Fig. 5(a). (The optimal phase 
trajectory is the minimum-time phase trajectory which  would be 
obtained if we  knew the exact payload characteristics.) Fig. 5(b) 
gives joint positions versus time; z and r are in meters, 8 in 
radians. Fig. 5(c) through (e) gives nominal and actual motor 

i 

d mdor voltage 
r motor voltage 
z motor voltage 

V 

t 

(b) 
Fig. 4 

voltages required to drive  the robot along the nominal trajectory 
for the z, 8, and r joints, respectively. The nominal voltages are 
those which would be required if the actual payload were identical 
to the nominal payload. The actual torques are the torques 
required to keep the robot with the perturbed payload on the 
nominal trajectory. The torque plots look very much like the 
voltage plots, and are therefore omitted. The same plots for 
various payload densities can be found in [7]. 

It was  noted above that none of the joint torque or voltage 
constraints was violated. However, the minimum voltage for the r 
joint at one point meets the lower voltage limit. This indicates that 
the trajectory which is generated when payload errors  are 
included is indeed the fastest possible trajectory for the given 
range of possible payloads; for this particular point, the worst- 
case payload happens to have the same characteristics as the actual 
payload. A larger payload would have resulted in violation of a 
voltage constraint. 

Another point to consider is the relationship between the 
nominal  and optimal phase trajectories. It is expected that the 
nominal phase trajectory will be lower than the optimal trajectory; 
a nominal trajectory which was higher than the optimal one would 
lead to a contradiction of the optimality of the optimal trajectory. 
Also, the difference between the optimal and nominal trajectories 
increases as the payload error bound increases. This would be 
expected, since the nominal trajectory must accommodate ail 
payloads within a given range; as the range of payloads increases, 
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V 

t 
V 

V 

r pint 

(e) 
Fig. 5 
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the worst-case errors also increase, resulting in more restrictive 
limits on the nominal torques, and hence longer trajectory 
traversal times. 

VU. CONCLUSIONS 

A method for including payload inertia errors in the manipula- 
tor trajectory planning process has been presented. Errors in the 
payload inertia are characterized by bounds on the norm of the 
difference between the actual and nominal pseudo-inertias of the 
payload. Given such a bound, it has been shown that a trajectory 
can be constructed which meets all torque and force constraints 
for alf actual payloads, provided that the norm of the difference of 
the pseudo-inertias of the actual and nominal payloads differs by 
less than the given error bound. The method may also be extended 
to accommodate jerk constraints. This technique was applied to 
the Bendix PACS robot for a number of different payloads, and 
the resulting trajectories were shown not to violate any joint 
torque or motor voltage constraints. In the worst case, in which 
the actual payload mass differs  from the nominal mass by 
approximately one third of the robot’s rated maximum load, the 
traversal time was less than 20 percent over the optimal value. 

APPENDIX 

Lemma: If a&+ 2 0 for all i ,  j ,  and k ,  and if for every pair of 
indexes ( j ,  k )  there is an i such that (Yijk # 0, then F(M) is a 
norm. 

Pro08 In order to prove that F is a norm, we  must show that 

1) F ( M )  2 0 for all M, 
2 )  F(M) = 0 iff M = 0, 3) F(yM) = IylF(M) for all 

4) F(X + Y) I F ( X )  + F( Y) for all matrices X and Y. 

Obviously 1) is true, since F is the maximum of a set of 
nonnegative quantities. F(0) = 0, proving the “if” part of 2) .  To 
prove the “only if” part, observe that if M is nonzero, then it has 
some nonzero element Mjk. For this particular j k  pair,  there is 
some i such that a j j k  is nonzero, so that ai > 0 for this i .  
Therefore, F > 0. 3) is true since 

scalars y and all matrices M, and 

4 4   4 4  

u i ( y M ) = c  % j k ( ? M j k I = I y I c  x a i j k l M j k l = l r l o i ( M )  
j = l   k = l   j = l   k = l  

and hence 

F(.IIM)=max  oi(rM)=max l ~ l a i ( M )  

=Irlm:xai(M)=lylF(M) 

Finally, 

so that 

F ( X +  Y)=max {u i (X+  Y)}<max {u , (X)+ui(Y))  
I I 

smax {ui(x>}+m.ax { u i ( Y ) } = F ( X ) + F ( Y ) .  
I 1 

To prove that the transformation of Problem C into a linear 

programming problem gives the correct result, first eliminate the 
symmetry constraint, giving the following. 

Problem C’: 

4 4  

subject to ( . ;k lb f i jk l  < E  
j = l   k = J  

where 

and 

Then we have the following theorem. 
Theorem: Let Problem D be defined as 

Then the optimal W from Problem C ’ is equal to the optimal 2 
from Problem D. 

Proof: Let M be a solution of Problem C ’ , and let W* = 
W(M).  If we make the substitutions 

and 

then we have M: = Pu - Nu, and IM$ = Pij + Nu. Making 
these substitutions in Problem C ’ gives 

The conditions for Problem D are satisfied, so we must have W* 
I Z * ,  where Z* is the optimal value of Z obtained from Problem 
D. 

Likewise, let P* and N* be an optimal solution to Problem D. 
Then for every pair of indexes ( j ,  k )  we have 0 .; > 0,/3,; = 0, or 
0i;l < 0, then we must have N*, = 0. otherwise, we could 
substitute Pj*k + NZ for Pjk and d for N j k ;  these new values still 
satisfy the required constraints, but increase the objective func- 
tion, contradicting the fact that (P*, N * )  is optimal. Similarly, if 

< 0, then we must have P; = 0. If = 0, then we  may 
take P; = NZ = 0, since this leaves the constraints satisfied and 
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4 4  

Therefore W* I Z *  I W*, proving the theorem. 
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