
1044 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO. 12, DECEMBER 1987

Robust Trajectory Planning for Robotic
Manipulators Under Payload Uncertainties

Abstract-A number of trajectory planning algorithms are available
for determining the joint torques, positions, and velocities required to
move a manipnlator along a given geometric path in minimum time.
These schemes require knowledge of the robot’s dynamics, which in turn
depend upon the characteristics of the payload which the robot is
carrying. In practice, the dynamic properties of the payload will not be
known exactly, so that the dynamics of the robot, and hence the required
joint torques, must he calculated for a nominal set of payload characteris-
tics. But since these trajectory planners generate nominal joint torques
which are at the limits of the robot’s capabilities, moving the robot along
the desired geometric path at speeds calculated for the nominal payload
may require torques which exceed the robot’s capabilities.

Io this paper, bounds on joint torque uncertainties are derived in terms
of payload uncerlainties. Using these bounds, a new trajectory planner is
developed to incorporate payload nncertainties such that all the trajecto-
ries generated can be realized with given joint torques. Finally, the
trajectory planner is applied to the first three joints of the Bendix PACS
arm, a cylindrical robot to demonstrate its use and power.

€3
I. INTRODUCTION

ECAUSE their dynamics are highly nonlinear and coupled,
optimal control of robots is a very difficult problem. In order

to simplify the problem, a common approach is to divide the
control of the robot into two sequential segments: off-line
trajectory planning and on-line tracking. Using a geometric path
as its input, the trajectory planner generates positions, velocities,
accelerations, and joint torques as functions of time; the tracker
makes adjustments, in real-time, to the nominal inputs to the robot
in an attempt to make the robot’s actions coincide with those
described by the trajectory planner.

Various algorithms are available for performing trajectory
planning for robots, i.e., generating desired positions, velocities,
accelerations, and torques as functions of time Ill-[3]. These
trajectory planners require knowledge of the robot’s dynamics,
which in turn depend upon the characteristics of the payload being
carried. In practice, the exact characteristics of the payload will
not be known; since the trajectory planners referenced above need
to know the exact dynamics of the robot, the trajectory planning
process must be carried out with dynamics which are calculated
for a nominal payload. This practice can lead to difficulties. To
see why this is the case, note that these trajectory planners
generate nominal torques which are at the limits of the robot’s
capabilities for the given dynamics. Moving the robot along the
desired path at speeds calculated for the nominal payload may

based on a prior submission of May 9, 1985. Paper recommended by Past
Manuscript received July 10, 1986; revised April 30, 1987. This paper is

Associate Editor, W. J. Book. This work was supported in part by the
National Science Foundation under Grant ECS-8409938 and by the US . Air
Force Office of Scientific Research under Contract F33615-85-C-5105.

K. G . Shin is with the Department of Electrical Engineering and Computer
Science, The University of Michigan, Ann Arbor, MI 48109-2122.

N. D. McKay is with the Computer Science Department, General Motors
Research Laboratories, Warren, MI 48090-9055.

IEEE Log Number 8717025.

therefore require torques which are beyond the robot’s capabili-
ties if the payload differs from the nominal one. If the robot’s
joints are controlled by independent servos. as is usually the case,
then attempting to make the robot move along the nominal
trajectory will result in one or more joints “falling behind,” so
that the robot strays from the desired geometric path. In other
words, the trajectory generated by the planner is realizable for the
nominal payload, but not for the actual payload.

These are a number of adaptive controllers which can compen-
sate for the changes in load, provided that the plant (i.e. ~ the robot
joint drive) does not saturate [4], [5] . However, if the plant
saturates, as may happen if the actual and nominal payloads differ
too much, then these controllers cannot possibly compensate for
load changes. It is the objective of this paper to present an analysis
of the torque errors caused by payload changes, and incorporate
the error information into the trajectory planning process so as to
avoid saturation of the individual actuators.

Changes in payload characteristics will be expressed as errors
in the pseudo-inertia of the payload; the pseudo-inertia is a
matrix containing the mass and first and second moments of the
payload. It will be shown that bounds on the joint torque errors
can be calculated in terms of the norm of the error in the pseudo-
inertia of the payload, given the robot’s kinematics. A trajectory
planning algorithm will then be presented which can handle
uncertainties in the dynamics caused by the payload. If the actual
and nominal payloads are described by the pseudo-inertias IA and
JV, respectively, then for a given positive real number E, the
algorithm generates a trajectory which is realizable for all
payloads ZA for which lllA - [% r l l 5 E.

The rest of the paper is organized as follows. The robust
trajectory planning problem is stated in Section II. In Section m,
torque errors are calculated in terms of changes to the payload
pseudo-inertia. In Section N bounds on the joint torque errors are
derived in terms of bounds on the norm of the pseudo-inertia
error. Section V describes a trajectory planning algorithm in detail
which takes into account payload uncertainties. Section VI
presents a numerical example, and the paper concludes with
Section VII.

II. PROBLEM FORMULATION

In order to determine errors in the torques, the dynamic
equations of the robot are required. In tensor notation, the
dynamic equations describing the behavior of a robot take the
general form

u.- I - J . . “ J + c ~ ~ ~ J Q ~ + R ~ Q ~ + ~ ; r,9 (2.1)

where ui is the ith generalized force, q‘ is the ith generalized
coordinate, Jij is the inertia matrix, and C u k is an array of Coriolis
coefficients, defined by

The matrix R, is the viscous friction matrix, and gj is the
gravitational force. The Einstein summation convention has been

0018-9286/87/1200-1~$01.00 O 1987 IEEE

SHIN AND MC M Y : ROBUST TRAJECTORY PLANN’NG FOR ROBOTIC MANIPULATORS 1045

used here, so that all product terms in (2.1) are summed from 1 to
N over repeated indexes, where N is the number of degrees of
freedom of the robot. The inertia matrix Jw, the Coriolis array
Cuk, and the gravitational loading vector g; are functions of the
position of the robot and the payload pseudo-inertia.

The path which the robot is expected to follow is assumed to be
given as a parameterized curve in joint space, i.e., the joint
coordinates qi are given in terms of a single scalar X by the
equations

q’=f (X) , O ~ h ~ h , , , . (2.3)

This allows all of the joint positions, velocities, and accelerations
to be expressed in terms of the scalar parameter h and its time
derivatives. Plugging these relations into the dynamic equations
(2.1) gives torque in terms of these quantities as follows:

where p E is the pseudo-velocity. (See [2] for a detailed
derivation of these equations.) The quantities Jjj, Cok, and gi
depend upon the masses and moments of inertia of the robot’s
links. The robot’s payload is fixed to the last link, and hence must
be regarded as part of the last link for purposes of calculating the
dynamic coefficient. Therefore, J;,, c i j k , and gi will change as the
characteristics of the payload vary.

We may write (2.4) as

u ~ = M ; (x , zN)i + Q~(x, rAr)p2++Ri(h)p+si(h, zA,) (2.5)

where the coefficients Mi, Q;, R;, and S, are given by Mi =

Ri 3 R,dfj/dh, and Si 3 gj(IAr). The functional dependence of
Jij, Cjjk, and g; on the nominal payload tv has been shown
explicitly. Then, the dynamics of the system after the payload has
been perturbed may be written

&j(rN)dp/dA, Qi Jg(rN)dyJ/dh’ + cck(IN)df’/dhdfk/dh,

U; =Mi(X, Zn;+AZN)/i+Qi(h, ZN+AZ,V)~’
+ R;(k)p -k s;(h, 1At-k Azhr). (2.6)

In order to avoid excessive torque requirements, we wish to
compute a set of velocities and accelerations p and ,ti such that, for
all payload inertia errors AZLv within the constraint set, if the
nominal torques ui are given by (2.5), then the actual torques u /
given by (2.6) will be realizable, i.e.,

u p (X, p) I u ; s u y (h, p). (2.7)

Also, there may be jerk (or equivalent) constraints in terms of
positions, velocities, and accelerations,

where E R N X R” X R N 4 R is a jerk function, and Ki a
constant. Formally, the robust trajectory planning (RTP)
problem can be stated as follows.

Given a geometric path described as a parameterized curve
(2.3), the torque limits u?” and u y as functions of h and p , the
dynamics of the robot when carrying the nominal payload IN, and
a bound E on the norm of the difference between the pseudo-
inertias of the actual and nominal payloads, determine the fastest
trajectory (sequence of (A, p) pairs) such that the torques u / given
by (2.6) satisfy the constraints (2.7) for all points on the trajectory
and for all payload errors A Z N such that l l A Z . v l l cc E.

We will solve this problem by calculating the worst-case torque
error, as a function of X, p, and i, for a given payload error, and
decreasing the torque limits by this amount when doing trajectory
planning.

III. CALCULATION OF DYNAMIC COEFFICIENT ERRORS

For a given geometric path, we need to know the changes to the
coefficients Mi, Qi, Ri, and Si in (2.5) which result from changes
in the robot dynamics. In the sequel, changes in dynamics will be
assumed to come from changes in payload characteristics,
although the methods presented apply equally well to errors
caused by uncertainties in the mass distribution of other links and
to uncertainties in friction coefficients.

Differences between nominal and actual payload characteristics
cause changes in the coefficients Jv, C,,, and g; in (2.1). Here we
determine the relationship between changes in these coefficients
and changes in payload characteristics.

Changes in payload Characteristics will result in changes to the
pseudo-inertia tensor of the last joint of the robot, i.e., the pseudo-
inertia tensor will have the value fhr + A Z N instead of Ih:. The
coefficients in the inertia matrix are given in [6] as

where Tp is the 4 X 4 homogeneous transformation matrix which
transforms vectors given in the coordinate system associated with
the pth link of the robot to world or base coordinates, and Ip is the
pseudo-inertia of the pth link given in the pth link’s coordinate
frame.

Introducing an error AIN into the pseudo-inertia of the last joint
gives

Ju(ZN+AIN)= Tr ($ I p $)
N- 1 a T r

P = max(i,j)

+ Tr (s (IN+ AZN) - aT:) . (3.2)
a4J aqi

Subtracting (3.1) from (3.2) gives

Note that the error in the inertia matrix is linear in the pseudo-
inertia error, and is independent of the nominal payload.

Determining the change to Mi, we have

6 M j (Z N , AZN) s hfi(ZN+AZ~)-hfi(rN)

To find SMi, simply plug (3.3) into (3.4), giving

(3.4)

(3.5)

Computation of the errors SQi follows the same pattern as the
computation of SMi. The errors in the Coriolis terms can be
determined in much the same way as the errors in the inertia
matrix. From [6] we have

The errors in the Coriolis terms due to errors in payload

1046 IEEE TRAh'SACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO. 12, DECEMBER 1987

characteristics are therefore given by

Now we need to know the error in the gravitational terms. The
gravitational forces gi are given by [6] as

(3.9)

where G = [0 0 g 01 is the gravitational force vector, mk is the
mass of the kth link, g is the acceleration due to gravity, and Fk =
[X J z I] is the center of mass of the kth link given in the
coordinates of the kth frame. If we define wk = m&, then we
have

(3.10)

But wk is just the last column of the pseudo-inertia matrix Ik, so
that

As before, introducing an error into the pseudo-inertia of the last
link gives

(3.12)

1'1
We may now calculate the error in ui by adding up the

individual components, giving

6ui=6M&+6Qip2+6Si. (3.13)

Iv. CALCULATION OF TORQUE ERROR BOUNDS

If the errors AIN were known exactly, then the torque errors
could also be computed exactly. Of course, in practice AI,v will
not be known exactly. However, if constraints on A I N can be
obtained, then we may find bounds on 6ui. We will write t h e e
constraints as bounds on the norm of the error A T N .

To obtain these bounds, note that &Mi, SQi, and ASi are all
functions of the pseudo-inertia error AI,,,; in fact, they are linear
in A I N , SO that 6ui is also linear in A I N . If we write

~ u ~ = Z (A I N) (4.1)

then we wish to maximize or minimize the linear function 2 with
respect to A I N , subject to a set of constraints of the form

I ~ A Z N ~ ~ < E . (4.2)

At this point, some observations are in order. First, as we noted

before, the errors in the 6ui depend linearly upon the pseudo-
inertia error AI.,. Second, 6ui depends only on the kinematics of
the robot and on the desired velocity and acceleration, not on the
nominal dynamics. These facts are easilp proven from the
linearity of the Lagrangian equations of motion and the facts that
both kinetic and potential energy are linear in mass. One
consequence of this linearity in mass is that the errors 6ui do not
depend upon the nominal dynamics, as shown above. The
implication of this is that much of the error analysis can proceed
without regard to the nominal dynamics of the robot.

The linearity of the 6ui in the pseudo-inertia has some other
practical consequences as well. Consider the maximization which
must be performed in order to evaluate 6ui. This maximization
requires that the space 4 X 4 symmetric matrices with norm less
than E be searched, which in general is a rather formidable
problem. However, by limiting the form of the error constraints,
i.e., choosing a particular class of matrix norms, the problem can
be made quite simple; in fact, it can be transformed into a linear
programming problem.

To see how this transformation can be performed, consider the
problem of maximizing the function Z in (4. l), namely

Problem A:

maximize Z(M) = &Mu (4.3)
i j

subject to 11 MI1 5 E and M= Mr. (4.4)

Treatment of the minimization problem proceeds analogously to
Problem A. We will show that Problem A transforms into a linear
programming problem if the norm used to constrain the matrix M
in (4.4) is chosen properly. This will be accomplished by
eliminating some absolute values from the constraints.

Z(M), the function to be maximized, is a linear function of M.
It remains to be shown that the constraints can be made linear. Of
course, if the norm used in Problem A is arbitrary, then in general
the constraints will not be linear. However, there is a set of
norms, all very easy to calculate, which will yield linear
constraints. Consider the class of functions + R + given
by F(M) = maxi q (M) where ui(M) = (YijklMjkl.
The matrix I-norm and 03-norm, maxi,j IMU I and IMijl, are all
functions of this form. It i s shown in the lemma of the Appendix
that if cyyiik 2 0 for all i, j , and k, and if for every pair of indexes
(j , k) there is an i such that cyuk # 0, then F(M) is a norm. Note
that this class of norms detemunes balls in the underlying space
which are convex polyhedra; since any convex set can be
approximated to any desired degree by a polyhedron, this
assumption does not result in any significant loss of generality.

Problem A with this class of norms becomes the following.
Problem B:

maximize Z (M) = &Mu
i j

subject tom? x (Yi jk(kf ,kI I E a n d Mjk=Mkj. (4.5)
' (j : I k : l

This problem obviously is equivalent to the following.
Problem C:

maximize Z (M) = &Mu
i j

4 4

subject to x (Yijk I Mjk 1 < E for d i and Mjk = Mk,. (4.6)
j = 1 k = l

Problem C may be transformed into a standard linear program-
ming problem by making the substitutions Mij = PU - Nu and
IMUI = Po + Nu, where Po and Nil are nonnegative real

S m AND MC KAY: ROBUST TRklECTORY PLANNING FOR ROBOTIC MANIPULATORS 1047

numbers. The theorem in the Appendix proves that this transfor-
mation gives the correct result.

Now that torque error bounds can be obtained from pseudo-
inertia errors, these results must be incorporated into the
trajectory planning process. In the next section, we will describe a
trajectory planner which can handle the uncertainties in ui which
result from payload variations and can meet constraints on jerk as
well as constraints on torque.

v. ROBUST TRAJECTORY PLANNING ALGORITHh4

As a solution to the RTP problem, we will develop a simple
trajectory planning algorithm called the perturbation trajectory
improvement algorithm (PTIA).
In practice, a trajectory planner must deal with a variety of

arbitrary parametric curves; two representations for curves which
immediately suggest themselves are splines and simple sequences
of (interpolation) points. We choose to use the latter representa-
tion, i.e., the curve (2.3) is represented as an ordered sequence of
points (& q(k)); this proves to be the most natural representation
for the application of the PTIA.

The trajectory planning process consists of assigning values of
the “velocity” p and “acceleration” C; at each point. For the sake
of simplicity, consider only those constraints which can be
expressed in terms of position- and velocitydependent bounds on
the torque, i.e., ignore jerk constraints for the time being. Then
all constraints can ultimately be given as X- and p-dependent
constraints on ,i, or equivalently constraints on dpldh as shown in
[2]. In terms of the (X, p) plot, each point is assigned a range of
allowable slopes. The phase trajectories must, at every point of
the phase plane, point in a direction which lies within this range.

In the discrete approximation, having the maximum and
minimum slope sets limits on the differences between the values
of p at adjacent interpolation points. The process of trajectory
planning requires that the initial and fmal points of the curve have
zero velocity (or some other fixed velocity) and that the velocities
at all the intermediate points be as large as possible, consistent
with the slope constraint that the velocities at neighboring points
not differ too much.

One approach to the solution of this problem is to try to push the
speed higher at each individual point. The value of p can be
pushed higher at each point in succession until none of the
velocities can be made any larger. If we call this Algorithm A,
then we have the following.

Algorithm A:
AI: Set all velocities to values which are realizable (usually all

zeros).
A2: Push each intermediate point of the curve as high as

possible consistent with the slope constraints.
A3: If any of the velocities were changed in step A 2 , go back to

step A 2 , otherwise exit.
As a practical matter, the search required to find the highest

possible velocity in step A2 of Algorithm A may be fairly
expensive, especially since it may be repeated many times for a
single point. A simpler approach is to just try adding a particular
increment to each velocity, and then make the increment smaller
on successive passes of the algorithm. This gives the following.

Algorithm A ’:
AI’: Set all velocities to values which are realizable (usually all

A2’: Set the current velocity increment to the robot’s maximum
speed.

A3’: Push each intermediate point of the curve up by an amount
equal to the current velocity increment, if this is consistent with
the slope constraints.

A4’: If any of the velocities were changed in Step A3’, go back
to step A3’.

AS’: If the current velocity increment is smaller than the
desired tolerance, stop. Otherwise halve the increment and go to
A3’.

zeros).

Algorithm A‘ is really just a combination of gradient and
binary search techniques. The direction in which the curve must
move (i.e., the gradient direction) is known a priori, since
increasing the velocity always decreases the traversal time, and
the amount of the change is successively halved, as in a binary
search, until some desired accuracy is achieved. Clearly, this
algorithm will terminate in a finite number of steps. Algorithm A‘
is very simple, except possibly for the slope constraint check
required in step A3’. This requires a knowledge of the dynamics
and actuators characteristics of the robot. However, this check is a
simple “goho go” check, and can be isolated as a single function
call. (This function will henceforth be called the constraint
function.)

An important characteristic of the constraint function is
locality. In the case discussed above, the constraints are ex-
pressed in terms of X, p , and dp/dX. We need two points to
determine the slope dpldX, so the constraint depends only upon
two points. Therefore, when a point of the curve has its p value
changed, it is constrained only by the two adjacent points (due to
the slope constraints); the rest of the curve has no influence. This
allows much calculation to proceed in parallel. Step A3’ of
Algorithm A‘ can be divided into two sequential steps, one which
increments the odd numbered points and one which increments the
even numbered ones. Since the even numbered points stay the
same while the odd numbered ones are being incremented, and
vice versa, the points either side of the incremented points remain
stationary, so that the constraint checks are valid. (If all points
were tested simultaneously, then it is possible, for example, to
increment two adjacent points; since in each case the constraint
check would be made on the assumption that the other point was
remaining stationary, it is possible that the new configuration
would not meet the required constraints.)

It is easily seen that the process in Algorithm A‘ can be
extended to more complicated constraints. For example, con-
straints on the jerk (the derivative of the torque or acceleration)
only require a more complicated constraint function, i.e., both
(2.7) and (2.8). Of course, in this case the constraint function
needs three points to calculate second derivatives of the speed.
Thus, the constraints on a single point will be functions of two
points either side of the point being checked, rather than one point
(see [7] for more details). This affects the degree of parallelism
which can be achieved; step A3’ would require three passes
instead of two.

As a simple illustration of how the algorithm works, consider a
simple onedimensional problem. Suppose we wish to move an
object of mass M from x = 0 to x = 4. Further, suppose that
there is no friction, and that there are constant bounds on the
magnitude of the applied force. There will be only one parametric
functionf, which may be taken to be the identity function, so that
X = x. We then have

If we consider X-intervals of length 1, then the discrete approxi-
mation to the parameterized “curve” will have 5 points. The
acceleration i = pdpldh can be approximated as

(5.2)
The torque constraints then become

(5.3)

If we use m = 1 , F,,, = 2, and X;,, - X; = 1 for all i, this

’ Thus, step A7’ requires two passes

1048 E E TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO. 12, DECEMBER 1987

P

2.000

1.000

Fig. 1

2.000

1.000

P
A

1.000 2 .000 3 . 0 0 0 4.000
Fig. 2

reduces to

Now consider what happens if Algorithm A is applied. We may
look at the intermediate points of the curve in sequence. First,
point 1 can be raised by 2, since the adjacent points have p values
of zero (i.e., = p2 = 0), and 122 - 02(= 4. Raising the
middle point, point 2, we are constrained by the fact that p3 = 0,
which limits p2 to 2 also. Likewise, we may change p3 to 2. This
completes step 2 of Algorithm A. Since some of the p values
changed, we try to increase them again. This time only point 2 can
be raised, giving a value of p2 = 2 a On the next pass, no p
values change, so Algorithm A terminates. It is easily verified that
the solution obtained from Algorithm A is indeed the optimal
solution to the discretized problem. Fig. 1 shows the discretized
trajectory after passes zero, one, and two of Algorithm A.

Now look at what happens when we use Algorithm A ' . Say we
start with an increment of 2. Then the result of the first pass of
Algorithm A ' is the same as the result of the first pass of
Algorithm A, namely p , = p 2 = p 3 = 2. If the increment is cut to
1, then there is no change. Cutting the increment to 1/2, we may
raise the middle point to 2.5. Continuing in this fashion, the
middle point gets closer and closer to 2 a the correct result. Fig.
2 shows the trajectory after passes zero, one, three, and four of
Algorithm A ' .

The robust trajectory planner only needs to have available a test
function which determines whether or not a given (X, p, /.) triple
requires excessive torque; in effect, they automatically perform
the numerical search for the allowable values of I.i. But such a
function is easily constructed, since for a given (X, p, d) we can
easily minimize or maximize 6ui in (3.13), and see if ui + 6uy"
exceeds uyM(h, p) or ui + 6u$" falls below uimin(h, p) . In
particular, the following algorithm checks to see if a particular (X,
p, /.) triple meets all the torque constraints:

It should be noted that this function is called for each (X, p)
pair; it does not, for example, reject a (X, p, I.) triple based on an
error which is computed for ail positions or all velocities. As a
consequence, speed is sacrificed only when absolutely necessary
to guarantee that the trajectory will be realizable for all payloads
within the allowable range.

The PTIA, unlike dynamic programming [3], requires rela-
tively little memory; it requires only one floating point number
per interpolation point. However, computation of the CPU time
requirements is interesting.

Obviously, the computation time must increase at least linearly
with the number of interpolation points on the curve, that is, the
size of X intervals. In fact, the time increases as the square of the
number of interpolation points. To see why this is soI consider
what happens when the number of interpolation points is doubled.
Since there are twice as many points to check on each pass of the
algorithm, the computation time must increase by a factor of two.
Recalling that the torque constraints translate into slope con-
straints, it is clear that the ratio of the amount by which a p-value
may be raised to the distance between X-values will be approxi-
mately constant. Therefore, halving the spacing of the interpola-
tion points halves the size of the steps which can be taken in the p
direction, thus doubling the number of steps. This factor of two
times the factor of two which results directly from doubling the
number of points gives a factor of four increase in Computation
time. If doubling the number of interpolation points quadruples
the computation time, then the time dependence is quadratic in the
number of points, i.e., O(Wk) where Nk is the number of the X
intervals.

It is obvious from the discussion that the fineness of the h
intervals will have a significant impact on the running time of the
algorithm. It will also affect the accuracy of the results. Similarly
to the convergence proof of the trajectory planning with dynamic
programming in [3], we can treat the effect of the grid density on
the accuracy of our solution in a quantitative manner.

for each joint i do
begin

compute uN=M;(h)/. + Q;(X)p2 +RiX),u + &(X)
compute 6u- = maxlMd <E { 6M;(X: AIN)k + SQi(X, AIN)p2 + 6S;(X, M.v)}
compute 6u"" = n+lN,,,rE { 6Mi(X, MN)I. + 6Qi(X, M N) p 2 + 6Si(X, A I A r)]
i f u r + + u F < u y (x , p) , then return REJECT
if u~++Gu~>ui""(X, p), then return RETECT

end
return ACCEPT.

SHIN AND MC KAY: ROBUST TRAJECTORY PLANNING FOR ROBOTIC MANIPULATORS 1049

TABLE I
, Parameter I Desaiption I Value I
' ;"!Y I Saturation toroue of B motor 2.0 Nt.-M. 1 r3 ~~ ~ ~ I ~ - ' i 0.05 Xt.-M. I

-.,I
Saturation torque of r motor
Saturation torque of z motor 2.0 St.-M.
Lower voltage limit for 0 joint -40 v.
Lower voltage limit for r joint -40 v.
Lower voltage limit for z joint -40 v.

40 v.
40 v.

v i =
V,mm
Vzmm

V,-U Upper voltage limit for 8 joint
V,m= Upper voltage limit for r joint
V,m= Upper voltage limit for z joint 40 v.

k l Gear ratio for 0 drive 0.01176
k.! I Gear ratio for r drile ! 0.00318 hletersjradian
k: I Gear ratio for z drive 0.00318 Metersjradian

k." I Motor constant for 0 ioint ! 0.0397 Nt.-hi./amp

I k;
k? Motor mnstant for r joint ' 0,79557 x 10" Nt.-hf.,'amp

R," M o t o r and power supply resistance, 0 joint ' 1 R
R,'"
R."

Motor and power supply resistance, r joint ' 1 R

40.0 Kg. M a of z joint .rr,
10.0 Kg. M a s 01 r joint .ut

1.0 Kg./sec. I Friction coeficient of z joint kz
k
k e

1 R Yotor and power supply resistance, z joint

hfota mnstant for i joint I 0.0397 St.-M./amp

Friction coefficient of 8 joint
4.0 Kg.!sec. Friction c d u i e n t of r joint

8.0 Kg.-.U.z/sec./rad. I

K
J, I Moment of inertia around 0 axis 12.3183 Kg.-M.'

Moment of inertia offset term 3.0 Kg.-M.

VI. NUMERICAL EXAMPLES

As an example, we will apply the methods of the previous
section to the first three joints of the Bendix PACS robot arms.
This arm is cylindrical in configuration and is driven by DC
servos. Its dynamics and actuator characteristics are described in
Table I.

The kinematics of the PACS arm are quite simple. If the
coordinate frames of the base and hand are as shown in Fig. 3,
then the coordinate transform T3 is easily shown to be

cos0 0 -sin0 - r s in0

T3= [sine 0 - 1 0 cose 0 r y e]
0 0 0 1

The partial derivatives of T3 are easily computed, and are then
used to compute the SM;. If we let H = A I A r and define mu = Tr
(aT,/i3qJHaT~./aqi), then we have SMi = modqJ /dL . The
nonzero mij are then found to be

We can now find the 6Mj. We have

6Ma = (H, + H33 + 2rHM + r2HM) - + Hl4 - d0 dr
d h d h

y $ r 3 / p 3 y 3

2

z O

f

x O YO
Fig. 3

We now compute the cijk. Only six cases need to be considered,
since all but two of the second partials of T3 are zero. Of these,
only two of the Cgk are nonzero

+,o,=Tr ($ H z) = -H34-H44r

cae,=Tr (2 H $) = H 3 , + H - r .

Calculating the SQi,

d2z
dh2 SQ,= H u -

6Q~=(H11+H33+2rH34+r2H44)
d 20
d l

d 2r dr dB + H14 1 + 2(H3, + rH-) - -
d h d h d h

d20 d2r
SQ, = HI4 1 d k + H u dh2 - - (H34 + rH-)

The SS;, the gravitational error coefficients, are easily found to
be SSz = H44g m d SSe = SS, = 0, where g is the acceleration due
to gravity.

We will use the norm IlHll = E:= C4= I aijlHijl, where aij >
0. This makes the problem of finding the error bounds very
simple. It can be s h o b that if the functional to be maximized is Z
= EiEj&Hij, then the maximum over H for IlHll 5 E occurs
when all the Hij are zero except for those values of i and j for
which l & / c r i i l is a maximum; this number times E is also the
maximum value of Z . If we use

d0 dr
d h d h 6Mr=H14 -+HU - . "ij= i # j

1 i = j

1050

then the resulting bounds on the 11 6ui 1 are

EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO. 12, DECEMBER 19s-1

The joint torques that can be applied to the PACS arm are limited
by saturation of the drive motors, which give a constant torque or
force limit for each joint. In addition, there are limits on the
voltages which can be applied to the motors, so we need to know
how the errors in the joint torques translate into errors in the
motor voltages. It will be assumed that the back-EMF constant,
winding resistance, and voltage source resistance are known
exactly, although this is not necessary. Since for a given speed
voltage is a linear function of torque, i.e., Vi = Aiui + Bi, the
change in voltage wiU be 6 6 = A&. These changes in voltage
can then be added to the nominal voltage and tested against the
motor voltage limits in much the same way that the torques are
checked against the motor torque saturation limits.

The perturbation to the nominal dynamics of the manipulator
will be caused by placing a cube with edges of length L and
uniform mass density p in the gripper of the robot, with its center
of mass coincident with the origin of the end effector coordinate
system. The pseudo-inertia of this cube is

AZ3 =

- -
1
12
- p L 5 0 0 0

0 - p L S 0
1
12

0

0
1
12

0 - p L 5 0

0 0 0 P L - -

The norm of this “error” is l l A I 3 I I = pL3 + 1/4 pL5. The
maximum torque error for a given range of pseudo-inertia errors
occurs when the error bound E is precisely equal to the norm of
the actual pseudo-inertia error. Therefore, the most stringent test
of the results of the previous section is to use a tight error bound,
i.e., E = ~ ~ A z 3 ~ ~ . This has been done for a cube with sides of 5 crn
and densities of 0, 6, 12, 1 8 , 24, and 30 g k c . The path traversed
is a straight line from the (Cartesian) point (0.7, 0.7, 0.1) to
(0.4,-0.4, 0.4). For comparison, the true optimal solution has
been calculated, using the actual dynamics (including the effects
of the cube in the gripper). The results are summarized in Tables
&VI. Table II gives traversal time for the true optimal solution
and for the case in which errors are included. The “percent
difference” column gives the percentage by which the true
optimal traversal time is exceeded. Tables III and N give
minimum and maximum voltages, respectively. The actual and
nominal values are both computed for the “nomial” trajectory,
i.e., the trajectory which is calculated with errors included. The

TABLE II

!
0

6

12

18

24

30

1.789

1.934

2.076

2.213

2.340

2.459

1.789

1.844

1.898

1.950

2.002

2.054

TABLE III

0

4.9%

9.4%

13.5%

16.9%

19.7%

Minimum Voltages

Density I joint 0 joint E joint

, Nominal Actual Nominal Actual Nominal Actual

0 i 29.86
29.86

-39.98 -36.12 -33.51 -33.05 31.67 30.54 12

-40.00 -37.94 -38.52 -38.26 30.91 30.34 6

-40.00 -40.00 -39.93 -39.93

-

18

-16.80 33.73 30.86 30

-40.00 -33.01 -20.36 -19.94 33.07 30.78 24

-39.99 -34.47 -25.37 -24.92 32.39 30.67

-17.18 I -31.70
-39.96

TABLE IV

Maximum Voltages

E joint I joint 0 joint

Nominal

37.64

36.79

35.78

24 35.12

30 34.69

1 I

Actual Actual Nominal Actual Nominal

37.64

27.48 27.01 18.25 17.64 38.04

32.60 32.62 37.73 37.14 38.03

40.00 40.00 39.86 39.86

37.61

22.39 19.51 5.98 5.39 37.69

23.41 21.39 7.89 7.30 37.54

24.94 23.79 11.21 10.61

SHIN AND MC KAY: ROBUST TRAECTORY PLANNLNG FOR ROBOTIC MANIPULATORS 105 1

TABLE V

Minimum TorquesfForm

)ensity

1 Limit = -629 Nt. ! Limit = -170 Nt.-M. I Limit -15.7 Nt.

0 joint (Newton-Meters) ' r joint (Newtons) z joint (Newtons)

Xominal liomioal Actual Nominal Actual
.. -

0 -9.99 -112.29 -112.29 333.52 333.52

6 -9.47 -105.71 -104.78 342.20 335.91

12 -9.02 -89.26 -87.70 363.02 I 376.62

18 373.03 : 394.00

24 377.84 j 406.17 -48.15 , -49.55 1 -8.24

-62.91 ~ -64.43 -8.61

30 I 380.11 I 415.72 I -39.14 -40.43 -7.92

I

~. - I -

TABLE VI

-

Actual
- -

-9.99

-9.99

-9.99
-

-9.99

-9.99

-9.98

Maximum Torques/forces -7
Limit = 629 Nt.

~ Nominal Actual

0 I 421.31

430.04 12 414.50

426.52 6 I 418.68

~ 421.31

I

18 406.68 I 429.55

24 402.17 i 432.31

I I
I

i , 30 I 400.42 j 437.96

tl joint (Newton-Meters) T joint (Newtons)

Nominal Actual Nominal Actual

161.72

150.39

10.03 10.03 161.72

80.48 6.76 78.43

bls 8.15 152.36

6.89 1 I

51.39 53.41 I 5.96

38.18 , 40.19

6.25

30.20 i 32.20 4.89 I 5.61

actual voltages are those required to move the robot with the cube
in the gripper, while the nominal values are those which are
required without the cube, Le., with the nominal payload. The
minimum and maximum voltages available are -40 and 40 V,
and it is easily seen that these limits are not exceeded for any joint
or for either payload. Tables V and VI give the minimum and
maximum torques or forces for each joint. The torque or force
limits are given at the head of the column for the appropriate joint;
again, the limits are not exceeded.

The phase plane (X versus p) plot and motor voltage versus time
plot for the zerodensity case are shown in Fig. 4(a) and (b). Since
the error is zero in this case, the results are exact. For a density of
12 g/cc, the optimal and nominal (i.e., with errors included)
phase plane plots are shown in Fig. 5(a). (The optimal phase
trajectory is the minimum-time phase trajectory which would be
obtained if we knew the exact payload characteristics.) Fig. 5(b)
gives joint positions versus time; z and r are in meters, 8 in
radians. Fig. 5(c) through (e) gives nominal and actual motor

i

d mdor voltage
r motor voltage
z motor voltage

V

t

(b)
Fig. 4

voltages required to drive the robot along the nominal trajectory
for the z, 8, and r joints, respectively. The nominal voltages are
those which would be required if the actual payload were identical
to the nominal payload. The actual torques are the torques
required to keep the robot with the perturbed payload on the
nominal trajectory. The torque plots look very much like the
voltage plots, and are therefore omitted. The same plots for
various payload densities can be found in [7].

It was noted above that none of the joint torque or voltage
constraints was violated. However, the minimum voltage for the r
joint at one point meets the lower voltage limit. This indicates that
the trajectory which is generated when payload errors are
included is indeed the fastest possible trajectory for the given
range of possible payloads; for this particular point, the worst-
case payload happens to have the same characteristics as the actual
payload. A larger payload would have resulted in violation of a
voltage constraint.

Another point to consider is the relationship between the
nominal and optimal phase trajectories. It is expected that the
nominal phase trajectory will be lower than the optimal trajectory;
a nominal trajectory which was higher than the optimal one would
lead to a contradiction of the optimality of the optimal trajectory.
Also, the difference between the optimal and nominal trajectories
increases as the payload error bound increases. This would be
expected, since the nominal trajectory must accommodate ail
payloads within a given range; as the range of payloads increases,

1052

c

I

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO. 12, DECEMBER 1987

V

t
V

V

r pint

(e)
Fig. 5

SHIN AND MC M Y : ROBUST TRAJECTORY PLANNING FOR ROBOTIC MAh7PULATORS 1053

the worst-case errors also increase, resulting in more restrictive
limits on the nominal torques, and hence longer trajectory
traversal times.

VU. CONCLUSIONS

A method for including payload inertia errors in the manipula-
tor trajectory planning process has been presented. Errors in the
payload inertia are characterized by bounds on the norm of the
difference between the actual and nominal pseudo-inertias of the
payload. Given such a bound, it has been shown that a trajectory
can be constructed which meets all torque and force constraints
for alf actual payloads, provided that the norm of the difference of
the pseudo-inertias of the actual and nominal payloads differs by
less than the given error bound. The method may also be extended
to accommodate jerk constraints. This technique was applied to
the Bendix PACS robot for a number of different payloads, and
the resulting trajectories were shown not to violate any joint
torque or motor voltage constraints. In the worst case, in which
the actual payload mass differs from the nominal mass by
approximately one third of the robot’s rated maximum load, the
traversal time was less than 20 percent over the optimal value.

APPENDIX

Lemma: If a&+ 2 0 for all i , j , and k , and if for every pair of
indexes (j , k) there is an i such that (Yijk # 0, then F(M) is a
norm.

Pro08 In order to prove that F is a norm, we must show that

1) F (M) 2 0 for all M,
2) F(M) = 0 iff M = 0, 3) F(yM) = IylF(M) for all

4) F(X + Y) I F (X) + F(Y) for all matrices X and Y.

Obviously 1) is true, since F is the maximum of a set of
nonnegative quantities. F(0) = 0, proving the “if” part of 2) . To
prove the “only if” part, observe that if M is nonzero, then it has
some nonzero element Mjk. For this particular j k pair, there is
some i such that a j j k is nonzero, so that ai > 0 for this i .
Therefore, F > 0. 3) is true since

scalars y and all matrices M, and

4 4 4 4

u i (y M) = c % j k (? M j k I = I y I c x a i j k l M j k l = l r l o i (M)
j = l k = l j = l k = l

and hence

F(.IIM)=max oi(rM)=max l ~ l a i (M)

=Irlm:xai(M)=lylF(M)

Finally,

so that

F (X + Y)=max {u i (X+ Y)}<max {u , (X)+ui(Y))
I I

smax {ui(x>}+m.ax { u i (Y) } = F (X) + F (Y) .
I 1

To prove that the transformation of Problem C into a linear

programming problem gives the correct result, first eliminate the
symmetry constraint, giving the following.

Problem C’:

4 4

subject to (. ;k lb f i jk l < E
j = l k = J

where

and

Then we have the following theorem.
Theorem: Let Problem D be defined as

Then the optimal W from Problem C ’ is equal to the optimal 2
from Problem D.

Proof: Let M be a solution of Problem C ’ , and let W* =
W(M). If we make the substitutions

and

then we have M: = Pu - Nu, and IM$ = Pij + Nu. Making
these substitutions in Problem C ’ gives

The conditions for Problem D are satisfied, so we must have W*
I Z * , where Z* is the optimal value of Z obtained from Problem
D.

Likewise, let P* and N* be an optimal solution to Problem D.
Then for every pair of indexes (j , k) we have 0 .; > 0,/3,; = 0, or
0i;l < 0, then we must have N*, = 0. otherwise, we could
substitute Pj*k + NZ for Pjk and d for N j k ; these new values still
satisfy the required constraints, but increase the objective func-
tion, contradicting the fact that (P*, N *) is optimal. Similarly, if

< 0, then we must have P; = 0. If = 0, then we may
take P; = NZ = 0, since this leaves the constraints satisfied and

1054 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO. 12, DECEMBER 1987

4 4

Therefore W* I Z * I W*, proving the theorem.

REFERENCES

J. E. Bobrow, S. Dubowsky, and J. S . Gibson, “On the optimal control

Automat, Contr. Conf., June 1983, pp. 782-787.
of robotic manipulators with actuator constraints,” in Proc. 1983

K. G. Shin and N. D. McKay, “Minimum-time control of a robotic
manipulator with geometric path constraints,” ZEEE Trans. Auto-
mat. Contr., vol. AC-30, pp. 531-541, June 1985.
K. G. Shin and N. D. McKay, “Robot path planning using dynamic
programming,” in Proc. 23rd CDC, Dec. 1984, pp. 1629-1635: also
m IEEE Trans. Automat. Contr., vol. AC-31, pp. 491-500, June
1986.
S. Dubowsky and D. T. DesForges, “The application of model-

Dynam. Syst., Measurement, Contr., vol. 101, pp. 193-200, Sept.
referenced adaptive control to robotic manipulators,” ASME J.

1979.
A. J. Koivo and T. H. Guo, “Adaptive linear controller for robotic
manipulators,” ZEEE Trans. Automat. Contr., vol. AC-28, pp. 162-
17O,-Feb. 1983.
R. P. C. Paul, Robot Manipulators: Mathematics, Programming,
and Control. Cambridge. MA: M.I.T. Press, 1981.

~~

N. D. McKay, “Minimhcost control of robotic manipulators with
geometric path constraints,” Ph.D. dissertation, The Univ. Michigan,
Sept . 1985.

Kang G. Shin (S’75-M’78-SM’83) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea, in 1970, and
both the M.S. and Ph.D. degrees in electrical
engineering from Comell University, Ithaca, N Y ,
in 1976 and 1978, respectively.

From 1970 to 1972 he served in the Korean Army
as an ROTC Officer and from 1972 to 1974 he was
on the Research Staff of the Korea Institute of
Science and Technology, Seoul, Korea, working on
the design of VHFKJHF communication systems.

From 1978 to 1982 he was an Assistant Professor at Rensselaer Polytechnic
Institute, Troy, NY. He was also a Visiting Scientist at the U.S. Air Force
Flight Dynamics Laboratory in Summer 1979 and at Bell Laboratories,
Holmdel, NJ, in Summer 1980. At present he is a Professor in the Department
of Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, which he joined in 1982. He has been very active and authord
coauthored over 120 technical papers in the areas of fault-tolerant real-time
computing, computer architecture, and robotics and automation. In 1986 he
founded the Real-Time Computing Laboratory, where he and his students are
currently building a 19-node hexagonal mesh multiprocessor to validate
various architectures and analytic results in the area of distributed real-time
computing.

Dr. Shin was the Program Chairman of the 1986 IEEE Real-Time Systems
Symposium (RTSS), the General Chairman of the 1987 RTSS, and the Guest
Editor of the August 1987 Special Issue on Real-Time Systems of the IEEE
TRANSACTIONS ON COMPUTERS. He is a member of the ACM, Sigma Xi,
and Phi Kappa Phi.

