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Performance  Measures for Control  Computers 

Abstract-As real-time systems become  more  complex, the problem of 
controlling them safely  becomes  more  difficnlt. When computers are in 
control of time-critical systems such as aircraft, nuclear reactors, and life- 
support systems, they must meet stringent performance requirements. 
However, these requirements cannot  be properly stated without appropri- 
ate performance measures. We review and analyze such measures in this 
paper. 

I. INTRODUCTION 

A .  Motivation 

T HERE has been an increasing trend toward automating the 
control of industrial and other processes. There  are two 

reasons for this. First, computerized or otherwise automated 
control tends in  many cases to be less costly than manual control. 
Second, there are instances where the processes are too complex 
to be controlled manually. 

One good example of processes which are becoming too 
complex to be manually controlled is aircraft. The highly fuel- 
efficient aircraft of the future are likely to be far less stable 
aerodynamically than the aircraft that we  fly in today. This calls 
for improved methods to maintain stability; in particular, for the 
capacity to respond very quickly to any onset of instability. The 
automatic maintenance of aerodynamic stability-something done 
today by relatively simple means-will become a more complex 
problem and require the use of computers. 

The difference between control computers of the future and the 
machines used in apparently similar roles today is to be found in 
the consequences of their failure. In  most cases today, the failure 
of a control computer does not lead to catastrophe: human 
overseers can at least shut the process down safely. By contrast, 
the failure of a computer guiding an intrinsically unstable aircraft 
can be expected to result in an air  crash, and one can think of 
analogous disasters in highly complex industrial processes. 

The criticality of such systems makes accurate performance 
prediction imperative. If one is to characterize performance 
accurately, one needs  good performance measures. And that is the 
justification for the material of this paper. 

B. Scope  and  Organization 

We intend this paper to be used as a bibliography as well as 
guidance to performance analysts and intelligent laymen of this 
relatively new and growing field. While this paper concentrates 
on performance measures and not on modeling or measurement, 
the techniques of modeling and measurement play a major role in 
determining the practical relevance of a measure. 

In the rest of the Introduction, we f i s t  consider the challenges 
and opportunities offered to computers in the control context. 
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Then follows a brief subsection in which we convey the fact that 
performance measures are a language or medium of communica- 
tion, and that by the very act of choosing a set of measures, an 
analyst imposes a scale of values on his analysis. Thus, choosing a 
performance measure should not be taken lightly. 

In Section II, we study the properties that good performance 
measures must satisfy. In Section 111, we discuss ways by which 
the demands of the application can be expressed in a form fit for 
analysis. Section IV contains a list of performance measures, and 
the paper concludes with Section V. 

C. Definitions 

We have found it convenient to collect some useful terms and 
definitions in this section. 

A distributed computer is a collection of processing elements 
embedded in an interconnection network, which may or may  not 
have a global memory equally shared by all processors. 

The state of anything is an encoding of all that is relevant about 
its condition. For example, the current state of a distributed 
computer will include the number of processors and links 
currently operational. The current state of  an aircraft might 
include its velocity and heading as well as an encoding of the 
condition of the aircraft hardware. The operative word in the 
definition of state is “relevant.”  The state-model of a system- 
which is a collection of all states possible for the system to be in- 
will depend for its complexity on how  much detail is necessary to 
capture in the model. For a further discussion, see,  for example, 
121. 

Automatic control means the control of mechanical, electri- 
cal, or other systems without human intervention. For a good 
introduction, see [30]. 

The controlled system or controlled  process is, as the term 
implies, whatever is being controlled. Similarly, the control 
computer is the digital computer entrusted with the automatic 
control of the controlled system or process. 

A performance measure is a language, framework, or index, 
through which to express what is relevant about the capability of 
systems. Here,  as in state, the operative word is “relevant.” 

The objective of control is to operate the controlled system 
safely and optimally. Optimality is calculated with respect to some 
performance index such as fuel,  energy, time, etc. [l], [27], [37]. 
The quality of the control provided is measured by the perform- 
ance index. 

A system is said to be gracefully  degradable if there exists one 
or more states in which the system is neither at full capability nor 
in  total collapse. 

Consider a stochastic process X = { X ( t ,  w)lt E T, w E Q}, 
where T represents time and fl the event space [ 121. Specific 
realizations of X are called samplepaths. For example, when the 
random variable X( t ,  w,) for a realization wi E Q, and t E T = 
[0, 03) represents the number of functional processors at time t ,  
the sample path  would be the actual “movement” undertaken by 
the system through the states of complete functionality (all 
processors functional) all the way to total collapse (no processor 
functional). Since there is an infinite number of ways  in  which this 
progression can occur (for example: there is  an infinite number of 
epochs at which the first failure will occur), the stochastic process 
in this example can follow any of an infinity of sample paths. 
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Fig. 1. A typical real-time control system. 

D. Real-Time Systems [38J 

Fig. 1 shows the block diagram of a typical real-time control 
system. The inputs to the control computer are from sensors that 
provide data about the controlled process and from the environ- 
ment. This is typically fed to the control computer at regular 
intervals. Data rates are usually low: generally fewer than 20 
words per second for each sensor. The job list, which is the set of 
tasks or jobs to be run on the control computer represents the fact 
that all the control software is predetermined and partitioned into 
individual jobs. 

Central to the operation of the system is the trigger generator 
that initiates execution of one or more of the critical tasks. In  most 
systems, this is physically part of the control computer itself, but 
we separate them here for purposes of clarity. Triggers can be 
classed into three categories. 

i) Time-Generated Trigger: These are generated at regular 
intervals, and lead to the corresponding control computer job(s) 
being initiated at regular intervals. In control-theoretic terms, 
these are open-loop triggers. 

2) State-Generated Trigger: These are closed-loop triggers, 
generated whenever the system is  in a particular set of states. A 
simple example is a thermostat that switches on or off according to 
the ambient temperature. For practicality, it might be necessary to 
space the triggers by more than a specified minimum duration. If 
time is to be regarded as an implicit state variable, the time- 
generated trigger is a special case of the state-generated trigger. 
One can also have combinations of the two. 

3) Operator-Generated Trigger: The operator can generally 
override the automatic systems, generating or canceling triggers 
at will. 

The output of the control computer is fed to the actuators or the 
display panel(s). Since the actuators are mechanical devices and 
the displays are meant as a human interface, the data rates here are 
usually low. Indeed, a control computer generally exhibits a 
fundamental dichotomy from many points of view. First, the I/O 
is carried out at rather low rates (the only exceptions to this that 
we  know  of are control systems that depend on real-time image- 
processing: such applications have extremely high input data 
rates), and the computations have to be carried out at high rates 
owing to real-time constraints on control. Second, the complexity 
of the data processing carried out at the sensors and the actuators 
is  much  less than that carried out in the main data-processing area. 
Third, the sensors, actuators, and the associated equipment are 
entirely dedicated to the performance of a particular set of tasks, 
while the hardware in the region where the complex data 
processing takes place is usually not dedicated. 

It is therefore possible to logically partition real-time computer 
systems into central and peripheral areas. The peripheral area 
consists of the sensors, actuators, displays, and the associated 
processing elements used for the preprocessing and formatting of 

data that are to be put into the central area, and the “unpacking” 
of data that are put out by the central area to the actuators or 
displays. The central area consists of the processors and associ- 
ated hardware where all the higher level computation takes place. 
Designing the peripheral area is relatively straightforward; the 
most difficult design problems that arise in these systems usually 
concern the central area. Fig. 2 emphasizes these points. 

A control system executes “missions.” These are periods of 
operation between successive periods of maintenance. In the case 
of aircraft, a mission is usually a single flight. The operating 
interval can sometimes be divided into consecutive sections that 
can be distinguished from each other.  The sections are called 
phases. For example, Meyer et  al. [33] define the following four 
distinct phases in the mission lifetime of a civilian aircraft: 

1) takeofflcruise until VHF omnirange (VOWdistance measur- 
ing equipment @ME) out of range, 

2) cruise until VOWDME in range again, 
3) cruise until landing is to be initiated, 
4) landing. 

The current phase of the control computer partially determines 
its job load, job mix, job priorities, and so on. 

A real-time system typically has to function under more 
constraints than does its general-purpose counterpart. First,  there 
are deadlines for tasks to meet. Timing is crucial to successful job 
completion. Second, some physical constraints are more stringent 
than for the general-purpose computer. Examples are weight and 
power consumption. 

The applications software has the following properties. 
1) The effects of tasks on one another are well understood. 
2) Clear lines of authority are recognized. 
3) Clear lines of information flow are recognized. 
4) The products of the tasks are well defined. 
5) The system of tasks is nearly decomposable. 

These also happen to be the five conditions for the efficient 
design of a distributed system listed by Fox [ 161. Because of this, 
and due to their potentially high reliability, distributed systems are 
particularly suited for use as control computers. 

Also, the problems that arise when one attempts to run general- 
purpose software on a distributed system do not occur with these 
special-purpose machines. The chief problem in the former  case is 
that to run anything on a distributed system, one needs to 
disentangle the original distributed program into nicely interacting 
sequential streams: a task which is not always possible to  do 
reliably, and almost impossible to  do efficiently. In contrast, the 
software for a control computer is  not so much a single 
partitionable package as a set of cleanly interacting subroutines. 
Macro-instruction languages show much promise in this context 

The constraints on real-time systems, as well as the properties 
v11. 
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Fig. 2. Schematic decomposition of a real-time  control  computer. 

of the applications software, have a great influence on the system 
architecture and the executive software. 

The system architecture should be fault-tolerant since the 
overall computer system has to be much more reliable than any  of 
its components. Massive replication of hardware is commonplace, 
as are high interconnection-link bandwidths. Recovery from 
failure must be quick, and both the hardware and the system 
software should be designed with this in mind. 

The executive software must reflect the constraints on time and 
resources. The executive is responsible for the control of queues 
at shared resources, for the scheduling of events, for the handling 
of interrupts, and the allocation of memory. While all these tasks 
are common to general-purpose systems, the existence of hard 
deadlines makes the efficient and reliable execution of such 
activities imperative. The designer of a real-time system does not 
have the luxury of being able to assume that occasional serious 
degradation of performance is acceptable, if unfortunate. 

An additional important task of the executive is fault-handling 
and recovery. This includes reconfiguration where that is possi- 
ble, and the rescheduling of tasks upon processor failure. Here 
again, the constraints on time make this a difficult problem. 

We can now see that real-time control computers differ from 
more conventional computers in a number of ways. 

First,  as we have pointed out above, the consequences of a 
control computer's failing are likely to be far more serious than 
for a general-purpose computer, so that a good analysis of its 
capabilities is needed. 

Second, there is far  more information available apriori. In the 
case of a control computer, the job load consists of the same jobs 
being repeatedly executed. Since one is dealing here with critical 
systems, such as nuclear reactors or aircraft, much modeling, 
simulation, and measurement needs to be done before any detailed 
specifications can be drawn up. The job mix is known: although 
the actual programs to be run  may  not always be available to the 
analyst, one can expect to have a good deal of information on the 
nature of the jobs.  For instance, a certain job may be Kalman 
filtering [26], implemented according to some given algorithm. 
By contrast, the analyst of a general-purpose computer used, for 
example, in a university computation center must  make do with 
benchmarks [7], [15], synthetic programs [ 8 ] ,  or kernels [39] 
knowing full well that the validity of the results obtained depends 
on the actual jobs run on the computer, on the nature of which, 
nobody, except the  users, has much low-level control. I For a 

' Hatt cites instances  where  benchmarks  were in error by as much as 600 
percent in predicting performance [7]. 

good discussion of the drawbacks in benchmarks, synthetic 
programs, and kernels, see [32]. Also, since the operating 
environment of critical systems is stochastically modeled to a fair 
degree of accuracy, and the operating environment determines the 
job load to a large  extent, the job load can be expected to be 
known much more accurately for real-time systems than for their 
general-purpose counterparts. 

The two differences above make it  both possible and more 
necessary to obtain a good performance characterization of real- 
time control computers. 

E. Some  Observations  about  Performance Measures 

No single measure yet invented has the power to describe 
computer characteristics completely. Every measure is, in effect, 
a partial view of the system since it  is either sensitive to  only a few 
dimensions of performance, or so general in scope as to have very 
poor resolution. For this reason, the choice of a performance 
measure implies the imposition of a scale of values on the various 
attributes of a computer. The choice of mean response time, for 
example, implies that occasional abnormalities in response time 
are tolerable. 

The incorrect choice of performance measures can therefore 
lead to an unsatisfactory characterization of performance. The 
performance analyst must first consider the appropriateness of  his 
measures before proceeding to determine and use them. Unfortu- 
nately, while it is possible to quantify performance measures, it is 
impossible-at present anyway-to quantify their appropriate- 
ness. Perhaps as a result of their training, most analysts are 
extremely uncomfortable about admitting to anything about their 
trade that cannot be quantified. This is surely one reason there is 
so little in the literature on the appropriateness of performance 
measures. 

II. PROPERTIES OF PERFORMANCE MEASURES 

A performance measure must do each of the following if it is to 

1) express the benefit gained from a system, and 
2) express the cost expended to receive this benefit. 

Preferably, both cost and benefit should be expressed in the 
same or convertible units, so that the net benefit can be computed. 

Benefit relates to the rewards that accrue from the system when 
it  is functional. Benefit may be a vector-which happens when we 
wish to relate each system state (e.g., number of components 

be comprehensive: 
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surviving) to the reward that accrues. How to estimate the benefit, 
or even how to quantify it, is  usually a moot point. 

The cost has three components associated with it. They are as 
follows. 

1)  Costs that arise when the computer does not function even at 
the lowest level of acceptability. 

2 )  Life-cycle cost-capital, installation, repair, and running 
costs. This includes design and development costs, suitably 
prorated over the number of units manufactured. 

3) Design and development costs. 
(1) If  the control computer does not function even at the lowest 

level of acceptability, then catastrophe can follow. One can put a 
price on this by, for example, estimating the legal damages that 
must  be  paid as a result. 

(2) Life-cycle costing is extremely difficult to do. The large 
amount of effort that has been spent on developing methods to do 
life-cycle costing have as yet produced no convincing results, 
although some approaches have been proposed. There is a large 
literature on the subject: see, for example, [3], [9], [41]. 

(3) Techniques for the accurate estimation of design and 
development costs are nowhere in sight. 

Given all of this, it is  not surprising that the design, or even the 
choice, of appropriate performance measures is nontrivial. 
Indeed, no performance measure that accurately expresses either 
the benefits or the costs in terms of the attributes (i.e., 
characteristics) of a computer has yet been found. 

Lowering our sights a little, we can list requirements that are 
more easily attained. Performance measures must: 

RI: represent an efficient encoding of relevant information, 
R2: provide an objective basis for the ranking of candidate 

controllers for a given application, 
R3: be objective optimization criteria for design, 
R4: represent verifiable facts. 

RI: One of the problems of dealing with complex systems is the 
volume of information that is available about them  and their 
interaction with their environment. Determining relevance of 
individual pieces of data is impossible unless the data are viewed 
within a certain context or framework. Such a framework 
suppresses the irrelevant and highlights the relevant. 

To be an efficient encoding for what  is relevant about a system, 
the measures must be congruent to the application. The applica- 
tion  is as important to “performance”  as the computer itself 
while it is the computer that  is being assessed. it is the application 
that dictates the scale of values used to assess it. 

If the performance measure is congruent to the application, that 
is to say, if it  is a language natural to the application, then 
specifications can be written concisely and without contortion. 
This not  only permits one to write specifications economically: it 
is important in the attempt to  write-and check for-correct 
specifications. The simpler a set of specifications, the more likely 
it is in general to be correct and internally consistent. 

R2: Performance measures must, by definition, quantify the 
goodness of computer systems in a given application or class of 
applications. It follows from this that  they should permit the 
ranking of computers for the same application. It should be 
emphasized that the ranking must always depend on the applica- 
tion for the reasons given above. 

R3: The more complex a system, the more difficult it  is to 
optimize or tune its structure.  There are numerous side-effects of 
even simple actions-of changing the number of buses, for 
example. So, intuition applied to more and more complex 
computers becomes less and less dependable as an optimization 
technique. Multiprocessors are among the  most complex com- 
puters known today. They provide, due to their complexity, a 
wealth of configurations of varying quality; this complexity can  be 
used to advantage or ignored with danger. 

Multiprocessors that adapt or reconfigure themselves-by 
changing their structure,  for example-to their current environ- 
ment (current job mix, expected time-to-go in a mission-oriented 

system, etc.) to enhance productivity are likely to become feasible 
soon. All the impressive sophistication of such a reconfigurable 
system will come to naught if good, application-sensitive, 
optimization criteria are unavailable. 

R4: A performance measure that is impossible to derive is  of no 
use to anyone. To be acceptable, a performance measure should 
hold out some prospect of being estimated reasonably accurately. 
What constitutes “reasonably accurate” depends, naturally 
enough, on the purpose for which the performance characteriza- 
tion  is being camed out. Sometimes, when the requirements are 
too stringent-extremely low failure probability, for example-to 
be  validated to the required level of accuracy, it is difficult to 
decide which, if any, is to blame: the performance measure itself, 
or the mathematical tools used to determine it. 

In .  EXPRESSING APPLICATION REQUIREMEhTS 

A computer must be judged in the context of its application: 
without such a context, all performance evaluation is meaningless. 
The computer designer cannot be expected to know very  much 
about the application, so the application requirements must be 
abstracted through a suitable language. If this is done correctly, 
the designer needs to know nothing about the controlled process: 
all the information he needs is available through the formally 
expressed application requirements. Ideally, this should take the 
form of a scalar function of measurable attributes of the computer 
system. We look in this section at three methods of doing this: the 
methods of linear combination [23], of performability [33], and 
of cost functions [38]. 

A. Linear Combination 

One straightforward scalar function is a linear combination of 
measurable attributes of a computer. Thus, if a,,  a2, * * ,  aN were 
the weights (indicators or relative or absolute importance to the 
controlled process of the corresponding attributes) allocated to 
attributes x I ,  x2, * . . , x , ~ ,  respectively, of the computer, its 
overall performance in  that context is X,”=, aixj. 

This. of course, raises the issue of obtaining the weights { a ; ) .  
One way  of doing this is the following. While the weights 
themselves may be hard to obtain objectively, there is less 
subjectivity involved in ranking the attributes according to 
importance. Better still, one can define attributes as being made 
up of subattributes, and rank the subattributes in the context of the 
application. When this is done, number the ranked items starting 
with the one of lowest priority. The weight of each attribute is 
given by the mean (or some other function) of the number 
associated with each of its subattributes. A list of recommended 
attributes is provided by Gonzalez and Jordan [23]. Alternatively, 
one might consider the subattributes themselves as attributes. 

This approach seems open to several objections, the most 
serious of which  is  that  the attributes are usually mutually 
dependent; this affects any sensitivity analysis that uses this 
technique. 

B. Performability 

The basic idea behind performability is that the payoff from the 
application is the only relevant measure of the computer’s 
effectiveness. In other words, computer A is better than computer 
B in the context of a specific application if and only if A results 
in a greater payoff than does B.  

The payoff  is defined to be the user’s view of  how  well the 
application system (in which the computer is embedded) per- 
forms. There may  be more than one class of user, and therefore 
more than one scale of values. In such an event, the perceived 
worth of the computer will depend on the class of user. The user’s 
world-view, therefore, imposes a set A of accomplishment 
levels. The set A may  be finite or infinite, discrete or continuous. 
The performability of the controlled process (or any other 
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application system, for that matter) is then defined as the vector 
function function ps(A) = [Ps(al), * -, ~ ~ ( a , ~ ) ] ,  where 

p,(a) = Prob  {Application  system  performs  at 
accomplishment  level a E A }. 

All that remains to  do is to connect the behavior of the computer 
to the consequent behavior of the application system. This is done 
by creating a Markov model of the computer system and linking 
each state trajectory in that model with  an accomplishment level. 

Detailed case-studies involving the use of performability can be 
found in [17],  [34]. As an example, [34] lists the following 
accomplishment set to define the performance levels for a 
computer controlling an aircraft. 

ao: No economic penalties, no operational penalties, no change 
in mission profiie, and no fatalities. 

al: Economic penalties, no operational penalties, no change in 
mission profile, and no fatalities. 

az: Operational penalties, no change in mission profiie, and no 
fatalities. 

a3: Change in mission profile and no fatalities. 
a4: Fatalities. 
The performability of the computer system would then be the 

probability that the computer’s performance made the aircraft 
perform at each of these accomplishment levels. 

47 1 

C. Cost  Functions 

The cost function approach [28] focuses attention on the 
computer response time for the various computational tasks. 
Response time is the interval between the moment that a task is 
triggered and the moment the result is  put out at an actuator or 
display. 

Computer response time is a good parameter to focus on 
because a control computer is in the feedback loop of the 
controlled system (see Fig. I ) ,  so that response time constitutes 
feedback delay. As the feedback delay increases, so the controlled 
system becomes less stable. Beyond a certain value of response 
time, instability sets in, and disaster could follow. Even if the 
system is not driven to instability, its quality of performance 
degrades with an increase in computer response time. 

Also, the response time of a computer strongly depends on the 
computer architecture, the operating system, the failure handling 
mechanism, and the software, so that it is possible, in theory, to 
use a function of response time as an optimization criterion to tune 
computer structure, etc. 

The central idea is as follows. Let us suppose that some 
performance index is available for the controlled system. This is 
not as limiting an assumption as might at first appear because 
controlled systems have performance indexes such as energy, 
time, fuel,  etc., that are physically relevant and are widely 
accepted as being objective expressions of performance [27], 
[371. The cost associated with a response time of t for computer 
task i is defined by 

gi(X, <)=%(x, O - Q i ( x ,  0) 

where Q(x, Q) is the contribution of task i to the performance 
index if the response time for that task is q and the controlled 
system is in state x. That is, gi(x, q )  is the incremental portion in 
the performance index due to the control computer delay E .  It  is 
assumed that if is so large as to cause catastrophic failure of the 
controlled process, the corresponding cost is infinite. 

If it is not possible to decouple the contributions of individual 
tasks to the performance index of the controlled system, then joint 
cost functions may be analogously defined. These are conceptu- 
ally similar to joint probability distributions. 

Measures based on the cost functions can now be defined. For 
instance, the probability of dynamic  failure, pdm, is the 
probability that the computer causes the controlled process to fail 
catastrophically. The mean cost is the expected value of the cost 

accrued over a mission, given that the controlled process does not 
fail. For an example of obtaining cost functions that apply when 
an aircraft is about to land, see [38]. 

Performability and cost functions have a forgotten precursor. In 
1960, Drenick [14] proposed a set of measures of “generalized 
reliability”: the mission  success ratio (the fraction of missions 
that end successfully), and the mission survival probability. 

Somewhat related to performability and cost functions mea- 
sures is dependability [ lo], [31]. Dependability is there defmed 
as the “trustworthiness and continuity of computer system service 
such that reliance can justifiably be placed on this service.” This 
measure is not very useful because it begs the question as to what 
constitutes “reliance” on service. In [31]: having defined the 
measure, the author goes on to consider reliability and availability 
as instances of dependability. 

D. Discussion 

This section has dealt with methods whereby requirements R1, 
R2, and R3 may be satisfied. The method of linear combinations 
and that of performability are general: they can, in theory, be 
applied to general-purpose systems, such as computer centers, as 
well as to control computers. By contrast, the method  of cost 
functions limits itself  to control computers. Indeed, this latter 
method  might  be viewed as a special case of performability, with 
the mean cost and the probability of dynamic failure,  for instance, 
defining the set of accomplishment levels for the system. 

As remarked earlier, the purpose of expressing application 
requirements in a precise, formal manner is to create a clean 
interface between the application and the control computer. Take, 
for instance, the cost functions. Once they have been defined for a 
particular application, they can be used to evaluate computers 
without very much reference to the controlled process. They can 
be used, together with information about the control software 
(e.g., the run times), to optimally schedule jobs, derive methods 
to  shed computational load when failures have reduced computa- 
tional capacity, and to obtain strategies for recovery in the event 
that portions of the computer fail [29]. 

Such formal approaches are useful for another reason. It 
provides a template that reduces the probability of overlooking 
something important. The amount of detail that is required to 
express application requirements formally imposes a salutary 
discipline upon  the analyst. 

Iv .  ATTRIBUTES OF COMPUTERS 

Attributes marked with an asterisk (*) were originally defined 
for single-processor computers. They, therefore, assume that the 
computer is either “up”  or  “down.” There is exactly one “up” 
state in such cases. 

A .  Reliability Attributes 

1)Interval Reliability*, R(a,  T) f4]: This is the probability that 
the computer continues to operate over an interval [a, a + 1“], 
under the assumption that it is operational at a. 

2) Strategic Reliability*, SR(T) f#5]: The strategic reliability 
of a computer is S R ( T )  = Iime+aR(a, T ) .  This can be regarded 
as a “steady-state“ reliability. It is a function of the frequency 
with which preventive maintenance is carried  out. Truelove shows 
how to choose the maintenance frequency to optimize strategic 
reliability [45]. This is the resolution of the following tradeoff. If 
preventive maintenance is carried out too often, the probability of 
the system’s failing is small, but then the maintenance itself takes 
so much  time that the strategic reliability is reduced. On the other 
hand, if maintenance is carried out only rarely, the probability of 
the system’s failing becomes appreciable. The optimal frequency 
of preventive maintenance is a function of the time taken to carry 
it  out and of the failure characteristics of the computer. 

3) Job-Related Reliability, R,ob(t, J)  f35/: Rjob(tr J )  is the 
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probability that the computer has, at time 1, enough hardware 
resources to complete job J satisfactorily. A similar measure is 
called computational reliability by Beaudry [6]. 

4) Capacity Reliability [19]: This is the probability that the 
system (presumably expressed in a Markov model) remains out of 
a certain set of states throughout the “interval of interest” (e.g., a 
mission). Huslende’s term for a very similar measure isperform- 
ance-reliability [25]. Related measures include the expected 
capacity survival time, which is the expected time for the 
capacity reliability to drop to a specific value, and the expected 
capacity reduction time, which is the expected time for the 
system to move from one set of states to another. Somewhat 
similar to these is another measure introduced by Beaudry: the 
mean computation  before  failure [6], whose meaning is 
obvious. Yet another similar measure, pseudoreliability is 
proposed in [42]: this is given by .E:=, piyi, where pI  is the 
probability of the computer being in state i and yi the “relative 
performance” of the system at that state. 

5) Mean Time Between  Failure [36]: The average time 
between two successive failures of the item under study. One can 
also define the mission time between  critical failures, which is 
self-explanatory. 

B. Availability Attributes 

I )  Pointwise Availability*, Ap(t) [24]: This is the probability 
that the system will be operating “within tolerance limits” at time 
t. 

2) Interval Availability*, Al{a, b) [24]: This is the expected 
fraction of the interval [a, b] that  the system will  be operating 
“within tolerance limits.”  The limiting interval availability is 
defined in [5 ]  as lim,+Ji(O, t ) .  

3) Performance Availability [ll]: Identical to the pseudore- 
liability of Tillman, Lie, and Hwang [42] (see above), except that 
yi is  now the availability of the system at state i. 

C. Maintenance Attributes 

I )  Mean Time between  Maintenance [36]: The average time 
between successive maintenance actions. This can be specialized 
to measure the mean time between successive maintenance actions 
of a specific character or type. 

2) Mean  Maintenance Time [36]: The average length of a 
maintenance job. This can be expressed either in the time taken to 
complete maintenance, or the total man-hours expended in doing 

3) Maintenance Ratio [36]: The ratio of maintenance man- 
hours (or other measure of maintenance effort) to the lifetime of 
the system being maintained. 

D. Other Attributes 

so. 

I )  Throughput: The average number of instructions that the 
system is capable of processing per unit time. The instructions are 
drawn from a standard instruction mix. 

2) Response  Time: The time that elapses between a job 
commencement and termination. 

E.’ Dkcussion 

The attributes of this section must satisfy requirement R4. In 
other words, if the specifications call (to take one well-known 
case) for a failure probability of less than there must be 
some way  of verifying that a system meets-or does not  meet- 
such a standard. 

All the attributes in this section can be experimentally deter- 
mined, in principle. However, when the requirements are  as 
stringent as they are for critical systems, experiments would take 
too long. (It is an amusing and instructive exercise in elementary 
statistics to calculate the duration of an experiment that  must 

validate an extremely stringent performance/reliability specifica- 
tion. Frequently, one obtains durations longer than the estimated 
age of the universe-of the order of 1O’O years.) 

One, therefore, has to fall back on decomposition. While a 
system may  not be tested in its entirety, it  can be broken down into 
subsystems which lend themselves quite readily to testing. A 
model can then be created to obtain performance values for the 
whole system as a function of the experimental results for its 
subsystems. 

Perhaps the best known model  is CARE-111, developed under 
contract to NASA [40], [44]. Other models include the comple- 
mentary analytic-simulative technique (CAST) [13], and the 
hybrid automated reliability predictor [20]. A good survey of such 
models appears in [20] (see also [43]), and so we do not discuss 
any of them here. 

V. CONCLUSION 

In this paper, we have surveyed the state of the art in 
performance measures. Much remains to be done, especially in 
predicting the reliability of critical systems. 

Performance measures represent the link between the real 
world of control computers and controlled processes and the 
abstract world of the analyst. It is usually  possible-albeit  with a 
great deal of  effort-to satisfy oneself that an abstract mathemati- 
cal model  of a system is correct, i.e., it has no internal 
contradictions that would invalidate it. It is never possible to 
prove that a performance measure is correct. All one can have is 
faith, backed  up  by considerable experience. All the formal 
techniques for expressing the needs of the application must be 
regarded as no more than aids to design and evaluation. They are 
no substitute for human care, intuition, and experience. 
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