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Abstract-This paper deals with a distributed adaptive routing
strategy which is very simple and effective, and is free of a ping-
pong-type looping in the presence of network failures. Using the
number of time intervals required for a node to recover from a
network failure as the measure of network's adaptability,
performance of this strategy and the ARPANET's previous
routing strategy (APRS) is comparatively analyzed without
resorting to simulation. Formulas of the exact number of time
intervals required for failure recovery under both strategies are

also derived. We show that i) the performance of the strategy is
always better than, or at least as good as, that of APRS, and ii)
network topology has significant effects on the performance of
both strategies.
We also extend our analytical results to routing strategies

which are free of loops with more than two nodes. (Such a loop is
called a multinode loop.) Finally, numerical examples are

presented to demonstrate the utility of our results.

Index Terms-ARPANET, distributed adaptive routing strat-
egy, high-order routing strategy, local and global information,
multinode loops, network delay table, ping-pong-type loops.

I. INTRODUCTION

INCE routing is a key factor to the performance of packet
switching networks, various control strategies for routing

have been proposed [1]-[5]. Nonadaptive routing strategies,
such as random routing and fixed routing, make no attempt to

adjust themselves to changes in network conditions and are

found to be too inefficient and unreliable to be useful.
Centralized adaptive routing strategies-which use a routing
control center to keep information on the entire network and
make the routing decisions for individual nodes-also suffer
from such drawbacks as the vulnerability to single point
failures and the need for a routing control center [3]. On the
other hand, distributed adaptive routing strategies distribute
network information among all computer nodes and, thus,
avoid the disadvantages of the other strategies [6]. Hence, we

shall focus only on distributed adaptive routing in this paper.
To ensure each node will have sufficient information for

routing decisions, we must equip each node with enough
information about the entire network. Obviously, it will be
very costly for each node to keep and update complete
information of the entire network, although, in that case,
routing decisions should always be correct. Instead, we would
like to incorporate minimal information into each node to
make correct or almost correct routing decisions. In other
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words, each node keeps only a piece of information (i.e., local
information) of the network rather than information on the
entire network.

Furthermore, the network's adaptability should be taken
into account when a distributed routing strategy is utilized.
When the local information kept in a node is changed, e.g.,

some links connected to it become faulty, the node must be
able to inform the change to all of its neighbors and let their
local information be updated to include this change.
Among all distributed adaptive routing strategies reported ip

the literature, the ARPANET's previous routing strategy
(APRS) appears to be acceptable for most packet switching
networks [7]. However, this routing strategy has been
replaced by the ARPANET's current routing strategy (ACRS)
[8] after being in service for over a decade, due to its poor

adaptability to network changes and unnecessaiy looping in
case of network failures, i.e., packets are returned to a node
from which they were previously transmitted [8], [9].
The reduction of the looping effects is the subject of this

paper. The network's adaptability is improved by incorporat-
ing more information in routing messages. Specifically, we

shall first consider a routing scheme which turns out to be
similar to the one implemented in the TIDAS network [10],1
and then generalizations thereof. Both our routing strategy and
the one in [10] are in principle similar to APRS except that
some additional features are included in routing messages to
speed up the recovery process in case of a network failure.

Performance analysis of routing strategies is known to be
very difficult due to the diversified nature of network
structures and is usually carried out via simulation [10]. In this
paper, the performance of both ours and APRS is rigorously
analyzed without resorting to simulation, and formulas of the
exact numbers of time intervals required for failure recovery

under both strategies are developed. Also, the effects of
network topology on the performance of both strategies are

described in theorem form. More importantly, routing strate-
gies free of loops with more than two nodes (called high-order
routing strategies) are proposed and their performances are

analyzed.
The paper is organized as follows. In Section II, we

describe both APRS and our strategy whose performance is
comparatively analyzed in Section III. In Section IV, we

extend our strategy to a more general form which is free of
multinode loops. Numerical examples are given to illustrate
our analytic results in Section V and the paper concludes with
Section VI.

- The existence of the strategy in [10] was brought to the authors' attention
by an anonymous referee.
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II. DESCRIPTION OF THE ROUTING STRATEGIES

For a computer network, let Ni, I c i : n, be computer
nodes and Li,j, 1 c i, j < n, be the communication link from
Ni to Nj where n is the total number of nodes in the network.
Let SP0o,im be the set of all paths from Nio to Nim in the
network. A path Pi E SPi0,im is expressed by an ordered
sequence representation (Nio, Nil, N 2, **Nim), I< ij
n for all j-E {0, 1, 2, , m}, and nodes on the path are
visited in that order. The relation Lij,i, 1 E P, means that the
link Lij,i&+ 1 is a part of the path Pi. Let Ai denote the set of all
nodes adjacent to Ni, i.e., vNj E Ai, there exists a
communication link Li,j.
Under APRS, the path from one node to every other node is

not determined in advance. Instead, every node maintains a
network delay table to record the shortest delay via each link
emanating from the node. A minimal delay table in a node -
which contains the delays of the optimal paths (i.e., the path
requiring the minimal delay) from that node to all other
nodes-is passed to all of its adjacent nodes as a routing
message every fixed time interval (i.e., 128 ms in APRS),

Let DA5iid(m) denote the delay from Ni via Nj to Nd in the
network delay table of N1 under APRS during the time interval
[m, m + 1) and DLi,j(m) be the delay of the link L,,j at time
m. Also, let OPAd(m) be the minimum delay path from NJ to
Nd in the network delay table of Nj during the interval [im, m
+ 1) and denote the delay of OP'A(i) by DOPJAd(M).
According to the operations in APRS, relationships among
these quantities can be expressed as follows.

D,\ ,d(m)=DLi,j(m)+DOPjjd(m - 1)VNj E Ai (1)

DOPi,d(m)= min {D'\i,d(m)}* (2)

On the other hand, under our strategy as well as the one in
the TIDAS network, every node keeps a network delay table
and exchanges minimal delay tables with all its adjacent nodes
as in APRS except for the following modification. If the
routing message is passed from Nj to Ni which is the second
node in the optimal path from N) to some destination node Nd,
we replace the delay of the optimal path from Nj to Nd with the
delay of its second optimal path (i.e., the path requiring the
second shortest delay to Nd among all paths in the network
delay table of Nj) in the routing message passed to Ni.

For convenience, the APRS and our strategy will henceforth
be referred to as strategy A and strategy B, respectively. Let
SOPid4(m), DSOPYd((m), Did(\Ij) OPYd(mn) and
SOP;d(im) be defined to have the same meanings as
SOPAd(M), DSOPId(m )Di\d(m), OPd(m) and
SOPAd(m), respectively, except that they are the notation
under strategy B. Also, let 2nd (Pi) denote the second node on
the path Pi. The operations in strategy B can then be expressed
in an algorithm form as follows:

DSOPi,d(m) min {Di\ j,d(m)} (4)
NjEAi

Nj #2nd(OpBd(m))
Performance of both strategies A and B will be compara-

tively analyzed first in the following section. In Section IV, the
analytic results for strategy B will then be extended to the
more general case: routing strategies which are free of
multinode loops.

III. COMPARATIVE ANALYSIS OF NETWORK PERFORMANCE
We begin with an introduction of necessary assumptions and

definitions in Section III-A, which is then followed by the
performance analysis of strategies A and B in Section II-B.
For both strategies the network's adaptability is measured by
the number of time intervals required for a node to recover
from a network failure.

A. Assumptions and Definitions
Since node failures can be represented as the failure of all

the links attached to it, without loss of generality, only link
failures will be considered. Assume that the faulty link Lf,f * is
a part2 of the optimal path from N, to Nd, and the link failure is
detected at time 0 while the delays of other links remain
unchanged. We assume further that there always exists at least
one nonfaulty path from Ns to Nd even after a link failure. In
what follows, mA and mB are used to denote the numbers of
time intervals required for Ns to obtain a new nonfaulty
optimal path to Nd in the presence of a link failure under
strategy A and strategy B, respectively.

Also needed are the following definitions.
Definition 1: A path Pi is said to be faulty iff the path

contains a faulty link Lf,f *, i.e., Lf,f * E Pi.
Definition 2: A loop, denoted by Li, 1 < i < n, is a path

which starts and ends at the same node Ni, i.e., Li E SL
U i5in SPi,i.
Definition 3: A path is said to contain a loop iff there is

one or more nodes appearing more than once in its ordered
sequence representation.

Definition 4: A path is said to contain a ping-pong-type
loop iff there exists a node Ni in its ordered sequence
representation which is sandwiched between two occurrences
of another node Nj.

Definition 5: If a path Pi = (Nio, Nil, * *, NiM) is faulty
and the pair (Nik, A,N,+l), i.e., Lk,ik± 1, represents the first
faulty link in the ordered sequence representation of Pi, then k
is called the screen of Pi and denoted by scn (Pi). If the path Pi
is not faulty, then scn (Pi) = oo.

Definition 6: A new set of paths, SP*d, is defined as

SP*d SPs,d- {Pi Pi C SPs,d

and Pi contains a ping-pong-type loop}.
Obviously, SP*d C SPs,d.

For every node N) E Ai
if Ni = 2nd(OPd(m - 1)) then Di\ j,d(m) = DLi,j(m) + DSOP, (m -1)

e Belse D,\j,d(m) =DL1,j(m) +DOP;,d(M - 1)

DOPi,d(m) = mm {D\j,d(m)}
NjECAi

2 If the faulty link is not in the optimal path, both strategies will have the
(3) same performance.

where
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Definition 7: The delay function d: SP -- R + is defined
as sum of delays of all links in a path, where SP U i<,<cn
SPj,j and R + is the set of positive real numbers.

Definition 8: The hop function h: SP -I + is defined as
the number of links in a path where I+ is the set of positive
integers.

Definition 9: The function A: SP -+ R + represents the
average link delay in a path, i.e., A (Pi) = [d(Pi)]l
[h(P.)]vPi E SP.

For example, consider a path P, = (N1, N2, N1, N2, N1,
N3) in the example network of Fig. 1. According to the above
definitions, d(Pj) = 12, h(Pi) = 5, A(Pi) = 2.4, and Pi
contains a ping-pong-type loop occurring between N1 and N2.
Hence, Pi E SP1,3, but Pi e SP*3. When the link L1,3 is
faulty, Pi is faulty and scn (Pi) = 4.

B. Analysis of the Two Routing Strategies

Under both strategies, each node gathers routing informa-
tion and then updates its local delay table by exchanging
routing messages with all its neighbors every fixed time
interval. From (3) and (4), one can see that strategy B removes
all the paths with ping-pong-type loops from network delay
tables. In case of a link failure, this fact will enable a node
under strategy B to determine a new nonfaulty optimal path
faster than under strategy A and, thus, enhance the network's
adaptability. More formally, this property is stated as a lemma
without proof as follows.
Lemma 1: Strategy B is free of a ping-pong-type looping,

i.e., OPBd(m) E SPrdvm E IwhereIis the set of integers.
Since the information that the link Lf,f* = Lik,ik+1 of a path

has become faulty is broadcast only one hop per unit time
under both strategies, it will take the same number of time
units as the screen value of that path for the source node to be
informed of the link failure. Thus, the screen values of
OPAd(m) and OPB(m) must be greater than m. This can be
formally stated as a lemma below.
Lemma 2: The following inequalities hold vm E I+:

scn (OPis,d(m)) > m

scn (OP d(m))>m-

Generally speaking, the screen value of a path means the
number of time intervals required to remove this path from
the network delay table of Ns after the occurrence of a failure
in the path. Thus, under both strategies, the path with the
shortest delay to a destination node Nd chosen by a source
node N, is the shortest among all possible paths which have not
been found faulty by Ns up to time m. More formally, we have
the following theorem.

Theorem 1:
i) DOP'Sd(m) = md {d(Pi)fPi E 5Psd and scn (Pi) >

m}vm E I+,
ii) DOPB (in) d(Pj)IPj E- SP* andscn(Pi) >s,d(=mM{(P) s4d

m}vm E I+.
Proofof i): Recall that mA time units are required to find

a new nonfaulty optimal path under strategy A in case of a link
failure. Consider two cases: m . mA and m < mA. When m
. m, OP/Sd(m) is the newly found optimal path and fault-

2,

r

Fig. 1. An example computer network.

free. That is, scn (OP$'d(m)) = oo, resulting in

DOPs,d(m)=min {d(P,)IP, E SPs,d

and scn (Ps)=oo}, thus satisfying i).

When m < mA, OPAd(m) still contains the faulty link Lf,f*.
We want to show that OP'd(m) chosen at time m from the
local delay table of Ns is indeed the real minimum delay path
found by Ns. Let Pi* be an arbitrary path containing the faulty
link Lfjf* at time m, Pi* E SPs,dand scn (Pi*) > m. Then,
Pi* can be expressed as (Ni*, Ni*, , Ni*, Ni*0 1 r r+1
Ni*)whereNi*=Ns,N*= Nf, Ni* Nf*,Ni Nsc (*)0 r f +i±lN*,i= d,
and scn (Pi*) = r > m. From (1) and (2) we get

A pADOP,* im DL * *(m)+DOPi* *(m - 1)

DOPAi * (m- 1).DLi*,i *(m- l)+DOPA* *(m-2)
1 'u i "2 '2 'u

ADOP*_ i*(m - r+ 1).DLi* 1i*(m-r+ 1)
r- r-1'r

+DOpA,*mrsi * (m )-- r1,,
r u

A~~~1A
D_Pik"k±1DLi (m-k)+ DOPi*,i*(m-2)
k=O

sI DLi*,i (m-k)+DOPAi*,i*(m-r).k'k+1 r u
k=O

Since r > m, m is a time before Li* i*1 became faulty and we
get

DOPtA*,i*(m - r) = DLikt,it$+,(m-k)
k=r

u-I
DOPA(m) =DOP$o,i*(m) s z DL*ik* I d(Pi*)*

k=O
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Besides, from Lemma 2, scn (OPA(m)) > m and OPAd(m)
6 SPS,d, thereby leading to i).

Proof of ii): This part can be proved similarly to part i)
by recursively applying (3) and (4) and retrospectively tracing
the network delay tables of nodes in an arbitrary path. U
The following two important results follow from Theorem

1.
Result 1: DOPAd(MA) = DOPfd(MB). That is, the

nonfaulty optimal paths from Ns to Nd obtained under both
strategies have the same delay.

Result 2: DOPAd(m) < DOPA(m + 1) and DOPBd(M)
< DOPBm + 1)vm E I. In other words, the delay of the
optimal path chosen under each strategy is a nondecreasing
function of time.

Since at least one new nonfaulty path is assumed to exist in
case of link failures, after the occurrence of a failure both
DOPAd(m) and DOPBd(m) will converge to the delay of the
new nonfaulty optimal path as m increases. Let r < oo denote
the delay of the new nonfaulty optimal path. For a given
network, mA and mB can be determined from the value of r by
the following theorem.

Theorem 2:
i) mA = max {scn (Pi)jPi E SPs,d and d(Pi) < r}
ii) mB = max {scn (Pj) Pj E SP * and d(Pj) < r}s,d
Proof: Consider i) first. Suppose mj* = max { scn

(P)1P1 E6 SPs,d and d(Pi) < r} and m* * mA. We shall
prove that both the assumptions of mA > mj* and mA < M
lead to contradictions.

Case 1: mA > m>. Since mA is the minimal number of time
intervals required for N, to obtain the new nonfaulty optimal
path to Nd, DOPs'd(mA - 1) < DoPsd(mA ) = r. By
Theorem 1, scn (OPA(mA - 1)) = mj** > mA - M**
> mA. Because SPs,d is the set of all paths from Ns to Nd,

m -max {scn (Pi) Pi E SPs, and d(Pi) < r}

A mA

leading to a contradiction to m * < MAA
Case 2: mA < m%. Since m = max {scn (Pi)IPi E SPs,d

and d(Pi) c r}, there exists a path Pj such that scn (Pj)
=mA, Pi E SPs,d and d(Pj) < r. From Theorem 1,
DOPd(mj! - 1) s d(Pj) < r. For mA, m* E I+, mA <
M =:> mA < m5 - 1. Thus, we get DOPAId(mA) <
DOPAd(mj - 1) s d(Pj) < r. However, r = DOPsd(mA),
leading to a contradiction. Since, by Lemma 1, OPB%(k) E
SP*dvk E I+, part ii) can be proved similarly to part i). E
From Theorem 2, we can draw an important conclusion that

while some link in the network becomes faulty, the conver-
gence time required for a node to obtain a new nonfaulty
optimal path under strategy B is always less than, or equal to,
that required under strategy A. We formally state this as a
corollary below.

Corollary 2.1: mB < mA-
Proof: VPiE SP*d = Pi E SPs,d since SP*d SPs,d,
SmB' mA by Theorem 2. A
By definition, we can describe the screen and delay

functions of a path Pi = (Nio, Nil, * * *, Nik, Nik+ l' ... , Niu)

18 __
'9-- ~ ~ -.

16

Fig. 2. An example network showing r = 21 when L5,6 becomes faulty.

E SP4,d where Nio = N ik =Nf, Nik± = Nf *, and Niu =
Nd as below.

k

scn (Pi) = h (Pi ')++ nijh(Li&)
j=l

k

d(Pi) = d(Pi') +E n0jd(Lij) + d(Pi,)
j=l

(5)

(6)

where Pi D Pi, E SPf,d, Pi' E SPS,f, LiG is a loop starting and
ending at Nij and nii the number of times the loop Lij appears
in the path Pi.

Since we can include all redundant parts of Pi in the second
term of (5) and the second and third terms of (6), Pi' can be
regarded as a path without loops. For the example network of
Fig. 2, consider a path Pi = (N1, N2, N3, N4, N2, N3, N5, N3,
N5, N3, N5, N6, N7) in which the link L5,6 is faulty. Then Pi'
= (N1, N2, N3, N5), Pi, = (N5, N6, N7), Li, = (N2, N3, N4,
N2), nil = 1 and Li2 = (N3, N5, N3), ni2 = 2. Using (5) and
(6), we can express Theorem 2 as the following optimization
problems.

k
mA: max h(Pi)+ E nijh(Lij)

PiE SPs,d =

k

subject to d(Pi') +X niJd(Lij) + d(Pir)
j=l

<r where LiCE SPiN,ii and Lii C Pi.
k

mBn: max h(Pi')+ E nijh(Lij)
i s,d j=I

k

subject to d(P,' ) + E nijd(Lij) + d(Pir)
j=l

<cr where L EC SP!,>i and L C Pi.

(7)

(7')

(8)

(8')

It is interesting to observe that the ni&'s satisfying (7) and
(7') (or (8) and (8')) can be determined by solving a linear
knapsack problem. For example, consider the determination
of mA . Suppose Pi* E SPS,d is the path which maximizes the
expression of (7) subject to the constraint (7'). The knowledge
of the path Pi* completely specifies P,'*, Pi*, Li*, and ni* for

J J

132



SHIN AND CHEN: DISTRIBUTED ROUTING STRATEGIES FREE OF PING-PONG-TYPE LOOPING

1 c j c k. Since SPs,d is the set of all paths from N, to Nd,
from (7) and (7') the vector n = [ni*, ni*, * ni*] is the

1 2k
solution to a linear integer knapsack programming problem
PO, which can be obtained by applying the algorithm Ao given
below.

k

PO: S== maxn E aini
ni, I <i<ki1

k

subject to E bini<M and ni E I

for i= 1, ,k

where S = mA - h(P.'*), h(Li*) = ai, d(Li*) = bi andM
= r - d(P,'*) - d(Pi*).
Algorithm AO:

Step J) Set m:= Mand ni: = Ofor all i E { 1, *,k}.
Step 2) Select an i * such that ai*/b,* = maxbi<m { ai!

bi} .

Step 3) ni*:= Lm/bi, m = m - bi*ni*.
Step 4) If there exists a bi < m then go to Step 2) else

stop.
The determination of mB can be treated similarly and the

above result leads to the following lemma.
Lemma 3: S = LM/bia*ai* + R where R < ai* and ai*/

bi = maxl<i<k { al/bi}.
Proof: Let n'* = [n t, n, , nk] be a solution of PO

obtained by applying algorithm AO.

S=Z aini*=
k

ai*+Eai*
i-#i*

k k

bi<M 1bi<M- bib <bL*

k ai* Cai

X aini<ai* because -= max .

Thus, Lemma 3 follows.
Define loops LA and LB such that A (LA) = min {A (Li) jL

E SPij, 1 i c n}, andA(LB) = min {A(Lj)ILi E SP*-, 1

< i c n }. From (7) and Lemma 3, when the delay of the new
nonfaulty optimal path r is large enough, A (LA) will become
the dominating factor in determining mA. Clearly, what LA is
to mA is LB to mB. This fact leads to Theorem 3 below.

Theorem 3:
mB A(LA)

lim=
rmmA A (LB)

Proof: Let Lim be the loop with the minimal average

delay among all loops in the path Pi, i.e., A (Lim) = min
{A (Lj)ILj E SL and Lj C Pi}. Applying Lemma 3 to (7) and
(8), we get

r- d(P/) - d(Pir)
A iEmSPxdL d(Lim) I

where Ri< h(Lim). (9)

(r-d(P! ) - d(Pir)mB= max (
PiESPs* d

-
d(Lim)

h(Lim) + Ri + h(P,)j, where Ri< h(Li). (10)

Clearly, the second and third terms in these two equations
become negligible as r -+ oo. Therefore

mB d(LA)h(LB) A (LA)lim ((= Lr- ooMA d(LB)h(LA) A(LBs)
.

The first and second terms in (9) and (10) are related to the
redundant parts of a path, while the third term can be viewed
as the distance (measured in hops) to the faulty link. Theorem
3 shows that the improvement via strategy B strongly depends
on network topology. This fact will be illustrated with the
examples in Section V.

IV. ROUTING STRATEGIES WITHOUT MULTINODE Loops

Although ping-pong-type loops can be removed by strategy
B, loops with more than two nodes (i.e., multinode loops) may
still exist under both strategies. Multinode loops, if they
occur, usually cause much severer degradation in network
performance. Consequently, it is important to develop a
routing strategy which eliminates multinode loops.

Strategy B removes ping-pong-type loops by disallowing
each node to send its neighbors the routing messages which
have been found to be useless to receivers. However, under
strategy B every node can determine only the delay and the
second node of each path from its network delay table.
Naturally, as the amount of local information is increased,
every node is expected to form more useful routing messages
leading to a greater reduction of looping effects. In fact, a
routing strategy can be developed to eliminate multinode loops
by keeping in network delay tables not only the delay of each
path but also the set of nodes which follow the first node in the
ordered sequence representation of the path. Thus, the format
of routing messages is modified to include the corresponding
set of nodes in each path. The augmented information in the
network delay table of each node will be very useful in
forming suitable routing messages for its neighbors.
The number of nodes included in the routing message will

henceforth be referred to as the order of the routing strategy.
As the order of the routing strategy gets higher, it will become
free of higher order loops, i.e., loops with more number of
nodes. Note that strategies A and B are actually the routing
strategies whose orders are 0 and 1, respectively. (A simple
example for the operations under the second order routing
strategy is presented in the next section.)

Performance of the kth-order routing strategy can be
analyzed using the same approach as in Section III. The
following definition is required to facilitate our discussion.

Definition 10: A path Pi is said to be free of kth-order
loops iff for any two occurrences of a node in its ordered
sequence representation there are at least k + 1 nodes between
them.

Let Spk, k E I+, be the set of paths which are free of kth
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order ioops and SPkj SPk n SP,j1 be the set of paths from
Ni to Nj and free of kth-order loops. Obviously, SPk±1 C
SPk, 'k E IP. Since the relationship of SP*d to strategy B is
the same as the relationship of SPkd to the kth-order routing
strategy, the node Ns under the kth-order routing strategy
chooses its nonfaulty optimal paths only from the set SPkd.
The entries of the network delay table during failure recovery
can be clearly described by the following theorem, whose
proof is similar to that of Theorem 1 and, thus, omitted.

Theorem 4:

DOPSd(m) =min {d(Pj)jPj E s d

and scn (Pi) >m I Vm E I+.

It can be verified by Theorem 4 that the delays of nonfaulty
optimal paths from Ns to Nd obtained under all strategies are
indeed the same, i.e, DOPsid(mi) = DOPJd(in) = r, vi, j
E I + where mi is the number of time intervals for Ns to
determine a new nonfaulty optimal path to Nd under the ith-
order routing strategy after the occurrence of a link failure.
From Theorem 4, we have the following theorem to determine
mk vk e I+, which is an extended version of Theorem 2 and
can be proven similarly.

Theorem 5:

mk =max {scn (J)IJ'P E SPk,d and d(Pj) < r}.

From this theorem, we get mk+± - mkvk E I+. This
implies that the network's adaptability is improved monotoni-
cally by adding more information in routing messages.
Moreover, with the same reasoning as in Section III we can
obtain a generalized form of (7) and (7') as follows:

k

Mk: max h(P' )+ny,h(L)
s,d j=1

k

subject to d(P/!) +E nijd(Lij) + d(Pir)
j=1

<r where L, Ee SPk

ii and Lij C Pi

(11)

(11 ')

where Pi', Pi,r ni, and Lij are defined as before.
Define Lk to be a loop such that A (Lk) = min {A(Li)ILi

E SP1i, 1 C i C n }. When the delay of the new nonfaulty
optimal path r is large enough, A(Lk) will become the
dominating factor in determining mk and we have the
following extended results for high-order routing strategies.

Theorem 6:

mi A(L')
lim V=(*) I, j E I+
r-o mj A (LJ*i

Proof: Let Lim be the loop with the minimal average

delay among all loops in the path P,. Then, from (11) we have

r{- d(Pi') d(Pir)

P E s)5 d(LimR) -hh (L(12

+R +h(Pi!) where Ri< h(Lim). (I12)

Following a proof similar to the proof of Theorem 3, the
desired result is obtained. E
The above results indicate that the network's adaptability is

actually enhanced with the increased amount of local informa-
tion. However, according to experimental results in [5],
multinode loops occur very infrequently. Besides, the opera-
tional overheads required in higher order routing strategies
cannot be ignored and the feasibility of implementing higher
order routing strategies must be justified. To this end,
Theorem 5 provides a good indication for the usefulness of a
high-order routing strategy in a certain network and can also
be used to determine the minimal order of routing strategy
required in a given network to remove all possible looping.

V. EXAMPLES

In this section, two examples are presented to illustrate our
analytic results obtained thus far.
Example 1: In a computer network shown in Fig. 1, assume

that the link L3,4 became faulty at time 0 and delays of the
other links remain constant. From (9) and (10), the number of
time intervalsirequired for each node in this network to obtain
its new nonfaulty optimal path is a function of r* =L2,5
Thus, network performance has been examined while this
parameter is being varied.

Case 1: r * = 16

Given below are the operations taken under strategies A and
B for the source node N1 to obtain a new nonfaulty optimal
path to the destination node N5 by exchanging routing
messages with neighboring nodes every time interval.

Under strategy A, network delay tables become as shown in
Table I. From Table I, one can obtain

AOP1,5(to)= (N1, N3, N4, N5) where to E (-oo, 0)

OP145(0)=(N1, N3, N4, N5)

OP1,5()=OP1,5(2)=(N1, N3, N1, N3, N4, N5)

OPA,5(3)= OP1,5(4)=(N1, N3, N1,
N3, N1, N3, N4, N)

OP1,5(5)=OP1 5(6)=(N1, N3, N1, N3,

JN1, N3, N1, N3, N4, N5)

OP1,5(7)=OP1,5(8)=(N1, N3, N1, N3, N1,

N3, N1, N3, N1, N3, N4, N5)

OP1,5(9)=(N1, N2, N5).

Thus, mA = 9, while scn (OPA5 (8)) = 9. This agrees with
the result of Theorem 2. In addition, one can observe from the
above tables that the numbers of time intervals for N2 and N3
to obtain the new nonfaulty optimal paths are 6 and 10,
respectively (marked by *).
On the other hand, we obtain the network delay tables under
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TABLE I
NETWORK DELAY TABLES OF N,N2 AND N3 UNDER STRATEGY A WHERE N5 IS THE DESTINATION NODE (a) NETWORK DELAY

TABLE OF N, (b) NETWORK DELAY TABLE OF N2 (c) NETWORK DELAY TABLE OF N3

Entry toE(-oo, 0) t=0 t=l t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 tE[11, oo)

N2 11 11 11 11 14 14 17 17 19 19 19* 19 19
N3 6 6 9 9 12 12 15 15 18 18 21 21 22

(a)
Entry toE(- oo,0) t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 tE[11,oo)

N, 8 8 8 11 11 14 14 17 17- 20 20 21 21
N3 9 9 12 12 15 15 18 18 21 21 24 24 25
N5 16 16 16 16 16 16 16 16* 16 16 16 16 16

(b)
Entry t0E(-oo, 0) t=0 t=l t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 tE[10, oo)

N, 7 7 7 10 10 13 13 16 16 19 19 20*
N2 14 14 14 14 17 17 20 20 22 22 22 22
N4 4 00 00 00 00 00 00 00 00 00 o0 00

(c)

TABLE II
NETWORK DELAY TABLES OF NIN2 AND N3 UNDER STRATEGY B WHERE
N5 IS THE DESTINATION NODE (a) NETWORK DELAY TABLE OF N,
(b) NETWORK DELAY TABLE OF N2 (c) NETWORK DELAY TABLE OF N3

Entry toE(-oo, 0) t=0 t=l t=2 t=3 tE[4, oo)

N-2 12 12 12 19 19 19*
N3 6 6 16 16 16 24

(a)
Entry toE(-oo, 0) t=0 t=l t=2 t=3 t=4 tE[5, oo)

N, 8 8 8 18 18 18 26
N3 9 9 18 18 18 25 25
N5 16 16 16 16* 16 16 16

(b)
Entry toE (-oo, 0) t=0 t=1 t= 2 tE [3, o)

N, 13 13 13 13 20*
N2 14 14 14 14 22
N4 4 cm Co Co Co

(c)

strategy B as shown in Table II. From this table we get

OP,5(t6)=(N1, N3, N4, N5) where to E (-oo, 0)

OPI5(0)=(N1, N3, N4, N5)

OP 15(1)=(N1, N2, N3, N4, N5)

OPI5(2)=OPI,5(3)=(N1, N3, N2, N1, N3, N4, N5)

OPI,5(4)=(N1, N2, N5)

mB= 4, scn (QP5 (3)) = 4.

The numbers of time intervals required for N2 and N3 to
obtain the new optimal paths are also reduced from six and ten
to two and three, respectively.

Case 2:r* 160

Applying the same procedure as above, we can obtain the

results for r* = 160 with a simple calculation. The numbers
of time intervals required for N1, N2, and N3 to obtain their
new optimal paths to N5 are reduced from 105, 102, and 106 to
50, 49, and 51, respectively.

Case 3: r*= 1000

In this case, the numbers of time intervals for N1, N2, and
N3 to obtain their optimal paths to N5 are 665, 662, and 666
under strategy A and 332, 331, and 333 under strategy B.
Clearly, the performance improvement is around 50 percent.

In Fig. 1,LA - (N1, N3, N1) and LB = (N1, N2, N3, N1).
Since d(LA) = 3, h(LA) = 2, d(LB) = 9 and h(LB) = 3,
A(LA) = 1.5 and A(LB) = 3. The results of Cases 2 and 3
agree with Theorem 3.
Example 2: Consider the example network shown in Fig. 3.

Applying the same procedure as in Example 1, the time
intervals required for N1, N2, N3, and N4 to determine their
new optimal paths to N5 become 20, 19, 17, and 20,
respectively, under strategy A (i.e., the Oth-order routing
strategy), and 11, 10, 8, and 9, respectively, under strategy B
(i.e., the first-order routing strategy). Table III illustrates the
operations under the 2nd-order routing strategy. The subscript
of each entry in network delay tables represents the set of the
second and the third nodes of the corresponding path. The
result shows that the required time intervals become 6, 5, 5,
and 4, respectively. It is easy to see that this is a significant
improvement over lower order (i.e., 0th and first) routing
strategies.
With enough routing information, a node can find some of

its neighbors unable to offer any loop-free path, and thus
remove them from consideration. The entries in Table HI
marked by 's represent such cases. While the network in
Fig. 3 is still subject to looping under the 2nd-order routing
strategy, it can be easily verified that the 2nd-order routing
strategy will remove all possible looping in the network in Fig.
1 regardless of the value of r*. This fact implies that the
required order of the routing strategy to remove all looping
depends on the network structure.
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Fig. 3. An example network with link delays specified.

TABLE III
NETWORK DELAY TABLES OF N1N2N3 AND N4 UNDER THE
SECOND-ORDER ROUTING STRATEGY WHERE N5 IS THE DESTINATION
NODE (a) NETWORK DELAY TABLE OF N1 (b) NETWORK DELAY TABLE
OF N2 (c) NETWORK DELAY TABLE OF N3 (d) NETWORK DELAY TABLE

OF N4.

entry to E (- °°) lt-O t-I t-2 t-3 t=4 t=5 tE [o,o)
N2 712.41 7(343 7t241 111231IIf2.43 I19{f I49f14(24 27(2.41
Ns 99t 9 1.4I 21- A21- 2 5235s*

(a)
entq to[ (-oo,0) tO t I t2 t3 ts4 t=5 t=6 t E17,
N, 3's 13ii-l^ 13S} AL 25tL-1 25K1-l 25(- ) 2911A}
N, 7l&41 7t4 7A4} 23AA 231-) 231-1 23(u)* 23(-l 231&61
N4 3ZI4 ± ' 31uA KI 15181, I 231 j* 123i" i zP3ca

(b)
entry to3 (-00t)t-0 t 9 E 17, oo

Ni-~~t121A. 1 1 "I _2j,4 121 24 , 24,1 21 32(i ^4

N r4"I 4j Mcud 16iu 16fio 161&2 -
N. 20 21A 20l 20lsI 20i I2̂0 S]* {^ (6J

(c)

|en'try |to E oo,O) tO | t=i t=2 t=3 t E 14,0)|
| N2_14 || 14j2, 11. 1412.11 14(2.11 1412.1. 2412.3

|Ns | 14 143,13j 1 14(31 114) 11 1412 1) 22 361*
INs 002050 0oo 0-o 0o °° °d)

(d)

VI. CONCLUSION

In this paper, we have rigorously analyzed the performance
of two distributed adaptive routing strategies without resorting
to simulation. We have also derived formulas for the number
of time intervals required for a node to determine its new

nonfaulty optimal path to any other destination node in the
presence of link/node failures in the network. These results are

then generalized to high-order routing strategies which are

free of multinode loops. Moreover, for a given network we

can determine the importance of each link/node by estimating
the average number of time intervals required to recover from
the failure of that link/node. That is, the link/node requiring a

longer average convergence time for failure recovery pos-

sesses more importance.
Note that the order of a routing strategy determines the

maximum number of nodes in an extant loop under that
strategy. If we adopt a higher order routing strategy, the
looping effects can be reduced further but it will induce higher
operational overheads in processing the associated routing

messages. It will require a complex procedure to optimally (in
some sense) strike a compromise between these two mutually
conflicting factors. This is a matter of our future research.

APPENDIX

LIST OF SYMBOLS

SP Set of all paths in the network.
SP4,d Set of all paths from Ns to Nd.
SP*d Set of all paths from Ns to Nd, which are free

of ping-pong-type loops.
SPkd Set of all paths from Ns to Nd, which are free

of kth-order loops.
Ai Set of all nodes adjacent to Ni.

DLi,j(m) The delay associated with Li,j at time m.
DA Id(m) The delay from Ni via Nj to Nd in the network

delay table of Ni under strategy A during the
time interval [m, m + 1).

OPAd(i) Path with the shortest delay from Ns to Nd in
the network delay table ofNs under strategy A
during the time interval [m, m + 1).

DOPAd(m) The delay of sP,d(m).
D \jd(m) The delay from N, via Nj to Nd in the network

delay table of Ni under strategy B during the
time interval [m, m + 1).

OPsd(m) Path with the shortest delay from N, to Nd in
the network delay table of Ns under strategy B
during the time interval [m, m + 1).

DOPBd(i) The delay of OPBd(m).
SOPld(m) Path with the second shortest delay from Ns to

Nd in the network delay table of Ns under
strategy B during the time interval [m, m +
1).

DSOPsBd(m) The delay of SOPsBd(m).
OPskd(i) Path with the shortest delay from N, to Nd in

the network delay table of Ns under the kth-
order routing strategy during the time interval
[m, m + 1).

Dopkd(m) The delay of OPk d(mn).
MA The number of time units required for N, to

obtain its new nonfaulty optimal path to Nd in
case of a link failure under strategy A.

mB The number of time units required for Ns to
obtain its new nonfaulty optimal path to Nd in
case of a link failure under strategy B.

Mk The number of time units required for N, to
obtain its new nonfaulty optimal path to Nd in
case of a link failure under the kth-order
routing strategy.
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