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Abstract—Analytical models for the design and evaluation of
checkpointing of real-time tasks are developed. First, the execu-
tion of a real-time task is modeled under a common assumption
of perfect coverage of on-line detection mechanisms (which is
termed a basic model). Then, the model is generalized (to an
extended model) to include more realistic cases, i.e., imperfect
coverages of on-line detection mechanisms and acceptance tests.
Finally, we determine an optimal placement of checkpoints to
minimize the mean task execution time while the probability of an
unreliable result (or lack of confidence) is kept below a specified
level.

In the basic model, it is shown that equidistant intercheckpoint
intervals are optimal, whereas this is not necessarily true in the
extended model. An algorithm for calculating the optimal
number of checkpoints and intercheckpoint intervals is presented
with some numerical examples for the extended model.

Index Terms—Checkpointing, failure coverages, mean task
execution time, on-line detection mechanisms and acceptance
tests, optimal placement of checkpoints, probability of an
unreliable result, rollback and restart failure recovery.

1. INTRODUCTION

HECKPOINTING a database system is defined as the
operation of saving the current version of the database
(called a checkpoint) on a separate secure device (such as
backup tapes) and also saving the before-image and the after-
image of all transactions made between two successive
checkpoints (called the audit trail). When an error is detected,
the system will stop normal operation and start a procedure for
rollback recovery, which restores the system to the most
recent checkpoint and then reprocesses the transactions re-
corded on the audit trail. Since checkpointing is an effective
and economic method for improving reliability of database
systems (compared to the hardware redundancy technique), it
has been widely used and studied by many researchers.
Although most previous works have dealt with the perform-
ance evaluation of checkpointing in database systems (or other
transaction-oriented systems), the same basic concept can be
applied to real-time tasks. Note that a real-time task has
stringent requirements for fast and correct execution. The
studies in [1] and [2] have shown that checkpointing can
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greatly reduce the mean time of running a long program on an
unreliable computing system. In their discussion, equal
intercheckpoint intervals are used for inserting checkpoints in
the program. However, the degree of confidence in execution
results has not been addressed. The purpose of this paper is to
consider checkpointing as a viable method to satisfy both of
the above requirements (i.e., fast and correct execution) for
real-time tasks under more realistic assumptions. Mathemati-
cal models will be developed first and the optimal solutions
will then be derived. Our discussion begins with a brief review
of the checkpointing techniques used in database systems.

Since for database applications the system is unavailable to
users during error recovery, an obvious objective of check-
pointing database systems is to maximize the portion of the
time the system is available to users, i.e., system availability.
Another useful objective is the mean response time, which is
the average time a user has to wait until the system completes
his transaction request. Availability and mean response time
have been the primary criteria for evaluating the performance
of checkpointing in database systems. The variables com-
monly used in such studies are 1) checkpointing time which is
the time required to save a checkpoint, 2) recovery time which
is the time needed to reload a checkpoint and reprocess the
audit trail, and 3) intercheckpoint interval between two
successive checkpoints. The only controllable variable is the
intercheckpoint interval. The checkpointing time is system-
dependent and usually assumed to be constant within a system.
The recovery time depends on the length of the audit trail
which is often assumed to be proportional to the number of
transactions on the audit trail and hence depends upon the
system load and the intercheckpoint intervals. Consequently,
most of earlier works [3]-[8] have been to determine the
optimum intercheckpoint intervals that either maximize the
system availability or minimize the mean response time.! A
common assumption in these works is that errors are detected
immediately upon their occurrences.

Young [3] made a first-order approximation to the optimal
intercheckpoint interval which minimizes the system overhead
between errors under the assumption that 1) checkpointing
time and intercheckpoint intervals are fixed, 2) errors do not
occur during error recovery, and 3) error occurrence is a
Poisson process. Chandy et al. [4] proposed three models: A4,
B, and C. All three models assume high system availability,
fixed checkpointing time, and a Poisson error occurrence
process. Model A further assumes that errors cannot occur
during error recovery and the system load is constant. Model
B allows errors to occur during error recovery. Model C

! The probability distribution of response time is not usually available in a
manageable form.
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assumes that the arrival rate of transaction requests varies
widely with time in a cyclic fashion, Optimal intercheckpoint
intervals are determined for models 4 and B to achieve a
maximum availability, while for model C the objective is to
minimize the number of transactions arriving during check-
pointing and error recovery. Gelenbe [5] studied this problem
with a queueing model and assumed that intercheckpoint
intervals, checkpointing time, and intererror intervals are all
independent and exponentially distributed. Errors are not
allowed to occur during checkpointing and error recovery. He
then showed that the optimal average intercheckpoint interval
which maximizes the system availability is a function of the
system load. With a similar model, Gelenbe and Derochette
[6] derived an expression for the optimal average intercheck-
point interval which minimizes the mean response time. They
also found that the optimal intercheckpoint interval which
minimizes the mean response time is usually smaller than that
maximizing the system availability. Using theory in Markov
renewal process and semi-regenerative process, Baccelli [7]
obtained an analytic expression of the mean response time for
the same model as in [6].

Recently, Tantawi and Ruschitzka [8] proposed a general
model where an arbitrary distribution of the intererror interval
is considered. In their model, errors may occur during
checkpointing and error recovery, and checkpointing intervals
are allowed to depend on the audit trail reprocessing time and
error distribution. A general expression for the system
availability was derived. An equicost strategy for selecting the
intercheckpoint interval was also proposed and shown to be
superior to the equidistant strategy. (Other works typically use
the equidistant strategy with little justification.)

Checkpointing in a real-time system is quite different from
that in a database system. A real-time system usually includes
many tasks which do not communicate during their execution,
although these tasks can exchange information through shared
system memory, e.g., FTMP [9], [10] and the SIFT computer
[11]. Because a real-time task is usually executed periodically,
access to the system memory by any task is allowed only at
the beginning (for input) and the end (for output) of execution.
This restriction can be justified by the fact that real-time
applications are usually well-defined to be decomposed in such
a fashion and do not have luxury to allow for a long delay in
accessing shared resources such as system memory or bus.
Thus, a real-time task needs no audit trail since all the data are
local once the task is initiated. When a failure occurs, the
task has to redo all the computation after the last checkpoint or
start all over again from the beginning.

Fast and correct execution of tasks is of the utmost
importance to real-time systems. Thus, a real-time computer
system generally will have hardware redundancies (e.g.,
multiple processors, memories, and buses). As in most
multiprocessor systems, e.g., Cm*, we do not allow multipro-
gramming on each processor of the system. When a task is
assigned to a processing unit in the system, it will run on that
unit until it finishes (as long as the unit does not fail). So, a
failure affects only the task which is running on the failed unit.
Hence, it is no longer appropriate to think of the checkpointing
technique from a system-oriented view, but rather each task
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should be considered as a unit on which checkpointing is
applied, i.e., a task-oriented view.

Taking the task-oriented view, we shall derive two mathe-
matical models to describe the behavior of task execution and
occurrence of and recovery from errors. These models will
then be used to determine optimal intercheckpoint intervals
and an optimal number of checkpoints for a task by minimiz-
ing the mean task completion time subject to the required
confidence in execution results.

The paper is organized as follows. In the following section,
we introduce the general concept, design issues, and related
terminology in the checkpointing of real-time tasks. Section Il
formally states the problem and presents the assumptions to be
used. Section IV derives the optimal checkpointing strategy
for the basic model. Section V considers the extended model
where a numerical algorithm is developed for calculating an
approximate solution. Section VI summarizes our results.

II. CHECKPOINTING REAL-TIME TASKS

Checkpointing a real-time task means occassionally saving
the state of the task on other safe devices such as tapes, disks,
or even other (redundant) memory modules. The state of a task
includes values of data variables and contents of the internal
registers.? The saved states of a task are called checkpoints?
or recovery points (RP’s) [12], [13]. To ensure the correct-
ness of the saved checkpoint, an accepfance test must be
applied to the checkpoint before saving it {14]. There are also
on-line detection mechanisms to detect fault manifestations
during task execution [13], [15], [16]. When a module fails
and the failure is detected either by the acceptance test or the
on-line detection mechanism, the most recently saved check-
point for the task running on this module will be loaded to a
good module, and the task then resumes execution from that
checkpoint.

A hardware fault is defined as an incorrect state caused by
the physical change in a component, whereas an error is
defined to be the erroneous information/data resulting from
the manifestation of a fault. As we classified in [15], there are
two important classes of detection mechanisms: one is termed
the signal-level detection mechanisms, and the other is
termed the function-level detection mechanisms. At the
signal level, the manifestation of a fault is captured by built-in
on-line detection mechanisms before the fault generates an
error in a program. Undetected faults may generate errors
which may then be captured by the function-level detection
mechanisms. The acceptance test is one of the function-level
detection mechanisms.

Consider the assumption that errors are detected immedi-
ately upon their occurrences. Extensive efforts have been
made to design various ‘‘failure*”” detection mechanisms, yet
no detection mechanism can proclaim to cover all possible

2 The task state may even include the program code if it does not have a
backup on some other memory device or if the program itself may change
during execution.

3In this paper we shall use the terms ‘‘checkpoint’ and ‘‘state’
interchangeably.

4 We shall use the term ‘‘failure’’ to represent either fault or error,
depending on the context.



1330

failures. Even if all failures are covered, there may be some
latency between occurrence and detection of a failure under
any existing detection mechanism. If checkpointing is per-
formed between a failure occurrence and its detection, the
checkpoint saved could be incorrect and, thus, the subsequent
rollback recovery following the detection of this failure may
become unsuccessful. In such a case, the task has to be
restarted from the beginning (i.e., restart recovery) if only
one checkpoint is saved. This reinforces the fact that an
acceptance test is needed to assure the correctness of the
checkpoint to be saved. If the acceptance test detects an error
or abnormality, then an appropriate error recovery should be
initiated. The error coverage of an acceptance test is again less
than 100 percent, i.e., imperfect coverage. The imperfect
detection coverages of the on-line detection mechanism and
the acceptance test imply the existence of a nonzero probabil-
ity of a task ending with latent errors. The task may or may not
produce correct results under latent errors; however, we no
longer have any confidence in the results. These results are
hence called ‘‘unreliable.”” We quantify this fact by the
probability of an unreliable result, E, as a measure of lack
of confidence.

In our models, the computation time of a task is an
estimate of the time for computing the task under a fault-free
situation, and the execution time of a task is the time needed
to complete the task under the occurrences of faults. The
computation time of a task can be determined a priori by
averaging over repeated tests and validations of the task, and
hence is a constant. The computation time has no direct
connection with the hard deadline associated with the task.
Tasks should be triggered by some mechanism (e.g., real-time
clock) in such a way that their hard deadlines will be placed
well after worst-case computation times under a fault-free
condition. Note, however, that the execution time may vary
due to the random occurrences of failure and will thus be
treated as a random variable.

There are other aspects of checkpointing (e.g., sensor data
and some integrated quantities such as time, velocity, or
position) that are not addressed here.’® These will usually
impose an upper limit on the intercheckpoint interval. Further,
the placement of checkpoints is dictated by functional and
programming considerations as well as the optimization
aspects to be discussed in this paper. For the latter, we will
consider two parameters of checkpointing: i.e., 1) the duration
of checkpointing and 2) the correctness of checkpoints.

III. PROBLEM STATEMENT

Consider a task with a fault-free computation time 7 and the
total execution time w. Define W as the mean execution time
and FE as the probability of producing an unreliable result at the
end of the task. Suppose further that n (yet unknown)
checkpoints will be inserted at 7;, 1 < i < n, during task
execution. The ith checkpoint is established when the task
execution has successfully progressed up to 7;. Define the ith
intercheckpoint interval, [;, 0 < i < n, as the computation

5 This point was brought to the author’s attention by an anonymous referee.
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time between the ith and (/ + 1)th checkpoints, i.e.,

=T\ -Ti—=t,, 0<i=sn (3.1
where /. is the checkpointing time, and for consistency, we let
To = 0 and T,,, = T. Using the above definitions, our

problem can be stated formally as

Problem P: Minimize W of a task with respect to # and I,
0 < i < n, subject to E' < Eg,., where Egy, is the desired
level of confidence in execution results.

Note that P is a realistic problem which arises frequently in
the system design process. The constraint on E, Ej,., can be
viewed as a requirement that must be satisfied in order to
achieve the desired level of confidence in the execution result.
Also, note that real-time constraints such as hard deadlines,
correctness, memory sizes, etc., are included implicitly in P,
since 1) the optimal criterion is related to the task execution
time, and 2) Eg. is derived from both correctness and
execution time.

Other variables in our models are defined below. Let 7. be
the checkpointing time which is assumed to be fixed and
consists of two parts: the time for an acceptance test and the
time for saving the current state. An acceptance test is
automatically performed at the end of a task, but state saving is
not needed following this last acceptance test. The last
acceptance test is, however, assumed to take the same time ¢,
as the regular checkpointing, because the time for the
acceptance test makes up the major portion of /. if a high
detection coverage is desired. However, the last checkpoint is
not counted in the number of checkpoints. Failures are allowed
to occur during normal execution as well as during checkpoint-
ing. Whenever a failure is detected during checkpointing, that
checkpoint is considered to be invalid and, therefore, not
saved. Due to the storage overhead, only the most recent
checkpoint is assumed to be saved, i.e., at any time the state
saving device can store only one checkpoint. Define

7= L+, O<i=n. 3.2)
Henceforth, intercheckpoint intervals are used to mean either
7; or I; depending on the context. Fig. 1 shows a timing
diagram of task execution.

On-line detection mechanisms can detect a failure upon its
occurrence with the probability d € (0, 1] or cannot detect the
failure at all (i.e., the failure is not covered by the mechanism)
with the probability 1 — d. Those failures undetectable by the
on-line detection mechanism can only possibly be detected by
the next level of detection, i.e., acceptance tests. If the system
contains some latent errors, they will be detected by the
acceptance test with a positive probability ¢ € (0, 1]. That is,
the coverage of an acceptance test, ¢, is the conditional
probability of detecting the incorrectness of the task state
given that there are latent errors in the system.

Suppose a failure occurs and is detected within 7; of its
occurrence, and the system can recover from the failure by
either rollback or restart recovery. For rollback recovery, we
first restore the system to the most recently saved checkpoint
and then resume the task from that point. Let r be a constant
representing rollback setup time. The rollback setup time is
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Fig. 1. Timing diagram for checkpointing in a real-time task.

the time measured from failure occurrence to the restoration of
the most recent checkpoint. In case of unsuccessful roll-
back(s), the system will attempt a restart recovery. Let s be the
restart setup time which is the mean time from failure
occurrence to the restart of the task [including the time spent
on unsuccessful rollback(s)]. The assumption of constant f.
and r is made mainly for two reasons: reasonableness and
mathematical tractability. In most cases, these quantities do
not vary much because the routines for establishing a
checkpoint and setting up rollback differ only in the number of
variables being saved/checked and this number is rather
stabilized in most practical cases.

Rollback recovery may fail due to 1) failure of the
communication link to the checkpoint saving device, and 2)
failure internal to the checkpoint saving device, thereby
making the saved checkpoints inaccessible or incorrect. In
these cases, the task has to be recovered by restart.® Let p and
q, where p + g = 1, be the probabilities of recovering a task
by rollback and restart, under the condition that no latent
failures (to be explained later) exist when the last checkpoint-
ing is done. If this condition is not satisfied, we will take a
more pessimistic view and assume that restart recovery is
inevitable.

Throughout the paper, we assume that arrival of failures is a
Poisson process with rate N\. We also assume the system
contains no latent failures when it starts a task.’

The major difference between the basic and the extended
model is in the assumptions of coverages of the acceptance test
and the on-line detection mechanism. In the basic model it is
assumed that d = 1, i.e., detection of a failure coincides with
its occurrence. However, in the extended model, no assump-
tion on d and c is made. Note when d = 1, the value of ¢
becomes irrelevant, that is, acceptance tests are not needed at
all (since all failures can be detected solely by the on-line
detection mechanism). The perfect coverage of the on-line
detection mechanism implies that 1) there are no latent failures
in the system, 2) the task execution results are always correct
(i.e., E = 0), and 3) each checkpoint is always correct.
Hence, in the basic model, the problem P is reduced to finding
the solution that minimizes W without any constraint on E.
However, it is practically impossible to design a signal-level
detection mechanism with perfect coverage. In some cases, we
cannot even accurately determine failure coverage. Thus, we
have to consider imperfect failure coverages for the design and
analysis of a real system.

Consideration of both imperfect coverages and the probabil-
ity of an unreliable result is more realistic and natural, and is
thus a significant departure from previous works in the

6 As pointed out earlier, previous works [3]-[8] assume that the checkpoint
saving device and its link would never fail, and hence rollback recovery is
always successful, i.e., no restart recovery is needed.

7 Relaxation of this assumption for this work is not difficult.
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aforementioned references. Another assumption which is
different from existing models in the literature is that the
checkpoint saving device is subject to failures so that the saved
checkpoints may be destroyed or inaccessible. Therefore,
there is a nonzero probability of restart recovery even in the
basic model.

IV. Basic MopEL

Let w;, 1 < i < n + 1, be the execution time from the
beginning of the task to the first completion of the ith
checkpoint, i.e., the end of 7;, and let W; = E (w;). Then, w
= w,.;and W = W, are the total execution time and the
mean execution time of the task, respectively. We shall derive
a recursive expression for Win terms of W;. As shown in Fig.
2, for 0 < i < n let v; represent the task execution time in the
interval [T}, T;, 1], and z; be the computation time completed
within 7;, given that a failure occurs during 7,. If Y represents
the interval between two successive failures, then the density
function of Y is fy(¥) = Ae~™, y = 0. The probability of
failure occurring during 7;, F;(7;), becomes®

Fi(r)=Prob [Y<7]=1—¢ i for 0<i<n. (4.1)

By definition, z; represents the computation done within 7;
under the condition that some failures do occur during 7;. The
density function of z; can be expressed as

Sy(t) Ne M

H="r=—-—, O<t=r;. 4.2
F40) Fi(r)) 1—e i i @2
Hence, the mean of z; (denoted by Z;) is calculated as
i 1 T,‘e_)\Ti
=\ tf,(t) dt=—— ————. .
f= | a0 d= - @.3)

In the interval 74, detection of a failure always leads to a
restart, and after a task is restarted the process is renewed
probabilistically for the variable w;. Thus,

with probability 1 — Fy(79)

with probability Fy(7o). S

7o
W)=
{ ZotSs+w
The process is also renewed for w;, 1 < i < n, after rollback
and/or restart recovery. Hence,

Wiy 1 =Wt v; for 1<i=n, 4.5)

8 Although the subscript for F is not necessary in the case of Poisson failure
process, it is adopted for clarity and extension to a general failure process.
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where
7 with probability 1 — F(7;)
- Zi+r+u; with probability F;(7;)p (4.6)
s+ wig with probability F;(7;)q. '

From (4.4), (4.5), and (4.6), the following recursive expres-
sions are derived for 1 < i < n.

_ Fo(ro)
W, = TO+T——F@ (Z()+S) (47)
_1-pFi(n) ‘ Fi(r)) 5
i+l _Ti(ﬂ) it 7 TZF “Fm) (Zi+pr+gs). (4.8

Substituting F;(7;) and Z; into (4.7) and (4.8) produces

W1=<l +s>(e“0—1)
A

1
Wi.i=(qeMi+p)W;+(eri—1) (X+ps+qr> . (4.10)

4.9)

Applying (4.10) recursively n times, we can get W = W, :

n

W=l1y0Huj+ky1Huj+"'+ky,,_1u,,+ky,, (411)
. iy

Jj=1 J
where
h 1+ k 1+
=— 45, k=—+pr+gs
X X pr+4q
ui=qgeMi+p, y=e’i—1. (4.12)

The problem now is to minimize W with respect to n and 7;,
0 < i = n, subject to

o+t +n,=T+0m+1)t. =T 4.13)

We shall approach this problem in two steps: first assume 7 is
given and minimize W with respect to 7; for 0 < i < n, then
use the above expressions to minimize W with respect to 7.
The following theorem provides a solution to the first step.
Theorem 1: For a given n, the minimum W is attained

when
1 1+Ar
To-—;\loge T =71=Ty="'"=71,. (4.14)

Proof: Let § be a Lagrangian multiplier. The optimal
solution will then satisfy the differential equations

VIW+(T —19—11— "+ —7,)]=0

which is equivalent to

Then,
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aW n n
——=Mhyou| ujtky| H U;
o7y j=2 j=2
oW oW <" >(h , P 0
—_———= u; — —ky/)=0.

Since I7_, u; = TI7_, (geMi + p) # 0, it must be true that
(hygui—hyou| —ky/)=0. 4.15)

Substitute (4.12) for #; and y; and then use y/ = NeMiand u /
= geMi to get

hper o — (k — hg)er1=0. (4.16)
Again, substitute (4.12) for 4 and k in (4.16) to get

+ll (k—hq) +11 <1+)\r> @1
= — 10 —_— = —Oe . .
OETTY 8 Ty )T TN %% T s

This proves the first part of the equality in the theorem. For 1
<i<n-1,

ow n n
—=u/hyo [T wi+u/kn [T w
67,~ . .
Jj=1 j=2
Jj#i J#i
n n
+eotulkyi I] witky! Y w
J=itl j=i+1
aW n n
—=u/, hyo TT wiruf, oy JT wit -+
aTi+l Jj=1 j=2
J#i+l j#i+1
n n
cetul kv TT wrke! T w
J=i+2 J=i+2
ow oW n
———=0=(ky/ ui —kyu/ —ky/ ) uj
1 j
67',-+1 67,» i i+ i+1 jgz

n

+ (] up — ], |) <hyo IT »
=1
JFLI+]

-I—ky, H uj+"'+ky,'_] H Uj) .
Jj=2 j

J=i+2
JELI+]
Substituting the expressions for u;, y;, #;, and y/, in the
above equation produces

0=Apg(eri—eri+1) <hyo IT w+kn 11 w

Jj=1
J#ELI+]

j=2
J#ELI+]

+etkyiog I u,->+kp>\(e“i——e’"i+1) 1T »-

j=i+2 j=i+2
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Since p > 0 by assumption,

\pq <hyo IT w+kn I] w

Jj=1 j=2
J#ii+] J#Li+1

fI Uj>0.

J=i+2 .

+"'+ky,»_1 H uj>+kp

J=i+2

It follows that e* — eMi+1 = Qand 7, = 75, , 1 <i<n —
1. This then completes the proof. |

Theorem 1 shows that the optimal intercheckpoint intervals
in the basic model are equidistant except the first one.
However, this result will only be true under the assumptions of
perfect coverage of on-line detection mechanisms and Poisson
fault occurrence process. (Theorem 1 ‘‘cannot’ apply to the
more general case to be discussed in the next section.)

To minimize W with respect to n, we express 7;,, 0 < i <
n, as functions of n

{T0=T*+b

Ti=T1%

(4.18)

I<i=<n

where

1 1+Ar T-b
b=-log, , T = +1.
A 1+A\s

From (4.12) and (4.18), we have, for 1 < i < n,
Yo =eMerH — |
yi=y=er*—1

ui=u=qger*+p. (4.19)

Hence, (4.11) becomes

W=hyy [Jutky [Ju+ - +kvu+ky
j=1

J Jj=2

n-1
=hyou"+ky Y, um.

m=0

(4.20)

Ifgq =0,u=p=1,whileu > 1if g > 0. Therefore,

W= hyo+ nky
“untkq "+ hyg)—kq™!

if g=0

if g>0. 4.21)

Note that u, y, and y, are all functions of n, an integer to be
determined. Although it is not possible to derive an explicit
expression for the optimal 7, the optimal value can be obtained
by solving the equation dW/dn = 0, and comparing the value
of W to the two nearest integers of this solution.

Some numerical examples are shown in Figs. 3-5, where W
is plotted as a function of n using (4.21). The unit of time-
related variables is hour or per hour. Fig. 3 compares the
curves for different values of the checkpointing time /.. It is
observed that a smaller ¢, usually requires more checkpoints to
attain the minimum W. The shape of the curve changes
dramatically when ¢, is changed. The curve for 7. = 0.5
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almost flattens out when n > 5, while the curve for 7, = 2.0
rises sharply beyond the minimum point. This shows that if it
takes more time for checkpointing, the mean execution time
becomes more sensitive to the number of checkpoints.

In Fig. 4, A is changed from 0.001 to 0.2 which translates
into changing from one failure every 10 tasks to 20 failures per
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task (when 7' = 100 is assumed for all tasks). When the failure
rate is very low (such as A = 0.001) the overhead of
checkpointing will offset the saved execution time. But if
failures occur more often (e.g., A = 0.2), having one or more
checkpoints can greatly reduce the execution time. In Fig. 5,
the curves for different p are shown. It is clear that a lower
probability of rollback requires fewer checkpoints.

_F(-d)1-0)+(1-F)(1-c)E;—(1-c)(1 - F;d) pF;DE;
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In (5.1), the first term represents the case when failures occur
in 7y but detected neither by the on-line detection mechanism
nor by the acceptance test; the second term represents the case
when a failure occurs and is detected within 7y, triggering a
restart recovery. The process of task execution renews after
each restart recovery. Define the combined failure coverage
D =d + (1 — d)c. Then, (5.1) becomes

_Fy(1=d)(1-0)

5.2
1-FD (5-2)

1

The derivation of E; for j > 1 is similar to but more
complicated than that of E;. Let G; be the conditional
probability of an unreliable result at the end of 7;, given that
the system is free of failure at the beginning of 7;. Following
arguments similar to those for E;, we can get

Gj=F'j(l —d)(l —C)+FjD(pGj+qu+1)

where the process of task execution renews after a rollback or
restart recovery. Simplifying the above expression yields

g bl-di-o
! 1—pF;D

aF;D
1-pF;D

E.i.  (53)

E;., can be calculated as the probability of sum of two
events: 1) no latent failure exists at the beginning of 7; and 2)
some latent failures exist at the beginning of 7;. Thus,

Ej =(1-E)G+Ej[(1 - F) + F(1-d)I(1 - ¢)
+Ej(l —‘Fj)CEj_,. 1 +EjF}DEj+ 1.
Replace G; with (5.3) to get

j+1

Generally, more checkpoints are required to achieve mini-
mum W when the failure rate A is high, the checkpointing time
t. is small, and the rollback probability p is high.

V. EXTENDED MODEL

The extended model takes into consideration more realistic
coverages of both the on-line detection mechanism and the
acceptance test. The constraint E < Eg,. in problem P now
plays an important role, since, unlike in the basic model, £ #
0. Again, closed-form expressions for the optimal intercheck-
point intervals and the number of checkpoints cannot be
obtained because of their inherent complexity. However, a
computation algorithm will be derived to determine approxi-
mate optimal solutions.

Let £;, 0 < i < n, denote the probability of an unreliable
result when the task has progressed to the beginning of the
interval 7;. Let E = E, ., and F; = Fj(7;), 0 < j < n. Then,
it is obvious that £, = 0 and

E\=Fy(1—-d)(1—c)+Fpld+(1—-d)c]E,.. (5.1

(5.4

1-F,D—c(1-F,)E;— (1 -c)(1 - F;d) pF;DE;

where 0 < j < n.

We now derive an expression for the mean execution time
W. A task has to be restarted with probability one whenever
failures are detected in the interval 7, rollback is the same as
restart in this case. For subsequent intervals 7;, j > 0, the task
may be free of failures with probability 1 — E; or may have
latent failures with probability E; at the beginning of 7;. For
the former case, the last checkpoint must be correct at the time
of its establishment, so the task can roll back or restart with
probability p and g, respectively.

For the latter case, the last checkpoint may be correct or
incorrect depending on whether or not the latent faults have
induced error(s). In such a case, we assume that the last
checkpoint is incorrect. (This is to err on the safe side.) If the
system does detect a latent error® within 7, either by the on-line
detection mechanism or the acceptance test, it will roll back to
the last checkpoint, resume execution, and then detect the

¢ Of course, at this point the system does not know whether it is latent or
not.
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same error again. The system may roll back several more
times to see if the same occurs. Then, the last checkpoint can
be declared to be incorrect and a restart recovery follows.
Determining the number of rollbacks before restart is an issue
of its own. As mentioned earlier, the time spent on unsuccess-
ful rollback(s) is included in the restart setup time s. The
expression for the mean execution time W can be expressed as
follows:
Wi=(1—-Fy)ro+Fod(s+ 20+ W)
+F0(1 "d)C(S+ To+ W1)+F0(1 —d)(l —C)T()

=(1-Fyd)ro+ FodZy+ FoD(s+ W)).
Forl = j < n,
Wiai=W;+V;
V= (=B - F)+ (1 -d)1 - O,
(I —E)Ed[p(r+2+ V) +a(s+Z+ W)l
+(1-E)F(1=d)clp(r+7+ V) +q(s+ 71+ W)l
CEFd(s+7+ W)
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Substituting (5.9) into (5.5) and (5.6) gives

1-d Fod 1 F,D
W, = To+ - s (5.10)
1-F,D 1-FobDN 1-Fy,D
1-d Fd 1
I’Vj_H:- Tj+ -
l=pi=q; ° 1-pj=g; 2
reqs  1-p
L Pi_w. 5.1
l=pi=q; 1-pj—q

For a fixed n, it is clear from (5.4) and (5.11) that both E,, . |
and W, . are functions of the (n + 1) variables, 7;, 0 < i <
n. However, because of the constraint (4.13), one of the
variables is dependent on the other variables. The choice of the
dependent variable is arbitrary. In the discussion that follows,
we will restrict ourselves to the dependency between any two
variables. This can, of course, be easily generalized to the
dependency between (n + 1) variables by a simple induction.

Definition: Define an operator V;;, 0 < i < j < n, on
E,.  and W, as follows:

Vi(X) = lim

+E[F(1-d)+(1—-F)lc(s+ 7+ W, 1) X(ro, 1=, o, THb, 1) =X (70, 0, Th)
6
+E;[(1-F)(1-c)+F(1-d)(1 =),
where X is E,.,or W, .
After simplification, we get Then, V;;(E,.) can be calculated by
. En+l(70’ T 7',‘—8, Tt Tj+6’ ) Tn)~En+l(TO’ “"Ti"6’ '..5Tn)
Vi(Eni1) = lim ;
. En+l(7-0’ Y T”)—E,H.](T(), R Ti—;59 R Tn)
— lim
-0+ 5
JE; dE;
_ 1+1_ l+l~ (512)
67', 37,»
1-Fyd Fod Fy,D Some important properties about E, ; and W, will be
1= Tot 20+ § (5-5)  stated and proved below in Theorems 2 and 3. Based on these
1-FyD 1-FyD 1-F,D 3 ) . ! .
theorems, a numerical algorithm will be derived to obtain an
1-Fd Fid approximate solution to the problem P.
1T P Tty p— % Theorem 2: For any pair of integers iand j, 0 < i < j < n,
s o the inequality V;;(E,1) > 0 holds if the following conditions
r+q;s 1-p; '
+ pir+d4; + Pj (5.6) are true.
1=pj=q; 1-pj=4q (C1) Ex=0, F, < 1, for 0<k=n+1,
where p; and g; are defined as (€2) d+p)>1.
Proof: From the recursive formula of (5.4), E,, can be
pi=p(1—E;)DF; (5.7)  viewed as a function of 7, and E,, and E,, as a function of 7,,_,
4= q(1 - E,)DF;+ E;[c+ (1 - ¢)F,d]. (5.8) and E,_, and so on. Applying the chain rule in (5.12), we get
aE"+l aEn aE'+2
VilE,. )= e
From (4.3), Z; can be expressed as i Lns1)= 9E, OE, 3E.,
z'-=—1——- Tjé")‘Tj :l_l—F} - (5.9) . [an+l_an+l 0E;,> aEi+l] . (5.13)
N l=eMi N F ar;,  AE; 0E;,, 07
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For 0 < k < n, the following expressions can be derived.
0k, (I-0o)1 - F)( - Fd)(1-pFD)
0E, [ —-FD—c(1-F)E,—(1-c¢)1~-F,d)pF,.DE\]?
(5.14)
0E .1 ANI-F)(1-c)(1-d)[1-E(1-cF))]
ory,  [1-F.D—c(l—F)Ey—(1-c)1-F,d)pF,DE,]?

i PDE (1 -2Fd)(1-F,)(1-Ey)
[1-F.D—-c(1-F)E.—(1-c)1-F,d)pF,DE;]*"
(5.15)

Note that the fact dF, /07, = he >k = A1 — F}) has been
used in deriving (5.14) and (5.15). In (5.14), 0F . /0E, > 0
forall k,0 < k < n, since ¢, d, D, p, and F, are all less than
1. Thus, from (5.13) the theorem will have been proved if
0Ejyy 0Ej.,  0Ei; 0E,
Brj aE/ aE,‘.H 67,«

>0. (5.16)

Condition C1 is used to approximate the denominators of both
(5.14) and (5.15) as (1 — F,D)?. Further approximation on
the numerator of (5.15) then leads to

0E;1 M1-F)(1-c)(l-d)

07k (1-F,;D)?
This results in
3Ej+1_3Ej+1 0E;,, 0E;,
37‘, an 8E,~+, 67,-

_AM=F)d-od-d) MNl-F)(1-c)1-d)

(1-F;D)? (1-FDy?
) {I’] (1_C)(l_Fk)(l_de)(l_kaD)}
K=i+1 (1-FD)?

_(1-Fd)(1-pF;D)
(1-Fid)(1-pFD)

B AN1-F)(1-c)(1-d) {1
- (-FD)

~

e (=0 -F)(d - Fd)(1 —kaD)}
g (1-F,D)? ’
The inequality (5.16) holds if

(1-F;d)(1-pF;D)

(1-Fd)(1-pF:D)

1 (1= ¢)(1 — F)(1 — Fed)(1 - pFD)
11 (1_F.D)? <!

b

~

the left-hand side of which can also be expressed as

{4y U-pFD)1 - Fd)(1-Fy)
(1-c)/ {kgl (1 _F.D) }

(1-pFD)(1-Fyd)(1-F)
"~ (I-FD) ’

(5.17)
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Since F;, F; < 1 by C1, the value of the last factor in (5.17) is
approximately 1, and hence (5.17) is dominated by the other
remaining factors. It is easy to show that [(1 — pF,D)(1 —
Fd)(1 — F)/(1 — FkD)’] < 1forall0 < k < n + 1if
d(l + p) > 1. Hence, the fact (1 — ¢)/~! < ] makes the
whole product less than 1. |

Usually the values of E, must be very small for any real-
time system. This is the rationale behind the conditions C1 and
C2 of Theorem 2. To produce a low probability of having an
unreliable result, the system requires a reasonably high fault
coverage and a high probability of rollback when failures
occur (i.e., d(1 + p) > 1), and a low failure occurrence rate
(thus, F;, < 1). If the system cannot meet C1 and C2, the
probability of an unreliable result will be high. In that case,
checkpointing is not a useful technique at all to improve the
system’s reliability, and it would be better to employ other
schemes such as triplicated voting.

Theorem 2 states that if the length of an interval 7; is
increased at the expense of decreasing a preceding interval 7;, i
< Jj, E,+y will always increase. Consequently, E,, can be
decreased by stretching earlier intervals against later intervals.
When two adjacent intervals are considered, stretching the
earlier interval means delaying the establishment of the
checkpoint in between. That is, E,.; can be reduced by
moving any checkpoints to the right on the time axis in Fig. 1.
Theorem 2 also verifies the fact that if all the checkpoinfs are
inserted near the end of the task, the execution result will
become very reliable, since the task has to pass all the
acceptance tests near the end of the task.

Theorem 3: For any pair of integers iand j, 0 < i < j <
n, ij(WnH) = V;(Vij(W,11)) > 0if Cl and the following
condition hold: (C3) Dp > 0.5.

Proof: First simplify the recursive formula of (5.11) by
using C1 to get

_(-d)y; Fd\
" 1-F,D 1-FD

Jj+1

prE;D+qsF;D 1-pF;D
1-F,D 1-F,D "’
.
=(-d)+ d D+(d)\“+prD+qu+qDWj)
-4
5w 5.18
i—rp (5.18)

In (5.18), W, can be viewed as a function of 7; and W}, and
hence for all J,

OW,., 1-pF,D

(5.19)
oW, 1-F,D
Wi A BE  CA-F)y o
a7; (l—FjD)2 (l—FjD)2 (l—FjD)2
where
A;=14+NprD+\gsD + N qDW; (5.21)
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B;=d+(1—d)D+\prD+\gsD+\gDW,; (5.22)

C=(1-d)DA\. (5.23)
Now W, is a function of 7, and W,, W, is a function of 7,,_,
and W, _,, and so on. Using the chain rule and (5.12) as in the
proof of Theorem 2, we get

aI/Vn+l aWn a[/Vj+2
V(o) = e
oW, oW, Wi
. aVVjJrlﬁal'Vj+l”.aI'Vi+ZaWi+l:|
aTj BWJ BW,»H 37,«
owW;., 1—-pF,D ow;
=H1[ TP ”] (5.24)
ar; 1-F.D o7
where
n l*kaD> )
H = (—- (5.25)
kgl 1-F.D
J-1 1—kaD>
H,= _— 5.26
’ k&(l—FkD ©:20

are functions independent of 7; and 7;. It is easy to see that H,
> 0 and H, > 0, since p, F}, and D are all less than 1.
It can be derived from (5.24) that

Wi, I-F, Wi,
VW, )=H T _2H \gD
u( +1) 1 an 1Nq (l—FjD)Z 2 ar,
1—-pF.D *W;
+H1 p J ) +1
1-F,D ar?
W, 1-pF;D 0*W,.
_ g, Wi H,Hz[_”_f_ -
37’} 1-F;D 67',.
2N\gD(1—-F)) daW;
_ q ( /) +1 . (527)
(1—FJ-D)2 a7;

Note that A; > B; [both defined in (5.21) and (5.22)] for 0 < j
< n. So from (5.20), we get

W1 N1-F)
or2  (1-FD)’
+@2D—1-F,D)7,C]

N1~ F)

(- FD)*
+(@2D—-1-F,D)7,C]

_ N1-F)
(1-FD)*

if 2D~ 1-F;D>0.

[2DA;—(1+F;D)B,

[2DA;— (1 +F;D)A;

(A;+C)2D—1-F;D)>0

(5.28)

Plugging (5.28) into (5.27) and examining the terms inside the
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brackets of (5.27), we get

1-pF,D 8*W,. 1-F, W,

L ~2\gD

I-FD or? (1-F;D)? dr,
A

~EDYG D) (5.29)

{(1=pFD)(1 - F,D)1 - F)[2DA,~ (1+ F,D)B,
+(2D~-1-F;D)7;,C]1-2qD(1-F,D)(1-F))
 [Ai-FiB;i+(1 - F)7,Cl}

M1 -F)(A;+7,C)
(1-FD)*(1-F;D)?

- 2D-1-FD)
—2¢D(1-F.D)(1-F))]
_ N1 =F)(A;+7,C)
(1-FD)’(1-F;D)?
if 2D—-1-2gD>0.

[(1 -pF;D)(1-F;D)

(2D-1-2gD)>0

Note that2D — 1 — 2¢D > 0and 2D - 1 — F;D > 0, if C3
holds. Hence, from (5.27), (5.28), and (5.29), V,;{(V; (W, 1)
> 0. |

Again, to make any checkpointing meaningful, the system
must have D > 0.7 and p > 0.7, thereby satisfying the
condition C3.1°

By applying Theorem 3 to every pair of intervals, it is
possible (although very time consuming) to find the global
minimum of W, , ;. However, even if the minimum of W, is
found, the interval combination which yields this minimum
may not lead to the probability of an unreliable result
satisfying the constraint E, ;| < Eg,... Therefore, the follow-
ing algorithm is proposed to solve problem P.

Algorithm A:

Al. Setn:= 1.

If E(T + t.) < Ege then set Wy, 1= W(T + 1)
else set Wy, to a large value.

Construct a finite sequence of interval vectors (7’5, T,
%), k = 1, ---, K by a systematic way such that
Eyor(rl, -, 8y > Ep (kY oo okt Y for 1 < k
< K. Such a sequence is called a search path.

A3. Find « such that

A2,

En+l(7'8, T T:)zEspec>En+l(76+1’ Y T;-H)‘
If no such « can be found then set #» : = n + 1 and go
to A2.
A4. Find W*_ (7%, -+, 1) = Mineg=x Wyii(7 =+
k
7%)
AS. If Wk | < Whia thenset Wy, 1= Wk ,ni=n+

1, and go to A2 else stop.

Algorithm A starts by calculating £ and W for the case of
no-checkpointing, i.e., E(T + t.) and Wo(T + ). If E <

10 Otherwise, checkpointing should not be used as mentioned earlier.
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Ejp.., no-checkpointing is a legitimate candidate, so W, is set
to Wo(T + ). If E > Eg,.., no-checkpointing cannot be a
solution of problem P, and W, is set to an arbitrary large
value to indicate that no solution has been found yet. Steps
A2-A4 will find a solution of problem P if it exists for each
given n, the number of checkpoints. If no solution exists for a
given n, the algorithm repeats those steps after incrementing
n. Since the task execution result becomes increasingly
trustable as the number of checkpoints increases, for any Ey.
there is always an integer # such that £, , | < Eg, foralln =
m. This guarantees the existence of « in step A2 for some n.
The algorithm terminates in step A5 when there is an n such
that W* | = Wy, This terminating condition must hold
eventually, since the checkpointing overhead increases lin-
early with n while the saving of execution time from rollback
recovery is limited.

The search path needed in step A2 can be determined by

Theorem 2. We can use any search path that has the effect of
moving one or more checkpoints to the right in the time axis
while increasing &, since Theorem 2 has shown that E,,; on
such a path is decreasing. There are many ways of construct-
ing such a search path. In practice, the choice of a search path
depends heavily on the convenience of checkpoint implemen-
tation and/or the physical limitation in a particular system.
Two simple approaches of constructing search paths are
conceivable: the common ration approach and the common
difference approach. The common ratio approach considers
intervals with the relation 7;,; = p7;,0 < j < n, wherepisa
constant ratio between two adjacent intervals. The search path
is obtained by decreasing p in discrete steps within some given
range, e.g., 0.8 < p < 1.2. Similarly, the common difference
approach considers intervals with the relation 7,,, = 7, — 6, 0
< j = n, where 6 is the common difference. The search path
is obtained by decreasing 6 in discrete steps within some given
range, e.g., —4 < ¢ < 4. The range of the common ratio or
the common difference is determined primarily by the physical
limitation of the system.
In step A4, W¥* | is obtained once a local minimum is
found, since Theorem 3 has shown that W, | is concave with
respect to the operator V;;. If no local minimum is found, the
minimum would occur either at k = x or k = K.

Some examples are shown in Figs. 6-8 using the common
ratio approach. The solid line represents the curve for W, ,
and the dashed line represents the curve for E, . It is
observed that if the failure coverages are high (Fig. 6), the
minimum W occurs around p = 1.0, while if the failure
coverages are low (Fig. 7), the minimum W occurs at p >
1.0. This result is expected since for high failure coverages,
the extended model will be close to the basic model where the
optimal intercheckpoint interval is equidistant, and for low
failure coverages, the probability of restart is high so that more
frequent checkpointing at the beginning of the task and less
frequent checkpointing near the end of the task are required to
reduce the time wasted in restart recovery. The following
procedure is derived immediately from Algorithm A to get the
optimal solution to P using the common ratio approach once
the graphs similar to those in Figs. 6-8 have been obtained.
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Fig. 6. Diagram of W and E versus common ratio when ¢ = 0.8,d = 0.9,
p=08N=00l,r=04,s=071=15T= 100

S1.
S2.

Draw a horizontal line £, ., = Eg,.. on the graph.
The intersecting points of this line with the dashed lines
give the maximum allowable common ratios for differ-
ent values of n.

For each n, find the minimum W, , ; in the region of the
allowable common ratios.

Choose the value of n which yields the minimum
Wn+ 1.

S3.

S4.

Two examples below illustrate the use of this procedure.
Example 1 uses Fig. 6, while using Fig. 7 for Example 2.

Example 1: Let T = 100 h, A\ = 0.01 per hour, ¢ = 0.8, d
=09,r=04h,s=0.7h,p=0.8,g=0.2,and?. = 1.5
h. Three cases are considered, i.e., Eg.. = 0.002, 0.003,
0.005 for 1 = n < 11. The results are given in Tables I-III.

From Table I, the minimum W with Eg.. = 0.002 occurs
when n = 7 and p = 0.83. Similarly, the smallest W with
Ege. = 0.003 occurs when n = 6 and p = 0.89, and the
smallest W with Eg.. = 0.005 occurs when 7 = S and p =
1.02. We can see that a lower Eg,. will produce a solution
with more checkpoints and a smaller ratio.

Example 2: Let T = 100 h, N = 0.01 per hour, ¢ = 0.6, d
=0.7,r=04h,s=07h,p=0.8,g =0.2,and . = 1.5
h. Two possible values of Eg,. are considered, i.e., 0.02, 0.04
for 1 = n < 11. The results are given in Tables IV and V.

The smallest W with Eg.. = 0.02 occurs when n = 7 and p
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= 0.89, but that with Eg,.. = 0.04 occurs when n = 5 and p
= 1.08. One can see again that a lower E, will produce a
solution with more checkpoints and a smaller ratio. This
implies that a more reliable system requires more checkpoints
and must perform checkpointing more frequently towards the
end of the task.

Note that the checkpointing time ¢, is related to the coverage
of acceptance tests; high coverage will require longer ¢..
Although we did not assume any relation between them for our
analysis, the ratio, #./7, in all examples is made to lie in the
range of 1 percent to represent the situation of short
checkpointing time with moderate coverage. This represents a
more practical case than the one of long checkpointing time
with high coverage.

VI. CoNCLUSION

Taking a task-oriented view, we have developed the basic
and extended models to design and evaluate the performance
of checkpointing of real-time tasks. The performance criterion
used in this paper is the real (mean) execution time W for a
task subject to the specified probability of an unreliable result
E at the completion of the task.

The basic model hinges on the assumption of a perfect
coverage of the on-line detection mechanism, i.e., any failure
will be detected upon its occurrence. An optimal checkpoint-
ing strategy under this setting is shown to be equidistant for
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TABLE I
OPTIMUM SOLUTIONS FOR EXAMPLE | WITH ESpec = 0.002.

n ratio | minimum W E

2 0.11 175.708315 0.001970
3 0.42 149.987954 0.001996
4 0.58 142.656881 0.001937
5 0.69 139.498282 0.001928
6 0.77 138.267395 0.001947
7 0.83 138.086742 0.001977
8 0.87 138.650892 0.001960
9 0.90 139.6012768 0.001940
10 0.93 140.717164 0.001983
11 0.95 142.076324 0.001981

TABLE II
OPTIMUM SOLUTIONS FOR EXAMPLE 1 WITH E,,, = 0.003.

n | ratio | minimum W E

2 0.26 160.682392 0.002924
3 0.55 143.680655 0.002963
4 0.71 138.466707 0.002933
5 0.82 136.511351 0.002985
8 0.89 138.213385 '0.002988
7 0.94 136.895475 0.002994
8 0.97 137.866222 0.002932
9 1.00 138.877808 0.002985
10 1.01 140.295496 0.002840
11 1.60 141.831054 0.002524




1340

TABLE III
OPTIMUM SOLUTIONS FOR EXAMPLE 1 WITH E,,. = 0.005.
n ratio | minimum W E
2 0.49 147.385574 0.004520
3 0.77 137.653693 0.004928
4 0.93 135.3368271 0.004999
5 1.02 135.009280 0.004989
6 1.01 125.540305 0.004230
7 1.01 136.429802 0.003747
8 1.01 137.562550 0.003376
9 1.01 138.866307 0.003080
10 1.01 140.295496 0.002840
11 1.00 141.831054 0.002524
TABLE IV
OPTIMUM SOLUTIONS FOR EXAMPLE 2 WITH Espec = 0.02.
n ratio | minimum W E
3 0.400000 163.700223 0.019825
4 0.620000 151.669977 0.019767
5 0.750000 147.325267 0.019755
6 0.830000 145.891900 0.019480
7 0.890000 145.592264 0.019553
8 0.930000 148.122613 0.019403
9 0.960000 147.085528 0.019294
10 0.990000 148.241938 0.019731
11 1.010000 149.694418 0.019847
TABLE V
OPTIMUM SOLUTIONS FOR EXAMPLE 2 WITH Espec = 0.04.
n ratio minimum W E
2 0.470000 157.783088 0.039808
3 0.810000 145.076028 0.039520
4 0.990000 141.816575 0.039909
5 1.080000 141.383623 0.039456
6 1.130000 141.990891 0.038819
7 1.12C000 143.086989 0.035350
8 1.11C000 144.414490 0.032446
] 1.100000 145.900046 0.020928
10 1.050000 147.530024 0.027675
11 1.090000 149.236187 0.026473

any given number of checkpoints. The extended model
includes imperfect coverages of both the on-line detection
mechanism and the acceptance test. We have shown that under
imperfect coverages, E can always be reduced by moving
checkpoints to the right on the time axis. Using this property,
an algorithm is derived which, assuming that the checkpoint
intervals must maintain a common ratio, determines the
minimum W subjectto E < E,.. The significant finding from
the algorithm is in that if a task requires a high probability of
correct execution results, we must do checkpointing more
frequently towards the end of the task. This result is a
departure from the conventional assumption that checkpoints
should be equally distributed throughout the task. The basic
reason of using unequal checkpoint intervals is that the
requirements on program’s correctness outweigh those on
program’s execution speed.

LIST OF VARIABLES

T Total fault-free computation time for a task.

T; Computation time at which the ith checkpoint is
placed.

I; Computation time between the ith and (i + 1)th

checkpoints.
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L Time for establishing a checkpoint (checkpointing
time).

n Total number of checkpoints for a task.

T Sum of /; and ¢., except for i = n.
Time for setting up a rollback recovery.

s Time for setting up a restart recovery.

D Probability of rollback recovery upon detecting a
failure.

q Probability of restart recovery upon detecting a failure.

W Mean execution time for a task.

W;  Mean execution time after establishing the ith check-
point.

V; Mean execution time between ith and (i + 1)th
checkpoints.

Zi Computation time between a failure occurrence and the
ith checkpoint.

Fi(*) Distribution function of z;.

A Failure occurrence rate.

E; Probability of an unreliable result just before the jth
checkpoint.

d Coverage of the on-line detection mechanism.

c Coverage of an acceptance test.

D Combined failure coverage, i.e. D = d + (1 — d)c.
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