
90 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 2,  APRIL 1987 

Intertask Communications in  an Integrated 
Multirobot System 

Abstract-An integrated multirobot system (IMRS) consists of  two or 
more robots, machinery, and sensors and is capable of executing almost 
all industrial processes with efficiency, flexibility, and reliability. Al- 
though the IMRS is motivated by an interesting application, it is 
essentially a distributed real-time processing system with various hetero- 
geneous processes. To support a distributed modular architecture of the 
IMRS, low-level communication primitives are proposed along with their 
supporting funguuge syntax which are typical of real-time concurrent 
programming languages. This is done by 1) carefully examining the 
generic structure and interactions of IMRS processes, 2) comparing and 
analyzing the primitives and syntax developed/proposed for general 
concurrent programming, and 3) using port-directed communications. 

U 
I. INTRODUCTION 

SING a multirobot system (MRS) for manufacturing 
applications has numerous advantages. For example, the 

system throughput or productivity can be increased by 
exploiting the inherent parallelism; structural flexibility  can be 
accommodated for diversified applications; and  even system 
reliability is achievable via the multiplicity of robots. 

Conventionally, MRS’s are all centrally controlled; that is, 
control tasks for an MRS may be distributed over a network of 
processors but are all executed under the supervision of one 
central task. Heterogeneous controllers in such an MRS are 
made to converse via a standard communication protocol, 
e.g., GM’s MAP [ 2 ] .  By using a network to tie MRS’s 
components together, it is possible to have robots working 
together to solve processes,’ instead  of working indepen- 
dently. Although almost all manufacturing processes can be 
handled by the conventional central controller, communica- 
tions bottlenecking and unreliability (that occurs at the central 
controller) become major problems. For this reason  we have 
defined in [ 161 a new MRS, called integrated multirobot 
system (IMRS), as a collection of two or more robots, sensors, 

Manuscript received May 5 ,  198.5; revised  June 30, 1986.  This  work was 
supported in part by the  NSF  under  Grant ECS-8409938 and in part by the US 
AFOSR under  Contracts F49620-82-C-0089 and F33615-85-C-5105. Any 
opinions,  findings,  and  conclusions  or  recommendations  expressed in this 
publication are those of the  authors  and do not necessarily reflect the view of 
funding agencies. 

K. G. Shin is with the  Computer Science and Engineering  Division, 
Department of Electrical  Engineering  and  Computer Science, The University 
of Michigan, Ann Arbor, MI 48109, USA. 

M. E. Epstein was with the  Computer  Science  and  Engineering  Division, 
Department of Electrical  Engineering  and  Computer  Science,  The University 
of Michigan, Ann Arbor, MI 48109.  He is now with the T. J .  Watson 
Research Center, IBM Corporation, Yorktown Heights, NY 10598, USA. 

IEEE Log Number  8613008. ’ “Process” will be used to  denote the industrial output of the  MRS, which 
is accomplished by a set of computational “tasks” executing on one  or more 
processors. 

and other computer controlled machinery, such  that 

each robot is controlled by its own  set  of dedicated tasks, 
which communicate to allow synchronization and concur- 
rency between robot processes, 
the tasks are executing in true parallelism, 
it  is adaptable to either centralized or decentralized 
control concepts, 

0 tasks  may  be  used for controlling other machinery (e.g., 
intelligent device driver for CNC’s), sensor I/O process- 
ing, communication handling, or  just plain computations. 

Further, we have developed in [16] a high-level abstraction of 
IMRS communications, called a module architecture, to 
support an IMRS; this will be discussed briefly in Section 11. 

The reasons for needing a structured solution to the IMRS 
problem are fundamental. The distributed nature of the IMRS 
will  make programming more difficult, error prone, and 
subject to complicated communications control techniques. 
Two immediate places where structuring is needed  is  in the 
design of a module (the computational entity that controls an 
indivisible subprocess in the system) and the intermodule 
communications. Borrowing notions from software architec- 
ture, it is important to encapsulate the implementation of a 
subprocess into a single module, showing  only interface 
information to other modules. If the software is structured in 
this manner, then 

1) the system is easily adaptable, 
2) the system is maintainable, 
3) taking the step from the process structure to  its  module 

implementation is easier, and 
’ 4) the complexity of the system is reduced. 

These are  just some of the benefits of having a well-structured 
module  and intermodule communication structure. Before 
delving into the presentation of the proposed solutions, we 
first look at other approaches used  in related areas and discuss 
why these cannot be ported to the IMRS. 

Numerous robot languages (see [4] for a survey) have  been 
written which  can control more than one robot simultaneously, 
the most advanced being AL 1141. AL allows one program to 
control two robots at once. By using COBEGIN-COEND pairs, a 
programmer can initiate two pseudoconcurrent tasks. They 
can  be synchronized using the event data type (integer 
semaphores). The principal motive  behind this design  was to 
allow cooperation via serializing the execution of tasks for 
each robot’s motions by using events. This restricts the 
potential amount of parallelism that  can be attained. It would 

0882-4967/87/0400-0090$01 .OO O 1987 IEEE 



SHIN AND EPSTEIN: INTERTASK COMMUNICATIONS IN AN IMRS 91 

be more efficient to let each robot process run under the 
control of its own tasks, with synchronization (or rendezvous) 
at designated points in the programs. 

Some work has been done on distributed industrial process 
control [ 191, but the results are not easily transportable to an 
IMRS. This work has described a distributed fault-tolerant 
system used for controlling soaking pit furnaces. The furnace 
system  is controlled by a real-time concurrent language called 
“Multicomputer PEARL.”  PEARL allows the transmission 
of information from one task to another by message passing 
and remote procedure calls. Each furnace is controlled by its 
own microcomputer system, and the microcomputer systems 
are logically paired so should one system fail, the correspond- 
ing mate computer system would control two furnaces. This 
system is reported to be highly fault-tolerant, having only 11 h 
of downtime in more than 24 000 h of use. This figure is 
indeed impressive, but the classes of parallelism involved  in 
the furnace application are far less complex than the classes of 
parallelism needed in an IMRS. The action of one IMRS 
process could completely alter’ the action of another IMRS 
process, or robots might  have to work on one common 
process, requiring heavy communications and tight synchroni- 
zation. Because of the more dynamic nature of the IMRS, a 
more intricate, flexible communications structure is needed. 

Considerable research has been done in concurrent pro- 
gramming languages. Many languages have  been created, 
each utilizing different primitives to allow communication and 
synchronization. Andrews [ 11 has classified concurrent pro- 
gramming languages into three classes: procedure-oriented, 
message-oriented, and operation-oriented. The last two 
classes are most suitable for an IMRS because the IMRS is 
inherently distributed. Some languages which fall into this 
class are distributed processes (DP) [ 101 communicating 
sequential processes (CSP) [I  I], Thoth [8], and  Ada  [7]. 
Although each language uses different communications mech- 
anisms, it is claimed that for common concurrent benchmarks 
(e.g., dining philosophers problem, bounded buffer) the 
mechanisms  of any of these languages can be  used [ 13, and  that 
at an abstract level, their powers are equal. However, for real- 
time industrial process control, these languages are virtually 
untested. We expect real-time process control languages to 
evolve over time and making a statement as to the best 
primitives to use  would be futile. Different applications place 
different demands on the underlying language, and as com- 
puters and robots are used to automate more complex 
processes in  the future, needs will  be generated for new 
communications primitives. Regardless of the communication 
primitives used, it will be necessary to structure the communi- 
cations into well-defined channels for many reasons. 

a) Because a complex IMRS will  be programmed by 
programming teams working independently, a structured 
interface between their respective pieces, while hiding imple- 
mentation details, will be necessary. 

b) Debugging and maintaining the IMRS will be easier if 
declared communication channels exist. 

c) Heterogeneous components will need to be linked via 
communications, and a clear flexible design will allow easier 
integration. 

d) Implementation of distributed communications will  be 
easier. 

Certainly one could come up with more reasons than these 
to justify the need for structured communication channels. 
Ada’s entry-accept mechanism can be viewed as a channel  and 
Digital Equipment Corporation’s VAXELN [6] is the first real 
language that uses ports [7]. However, VAXELN supports 
neither multiprocessing nor port options that are needed for an 
IMRS. Except for these two, none of the other concurrent 
programming languages provide structured channels. In this 
paper, we propose to use ports and various port options to 
structure the intermodule communications of an IMRS. 

This paper is organized as follows. We briefly review in 
Section I1 the module architecture that we have developed in 
[ 161. We advocate the port directed communications for an 
IMRS in Section 111. In Section IV we identify first communi- 
cation needs for each process class and  then propose the 
primitives most suitable for an IMRS. In Section V we 
combine our notions of the module architecture and  the 
primitives into a communication structure. Section VI con- 
cludes the paper with a brief mention of the remaining work 
needed to implement an IMRS. 

11. REVIEW OF MODULE ARCHITECTURE 
As was pointed out in the Introduction, the term “process” 

will be used to mean an industrial (but not computational) 
process, which  could  be decomposed into several subpro- 
cesses. Each subprocess may be accomplished by executing a 
module in a computerized controller. Each module can be 
decomposed into computational tasks. 

For completeness we briefly review the module architecture 
proposed in [ 161. Our development toward a module architec- 
ture began  with the classification of IMRS processes, which  is 
given in Table I. Each process is broken into two or more 
subprocesses, whose intended work may or may  not be 
dependent. The actions taken  (in  both the software and 
hardware) to achieve each subprocess also may or may  not be 
dependent. In Table I we have named each of the four possible 
process classes appropriately. The formal definitions of  each 
process class conform to the different interactions between 
subprocesses and their actions. Examples of each class are as 
follows. 

1) Independent Processes: Two robots exist on the same 
plant floor, but the work for each robot is independent of the 
other’s and is blind to the other’s existence. Each robot may 
depend  on common state variables (e.g., conveyor belt). The 
values of these state variables are determined by many 
different tasks, and thus simultaneous changes must  be 
handled reliably (e.g., by  use of a proprietor or administra- 
tor [SI). 

2) Loosely Coupled  Processes: Tool sharing is an exam- 
ple of this class. If robot A is  using  tool T, another robot B 
may be forced into either waiting for tool T or performing 
another action not involving tool T. The work of each robot is 
independent, but the individual actions taken are not. Collision 
avoidance between two robots executing independent proc- 
esses but sharing the same workspace is another example of a 
loosely coupled process. 



92 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 2, APRIL 1987 

TABLE I 
THE  FOUR BASIC PROCESS  CLASSES 

Subprocesses  Actions  Process  Class 

independent independent independent 
independent dependent loosely coupled 
dependent dependent tightly coupled 
dependent independent serialized  motion 

.~ 

3) Tightly Coupled  Processes: One example of a tightly 
coupled process is two robots which  must grab a long steel 
beam off a conveyor belt. The action of one process must  be 
tightly coupled to the action of the other process, otherwise the 
beam could slip or damage could occur to a robot. 

4) Serialized Motion Processes: We have chosen the  name 
serialized motion because the most practical process illustrat- 
ing this interaction involves serializing the action of different 
robots, If subprocess A must be executed before subprocess B 
can commence, then A and B form a serialized motion 
process. The use  of one robot as a generalized fixture for 
another robot in a two robot system is an example of this. 

5) Work-Coupled Processes: This class is not listed in 
Table I because it is  not a basic process class. If two processes 
are work-coupled, then  should one process fail, the other will 
perform error recovery and take over the responsibilities of the 
failed process. Obviously, the process will also be one of the 
four aforementioned processes. Work coupling may be one- 
way or two-way, depending on  the ability of the equipment to 
be  used toward either process. The furnace pit operation 
described in E191 utilizes two-way work coupling. 

The process structure of an IMRS is hierarchical. The main 
process is divided into many subprocesses, which are further 
divided, and so on. Eventually, the industrial process is 
divided into  many indivisible subprocesses. Each of these 
subprocesses will be programmed with a module. The 
module  architecture refers to the structure of a module  and 
the logical structure andlor communication channels that 
connect the modules  in an IMRS. Note that, when a distributed 
network is used, the hierarchical structure offers several 
advantages, e.g., easier implementation and  better adaptabil- 
ity. 

Because a module controls an indivisible subprocess, we 
will often use “task” instead of “module. ’’ We do this wher, 
we are concerned with the module’s function, and thus the 
work of the primary, not auxiliary, tasks. This notation  makes 
our later discussions more comprehensible. 

We have proposed the module architecture for an IMRS to 
be an n-ary tree, that  is formed by tusk creation. When a 
task is created, it becomes a child of the task that created it. 
This parent-child relationship between the tasks always exists, 
but the amount of communications between the two will  be 
different according to the class of process that the tasks are 
controlling. Under most circumstances, communication chan- 
nels among child tasks will be directly established, with the 
parent task playing a minor role. This is termed horizontal 
communications. Note  in this case that despite the parent- 

’ When  a task begins  executing. 

child relationship via task creation, there is little need  of 
communications between the parent and its child tasks. 
However, in some cases the parent must  tightly control its 
child tasks. This is termed vertical communications, which is 
characterized by a close-knit relationship between a parent and 
its children. Note  that these approaches represent centralized 
and decentralized control, respectively. 

Vertical communications are defined as communications 
between a task and  any  of its descendant tasks. Simple vertical 
communications are those which occur between a task and its 
immediate child tasks. If the standard n-ary tree is drawn with 
children placed under their parents with an arc connecting 
them, communications between a parent and a descendant 
occur vertically in the tree. Horizontal communications are 
defined as communications that occur between tasks that are 
not related vertically (i.e., a sibling, cousin, or uncle 
relationship exists between the tasks). Simple horizontal 
communications are those which occur among the children of 
a common parent. 

Vertical communications are used in most currently existing 
MRS’s. Synchronization of child tasks is achievable by having 
the parent issue directives, i.e., interrupts. This scheme is 
easy to program and efficient, provided that 1) the number of 
child tasks is small, 2) the IMRS processes are not apt to be 
modified often, 3) the parent task is  very reliable, and 4) the 
child tasks are not computationally intensive. However, if 1) is 
invalidated, then communications bottlenecking occurs; if 2) is 
invalidated, then changes will have to be made to more than 
one  task  in the system  and  will result in downtime; if 3) is 
invalidated, then the system is vulnerable to a single point 
failure in the parent; and  if 4) is invalidated, then parallelism is 
not being exploited. 

Horizontal communications ameliorate the  IMRS signifi- 
cantly. Allowing tasks to communicate directly without a 
central controller reduces the chances of a bottleneck by 
exchanging messages among children, keeps all the  code for 
each subprocess local to one module, increases reliability 
because all the subprocesses do not  rely on one central control 
task. and allows more parallelism because  each child task is 
not blocked as often as in the vertical case, where the  child 
must always await a directive from the parent. 

How  may horizontal message communications be realized? 
Each module will contain a message handler (MH), which 
receives and, if necessary, forwards messages  among other 
modules horizontally. The’ MH would be part of the operating 
system  and  would  not  only  act as an interface  message 
processor (performing all the detailed work of the communi- 
cations as in Arpanet [ 13]), but also as a real-time  scheduler. 
The MH for each module will have to decide (based on task, 
message, and communication channel priorities) what is the 
most urgent thread of control to resume. Naturally, the 
structure of an MH depends on the system being used. For 
example, if all the tasks of one module  executed on a 
uniprocessor, then the MH would have to decide if it was more 
important to let  the current task continue or to unblock a 
blocked task. One possibility for giving the user control of the 
MH is to use a rule-based  system for the MH  which allows an 
application programmer to provide the dynamic decision 



SHIN  AND  EPSTEIN:  INTERTASK  COMMUNICATIONS  IN  AN  IMRS 93 

rules. Horizontal communications between  two  tasks involve 
having a message traverse the links from the source MH  to the 
destination MH (naturally the best route would be chosen). By 
providing multiple links to every module, reliability is 
achieved. 

We have briefly summarized the results of our previous 
work contained in [ 161. Particularly, we  have stressed the two 
types  of communications: vertical (centralized) and horizontal 
(decentralized) communications. A more complete justifica- 
tion and examples of our ideas are contained in  that work, as 
well as several other facets not discussed here (e.g., task 
creation and destruction). 

HI. PORT-DIRECTED COMMUNICATIONS 
As is often the case, there is a trade-off in complexity 

between the data structuring facilities and program complexity 
without  the data structuring facilities. We have  found  that 
structuring the communication channels, as if  they were a data 
type, leads to simpler programs. The basis for our intertask 
communications is ports [17]. We first discuss ports before 
proposing in Section IV the communication primitives that use 
the ports. 

Although  such structuring introduces an additional hidden 
overhead, we choose to use ports to achieve this structuring 
due to many advantages including 

accessing a port does not require the program to be 
dependent on the existence of a task (thus fault tolerance 
is improved since communications can be redirected by 
moving the end of a port); 
communications are structured into channels that are 
declared by the user (this is easier to use  than direct 
naming, allows for more reliable and fault-tolerant 
computing, and lowers the number of  needed primitives); 
the ports can be tailored to individual needs, providing 
the benefits of  both one- and two-way  naming. 

One task declares the port and is said to own the port. The 
other tasks desiring to use the port must declare this  intent  in 
their specification sections (e.g., [18] employs a use statement 
in CELL). The declaration section of a port is allowed to 
include restrictions to tailor the port to individual needs. The 
primary benefits are I) the declaration of ports allows for an 
adaptive communication system, 2) a smaller set  of primitives 
can be used, and 3) interfacing different modules  is easier. 
Note  that ports are logical channels; the physical communica- 
tion channels depend  on the underlying implementation. 

In the most general case, there are many users and one 
owner for each port. The number of users can, theoretically, 
be  unbounded  but is limited by the size of the memory buffers 
allocated. Bytes are sent between the users and the owner in 
free format, and it is the responsibility of the primitives that 
access the port to ensure compatibility. One of the primary 
values, however, is that  when a port is declared, restrictions 
1171 can be included to configure the port to certain specifica- 
tions. Restrictions can be placed on either the user end or 
owner end  of the port,  i.e., port user  restrictions or port 
owner  restrictions. Our proposed port restrictions are the 
following. 

I )  Message Format Restriction: This restricts the mes- 
sages at compile time to a declared format. The owner and 
users of a port declare the message format that  the port can 
handle, which  would  then  be  tested for compatibility at load 
time. The format could be a record or a typed formal 
parameter scheme as in Ada. The advantages of this restriction 
are that accidental misuse can be flagged at compile time, the 
declaration shows how the port is used, and the run-time mode 
is  more efficient. Further, an underlying implementation may 
fix the packet size (i.e., 32 bytes in Thoth [8] and the V- 
System  [5]), and this restriction allows compile-time warning 
of  an inefficient size message, i.e., one requiring multiple 
packets. 

2) Message Direction Restriction: By restricting the 
direction of messages through a port, incorrect local usage can 
be  flagged at compile time, incorrect global usage3 can be 
checked  when a task is loaded, and the intertask communica- 
tion structure is easily observable. Each end  of a port is 
declared as a SEND or RECEIVE port. 

3) Port User List Restriction: This is a port owner 
restriction that allows the owner to restrict the set of possible 
users. The advantages are 1) it is possible to create ports 
between only two tasks instead of the current many-to-one 
semantics, and 2) an efficient run-time implementation is 
possible, requiring only load-time verification for conflicts. 

4) Number of Active Users Restriction: This is similar to 
the  port user list restriction, except instead we limit the 
number  of active communicating users of the port. The 
rationale behind  this restriction is that it limits the run-time 
message buffer space permitting static buffer allocation 
instead of dynamic. As in the prior restriction, an error results 
if a conflict is detected during loading. 

5) Port  Filter Restriction: A filter is a concurrently 
executing task that intercepts, processes, and relays messages. 
A filter is placed on either the user end, the owner end,  or 
both, as if the port was cut into two pieces, with the filter 
spliced in. The filter task declares the port along with the 
restrictions. Primitives in the filter referencing the port cause 
the messages to be transferred between the filter and the other 
module (or vice versa). To communicate with the module that 
declares the port and filter, the primitives in the filter 
reference the predefined port name FILTER. For example, 
suppose module M owns a port P with a filter F as a 
restriction. Then in filter F, primitives addressing P will 
communicate with a user of port P, while primitives address- 
ing FILTER will communicate with module M. An example 
filter will be a bounded buffer used to simulate a nonblocking 
SEND. If all of a port’s messages needed to be  passed through 
the same filter, then the filter is placed on the owner’s end. 
Likewise, if a particular user needs its own filter, then it would 
be  placed at the user’s end. The filter tasks raise exceptions 
when necessary, invoking handlers in either the filter or the 
task  using the port. 

Both a  user  and  the  owner of a  port may accidentally  declare its 
“opening” as an  input  end of the  port.  Since  we  are  allowing  separate 
compilation, this cannot be flagged  until the tasks  are  loaded,  even  though all 
the communications on the  port  are  compatible with its  definition.  This  is 
incorrect  global  usage but is  correct  local  usage. 



94 IEEE  JOURNAL OF ROBOTICS  AND  AUTOMATION,  VOL.  RA-3,  NO. 2 ,  APRIL 1987 

6) Timed Port Restriction: Since we are dealing with a 
real-time system, we provide a check that messages are 
delivered within a time limit. A timed port restriction can  be 
placed at both the user and owner end. If either the  one-way 
message or two-way rendezvous (depending on the primitives) 
is  not completed by the designated time, then the operating 
system raises a timeout exception in the originating task. 

7) Port Priorities: Port priorities are used to resolve 
queueing conflicts. A single port priority declared by the 
owner is sufficient. The owner end priority is used to 
determine the highest priority nonempty port for nondeter- 
ministic constructs. We could also allow user end priorities for 
an additional degree of flexibility, but we find the overhead of 
this approach is  not justified. 

These restrictions provide the user an easy way  of tailoring 
and adjusting the communication channels the programs use. 
Rather  than requiring inline code that fixes the communica- 
tions to a task, the code fixes the communications to a port. 

IV. COMMUNICATION PRIMITIVES SUITABLE FOR AN IMRS 

Designing a set of primitives for a language is a difficult 
task. The primitives should be general enough to solve a broad 
class of problems on  many architectures, yet  at the same time 
provide efficient reliable structured elegant solutions to them. 
CSP,  DP, and  Ada have vastly different semantics, and 
although each language can be used to solve virtually any 
concurrent application, wide variations exist in their elegance 
and efficiency [20]. Our work is geared toward IMRS 
processes which can be categorized under the five process 
classes of Section I1 and [16]. These five classes are broad 
enough to include almost all manufacturing processes. The 
categorization places stringent demands on the communica- 
tions system, since each class has different interactions 
between subprocesses and actions to  be taken. We will begin 
with the identification of communications needed for each 
IMRS process class which will then  lead to selection of the 
primitives. 

A .  Communications Needed for  Each  Process  Class 
Independent Process: Use and update of state variables 

through proprietors will be the most  common communications 
need  of an independent process. Another use of state variables 
for independent processes is a job reporting process that 
performs inventory, statistics, and material-handling opera- 
tions. Depending on the urgency of the communication, 
different methods are required. Nonblocking message passing 
would  be used when message receipt is not  time critical or 
mandatory. Blocking message passing  would be used  when the 
sending task could  not continue until it knew for certain that 
the destination task had received the message (e.g., sending a 
status update to a database in the console room). A task that  is 
part of an independent process may  even  need a response to a 
message before it can continue (i.e., a state variable must be 
changed if the task is to continue operating). These needs 
require message passing and remote procedure calls. Not 
surprisingly, these are the communication primitives needed 
for the furnace application [19], which  can  be classified as an 
independent process. 

Loosely Coupled  Process: Because  the actions depend on 
one another, the controlling tasks are constantly sending 
messages  between themselves regarding their actions and 
status. When a task reaches a point in execution where it is 
about to perform the  next step in  the subprocess, it  needs to 
know the status of the other subprocesses. It can either look 
into a local database, ask the other process for its status, or ask 
a server task for information about the state of the process. 
The first approach requires message passing between tasks, 
the second remote procedure calls, and the third a proprietor 
or monitor. Because the tasks control independent subpro- 
cesses, synchronization points between  tasks are not needed. 
Thus nonblocking semantics are preferred to this process 
class. The communications must be fast, since actions in the 
process are delayed while the communications are being 
performed. Efficiency is less of a concern here because the 
frequency between messages is  bound  by the actions of the 
process, which are infrequent in comparison to processor 
cycles. 

Tightly Coupled  Process: The subprocesses in  this class 
are controlled vertically, with the child  being a slave of the 
parent. The child should always perform an action requested 
by the parent immediately. The child will probably have to 
return a status message after each directive from the parent, so 
the parent can decide the next directive to give to the child. 
Thus a remote procedure call is sufficient. An interrupt 
approach would lead to a more inefficient and unnatural 
solution for tightly coupled processes. Since the remote 
procedure calls will likely be executed often, it is crucial that 
its implementation not entail too much overhead. Roberts et 
al. [15] suggest that this may be difficult, and  that lower level 
primitives should be used instead. 

Serialized Motion Process: This class requires one or 
more subprocesses to be performed before another subprocess 
can commence. In the simplest of cases, this class simply 
requires SIGNAL/WAIT synchronization primitives. In more 
complicated cases, information would  have to be conveyed 
between tasks, so the blocking message passing could  be used. 
We prefer to use messages for both cases, with  null  messages 
for SIGNAL/WAIT. The only  difficulty  is  that synchronization 
between more than  two tasks is difficult and a primitive for 
this is needed. 

Work-Coupled Processes: Each task will  have to maintain 
an updated database of all  the other tasks  to  which  it is work- 
coupled. Thus blocking message passing is needed (premature 
unblocking  of a task would cause problems if a crash occurred 
before all of the sent messages were received). As  soon as one 
of the tasks of the work-coupled process receives the  update 
message, the original task may unblock. Care must  be  taken 
that the update messages are properly forwarded to each task 
involved  in the work coupling. That is, the messages  will have 
to be  sequenced so the database can be correctly updated 
should the messages arrive in improper order. 

4 These  processes  are  the ones handled in AL by using events 1141. 
5 This probably  would  not  happen because  the delay  between  the  steps in an 

IMRS process  are much greater than the  message  propagation delay but should 
nevertheless be performed  for  reliability. 



SHIN AND EPSTEIN: INTERTASK COMMUNICATIONS IN AN IMRS 

B. The Primitives Needed 
Choosing the primitives for an IMRS is as, if  not more, 

important as the robot interface. Using ports takes major 
strides towards integrating individual modules, but the primi- 
tives dictate how easy it is to perform the communication and 
synchronization between modules. AS mentioned in the 
Introduction, there are many concurrent programming lan- 
guages, but the usefulness of each primitive has not  been 
proven in distributed real-time systems. As distributed systems 
become more popular, we expect the communications to 
evolve. On the basis of the discussions in Sections I11 and IV- 
A, we have selected the primitives as shown in Table I1 that 
are appropriate for an IMRS. However, we will  not discuss the 
actual design  of a robot programming language, which 
requires other developments such as a distributed real-time 
operating system, CAD/CAM interface, etc., and  is expected 
to take several years to complete. 

Primitives SEND, RECEIVE, and REPLY are used for both 
blocking and nonblocking message passing (see [8] for a good 
discussion on these primitives). The semantics are straightfor- 
ward, as  are their implementations. If task A issues a SEND to 
task B via a port, then task A will  remain  blocked  until it has 
received a REPLY from task B. Task B executes a RECEIVE on a 
port. If task B executes its RECEIVE before the task A’s SEND has 
occurred, it becomes blocked. Task A remains blocked  until a 
REPLY is executed by task B ,  thus every SEND-RECEIVE sequence 
requires a REPLY to unblock tasks. The REPLY is nonblocking 
because task B knows that task A is already blocked at a SEND, 
thus when the REPLY is executed, task B does not  need to block. 
Two-way  naming (CSP) can be attained by using a port user 
restriction. On the other hand, one-way  naming (DP, Ada) can 
be attained by using a port without user restrictions. Non- 
blocking semantics are attained via a bounded-buffer port 
filter. An advantage of these primitives is  that the protocol is a 
two-way message transfer so remote procedure calls are 
effectively simulated, and the work done by Birrell and  Nelson 
in creating reliable communications is applicable [3]. 

An efficient implementation of SEND-RECEIVE-REPLY is not 
difficult. By using queues for tasks  blocked at a SEND or 
RECEIVE, tasks are removed from the active task pool  and  busy 
waiting  is avoided. Using ports introduces additional run-time 
overhead (due to the extra level of indirection), but the 
implementation is not any more complex than  the  implementa- 
tion discussed by Roberts et af. [15]. Roberts et af. also 
discuss  why  busy  waiting  might  be preferred over queues 
(which involve context switches when  implemented on a 
uniprocessor). They state that context switches are more 
expensive than  busy waiting when the .communications are 
significantly more frequent than the computations. Except in 
the  tightly coupled processes of an IMRS, the intertask 
communications will occur relatively infrequently in compari- 
son to the computations (i.e., at natural intervals in the IMRS 
process, which are few and far between). Thus ways  need to 
be investigated to allow busy  waiting for primitives using ports 
in a vertically controlled tightly coupled process. One possibil- 
ity is to create a process type restriction, that allows the user 
to specify the process class in  the port. The code generated for 
a port could then use the process type restriction to optimize 

95 

TABLE I1 
COMMUNICATION PRIMITIVES NEEDED FOR AN IMRS 

Primitive 

SEND 
RECEIVE 
REPLY 
QUERY 

RESPONSE 

ORDER 
WAITFOR 

Semantics 

blocking SEND 
blocking RECEIVE 
nonblocking REPLY 
used to asynchronously  invoke  statements in one task from 
another  task; preemption may occur  depending on the 
priorities  given in the ORDER statement 
a block of code  at  the  end  of a task that is 
asynchronously  invoked by queries  from  other  tasks 
used to  prioritize  conditions in a task 
multiple-task synchronization  and communications 

the produced code. There are, of course, other ways to cause a 
compiler to produce different code (e.g., metacommands), 
and the advantages of each must  be examined. 

The QUERY, RESPONSE,  and ORDER statements are used to 
allow one task to interrupt another task. When a task needs 
information from another task, it queries the other task 
through a port. This is similar to an exception being raised  in 
Ada or  PL/I, except it happens across task boundaries. This 
cannot be simulated by using multiple tasks, because tasks 
cannot share common variables. The appropriate RESPONSE 

handler at the other end  of  the port is then executed. Two 
differences between the QUERY-RESPONSE mechanism  and  Ada 
exceptions are 1) Ada does not  allow parameters to be passed, 
and 2) after an exception handler has executed, control does 
not continue from the interrupted point. The QUERY is thus 
similar to a remote procedure call, except it preempts the 
current thread of control. The QUERY causes the RESPONSE to be 
raised in the task that owns the port Portname, provided the 
user is doing the QUERY. Alternatively, but less useful, the 
owner could execute the QUERY and one of  the users would be 
interrupted. (A parent could query its children to check their 
status.) 

A technical problem with the QUERY-RESPONSE is that in a 
real-time system, a more urgent operation should  not  be 
interrupted by a QUERY. Silberschatz [ 181 has proposed an 
ORDER statement, which is remotely similar to what we need. 
His ORDER statement is used in CELL to specify the priorities 
of threads of execution as they become unblocked. The ORDER 

statement is essentially a directive to a user programmable 
scheduler and contains a list of the different sections of a task 
arranged according to their priorities; a preemption requested 
by a QUERY will occur depending on the ORDER. The sections of 
a task that appear in  the ORDER statement are the RESPONSE 

handlers, procedures, functions, and background code. This 
gives  the programmer real-time control over the different 
sections of a task, which is needed  in an IMRS and likely to be 
needed  in other process control systems. 

The last primitive is the WAITFOR primitive and  is  needed to 
allow more than two tasks to synchronize and communicate. 
Consider, for example, how to perform three-way synchroni- 
zation and communication with  the other primitives. One 
approach is to have one task issue two consecutive RECEIVES. 
The other two tasks would then issue SENDS to this task via a 
port. This simple solution unfortunately has flaws. First, the 



96 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3,  KO. 2, APRIL 1987 

asymmetry  allows  communications  only  between the sending 
tasks  and the receiving task. Even  though three tasks are 
synchronized, the two  sending tasks cannot directly communi- 
cate. Secondly, the solution is not  very safe, since accidental 
misuse  could easily occur if the wrong task entered the three- 
way  synchronization by performing a  SEND. Thirdly, the 
source  code  in all three tasks does  not  make clear what is really 
intended. Finally, this method is inefficient as the number of 
tasks grows.  The problem is that the SEND-RECEIVE is  designed 
for a two-way  rendezvous only.  The WAITFOR primitive is our 
proposed primitive to perform  n-way  rendezvous. 

A call to WAITFOR includes a message, a function name,  and 
a list of the tasks with  which to synchronize. The semantics are 
as follows. When a task executes a  WAITFOR, it remains  blocked 
until all the tasks named in its WAITFOR list have  executed a 
WAITFOR. When a set of tasks unblock  because their WAITFOR 

list becomes satisfied, the named function in  each WAITFOR 

would  be  executed.  When the function is completed,  execution 
of the task continues after the WAITFOR. The functions would 
have  read  access to all the messages  pooled by the tasks 
involved  in the synchronization  via the WAITFOR. The  rationale 
behind  having these functions is that  each task will have to 
respond differently according to the messages. The function 
would  be written by the user  and  would return a single 
message by operating  on the pooled  messages.  To be correctly 
used, if task A executes a WAITFOR, it should  not be allowed to 
either unblock other tasks yet remain  blocked or unblock itself 
yet  have a task on one of the unblocking tasks’ WAITFOR lists 
still remain  blocked.  Since it is too costly to ensure this 
feasible at run-time, the user is made responsible for avoiding 
deadlock  and  ensure correct usage. 

Note that this is not a language primitive but a system call 
that provides  an easy-to-use method of multitask communica- 
tions and synchronization. Further, note that since many tasks 
are involved in a symmetrical  rendezvous, ports are not 
applicable, so the WAITFOR does  not  use ports. To implement 
the WAITFOR,  a message  will  have to be sent to every  processor 
that contains a task in its WAITFOR list. One  message  would 
originate and  be  relayed  among the necessary processors. 
Except for an  unavoidable  framing  window, the synchroniza- 
tion occurs  simultaneously.  Once again, it is intended that each 
task unblocking by another task’s execution  of a WAITFOR is 
named  in all the WAITFOR’S of the unblocking tasks. That is, 
each  unblocking task has identical WAITFOR lists. To require 
this would  need  run-time testing, and thus the looser semantics 
are preferred. 

How  should  we  handle  nondeterminism  and  dequeueing of 
messages? To obtain nondeterminism,  Ada’s SELECT statement 
is  preferred. We do not really want  complete  nondeterminism 
in an  IMRS, since we  must  always  be able to predict what will 
occur  in a given situation. Thus if more  than  one SELECT 

alternative is open (i.e., ready to communicate),  we  choose the 
message  in FIFO fashion  from the highest priority port. (See 
the port priority discussion in  Section 111.) Silberschatz [171 
prefers complete  nondeterminism  in  dequeuing  messages  from 

It may even  be possible to define a predefined array  or  record of task 
names.  Rather than giving a list of task names to WAITFOR, the record could 
be  given.  This could speed run-time efficiency and may help debugging. 

a  port. This  will  not  work  in a real-time system. Alternatively, 
Gentleman [8] proposes that port priorities can  be  simulated by 
using RECEIVE-Specific messages  (two-way  naming), or by 
using  an additional task to receive the message.  These 
alternatives can  be  used  but lead to more  unstructured 
solutions. The queueing  and  dequeueing  should  be  handled by 
a systematic set of rules, not  by  burdening the application 
programmer.  If ports do not  have a priority, they are given a 
default priority lower  than  any user-specifiable priorities for 
ports. This  scheme  will cost slightly more to implement  than 
nonpriority ports because the run-time efficiency can be 
spared at a cost of extra storage by appropriately using 
pointers into multiple linked lists. 

V. BACKBONE FOR PROGRAMMING  LANGUAGE FOR AN IMRS 
In this section we  combine all our  notions  by  proposing a 

new  robot  programming  language, called LIMS  (Language for 
Integrated Multirobot  Systems),  that is necessary to program 
an IMRS. LIMS will have similarities with  Ada  and AL, yet 
neither of these languages  provide the features we need. 
Modifying either of these to our  needs  would  cause  more 
confusion  than  simply extracting the needed features. Our 
presentation of LIMS is incomplete, omitting details not 
pertinent to the IMRS intertask communications or module 
architecture. The presentation is broken into two subsections, 
the first deals with the module structure, and the second  with 
the communication primitives. 

A .  The  Module  Structure 

LIMS  provides three distinct program units, modules, 
tasks, and subprograms which are hierarchically arranged. 
An IMRS consists of several large processes, which  can  be 
recursively divided into many  subprocesses. As discussed  in 
Section I1 and [16], this recursive subdivision of processes 
leads to  a treelike structure. Eventually the leaf  nodes are 
reached,  which  correspond to indivisible subprocesses.  The 
physical process  hierarchy  now yields way to the software 
hierarchy. Each  of the nodes  in the process tree will  be 
controlled by modules, which are executing  in parallel. A 
module  will consist of several concurrent tasks, each of  which 
can  contain  subprograms (i.e., procedures  and functions). We 
only discuss modules  and tasks here, since these are the 
concurrently  executing entities. The  subprogram unit is 
identical to the Ada  subprogram unit (see [7, ch. 61). 

Modules  and tasks are very similar to  each other and 
resemble  Ada tasks. Each will contain  two  components, a 
specification and a body. In the grammars that follows, an 
item in braces { can  be  used zero  or more times, an  item ir? 
brackets [.] is optional (i.e,, can  appear  zero or one time). 
Statements  within  two  dashes (--) are comments. A module 
specification is  given in Table I11 and the body  of a module 
will take on the form as shown  in  Table IV. 

The module specification declares 1) the tasks that are 
created when the module is created (i.e., all the bodies  begin 
execution concurrently), 2) the response handlers, 3) the ports 
that it  owns,  along  with the needed restrictions, and 4) the 
ports that it uses, along  with the needed restrictions. Each 
declared  response  handler  must  have a corresponding  handler 



SHIN AND  EPSTEIN:  INTERTASK  COMMUNICATIONS  IN  AN  IMRS 

TABLE 111 
A MODULE  SPECIFICATION 

module-spec :: = 

dec-option :: = 

param-list :: = 

owneroption :: = 

useroption :: = 

usages :: = 
task-or-mod :: = 

timeunit :: = 

module mod-id 
[is 
{dec-option;} 

end [modid] ] ;  

task task-id 
lresponse resp-id [param-list] 
Jport port-id param-list {owneroption} 
luseport port-id param-list {useroption} I 

almost  equivalent  to Ada formal-part [DoD82] 
--we allow NULL  parameter lists.-- 

usage = usages 
\#users = integer-const 
luserlist = (task-or-mod {; taskor-mod}) 
I filter = task-id 
I timeout = numeric-const timeunit 
lpriority = integer-const 

usage = usages 
lfilter = task-id 
I timeout = numeric-cor 

send I receive I query I 
task-id I mod-id 

msec I sec 

process-type :: = INDEP I LOOSE I TIGHT 

nst timeunit 

response 

SERIAL 1 WORK 

TABLE 1%’ 
A MODULE  BODY 

module-body :: = module body mod-id is 
[declarative-part] 
[hardware 

hardware-decl 
{hardware-decl}] 

work-step 
{work-step}] 

[order-statement] 
begin 

[response 

[work-schedule 

sequence-of-statements 

response-handler 
{response-handler}] 

[exception 
exception-handler 
{exception-handler}] 

end [mod-id]; 

hardware-decl :: = --Implementation-dependent, these declarations 
will contain  information  concerning physical 
devices, I/O channels,  etc.  This  is  similar  to 
PEARL’S  divisions [STEU84] and AML’s defio 
[IBM81].-- 

work-step :: = integer-const I subprogramcall {, 

order-statement :: = (priority-id {; priority-id}) 

priority-id :: = mod-id I resp-id I excep-id 1 subprogram-id 
response-handler :: = when port-id.resp-id { Iport-id.resp-id} 

[actual-param-list] * 

subprogram-call}; 

sequence-of-statements 

exception-handler :: = when excep-id { lexcep-id] paraml is t  =, 

sequence-of-statements 

97 

in the module body, otherwise a load error will result. The 
port owner and user options are the restrictions discussed in 
Section III. The usage (message direction) restriction cannot 
use the Ada  modes in, out, and in out because they do not 
match  uniquely to our primitives. Thus we  must  use  modes 
which correspond to our communication primitives that use on 
the ports. When an owner declares a usage restriction, the 
owner can only access the port via the primitive named. A port 
user can also declare a usage restriction. By declaring usage 
restrictions, it is  easy to examine the communications taking 
place through the port, and compile time checking can be done 
to make sure each port is correctly used. When the tasks are 
loaded, compatibility between the usages can be checked just 
once. Note  that a task that issues a RECEIVE on a port must 
eventually issue a REPLY on the same port to complete the 
protocol. Also note  that the userlist restriction syntax allows 
either a task or module to be named. This is because the two 
are identical as  far  as the communications go. 

A module  body is similar to an Ada task body, the  only 
differences being that after the declaration section we include 
two divisions and an ORDER statement, and before the 
exception handlers there are response handlers. 

The first division is a hardware division, which allows the 
programmer to define the process dependencies for the 
program. Examples might  be the existence of a gripper switch, 
force sensor, or vision system. We leave this unspecified, for 
this is implementation dependent, i.e., a welding system will 
have one set of types or verbs, while an assembly system will 
have a different set. 

We also provide a work  schedule. division. The philosophy 
behind this is to place all the statements that modify the 
process environment into one section at the beginning of the 
module body. By doing this, it is easy to examine and  modify 
the function  of a module and process. The control logic for the 
process would be included in the module’s sequence-of- 
statements, but the actual work in the process would  be 
performed by executing the next step in the work schedule via 
a PERFORM primitive. This is valuable when the steps of a 
process  can  be statically determined and are expressible in 
such a schedule. If this can be done, then a work schedule 
division can make the programming easier. If this cannot be 
done, then the standard approach of  mixing computations with 
process control steps must be used. 

The ORDER statement indicates the urgencies of each section 
of code. This is used  when there is more than one legal thread 
of control in a module (e.g., several active response or 
exception handlers). The mod-id must correspond to the 
name  of the module, and each named identifier must exist. The 
first identifier is given priority 1 (the highest priority), the 
second priority 2 ,  and so on. This scheme requires all the 
background code for the module have the same priority as well 
as each entry block with the same name. We prefer this to the 
alternatives of providing a priority at the location of the 
definition of each prioritizable region or prioritizing according 
to labels. Our scheme allows easy comparison and  modifica- 
tion  of relative priorities. These priorities are not to be 
confused with task priorities. Task priorities are used to 
specify  which task gets control if the tasks are executing on a 



98 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 2, APRIL 1987 

TABLE V 
SYNTAX OF THE COMMUNICATION PRIMITIVES 

-~ -. ~~~ 

send-command :: = send port-id [actual-param-list] 
receive-command :: = receive port-id (runtime-tid, parameter {, parameter}) 
reply-command :: = reply p o h i d  (runtime-tid, parameter {, parameter}) 
query-command :: = query port-id.resp-id [actual-param-list] 
waitfor-command :: = identifier :: = waitfor(function-id; 

task(or module)-id {, task-id}; 
parameter {, parameter}) 

getmess-command :: = getmess(modu1e-id) 
actual-param-list :: = equivalent  to Ada’s actual-parameter-part 

uniprocessor. The ORDER priorities indicate when a QUERY 

should  be  handled. 
A response  handler  looks similar to an  exception handler, 

except  it  provides a parameter list. One restriction must  be 
placed  on  response handlers: they  cannot  change the value  of a 
local variable. This restriction is placed to avoid  erroneous 
results that could arise if a queried  response alters the value  of 
a local variable that was  being  used  when the interrupt 
occurred, Hence the name “query” is given  when  accessing a 
RESPONSE handler, for the handler  can QUERY a local variable 
but  cannot  change it. 

A task  in  LIMS is defined  almost exactly the same  way as  a 
module.  The  major differences are: . 

1) instead  of the keyword module beginning the specifica- 

2) a task specification cannot  declare  another task as a 
tion  and  body, the keyword task is used; 

dec-option. 

The rationale behind this design is that an indivisible subpro- 
cess is being controlled by the module.  This  subprocess  may 
require things to be  done in parallel, so we  allow  concurrent 
tasks. To be able to view the structure of the subprocess  and 
module, we should  be able to locate easily a subprocess 
function in terms  of  its controlling program, Le., module. If 
tasks could create other tasks, this would  not  be the case. 

We  have  omitted  many  needed primitives from our defini- 
tions given here, for example,  communication primitives, 
renaming declarations, representation clauses, and USE and 
WITH statements (to facilitate separate compilation). Variants 
of these and other primitives will have to be  introduced to 
make this a complete  language,  but  we  only discuss the issues 
pertinent to the module architecture and intertask communica- 
tions structure here. 

Note  that  we  omitted  discussion  concerning task and  module 
priorities. Our work is based  on the assumption that tasks and 
modules  execute in true parallelism. With this assumption, 
task  and  module priorities are not  needed.  However, if each 
task  does  not  execute  on a dedicated  processor,  then true 
parallelism is unattainable, and priorities will  have to be 
given. Besides, task and  module priorities may  not  be 
independent  of port priorities. A low priority task may  need to 
send a crucial emergency  message  through a high priority port 
that  preempts a task of  higher priority.  The message  handler 
discussed  in  [16]  and  summarized  in  Section I1  will  have to 
know  how to resolve these conflicts arising from task priorities 
and  message priorities. 

The tasks of a module  begin  execution automatically when 
the module is created. In [16] the need for a COSTART primitive 
was discussed. The costart would  be responsible for creating 
modules, establishing the link between the logical and physical 
communication  channels,  and  allowing  dynamic specification 
of ports (as opposed to statically declaring them  as  we  have 
discussed here). 

B. The Communication Primitives 
We  now are ready to discuss the syntax  of the communica- 

tion primitives as shown in Table V. 
In the commands  of  Table V, the parameter lists are of the 

standard  Ada form.  The parameter lists for the RECEIVE and 
REPLY are identical to actual-parameter-list,  except  they 
must  begin  with a run  time  task identifier. Since the SEND- 

RECEIVE-REPLY sequence  can  allow  more  than  one REPLY to be 
pending for the same RECEIVE, one  must  be able to identify the 
task whose SEND was just processed to REPLY correctly to it at a 
later time. This is similar to those in Thoth [8] and the V 
Kernel [5].  The  semantics for the SEND, RECEIVE, and REPLY 

have  already  been discussed, and the syntax is easily under- 
stood. 

The QUERY command  behaves like a remote  procedure call. 
The task executing the QUERY is blocked  until the response 
handler  has  completed executing. The  only difference between 
the QUERY and a remote  procedure call is that  preemption  that 
takes place  with the QUERY command. 

The WAITFOR command  has a syntax  which  allows the 
specified semantics,  but a few final points must  be  made.  The 
function that is executed  when the synchronization is complete 
must return the same  type as the identifier. The  task-id’s or 
module-id’s are task or module  names,  not the run  time  task 
identifiers used’in the RECEIVE and REPLY commands.  When the 
function is executing, it  must be able to access  each  message 
pooled by each task. We propose the GETMESS command  to 
achieve this. The function can  execute the GETMESS command 
giving a task-id.  This will set the parameters  given  in the 
function definition to the parameters  given by the designated 
task. The parameters are read-only to avoid errors if several 
tasks share a common  database  of  messages  on a single 
processor. By repeatedly  performing GETMESS’S, a function  can 
correctly build a single response for the task  executing the 
WAITFOR. The only  disadvantage  with this approach  is  that 
problems arise if each task pools a different size message. The 
function would  then  have to know the exact format of each 
message  pooled by each task. A simple solution is to have the 



SHIN AND EPSTEIN: INTERTASK COMMUNICATIONS IN AN IMRS 

GETMESS set a predefined record and size variable. The variable 
would  hold  the number of parameters pooled by the named 
task  in the GETMESS. The record would  hold the value and  type 
of  each parameter. We do not feel this extra power is 
warranted for our needs, and that requiring each task to pool 
the same format message is sufficient. 

Using these primitives with port-directed communications 
as  we have described here will  yield a powerful communica- 
tion system. Our work clearly provides one-to-one and  many- 
to-one communication schemes. By reversing the roles of an 
owner and its users, the owner can send messages, or query 
response handlers in a one-to-many fashion. However, to be 
consistent, this one-to-many will still only  send the message, 
or invoke the response handler in just one of the users. The 
user to take part in  the communication is  chosen nondeter- 
ministically. If we want true one-to-many  semantics (i.e., a 
broadcast), we can adapt our scheme as follows. Define two 
new usages, SENDALL and CALLALL in addition to the already 
existing. Only a port owner can  name  these  usages as a 
restriction, so a slight modification of the grammar will  be 
required. When a port owner performs a SEND to a port 
declared as SENDALL, the SEND will  be sent to all  its users. Upon 
the first REPLY being sent back, the owner will  unblock. This is 
almost  identical to Cheriton’s work with the V Kernel [5], 
except  he  lumped tasks into groups. Our method unfortunately 
calls for many ports to be declared, but other advantages result 
(i.e., not  having to keep track of group id’s, and restricting 
messages to different sets of users only requires one new 
statically declared port, as opposed to having  many group 
id’s). The semantics concerning multiple replies can be 
handled  identically to Cheriton’s approach. By combining his 
notions  with our ports and restrictions, it  is possible to attain 
powerful communications capabilities with  only  having to 
execute one primitive in the source program. 

VI. CONCLUSION AND DISCUSSION 

In  this paper we have explored the various communication 
demands brought about by five different types of processes: 
independent, loosely coupled, tightly coupled, serialized 
motion, and work-coupled processes. To support the module 
architecture proposed in [16], we  have developed a set of 
communications and synchronization primitives needed for an 
IMRS, and a concurrent language syntax using  the  selected 
primitives based  on port-directed communications. The devel- 
opment is  based  on  both  the distinct complex nature of an 
IMRS  and our knowledge  of the existing concurrent lan- 
guages. 

However, our current accomplishment is just a beginning 
towards the final goal  of developing a complete IMRS. Some 
of the remaining work includes the following. 

A complete operating system kernel must  be developed. 
The V System [5] has three major components, the 
interprocess communications (IPC), the kernel server, 
and the device server. Our discussion on the communica- 
tion primitives is similar to Cheriton’s IPC. We have only 
tackled one third of the work involved  in designing a 
complete system like the V system, the kernel and device 

99 

servers still need to be designed. This will prove to be 
difficult because of all the different devices and sensors 
which  must  be incorporated into the system along with 
the real-time software. 
The message primitives must  be determined and  how to 
process messages based  on task priorities, message 
urgencies, and time limits and ports. 
An IMRS programming language must  be designed 
which allows simple efficient and reliable programming 
of the IMRS processes. Creating a simple robot program- 
ming language that can be  used by people of different 
experience (that also allows the power of an IMRS) will 
be quite challenging. 
Complete timing analysis with various IMRS implemen- 
tations must  be performed. There are many factors to 
consider for the timing analysis; for example, time for 
monitoring the IMRS environment, processing sensory 
data, and deciding an optimal action to take, time for 
communications, queueing, code execution, and  even 
time for actuation. All these components must  be 
considered together using both analytical models and 
simulation tools. 

Undoubtedly, the IMRS will  play a significant role in future 
robotics and automation, leading to improvement of  both 
manufacturing productivity and robot safety. We feel that the 
communication structure presented in this paper along with the 
module architecture in [ 161 should form a good foundation for 
developing such an IMRS. 

REFERENCES 
G.  R.  Andrews  and  F. B. Schneider,  “Concepts  and notations for 
concurrent  programming,” ACM Computing Surveys, vol. 15, pp. 
3-43,  Mar.  1983. 
A. D. Brown,  “Using  communications  standards  to  link  factory 
automation  systems,” Machine Design, pp.  123-126,  Aug.  23, 1984. 
A. Birrell and B. Nelson,  “Implementing  remote  procedure  calls,” 
ACM Trans. Comput. Syst., vol. 2, pp. 38-59,  Feb.  1984. 
S .  Bonner and K.  G.  Shin, “A comparative study of robot  languages,” 
Computer, vol.  15,  pp.  82-96,  Dec.  1982. 
D.  R.  Cheriton,  “The  V  Kernel:  A  software  base  for  distributed 
systems,” ZEEE Software, pp.  19-42,  Apr.  1984. 
Software Product Description: VAXELN  Toolkit, Digital  Equip- 
ment Corporation,  Version  2.0,  SPD  28.02.02, May 1985. 
US Dep. of Defense, Reference Manuul for  the Ada Programming 
Language, July 1982. 
W.  M. Gentleman,  “Message passing between  sequential  processes: 
The reply primitive  and  the  administrator  concept,” Software Practice 
Experience, vol.  11,  pp.  435-466,  1981. 
P. B. Hansen, The Architecture of Concurrent Programs. 
Englewood  Cliffs,  NJ:  Prentice-Hall,  1977. 
-, “Distributed  processes:  A  concurrent  programming  concept,” 
Comrnun. Ass. Comput. Much., vol.  21,  pp.  934-941, Nov.  1978. 
C. A.  R.  Hoare,  “Communicating  sequential  processes,” Commun. 
Ass.  Comput.  Mach., pp.  666-677,  Aug.  1978. 
IBM Robot  System/l:  AML Concepts and User’s Guide, IBM 
Corp.,  Publication  GA34-0180-1,  1981. 
J. M. McQuillan  and  D.  C.  Walden,  “The  ARPA  network  design 
decisions,” in Computer  Neiworks. Amsterdam:  The  Netherlands, 
North-Holland,  1977,  pp.  243-289. 
S. Mujtaba  and R. Goldman,  “AL  user’s  manual,” SAZL Report, Jan. 
1979. 
E. S .  Roberts ef  al., “Task  management in  Ada-A critical  evaluation 
for  real-time  multiprocessors,” Software Practice Experience, vol. 

K. G.  Shin,  M.  E.  Epstein,  and  R.  A.  Volz, “A module  architecture  for 
an integrated  multi-robot  system,”  Robot  Systems  Division,  Center  for 
Research and Integrated  Manufacturing  (CRIM),  The University of 

11,  pp.  1019-1051,  1981. 



100 IEEE  JOURNAL OF ROBOTICS  AND  AUTOMATION,  VOL. RA-3, NO. 2, APRIL 1987 

Michigan, Ann Arbor,  Tech.  Rep. RSD-TR-10-84, July 1984 (also in 
the Proc. 18th Hawaii Int. Conf. System Sciences, Jan. 1985, pp. 

A.  Silberschatz,  “Port  directed  communication,” Comput. J., vol. 
24,  pp. 78-82, 1981. 
-, “Cell: A distributed  computing modularization concept,” ZEEE 
Trans. Software Eng., vol. SE-IO, pp. 178-185, Mar. 1984. 
H.  U.  Steusloff,  “Advanced real-time languages for  distributed 
industrial process  control,” Computer, pp. 37-46, Feb.  1984. 
J .  Welsh  and A. Lister, “A comparative study of task communication 
in  Ada,“ Software-Practice Experience, vol. 1 1 ,  pp. 257-290, 
1981. 

120-129). 

Kang G .  Shin (S’75-M’78-SM’83) received  the 
B.S.  degree in electronics  engineering  from Seoul 
National University,  Seoul,  Korea, in 1970,  and 
both the  M.S. and Ph.D.  degrees in electrical 
engineering  from Cornel1 University, Ithaca, NY, 
in  1976  and  1978, respectively. 

From  1970 to 1972 he  served in the Korean Army 
as an  ROTC  officer and from  1972  to  1974 he was 
on  the  research staff of the  Korea Institute of 
Science and Technology,  Seoul,  Korea,  working  on 
the design of VHF/UHF communication systems. 

From  1978 to 1982 he was  an Assistant Professor at Rensselaer Polytechnic 
Institute, Troy,  NY.  He was also a visiting scientist at  the  U.S.  Airforce  Flight 

Dynamics’Laboratory in  summer  1979 and at Bell Laboratories,  Holmdel,  NJ, 
in summer  1980.  Since  September 1982 he has been with the Department of 
Electrical Engineering  and  Computer Science at  the University of Michigan, 
Ann Arbor,  MI,  where he is currently  an Associate Professor. He was the 
Program  Chairman of the  1986  IEEE Real-Time Systems Symposium and is 
the Guest Editor  of  the  special  issue  of  IEEE TRANSACTIONS  ON  COM- 
PUTERS on real-time systems which is scheduled to appear in August 1987. AS 
an initial phase of validation of  architectures  and analytic results, he and his 
students are currently building a 16-node distributed real-time system at  the 
Real-Time Computing  Laboratory  (RTCL), the University of Michigan. 

Professor Shin is a member  of  the Association for  Computing  Machinery, 
Sigma Xi,  and Phi Kappa Phi. 

Mark E. Epstein received the B.S. degree  in 
electrical  and  computer  engineering and the  M.S. 
degree in computer,  information,  and  control engi- 
neering  from  the University of Michigan, in 1983 
and  1984, respectively. 

He was with the  Robotic  Systems  Software  Group 
of the IBM Corporation, Boca Raton,  FL,  from 
1984 to 1986, and since  late 1986 he has been with 
the IBM T. J .  Watson Research  Center, Yorktown 
Heights,  NY.  His  current interests include robotics, 
languages, vision and  geometric modeling, and 

artificial intelligence. 


