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Abstract. A new quantitative approach to the problem of reconfiguring a degradable multimodule 
system is presented. The approach is concerned with both assigning some modules for computation 
and arranging others for reliability. Conventionally, a fault-tolerant system performs reconfiguration 
only upon a subsystem failure. Since there exists an inherent trade-off between the computation capacity 
and fault tolerance of a multimodule computing system, the conventional approach is a passive action 
and does not yield a configuration that provides an optimal compromise for the trade-off. By using the 
expected total reward as the optimal criterion, the need and existence of an active reconfiguration 
strategy, in which the system reconfigures itself on the basis of not only the occurrence ofafailure but 
also the progression ofthe mission, are shown. 

Following the problem formulation, some important properties of an optimal reconfiguration 
strategy, which specify (i) the times at which the system should undergo reconfiguration and (ii) the 
configurations to which the system should change, are investigated. Then, the optimal recon- 
figuration problem is converted to integer nonlinear knapsack and fractional programming problems. 
The algorithms for solving these problems and a demonstrative example are given. Extensions of the 
optimal reconfiguration problem are also discussed. 

Categories and Subject Descriptors: B.2.3 [Arithmetic and Logic Structures]: Reliability, Testing and 
Fault Tolerance; C.2.4 [Computer-Communication Network]: Distributed Systems; G. 1.6 [Numerical 
Analysis]: Optimization-integer programming 

General Terms: Performance, Reliability, Verification 

Additional Key Words and Phrases: Degradable systems, dynamic failure, fractional programming, 
performability, reward 

I. Introduction 
Reconfiguration of a system is the process of changing an already existing system 
organization or the interconnections among its subsystems. In general, the system 
needs to perform reconfiguration for two reasons. The first reason is the dynamic 
variations of incoming tasks. The system reconfigures itself to match the special 
demands made by the incoming tasks and then executes the tasks more efficiently 
than with the previous configuration. In this case, reconfiguration depends on the 
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tasks to be executed. Reconfiguration of a system could be accomplished in many 
different ways, such as the change of partition [30] or word size [ 161. The second 
reason is to make the system tolerate faults that may occur dynamically and 
randomly during the mission lifetime. Reconfiguration allows the system to remain 
operational, perhaps in a degraded mode, even in the case of subsystem failures. 
Typical examples of reconfiguration for fault tolerance include the handling of an 
extra stage in permutation networks [l] and the reconfiguration algorithm to 
maintain the system in a safe state [33]. 

For the purpose of fault tolerance, several authors have proposed principles and 
procedures for the reconfiguration of computer systems [2, 15, 171. These proce- 
dures are all intended to make the system operational in the face of subsystem 
failures. Saheban and Friedman investigated the degradation of computation 
capability and diagnosability in terms of the number of switches to connect modules 
[25, 261. They also proposed a methodology for the design of reconllgurable 
multimodule systems. Fortes and Raghavendra examined the design of reconfigur- 
able array processors with VLSI chips and analyzed the improved reliability, 
performability, and computation capability and the additional hardware cost [9]. 

We classify the conventional system reconfigurations for fault tolerance discussed 
above as passive actions, since they are performed only upon detection of a failure. 
Moreover, they assume that there is only one configuration that the system will be 
changed to following each reconfiguration. For instance, the system degrades from 
an m module-parallel system to an m - 1 module-parallel system when a module 
failure occurs. Thus, there is no choice concerning when the reconfiguration should 
be performed and what configurations the system should switch to. 

In this paper we are concerned with developing a quantitative method for design 
and analysis of the reconfiguration of a multimodule system. Particularly, using 
the expected total reward as the optimality criterion, we derive an optimal recon- 
figuration strategy with which the system can be optimally reconfigured during the 
entire mission lifetime to maximize the expected total reward. 

The term module is used here to mean processor, memory, or bus. We assume 
that the environment and workload of the system are in the steady state throughout 
the mission lifetime. The system can assign a module to befunctioning, redundant, 
or spare. Functioning modules execute computation tasks. Redundant modules 
are associated with functioning modules for verifying the correctness of computa- 
tion results or masking erroneous results. Spare modules do not execute any useful 
task before they replace failed modules. Although there is no difference between 
functioning and associated redundant modules in the execution of tasks, they do 
have different purposes in a logical sense. 

It is well known that the goals of reconliguring a multimodule system are to 
enhance both computation capacity and system reliability. In most cases it is easy 
to see a trade-off between these two goals. For example, if there were no module 
failures and, therefore, no module redundancy were necessary, then the computa- 
tion capacity would increase as the number of functioning modules increases. On 
the other hand, if module failures are allowed, then providing greater module 
redundancy enhances the system reliability at the expense of the computation 
capacity. When the number of available modules is finite, it becomes necessary to 
make a suitable compromise between the system reliability and the computation 
capacity. It is the optimal reconfiguration that is desired for the most suitable 
compromise in some sense. 

From the standpoints of reliability and performance, it is natural to consider 
more than one possible way for reconfiguring multimodule systems. An extreme 
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example is whether the system should be configured to an m-module redundant 
system or to an m-parallel server system. Obviously, the former offers higher 
reliability, whereas the latter provides higher throughput. Some criterion is needed 
to judge the goodness of different configurations. Depending on the criterion, it is 
possible that the best configuration at a particular moment is no longer best at 
another moment (see the example in Section 4). In such a case, reconfiguration is 
needed even if there is no occurrence of failure; we term this active recon$guration. 
In this case an optimal reconfiguration strategy must specify the optimal configu- 
rations for the entire mission lifetime. Active reconfiguration subsumes the con- 
ventional passive reconfiguration because reconfiguration can be done at any time, 
and not just at failure instants. 

This paper is organized as follows: In Section 2 we introduce necessary concepts, 
notation, and terminology and define the set of feasible configurations when 
multimodule systems are to be reconfigured. Then, we develop a criterion, the 
expected total reward during the mission lifetime, which will be used for judging 
the goodness of configurations. The need for active reconfiguration is also justified 
in this section. Section 3 examines the problem of maximizing the expected total 
reward and the properties of an optimal reconfiguration strategy during the mission 
lifetime. Also, presented is an algorithm that uses a backward induction to deter- 
mine an optimal reconfiguration strategy. Actual determination of the optimal 
configurations is the subject of Section 4, where we develop solution algorithms 
for two integer nonlinear optimization problems. An example is also provided to 
demonstrate both active and passive reconfiguration strategies. Concluding remarks 
are in Section 5. 

2. Reconfiguration Strategy 
Consider a multimodule system that begins its mission with mo identical operational 
modules. Let the mission lifetime be to, during which no system repair is allowed- 
that is, a nonrepairable system. We consider here only the failures that are caused 
by hardware faults and that, along with the progression of the mission, will trigger 
system reconfiguration. Transient and intermittent faults from which the system 
can recover through retry [ 19, 291 are not considered, since they do not entail 
reconfiguration. 

As we shall see, the optimal configurations are generated ofline in table form, 
therefore, the time overhead of performing (on-line) reconfiguration is simply the 
time required for switching tasks and setting up interconnection or routing. (E.g., 
the average reconfiguration time of FTMP has been measured to be 82 milliseconds 
[31].) This on-line time overhead has little impact on the determination of an 
optimal reconfiguration strategy, since in practice the system has to undergo only 
a few active reconfigurations during the mission lifetime. Consequently, the over- 
head of performing reconfiguration is assumed to be negligible in the following 
discussion. 

2.1 NOTATION AND DEFINITIONS. Classical reliability analyses treat the system 
failure probability as a function of the components’ failure probabilities using 
combinatorial mathematics. These approaches neglect the effects of failure recovery 
overhead on executing tasks. These effects are significant, particularly when real- 
time applications are considered. For example, a delay in task execution due to 
failure recovery overhead can lead to increased system operational costs or even a 
system crash. For these reasons a reliability analysis, including the impact of failure 
handling on executing tasks, is more realistic and powerful than the classical 
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methods [ 181. In addition, system performance should depend on the tasks com- 
pleted by the system within its mission lifetime. Thus, it is natural and essential 
to consider the execution of tasks when reconfiguration strategies have to be 
determined. 

Consider a set of tasks that are to be executed during the mission lifetime to. 
Group the tasks into k classes such that the tasks in the same class will have the 
same influence on the mission. More specifically, the system will gain the same 
reward for each task within a class when the task is completed successfully, and 
will suffer the same penalty if the task execution is unsuccessful or its completion 
is delayed. Although the pattern of the incoming tasks could change in reality, we 
assume for simplicity that the combined workload in each task class does not 
change throughout the entire mission, that is, the task arrival rate and the required 
computations in each task class are constant.’ 

Because of the failures of individual modules during the mission, when the 
remaining mission lifetime (RML) is t E [0, to], the system may have to operate 
with only m(t) E (0, . . . , m) modules. Let mi(t) be the number of modules 
assigned to the class i tasks. Out of these mi(t) modules, ni(t) computing clusters 
are to be constructed. Each computing cluster consists of one functioning module 
and some redundant modules for reliability reasons. Let ri(t) be the total number 
of redundant modules used for the task class i. These redundant modules are used 
in constructing computing clusters as dyads (with one redundant module each), 
triads (with two redundant modules each), etc. For notational simplicity, we leave 
out the time dependency of mi, ni, and ri in the rest of this paper as long as it does 
not cause any ambiguity. Obviously, ni + ri = mi and Cf=I mi I m.’ Since all 
computing clusters assigned to the same task class have to be homogeneous insofar 
as their capabilities of computation and fault tolerance are concerned, the ri 
redundant modules for the task class i are assumed to be equally distributed over 
ni computing clusters. Thus, for the task class i there are ri - nilri/niJ computing 
clusters with Lri/ni + 1 J redundant modules, and ni( 1 + LrJniJ) - ri computing 
clusters with Lri/niJ redundant modules, where Lxj is the greatest integer that is 
less than or equal to x. 

Let Q,,, be the set of all feasible configurations of m modules and given as 

fh = (@I, rl), (n2, r2), . . . , (nk, rk)) 1 i (ni + ri) 5 my 
i=l 

ni, riEI+,ri=Oif&=O,i= 1,2 ,..., k 
I- 

, 

where I+ is the set of nonnegative integers. Also, denote the set of all configurations 
of the system by Q = U?Z Cl,. 

Let Y,,,: R+ + Q, be a conjiguration function where R+ is the set of nonnegative 
real numbers. A reconfiguration strategy RS,., is defined as 

RS,, = (rl;l(i) 1 i E [0, t], riz E (0, . . . , m)j. 

Hence, given a reconfiguration strategy RS,,,,, the system uses the configuration 
rm(t) E RS,,, where RML = t and there are m operational modules available. 

’ As we shall discuss in Section 5, this assumption can be easily relaxed. 
’ The “less than” or “equal to” relationship is used to include the case in which the system has standby 
spare modules. 
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crash 

degrade 

FIG. 1. A model of system degradation. 

2.2 RECONFIGURATION MODEL. During the mission lifetime, system degrada- 
tion is unavoidable owing to module failures. A simple model for system degra- 
dation is presented in Figure 1 where state S,,, represents the availability of m 
operational modules. The transition from S, to S,-, , m > 1, implies that a module 
fails and system operation is recovered subsequently. However, failure of one 
module could be fatal to the system, for example, coverage failure [32] or dynamic 
failure [ 181, which results in loss of the whole mission. In such a case, the system 
transfers directly to the total system failure state SO. 

It is assumed that the times to failure for all modules are independently and 
identically distributed random variables. Distribution of the times to failure is 
assumed to be exponential with rate X. 

Define a stochastic process M(t) that is equal to (i) the number of available 
modules when the system is operational with RML = t, or (ii) 0 if the system 
crashed when RML > t. This stochastic process is governed by the failure and 
recovery processes,3 which in turn depend on the system configurations adopted 
during the mission lifetime. 

Given a reconfiguration strategy RSlO,mO, y s stem configurations are represented 
by another stochastic process, called the reconfiguration process and denoted by 
RFlo,m,,(t), t E [0, to]. RFb,,,(t) includes a configuration 7,+&t) E RS,,,,, to be 
used at RML = t. The transitions between configurations within RF,,,(t) depend 
on failure and recovery processes, as well as on the reconfiguration strategy 
RS,,,,. A sample path of RFtO,mo is called a configuration trajectory, which repre- 
sents a configuration history of the system. When RML = t and the number of 
available modules is m, the system reconfigures itself from rm(t) to ym-l(t) if a 
recoverable failure occurs, or to Tm(t - 6t) if there is no failure during 6t. Note 
that, if -ym(t) = y,,,(i) = T&t - 6t) for all t^ E [t - at, t ] and if there is no failure 
during this at, then the system uses the same configuration for the period 6t. 

For a system that is capable of graceful degradation and reconfiguration, Meyer’s 
performability [22] is a useful measure of the system capability. Performability is a 
composite measure of performance and reliability that automatically takes into 
account the performance degradation due to component failures. To incorporate 
the concept of performability, two functions associated with configurations w E Q 
are introduced here. The first is a nonnegative and bounded function, p(w), called 
the reward rate, which represents the average reward per unit time corresponding 
to the computation performed by the system with the configuration w. This function 

3 By recovery process we mean general actions to be taken upon occurrence of a failure, for example, 
failure detection and masking, task recovery. 
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is analogous to the reward structure defined by Furchtgott [ 131, and the reward 
function defined by Donatiello and Iyer [8]. Thus, the total reward accumulated 
during the mission lifetime to is a random variable and is given as 

‘0 

W bJ.m, = S ~(-muiO) dt. (1) 
0 

Note that the probability measure of W,,, is the same as Meyer’s performability 
WI- 

The reward rates used here can not only express the achievement by the system, 
but also can be generalized to include the penalty due to the system crashes. A 
penalty rate, which should be negative, can be regarded as the average loss per unit 
time when the system is unable to perform any service. Since the reward and 
penalty rates only represent the relative indices between different configurations 
and system crashes, we simply let p(w) = 0 for w E 00 and use the reward rate as a 
general term for the return of the system. 

The second function, a(w), called the crash probability, represents the probability 
that a module failure causes a system crash. This function indicates the system’s 
vulnerability to a module failure when the system configuration is w. a(w) may be 
either the coverage failure [32], or the probability of dynamic failure [ 181 associated 
with the configuration w. 

The reward rate p(w) is an implicit function of the number of computing clusters 
in each task class. We assume that redundancy in each computing cluster does 
not affect its performance.4 On the other hand, a(o) depends on the number 
of redundant modules associated with each computing cluster. Since a configura- 
tion is completely specified by n and T, where n = [n,, n2, . . . , nk] and r = 
h,r2,..., rk], the functions p(w) and a(w) used interchangeably with p(n) and 
a(n, r), respectively, in the rest of this paper. 

Several authors have derived the distribution and the moments of performance 
variables for gracefully degradable systems under the restriction that system recon- 
figuration is allowed only upon failure [8, 13, 221. Moreover, such a system has 
exactly one new configuration to choose from upon detection of a module failure. 
This, however, is an unnecessarily limiting factor (it might result in a configuration 
with less performance and reliability than the actual system’s capacity), since there 
are usually several alternative configurations available for a system with multiple 
modules. For example, when there are four modules available upon failure, we can 
construct one Cmodule redundant computing cluster, or one triad and one simplex, 
or two dyads, or four simplexes. Conventional reconfiguration concepts becomes 
more inappropriate when we consider the fact that the remaining mission lifetime 
has to play an important role in deciding on a new configuration. This fact can be 
seen easily with the following two simple cases: In the first the remaining mission 
lifetime is very short, in which case the probability of having failures is very small. 
Thus, the computation capability is more important than reliability for higher 
rewards. In the second case the remaining mission lifetime is long. In this case the 
probability of having failures becomes large and any good configuration should be 
able to tolerate module failures and minimize the possibility of a system crash. 

In the discussion that follows we consider the problem of determining an optimal 
reconfiguration strategy, which maximizes the expected reward E[ W,o,,]. This 
optimization problem is equivalent to controlling system reconfiguration such that 

’ As discussed in the Conclusion, this assumption can be relaxed. 
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the system follows a certain configuration trajectory to provide a maximum 
expected reward, even in the face of random failures. 

3. Derivation of Optimal Reconfiguration Strategy 
Let RZ$, = (r%(t) ] t E [0, to], m E (0, . . . , mo)) represent the optimal recon- 
figuratton strategy that maximizes the total expected reward E[ W,,,]. Since the 
optimal configuration y%(t) is completely specified by the values of nf and rf, the 
problem is to determine n:(t) and r:(t) for all t E [0, to] and m E {O, . . . , m) that 
maximize E[ IQ,,]. 

3.1 PROBLEM FORMULATION. On the basis of the assumption of an exponential 
distribution of failure occurrence, the probability of having a failure during a small 
interval 6t is approximately equal to X 6t. If ym(t + 6t) is the configuration used at 
RML = t + at, then the cumulative expected reward at that time, WI+lr,m, can be 
expressed as 

W t+L5t,t?l 

-I 

P(Y& + st))st + w,, with probability 1 - mX 6t 
= P(Y& + Q))st with probability a(y,(t + 6t))mX 6t (2) 

p(y,(t + at))& + Wl,m-l with probability (1 - a(r,(t + bt)))mX at, 

wheremE(l,..., moj and t E [0, to]. Thus, a recursive expression for the expected 
reward is derived as follows: 

E[ W+a.,] = (1 - mX Gt)E[dAt + 6t)W + W,,,] 
+ a(r,(t + 6t))mX Wdy,(t + 6t))G) 
+ (1 - a(r,(t + 6t)))mAGtE[p(ym(t + st))ht + W&-J. (3) 

On the basis of the exponential distribution assumption, at any moment there is 
at most one occurrence of failure, implying that the maximum jump in M(t) is 
one. Because of this, when the system reconfigures itself into a new configuration 
y,(t) from Tm(t + 6t) or from -ym+l(t + 6t), it must be in this configuration for a 
nonzero mission interval; otherwise, there is no need to move in that configuration 
at all. Let the optimal strategy RST+,, = limdl-o+RS~+,,, and the configuration 
y,,,(t+) = lima,,,,+ T,,,(t + 6t). Then the following lemma gives a recursive represen- 
tation of the optimal reconfiguration strategy. 

LEMMA 1 

RS:+,, = (SW+)) U RS:,,, U RS,t,-,. 

PROOF. Suppose that the configuration chosen at RML = t + 6t by a recon- 
figuration strategy is used at least for the period 6t if there is no occurrence of 
module failure, and also assume that there could be at most one failure occurrence 
during 6t. Let 6 W be the reward gained during this 6t. When there is no failure, 
EL W+,t,m ] = E[ W,,,] + E[6 W]. Thus, to have a maximum expected reward in this 
case, WL,,,, > (-y%(t + At)) U RS&. Similarly, RS,*,,,, > (y$,(t + 6t)) U RS&, 
when we consider the case of one failure occurrence. On the other hand, by 
definition, the system does not use any configuration other than (i) y$,(t + 6t) and 
(ii) the configurations belonging to RS:, and RS&,. Thus, Lemma 1 follows 
immediately, since the assumption at the beginning of this proof becomes true as 
6t +o+. cl 
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The above lemma can be used to determine recursively the optimal reconfigur- 
ation strategy. With the knowledge of RS,,,, RSlf,-, , and their respective expected 
rewards E[ I+‘$,] and E[ W&J, the optimal configuration y Z,(t +) can be deter- 
mined by Theorem 1 below. 

THEOREM 1. y%(t+) maximizes J,,,,,(w) for w E Q,,,, which is defined by 

J&w) = P(W) - 4~)m~E[W$J. (4) 

PROOF. Suppose ym(t + 6t) is applied at RML = t + 6t for the period 6t and 
then either RS:, or RS&-, is used for the remaining mission lifetime t. Then, 
from eq. (3) we get 

E[ W+mn 1 - Wf’$zI = dwn(t + ~t))~t - a(rm(t + 6t))mX6t E[Wf),,-,] 
- mXGt E[WTm - IV&-,]. (5) 

Notice that the only terms in eq. (5) depending on ym(t + 6t) are 

dy& + 60) - 4rdt + &))mWW&J. 
Thus, + 6t) maximizes the above expression over u E Q,,, for any 6t > 0. 

Combining this with Lemma 1 proves the fact that y$(t+) maximizes Jl,m(w). Cl 

We define the optimal reconfiguration problem for deriving y $,(t +) in the 
following form: 

OR Problem: maximize J,Jn, r) = p(n) - a(n, r)mXE[W &-,] 
“J 

subject to i (ni + ri) 5 m, 
1-l 
niy ri E I' 

for i=l,2 ,..., k, ri = 0 when ni = 0. 

Though Lemma 1 and Theorem 1 provide a recursive relationship necessary for 
obtaining RS$,,, the relationship does not yield an acceptable solution. It requires 
a solution to the OR problem for all t E [0, to] (thus infinitely many times). As a 
remedy for this difficulty, in the next section we convert the OR problem so that 
it has to be solved only when y%(P) # y%(t), instead of for all t E [0, to]. 

3.2 PROBLEM TRANSFORMATION. Once an optimal configuration at a moment 
during the mission is determined, it will be used for a nonzero mission interval. 
Given m, it is therefore natural to look for the switch times (in terms of the 
remaining mission lifetime) at which the optimal configuration is changed to 
maximize the total expected reward. That is, we only have to solve the OR problem 
at those switch times instead of for all t E [0, to]. Let s’, E [0, to], j = 0, 1, 2, . . . , 
m=1,2,..., mo, be the switch times for RS:,,, where s”, = 0. Then, by definition, 
$Xsjm) # rZ(s’,‘) = lim61+o+y$(s ‘, + 6t) for j 2 1. As shown in Figure 2 for the 
case of no module failure, when the remaining mission lifetime decreases to s Ji, 
the system should reconfigure itself from y $(s’,+‘) to 7 X(s’,) and then keep the 
same configuration until the remaining mission lifetime is reduced to si,-‘. 

From eq. (5) for two conliruations wI and ~2, both in fi, with (Y(w~) = 44, we 
say that o1 is better than 02 if p(w,) > ~(4. On the other hand, if a(~,) # 44, 
we need a function A,(@, , w2), which is defined as follows: 

A&l, w2) = -4t?l(w2, WI) = Pbl) - P(W2) 
ma(wl) - ma(w2) ’ 
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FIG. 2. Switch times and optimal configurations in case of no module failure. 

Also, define the following two sets: 

L&j,) = (& E a, 1 a(3) < a($$(sjm))], 
G,&‘,) = {; E Q, 1 a(;) > a($‘#‘,))). 

Lm(si,) and G,,,(si,) represent sets of configurations with the crash probabilities 
less than and greater than that of the optimal configuration at RML = si,, 
respectively. Then, the following theorem elucidates a useful property of the switch 
times s’,. 

THEOREM 2. For all remaining mission lifetime t E (s’,-‘, s’,] 

PROOF. Since -y%(t) = rZ,(s’,) for all t E (si,-‘, s’,], we have the following 
relationship from Theorem 1: 

p(yZ,(si,)) - a(yZ,(s’,))mXE[ W&J I p(w) - a(w)mXE[ R$,,-J for all w E Q2,. 

Therefore, 

dY+?,)) - Pb) 

ma(r%sI,N - ma(w) 
L XE[W;,-,] for all u satisfying U(W) C a(y%(t)), 

PhwJ) -P(o) 
m4rtNA - ma(w) 

5 WW:,n-,I for all 0 satisfying (Y(O) > a(r%(t)). 0 

Note that E[ Wrl;n-,] is a function oft. However, the function A,(y%(sjm), w) is 
dependent upon configurations only. Once the optimal configuration 7 Z(s’,) is 
known, rni&EL,oi) A,(y%(s&), w) and maX&G&j,) A,($$($), w) can be deter- 
mined. The only computation needed to determine s’, is to calculate E[ W:,-,] 
recursively by eq. (5) until the inequality (6) becomes invalid, that is, r$,(s(sj,) is no 
longer optimal when RML > s’,. Thus, Theorem 2 provides the solution for si,, 
which is the intimum of {t ] to > t > s’,-’ and t that does not satisfy (6)). If the 
inequality (6) is valid for all t E CS’,-‘, to) then s’, does not exist. Theorem 2 also 
presents a special property of an optimal configuration; with an optimal configu- 
ration r$(s’,), the function &(yZ(sj,), w) partitions fl, into two sets, L&i,) and 
G,(si,), as shown above. An arbitrary configuration without this property can 
never be an optimal configuration regardless of the remaining mission lifetime. It 
is important to note that s’, represents the reconfiguration time independent of 
the presence or absence of a module failure. Moreover, the solution to the OR 
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problem is embedded in the process of solving for the s’,. To explore this property 
and make full use of it, we present the following lemmas and theorem. 

LEMMA 2. E [ WZJ is continuous and nondecreasing in t. 

PROOF. Dividing both sides of eq. (5) by 6t and taking limits as bt + 0, we can 
write a first-order differential equation of E[ W,,,] with respect to t as follows: 

dMW,rnl 
dt + mXE[K,l = p(y,(t+N + mM1 - a(rdt+)MWm-d. (7) 

Since p(y&t)) is bounded for all ym(t) E Q,,,, so is E[ W,,,] for all t E [0, to] and 
m E (0, . . . , mo). Also, 0 5 a(y,(t)) 5 1 for all -ym(t) E Qt,. Thus, dE[W,,,]/dt 
is finite, implying the continuity of E[ W,,,] and, therefore, the continuity of 
EW:mI. 

To prove that E[ W&J is nondecreasing in t, we must show that 

E[ W:+A,,,] L E[ W$,J for all At I 0. 

Let 

RSt+a,m 

= (T,Jt) IO 5 i 5 t + At, rm(i) = r$(i - At) if i L At, or r$,(O+) if i < At). 

Under the strategy RSl+asm, we use the configuration y%(t) when RML = t + At 
and r$,(O’) when RML I At. Then, it is easy to see that the expected reward based 
on RS,,,,, is larger than E[ W&J. Thus, E[ Wf,,,,] L E[ W&l. Cl 

LEMMA 3. For real numbers ai and bi, i = 1, 2, 3, where bl > bz > b3, 
(al - adl(h - b2) I (al - a3)/(bl - b3) if and only if (a, - a2)/(bl - b2) I 
(a2 - ad/@2 - b3). Also, (a, - a2)/(b, - b2) zc (a, - a3)/(bl - b3) if and only if 
(al - aMh - b3) 2 (a2 - aMb2 - bd. 

PROOF. The proof is trivial and thus omitted. Cl 

Then, +,&,J # 4 if &(sj,) # 4. The following theorem gives a recursive 
relationship between rZ(sj,) and rZ,(s’,“) when s’, c 00. 

THEOREM 3. Ifs’, < to, then y%(s’,+‘) E &(s’,), and a(y%(si,+‘)) I a(G) all 
6 E &(s’,). 

PROOF. From the definition of switch time, 7 $,(s’,“) has to be considered if 
s’, < to. First, we prove that a(rZ(sim+‘)) < a(yZ(si,)). Since E[ W$,,] is non- 
decreasing, we have 

for t E (s$, s ‘,‘I. Thus, J&yZ(s&)) 2 J&w) for all w E G&J. If a(-yZ@im+‘)) 
> a(r$(sj,)), then TX(&) is also an optimal configuration at t E (s’,, s’,“], which 
is contradictory to the definition of switch time. Therefore, a(-y f(s’,+‘)) < 
a(y$,(sj,)). This result also implies &(s’,) # 4. 
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Next, we prove y$(s’,+‘) E @,,,(s’,). When there is one and only one w E 
L,,,(s’,), the theorem automatically holds in case of s’, < to, since rz(s’,“) exists 
and a($$(:(si,+‘)) cannot be larger than a(~$,($,,)). Consider a configuration 

w E (i 1 a(i) < a(rt(s’,“)) < a($&)), 6 E f&J. 

Since rZ(s’,“) is optimal and E[ IV&] is continuous (and so is E[ I%$+,]), the 
following order can be obtained from Theorem 2: 

&t$%sj,+‘), 0) 2 WW;T,-,I = An(rX~j,+‘), r%sj,)) where t E (s’,, s’,“]. 

Applying Lemma 3, we have Am(y$,($,,), O) L &(r$(~~im+‘), +$s’,)). 
For w E Q,,, satisfying a($!,(t~s’,“)) < a(o) < a(?$,(&)), A,J~$,(sim+*), rZ(si,)) 2 

E[W$;,,-,] and E[ IV&,] L A,,,(y%(~i,+‘), o) for all t E (s’,, s’,“]. The continuity 
in E[W&,] implies A,(y$(t~~i,+‘), rt(s’,)) L A&r$(~j,‘), w). From the second 
part of Lemma 3, we also obtain A,Jr%(si), W) 2 A,(r$(s’,+‘), $$(s’,)). Thus, 
r$(s’,“) E &(s’,). 

If there is only one configuration in a,,,(&), the theorem is proved. Suppose 
there exist two configurations, w1 and w 2; then &(YWJ, WI) = &(S($,,), 02) 
= &(wI, ~2). T o satisfy Theorem 2, the configuration with the smallest a(w), 

w E *&‘,), becomes optimal for all t E (s’,, s’,+‘]. Cl 

Theorem 3 indicates that, while solving for si,+’ in which A,Jr$(&), W) has to 
be minimized over L&J, the optimal configurations r%~s’,“) can be obtained 
simultaneously. Also, we can exclude the configurations w E G,JsQ during the 
determination of si,+’ and r%(s’,“). Note that even if &,(s’,) is not empty, 
rZ(s’,“) is not always needed since s’, may be greater than to. When there is more 
than one element in a,,,(~‘,) and s’, < to, the configuration with the smallest crash 
probability in am(&) is optimal for the interval (s’,, s’,“]. Note, however, that all 
other configurations in a&s&) are optimal only at lim~l+,-,+(si, + at). Theorem 3 
also provides additional properties concerning the optimal reconfiguration strategy 
as shown in the following corollaries. 

COROLLARY 1. a(r%sL)) < a(r%(s’,)) andp(y$(&)) < p(~%(sjm))jbr all i B-j. 

PROOF. In Theorem 3, we proved a(r%(sj,+‘)) < a(~%(&)). Since A&$&,), 
r$(s’,“)) I EIW$;,m-l] > 0, we have p(yZ(:(sj,+‘)) < p(y$(&)). Cl 

Definition 1. A reconfiguration process is said to be acyclic if for tl # f2, 
w(&) = yhf(t&2) implies af&td = x4dt) = m&2) for all t E [h , t21. 

From Corollary 1, rZ(sk) # rZ(s’,) for all i # j. Since no repair is allowed 
during the mission, the system degrades from the m module system to the m - 1 
module system in case of a module failure. Thus, we immediately get the following 
Corollary 2. 

COROLLARY 2. 
is acyclic. 

The reconfiguration process based on RSZ-, denoted by we,, 

COROLLARY 3. For all m E (0, . . . , mol and j L 0, ifs’, < to, then 

PtY%sj+‘)) PtY%$J 
a(y%(sE’)) z a(y%sj,)) * 

PROOF. Consider a remaining mission lifetime t E (s’,, 92’1. Since E[ W&J is 
nondecreasing and continuous in t, dE[ W:,]/dt I 0, and by rearranging eq. (7) 
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Definition 2. The coordinates of a configuration w are defined as (a(w), p(w)) 
in an x-y plane. 

Using Figure 3, we can explain the relationships obtained from Corollary 3. Note 
that the slope of the line segment between (a(~$(&)), p(y$(sj,))) and (a(yZ,(sj,+‘)), 
p(yZ(si,+‘))) is equal to mA,($#J, rZ(~j,+‘)). It is easy to see from Figure 3 or 
Theorem 3 that A,(yz($,,), y$(s’,+‘)) is increasing in j. Figure 3 also indicates 
that the coordinates of the optimal configuration, that is, (a(r$(si,+‘)), p(yZ(s$‘))), 
are located within the triangle surrounded by (0, 0), (0, p(yZ(si,)), and (a(rX(si,)), 

p(y$,(si,))). When there is no configuration whose coordinates are within this area 
or when the inequality (6) is valid for all t E (s, , j+* to), we do not need to consider 
the next switch time s’, for the case with the mission lifetime to. Though the 
optimal configurations can be indicated from their coordinates, the switch times 
have to be computed on the basis of Theorem 2, in which no optimization problem 
is involved. 
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As a final solution step for the optimal reconfiguration strategy, we have 
developed the following algorithm A(RS), in which y $(s’,) and E[ WFJ are 
calculated using r&i(&) and E[ W&-J for all t E [0, to]. Complete algorithms to 
solve for yZ(s’,) will be presented in the next section. When to is large, a different 
algorithm, where rX(t + 6t) and E[ W:,,,,] are computed based on r%(t) and 
E[W&,] for all m E (0, . . . , m& is better than Algorithm A(RS) insofar as the 
storage requirement is concerned. However, the underlying principles are the same. 

Algorithm A(RS) 
Step 1. initialization 

la. Form = 1,2,. . . , mo, find rt(s!,,) in which n maximizes p(w), w E tL5 When 
there is more than one configuration that maximizes p(w), the configuration 
with the smallest crash probability is chosen. 

lb. Find E[ IV:,] = p(y:(s]))( l/X)( 1 - 6” - Ate-‘,‘) for t E [0, to]. 
lc. Choose 6t to digitize t E [0, to]. 
Id. Set m := 1 and start the following recursive steps. 

Step 2. Set m := m + 1, t := 0, and j := 2. If m > mo, stop the algorithm. 
Step 3. Find YE(&) E +,,,(s’,-‘) and a(-&($,,)) 5 a(G) for ; E (P,,,(s~‘). 
Step 4. Using rZ(s’,-‘) as the optimal configuration, calculate E[ IV:,,,,,] by eq. (5). 
Step 5. Set t := t + 6t. If t 2 to then go to Step 2 

else if A,,,(-&&‘), -yt(s’,)) 2 E[ W$,,-,] then go to Step 4 
else j := j + 1 and go to Step 3. 

4. Determination of Optimal Configuration 
As defined in Section 2, a configuration w E Q, can be specified by (n, r) where 
n = [n,, n2, . . . , nk], ni represents the number of computing clusters for the task 
class i, r = [r,, r-2, . . . , rk], and ri is the degree of redundancy associated with the 
computing clusters in the task class i. It is assumed that the rewards gained from 
executing different task classes are independent. Thus, the system reward rate, p(n), 
is equal to xpI pi(ni) where pi is the reward rate for the task class i. Furthermore, 
since all modules within the system are identical, the crash probability, a(n, r), can 
be represented by l/m Cf=l (ni + ri)ai(ni, ri) where ai(ni, ri) is the crash probability 
when a module assigned to the task class i fails, given there are ni computing 
clusters and ri redundant modules in this task class. 

Consider the execution of class i tasks. When there are ni computing clusters, 
the task class can be treated as an ni-server system. Let f (x) denote the performance 
of an x-server system. Ideally, the performance of the system is additive in x, that 
is, f (x, + x2) = f (x,) + f (x2). However, owing to task communications, resource 
sharing, and other overheads, the performance of the system is subadditive, that is, 
f (x1) + f (x2) 2 f (xl + x2). In most cases, f (x) is a nondecreasing concave function 
of x as shown in [3], [5], [ 121, and [34]. Following tradition, we consider here the 
cases in which the reward rate for each task class, pi(ni), is a nondecreasing concave 
function of the number of computing clusters, ni. 

Let hi(ri) be the crash probability of an ri-module redundant computing cluster 
in the task class i, given that one of those modules fails. We assume that hi(ri) is a 
decreasing convex function of ri for all i = 1,2, . . . , k. Relaxation of this assumption 
may lead to a nonconvex programming problem and is discussed in Section 5. 
Thus, rihi(ri) is also convex in ri. The crash probability of the task class i then 
becomes 

(Yi(ni, ri) = (ri - nifi) s, 

A 

hi(fi + 2) + (ni - ri + TZiFi) 
I I 

f+$ hi(ff + l), 
I I 

5 It is easy to prove that y%s!,,) maximizes p(w) from Theorem 1 and E 1 WmI = 0. 
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where fi = LrJniJ and ni > 0. This implies that (ni + ri)ai(ni, ri) is a piecewise linear 
and convex function of ri. When ni?i 5 r; 5 ni(Fi + l), 9 E I+, the ~10~ of the 
corresponding linear piece is (A + 2)hi(fi + 2) - (9 + l)hi(fi + 1). When hi(ri) is 
convex, it can be shown that an equal distribution of redundant modules over all 
computing clusters is optimal; this has been assumed in Section 2. 

As indicated in Algorithm A(RS), there are two nonlinear integer programming 
problems to be solved for deriving the optimal reconfiguration strategy. The first, 
called PO, is a nonlinear integer knapsack programming problem which has to be 
solved for determining y Z( s!,, ). 

PO: maximize i pi(&) 
ni i=l (8) 

k 
subject to 1 ni I m, n;EI+ for i=l,2 ,..., k. 

i=l 

The second, called PI, is an integer fractional programming problem that is to 
determine rZ(.ri,+‘), given r$,(s’,) forj L 1. P, can be expressed as 

P, : minimize P(Wo) - Et, Pi(&) 

“iTi ma(w0) - x:bl (ni + ri)(Yi(ni, ri) 
k 

subject to 1 (ni + ri)tii(ni, ri) C ma(w), 
i=l 

k 
lli, ri E I+ 

given w0 E Q, 

for i= 1,2 ,..., k, (9) 

,IJ, @i + ri) 5 4 

j, bi + ri) 5 m, 

ri = 0 when ni = 0. 

4.1 AN ALCNRITHM FOR SOLVING PO. The nonlinear integer knapsack problem 
has been considered for various applications, such as resource allocation, portfolio 
selection, and capital budgeting. Several methods have been proposed for solving 
this problem, for example, dynamic programming approaches [6, 241, the shortest 
path algorithm [I 11, and ranking methods [20, 351. Michaeli and Pollatschek 
investigated the problem and provided a necessary and sufficient condition for the 
optimal solution [23]. To solve the problem PO, since the coefftcients of both the 
objective function and the linear constraints are all one, we can employ an 
algorithm ‘similar to the one in [lo], which is given below.‘j 

Let Ai = pi(ni + 1) - pi(ni). The principle of the algorithm is to allocate 
modules such that the system can have maximum return. 

Algorithm A0 
Stepl. Set~i:=OfOralli=1,2 ,..., k. 
Step 2. Select i* such that Ai*(ni*) = maxIsis& Ai( 

If Ai<ni*) = 0, then terminate the algorithm. 
Step 3. ni* = ni* + 1 and m := m - 1. If m = 0, then terminate the algorithm. 

Otherwise, go to Step 2. 

TO determine Ai* = lIlaX~~isk&(ni), we need to sort Ai( Clearly, it is not 
necessary to sort all Ai for every m. A,(O) must be sorted during the first 

6 Existence of the incremental algorithm in [IO] was brought by one referee to the authors’ attention. 
Because of the authors’ unawareness of this reference, Algorithm A0 had been developed and presented 
as a new algorithm in the earlier draft of this paper. 
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iteration. However, since ni* is changed only in later iterations, Ai*(tZi*) has to be 
evaluated and inserted into the previous sorted sequence. Note that there are at 
most m iterations required for this algorithm to terminate. Another advantage of 
Algorithm A0 is that all r$,(sA) can be solved at once for all m E (0, 1, . . . , m,). 
By assuming m = m. at the beginning, yZ(s!,,) is obtained at the end of the mth 
iteration. 

4.2 AN ALGORITHM FOR SOLVING P1. The solution of PI can be divided into 
two levels: the lower level is to determine rt, i = 1, 2, . . . , k, by minimizing the 
objective function (9) for a given n; the higher level problem is to determine nt by 
minimizing the objective function (9) with the calculated rf from the lower level. 
Since the only place that ri’s appear is in the denominator of the objective function, 
the lower level problem can be stated as follows: 

P2: minimize 
5 

j (ni + ri)%(R, ri) 

k k 

subject to C. ri 5 m - C. nip riEI+ for i=l,2 ,..., k, 
(10) 

i=l i=l 

ri = 0 when ni = 0. 

By letting riai(O, ri) = ri, the last constraint can be eliminated. Then, the problem 
P2 is an integer knapsack programming problem that is to minimize the sum of 
nonlinear functions. If (ni + ri)ai(ni, ri) is convex with respect to ri, we can apply 
an algorithm similar to A0 in which we choose minM&((ni + ri + l)ai(%, ri + 1) 
- (ni + ri)ai(ni, Ui)) in place of maxl&=k (/Ji(ni + 1) - pi(&)) in Algorithm Ao. When 
(ni + ri)ai(ni, ri) is not convex, the lower level problem becomes a nonconvex 
programming problem. There is no guarantee that the solution obtained by 
Algorithm A0 is the global minimum. 

Let P(n) = rnin,,zf=, (ni + ri)ai(ni, Ti) obtained from solving Pz, given n. Thus, 
the problem P, can be converted to the following form: 

P3: . . ~(~01 - dn) 

mlnlnfnlze ma(wo) - p(n) 
subject to /3(n) < ma(w) and p(n) C P(WO), (11) 

k 

2 EliI Wl, niEI+ for i=l,2 ,..., k. 
i=l 

By Corollary 3, the triangle area surrounded by (0, 0), (0, p(nO)), and (( l/m)P(n’), 
p(n’)) is a feasible region described in terms of the configuration coordinates. Since 
there does not exist an explicit form of mapping from the configuration coordinates 
to n, an enumeration is the only means of finding whether or not a configuration 
is within this triangle region of the configuration coordinates. 

Consider the use of an explicit enumeration (or brute force enumeration) for 
solving P3. For every possible combination of ni satisfying the constant z F= i ni I 
m, we map the combination into r:, B(n), and (p(wo) - p(n))/(ma(oo) - /3(n)). 
Then, the configuration with the minimum ratio is chosen as the optimal config- 
uration. When there are k task classes and m modules available, the total number 
of combinations in n to satisfy the constraint x:, ni 5 m is (“‘tk). Thus, when the 
size of the system is moderate, explicit enumeration approach is reasonable. For 
example, when k = 3 and m = 12, the total number of enumerations is 455. 

There are two important and advantageous properties associated with explicit 
enumeration: (i) The coordinates of all feasible configurations for m available 
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modules, that is, (( l/m)fi(n), p(n)), can be obtained from the enumeration. Thus, 
from Theorem 3, we can easily determine all optimal configurations, yZ(s’,) for 
j= 1,2, . . . . (ii) When we solve problem P2 for r: with m = mo, the other r:‘s 
are determined simultaneously for all m E (C&, ni, . . . , mo). We obtain the 
coordinates, incorporated with p(n), of all feasible configurations for m E { 1, . . . , 
m). Therefore, the optimal configurations 7 E(s’,) for m E ( 1, . . . , mo) can be 
determined. These two properties lead to a situation in the determination of a 
reconfiguration strategy in which explicit enumeration has to be conducted only 
once. 

Remarks on Fractional Programming Problems. For a general fractional pro- 
gramming problem, the objective function in eq. (11) is no longer convex or 
concave with respect to ni even if /3(n) is convex or concave with respect to ni 
[27]. For a continuous nonlinear fractional programming problem, some equivalent 
or dual problems have been proposed in [7] and [28]. With integer constraints, 
Chandra and Chandramohan [4] suggested applying a branch and bound method 
after solving the continuous problem. However, no example or analysis is provided 
to show the efficiency of their algorithm. 

A recent survey on the methods of solving the fractional programming problem 
[ 141 has discussed three different state-of-the-art approaches. The first approach 
uses variable transformation and is probably the most efficient method for linear 
fractional programming problems. The second approach deals with the problem as 
a nonlinear programming problem and applies a suitable search algorithm to find 
the solution. The third approach uses an auxiliary parameterized problem suggested 
in [ 141, which is briefly discussed below. Let F3 denote the feasible region for Pj . 
Define the auxiliary problem Q(q) by 

Q(O): zn ~4~0) - dd - dmhd - P(n)). 

Let z(q) be the minimum value of Q(q) and n*(q) be the optimal solution of Q(q). 
If there is an t* such that z(v*) = 0, we can have 

* _ P(WO - dn*h*N P(WO) - p(n) 
t - 

m&0) - P(n*(a*N = m&0) - P(n) 

for all n E F3. The above equation implies that an optimal solution of Q(a ‘) is also 
an optimal solution of P3. Hence, an algorithm is needed to search for q* such 
that z(v*) = 0 by solving Q(t) iteratively. The complexity of the algorithm is based 
on the efficiency of solving Q(V) and the search algorithm, for example, Newton’s 
method or binary search. Meggido [21] proposed an algorithm that combines the 
search for t* and the dynamic programming approach to Q(V). The resulting 
algorithm requires O(km’log m) evaluations of B(n) and p(n). 

Note that the problem Q(a) is the same as the OR problem, that is, a nonlinear 
knapsack programming problem. It might be more efficient to solve the OR 
problem directly instead of searching for v* and solving Q(o) iteratively. When 
/3(n) is convex with respect to ni, the objective function becomes convex with 
respect to n;, implying that Algorithm A0 can be applied. The algorithm A ,, which 
includes Algorithm Ao, is provided below using an operator Pj and a function Ai 
defined by 

Pj(ll) E (n,, n2, . . . , nj-1, ni + 1, nj+l, . . . , nk) 
Ai(n) s APi( - p(n) - WW,,m-,l(PU’i(n)) - P(n)). 
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TABLE I. CRASH PROBABILITIES hi(n) AND REWARD RATES pi(n) USED IN THE EXAMPLE 

n 1 2 3 4 5 6 7 8 
h,(n) 0.6 0.3 0.1 0.05 0.005 0.003 0.002 
p&j 

0.001 
1.0 1.8 2.4 2.9 3.3 3.6 3.8 3.9 

hz(n) 0.5 0.25 0.1 0.05 0.025 0.013 0.005 0.002 
p*(n) 0.8 1.5 2.2 2.8 3.4 4.0 4.6 5.1 
h&z) 0.3 0.1 0.05 0.01 0.005 0.003 0.002 0.001 
p3(n) 0.6 1.2 1.7 2.2 2.7 3.2 3.6 4.0 

Algorithm A, 

Step 1. Set L := 0 and U := to. 
Step2. a. Setth:=L+h(U-L)/Nforh= 1,2 ,..., N. 

b. Forh= I,2 ,..., N 
bl. Setdm:=mandni:=Ofori= 1,2 ,..., k. 
b2. Solve for P(Pi(n)) as indicated in the solution of Pz and A,(n) for i = 1, 

7 I, 
b3. $.ieit’i*h.such that Ai* = maxl,i,kAi(n). If A,*(n) 5 0, go to (b5). 
bk n := Pi,(n) and dm := dm - 1. If dm # 0, go to (b2). 
b5. Set y%(h) := n. 

Algorithm A, determines the optimal configurations for a specific number of 
partitions of the mission lifetime, that is, N. If the optimal configurations at th and 
th+, are different, the solution can be relined by setting L = th, u = th+, and then 
repeating Step 2 of A I . This will lead to a more accurate switch time between th 
and th+, . Although Algorithm A, only provides one-level partitions, it is easy to 
extend more refined partitions. 

4.3 AN EXAMPLE OF THE OPTIMAL RECONFIGURATION STRATEGY. Consider a 
system with 12 modules at the beginning of the mission. The module failure rate 
is assumed to be 0.0005. The tasks to be executed during the entire mission are 
grouped into three classes whose respective reward rates pi(ni) and crash probabil- 
ities hi(n) for i = 1,2, 3 are listed in Table I. In addition, we include the constraints 
ni L 1 for i = 1, 2, 3, indicating that at least one computing cluster must be 
available for each task class throughout the entire mission. 

To satisfy the constraint ni > 1 for i = 1, 2, 3, we must begin with assigning one 
module to each task class. Applying the explicit enumeration given in Section 4.2, 
we can find all possible configurations and the respective switch time for a mission 
with infinite mission lifetime. The optimal configurations y%(si,) for 4 5 m 5 12 
are listed in Table II, whereas Table III gives the switch times for each optimal 
configuration. The optimal reconfiguration strategy is obtained from the combi- 
nation of both of these two tables. Notice that certain optimal configurations will 
never be used. For instance, $(.s<) is one, since s: = 00. 

When the remaining mission lifetime is known, the optimal configuration can 
be found from Tables II and III. The optimal reconfiguration strategy is derived 
ofiline in table form before the mission. For on-line use of the strategy, the system 
only needs to look up the tables of optimal configurations and switch times (e.g., 
Tables II and III). In this way, the system follows an optimal reconfiguration 
trajectory using (i) the switch times in the same row of the two tables for the case 
of no module failure or (ii) row changes in the tables and then the switch times in 
case of module failures. In Figure 4, given that the mission lifetime is 1000, the 
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TABLE III. SWITCH TIMES FOR THE EXAMPLE 

m s”, s:. sf Sit Sit S: Sk S:, Sil 

4 0 1194 00 - - - - - - 
5 0 436 1391 co - - - - - 
6 0 349 938 1150 Q, - - - - 
7 0 755 1364 2813 - - - - - 
8 0 254 573 635 739 1379 m - - 
9 0 227 506 643 760 1108 m - - 

10 0 206 455 541 574 807 1098 1611 - 
11 0 188 413 490 602 716 1321 00 - 
12 0 104 173 314 378 447 646 QI 00 

reward rate crash probability 

8.l 

5.1 

4.1 

3.l 
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FIG. 4. Example of optimal reconfiguration trajectory. Module fails when the remaining lifetime is 
800,520,400,3 IO. 

configuration trajectories and the respective reward rates and crash probabilities 
are plotted if the module failures occur when RML are 800, 520, 400, and 310.’ 

5. Discussion 

5.1 CONCLUDING REMARKS. In this paper we have addressed the problem of 
reconfiguring nonrepairable multimodule systems. Since we have treated the prob- 
lem for general multimodule computing systems, both the problem formulation 

’ These. are random and known only via failure detection mechanisms. For a demonstrative purpose, 
we used arbitrarily chosen values. 
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and the solution approach of this paper have high potential use for designing the 
growing number of fault-tolerant multiprocessors and computer networks. 

Given multiple modules, computing clusters with appropriate redundancy for 
each task class are formed so that the resulting system may meet both requirements 
of performance and reliability in an optimal fashion. Because of the inherent trade- 
off between performance and reliability, we need to determine system configura- 
tions that specify the number of computing clusters and redundant modules for 
each task class. In addition to the conventional passive reconfiguration strategy, 
which is invoked only upon detection of a module failure, we have shown the need 
of an active reconfiguration strategy that allows the system to reconfigure itself as 
the mission progresses, regardless of the occurrence of module failure. Thus, the 
active reconfiguration strategy provides the optimal configurations by taking into 
account both the degradation of the system due to module failures and the 
progression of the mission. 

Using the expected total reward as the criterion for determining the optimal 
configurations, we have explored the properties of the optimal configurations, 
which are useful for deriving solutions. A feasible region is described in terms of 
the configuration coordinates. Although it is easy to find the configuration coordi- 
nates, the inverse mapping from the coordinates to a configuration does not exist 
in closed form, thereby requiring less elegant enumerations. 

In order to derive the optimal configurations, two nonlinear integer programming 
problems have to be solved. The first is a knapsack problem, which can be solved 
through a simple but elegant algorithm. The second is a fractional programming 
problem, which is basically a nonconvex programming problem. In addition to an 
explicit enumeration, we have discussed the other approaches known for solving 
the fractional programming problem. Since both the explicit enumeration and the 
fractional programming may become very complicated when the system size (i.e., 
mo and k) is large, some other approximations or heuristic algorithms need to be 
explored. 

As shown in the example of Section 4.3, the optimal reconfiguration strategy 
can be represented by two tables: one is for optimal conligurations and the other 
for switch times. Although the solution procedures for obtaining these two tables 
are complex, they can be computed off line. The real reconfiguration during the 
mission is performed just by looking up these two tables. 

5.2 EXTENSIONS. Several assumptions that we have used can be relaxed by 
employing a more complex optimization procedure. For instance, the reward rate 
could be affected by the degree of redundancy incorporated in a task class. In such 
a case we need to change p(n) to p(n, r). The optimization problem Pi can no 
longer be decomposed into two levels. When the concavity of pi(ni) and the 
convexity of a(ni, ri) do not exist, the optimization problems become nonconvex 
and thus are more difficult to solve. 

We can also remove the assumption that the reward rate and the crash probability 
must be stationary, that is, independent of the mission lifetime. For such a case, 
let p(w, t) and a(w, t) be used in place of p(w) and a(w), respectively. The problem 
OR, then, becomes to maximize 

J&o) = P(W, t) - 4~ t)mWW,f,-,I for wE O,. 

Obviously, this time dependency does not increase any complexity if we solve the 
problem OR directly. 
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In place of the total expected reward, a generalized objective function for the 
optimal configurations could be defined as E[R( wl,,,)] where R is a function of 
IV. Note that R ( IV) should be nondecreasing but may not be continuous. It could 
be a step function as in the example in [ 131, or any other discontinuous function 
with finite jumps. When R (IV) is not additive, that is, R ( W, + Wz) # R (WI) + 
R (IV,), the optimal configuration at the current moment is dependent on the total 
reward accumulated up to the current moment. Hence, the determination of an 
optimal configuration must consider both the past and future configuration trajec- 
tories, thereby making the optimization problem very complex and difficult. The 
difficulty can be foreseen by comparing the optimal contiguration problem with 
the general stochastic optimal control problem. The optimal control problem 
usually uses the summation (or integration) of the functions of variables as an 
objective function to be optimized. However, the optimal configuration problem 
requires the use of a function of the summation of variables, making the decom- 
position of these variables impossible. This is a matter for further research. 

Appendix. Glossary of Notation 
S-L: 

%?a 1: 

$&s~): 

a(w): 

(Yi(njp ri): 

P(n): 

P(w): 
Ah, 4: 

G,(s’,): 

L,( S’,): 

M(t): 

RFt,,,m,,(t ): 

RML: 
W,, : 

RS&n,: 

w,m: 

Set of all feasible configurations when the system has m operational 
modules. 
Reconfiguration function defined at time t E [0, to] and with a 
configuration in Cl,. 
Set of configurations in L,Jsjm) that minimizes the function 
Am(&&), w). If r’,” exists, it must be a member of this set. 
System crash probability when the system is with configuration w, 
given a module failure. 
System crash probability when a module assigned to the task class i 
fails. 
The solution of Problem Pz, where CF=l (ni + ri)a(ni + ri) for ri, 
subject to CF=, ri I m - Cf=, ni, etc., for a given n = (nl, n2, . . . , nk). 
Reward rate associated with the configuration w. 
The ratio of p(w,) - p(w~) to ma(w,) - mar(wz). 
Set of configurations that belong to Q,,, and have crash probabilities 
greater than that of the optimal configuration at RML = s’,. 
Set of configurations that belong to Q, and have crash probabilities 
less than that of the optimal conliguration at RML = s’,. 
The system state when the remaining mission lifetime is t. M(t) is 
equal to the number of available modules if no crash occurs before t, 
or 0 otherwise. 
The stochastic process defined on the configuration used at RML = t 
under a given reconfiguration strategy RS,,. 
Remaining mission lifetime. 
A reconfiguration strategy specified by the configuration functions 
y,,,(t) where 0 5 m I m. and 0 5 t 5 to. Given a strategy, the system 
uses the configuration defined by T,,,(t) E RS,,,,, when RML = t and 
there are m modules available. 
The optimal reconfiguration strategy that maximizes the expected 
total reward for the system with mission lifetime to and m. operational 
modules initially. 
The total reward accumulated for the system with mission lifetime t 
and m operational modules initially. Since the failure occurs stochas- 
tically, W,,,,, is a random variable. 
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hi(ri): Crash probability when a module, assigned to a computing cluster 
with ri redundant modules for the task class i, fails. 

m(t), m: The number of total available modules in the system when RML = t. 
mi(t), mi: The number of available modules assigned to the task class i when 

RML = t. 
ni(t), ni: The number of functioning modules assigned to the task class i 

(or the number of computing clusters for the task class i) when 
RML = t. 

ri(t), ri: The number of redundant modules assigned to the task class i (or ni 
computing clusters) when RML = t. 

si,: The jth switch time when the system is with m available modules. 
The system should use the configuration rz(s’,“) continuously when 
s’, < RML 5 si,+’ and change to rm(s’,) when RML = s’,. 
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