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Optimal Checkpointing of Real-Time Tasks
KANG G. SHIN, SENIOR MEMBER, IEEE, TEIN-HSIANG LIN, STUDENT MEMBER, IEEE, AND YANN-HANG LEE, MEMBER, IEEE

Abstract-Analytical models for the design and evaluation of greatly reduce the mean time of running a long program on an
checkpointing of real-time tasks are developed. First, the execu- unreliable computing system. In their discussion, equal
tion of a real-time task is modeled under a common assumption inre ckpo tintervalsmaeIusedefrin s checkont in

> P > . . s . . . 1~~~~~~~ntercheckpoint intervals are used for inserting checkpoints inof perfect coverage of on-line detection mechanisms (which is
termed a basic model). Then, the model is generalized (to an the program. However, the degree of confidence in execution
extended model) to include more realistic cases, i.e., imperfect results has not been addressed. The purpose of this paper is to
coverages of on-line detection mechanisms and acceptance tests. consider checkpointing as a viable method to satisfy both of
Finally, we determine an optimal placement of checkpoints to the above requirements (i.e., fast and correct execution) for
minimize the mean task execution time while the probability ofan1. ., . . >. \ . ..~~~ real-time tasks under more realistic assumptions. Mathemati-unrellable result (or lack of confidence) is kept below a specified

level. ~~~~~~~~~~~~~calmodels will be developed first and the optimal solutionslevel.
In the basic model, it is shown that equidistant intercheckpoint will then be derived. Our discussion begins with a brief review

intervals are optimal, whereas this is not necessarily true in the of the checkpointing techniques used in database systems.
extended model. An algorithm for calculating the optimal Since for database applications the system is unavailable to
number of checkpoints and intercheckpoint intervals is presented users during error recovery, an obvious objective of check-
witb some numerical examples for the extended mlodel.

pointing database systems is to maximize the portion of the
Index Terms-Checkpointing, failure coverages, mean task time the system is available to users, i.e., system availability.

execution time, on-line detection mechanisms and acceptance Another useful objective is the mean response time, which is
tests, optimal placement of checkpoints, probability of an the average time a user has to wait until the system completes
unreliable result, rollback and restart failure recovery. his transaction request. Availability and mean response time

have been the primary criteria for evaluating the performance
I. INTRODUCTION of checkpointing in database systems. The variables com-

(1HECKPOINTING a database system is defined as the monly used in such studies are 1) checkpointing time which is
operationof sain.teurenvrso the time required to save a checkpoint, 2) recovery time which_operation of saving the current version of the database . .is the time needed to reload a checkpoint and reprocess the(called a checkpoint) on a separate secure device (such as a t

backup tapes) and also saving the before-image and the after- '
successive checkpoints. The only controllable variable is theimage of all transactions made between two successive
intercheckpoint interval. The checkpointing time is system-checkpoints (called the audit trail). When an error is detected,
dependent and usually assumed to be constant within a system.the system will stop normal operation and start a procedure for d a u
The recovery time depends on the length of the audit trailrollback recovery, which restores the system to the mostm' ~~~~~~~~~~whichis often assumed to be proportional to the number ofrecent checkpoint and then reprocesses the transactions re- tasctios ofn tasumd tr an hence d sthen
transactions on the audit trail and hence depends upon thecorded on the audit trail. Since checkpointing is an effective

and economic mtofrisystem load and the intercheckpoint intervals. Consequently,and conmicmetod or mprvingrelabiityof ataase most of earlier works [3]-[8] have been to determine the
systems (compared to the hardware redundancy technique) it ost of terlierkworks [3]-[8] haveebenetodetemine the
has been widely used and studied by many researchers. o i i t e m t

system availability or minimize the mean response time.'t AAlthough most previous works have dealt with the perform- s
common assumption in these works iS that errors are detectedance evaluation of checkpointing in database systems (or other immediately upon their occurrences.transaction-oriented systems), the same basic concept can be i

Young [3] made a first-order approximation to the optimal
applied to real-time tasks. Note that a real-time task has i i w
stringent requirements for fast and correct execution. The beteenkrors under the min that eckointing

studes n [1 an [2 hav shwn tat hecpoiningcan between errors under the assumption that 1) checkpointing
time and intercheckpoint intervals are fixed, 2) errors do not

occur during error recovery, and 3) error occurrence is a
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assumes that the arrival rate of transaction requests varies should be considered as a unit on which checkpointing is
widely with time in a cyclic fashion. Optimal intercheckpoint applied, i.e., a task-oriented view.
intervals are determined for models A and B to achieve a Taking the task-oriented view, we shall derive two mathe-
maximum availability, while for model C the objective is to matical models to describe the behavior of task execution and
minimize the number of transactions arriving during check- occurrence of and recovery from errors. These models will
pointing and error recovery. Gelenbe [5] studied this problem then be used to determine optimal intercheckpoint intervals
with a queueing model and assumed that intercheckpoint and an optimal number of checkpoints for a task by minimiz-
intervals, checkpointing time, and intererror intervals are all ing the mean task completion time subject to the required
independent and exponentially distributed. Errors are not confidence in execution results.
allowed to occur during checkpointing and error recovery. He The paper is organized as follows. In the following section,
then showed that the optimal average intercheckpoint interval we introduce the general concept, design issues, and related
which maximizes the system availability is a function of the terminology in the checkpointing of real-time tasks. Section III
system load. With a similar model, Gelenbe and Derochette formally states the problem and presents the assumptions to be
[6] derived an expression for the optimal average intercheck- used. Section IV derives the optimal checkpointing strategy
point interval which minimizes the mean response time. They for the basic model. Section V considers the extended model
also found that the optimal intercheckpoint interval which where a numerical algorithm is developed for calculating an

minimizes the mean response time is usually smaller than that approximate solution. Section VI summarizes our results.
maximizing the system availability. Using theory in Markov
renewal process and semi-regenerative process, Baccelli [7] II. CHECKPOINTING REAL-TIME TASKS
obtained an analytic expression of the mean response time for Checkpointing a real-time task means occassionally saving
the same model as in [6]. the state of the task on other safe devices such as tapes, disks,

Recently, Tantawi and Ruschitzka [8] proposed a general or even other (redundant) memory modules. The state of a task
model where an arbitrary distribution of the intererror interval includes values of data variables and contents of the internal
is considered. In their model, errors may occur during registers.2 The saved states of a task are called checkpoints3
checkpointing and error recovery, and checkpointing intervals or recovery points (RP's) [12], [13]. To ensure the correct-
are allowed to depend on the audit trail reprocessing time and ness of the saved checkpoint, an acceptance test must be
error distribution. A general expression for the system applied to the checkpoint before saving it [14]. There are also
availability was derived. An equicost strategy for selecting the on-line detection mechanisms to detect fault manifestations
intercheckpoint interval was also proposed and shown to be during task execution [13], [15], [16]. When a module fails
superior to the equidistant strategy. (Other works typically use and the failure is detected either by the acceptance test or the
the equidistant strategy with little justification.) on-line detection mechanism, the most recently saved check-

Checkpointing in a real-time system is quite different from point for the task running on this module will be loaded to a
that in a database system. A real-time system usually includes good module, and the task then resumes execution from that
many tasks which do not communicate during their execution, checkpoint
although these tasks can exchange information through shared A hardware fault is defined as an incorrect state caused by
system memory, e.g., FTMP [9], [10] and the SIFT computer the physical change in a component, whereas an error is
[11]. Because a real-time task is usually executed periodically, defined to be the erroneous information/data resulting from
access to the system memory by any task is allowed only at the manifestation of a fault. As we classified in [15], there are
the beginning (for input) and the end (for output) of execution. two important classes of detection mechanisms: one is termed
This restriction can be justified by the fact that real-time the signal-level detection mechanisms, and the other is
applications are usually well-defined to be decomposed in such termed the function-level detection mechanisms. At the
a fashion and do not have luxury to allow for a long delay in signal level, the manifestation of a fault is captured by built-in
accessing shared resources such as system memory or bus. on-line detection mechanisms before the fault generates an
Thus, a real-time task needs no audit trail since all the data are error in a program. Undetected faults may generate errors
local once the task is initiated. When a failure occurs, the which may then be captured by the function-level detection
task has to redo all the computation after the last checkpoint or mechanisms. The acceptance test is one of the function-level
start all over again from the beginning. detection mechanisms.

Fast and correct execution of tasks is of the utmost Consider the assumption that errors are detected immedi-
importance to real-time systems. Thus, a real-time computer ately upon their occurrences. Extensive efforts have been
system generally will have hardware redundancies (e.g., made to design various "failure4" detection mechanisms, yet
multiple processors, memories, and buses). As in most no detection mechanism can proclaim to cover all possible
multiprocessor systems, e.g., Cm *, we do not allow multipro-
gramming on each processor of the system. When a task is 2 The task state may even include the program code if it does not have a
assigned to a processing unit in the system, it will run on that backup on some other memory device or if the program itself may change
unit until it finishes (as long as the unit does not fail). So, a during execution.
failure affects only the task which is running on the failed unit. 3In this paper we shall use the terms "checkpoint" and "state"

Henc, itisnloner pproriat to hinkof he ceckpintig 4We shall use the term "failure" to represent either fault or error,
technique from a system-oriented view, but rather each task depending on the context.
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failures. Even if all failures are covered, there may be some time between the ith and (i + l)th checkpoints, i.e.,
latency between occurrence and detection of a failure under
any existing detection mechanism. If checkpointing is per- "=+1 - T - t O fl (3.1)
formed between a failure occurrence and its detection, the where t, is the checkpointing time, and for consistency, we let
checkpoint saved could be incorrect and, thus, the subsequent T - 0 and Tn+ = T. Using the above definitions, our
rollback recovery following the detection of this failure may problem can be stated formally as
become unsuccessful. In such a case, the task has to be Problem P. MinimizeWfofra task with respect to n and
restarted from the beginning (i.e., restart recovery) if only 0 c i c n, subject to F c Eapec, where Espec is the desired
one checkpoint is saved. This reinforces the fact that an level of confidence in execution results.
acceptance test is needed to assure the correctness of the Note that P is a realistic problem which arises frequently in
checkpoint to be saved. If the acceptance test detects an error the system design process. The constraint on F, Fspec, can be
or abnormality, then an appropriate error recovery should be viewed as a requirement that must be satisfied in order to
initiated. The error coverage of an acceptance test is again less achieve the desired level of confidence in the execution result.
than 100 percent, i.e., imperfect coverage. The imperfect Also, note that real-time constraints such as hard deadlines,
detection coverages of the on-line detection mechanism and correctness, memory sizes, etc., are included implicitly in P,
the acceptance test imply the existence of a nonzero probabil- since 1) the optimal criterion is related to the task execution
ity of a task ending with latent errors. The task may or may not time, and 2) Espec is derived from both correctness and
produce correct results under latent errors; however, we no execution time.
longer have any confidence in the results. These results are Other variables in our models are defined below. Let t, be
hence called "unreliable." We quantify this fact by the the checkpointing time which is assumed to be fixed and
probability of anl unreliable result, F, as a measure of lack consists of two parts: the time for an acceptance test and the
of confidence. time for saving the current state. An acceptance test is

In our models, the computation time of a task is an automatically performed at the end of a task, but state saving is
estimate of the time for computing the task under a fault-free not needed following this last acceptance test. The last
situation, and the execution time of a task is the time needed acceptance test is, however, assumed to take the same time tc
to complete the task under the occurrences of faults. The as the regular checkpointing, because the time for the
computation time of a task can be determined a priori by acceptance test makes up the major portion of tc if a high
averaging over repeated tests and validations of the task, and detection coverage is desired. However, the last checkpoint is
hence is a constant. The computation time has no direct notcountedinthenumberofcheckpoints.Failuresareallowed
connection with the hard deadline associated with the task. to occurduring normal executionaswellas during checkpoint-
Tasks should be triggered by some mechanism (e.g., real-time ing. Whenever a failure is detected during checkpointing, that
clock) in such a way that their hard deadlines will be placed checkpoint is considered to be invalid and, therefore, not
well after worst-case computation times under a fault-free saved. Due to the storage overhead, only the most recent
condition. Note, however, that the execution time may vary checkpoint is assumed to be saved, i.e., at any time the state
due to the random occurrences of failure and will thus be savint is assume obe hed, pi ntime
treated as a random variable. saving device can store only one checkpoint. Define

There are other aspects of checkpointing (e.g., sensor data T I + tc, 0: i n. (3.2)
and some integrated quantities such as time, velocity, or

position) that are not addressed here.5 These will usually Henceforth, intercheckpoint intervals are used to mean either
impose an upper limit on the intercheckpoint interval. Further, Tr or Ii depending on the context. Fig. 1 shows a timing
the placement of checkpoints is dictated by functional and diagram of task execution.
programming considerations as well as the optimization On-line detection mechanisms can detect a failure upon its
aspects to be discussed in this paper. For the latter, we will occurrence with the probability d E (0, 1] or cannot detect the
consider two parameters of checkpointing: i.e., 1) the duration failure at all (i.e., the failure is not covered by the mechanism)
of checkpointing and 2) the correctness of checkpoints. with the probability 1 - d. Those failures undetectable by the

on-line detection mechanism can only possibly be detected by
III. PROBLEM STATEMENT the next level of detection, i.e., acceptance tests. If the system

contains some latent errors, they will be detected by the
Consider a task with a fault-free computation time T and the ccetance tes t arpositieprbili c et(0, 1] tha

total execution time w. Define W as the mean execution time acceptance test, c, i the .codtioathe coveragye of an acceptance test. c, iS the conditional
and F as the probability of producing an unreliable result at the prbblt ofdtcigteicrecns.ftets tt

end~~~ ~ ~ ~ ~ ~ ~~~~~~orbbltofthecntaskSupposensfurhethatnas(yetuknwnend o thetaskSuppoe futherthat (ye unkown)given that there are latent errors in the system.
checkpoints will be inserted at T,, 1 . i < n, during task Suppose a failure occurs and is detected within zi' of its
execution. The ith checkpoint is established when the task curneadthsyemcnrcorfomheaireb
execution has successfully progressed up to T. Define the ith either rollback or restart recovery. For rollback recovery, we
intercheckpoint interval, I_, 0 < i < n, as the computation first restore the system to the most recently saved checkpoint

and then resume the task from that point. Let r be a constant
This point was brought to the author's attention by an anonymous referee. representing rollback setup time. The rollback setup time is
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4 T + (n +l)t, C

T, T2
- rO - --4r I + - failure

Fig. 1. Timing diagram for checkpointing in a real-time task.
Ti Ti *1

the time measured from failure occurrence to the restoration of w v

the most recent checkpoint. In case of unsuccessful roll-
back(s), the system will attempt a restart recovery. Let s be the w . !

restart setup time which is the mean time from failure Fig. 2. Graphical explanation for W,, V,, and Wi+1.
occurrence to the restart of the task [including the time spent
on unsuccessful rollback(s)]. The assumption of constant tC aforementioned references. Another assumption which is
and r is made mainly for two reasons: reasonableness and different from existing models in the literature is that the
mathematical tractability. In most cases, these quantities do checkpoint saving device is subject to failures so that the saved
not vary much because the routines for establishing a checkpoints may be destroyed or inaccessible. Therefore,
checkpoint and setting up rollback differ only in the number of there is a nonzero probability of restart recovery even in the
variables being saved/checked and this number is rather basic model.
stabilized in most practical cases.

Rollback recovery may fail due to 1) failure of the IV. BASIC MODEL
communication link to the checkpoint saving device, and 2) Let w_ 1 < i . n + 1, be the execution time from the
failure internal to the checkpoint saving device, thereby '
making the saved checkpoints inaccessible or incorrect. In hbeginning of the task to the first completion of the ith

these cases, the task has to be recovered by restart.6 Let p and c ntI.e., the to,an eteW ti£ (i)e the
q, where p + q = 1, be the probabilities of recovering a task

m execu1ianW o +ae the texection te andethe
by rolbc an retr,udrtecniinta.oltn mean execution time of the task, respectively. We shall derive
by rollback and restart, under the condition that no latent

a reusv xrsinfrWi em fW.A hw nFg' .~~~hekoit a recursive expression for Win terms of J'i. As shown in Fig.
failures (to be explained later) exist when the last checkpont-2, for 0 i n let v represent the task execution time in the
ing is done. If this condition is not satisfied, we will take a interval [T., Ti+ 1], and zi be the computation time completed
more pessimistic view and assume that restart recovery is within Ti, given that a failure occurs during Ti. If Y represents
inevitable. the interval between two successive failures, then the density
Throughout the paper, we assume that arrival of failures is a function of Y is fy(.y) = Xe y 0. The probability of

Poisson process with rate X. We also assume the system f o
X ~~~failure occurring during -ri, Fi(ri), becomes8

contains no latent failures when it starts a task.'
The major difference between the basic and the extended F1(T-) = Prob [ YCT-] = 1 - e-xui for Ocicn. (4.1)

model is in the assumptions of coverages of the acceptance test
and the on-line detection mechanism. In the basic model it is By definition, z; represents the computation done within T1
assumed that d = 1, i.e., detection of a failure coincides with under the condition that some failures do occur during Ti. The

its occurrence. However, in the extended model, no assump- density function of zi can be expressed as

tion on d and c is made. Note when d = 1, the value of c fy(t) Xe-'
becomes irrelevant, that is, acceptance tests are not needed at fzi(t) = f( Xe t<zz. (4.2)
all (since all failures can be detected solely by the on-line F (Ti) I - e- 0tT (4

detection mechanism). The perfect coverage of the on-line
detection mechanism implies that 1) there are no latent failures
in the system, 2) the task execution results are always correct 77j i Tje i
(i.e., E = 0), and 3) each checkpoint is always correct. Zi= tfz1(t) dt= (4.3)
Hence, in the basic model, the problem P is reduced to finding
the solution that minimizes W without any constraint on E. In the interval To, detection of a failure always leads to a
However, it is practically impossible to design a signal-level restart, and after a task is restarted the process is renewed
detection mechanism with perfect coverage. In some cases, we probabilistically for the variable w1. Thus,
cannot even accurately determine failure coverage. Thus, we

have to consider imperfect failure coverages for the design and wI To with probability 1- Fo(ro) (4.4)
analysis of a real system. l Zo + s + w1 with probability Fo(To).

Consideration of both imperfect coverages and the probabil- -.
ity of an unreliable result is more realistic and natural, and is Th roesialornwdfrw,1.i<n ftrolbc
thus a significant departure from previous works in the an/rrsatrcvr.Hne

6 As pointed out earlier, previous works r3]-r8] assume that the checkpoint i1=W +u fo1<<n(45
saving device and its link would never fail, and hence rollback recovery is
always successful, i.e., no restart recovery is needed. x Although the subscript for F is not necessary in the case of Poisson failure

7Relaxation of this assumption for this work is not difficult. process, it is adopted for clarity and extension to a general failure process.
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where aw n n

(Ti with probability I - F1 (r) aT= hY0U1 J u1+ky f1Ij=2 i=2
zi+ r+ vi with probability Fi(T1)p (46)
zi + s + wi+ I with probability Fi(Ti)q. aw aw n

= n j I(hyO ul-hy0ul'-kyl')=O.
From (4.4), (4.5), and (4.6), the following recursive expres- 7To 7T1 j=2
sions are derived for 1 . i < n.

Since H>2 U1 = 'I'"=2 (qeXri + p) * 0, it must be true that
F0 (To) i= j fi

WITO+ I -Fo(') (Z0±s) (4.7) (hy'u1-hyou'-ky')=O. (4.15)

-pF (r) F'(Ti) ( ) (48) Substitute (4.12) for ui and yjand then use yi' = XeXTi and ui'
1 -Fj(rT) 1 -Fj(T) Xqexri to get

Substituting F,(Ti) and z; into (4.7) and (4.8) produces hpeXro - (k - hq)eXTI -0. (4.16)

( +sYexo- 1) (4 9) Again, substitute (4.12) for h and k in (4.16) to get

T) 4el(+pqI oge (kh )=T++-log (1+Xr) (4.17)
Wi+ I=(qeXT7i±p)W/V1(eX1Ti-1) .+sq (4.10) x 1pxI+Xs

This proves the first part of the equality in the theorem. For 1
Applying (4.10) recursively n times, we can get W = Wn 1 < n -1

W=hYoJJtuj±+kyiJ7Ju1±+ * +kyn-lUn +kyn (4.1 1) -=V,hyo. j+ uikfl I

j=I j=2
where

1 1
h=- +s, k-u-+pr+qsI +ukkyi H n 4 u1+k< a n

j i2 a\ j=i+ j=i+l

ui=qexu+p, yi=eXTi-ln. (4.12) aw n

h=- +s, k=-+Pr+qs + u/- hyo J u1 ul',kyifI uj+ky*** u

The problem now is to minimize Wwith respect to n and Ti, aT7i+ I 11juu
0 < i c n, subject to j*i+l ji+1

ro+T + +Tn= T+(n+ It, - T'. (4.13) n n

We shall approach this problem in two steps: first assume n is j=i+2 j=i+2
given and minimize W with respect to Ti for 0 c i c n, then
use the above expressions to minimize W with respect to n. -W 3W n-~---0= (kyf u+1kyiu1'+1ky/f jJ u1
The following theorem provides a solution to the first step. c9T+l aTi j-i+2

Theorem 1: For a given n, the minimum W is attained
whenn

logn =T1=T2~~~=Tn. (AI±+(ui'ui+,-uiu/'+1) (hyo 11 ul±Xr\ 1=170 AOge (= = T2 7n= (4.14) j*i,i+ I

n n
Proof: Let 0 be a Lagrangian multiplier. The optimal + ky1 ]7 ui + + ky11 H u1)

solution will then satisfy the differential equations j=2 j=i+2 /
j:#i,i+ I

V[WW+(T T-To-T1- - 7)]=°
Substituting the expressions for ui, yi, ui', and y1', in the

which is equivalent to above equation produces

dW _W / nn

awO awT T
= 6p(er (

Xi
hyo u1±+ky1

Then,1

aw
ot j+**+Y IUj kker-Xil j

aT ±±k1j= U/=+ j=i+2
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Since p > 0 by assumption, C

/ n n

Xpq hyo J7 u1+ky, J uj O
j=1 j=2

j*i,i+ I j*i,i+I

n \ n CO
+ ***+kyi_ + kp rI u > O -4

j=i+2 j=i+2

It follows that eXri - eXTi+ I = oandTi = ri+1, 1 c i n -
1. This then completes the proof. * 3.0
Theorem I shows that the optimal intercheckpoint intervals

in the basic model are equidistant except the first one.
However, this result will only be true under the assumptions of .
perfect coverage of on-line detection mechanisms and Poisson
fault occurrence process. (Theorem 1 "cannot" apply to the
more general case to be discussed in the next section.)
To minimize W with respect to n, we express Ti, 0 c i <

n, as functions of n CR1
Tro + 0.

{ rT*+ 1.i.n (4.18) a 5

where -.oo 4.00 8.00 12.01 16.00 20.00Number of checkpoints

1+Xr) T-b Fig. 3. Wversus n when X=0.01, r =0.2, s 0.5, p O0.8, T= 00.
b log,X ; .*= + tc.u=~~~og0~ 1+Xs) n+lI

From (4.12) and (4.18), we have, for l < i < n,

yo = eXbeXr* -1

yi=y=eXT* -1

ui=u=qeX*+ p. (4.19)

Hence, (4. 1 1) becomes

n n I
W=hyo fJu+ky J u+*+kyu+ky

j=l j=2

n-I

=hyo0+ky E u (4.20) u
m=0

If q = 0, u = p = 1, while u > 1 if q > 0. Therefore, co

hyo + nky if q=O ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~X 0.02

Iql±hyo) -kq-I ifq>O.Untun(kq-+yk-cmif qkq (4-21) |ix_

Note that u, y, and yo are all functions of n, an integer to be = i.001
determined. Although it is not possible to derive an explicit 8
expression for the optimal n, the optimal value can be obtained 0 o 4.00 8.00 12.00 16.00 20.00
by solving the equation dW/dn = 0, and comparing the value Number of checkpolnts
of W to the two nearest integers of this solution. Fig. 4. Wversus n when r = 0.1, s = 0.3, t. 1.5, p = 0.9, T = 100.
Some numerical examples are shown in Figs. 3-5, where W

is plotted as a function of n using (4.21). The unit of time- almost flattens out when n > 5, while the curve for tc = 2.0
related variables is hour or per hour. Fig. 3 compares the rises sharply beyond the minimum point. This shows that if it
curves for different values of the checkpointing time tc. It is takes more time for checkpointing, the mean execution time
observed that a smaller tc usually requires more checkpoints to becomes more sensitive to the number of checkpoints.
attain the minimum W. The shape of the curve changes In Fig. 4, X is changed from 0.001 to 0.2 which translates
dramatically when tc. is changed. The curve for (c = 0.5 into changing from one failure every 10 tasks to 20 failures per
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In (5.1), the first term represents the case when failures occur
in To but detected neither by the on-line detection mechanism

p 06
nor by the acceptance test; the second term represents the case
when a failure occurs and is detected within r0, triggering a
restart recovery. The process of task execution renews after
each restart recovery. Define the combinedfailure coverage

,,,+ SP=o.7 / D d + (I - d)c. Then, (5.1) becomes

El-Fo(I -d)(l -c)
52

;e.\ / / l-FoD ~~~~~~~~~~~~~~~~~~~~~~~~(5.2)1 -F0D
P 0.8

The derivation of Ej for j > 1 is similar to but more
X3 X v / ,gscomplicated than that of El. Let Gj be the conditional
g-~ f ,/ ,> ,>s.probability of an unreliable result at the end of rj, given that
w

sf , y .ef the system is free of failure at the beginning of rj. Following
CD \i~ z X pX .f arguments similar to those for El, we can get

Gj = Fj(1 - d)(1 - c) +FjD(pGj+ qEj+1)

where the process of task execution renews after a rollback or
restart recovery. Simplifying the above expression yields

to ,,Fj(1 d )(I c) qFjD-o. oo 4.00 8.00 12.00 16.00 20.00 Gj+ Eq+ (5.3)Number of checkpolnts 1-pFjD 1-pFjD
Fig. 5. Wversus n when X = 0.01, r = 0.1, s = 0.3, t, = 2.0, T = 100.

Ej+1 can be calculated as the probability of sum of two
task (when T = 100 is assumed for all tasks). When the failure events: 1) no latent failure exists at the beginning of ij and 2)
rate is very low (such as X = 0.001) the overhead of some latent failures exist at the beginning of -rj. Thus,
checkpointing will offset the saved execution time. But if
failures occur more often (e.g., X = 0.2), having one or more Ej1+ = (1 -Ej)Gj+Ej[(1 -Fj) +Fj(l - d)](1 - c)
checkpoints can greatly reduce the execution time. In Fig. 5, + Ej(I -Fj)cEj l +EjFjDEj+ l.
the curves for different p are shown. It is clear that a lower
probability of rollback requires fewer checkpoints. Replace Gj with (5.3) to get

EjI Fj(I -d)(I -c)+(I -Fj)(1-c)Ej-(1-c)(l-Fjd)pFjDEj (54)
1 - FjD - c(1 - Fj)Ej - (I - c)(1 - Fj§d)pFjDEj

Generally, more checkpoints are required to achieve mini- where 0 c j c n.
mum Wwhen the failure rate X is high, the checkpointing time We now derive an expression for the mean execution time
t, is small, and the rollback probability p is high. W. A task has to be restarted with probability one whenever

failures are detected in the interval T0, rollback is the same as
V. EXTENDED MODEL restart in this case. For subsequent intervals rj, j > 0, the task

The extended model takes into consideration more realistic may be free of failures with probability 1 - Ej or may have
coverages of both the on-line detection mechanism and the latent failures with probability Ej at the beginning of 7r. For
acceptance test. The constraint E . Epec in problem P now the former case, the last checkpoint must be correct at the time
plays an important role, since, unlike in the basic model, E * of its establishment, so the task can roll back or restart with
0. Again, closed-form expressions for the optimal intercheck- probability p and q, respectively.
point intervals and the number of checkpoints cannot be For the latter case, the last checkpoint may be correct or
obtained because of their inherent complexity. However, a incorrect depending on whether or not the latent faults have
computation algorithm will be derived to determine approxi- induced error(s). In such a case, we assume that the last
mate optimal solutions. checkpoint is incorrect. (This is to err on the safe side.) If the

Let F1, 0 < i < n, denote the probability of an unreliable system does detect a latent error9 within T1 either by the on-line
result when the task has progressed to the beginning of the detection mechanism or the acceptance test, it will roll back to
interval r1. Let FE-En ±1 and F1 F1(77), 0 ' j '~n. Then, the last checkpoint, resume execution, and then detect the
it is obvious that Fo = 0 and

9Of course, at this point the system does not know whether it is latent or
F1=F0(l-d)(l-c)±+F0[d± (1-d)c]E1 . (5.1) not.
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same error again. The system may roll back several more Substituting (5.9) into (5.5) and (5.6) gives
times to see if the same occurs. Then, the last checkpoint can
be declared to be incorrect and a restart recovery follows. 1-d Fod 1 FoD (5.10)
Determining the number of rollbacks before restart is an issue 1 - FoD 1 - FoD X 1 - FoD
of its own. As mentioned earlier, the time spent on unsuccess-
ful rollback(s) is included in the restart setup time s. The w -_ d + FJd 1
expression for the mean execution time W can be expressed as -1pj - qj 1 - p1 - qj )
follows:

+j +q -p1pJ+ q + -p Wj. (5.1 1)
Wl=(l-Fo)To+Fod(s+zO+Wl) l~~-pj-qj I-pj-q
+Fo(1 -d)c(s+ ro+ W) +Fo(1 -d)(1 - c)ro For a fixed n, it is clear from (5.4) and (5.11) that both E +

and Wn+ 1 are functions of the (n + 1) variables, ri, 0 ' i c
=(1 -Fod)-ro±Fodzo+FoD(s± W1). n. However, because of the constraint (4.13), one of the

variables is dependent on the other variables. The choice of the
For 1 < j c n, dependent variable is arbitrary. In the discussion that follows,

Wi± I =W + V we will restrict ourselves to the dependency between any two
variables. This can, of course, be easily generalized to the

Vj=(1 -Ej)[(I -Fj)+Fj(l -d)(1 -c)]j dependency between (n + 1) variables by a simple induction.
Definition: Define an operator V,,, 0 c i < j < n, on

+ (1 - Ej)Fjd [p (r +Zj + Vj) + q(s+ Zj + Wj+ 1)] En +l and Wn + 1 as follows:
+ (I - Ej)Fj(I - d)c [p(r + -rj + Vj) + q(s + -rj + Wj+ l)] V( ) i

+EjFjdd(s+ Z+ Wj+>) 60O
+Ej[Fj(l -d)+(I-Fj)]c(s+ -j+ Wj+ 1) X(T0, 7,T- 6, ,rT+ 6, TOX,Tn (TO,, TO)

+ Ej[(I - Fj)(1 - c) + Fj(I - d )(I - c)] f;j.
whereXisE,+I or W +.

After simplification, we get Then, Vij(En+1) can be calculated by

Vi( i EnO+ I (To 7 i 6s ,Tj+6), Tn)-En+ 1(T X'', 7j-i6, '',Tn)

lmEn + I (70TO'* Tn)-En + 1 (To0, 7 i- 7 n)
0+

aE1+ I aEi+ 1 (5.12)

arj aTi

1 -Fod Fod FoD Some important properties about E 1+I and Wn+I will be
WI - T + 1 Z + S (5.5) stated and proved below in Theorems 2 and 3. Based on these

theorems, a numerical algorithm will be derived to obtain an

1 -1F7d Fj1d approximate solution to the problem P.
WJ+ I=1 p q + , ZI Theorem 2: For any pair of integers i and j, 0 c i < j c n,

I-pJ-qj
j

I-pj-qj
J

the inequality Vij(E,+ 1) > 0 holds if the following conditions
pjr+q1s 1-Pi ( are true.+ + Wj (5.6)

where pj and qj are defined as (C2) d(1 +p) > 1.
Proof: From the recursive formula of (5.4), En +1 can be

pj=p(l Ei)DI% (5.7) viewed as a function of Tn andEs andEn as a function of Rn- I

q1=q(1 -E)DF +E,[c+(1l-c)Fjd]. (5.8) and En 1, and so on. Applying the chain rule in (5.12), we get
aEn+1 dEn _____

From (4.3), z; can be expressed as j(+X)=**X

X1-re ~X=T _ r. (5.9) L 1±1 aE 1j (5.13)
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For 0 c k c n, the following expressions can be derived. Since F,, Fj < 1 by C1, the value of the last factor in (5.17) is
approximately 1, and hence (5.17) is dominated by the other

OFk+l (1 -c)(1 -Fk)(l -Fkd)(1 -pFkD) remaining factors. It is easy to show that [(1 - pFkD)(1 -

aEk [1-FkD-c(l-Fk)Ek-(l-c)(1-Fkd)pFkDEk]2 Fkd)(I - Fk)]/(1 - FkD)2] < 1 for allO c k c n + 1 if

(5.14) d(1 + p) > 1. Hence, the fact (1 - c)ij- < I makes the
whole product less than 1. U

aEk+1 X(1 -Fk)(l - c)(1 - d) [1 -k(l -cFj)] Usually the values of Ek must be very small for any real-
aTk [1 -FkD- c(1 -Fk)Ek -(1 - c)(1 -Fkd)pFkDEk]2 time system. This is the rationale behind the conditions C1 and

C2 of Theorem 2. To produce a low probability of having an
pDFk(1 -2Fkd)(1 -Fk)(1 -Ek) unreliable result, the system requires a reasonably high fault

[1 -FkD-c(l -Fk)Ek- ( - c)(l -Fkd)pFkDEk]2 coverage and a high probability of rollback when failures

(5.15) occur (i.e., d(l + p) > 1), and a low failure occurrence rate
(5.15 (thus, Fk < 1). If the system cannot meet Cl and C2, the

Note that the fact aFk/l'Tk = Xe-Xk - X(I - Fk) has been probability of an unreliable result will be high. In that case,
used in deriving (5.14) and (5.15). In (5.14), aFk+±/Ek > 0 cherkpointing is not a useful technique at all to improve the
for all k, 0 c k c n, since c, d, D, p, and Fk are all less than system's reliability, and it would be better to employ other
1. Thus, from (5.13) the theorem will have been proved if schemes such as triplicated voting.

OEj+F I Ej,IaE1+2 aEi+I Theorem 2 states that if the length of an interval rj is
-+ * ___* __ >0. (5.16) increased at the expense of decreasing a preceding interval ri, i

Orj aOEj OEi + Tri < j, En+ I
will always increase. Consequently, En+ I

can be

Condition C 1 is used to approximate the denominators of both decreased by stretching earlier intervals against later intervals.
(5.14) and (5.15) as (1 - FkD)2. Further approximation on When two adjacent intervals are considered, stretching the
the numerator of (5.15) then leads to earlier interval means delaying the establishment of the

checkpoint in between. That is, En+± can be reduced by
OEk+ I X(l - Fk)(l - c)(l - d) moving any checkpoints to the right on the time axis in Fig. 1.
OTk (1 -FkD)2 Theorem 2 also verifies the fact that if all the checkpoints are

inserted near the end of the task, the execution result willThis results in become very reliable, since the task has to pass all the
aEj+ aEj+ 1 aEi+ 2 aEi+ I acceptance tests near the end of the task.
Or OF OE,1 Ol , aTheorem 3: For any pair of integers i and j, 0 < i <

nq, V2jWn)V+j(Vij(Wn +1)) > 0 if Cl and the following
X(1 -Fj)(1 -c)(1 -d) X(1 -Fi)(1 -c)(1 -d) condition hold: (C3) Dp > 0.5.

(1 - FjD)2 (1 - F1D)2 Proof: First simplify the recursive formula of (5.11) by
using Cl to get

1 (1-c)(l-Fk)(l-Fkd)(I-pFkD)W{171 (1-FkD~~)2 (ldr ___

X (1 -Fj)(l -.c)(l - d)
I

(1 -Fjd)(l -pFjD) prFD+qsFD 1 -pFD

(1-FjD)2 { (1 - Fid)(I -pFiD) + I FjD + FjD Wi

( - c)(I - Fk)(l Fkd)(I -pFkD) = ( - d) F + (dX- I +prD + qsD + qDWj)
k=i (Il-FkD)23.1-&

The inequality (5.16) holds if 1-FjD (5.18)
(1 -1Fjd)(l -pFjD)
(1 -Fid)(1 -pFiD) In (5.18), Wj+ I can be viewed as a function of Tj and W,j, and

hence for all j,
j-jj (I - c)(1 -Fk)(I -Fkd)(I -pFkD)
k (1 -FkD)2 OW1 1-pF,D

OW 1 l-I (5.19
the left-hand side of which can also be expressed as

i -1rJ (1 -pFkD)(l -Fkd)(l-Fk)3 OTJ1 A1 -j) BI-F1 )+ C(1 )rDe (5.20)

(1 -pFjD)(1 -F,d)(l -F1) (5) where
(1-FiD)(5.17) 1=+±XprD+ )qsD+ )qDJ'j (5.21)
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Bj= d+ (1 -d)D+ XprD + XqsD+ XqDWj (5.22) brackets of (5.27), we get

C=(I -d)DX. (5.23) 1 -pFjD 2W,± 1-Fj a
-2XqD ' +

I1-FjD a-2 (I -FjD)2 aT,Now W, + I is a function of fn and Wn, W, is a function ofTr -1 DJ 1
and W, 1, and so on. Using the chain rule and (5.12) as in the (5.29)
proof of Theorem 2, we get (1 - FiD)3(1 - FjD)2

awn+l aWn a Wj+2 {(1 -pFjD)(I -FjD)(I -Fj)[2DAj- (1 +FjD)Bi
aWn aWn-I awj1I +(2D-I-FjD)TjC]-2qD(I-FjD)(1 -Fj)
rawj+1 dW+lw Wi+2 a Wi+ 1 [Ai-FfBj+(1-F,)TjC]}
Fawj a-wj aWi+ I a1i

[H W+l H2 i (5.24) (1 -FD) 3(I - FjD)2 [(1 -pFD)(1 -FD)
afr 1-FjD ari (2D-1-F,D)

where -2qD(1 - F,D)(1 - Fj)]

H=I!1 (i FkD ) (5.25) (I -FjD)3(1 -FD) 2

if 2D- 1 -2qD>O.

H2=fJ (1-PFkD (5.26) Notethat2D - 1 - 2qD > 0and 2D - 1 - FjD > 0, if C3
k=i+l 1 k holds. Hence, from (5.27), (5.28), and (5.29), Vij(Vij(Wn+0))

>0. U
are functions independent of r, and rj. It is easy to see that HI Again, to make any checkpointing meaningful, the system
> 0 and H2 > 0, since p, Fk, and D are all less than 1. must have D > 0.7 and p > 0.7, thereby satisfying the

It can be derived from (5.24) that condition C3. 10
By applying Theorem 3 to every pair of intervals, it is

a2(Wl)Hldwi+t_± H >\.qD 1-F)j a j possible (although very time consuming) to find the global
n+I=HI2HIXqD H2

aTj2 (1 -FjD)2 aT, minimum of Wn+ 1. However, even if the minimum of W,+I is
found, the interval combination which yields this mninimum

H1 -pFjD H2 +WI+ may not lead to the probability of an unreliable result
1 -FjD aT2 satisfying the constraint En+ 1 < Espec. Therefore, the follow-

a2Wj+I rI1 -pFjD a2Wi+l ing algorithm is proposed to solve problem P.
HIf a2 +HI,H2 L 1-FjD aTi Algorithm A:

aT~~~L 1-F)D ~~~~~~Al. Set n: 1.

2XqD(1- Fj) a Wi+ (5.27) If EI(T + tc) c Espec then set Wmin Wo(T + tc)
(1-FjD)2 a j else set Wrnin to a large value.

A2. Construct a finite sequence of interval vectors (Tk, * *,
Note that Aj > Bj [both defined in (5.21) and (5.22)] for 0 c j Ik), k = 1, * , K by a systematic way such that
< n. So from (5.20), we get En+ I (ro I.k) > En+1(To, , iTt1) for 1 c k

c K. Such a sequence is called a search path.
a2Wj± X(l-F1) A3. Find K such that

J7- (I 3 [2DAj-(I + FjD)Bj..7KEnI rKI rKI);irj (1-FjD) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~En+I(,T0**,r)Espec>E+(oS ST

+ (2D- 1-FjD)r,C] If no such K can be found then set n = n + I and go

X(l-Fj) to A2.
> J3[2DAJ-(1 + FjD)Aj

(1 -F1D)3 A4. Find W*+ ((T', * * ) minK k W.+ (Tr,k
+(2D- 1-F1D)T1C] Tn)

X(l-F1) ~~~~~~~A5.If W*+1 < Wmjn then set Wmin: =W*+1, n : = +
=(1 -F )3 (A1+ C)(2D- 1 -FjD)>0 1, and go to A2 else stop.

(1 -FjD) ~~~~~~~~Algorithm A starts by calculating £ and Wfor the case of
if 2D-1-F1D>0. (5.28) no-checkpointing, i.e., E1(T + tc) and W0(T + ta). If F c

Plugging (5.28) into (5.27) and examining the terms inside the " Otherwise, checkpointing should not be used as mentioned earlier.
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Espec, no-checkpointing is a legitimate candidate, so Wmin is set '
to Wo(T + tc). If E > Espec, no-checkpointing cannot be a Tc
solution of problem P, and W,in is set to an arbitrary large
value to indicate that no solution has been found yet. Steps CM\
A2-A4 will find a solution of problem P if it exists for each g\+
given n, the number of checkpoints. If no solution exists for a
given n, the algorithm repeats those steps after incrementing
n. Since the task execution result becomes increasingly

CD

trustable as the number of checkpoints increases, for any Espec - i X
there is always an integer m such that En + 1 < Espec for all n > \
m. This guarantees the existence of K in step A2 for some n. .\-
The algorithm terminates in step A5 when there is an n such t \
that W*+ > Wmin. This terminating condition must hold g T .- -A
eventually, since the checkpointing overhead increases lin- e \ \ , - ., -
early with n while the saving of execution time from rollback
recoVery is limited.
The s'earch path needed in step A2 can be determined by

Theorem 2. We can use any search path that has the effect of
moving one or more checkpoints to the right in the time axis C0 -
while increasing k, since Theorem 2 has shown that En, I on /
such a path is decreasing. There are many ways of construct-,
ing such a search path. In practice, the choice of a search path
depends heavily on the convenience of checkpoint implemen- , D\
tation and/or the physical limitation in a particular system. - \-/
Two simple approaches of constructing search paths are
conceivable: the common ration approach and the common c

difference approach. The common ratio approach considers CY) 1 1.30.00.80 0.90 1.00 1.10 1.20 13Fintervals with the relation rjT 1 = pTj, 0 c j < n, where p is a Common Ratio P
constant ratio between two adjacent intervals. The search path Fig. 6. Diagram of Wand E versus common ratio when c = 0.8, d = 0.9,
is obtained by decreasing p in discrete steps within some given p = 0.8, X = 0.01, r = 0.4, s = 0.7, t, = 1.5, T = 100.

range, e.g., 0.8 . p ' 1.2. Similarly, the common difference
approach considers intervals with the relation rj+ I = rj - 6, 0
< j < n, where 6 is the common difference. The search path S1. Draw a horizontal line En+l = Espec on the graph.
is obtained by decreasing 6 in discrete steps within some given S2. The intersecting points of this line with the dashed lines

give the maximum allowable common ratios for differ-range, e.g., -4 c 6 c 4. The range of the common ratio or ent maximu a b cs
the common difference is determined primarily by the physical ent values of n.

limitation of the system. S3. For each n, find the minimum W,,+I in the region of the
.. . ~~allowable common 'ratios.In step A4, W* is obtained once a local minimum isn+1 S4. Choose the value of n which yields the minimumfound, since Theorem 3 has shown that W, +I is concave with W l-

respect to the operator Vij. If no local minimum is found, the
minimum would occur either at k - K or k = K. Two examples below illustrate the use of this procedure.
Some examples are shown in Figs. 6-8 using the common Example 1 uses Fig. 6, while using Fig. 7 for Example 2.

ratio approach. The solid line represents the curve for W,+1 Example 1: Let T = 100 h, X = 0.01 per hour, c = 0.8, d
and the dashed line represents the curve for E,+ . It is 0.9,r = 0.4h,s= 0.7h,p = 0.8,q = 0.2, andtc = 1.5
observed that if the failure coverages are high (Fig. 6), the h. Three cases are considered, i.e., Espec = 0.002, 0.003,
minimum W occurs around p = 1.0, while if the failure 0.005 for 1 c n c 11. The results are given in Tables I-III.
coverages are low (Fig. 7), the minimum W occurs at p > From Table I, the minimum W with Espec = 0.002 occurs
1.0. This result is expected since for high failure coverages, when n = 7 and p = 0.83. Similarly, the smallest W with
the extended model will be close to the basic model where the Espec = 0.003 occurs when n = 6 and p = 0.89, and the
optimal intercheckpoint interval is equidistant, and for low smallest W with E£pec = 0.005 occurs when n = 5 and p =
failure coverages, the probability of restart is high so that more 1.02. We can see that a lower Espec will produce a solution
frequent checkpointing at the beginning of the task and less with more checkpoints and a smaller ratio.
frequent checkpointing near the end of the task are required to Example 2: Let T = 100 h, X =0.01 per hour, c = 0.6, d
reduce the time wasted in restart recovery. The following = 0.7, r =0.4 h, s = 0.7 h,p = 0.8, q = 0.2, and tc = 1.5
procedure is derived immediately from Algorithm A to get the h. Two possible values of FSe are considered, i.e., 0.02, 0.04
optimal solution to P using the common ratio approach once for 1 c n . 11. The results are given in Tables IV and V.
the graphs similar tothose in Figs. 6-8 have been obtained. The smallest Wwith £Se - 0.02 occurs when n = 7 and p
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TABLE III tc Time for establishing a checkpoint (checkpointing
OPTIMUM SOLUTIONS FOR EXAMPLE 1 WITH Epc= 0.005. time).

n ratio minimum W E n Total number of checkpoints for a task.
2 0.49 147.3855.74 0.004020
3 0.77 137.3853603 0.00490,28 ri Sum of Is and tc, except for i = n.

4 0.93 135.336271 0.004929 r Time for setting up a rollback recovery.
5 1.02 135.009280 0.004989 S Time for setting up a restart recovery.
6 1.01 105.540305 0.004230 p Probability of rollback recovery upon detecting a
7 1.01 136.429802 0.003747
8 1.01 137.562550 0.003376 faliure.
9 1.01 138.866307 0.003080 q Probability of restart recovery upon detecting a failure.
10 1.01 140.295496 0.002840 W Mean execution time for a task.

1.00 141.831054 0.002524 Wi Mean execution time after establishing the ith check-
point.

TABLE IV Vi Mean execution time between ith and (i + 1)th
OPTIMUM SOLUTIONS FOR EXAMPLE 2 WITH = 0.02. checkpoints.

n ratio [minimum W E Zi Computation time between a failure occurrence and the
3 0.400000 163.700223 0.019825
4 0.620000 151.669977 0.019767 ith checkpoint.
5 0.750000 147.325267 0.019755 .1 stribution unction ofZi
6 0.830000 145.891900 0.019480 X Failure occurrence rate.
7 0.890000 145.592264 0.019553 Ej Probability of an unreliable result just before the jth
8 0.930000 148.122613 0.019403
9 0.960000 147.085528 0.019294 checkpoint.
10 0.990000 148.241936 0.019731 d Coverage of the on-line detection mechanism.
11 1.010000 149.694418 0.019847 c Coverage of an acceptance test.

D Combined failure coverage, i.e. D - d + (1 - d)c.
TABLE V

OPTIMUM SOLUTIONS FOR EXAMPLE 2 WITH Ep = 0.04. ACKNOWLEDGMENT
n ratio ininimum W E l The authors would like to thank the anonymous referees for
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