
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

Modeling of Concurrent Task Execution in a
Distributed System for Real-Time Control

DARTZEN PENG, STUDENT MEMBER, IEEE, AND KANG G. SHIN, SENIOR MEMBER, IEEE

Abstract-In a distributed system that implements real-time
control, computational tasks are distributed over different nodes
for execution to improve response time and system reliability. To
model system behavior, tasks in each node are first decomposed
into activities. The activities and precedence constraints among
them are then modeled by a generalized stochastic Petri net
(GSPN). Finally, a sequence of homogeneous continuous-time
Markov chains (CTMC's) is built from the GSPN to model the
concurrent task execution in the system.
The CTMC model is useful for the study of various design and

analysis issues in distributed real-time systems. To demonstrate
its utility and power, the CTMC model is applied to an important
analysis problem: computation of the probability of missing a
hard deadline given an activity selection policy and the local state
of each node.

Index Terms-Activity selection, communication primitives,
continuous-time Markov chain (CTMC), first passage time,
generalized stochastic Petri nets (GSPN), reachability analysis,
real-time control, task flow graph (TFG).

I. INTRODUCTION

UE to the availability of inexpensive digital computers
L/with high performance and reliability, most real-time
control systems today are realized with digital computers.
Such a control system can be divided into two synergistic
parts: the controlled part or environment consisting of a set
of control processes, 1 and the controlling part consisting of a

set of control programs to be executed to direct the behavior of
the controlled part [1]. The control programs usually consist of
a set of tasks, each of which corresponds to some function to
be performed in response to a set of environmental stimuli.
The control mission lifetime is referred to as the time
duration required for the programs, called the task system, to
start and complete controlling the processes.

Since both response time and system reliability can be
improved by using multiple CPU's and memories, distributed
systems are attractive candidates to implement real-time
control systems. For the generality of our approach, it is
assumed that a node in such a distributed system could be a

multiprocessor. Many difficult problems need to be solved

Manuscript received September 1, 1986; revised November 28, 1986. This
work was supported in part by the Office of Naval Research under Contract
N00014-85-K-0122. Any opinions, findings, and conclusions or recommen-
dations expressed in this paper are those of the authors and do not necessarily
reflect the view of the ONR.
The authors are with the Department of Electrical Engineering and

Computer Science, University of Michigan, Ann Arbor, MI 48109.
IEEE Log Number 8613061.
The term "control process" is used to denote a process (e.g., guidance of

a robot arm or an aircraft) to be performed by executing a set of computational
tasks.

before the distributed system is realized, such as determining a

physical topology of the system, task allocation and schedul-
ing, selecting communication structures, and incorporating
reliability considerations.

For applications that do not have strict timing constraints,
such as distributed database applications, ad hoc or intuitive
solutions are usually acceptable. Any design for time critical
processes, however, should be the result of formal analysis
and validation to eliminate or minimize the possibility of
catastrophic outcomes. Modeling of concurrent execution of
control programs, termed task system modeling, is an

essential step in the formal analysis and design of real-time
systems and is the main motivation of this paper.

Conventional task modeling approaches either consider
each task as a basic unit or decompose a task into smaller
units, i.e., modules. The former is called a task-oriented
model [2], [3], whereas the latter is called a module-oriented
model [4], [5]. Most of these models, however, have some of
the following disadvantages making them insufficient for the
formal analysis and design mentioned above:

* The task-oriented model is too coarse. Most tasks
communicate with each other during the course of execution,
and inter-task communications impose complex precedence
constraints which are usually difficult to analyze [2].

* The intertask or internode communication delay is either
assumed to be a fixed constant or have a fixed probability
distribution. It is impossible to describe the delay under, for
example, different communication protocols, or different task
scheduling or message handling policies adopted by communi-
cation partners.

* It is not easy to describe which task stage each node has
been executing. This information is essential when we need to
dynamically prioritize the execution of some part of the task
system for each node.

In order to remedy the above shortcomings, this paper
presents a module-oriented model with a finer granularity2
than the conventional module-oriented models. Our modeling
process consists of the following two steps:

1) Contiguous stretches of executable code of the task
system are combined into a set of basic entities called
activities. A set of activities is formed in such a way that any
inherent precedence constraint within the task system and the
expected task execution times are preserved.

2) A generalized stochastic Petri net (GSPN) [6] is used to
model the activities and their precedence constraints. These

2 As one referee pointed out, this will result in the expansion of state space,
the price to pay for a finer granularity.

0018-9340/87/0400-0500$01.00 1987 IEEE

500

PENG AND SHIN: MODELING OF CONCURRENT TASK EXECUTION

activities are then modeled by a sequence of continuous-time
markov chains (CTMC's) [7], [8] by performing reachability
analysis on the GSPN and assuming independently, exponen-
tially distributed transition firing delays.3
The state of each CTMC describes the task execution stage

each node is in, and a state transition corresponds to the
execution of an activity. As will be seen later, the use of a
sequence of CTMC's is to facilitate time-driven task invoca-
tions. The CTMC model offers a useful base on which various
problems, such as task response time estimation, optimal
message handling policy, and optimal time-out policy, can be
rigorously studied.

This paper is organized as follows. Section II describes the
task system and states some simplifying assumptions. Section
III introduces necessary concepts, definitions, and notation.
The problem statement and the proposed modeling process are
presented in Section IV. The probability of missing a hard
deadline is computed in Section V to demonstrate the use of
our model. Finally, the paper concludes with a few remarks in
Section VI.

II. THE TASK SYSTEM
Tasks in a distributed real-time system can be classified into

two types: periodic and nonperiodic. A periodic task is
invoked at fixed time intervals and constitutes the normal
computation for the processes under control. A nonperiodic
task can be invoked at any time, especially for abnormal or
critical situations. In this paper, we consider only periodic
tasks since they are not only the nucleus but also the unique
feature of real-time tasks.
Most periodic tasks cooperate with each other through

communication to accomplish the overall control mission. The
communication between two cooperating tasks is usually
related to precedence constraints between them. These con-
straints are in the form that the completion of some parts of
one task enables some parts of the other task to be ready for
execution. To identify a set of tasks with precedence con-
straints, all tasks in the system can be partitioned into mutually
exclusive sets of tasks called precedence classes. Two tasks
are in the same class if and only if they communicate, directly
or indirectly, with each other.

For the purpose of modeling, we proceed with the following
assumptions:
Al) At any given time, all resources in the system are

dedicated to a single control mission.
A2) Tasks are preassigned to the nodes, and remain

unchanged throughout the control mission lifetime.
A3) Each nonperiodic task alone forms a single precedence

class.
Al) indicates that no other control mission can begin

execution before the current one is completed. This assump-
tion excludes a rare and more complex case where more than
one control mission simultaneously compete for system
resources. A2) is usually the case in practice due to the time
overhead associated with on-line assignment of tasks. A3) is to
simplify the treatment of the task system. Specifically, if each
nonperiodic task alone forms a distinct class, by definition, it

3 The set of transitions that can be fired is time dependent, however.

0

2

3 k

4

5

6 k

7

8 k

9k

10 F

1 1

12 k

13

14

T, T2TT

15 L

Fig. 1. A planning cycle of a task system with three tasks.

does not communicate with any other task and, thus, imposes
no precedence constraints in the task system. Notice that the
above assumptions do not exclude the case where the periodic
tasks may form more than one precedence class.
To analyze normal system behavior, a cycle of the task

system, called the planning cycle, is identified such that the
task system can be fully characterized in one planning cycle.
The least common multiple (LCM), L of {dii i 1, 2, * . v}
can be used for calculating the planning cycle, where lidi is
the frequency of triggering a periodic task Ti and v the total
number of periodic tasks in the task system. The planning
cycle is then defined as the time interval [to + kL, to + (k +
1)L) where to is the time the mission starts and k is a
nonnegative integer. Notice that each task Ti is invoked r, =
Lidi times in a planning cycle, and there may be a (possibly
different) hard deadline associated with each invocation of a
task. The example in Fig. 1 shows a system with 3 tasks T1,
T2, and T3, with d, = 6, d2 = 3, and d3 = 4 time units, all of
which are first invoked at to = 0. A planning cycle is the time
interval [0, 12) in which Ti, T2, and T3 are invoked 2, 4, and 3
times, respectively.

It is also assumed that no pipelining of tasks is allowed. The
current invocation of a task must be completed before its next
invocation; if a task is not completed prior to its next
invocation, it is simply discarded. Since the process under
control may have changed, for example, its sensor values by
the time of the next invocation of a task, there is no need to
execute a previous invocation of the task with obsolete sensor
data.

III. DEFINITIONS AND NOTATION

This section introduces concepts, definitions, and notation
that will be used throughout this paper. The task flow graph

501

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

4- upper-end point
(structure point)

|E013EOI

z + EOi Excution Object i

EOn

4- lower-end point
(structure point)

Fig. 2. A chain.

4- entry end

) 4- fork point
(structure point)

rIF(
(a)

4- join point
(structure point)

4- exit end

(b)

.Fig. 3. An And-Subgraph. (a) And-Fork. (b) And-Join.

I

4- entry end

3- fork point
(structure point)

(a)

point

4- exit end

(b)

Fig. 4. An Or-Subgraph. (a) Or-Fork. (b) Or-Join.

|4 entry end

(4- collecting point
(structure point)

4- ge{end

E@I 4- loop body
(a chain or a stand-

m ,alone execution object)
EOn

4o- lows-end

4 branching point
tl-p>' (structure point)

4- exit end

Fig. 5. A loop.

(TFG), and its task tree, which serve as the input to our
modeling process, are- first presented and then followed by a
discussion of the combination and expansion phases which
deal with modules.
A TFG describes a task to be executed by a node in the

distributed system. The TFG is composed of four types of
subgraphs: chain, And-Fork to And-Join, Or-Fork to Or-
Join, and loop.
A chain (Fig. 2) is the largest possible concatenation of

multiple entities called execution objects. A communication
point is an execution object'which represents one of the six
communication primitives (to be elaborated on in Section IV)
used.in the system or an outpUt signal sent to the processes
under control. A sequential code stretch or a communication
point is called a basic execution object, and a single' execution
object, which is not a chaiin by definition, is called a stand-
alone execution object. A stand-alone execution object may be
a basic execution object,; an And-Fork to And-Join subgraph,
an Or-Fork to Or-Join subgraph, or a loop.
An And-Fork to And-Join subgraph (or simply called an

And-Subgraph) (Fig. 3) consists of more than o'ne branch, a1l
of which must be executed (possibly' in parallel). A branch of

the And-Subgraph may be a stand-alone execution object or a
chain.

Similarly, an Or-Fork to Or-Join subgraph (or simply called
an Or-Subgraph) (Fig. 4) consists of more than one branch.
However, one and only one branch of the Or-Subgraph is
executed, and the probability of choosing each branch is
assum.ed to be given. Another point that differentiates an Or-
Subgraph from an,And-Subgraph is that a'branch of the Or-
Subgraph could contain no execution object at all.
A loop (Fig. 5) consists of a' loop body with a "looping

back" probability p. Like a branch of the And-Subgraph, the
loop body may be a stand-alone execution object or a chain.

Also shown in Figs. 2-5 are the upper end and the lower
end points of a chain, the fork and join points of an And-
Subgraph and an Or-Subgraph, and the collecting and'branch-
ing points of a loop. Since these points serve as boundaries of
their respective subgraphs, 'they are called structure points.
Note that there is no structure point- defined for a basic
execution object, and that there may or may not be stucture
points for a stand-alone execution object, depending on the
specific execution object it represents.
A task tree describes how the TFG is organized by the four

(S

502

PENG AND SHIN: MODELING OF CONCURRENT TASK EXECUTION

Fig. 6. A task flow graph (TFG).

types of subgraphs and the basic execution objects mentioned
above. The root of the task tree is the TFG itself, the leaves are

the basic execution objects while the nonleaf nodes are the
four types of subgraph. A layer number is a nonnegative
integer assigned to each node in the task tree to indicate the
relative position of the node in the tree and, consequently, of
the subgraph and the basic execution object in the TFG. A
higher layer number is assigned to a node of an inner layer,
while a lower number is assigned- to a node of an outer layer,
and the lowest layer number 0 is assigned to the node of the
outermost layer, -the TFG itself.

For example, Fig. 6 is a TFG whose task tree is shown in
Fig. 7. The TFG in Fig. 6 as a whole is a chain which consists
of two execution objects: El and an And-Subgraph. The And-
Subgraph has three branches: the first is a stand-alone (and
basic) execution object E2, the second is a stand-alone
execution object (a loop), while the third is a chain which
contains two execution objects: E5 and an Or-Subgraph. The
loop body in the second branch is also a chain consisting of
two basic execution objects E3 and E4. Since El and the And-
Subgraph are one layer "inside" the chain (or the chain is said
to be one layer "outside" El and the And-Subgraph)
representing the TFG itself, each of them is assigned the layer
number 1. Likewise, each of the three branches of the And-
Subgraph is one layer inside the And-Subgraph, so each of the
branches is assigned layer number 2, and so on. Note that an

outer layer node contains all inner layer nodes under itself. For
example, the chain on the third branch of the And-Subgraph
contains E5, the Or-Subgraph and, thus, E6 and E7.

In a chain, an execution object is not ready for execution
until the one immediately preceding it has been completed. In
an And-Subgraph, however, no precedence constraints are

En : Basic execution object n
CH: Chain

Layer 0 CH ASG: And-Subgraph
OSG: Or-Subgraph

/ \ ~~~LOOP: Loop
Layer 1 E _,I G

Layer 2_ E2 C

Layer 3

Fig. 7. The task tree for the TFG in Fig. 6.

needed among its branches. Because of the constructs of an
Or-Subgraph and loop, it is not possible to use a relation such
as partial ordering to describe the precedence constraints
between any two basic execution objects.
A module is an entity resulted from combining a set of two

or more code stretches or modules.4 A combination is said to
retain the precedence constraints among the original
stretches if and only if the combined set belongs to one of the
two types: 1) a set of contiguous modules on a chain, and 2) a
set of branches of an And-Subgraph or Or-Subgraph. All
combinations to be discussed here are of this type. When a set
of modules is combined into a module e, e is said to be an
equivalent module of the combined set. The largest module
that can be formed without violating any precedence constraint
is called an activity. Depending on how far the combination
process can go in the TFG, the boundary of an activity may or
may not be a communication point. The boundary of an
activity which is not a communication point is called a control
point. After all the activities are found, the resulting graph is
called a communication flow graph (CFG). More on this
will be discussed in Section IV.
We have introduced the TFG, its task tree and the

combination process which are necessary tools for our
modeling process. In what follows, a brief discussion on a
GSPN [6] and related definitions necessary to our modeling
process is given.
A Petri net (PN) [9] i's a four-tuple, C = (P, T, I, 0) where

P = {PL, P2, * * *, Pn} is the set of places, T = {tl, t2, * * ,

tm} the set of transitions, I: T -+ P the input function, and 0: T
P the output function. A marking ,u:P -+ I + represents the

number of tokens for each place pi E P where I + is the set of
nonnegative integers. M = (P, T, I, 0, it) is a PN with a
marking A. After being enabled, a transition fires by removing
one token from each of its input places and adding one token to
each of its output places.
A GSPN is a type of marked PN where a nonnegative

random variable representing the firing delay is associated
with each transition. Depending on its firing delay, each
transition of the GSPN can be classified into one of the two

4This is a recursive definition. Further, we will use the term "module" to
refer to both the code stretch and module in the rest of the paper.

503

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

types: immediate and timed. A transition is immediate if its
firing delay is zero with probability one, and timed otherwise.
A place pi in the GSPN is said to be instantaneous if a
transition with pi as a sole input place is immediate, and
noninstantaneous otherwise. The state of the GSPN is the
marking of the set of all noninstantaneous places. A state is
vanishing if it enables at least one immediate transition and
tangible, otherwise.
The procedure to find the reachability set S of states from

some initial marking yt is called the reachability analysis of
the GSPN. A noninstantaneous place p, of a GSPN with an
initial marking ,u is safe if VIA' E S, 1t'(pi) ' 1. A GSPN is
safe if every noninstantaneous place in the net is safe. As will
become clearer, all GSPN's considered in this paper are safe.
The remaining part of this section will deal with the CTMC
model describing the task system.

Let Mbe the set of all nodes in the system, each of which is
assigned apriori a set of tasks to be executed, and Z(m) be the
number of processors of node m E M. Assuming that, in a
planning cycle of the task system, tasks are invoked at times
w1, w2, * * *, w1 where w, = to0 the beginning of the cycle, and
0 < w1 < w2 < ... < w, < w,+ = to + L, a sequence of
CTMC's, {(Sk, Ak, k)Ik = 1, 2, * , 1}, is necessary to
model the task system.

State space Sk is the set of states of the CTMC model
reachable during time interval Ik = [Wk, Wk+l). Then, S =
U =1 Sk is the total state space.

Ak: Sk X Sk -* T is the event-driven transition function
between two states in Sk. Each element in T is a triplet (X, (,
m) where X 2 0 is the transition rate whose inverse represents
the expected activity execution time, t the prespecified
branching probability, and m the node to execute the activity.
Let Xij, ,jj, and mij denote the transition rate, the branching
probability, and the node associated with states si and sj,
respectively. A transition with X,j = 0 is trivial, meaning no
transition between these two states. A set of nontrivial
transitions from si to some other states si such that EjYjj = 1 is
called a branching set, and each transition in the set with j
< 1 is called a branching transition. On the other hand, a
transition with tij = 1 is called a lone transition. As will be
seen in Section IV, a branching set results from either an Or-
Fork or a loop.
A set of event-driven transitions associated with s, E Sk and

node m E Mis defined as: OUT(si, m) = {(Xij,, ij, m)Isj E
Sk, X,j * 0}, the set of all nontrivial transitions from si to be
fired in node m during Ik. Given that the task system is in si,
the number of transitions, IOUT(s,, m)I , 5may be larger than
the number of processors, Z(m), for some node m E M.
Therefore, a decision must be made as to which activities/
transitions will be chosen6 to fire. An activity selection policy
6 specifies this choice for each m E M and for each si E S.
Let D, denote the set of all decisions available at si. The policy
space A is defined as the set of all such policies, i.e., A = D
x - x Di x ... xDD where n = ISI.
Given the policy 6, the set of transitions chosen for

concurrent firing at s, is called an active transition set, ATS6.

s Each branching set as a whole is counted as a single transition.
6 If Z(m) 2 IOUT(s,, m)|, then all elements in OUT(si, m) are chosen.

Note that ATS6 is a subset of OUT(si, *) = UmEM OUT(si,
m).

Ok:Sk -+ Sk±1 is the time-driven transition function. All
transitions specified by Ok occur at time Wk+ 1 and take no time
to complete the transitions. Specifically, Ok specifies which
state in Sk+1 to start with at time Wk+ 1 for each state in Sk upon
some task invocations.

IV. THE MODELING PROCESS

Given the task flow graphs (TFG's) and their task trees for
each node, our objective is to model the task system with a
sequence of CTMC's such that:
C1) the resulting CTMC model has as small a state space as

possible,
C2) the precedence constraint between any two basic

execution objects in the original TFG is retained, and
C3) the expected execution times for each task invocation

and for the task system as a whole are preserved in the
resulting CTMC model.
Cl) is concerned with optimality, while C2) and C3) are

constraints. Since the size of the total state space S is generally
an exponential function of the number of activities, modules
should be combined, whenever possible, to build the smallest
set of activities while satisfying C2) and C3). This combina-
tion may cause the following two problems: P1) loss of
potential parallelism, and P2) dependence among resulting
activities. P1) is due to the combination of modules in an And-
Subgraph. This is acceptable since analysis based on such a
combination will err on a conservative side in meeting hard
deadlines. P2) is caused by the combination between modules
inside and outside an Or-Subgraph. A combination of this kind
merges an outside module with a module on each branch of the
Or-Subgraph, and, thus, introduces dependence between the
resulting modules on any two branches. This calls for the use
of a stochastic process with mutually dependent transition
delays. However, since such a combination could drastically
reduce the size of state space, we choose to approximate the
model by ignoring this effect.
The overall procedure to build the proposed CTMC model

of the task system is divided into three sequential stages:
building the smallest activity set of a TFG, constructing a
GSPN of concurrent task execution, and deriving the CTMC
model from the GSPN.

A. The Smallest Activity Set
Given the TFG's and their task trees for each node, the set

of activities of each TFG is determined by identifying their
boundaries. We propose a procedure consisting ofN iterations
of combination and expansion phases where N is the largest
layer number in the task tree of interest. The combination
phase merges modules within subgraphs of the same layer
while the expansion phase penetrates the boundaries of the
subgraphs being worked on and performs some preprocessing
for the next combination phase.

Starting from the second innermost (i.e., layer N - 1), and

7 As mentioned before, potential parallelism is lost if, for example, there.
are more than two processors available to execute in parallel any two branches
to be combined.

504

PENG AND SHIN: MODELING OF CONCURRENT TASK EXECUTION

working through the outer layers, each iteration works on all
subgraphs in the layer until the outermost layer is expanded.
The layer which is currently being worked on is called the
active layer.

1) The Combination Phase: To meet C2), only three
types of combination are allowed: vertical, horizontal, and
total combinations. Vertical combination merges vertically
adjacent modules of a chain into a new equivalent module. E'T]
Horizontal combination operates on two or more branches in
an And-Subgraph or an Or-Subgraph. Total combination
merges the whole subgraph into a single equivalent module as
was done in [5].
A chain can have vertical and total combinations, an And-

Subgraph or an Or-Subgraph can have horizontal and total
combinations, while a loop can have total combination only. An ag
These combinations are performed only in the subgraphs in the lower
active layer of the TFG.
To satisfy C3), the expected execution time of an equivalent

module is computed as follows. The expected execution time
of the equivalent module after a vertical combination in a chain
or the horizontal combination in an And-Subgraph7 is the sum
of those of all the component modules combined into it. For
the horizontal combination in an Or-Subgraph, the branching
probability Pe and the expected execution time E[Tel of the
equivalent module e are determined by the following two
equations.

Pe= z Pi
iE G

E E[Ti]Pi
E[Te]-i= E

Pe
9 Pe*O

(1)

(2)

where G is the nonempty set of modules combined into the
equivalent module e, pi, and E[TJ] are, respectively, the
branching probability and the expected execution time of
module i in G. Note that both (1) and (2) also hold for the total
combination of an Or-Subgraph. For a loop, however, the
expected execution time E[Te] after the total combination is

E[T,]
E[Te]= , p*l (3)

1-p

where E[T,] is the expected execution time of the single
equivalent module in the loop body.
To facilitate the next phase, if a total combination is

performed in any of the four types of subgraph, the subgraph
is replaced with its equivalent module, and its two structure
points are removed.

For example, Fig. 8 illustrates the horizontal combination
of an Or-Subgraph, and Fig. 9 shows the total combination of
a loop. In the figures, iCOMM represents a communication
primitive, |OUTPUT| is the point where an output signal is
sent, and EXE represents a module. Also indicated in Fig. 8
are structure points which have been aggregated in the
previous expansion phase (see below).

2) The Expansion Phase: The expansion phase is to
remove the structure points of the subgraphs of the active layer

3gregated -

-end point

P. =P I+PI
An aggregated /
upper-end point

kn aggregated
upper-end
point

-XE

c I

EXE I

UTP

An aggregated
lower-end
point

v

E[T I E[Tjlp+E[T3Jp3

Fig. 8. The combination process for an Or-Subgraph.

l-p

gI=T!V!EDiJ '1-p

Fig. 9. The total combination of a loop.

such that the next combination phase can be applied across the
original boundaries. This is done by applying two operations:
module migration and structure points aggregation. Mod-
ules outside an Or-Subgraph and adjacent to its join point are
moved inside the subgraph only if the next combination phase
can reduce further the total number of resulting activities. This
is the case when there is a module on each branch of the Or-
Subgraph ready to be combined with the migrated module.
Two adjacent structure points are aggregated into one if the
aggregation should decrease the number of instantaneous
places in the resulting GSPN model.

While performing the above two operations, control points
need to be assigned and communication points to be identified
to "stop" further combination on modules located between
these points in order not to violate the precedence constraints.
Therefore, each of these "stopping points" will serve as the
boundary of the two activities, if any, on each side of the
point, and no other point in the TFG will serve the same
purpose.

The rules for module migration are summarized as follows.
RI) Vertically combine all contiguous modules in the active

layer into their equivalent modules as in the combination phase
described above.

505

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

EXEI2 EXE2

o E

EXEo

Fig. 10. The movement of a module into an Or-Subgraph.

4 m \ Control points are
EXE

' .assigned to these
two points

Fig. 11. A module between two Or-Subgraphs.

R2) If a module is outside only one Or-Subgraph whose
join point is adjacent to the module, move the module into the
subgraph if there is a module adjacent to the join point on each
branch of the Or-Subgraph8 (Fig. 10).

R3) If a module is outside only one Or-Subgraph whose
fork point is adjacent to the module, or the module is between
two Or-Subgraphs, assign control point(s) to the structure
point(s) associated with the subgraph(s) without moving the
module (Fig. 11).

R4) For any module that is adjacent to an And-Subgraph or
a loop, assign a control point to the adjacent structure point of
the subgraph without moving the module (Fig. 12).

R5) For any subgraph that is adjacent to a communication
point, assign a control point to the adjacent structure point of
the subgraph without moving the module.

After module migration is performed, structure points
should be aggregated a's required to eliminate redundant
structure points and prepare for the next combination phase.
Apparently, different modeling bases have different modeling
efficiency, making the conditions for aggregation different.

ssign a control point
to this structure point

TEX
Fig. 12. A module adjacent to an AndsSubgraph.

For example, a structure point regarded redundant by a more
efficient modeling base, such as stochastic activity networks
[10], may not be regarded redundant by a less efficient base
such as a GSPN,9 whose modeling efficiency is limited by its
execution rules. Since the GSPN cannot efficiently model a
logic structure which is more complex than the fork or join
point of an And-Subgraph or Or-Subgraph, a structure point is
regarded redundant only if aggregation on this point should
result in a logic structure which is logically less complex than
AND Fork, AND Join, OR Fork, and OR Join. (Each of these is
called an AND/OR logic").
The notation P1 -- P2 is used to denote a case of two

adjacent structure points, where P1 is immediately followed
by P2. Depending on the relative positions of P1 and P2 in
the TFG, three different classes can be identified:

* P2 is in the active layer, which is one layer inside the
layer of P1.

* P1 is in the active layer, which is one layer inside the
layer of P2.

* Both P1 and P2 are in the active layer.
One example of structure point aggregation of each of the

above classes is shown in Fig. 13 where A 1, A 2, R 1, and R2
represent the fork and join points of the And-Subgraph and the
Or-Subgraph, respectively. When the inner Or-Subgraph is
expanded (Fig. 13(a)), the inner R1 is redundant and, thus,
aggregated into the outer R 1 to form an AND/OR logic. In order
to includet new branching probabilities after aggregation, each
branching probability in the inner Or-Subgraph should be
adjusted by multiplying each branching probability in the inner
subgraph by their probability in the outer subgraph. In this
case, since further combination may still be possible, no
control point is assigned. In Fig. 13(b), the inner And-Join
cannot be aggregated into the outer Or-Join to form an AND/OR
logic, implying that no aggregation is possible and, thus, a
control point is assigned to the inner And-Join to represent a
boundary between certain activities. Fig. 13(c) shows an Or-
Subgraph immediately followed by an And-Subgraph in the

I Irrespective of the various modeling bases used, the resulting CTMC
8 This is the case that introduces a dependence relationship among models are the same. However, using a more efficient modeling base makes

combined modules on any two branches of the Or-Subgraph. the corresponding reachability analysis more difficult.

506

PENG AND SHIN: MODELING OF CONCURRENT TASK EXECUTION

pi
Ri R

Pi

Rl
. .

SIP?gPP1 PP PP
(a)

No change,
+ and A2 is

assigned a
control point

I

No change, R2 and
Al are assigned
control pointsh AlK"'

v !

(b) (c)
Fig. 13. Three examples of aggregation rules. (a) Case (12). (b) Case (23).

(c) Case (34).

same layer. Since no AND/OR logic can be formed by
aggregating these two structure points, they remain un-
changed, except that each of them is assigned a control point.

Since only four types of subgraph are considered, it is not
difficult to i) enumerate all different cases in which two
structure points are adjacent to each other, and ii) set up the
aggregation rules for each case. All 39 cases' and their
aggregation rules are given in the Appendix.
Upon completion of the current iteration of both phases, the

active layer is raised outward by one so that the next iteration
can be applied on the new active layer. This procedure is
repeated until the outermost layer is finally expanded. Fig. 14
is the summary of the process described thus far. Clearly,
since the precedence constraints and the expected execution
times are preserved under each operation, C2 and C3 are both
satisfied, and the resulting set of modules is the minimal set of
activities. Because the decomposition process is communica-
tion-oriented, the resulting graph is called a communication
flow graph (CFG).

As an example, the resulting CFG for the TFG in Fig. 15 is
shown in Fig. 16. Notice that the CFG does not maintain the
structure of the original TFG. The CFG is just a collection of
activities, communication and control points properly orga-
nized by AND/OR, sequential and loop logic structures and,
more importantly, no longer contains the four types of
standard subgraph.

B. GSPN Representation
To fully describe the task system with a GSPN, the

following three aspects of the task system must be properly
modeled and incorporated.

Fl) The precedence constraints among activities within a
single task, which are imposed by the corresponding CFG.

F2) The precedence constraints among activities of two
communicating tasks, which are imposed by the semantics of
the communication primitives used.

PROCEDURE combination-phase(lsyer nsm)
BEGIN /*** combination phase for the current active layer ***/
FOR each subgraph whose layer number = layer num DO

BEGIN / ***combination phase for one subgraph 000/
Perform vertical, horizontal, and total combinations on modules in the
subgraph as described in Section IV-A-]).

END /*** combination phase for one subgraph *0*/
END /*** combination phase for the current active layer 0**/

PROCEDURE expansion-phase(4ayerenum)
BEGIN /000 expansion phase for the current active layer ***/

Identify all communication points whose layer number = layer num.
FOR each subgraph whose layer number = lyer num DO

BEGIN /000 code stretch movement for one subgraph *0/
Move modules whose layer number = layer num into the subgraph
according to the rules Rl, R2, R3, R4 and R5 as described in Section IV-A-2).

END /*** code stretch movement for one subgraph 000/

FOR each structure point whose layer number = layer num, and has no module
adjacent to it DO
BEGIN /*** structure point aggregation 000/

Aggregate the structure point, and assign control point according the rules
listed in the Appendix.

END /*** structure point aggregation 000/
END./*** expansion phase for current active layer 000/

/***0************0* Main Program ***********************/
BEGIN /*** Decomposition Process 000/

FOR active layer = N-i to 0 DO
BEGIN /*** 1 iteration of combination and expansion phases ***/

combination-phase(active ayer);
expansion phase(activeJslyer);

END /*** 1 iteration *0/
END /*** decomposition process 0**/

Fig. 14. The summary of the process to build the smallest activity set.

F3) The time-driven, rather than event-driven, task invoca-
tions.

Fl) and F2) determine the structure, whereas F3) affects the
initial markings, of the resulting GSPN. F1) requires to model
sequential, AND/OR, and looping logics on the activities in a
CFG. This modeling process is straightforward and, thus,
omitted here (interested readers may consult [9] and [11]). F2)
and F3) are addressed in Sections IV-B-1) and IV-B-2),
respectively.

1) The GSPN Models of Communication Primitives:
The communication primitives to be modeled include SEND-
RECEIVE-REPLY, QUERY-RESPONSE, and WAITFOR.
Although these primitives were proposed in [12] for intertask
communications in an integrated multirobot system (IMRS),

50)7

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

Fig. 15. The TFG of a node.

** Control point

* Communication point

(ENcD)
Fig. 16. The CFG of the TFG in Fig. 15.

Task A P2t
Task A RECEIVE

SEND
Delay(SEND)

t T2 Processing

Pe
Ts-L P's O

Task A REPLY TakB
Delay(REPLY a
I

Transmissiont
Medium

Fig. 17. GSPN model for SEND-RECEIVE-REPLY.

they are typical to real-time control systems. If task A issues a
SEND to task B, A remains blocked until a REPLY message
from B is received. If B executes a RECEIVE before the
message arrives, it also remains blocked. QUERY and
RESPONSE are used to allow one task to interrupt another for
information, e.g., to avoid collision between two robots that
share the same workspace. If A issues a QUERY to B, A
remains blocked until the RESPONSE message from B
arrives. Upon arrival of the QUERY message from A, B can
decide to either accept the QUERY and respond to A
immediately or queue the QUERY for a later RESPONSE.
WAITFOR is the primitive to allow more-than two tasks to
synchronize among themselves. Note that a processor can
switch to other tasks while the current task is being blocked.

a) SEND-RECEIVE-REPL Y: Assuming task A issues
a SEND to task B in a different node, the GSPN model for this
communication is given in Fig. 17.
When A issues a SEND, a token will be placed in Pi, and a

timed transition TI, which represents the transmission delay of
the message, is fired. A token will be created at P2 at the other
end of the message transmission after t4 units of time, the time
required for T,. A token will also be placed inp3 if B executes
a RECEIVE. This token together with that inp2 will enable the
timed transition T2, which represents the necessary processing
by B after the message is received. Upon completion of T2,
two tokens are generated. One is placed inp4 to unblock B, the
other in p5 to issue a REPLY to unblock A. Again, the delay
for the REPLY message is represented by the timed transition
T3. If A and B are executed on the same node, then the
message passing delays T, and T3 are zero, implying that Pi
and P6 will coincide with P2 and p5, respectively.

b) QUERY-RESPONSE: QUERY is used to allow a
task to interrupt another task for information. The queried task
will decide to either accept or queue the QUERY. When the
task accepts the QUERY, it stops its current thread of control,
starts executing the RESPONSE routine, returns to where it
left off after the RESPONSE routine is completed, and issues a
REPLY to unblock the querying task. The GSPN model for
QUERY is shown in Fig. 18, In essence, the task issuing a
QUERY creates an activity, i.e., the RESPONSE routine, to
be executed by the task accepting the QUERY. Upon arrival of
the QUERY message, the corresponding RESPONSE routine
will be ready to be scheduled for execution by the accepting
task. Note that such a GSPN allows a blocked task to respond
to or queue a query, and to schedule RESPONSE's in case of
multiple queries.

508

PENG AND SHIN: MODELING OF CONCURRENT TASK EXECUTION

Querying Task Transmission
Medium

Queried Task

Fig. 18. GSPN model for QUERY-RESPONSE.

Task T, executes
WAITFOR

Fig. 19. Three tasks executing WAITFOR's.

c) WAITFOR: WAITFOR allows more than two tasks
to synchronize with one another. It can be implemented as

follows. When a task Ti in a node executes a WAITFOR, it
sends a message, say waitfori, to each of the tasks named in its
WAITFOR list. Ti remains blocked until it receives the
waitfor messages from all the tasks in its waitfor list. After Ti
is unblocked, a named function F, included in the WAITFOR
will be executed. When Fi is completed, execution of the task
continues from the point immediately after the WAITFOR.
Fig. 19 is the GSPN model of WAITFOR for three tasks
residing at different nodes participating in a three way
synchronization.

After precedence constraints F 1) and F2) are properly
modeled, a system-wide GSPN can be obtained by "pasting
together" all GSPN's corresponding to each individual task
invocation in a planning cycle. The system-wide GSPN is
unmarked until tasks are invoked. Section IV-B-2) describes
how the unmarked GSPN is marked at each task invocation to
correctly model the behavior of the task system.

2) Modeling the Time-Driven Task Invocations: Since
Petri net-type modeling bases are good only for event-driven
parallel transition firings, time-driven task invocations add
more complexities to our modeling process. This is because

time-driven task invocations dictate the state evolution of the
(marked) GSPN at invocation times. Therefore, instead of a
single CTMC, a sequence of CTMC's has to be used to
correctly model the task system.
Assume, as before, that each periodic task begins its first

invocation at time to, and that the set of invocation times in a
planning cycle [to, to + L) is I wl, w2, * wI} where 0 < to
= wI < w2 < ... < w,.< to + L. The following steps show
how the unmarked system-wide GSPN built above is marked
such that a sequence of CTMC's, {(Sk, Ak, 00lk = 1, 2,
*, l}, can be built for the task system.

1) At the beginning of a planning cycle wl, thb unmarked
system-wide GSPN is marked by creating a token in each place
correspoiiding to the START points of the individual- GSPN's
of all periodic tasks to serve as the initial marking of the
planning cycle.

2) The marking at time t E [wl, w2) is determined by the
event-driven transition firings in the system-wide GSPN with
its initial marking at time wi.

3) The marking at time wi, 2 . j . 1, is determined by
three parts: i) a token is created in each place corresponding to
the START points of the individual GSPN's of the tasks
invoked, ii) to disallow task pipelining, all tokens associated
with previous task invocations are removed from the individ-
ual GSPN's before the same tasks are invoked again, and iii)
the number of tokens in each place is determined by the event-
driven transition firings of the marked system-wide GSPN
with its initial marking at time wj1. This marking serves as
the initial marking of the GSPN beginning at time wj.

4) At time t E [wj, wj11), 2 < j Iwhere wI+1 = to +
L, the marking is determined by the event-driven transition
firings in the systetn-wide GSPN with its initial marking at
time wj.

For example, the unmarked GSPN of a task system that
consists of three periodic tasks T1, T2, and 7T3 residing in three
different nodes A, B, and C is shown in Fig. 20, where T,
queries T2 for information and T3 communicates with T2 by
sending messages. T1, T2, and T3 with periods 5, 10, and 5,
respectively, are first invoked at time to - 0. In Fig. 20,
immediate transitions are denoted by "bars," timed transi-
tions by "ovals," and integer numbers in circles are the place
numbers. At the beginning of the planning cycle, a token is
generated in Pl, pg, and P18; at time t E [0, 5), the state
evolution is driven by event-driven transition firings. At t = 5
when T, and T3 are invoked again, the marking of the GSPN is
determined by: i) a token is generated in p5 and P23 to indicate
the second invocations of T, and T3, ii) all tokens in pl-p4 and
P18-P22 are removed to disallow task pipelining, and iii) the
tokens in P9-P17 are determined simply by event-driven
transition firings since t = 0. Likewise, at t E [5, 10), the
state evolution is determined by, event-driven transition fir-
ings. At t = 10, the same is repeated again for the next
planning cycle. Notice that the random switches at PI3 and P21
should be the same to assure fault-free message passing since
no time-out provisions are made in receiving messages. The
same also holds for the two random switches at P15 and P26.

Following the execution rules of GSPN introduced* in
Section II, it is easy to prove that if the task system is fault-
free, then the system-wide GSPN marked above is safe.

509

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

Task 1 Task 2 Task 3
(Node A) (Node B) (Node C)

Fig. 20. System-wide GSPN for an example task system.

C. Construction of the CTMC Model
Given the system-wide GSPN marked as above, the state-

transition-rate (STR) diagram of the kth CTMC is built as
follows:

1) For the ease of analysis, replace each random switch
with its GSPN equivalent [10] as shown in Fig. 21.

2) Find Sk by performing reachability analysis on the
GSPN initially marked at Wk. This set serves as the state space
of the STR diagram in [Wk, wk+ i). Note that, except those
introduced above, there are no vanishing states in Sk.

3) Assumne that each timed transition delay between states is
independently and exponentially distributed with a transition
rate equal to the reciprocal of the expected execution time of
the corresponding activity.

For example, the STR diagrams of the task system in Fig.
20 are given in Fig. 22 with XI = 3 = 4 = X6 = 2, X2 = 5
= 4, X7 =Xio X12 = \3 = 1, X8 = 6, X9 = 4, and
branching probabilities Pi = 2/3, and P2 = 1/2 where Xi is
the transition rate for activity ai.
As shown in Fig. 22(a) and (b), all states are, represented by

a set of integers representing the set of (noninstantaneous)
places each with. one token, and the number on each arc
indicates the transition rate.

Examination of these diagrams leads to the following
insights.

* Each state in the total state space S = U = Sk globally;~~~~~~~~~~~~

Fig. 21. The GSPN equivalent of a random switch.

describes which stage of the tasks each node has been
executing. For example, (2, 10, 12, 19) in Fig. 22(a)
represents a state where T1 is blocked waiting for a response
from T2, T2 has neither finished a7 nor responded to the query
from T1, and the message from T3 has arrived at B waiting to
be handled.

* The state spaces for any two different invocation intervals,~~~~~~ s

are disjoint. Further, S1 contains a unique starting state s0,
and SI contains a unique ending state sf of the planning cycle.
For example, state (1, 10, 12, 18) (Fig. 22(a)) is the starting
state, while state (8, 17, 27) (Fig. 22(b)) is the ending state.

* If a CFG contains loops, then all STR diagrams will be
cyclic as shown in Fig. 22(a) and (b), and acyclic otherwise.

* Depending on the marking at wj, the STR diagram in [wi,
wj+) could be disconnected (Fig. 22(b)).

* Since the precedence constraints among all activities are

510

PENG AND SHIN: MODELING OF CONCURRENT TASK EXECUTION

(a)

E [5, 10).

511

Fig. 22.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

properly conveyed in the system-wide GSPN, the resulting
STR diagrams implicitly show all possible execution se-
-quences of activities of the task system in a planning cycle.

* Depending on the task system, some states could be time
critical. For example, if there is a hard deadline for node A to
complete the first invocation of T1, then at least one state of the
form (4, *, *, *) in Fig. 22(a) has to be reached before that
deadline.

* For a specific state, the number of activities that can be
concurrently executed by a node may be larger than that of the
processors available to that node. For example, the system is
in state (6, 10, 14, 24), three activities (a5, a7, and a9) can be
concurrently executed by node B. If B has only two
processors, then a decision must be made as to which two of
the three activities in B are to be chosen for parallel execution.

V. AN APPLICATION EXAMPLE

In this section, we demonstrate the use of the proposed
CTMC model {(Sk, Ak, k)Ik = 1, 2, * , l} by computing
the probability of missing a hard deadline given the activity
selection policy and the local state of a node. Clearly,
estimating task execution time is a special case of this
problem.
The concurrent task execution can be thought as the

"movement" of tokens in the GSPN. A place in the GSPN is
said to be realized if it has a token implying the completion of
those activities that "precede" the place. Therefore, a hard
deadline in the task system is associated with the realization of
a place. For example, a hard deadline for node A in Fig. 20(a)
to complete the first invocation of T1 is the maximum time
allowed forp to be realized. A place is said to be time critical
if it has a hard deadline. A state si which contains a set, say Ri,
of realized time critical places is called a goal state with the
realized set Ri, and written as I(sj) = Ri. Denote the set of all
time critical places by I. Clearly, k(sj) C I, vsi E S. For
the previous example, if I = {4, 8, 17}, then &((4, 11, 14,
22)) = {4}, and k((6, 17, 25)) = 0((7, 17, 27)) = {17}. If I
= {l1, 22, 27}, then t((6, 11, 14, 25)) = {11},1 ((8, 17,
27)) = {11, 27},10 andi((8, 10, 16, 25)) = 0. The set Gh of
goal states each of whose realized sets contains the time
critical place Ph is called the goal set with respect to placePh,
and is written as T(ph) = Gh. Obviously, T(Ph) C S, VPh E
I. For the same task system in Fig. 20, T(P17) is the subset of
all states of the form (*, 17, *).
The first passage time Y,1j from si to sJ is an r.v.

representing the time needed for the task system to reach sj for
the first time from s,. Denote the CDF of Y,j by Qi,1(t) =
Pr { Y,j s t}. A set of initial states I with known element
probabilities could sometimes be given instead of a single
initial state si. Similarly, a set of final states F may be known
in place of a single final state sj. In such a case, the first
passage time is defined as the time needed for the task system
to reach any sj E Ffor the first time given that the task system
is initially in some state si E I at time t,. Denote the CDF of
the first passage time of this type by QI,F(tC, t') where t'
represents the time measured from tc.
The local state space Sm associated with node m within Ik =

10 The realized set of (8, 17, 27) is that of (8, 11, 16, 27).

[Wk, Wk+ 1) is constructed as follows: identify the set of places
Pm belonging to node m, and then select the markings of Pm
from Sk. Note that for any h * k, Sm n Sm = 0 because Sh
n Sk = 0. Taking the task system in Fig. 20 again as an
example, Pl, P4, p5, andP8 belong to node A, SA = {(1), (4),
(nil)} and SA = ((5), (8), (nil)} where (1), (4), (5), and (8)
stand for the local states that each of PI, p4, p5, and P8
contains a token, and (nil) for the local state where no place
contains a token. Clearly, Sk C SI X Sk X ... x SM x ...

x Sc, vk = 1, 2, I..,I where c = IMI.
Without loss of generality, we can assume that the current

planning cycle starts at time 0. Given the activity selection
policy 6* used by the task system and the local state xm at time
tc > 0, we want to compute the probability ak of missing the
hard deadline Tk 2 tc for a time critical place Pk in the current
planning cycle. More formally, we want to calculate

rk=Pr {Tk>>kr 6= P*, Xm(tC) =Xm} (4)

where Tk is an r.v. representing the time Pk is realized for the
first time, 6 a variable representing the activity selection policy
used by the task system, and Xm(t) an r.v. for the local state of
node m at time t.

Given the GSPN and CTMC models of the task system, the
above problem can be solved by using the following CTMC
properties.

SI) Construct the CTMC model that includes the activity
scheduling policy 6*. This is done by deleting all arcs not in
the active transition set ATS6* from the set OUT(si, *) for
each si E S to queue the corresponding activities for later
execution.

S2) Solve the forward Chapman-Kolmogorov (C-K) equa-
tions for the sequence of CTMC's from S1) to obtain the prior
probability Pi(t,) and apply Bayes' theorem [13] to get the
posterior probability P1'(ta) that the system is in si at time tc
given Xm(tO) = xm. The initial probability of state Sb of the
CTMC for interval I/ = [Wk, Wk/+1) is determined from the
final probability of state sa of the CTMC for Ik-/ = [Wk-1,
wk), k * 1, by the following equation:

(0 if B=0
Pb(Wk) = LE Pa(Wck) otherwise

saEB

where B = {saSO/1-1(Sa) = Sb}. By Bayes' theorem, the
posterior probability is

P,'(t,)=Pr {X(tc)=siIXm(tc)=xm}

Pi(tC) if siE Lxm=2 Pij(tc)x
sjELxm

0 otherwise

(6)

where Lxm is the set of states with Xm(t,) = xm.
S3) Identify the goal set T(p/) = Gk/. Since each sj E Gk is

a state with Pk realized, the event that Pk is realized is
equivalent to the event that at least one state in Gk is reached.

S4) Using the posterior probabilities P7'(t,) computed in
S2) as the initial probabilities at time t{, compute the CDF of

(5)

512

PENG AND SHIN: MODELING OF CONCURRENT TASK EXECUTION

the first passage time QLXm,Gk(tc, t') to any sj in Gk given that
Xm(t,) = xm where t' is the time period measured from t{
QLxm,Gk(tc, t') can be found by making each state in Gk an
absorption state in the CTMC model, and then solving the C-
K equations again for these new CTMC's to compute
SlIEGkPr{X(t') = sj|Xm(t,) = xm}.
SS) Considering the current time t, and QLxm,Gk(tc, t')

computed above, ak is determined by

Ork=Pr { Tk> TkI =5*, Xm(tc)=xm}

=l1QLxm,Gk(tc, Tk-tc)- (7)

As an example, each node A, B, or C in Fig. 20 is assumed
to have only one processor dedicating to normal computations.
From Fig. 20 or 22, it is easy to see that B is the only node
with an insufficient number of processors since, among the set
(a2, a7, a8} or {a5, a7, a9}, two or more transitions can be
fired simultaneously at some state. Thus, the activity selection
policy is determined by how B picks its transition to fire at
each state. In this example, we assume that B picks the
transition according to the order a2, a7, a8 or a5, a7, a9 to flre in
each state. Fig. 23 is the CTMC's corresponding to this
policy.

Suppose the only information available to derive Uk is that pI
is realized in [0, 5) and p5 is realized in [5, 10). Suppose also
that P4, P8, P17, P22 and P27 are all time critical with hard
deadlines r4 = T22 = 5, T8 = r17 = 27 = 10. Following the
above solution steps, we obtain Fig. 24 showing the probabili-
ties of missing these hard deadlines as functions of tc, the time
the information is observed. It is not surprising that u4 and or8
are identical, since B always chooses a2 or a5 first, whenever
possible. This implies that the ordered activities (a,, a2, a3} or
(a4, a5, a6} will be executed without interruption. For t, E [0,
5) and tc E [5, 10), a17 is nearly stable at the value 0.575
because of the dominating fact that, after the second invocation
of T3, T2 may be waiting hopelessly at P12 for the message
which will never arrive from the first invocation of T3 that has
already been discarded. a22 is a monotonically decreasing,
although not significant, function of tc. The high probability of
missing T22 is due to the high branching back probability Pi as
well as the tightness of the deadline. a27 fluctuates around
0.628, a value larger than a22 by approximately 0.1 because, in
addition to similar reasons for a22, the message from the
current invocation of T3 may wait hopelessly to be processed
by T2 which, unfortunately as discussed above, is also waiting
hopelessly for the message from the already-discarded invoca-
tion of T3. From this example, we can see the importance of
the time-out mechanism on message communications in a
distributed real-time system.

VI. CONCLUSION

A CTMC model is presented in this paper to model the
concurrent task execution in a distributed real-time system. In
the modeling process, activities are first identified by alter-
nately applying combination and expansion phases on the
original TFG's of the task system. Secondly, the activities and
the precedence constraints among them are modeled by a
system-wide GSPN. Finally, after considering time-driven
task invocations, a sequence of CTMC's is built with the

assumption of independently, exponentially distributed activ-
ity execution times.
The proposed model has high potential use for resolving

various design issues of distributed real-time systems, such as
task execution time estimation, message handling, time-out,
and task allocation. These issues will be treated in our follow-
up papers.

APPENDIX
Denote the upper and lower endpoints of a chain,11 the

fork and join points of an And-Subgraph, the fork and join
points of an Or-Subgraph, and the collecting and branching
points of a loop by C1, C2, A1, A2, R1, R2, L1, and L2,
respectively.

There are a total of 39 cases to be considered, each of which
is in the form of P1 -+ P2. The aggregation rule to reduce the
number of redundant structure points for each case is
formulated in the following format:

P1--P2: AGGREGATION RULE,

CONTROL POINT ASSIGNMENT RULE.

The AGGREGATION RULE indicates either of the following
two actions:

a) G w x means "aggregate P1 and P2, and replace them
by the structure point x" where x is either P1, P2, or both.

b) NG means "do not aggregate."
The CONTROL POINT ASSIGNMENT RULE also indi-

cates either of the following two actions:
a) S X y means "assign a control point to structure point

y" where y is either P1 or P2.
b) NS means "no control point is assigned."
The following are the rules for all 39 cases.

CLI: P2 is in the Active Layer,
Inside the Layer of P1

(1) C1lA1: G= >Al, NS

Which is One Layer

(2)

(3)

(6)
(7)

Al-ACl: G= >L1, NS

AlI-Al1: G=- >A1I (outer layer), NS

(8) Rl-+Al: NG, S= >Al

(9) Al--RI:NG,S=>RI

(10) LI-Al: NG, S= >Al

(1 1)

(12)

Al-+LR: GG, S=>L(

R1I- R1: G = >RI (outer layer), NS
(with proper adjustments of the

" The START and END points of the TFG are treated as upper and lower
endpoints, respectively.

513

Al-+Cl: G= >Al, NS

Cl-+Rl: G= >RI, NS

(4) RI-+Cl: G= >RI, NS

(5) Cl-+Ll: G= >LI, NS

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

(a)

2
(b)

Fig. 23. The CTMC's tailored for the 6* selected. (a) t E [0, 5). (b) t E [5, 10).

514

PENG AND SHIN: MODELING OF CONCURRENT TASK EXECUTION

2.00 2.50 3.00
CURRENT TIME

(a)

4.00 4.50 5.00

(b)

Fig. 24-. The Probabilities of missing deadlines. (a) t, E [0, 5). (b) it E [5, 10).

branching probabilities of the inner layer (i8) C2-+R2: G= >R2, NS

Or-Subgraph.) (19) R2C2: G= >R2, NS

(13) Ll-~R1: NG, S= >Rl (20) C2-+L2: G= NS

(14) RI~L1: NG, S=>Ll (21) L2-C2: >L2,

(15) Ll-~Ll: 0= >Ll (outer layer), NS. A2--A2: layer),

CL2: P1 is in the Active Layer, Which is One Layer
Inside the Layer of P2
(16) C2-+A2: G= >A2, NS (24) R2-+A2: NG, S= >R2

(17) A2-C2: G= >A2, NS (25) A2-+L2: NG, S= >A2

a

0.50 1.00

515

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

(26) L2-A2: NG, S= >L2

(27) R2-R2: G= >R2 (outer layer), NS

(28) R2-L2: NG, S= >R2

(29) L2-R2: NG, S= >L2

(30) L2-L2: G= >L2 (outer layer), NS (with

proper adjustments of the branching

probabilities of the outer layer loop).

CL3: Both P1 and P2 are in th4Active Layer

(31) A2-A 1: G= >A2 (or A 1), S= >A2 (or A 1)

(32) A2-R1: NG, S= >A2 and RI

(33) A2-L1: NG, S= >A2 and LI

(34) R2-A 1:NG, S=>R2andA1

(35) R2-R1: NG, S= >R2 and RI

(36) R2-L1: NG, S= >R2 and LI
(37) L2-A1: NG, S= >L2 and Al

[11] M. K. Molloy, "On the integration of delay and throughput measures
in distributed processing models," Ph.D. dissertation, Univ. Califor-
nia, Los Angeles, 1981, pp. 19-21 and 53-54.

[12] K. G. Shin and M. E. Epstein, "Intertask communications in an
integrated multi-robot system," in Proc. 1985 IEEE Conf. Robotics
and Automation, pp. 910-917; also to appear in IEEE J. Robotics
and Automation.

[13] M. H. DeGroot, Optimal Statistical Decisions. New York: Mc-
Graw-Hill, 1970, pp. 11-12.

[14] W. Feller, An Introduction to Probability Theory and Its Applica-
tions, Vol. 2. New York: Wiley, 1971, pp. 491-495.

Dartzen Peng (S'85) received the B.E.E. degree
from National Cheng Kung University, Tainan in
1974, and the M.S. degree in Management Science
from National Chiao Tung University, Hsinchu in
1976, both in Taiwan, Republic of China.
He is currently working towards the Ph.D.

degree in the CSE Division of the Department of
Electrical Engineering and Computer Science, Uni-
versity of Michigan, Ann Arbor. From 1978 to
1982, he was with the Computer Technology
Development Center, ERSO/ITRI in Taiwan. Since

1985 he has been a Research Assistant at the University of Michigan. His
research interests include computer networks, distributed real-time comput-
ing, integrated CAD and CAM systems, and MIS.

Mr. Peng is a student member of the IEEE Computer Society.

(38) L2-Ri: NG, S= >L2 and RI

(39) L2-LI: NG, S= >L2 and LI.

ACKNOWLEDGMENT
The authors wish to thank M. Woodbury of the University

of Michigan and anonymous referees for their constructive
comments on an earlier version of this paper.

REFERENCES
[1] K. G. Shin, C. M. Krishna, and Y.-H. Lee, "A unified method for

evaluating real-time computer controllers and its application," IEEE
Trans. Automat. Contr., vol. AC-30, pp. 357-366, Apr. 1985.

[2] J. P. Huang, "Modeling of software partition for distributed real-time
applications," IEEE Trans. Software Eng., vol. SE-II, pp. 1113-
1126, Oct. 1985.

[3] M. L. Virginia, "Task assignment to minimize computation time," in
Proc. 1985 IEEE Int. Conf. Distrib. Comput. Syst., pp. 329-336.

[4] A. K. Mok, "Fundamental design problems of distributed systems for
the hard real-time environment," Ph.D. dissertation, Massachusetts
Inst. Technol., Cambridge, May 1983, pp. 80-94.

[5] W. W. Chu and K. K. Leung, "Task response time model & its
applications for real-time distributed processing systems," in Proc.
IEEE 1984 Real-Time Syst. Symp., pp. 225-236.

[6] M. Ajmone Marsan, G. Balbo, and G. Conte, "A class of generalized
stochastic Petri nets for the performance analysis of multiprocessor
systems," ACM TOCS, vol. 2, pp. 93-122, May 1984.

[7] L. Kleinrock, Queueing Systems, Volume 1: Theory. New York:
Wiley, pp. 44-53, 1975.

[8] S. M. Ross, Introduction To Probability Models. New York:
Academic, 1983.

[9] J. L. Peterson, Petri Net Theory and the Modeling of Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

[10] A. Movaghar and J. F. Meyy% ''Performability modeling with
stochastic activity networks," CSmmun. Network Lab., Industrial
Technology Inst., Ann Arbor, MI, Tech. Rep., 1984.

Kang G. Shin (S'75-M'78-SM'83) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea, in 1970, and
both the M.S. and Ph.D. degrees in electrical
engineering from Cornell University, Ithaca, NY,
in 1976 and 1978, respectively.
From 1970 to 1972 he served in the Korean Army

as an ROTC officer and from 1972 to 1974 he was
on the research staff of the Korea Institute of
Science and Technology, Seoul, working on the
design of VHF/UHF communication systems. From

1974 to 1978 he was a Teaching/Research Assistant and then an Instructor in
the School of Electrical Engineering, Cornell University. From 1978 to 1982
he was an Assistant Professor at Rensselaer Polytechnic Institute, Troy, NY.
He was also a Visiting Scientist at the U.S. Air Force Flight Dynamics
Laboratory in summer 1979 and at Bell Laboratories, Holmdel, NJ, in
Summer 1980 where his work was concerned with distributed airborne
computing and cache memory architecture, respectively. He also taught short
courses for the IBM Computer Science Series in the area of computer
architecture. Since September 1982, he has been with the Department of
Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, where he is currently an Associate Professor. His current teaching and
research interests are in the areas of distributed and fault-tolerant computing,
computer architecture, and robotics and automation. He was the Program
Chairman of the 1986 IEEE Real-Time Systems Symposium and is the Guest
Editor of the Special Issue of IEEE TRANSACTIONS ON COMPUTERS on
Real-Time Systems which is scheduled to appear in August 1987. He has been
very active and has authored or coauthored over 100 technical papers in the
areas of distributed fault-tolerant real-time computing, computer architecture,
and robotics and automation. As an initial phase of validation of architectures
and analytic results, he and his students are currently building a 19-node
hexagonal mesh at the Real-Time Comiputing Laboratory (RTCL), University
of Michigan.

Dr. Shin is a member of the Association for Computing Machinery, Sigma
Xi, and Phi Kappa Phi.

516

