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Selection of Near-Minimum Time  Geometric Paths 
for Robotic Manipulators 

Abstract-A number of trajectory planning algorithms exist for 
calculating the joint  positions,  velocities, and torques which will drive a 
robotic manipulator along a given geometric path in minimum time. 
However, the time depends upon the geometric path, so the traversal time 
of the path should be considered again for geometric planning. There are 
algorithms available for  finding minimum distance paths, but even when 
obstacle avoidance is not  an  issue, minimum (Cartesian) distance is not 
necessarily eqnivalent to minimum time. 

In this paper, we have derived a lower bound on the time required to 
move a manipulator from  one point to another, and determined the form 
of the path which minimizes this lower hound. As numerical examples, we 
have applied the path solution to the first three joints of the Bendix PACS 
arm and the Stanford arm. These examples do indeed demonstrate that 
the derived approximate solutions usually require less time than Cartesian 
straight-line (minimum-distance) paths and joint-interpolated paths. 

I. INTRODUCTION 

P PRODUCTIVITY increase is the goal of the utmost 
importance in contemporary automation with programmable 

robotic manipulators. Driving robotic manipulators as fast as 
possible, i.e., minimum time control of manipulators, is an 
important means of achieving this goal. Minimum time control of 
manipulators generates several interesting but difficult control and 
planning problems. This paper is intended to treat one such 
problem, that is, minimum time geometric path planning for 
manipulators. 

Loosely speaking, the problem of minimum time control 
(MTC) of a manipulator is concerned with the determination of 
control signals that will drive the manipulator from a given initial 
configuration to a given final configuration in as short a time as 
possible., given constraints on the magnitudes of the control 
signals and constraints on the intermediate configurations of the 
manipulator, i.e., given that the manipulator must  not  hit  any 
obstacles. In general, it is extremely difficult, if not impossible, to 
obtain an exact closed-form solution to the MTC problem due 
mainly to 1) the nonlinearity and coupling in the manipulator 
dynamics, and 2) the complexity involved with collision avoid- 
ance. One way to sidestep the collision avoidance problem 2) is to 
assume that the desired geometric or spatial path has been 
specified a priori. As to the difficulty 1) , although there are a few 
suboptimal solutions derived using approximate manipulator 
dynamics [3], [4], the MTC problem is usually divided into two 
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subproblems, i.e., trajectory planning and trajectory  tracking, 
each of  which is then solved separately. This division of the MTC 
problem can best be explained by Fig. 1 .  From a task planner we 
obtain an ordered sequence of points in Cartesian space which 
represent a collision-free path  if  we connect them properly (e.g., 
by spline functions or straight line segments). The  geometric 
path  generator 1) transforms these Cartesian points to the 
corresponding points in joint space, I and 2) using the transformed 
points in joint space, generates a geometric path  which is a 
parameterized curve in joint space. The trajectory planner 
receives these geometric paths as input and determines a time 
history of position, velocity, acceleration, and  input torques 
which are then fed to the trajectory tracker. 

With the division outlined above, we have formulated in [lo] 
the minimum time trajectory planning (MTTP) problem to 
determine controls which will drive a given manipulator along a 
specified curve in joint space in minimum time, given constraints 
on initial and final positions and velocities as well as on control 
signal magnitudes. Since a geometric path can be described as a 
parameterized curve, and the geometric path is assumed to be 
given, trajectory planning is relatively simple. By introducing a 
single parameter which describes the manipulator's position, the 
dimensionality of the problem has been reduced considerably. The 
current state (joint positions and velocities) of the manipulator can 
be described in terms of the parameter used to describe the 
geometric path and its time derivative. The  MTTP problem is 
therefore essentially a two-dimensional minimum time control 
problem with some state and input constraints. 

More formally, assume that the geometric path  is given in the 
form of  a parameterized curve, say 

q '=f ' (A) ,  O I X I A , ,  (1.1) 

where qi  is the position of the ith  joint, the initial and final points 
on the trajectory correspond to the points X = 0 and X = A,,, 
respectively, and the functions f" are continuous and piecewise 
differentiable. Also assume that the bounds on the actuator 
torques can be expressed in terms of the state of the system, i.e., 
the manipulator's speed and position, so that 

u?(q, q ) 5 u l I u p ( q ,  4 )  (1 . a  

where ui is an n-dimensional vector of actuator torques/forces; 
u y  and u y  are n-dimensional vectors that represent the 
maximum and minimum torque bounds, respectively, and n is the 
number of joints that the manipulator has. Note that 1) the torque 
bounds may in general be functions of joint position and velocity, 
and 2) the vector inequality (1.2) denotes component-wise 
inequalities. Given the functions f' in (1 .  l),  the inequality (1.2), 
the desired initial and final positions and velocities, and the 
manipulator dynamic equations to be given in (4. l), the MTTP 
problem is to find q@) and q ( X ) ,  and hence the controls ui(X) 

* This transformation requires the  solution of the inverse kinematic 
problem, which  is  not, however, a subject of this paper. 
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which minimize the time T given by 

Functional block diagram  of  manipulator  position control. 

T =  s 1 * d t=  s - dX= s“ dX (1.3) 

where ,u = dWdt  is the “speed” of the manipulator. See [ 101 for 
more detailed descriptions of our solution to the MTTP problem. 

In terms of the trajectory planning problem, the geometric path 
planning problem is the problem of picking the parametric 
functions f’. In contrast to the trajectory planning problem, in 
which the desired solutions can be expressed in terms of the 
position parameter h and its first and second time derivatives, the 
geometric path planning problem requires that a set of functions 
be chosen from an infinite-dimensional space, thereby leading to 
a more difficult problem to solve. 

Some of the earlier trajectory planning techniques restricted the 
form of the geometric paths to a set of comer points connected by 
straight lines [5], [7]. The trajectory planner than “rounds off’ 
the comers. But straight lines are not simple motions to produce 
for most manipulators, and so are not necessarily the best paths to 
choose. It will be assumed in this paper that a more flexible 
trajectory planning scheme like the one in [lo] will be used. 

It should also be noted that the shortest path may  not be the 
minimum time path. In particular, the shortest Cartesian path may 
have one or more sharp  comers, * and the manipulator would have 
to come to a complete stop at these points. This is certainly 
undesirable in view of the need for minimum time control of 
manipulators. 

In this paper, we will develop a method for determining an 
approximate minimum time geometric path for our previous 
trajectory planners described above and in [ 101. This is a 
significant departure from most  of the conventional planning 
methods  in which geometric path planning [6] and trajectory 
planning have been performed separately and independently. 
Due to the intimate, synergistic relationship between the two, it is 
clear that the conventional methods will lead to inefficient 
solutions, e.g., not truly minimum time path solutions or even 
infeasible solutions. Specifically, we intend  in this paper to 
remedy this inefficiency by considering the effects of actuator 
constraints and robot dynamics in both geometric path  and 
trajectory planning. 

This paper is organized as follows. Section II describes tensor 

‘r 4- dt 
0 o dX O P  

not  usually  yield a minimum  time  trajectory, e.g., consider a cylindrical 
Even  if  the  Cartesian  path does not  have  such sharp comer points,  it does 

manipulator  moving along the  shortest  Cartesian  path  around  its waist. 

notation and those aspects of Riemannian geometry which are 
used in the following sections. In Section III, we state formally the 
minimum time geometric path planning (MTGPP) problem to be 
solved in conjunction with trajectory planning. Section lV 
discusses some interesting dynamic properties of manipulators 
that are useful for deriving solutions to the MTGPP problem. In 
Section V, we present 1) an exact solution to the MTGPP problem 
under certain restricted conditions, 2) a method for finding lower 
bounds on  the traversal time from one point to another, and 3) the 
paths which result from a) minimizing the traversal time bounds 
and  b)  using the velocity  bounds derived in [lo]. Section VI 
provides a real feeling for  our solutions by presenting some 
examples which are based on the first three joints of a cylindrical 
manipulator, called the PACS arm, manufactured by the Bendix 
Corporation, and a well-known manipulator, the Stanford manip- 
ulator. The paper concludes with Section VII. 

II. TENSOR NOTATION 

Since many  of the equations which follow are written in tensor 
notation, we briefly introduce tensor notation  in this section (see 
[l 11 for more details). Tensor notation is much like vector 
notation except that the symbols used in tensor equations may 
have subscripts and/or superscripts. A vector is written as a 
symbol with one index, and a matrix will have two. It is possible 
in tensor notation to write arrays of three or more dimensions; a 
three-dimensional array simply has three indexes. 

Formally, a tensor is a quantity or set of quantities which obeys 
certain rules when transformed from one set of curvilinear 
coordinates to another. The transformation rules are of two types, 
as indicated by the position of the tensor’s indexes. Superscripts 
indicate that the index  is contravariant and subscripts indicate 
that it  is covariant. Tensors of order two can have two subscripts, 
two superscripts, or one subscript and one superscript. These are 
called covariant, contravariant, and mixed  tensors of order 
two. Since we make  no  use  of coordinate transforms in this work, 
we omit a description of the tensor coordinate transformation 
rules. 

An important notational tool is the so-called summation 
convention. If  an index appears twice in a product of two tensor 
expression, then the expression is summed from 1 to N over the 
repeated index, where N is the dimension of the space. Thus, a$’ 
is shorthand for uibi. It is important to  note  that a given 
index should not appear more than twice in any term of a tensor 
equation, and that repeated indexes should appear once as a 
subscript and once as a superscript. If a repeated index appears, 
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for example, twice as a subscript, then the resulting quantity will 
not  in general be a tensor.  If, on the other hand, the index appears 
once as a subscript and once as a superscript, it is easily verified 
that the expression is a tensor whose character is indicated by the 
remaining (nonrepeated) indexes. For example, TUxj  is a covari- 
ant tensor of order one; the j indexes “cancel.” 

In what follows, some use will be made of Riemannian 
geometry, which is the study of the metrical properties of spaces 
of an arbitrary number of dimensions. The space is described by 
its metric tensor, which gives the square of the differential line 
element as a quadratic form in the differentials of the coordinates, 
i.e., ds2 = J,dq’dq’, where Ju is the metric tensor and the qi and 
qJ are the coordinates. Ju may  without loss of generality be 
assumed to be symmetric, i.e., JG = Jil. It also will be assumed 
throughout this paper that the metric tensor is positive definite, 
i.e., that J,x‘xJ > 0 for all x # 0. 

The introduction of the metric tensor allows distances and 
angles to be measured, and allows the computation of norms of 
vectors. Distances along curves are calculated by integrating the 
formula for the differential line element ds. The norm of a 
contravariant vector x’ is given by the formula IIxi 11 = Jijxixj, 

The angle between two vectors x and y is given by the formula 
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operator 6/6s is called the absolute derivative with respect to s. 
The absolute derivative of a contravariant tensor of order one with 
respect to the scalar 4 is defined as 

If Ju is positive definite, then it can be shown that the right-hand 
side of (2.1) is always between + 1 and - 1, so that 13 is a real 
angle. Even if Jij is not positive d e f i t e ,  two vectors x and y are 
said to be orthogonal if and  only  if JuxiyJ = 0. 

The curves in a Riemannian space corresponding to straight 
lines in Euclidean space are geodesics, or curves of  minimum 
distance. The differential equation which describes these curves 
can be found from the form of the line element ds using 
variational techniques. Using such techniques, the differential 
equation obtained is 

d 2qJ dqJ  dq Ju - + [ j k ,  i ]  - -=O. 
ds2 ds ds 

The symbol [ j k ,  i ]  is a Christoffel symbol of the first kind, and is 
defined by 

(For purposes of applying the summation convention this symbol 
can be thought of as having three subscripts.) It should be noted 
that these symbols are not tensors. For a geometric interpretation 
of the inertia matrix and the Christoffel symbols, see [ l ] .  

Since the metric tensor Jij is positive definite, it is also 
invertible. The inverse of this matrix is denoted by JJk, and we 
have the relationship 

1 if i = k  
0 otherwise 

If (2.2) is multiplied by Jm’ and summed over i we obtain the 
equation 

The symbol {F} is Christoffel symbol of the second kind, and is 
defined as {F} = Jmi [ jk ,  i ] .  As a special case, consider ordinary 
Euclidean space with rectangular Cartesian coordinates. Then the 
metric tensor is just the identity matrix (or Kronecker delta) 6,, 
and the Christoffel symbols are zero. Reassuringly, (2.2) and 
(2.5) then reduce to d2qm/ds2 = 0, the differential equations 
which describe straight lines. 

Equation (2.5) is often written (6/6s)(dqm/ds) = 0, where the 

This derivative consists of the ordinary derivative followed by a 
term involving a Christoffel symbol. The absolute derivative of a 
tensor of order two has two terms involving Christoffel symbols, 
tensors of order three have three additional terms, and so forth. 
The absolute derivative of  an invariant is just the invariant’s 
ordinary derivative. It can be shown that the absolute derivative of 
a tensor is  itself a tensor, unlike the ordinary derivative. 
However, in  many ways the absolute derivative behaves as an 
ordinary derivative behaves; it obeys the same rules for deriva- 
tives of sums and products, and obeys something like the chain 
rule, Le., 6A’/64 = (6Ai/6$)(d$/d4).  

A curve in a Riemannian space can be written parametrically 
like ( 1 .  l ) ,  i.e., q‘ = f’(h). The derivative of this position vector, 
dq’/dh, is the tangent to the curve. In particular, if h is the line 
element s then it  is the unit  tangent to the curve. The absolute 
derivative of the unit tangent, (b/&)(dq’/ds), is the curvature 
vector. Note that for a geodesic the curvature vector is zero. It 
can also be shown that, as in ordinary (Euclidean) space, the 
curvature vector is orthogonal to the unit tangent. 

III. PROBLEM STATEMENT 

The minimum time trajectory planning algorithms described in 
[lo] give the time history of manipulator’s position, velocity, and 
joint torques required for the minimum time traversal of a given 
geometric path. However, these algorithms give no firm indica- 
tion of  how to pick a geometric path. The chosen geometric path 
ideally should be that which avoids all obstacles and can be 
traversed with the minimum time. In conjunction with trajectory 
planning, the minimum time geometric path planning (MTGPP) 
problem can be stated as follows. 

Problem MTGPP: Given the solution to the minimum time 
trajectory planning problem, choose the geometric path, or the 
functions f’ in (1 .  I ) ,  so as to minimize the traversal time. 

We will take approaches to this problem which are totally 
different from the techique described in [ 121, which makes use  of 
Pontryagin’s maximum principle or the method described in [2]. 
Both these methods are very computationally expensive. First,  the 
minimum time path  will be determined for a restricted class of 
robotic manipulators using some geometric techniques. Second, a 
method will be proposed for generating approximate minimum 
time geometric paths for more general manipulators. Note that 
these solutions are derived for collision-free space motions. 

We begin in the next section with a few dynamic properties of 
manipulators that are needed. 

IV. SOME USEFUL DYNAMIC PROPERTIES OF MANIPULATORS 

In this section we will introduce some properties of manipula- 
tors which will prove to be useful later on. Most of these 
properties relate to the “inertia space” of the manipulator, i.e., 
that Riemannian space which has the manipulator’s inertia matrix 
as its metric tensor. The dynamic equations of a manipulator can 
be derived from Lagrange’s equations, and take the form 

ui=Ju,;i+[jk,  i ] v J u k + R ~ v l + g i  (4.1) 

where ui is the generalized forcehorque applied to the ith joint, u 
is the generalized velocity of the ith joint, Jil is the inertia matrix, 
RQ is the viscous friction matrix, and gi is the gravitational force 
on the ith joint.  The summation convention has been  used here, 
and all sums range from 1 to n for an n-jointed manipulator. It 
should also be noted that J,, R,, and gi may  in general be 
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functions of the generalized coordinates 4'. The symbol [ j k ,  i] is 
a Christoffel symbol of the fvst kind, as described in the previous 
section. Equation (4.1) can be written in terms of absolute 
derivatives as 

For  our purposes, we will define arc length ds by the quadratic 
form ds2 J,dqidqj. Since the kinetic energy of the manipulator 
is given by K = l/W,(dq'/dt)(dqj/dt), it can be seen that the 
infinitesimal arc ds in this space is related to the kinetic energy of 
the manipulator by the formula (ds/dt)2 = 2K. 

The dynamic equations may  now be expressed in terms of the 
arc length s and the time derivatives of s. We have, since the 
absolute derivative obeys the chain rule, 

(4.3) 

Using the relationship U J  = (dqj/ds)(ds/dt), then 

where pj = dqj/ds is the unit tangent to the manipulator's path. 
But, applying the product rule and using the fact that the absolute 
derivative of a scalar is just the ordinary derivative 

Plugging this into the dynamic equations (4.4), 

u;=J~* 6s (E)2+JGpJ-+R,pJ-+gi dt . d2s  dt . ds dt (4.6) 

where we have used the identity (ds/dt)(d/ds)(ds/dt) = (d/  
dt)(ds/dt) = d2s/dt2. 

It is interesting to consider the form of the last equation. The 
left-hand side consists of externally applied forces. There are four 
terms on the right-hand side: a term proportional to the square of 
the velocity, a term proportional to the acceleration, a viscous 
friction term which is proportional to the velocity, and a 
gravitational term which is a function only  of position. The first 
two terms are of particular interest. They are just the Coriolis and 
tangential acceleration terms, respectively. The Coriolis term is 
just the (vector) curvature of the path multiplied by the square of 
the speed, and so has a form analogous to the familiar mu2/r term 
encountered in uniform circular motion. The second term, 
likewise, looks like the classical ma term one sees in one- 
dimensional Newtonian mechanics. The most important fact to 
note is that it is clear from this form of the dynamic equations that 
the Coriolis terms  result directly from the  curvature of the path in 
the manipulator's inertia space. 

The work W done on the manipulator is 

Plugging in the expression for u; from (4.7), 

+ 1 Rvp'pj- ds+ 1 gip' ds. (4.8) 

Using the facts that the curvature vector 6pj/6s is orthogonal to 
the unittangentpjand  thatp' is aunit vector, i.e., that Jup'pJ = 

ds 
dt 

. .  

1, (4.8) transforms to 

W =  1 ( 2 )  $ (2) ds+ Rup'pJ ds ds+ g;pi ds 

=f ($)'+ 1 Rvp'p' ds ds+ g;p' ds. (4.9) 

The power consumed by the manipulator at any given time is just 

dW ds  d2s 
dt dt dt2 

p E -=-- +Rvp'pJ( $) 2 . ds +g;p' . (4.10) 

v. MINIMUM TIME GEOMETRIC PATH h A N N I N G  

As was previously pointed out, use of the maximum principle 
for solving the MTGPP problem is practically impossible. 
Alternative approaches must be sought. In this section we  will 
develop three methods for generating geometric paths. For the 
first two we use energy methods to derive a lower bound on path 
traversal times, and for  the third method  we  use the velocity limits 
derived in [lo]. 

First it will be shown that geodesics in inertia space, i.e., 
solutions of the differential equations d/ds(dq'/ds) = 0, are the 
optimal solutions to the MTGPP problem under some restricted 
conditions. Although the conditions required in the special case 
are not  met by realistic manipulators, the proof does provide a 
simple illustration of the method used here for obtaining lower 
bounds on traversal time; the curves which minimize the lower 
bound for the more general case can then be found using 
essentially the same technique used in the special case, giving an 
absolute lower bound on the time required to move from one point 
to another. Then the use of the derived traversal time bounds and 
the velocity limits derived in [ 101 are used to find approximations 
to minimum time paths. 

A .  A Special Case 

It will now be shown that if a manipulator has no friction terms 
and no gravitational terms and the limitations on the joint torques 
consist only  of limits on the total power supplied to (or taken 
from) the manipulator, then the minimum time geometric paths 
are geodesics in inertia space. Formally, we have the following 
theorem. 

Theorem I :  If a manipulator is frictionless and has zero 
gravitational terms, i.e., R, = 0 and g; = 0 in the dynamic 
equations (4. l ) ,  and the only restrictions on the torques applied to 
the manipulator arise from constant, symmetric limits on the total 
power supplied to (or taken from) the manipulator, then the 
minimum-time geometric path between any two configurations of 
the manipulator is a geodesic in inertia space provided that the 
initial and final velocities are zero. 

Proof: Under the stated conditions the dynamic equations 
for the manipulator become 

The total power sunk or sourced by the manipulator is limited 
by symmetrical constant bounds, ;.e., - P,, s P I Pmx. Then 
by (4. lo), applying the constant maximum power gives 

ds d2s dp 
dt  dt2 ' dt p=p,,=--= 

where p = dddt .  (Note that the gravitational and friction terms 
have been dropped from (4.10) for the special case.) Solving the 
differential equalion (5.2) gives 

p2=tPm,,  or s=- t3/2 (5.3) 
1 L 

3 

since the manipulator starts at rest. 
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Obviously, minimizing the traversal time for a given path 
requires that we maximize the "velocity" ds/dt.  This in turn 
requires that the power P be maximized. Therefore, the maximum 
distance s which can be traveled in time t is given by (5.3). 

Looking now at the end of the curve, we  wish to have zero 
velocity at the end of the motion. Again, since we  wish to 
minimize the traversal time, we  want to stop as quickly as 
possible, which requires that we drain energy from the system as 
fast as possible. Applying the minimum power, we have p(dp/dt) 
= - P,,. Solving this equation gives 
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form as p T p ) ,  Lin(J) is the smallest eigenvalue of J for all 
positions q, and X,(J) is defined similarly. 

Proof: Since p' is a unit vector in  'inertia space, we have 
J ~ p ' p j  = pTJp = 1 .  Then we have 

j p 2 = P , , ( T - t ) ,  or s = S - - K  ( T - t ) 3 / 2  (5.4) 
1 2 

3 

where S is the total "length"  of the curve which is to be traversed 
and Tis  the (unknown) time when the destination point is reached. 

At some point in the middle of the curve  there must  be a switch 
from acceleration to deceleration. Let the time, distance, and 
velocity at this ooint be denoted by t,, s, and p , ,  respectively. 
Then (5.3) and (5.4) must give identical results at the switching 
point, so we have p: = 2Pmt, = 2PmaX(T - t ,),  and 

s,=S-- d2Pmx ( T - t s ) 3 / / z = : J 2 p , ,  t f l2.  (5 .5 )  
L--- 
3 

If  we eliminate t, from these equations, we can express Tin terms 
of S .  The resulting equation is T = (9/4Pm)1/3S2/3.  The total 
time T increases monotonically with S, so minimum distance in 
inertia space is, in this case, equivalent to minimum time. 
Therefore, the geodesic, being the curve of shortest "distance" 
between  any two points, is the optimal geometric path. 

The conditions under which this proof of optimality applies, 
namely  that friction and gravity be zero,  are not realistic. The 
proof of optimality depends on the absence of gravitational and 
friction terms because the presence of such terms makes the 
power supplied to the manipulator a function of position rather 
than a function only  of the kinetic energy of the manipulator. The 
requirement that the joint torques/forces be only constrained by a 
total power limit for the entire manipulator is also unrealistic. 
However, it is possible in practice to obtain bounds on the total 
available power for the more' general case; in the next subsection, 
such bounds  will be used to find bounds on traversal times. 

B. Traversal  Time Bounds 

In this subsection, we  show  how energy methods similar to 
those used in the previous subsection may be used to obtain lower 
bounds  on the time required to move from one point in the robot's 
workspace to another. We start with (4.10), the formula for the 
power supplied to the manipulator, namely 

p - - - - + R . .  ds d2s ds 
I -  dt dt2 -k giP' 5 (5.6a) 

where Pt is the total power supplied to the robot. 

Pg = g,p'ds/dt, then we have 
If  we write Pk = (ds/dt)(d2s/dt2), Pf = RGp$j(ds/dt)2, and 

P,=P1-Pf-Pg. (5.6b) 

We will  find bounds on Pk by finding bounds on P l ,   P f ,  and Pg. 
Before computing these bounds, we need the following result. 
Lemma I :  The 2-norm of the vector p is bounded by 

Likewise, we have 

Since J is positive definite and symmetric, its eigenvectors span 
R". Expanding p in terms of the eigenvectors of J shows that 
f k ( 4  = X- (4  andf?,(J) = A,,,,(J), which, combined with 
the above inequalities, proves the lemma. H 

We  now compute bounds on the total applied power P,.  It will 
be assumed here that bounds on Pl arise from constant bounds on 
the joint torques and from constant bounds on the total applied 
power.3 Then, we have 

Lemma 2: If d d d t  > 0, then max { P,,, - s-(ds/dt)) I Pl 
I min { P-,  3-(ds/dt)) where P,, and P,, are the minimum 
and maximum powers that can be supplied to the robot, = 
IIuyl12/-, and Iluyl12 is the maximum 2-norm of the 
torque vector. 

Proof: By definition, we have P, = ujpi(ds/dt) .  The 
component of  the torque in the direction of motion, ujp', can be 
bounded by 

We, therefore, have 

(5.9a) 

and 

(5.10) 

Multiplying by p2 gives the desired result. 0 
Lemma 4: The gravitational energy contribution Pg is bounded 

by - $(ds/dt) I Pg 5. J.(ds/dt) where J.  = ~ ~ g j ~ ~ 2 / ~ .  
Proof: We have 

(5 .  i) 

by Lemma 1. Multiplying by d d d t  proves the lemma. 
Using bomds derived in Lemmas 2-4, we are now in a position 

to obtain bounds on P k .  

where fn l (J )  = minp,o JpTJp/pTp,   Jbl(J)  = maxp#o 
Jp  TJp/p  'p  (the quadratic form Juplpj has been written in vector from limits  on power supply currents  and voltages. 

Bounds of this form can easily be found  from motor saturation torques and 
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Lemma 5: If  we define p = (ddd t )  > 0, 

max { P m i n ,  - r p } - 9 ' p 2 - $ ~  

I P k I m i n  {Pma, (p } -Qp2+$p.  

Proving this lemma is just a matter of plugging the bounds 

We can  now determine maximum velocities, as was done in the 

Theorem 2: If the initial and final velocities are  zero, then 

obtained in Lemmas 2 4  into (5.6b). 

previous subsection. We have the following theorem. 

where T is the traversal time of the path and pm = (# + 
&2 + 49Pm)129. 

Proof: Consider two cases. In the first case, let P k  be limited 
by the joint torque bounds. Then we have - {p 5 PI I l p ,  so 
that 

- Q ' p 2 - ( $ + r ) p ~ p - < - Q p 2 + ( $ + r ) p .  (5.12) dP 
dt - 

But then, since we are considering positive values of p,  

-4'p-((Ic++)I--(-9C(+($+r>. dP (5 .13 )  
dt - 

We must have zero velocity at the beginning and end of the path. 
If the (as yet unknown) traversal time is T, then 

and 

(5.14a) 

(5.14b) 

In the second case, limits are imposed by the total power limits, 
i.e., Pmi, I PI I P-. Then we have 

P m i , , - ~ ' p 2 - $ p < p  - ~ P ~ , - $ p ~ + $ p .  ( 5 . 1 5 )  dcL 
dt 

Again, we are only considering positive values of p;  since in 
general Pmi, < 0, the lower bound in this inequality will always 
be less than zero.  Therefore, the roots of the lower bound occur 
for negative values of p,  and we cannot place an upper bound on 
p.  On the other hand, the upper bound has a positive root. Since 
we are starting at p = 0, that value of p for which dp/df  goes to 
zero cannot be exceeded, and we have 

(5.16) 

Since inequalities (5.14) and (5.16) must all be met, the theorem 

To find lower bounds on traversal times, consider a manipula- 
tor, call it the super-manipulator, for which the constraints on 
joint torques are such that (5.14a), (5.14b), and (5.16) apply. 
Then the super-manipulator has limits only on the 2-norm of the 
tangential component of the torque vector and on the total kinetic 
energy. Since these constraints apply for the original manipulator, 
the old manipulator's realizable torques are a subset of the super- 
manipulator's, so that the super-manipulator can do anything that 
the original manipulator can do. Thus, any  path can be traversed 
by the super-manipulator at least as quickly as the old manipulator 
could traverse it. Finding the minimum traversal time for the 

follows. W 

super-manipulator therefore gives a lower bound  on the traversal 
time for the original manipulator. 

Finding the lower bound on the traversal time T for the super- 
manipulator is simple. It is just a matter of finding a value of T 
such that the area under the velocity versus time curve is equal to 
the geodesic distance S between the initial and final points. 
Formally, we have the following. 

Theorem 3: Let the times t l  and r2 be given by 

1 
t ]  =- log 

4 

and t2=T--  log [ "'::",'pm] . (5.17) 
1 
9' 

If 5 ,  and r2 are both real and tl I t2. then the minimum traversal 
time T for the super-manipulator can be found by solving the 
equation 

If t l  is not real or t ,  > f 2 ,  then T can be found by solving the 
simultaneous equations 

(5.19a) 

Proof: Finding the distance traveled, the area under the 
velocity versus time curve, requires that we consider the two cases 
described above, which correspond to 1) the case in which the 
velocity limit p, is reached, and 2) the case where it  is  not. Case 
1) is relatively simple. First, we  need  to  know the points where 
the curves described in (5.14a) and (5.14b) reach the limiting 
velocity p,,,. These times may be obtained from (5.14a) and 
(5.14b) by setting p = pm and solving for r. These times are just tl 
for (5.14a) and f 2  for  (5.14b). Then the area under the  velocity 
versus time curve will be given by 

Since S is linear in T, determining Tis easy. 
In case 2), we have a single switching time t,. We may  match 

positions and velocities as was done in the special case in the 
previous subsection. giving the equations 
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These are just the equations given in the statement of the 
theorem. 

Unfortunately, (5.21) cannot be solved for t, in closed form. 
However, we can still use these equations to prove that T 
increases monotonically with S, and thus prove that the optimal 
path for the super-manipulator is a geodesic. This being known, 
the geodesic distance S between the  initial and final points can be 
calculated, and (5.21b) can be solved numerically. 

Theorem 4: The minimum traversal time T for the super- 
manipulator increases monotonically with the geodesic length S of 
the traversed path. 

Proof: To prove that T increases monotonically with S, we 
will  show that dS/dT > 0. If case 1) of Theorem 3 holds, then the 
result is obvious. Case 2) is slightly more complicated. First, we 
differentiate (5.21a) and (5.21b) with respect to the switching time 
ts ,  giving 

(5.22a) 

(5.22b) 

Solving (5.22a) for dT/dt,,  plugging into (5.22b), solving 
(5.22b) for dS/dt,, and dividing dS/dt, by dT/dt, gives 

dS *+i -- 
d T - d @ f ( l  + e - O r S e - O ’ ( T - r  5 )  ) 

. [4’(1  -e-”‘s)+Qe-@‘s(l - e - Q ’ ( T - f s ) ) ]  (5.23) 

which is greater than zero. 
If the actual lower bound  is required, then (5.21a) may be 

solved for T. To do this, we  may make use of (5.17) and (5.18). 
The maximum velocity pm can be varied in these equations until t ,  
= t2 = t,; then this value of ts can be used  in (5.21a), which can 
be solved for T. 

C. Approximate Minimum Time Paths 

In this subsection we consider two  methods for generating 
geometric paths which are approximately minimum time. The 
first method  uses the traversal time hounds derived in  the previous 
section and the second method  uses the velocity  bounds derived in 
[lo]. 

First, consider the lower bounds on traversal time. If these 
bounds are good estimates of the actual traversal times, then 
minimizing the lower bound should approximately minimize the 
traversal time. Since the lower bound increases monotonically 
with the geodesic length S of the traversed curve, geodesics 
(minimum-length curves) must minimize the lower bound. The 
“near optimal” paths may then be determined by solving the 
differential equations for a geodesic, namely (6/6s)(dqi/ds) = 0. 
This method of generating near-minimum time  paths can be 
applied to most practical robots; however, it places no penalties 
on forces which are orthogonal to the traversed path, so that  path 

curvature is  not penalized. If any further constraints are applied 
which force the introduction of curvature terms, then ignoring the 
magnitude of the curvature terms could make the lower bound a 
poor estimate of the actual traversal time, causing a poor choice of 
path. The minimization of lower bounds leads to the selection of 
shortest-distance paths in inertia space, which could have corners 
at which the manipulator must come to a complete stop. Path 
segments of high curvature also slow the manipulator down. 
Thus, it is necessary to strike a compromise between curves of 
shortest distance and curves of smallest curvature. (This naturally 
leads to the second method of generating near-minimum time 
geometric paths.) 

In order to reach such a compromise, we choose as an objective 
function the product of the length of the curve and some measure 
of the total curvature.  This, of course, requires some quantitative 
measure of both curvature and distance in  an n-dimensional space 
where n is the number of manipulator joints. One obvious 
measure of total curvature is the reciprocal of the maximum 
velocity, as computed in [IO]. If the path is expressed in terms of 
an arbitrary parameter X, then the expression 

would appear to be a good choice, where p = and p,(h) is the 
velocity limit at position X. This expression is independent of the 
parameterization chosen, and increases both as the length of the 
curve increases and as the curvature increases. 

In order to use (5.24), the value of the maximum velocity 
&(X) is required. In [lo] we have derived this bound  in terms of 
the manipulator’s torque bounds and its dynamic equations. The 
set of admissible accelerations i is given by a set of inequalities of 
the form 

u ? ~ ~ M ; ~ + Q ~ ~ * + R ; ~ + s ; ~ u ~  (5.25) 

where Mi = di,(dfj/dX), Qi = .Iii(dzf’/dX2) + [ jk ,   i ] (df j /  
dX)(dfk/dX), R; RU(dfJ/dX), and S; = g;. For a given position 
X and velocity p,  these inequalities give a range of accelerations 
b,  and so may be thought of as assigning upper and lower 
acceleration bounds to each point (X, p )  in the phase plane. Since 
these inequalities must  hold for all joints of the manipulator, the 
acceleration must fall between the greatest of the lower accelera- 
tion bounds and the least of the upper bounds. When one of the 
upper acceleration bounds  is smaller than one of the lower 
acceleration bounds for some phase joint (X, p ) ,  there are no 
accelerations which will  keep  the manipulator on the desired path. 
Thus, the acceleration bounds generate restrictions on the 
velocities at the phase points which can be encountered during a 
traversal of the path. These relationships can be thought of as 
assigning velocity limits to a given position X. 

Now consider a frictionless manipulator, Le., one for which the 
quantities Ri are zero. Also assume that at every point on the path 
the manipulator is capable of stopping and holding its position. 
Then we have u p  5 Si I umax at all points on the path. (This 
will hereafter be referred to as’ the “strong manipulator assump- 
tion.”) If the parameter X is  defined to be the arc length s in 
inertia space, then Q; is just the inertia matrix Jii multiplied by the 
curvature vector 6pj/6s. 

If the path chosen is a geodesic, then the curvature vector is 
zero, and hence Q; = 0. Then the inequality (5.25) reduces to 
u?” I Mj,L + Si I u?, which is independent of the velocity p,  
and by the strong madpulator assumption is satisfied identically 
for i = 0. But  if the bounds on i are independent of p ,  there can 
be no  velocity limits; in other words; pmaX(X) = 03, so that the 
integrand of (5.24) is zero. Thus, in this case the optimal solution 
coincides with  that obtained from minimizing traversal times. 

It may appear at first that the geodesic, since it maximizes 
velocity bounds, must be the true minimum time path. However, 
as shown in [ 101 the manipulator must meet acceleration as well as 
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velocity constraints. It would then be expected that along the 
optimal geometric path the maximum acceleration would be 
maximized during an accelerating portion of the path and the 
minimum acceleration would  be minimized during a decelerating 
portion. This does not  happen along a geodesic, but a similar 
phenomenon occurs: the acceleration bounds "spread out." To 
see this, note  that velocity limits occur because the acceleration 
bounds become very close. Since the velocity  bounds have been 
eliminated by choosing a geodesic as the path, the acceleration 
bounds must never get close. Hence, maximizing velocity bounds 
also gives a large range of accelerations to choose from. This 
would  lead one to expect that geodesics are good, if  not optimal, 
choices for geometric paths. 

In summary, we have two criteria for selecting near-minimum 
time geometric paths for a manipulator, one based on the 
minimization of a lower bound on the manipulator's traversal time 
and the other based on the minimization of the product of the 
path's length and its curvature. In either case, when the near- 
optimal path is determined, the path is found to be a geodesic in 
inertia space. This geodesic can be constructed by solving a set of 
differential equations and applying appropriate boundary  condi- 
tions. 

One comment on calculating the geodesics is in order. Finding 
the geodesic which passes through two points is a two-point 
boundary value problem. Solving the problem using Pontryagin's 
maximum principle also gives rise to a two-point boundary value 
problem, so one may legitimately ask what the advantage of using 
geodesics is. The important difference is that the boundary 
conditions for finding the geodesic are  easier to apply than are the 
boundary conditions which arise when using the maximum 
principle. The geodesics may be found using shooting methods, 
which involve guessing the initial direction of the geodesic, and 
refining the guess until the curve comes sufficiently close to the 
desired endpoint. 

VI. EXAMPLES 

To demonstrate the utility of the solutions described above, the 
traversal times for various geometric path have been calculated, 
using the method  of [lo], for the Bendix PACS arm and for the 
Stanford manipulator. The PACS arm is cylindrical in configura- 
tion, and  is driven by fixed-field DC motors. Only  the dynamics 
of the first three joints are considered here (see Fig. 2). We 
construct three paths, a straight line, a geodesic, and a joint- 
interpolated curve. (The joint-interpolated curve has the form 
q i  = qf + h(qi - qi) ,  where 0 5 h 5 1 and qf and qiare the 
points at which the curve starts and finishes.) 

Both construction of geodesics and trajectory planning require 
that the dynamic equations (4.1) of the robot be known. In 
particular, the inertia matrix and Coriolis coefficients are needed 
in order to construct geodesics. For the first three joints of the 
manipulator, the inertia matrix takes the form 

Jf-Kr+lM,r2 0 
J..- rl- [ 0 MI 0" ] (6.1) 

0 0 Mz 
where q 1  = 8, q2 = r, and 43  = z .  The constants MI and Mz are 
the masses which the rand z axes must move. . I I  is the moment of 
inertia around the 8 axis when r is zero. The K term is present 
because the center of mass of the structure for the r joint does not 
coincide with the 8 axis when r is zero. The values of J l ,  K,   M, ,  
and M, are given  in [9], along with friction coefficients and 
actuator characteristics. The nonzero Christoffel symbols of the 
first  kind (Coriolis coefficients), found by differentiating J v ,  are 

K 
[12, 1]=[21, l ] = M f r - -  2 (6.2a) 

K 
2 

[ l l ,  2]=---Mtr.  (6.2b) 

z 

Fig. 2. Schematic diagram of the first three joints  of the PACS robot. 

The geodesics are solutions of the equations 0 = Jid2qJ/ds2 + 
[ jk ,  i](dq-'/ds)(dq"/ds). Plugging (6.1)-(6.2b) into this equation 
gives the equations of the geodesics as 

O=(Jr-Kr+M,r2)  - + ( 2 M t r - K )  -- (6.3a) d 20 dr dB 
dS2 ds ds 

0=Mz - . d 'z 
ds 

(6.3b) 

(6.3~) 

In addition, we have the normality condition 

(J l -Kr+Mtr2)(  %) dB +MI( $ ) 2 + M , (  z)'= 1 .  (6.4) 

It can be shown that the differential equations (6.3a)-(6.3c) can 
be solved in terms of elliptic integrals. In practice, however, it is 
simpler to solve them numerically. 

The gravitational terms for this manipulator are particularly 
simple; the gravitational forces on the rand 8 joints  are  zero, and 
the force on the z joint is Mzg. 

Trajectory planning also requires knowledge of the robot's 
actuator characteristics. To determine actuator characteristics, 
consider a circuit consisting of the series connection of a voltage 
source, a resistance R", an inductance L ,  and an  ideal motor, 
i.e., a device which generates a torque proportional to the current 
passing through it. The voltage source is the power supply, the 
resistance is the sum of the voltage source resistance and the 
motor winding resistance, and the inductance is  the inductance of 
the motor windings. 

It will be assumed here that the inductance L can be neglected. 
This frequently is the case for DC motors, since the electrical time 
constant of such systems is generally much shorter than the 
mechanical time constant. Given that the torque r is proportional 
to the current, i.e., r = k,I, it can be shown from conservation of 
power that the voltage V, across the ideal motor is just kmw, 
where w is angular velocity. Since, if the motor is not in 
saturation, r = kmIand I = (V, - V,)/R" = (V, - kmw)/Rm 

where Vs is the source voltage, we can solve for torque in terms of 
voltage and angular velocity, giving 7 = (k,/Rm)Vs - ( k i /  
Rm)w. Assuming the power supply has constant voltage limits of 
Vm'" and V-, this gives torque limits of 

In addition, at some point the motor saturates, with the result that 
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increasing the current through the motor has no effect on the 
torque. This yields two more (constant) torque limits, so we also 
require that - T~~ 5 7 I F .  Taking the gear ratio kg into 
account, this gives torque limits of 

and 

A trajectory planner for this robot was written in the C 
programming language and run under the UNIX4 operating 
system on a VAX-I 1/780. The trajectory planner was  used to 
generate trajectories for a straight line, a geodesic, and a joint 
interpolated curve, each curve connecting the same endpoints. 
Phase plane plots (plots of the speed p versus position X), plots of 
position q' versus time, and plots of motor voltage versus time are 
shown in Figs. 3(a)-5(c). Fig. 3(a)-(c) is for the straight line, Fig. 
4(a)-(c) is for the joint interpolated curve, and Fig. 5(a)-(c) is for 
the geodesic. The traversal times for these paths are  1.782, 
1.796, and 1.588 s, respectively, showing that the geodesic does 
indeed have the shortest traversal time. 

When the robot is driven along a given path  in  minimum time, 
one or more of the actuators will be driven to its limit. For the 
straight line path, the r joint is driven at its maximum or minimum 
voltage except for two short intervals when the 0 joint is saturated. 
For the joint interpolated curve, the r joint motor voltage is always 
the limiting factor. For the geodesic, the r joint is saturated most 
of the time, but  both the 0 and z joints are driven to their limits at 
one time or another. The geodesic seems to distribute the 
workload more evenly among the joints than the other two curves 
do. 

Table I presents traversal times for the three types of paths of the 
PACS arm with various initial and final configurations. The 
geodesic again shows comparatively small traversal times except 
for the sixth row, where only z and y coordinates in the initial and 
final configurations are switched. In such a case, only the 0 joint 
needs to move, since values of both the r (=& + y2) and z 
joints do not change on this path. That is, there is  not a sufficient 
number of joints to distribute the workload. 

The Stanford manipulator has been extensively studied by a 
number of researchers and consists of five revolute and one 
prismatic joints. See [8] for a detailed description of its kinematics 
and dynamics. Using the dynamic equations in [8] and the data in 
Table 11, we have computed the traversal times for the three types 
of paths for the Stanford manipulator with various initial and final 
configurations. The results are given in Table III, where the 
geodesic again exhibits small traversal times compared to the 
other two types of paths. 

VU. CONCLUSIONS 

Two methods (excluding the special case) have been proposed 
for finding geometric paths which allow a robotic manipulator to 
move from one point  to another in minimum time or approxi- 
mately minimum time; if obstacle avoidance is not a consider- 
ation, both methods yield the same result. While these methods do 
not directly address the problem of obstacle avoidance, they do 
demonstrate that the problem of choosing minimum time paths is 
not simple and, in particular, they show  that  minimum time is  not 
in general equivalent to minimum Cartesian distance. 

Equation (5.24) provides a means  of evaluating the "good- 
ness" of any given path without actually calculating the path's 
traversal time. If several paths can be found which avoid 

UNIX is a  trademark of AT&T Bell Laboratories. 
VAX is a  trademark of Digital  Equipment  Corp6ration. 

i 

rJ pint position - 
r pint position - 
2 joint podtian - 

-''wo 1 
J motor vol- I__ 

r motor voltage - 
z motor voltage __I 

( C )  

Fig. 3 .  (a)  Phase  plane  plot for straight line. (b) Joint  position  versus  time 
for straight line. (c) Motor voltages  versus  time for straight  line. 
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d motor voltage - 
2 motor vdla& - r motor vol(age - d motor voltage - 

r motor vo1-e - 
z mnlor voltage - 

Fig. 4. (a)  Phase  plane  plot for joint-interpolated  path. (b) Joint  position Fig. 5 .  (a)  Phase  Plane  Plot  for geodesic. (b) Joint Position  time for 
versus  time for joint-interpolated  path. (c) Motor voltages versus  time for geodesic.  (c) Motor voltages versus time for geodesic. 
joint-interpolated path. 
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TABLE I 
TRAVERSAL TMES FOR THREE TYPES OF PATHS  OF PACS ARM WITH 

VARIOUS ENDPOINTS 

511 

F Endpoints 

F M  TO 

(0.7,0.7,0.1) 

(0.8,0.8,0.2) (0.2.0.2,O.E) 

(0.5.0.3,O.l) (-0.5,0.8,0.1) 

(0.4,-0.4,0.4) 

(0.8,0.8,0.2) 

(0.7,0.7,0.4) (0.2,-0.2,0.2) 

(0.2.0.2.0.8) 

(0.6,0.2,0.8) (0.2,0.0.0.2) 

(o.~,o.n,o.q (0.1,0.7,0.7) 

(0.5;0.~0.5) 

l0.7,0.1,0.41 (0.4.0.4.0E) 

(O.l,0.2,0.3) 

t 1.756 

1.010 

1.027 1.921 

1.758 1.M 

0.900 0.804 

1.131 

1.340  1.223 

0.75~  0.727 I 
Interpolsted 

Joint 

1.708 

1.718 

1.W 

1.927 

1.m 

0357 

1.231 

1.313 

0.781 

TABLE II 
DYNAMIC  COEFFICIENTS AND ACTUATOR  CHARACTERISTICS FOR 

STANFORD ARM 
Devription 

Saturation torque o l  0, mota 
Satnration torque of 0, mota 
Saturatim torque of 1, motor 
Lower voltage limit :or joint 
Lower voltage limit for 8, joint 
Lower voltage limit for d ,  joint 
Upper voltage limit for 0, joint 
Upper voltage limit for 0, joint 
Upper voltage limit for 1, joint 

Gear &io for 0, drive 
Gear ratio for 0, drive 
Gear ratio for d. drive 

Motor comVant for 0, joint 
Motor com:ant for 0, joint 
Motor constant lor d ,  joint 

Motor and power supply mistance, U, joint, 
Motor and power supply mistance, 0, joint 
Motor and power supply re&ance, d ,  joint 

Friction coeffiient of joint 
Friction coe(rr:ieut of #, joint 
Friction coemcient of d ,  joint 

-I 
3.030 Nt.-M. 
0.404 Nt.-M. I 

-40 v. 
-40 v. 
-40 v. 
40 v. 

0.005 Metvslradiau 

7 1  
0.01 Nt.-M./amp 

40.0 Kg/”. 1 113.0 Kg.-M. ‘/sec./rad. 

TRAVERSAL TIMES FOR THREE TYPES OF PATHS OF STANFORD ARM 
TABLE 111 

WITH VARIOUS  ENDPONTS 
Ehdpoinls 

From To 

(0.7,0.7,0.1) 

(0.5,-0.5,0.1) (0.5,0.5,0.1) 

(0.4,-0.4,0.4) 

(o.o,o.s,o.l) 

(-0.2,0.4,0.1) 

(0.8,0.8,0.6) (o.o,o.s.o.l) 
(O.S,O.S,O.S) 

(0.1,0.7,0.8)  (0.0,0.1,0.1) 

(0.2,0.2,0.6) 

(0.2.0.3,0.3) 

(0.5.0.2.0.2l (0.2,0.6,0.8) 

(0.2.0.1.0.8) (0.8,0.8,0.2) 

(0.8,0.6,0.6) 

C U N ~  Type 

1 .ow 

1.011 

2.199 

2.7128 

0.755 

0.952 

2.015 

0.660 

1.mo 

1.m 

2.208 

2.737 

0.944 

0.884 

2 . W  

0.732 

0.845 I 0.815 I 0.832 

collisions with obstacles, then each one can be evaluated and the 
best one chosen on the basis of formula (5.24). This presumes that 
some method can be developed for generating collision-free paths 
quickly. It also presumes that at least some of the paths generated 
by the algorithm are reasonably close to the optimal path. But 
since minimizatiou of the product of curvature and distance gives 
paths with short traversal times, some guidelines for generating 
paths are now available. 
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