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ABSTRACT 

There  are  a  number of trajectory  planning  algorithms which 
generate  the  joint  torques/forces required to drive  a  robot  along  a 
given geometric  path in minimum  or  near-minimum  time 
11, 3, 5, 6,7,91. These  methods  make fairly specific assumptions 
about  the form of the  joint  torque/force  constraints,  thereby l imit  
ing their  applicability. A method, called the perturbntion trajectory 
improvement algorithm (PTIA),  is  developed  here which can gen- 
erate  the  joint  positions, velocities, and  torques required to move a 
robot along a specified geometric  path in minimum  time  under 
very general torque  constraints. 

The  PTIA  starts  with  a  non-optimal  trajectory which meets 
all  the  required  torque  constraints,  and  perturbs  the  trajectory in 
such a way as to always  decrease  the  traversal  time  for  the  path. 
This  perturbation process continues  until the  torque  constraints 
prevent  any  further  improvement in the  traversal  time.  The  torque 
constraints  may be expressed in terms of quantities  related  to 
torque  rather  than  torque  itsell;  it  is possible, for  example, to limit 
velocity,  acceleration,  jerk,  and  motor  voltage,  either singly or in 
combination. The perturbation  trajectory  planner  also is very sim- 
ple to  implement,  and  many of the calculations  are  independent of 
each  other  and  can  therefore  be  done  in  parallel. As a demonstra- 
tive  example,  the  PTIA is applied to the first  three  joints of the 
Rendix  PACS  Arm. 

1. INTRODUCTION 
An important  goal  of  contemporary  industrial  automation 

with  robots is to increase  productivity.  One  way of accomplishing 
this goal is to move robots as fast as possible, i.e., minimum-time 
control of robots. However, due  to  the nonlinearity  and  joint cou- 
plings in the robot dynamics, i t  is possible to  obtain only approxi- 
mate  solutions to the problem of direct  control of robots  in 
minimum  time [Z, 41. To circumvent  this  difficulty,  the  control of 
robots is usually divided  into  two  sequential problems: ojf-line fra- 
jectory planning followed by on-line trajectory tracking. We  shall 
address  in  this  paper  the  minimum-time  trajectory  planning  prob- 
lem. 

A  number of techniques  have been developed for  planning 
minimum-time  trajectories of industrial  robots 11, 3, 5, 6, 7,9]. 
One  potential  problem  with  these  methods is the  assumption  that 
constraints  on  the  torques/forces  applied to  the robot’s  joints  have 
specific forms,  thereby  limiting  their  applicability. For example, 
the  method  described in 161 assumes that  the  path consists of a 
sequence  of  Cartesian  straight  line  segments,  and that  constant 

limits on Cartesian  velocity  and  acceleration  are  known  a  priori 
along  each  path  segment.  Note  that  it is almost impossible to select 
such limits  without knowing the  dynamic  properties  and  the  actua- 
tor characteristics of the  robot.  Moreover, since maximum 
accelerations  and  velocities  are assumed to  be constant  over  some 
interval,  it is necessary to choose  them to be the worst  case  bounds 
thereby  resulting in under-utilization of the  robot’s  capabilities. 
To alleviate  this  problem, we have  developed a method in (31 
which uses the  robot  dynamics  to  obtain  approximate velocity and 
acceleration  bounds at  each  corner  or  knot  point of the robot’s 
path. 

More dramatic  improvements  can be found  in [1,9, lo]. The 
trajectory  planner  presented in 111 assumes that  joint torque  limits 
are given in terms of the joint’s position and  velocity,  and that  the 
joint  torque  limits  are  mutually  independent.  (Note  that  the  joint 
actuator  limits  are  dependent  on  each  other  when more than  one 
joint  actuator  share  a  common power source, e.g., a power supply 
for DC  servo  motors  and  a  pump  for  hydraulic  actuators.)  A simi- 
lar trajectory  planner  described in 191 makes  the  additional  assump 
tion that  the velocity  dependence of the  torque  Constraints is at 
most  quadratic.  Torque  constraints which interact,  as well as per- 
formance  indices  other  than  minimum  time,  can be handled by the 
trajectory  planner  described in [lo], but  the velocity must  be 
discretized  rather coarsely if the  computations  are to be  performed 
in a  reasonable  amount of time. In practice,  torque  limits may be 
relatively  complicated,  and in fact  there may be limits  on  the 
derivatives of the torques because of the presence of large motor 
inductances or because of the  compressibility of the  hydraulic fluid 
used in the  robot’s  actuators.  It is the  goal of this  paper to present 
a  minimum-time  trajectory  planner which is simple  and also allows 
such  complicated  torque  constraints. 

This  trajectory  planner  begins  with  an  arbitrary  trajectory 
meeting  all the  constraints  and  always  alters  the  trajectory M) as to 
reduce  the  traversal  time  without  violating any constraints  until  a 
$ 3 1 :  f ; ~ ( o r y  solution is obtained.  This  planner is an  iterative 
algorithm  and is called the  Perturbation  Trajectory Improvement 
Algorithm (PTIA).  The  method is very easy to use and  implement 
yet  very powerful. Also, it is  quite  different  from  any known tra- 
jectory  planners. 

The remainder of the  paper is divided  into  four  sections. We 
state  the minimum-time  trajectory  planning  problem in the  next 
section. Section 3 describes the  PTIA,  and gives a  simple  example 
of its  application.  Section  4  analyzes  the  amount of computation 
required by the  PTIA. In Section 5, the algorithm is applied to the 
first  three  joints of a real  robot,  and  some  complications  regarding 
the  application  of  jerk  constraints  are discussed. Section 6 con- 
cludes  the  paper. 

The work reported  here is supported in part by the NSF grant No. ECS-8409938 and  the US AFOSR contract Nos. F49620-82-C- 
0089 and F3361b85-C-5105. Any opinions,  findings,  and  conclusions  or  recommendations in this  paper  are  those of the  authors 
and  do not necessarily reflect the view of the  funding agencies. 
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2. PROBLEM STATEMENT 
The  approach to trajectory  planning  described  here assumes, 

as do  the  trajectory  planners  described  in [1,9, 101, that  the 
geometric  path to be followed by the  robot  is given as a parameter- 
ized curve in joint  space, i.e., the  joint  positions q' are given by 

where X is a scalar  parameter used to specify geometric  paths  and 
n the  number of joints  that  the  robot has. It  should be noted that 
in practice the geometric paths  are given in  Cartesian  space. 
While i t  is in  general  difficult to convert  a  curve in Cartesian  space 
to that in joint  space,  it is relatively  easy to perform conversion for 
individual  points.  One  can  then pick a sufficiently  large  number of 
points on the  Cartesian  path,  convert  to  points  in  joint  space,  and 
use some  sort of interpolation  technique (e.& cubic s p h e s  or 
straight  line  segments) to obtain a similar  path  in  joint  space  (see 
151 for  an  example). The resulting  joint  path is assumed to have 
the  form of Q. (1). 

As in  Eq. (l), the  parameter X is  sufficient to represent d l  
joint positions, and  hence referred to as a poaition variable. The 
speed p = - of the  manipulator  may be plotted  versus  the p s i -  

tion X. The speeds  and  positions of the robot's  joints  can  then be 
found from the  values of X and p and  the  parametric  functions f ' . 
It  is well-known that  the  dynamics of a robot  take  the  general  form 

dX 
df 

u, = J , , ~ J  + l jk,i l& ;1' + R,, 4 + g, (2) 

where u, is the if* generalized force, q' is the i generalized 
coordinate, J,,  is the  inertia  matrix,  the  symbol 

l j k , i ] d  [ 3 + 3 8JJt is  a  Christoffel  symbol of the 
2 8q'  8q' +&I' 1 

first  kind  and  represents  an  array of Coriolis  coefficients, R,, is the 
viscous  friction  matrix,  and g, is the  gravitational  torque  vector. 
By plugging the  parametric  functions given in Eq. (1)  into  these 
dynamic  equations (2), joint  torques/forces  can  be  calculated in 
terms of X, p, f and  their  derivatives as follows (see 191 for a 
detailed  derivation). 

X = p  ( 3 4  

Ut = J,, (X)- p + J,, (X)- p2 
d f '  . d2f 
dX d X 2  

The controller  inputs (e.g., voltages  or  currents) are  related to the 
applied  torques/forces, so that  control  input  constraints  can  also be 
calculated in terms of these  quantities, Le., X, p, f and  their 
derivatives. 

Also assume that  joint  toque  constraints  are expressed in 
terms of joint  positions  and velocities, 

u E E(q,i) = E ( W  ( 4 4  
and the  jerk  constraints in terms of positions, velocities  and 
accelerations, 

where E : R" X R "  -+ R" is  an  admissible  input  function, 
F : R" XR" xR" + R is  a jerk  function,  and K ,  a constant. 

It is further  assumed  that  one  phase  trajectory ( p  vs. X plot) 
can be found which meets all constraints. (In practice, a trajectory 
with  zero  velocity usually suffices.) This  trajectory  can  then be 
perturbed to find the one  with  the  shortest  traversal  time. This 
perturbation process is made  particularly  simple by the  fact  that 
minimizing  time  is  equivalent to maximizing  velocity, Le., 

(51 

subject  to  the  torque  constraints (3a), (3b),  (4a)  and (4b), where 

X(t/  )=X, is  the  final position. Here Lo and f f  denote  the  initial 
and  final  times,  where t /  is left free. The minimum-time  trajec- 
tory  planning  problem is tben  to maximize p, 80 the phase  trajec- 
tory  should  always be pushed  upward  without  violating  the  torque 
constraints. 

a. PERTURBATION TRAJECTORY IMPROVEMENT 
ALGORITHM 

In practice, a trajectory  planner  must  deal  with  a  variety of 
arbitrary  parametric curves; two  representations  for  curves which 
immediately  suggest  themselves  are  splines  and  simple  sequences of 
(interpolation)  points.  We  choose to  use the  latter  representation, 
Le., the  curve (1) is  represented as an  ordered  sequence of points 
( + ) , q ( k ) ) ;  this  proves to  be the  most  naturat  representation  for  the 
application of the PTIA. 

The  trajectory  planning  process  consists of assigning  values of 
the "velocity" p and  "acceleration" p at  each  point. For the  sake 
of simplicity,  consider  only  those  constraints which can be 
expressed in terms of position- and  velocitydependent  bounds on 
the torque (as in Eq. (aa)), i.e., ignore  jerk  constraints  for the  time 
being. Then  all  constraints  can  ultimately be given a8 X- and 
p4ependent  constraints  on I;, or equivalently  constraints on * 

d X  
;tc shown in 191. In terms of the (X,p) plot,  each  point is assigned a 
. c n !  nf allowable slopes. In fact,  having  the  torque  constraint  (4a) is 
equivalent to assigning a pair of vectors to each  point  in  the X - p 
phase plane. One  vector  represents t h e  maximum possible slope 
when the  system is accelerating (i.e. p is .maximized) and  the  other 
represents  the slope for  deceleration(i.e. p is  minimized). This pair 
of vectors looks like  a  pair of scissors, and as the position in  the 
phase  plane  changes, the angles of both  the  upper  and lower jaws 
of the  pair of scissors change. The phase  trajectories  must, a t  
every  point of the phase  plane,  point  in a direction which lies 
between the  jaws of the scissors. At  particular  points of the  phase 
plane,  though,  the  jaws of the scissors close completely,  allowing 
only a single  value for the slope. At  other  points  tbe S C ~ ~ S O I S  may 
try to go past  the closed position, allowing no trajectory  at all. 
This  phenomenon  determines  the  admissible region of the phase 
plane.  Note that  the  boundary of the admissible region passes 
through  those  points which have only a  single  vector  associated 
with  them,  corresponding to those  states  where  only a single 
acceleration  value is permitted. 

In the  discrete  approximation,  having  the  maximum  and 
minimum  slope  sets  limits on the differences  between the  values of 
p at adjacent  interpolation  points. The process of trajectory plan- 
ning  requires that  the  initial  and  final  points of the  curve  have  zero 
velocity  (or  some  other fixed velocity)  and that  the velocities a t  all 
the  intermediate  points  be as large as possible, consistent  with the 
slope constraint  that  the  velocities at neighboring  pointa not differ 
too  much. 

One  approach to the solution of this  problem is to try to 
push  the  speed  higher  at  each  individual  point.  The  value of p can 
be  pushed  higher a t  each  point in succession until  none of the vel- 
cities  can be made  any  larger. If we call  this  Algorithm A, then we 
have 

Algorithm A 
Al.  Set  all  velocities to values which are realizable  (usually  all 

A2. Push  each  intermediate  point of the  curve as high as possible 

A3. If any of the velocities  were  changed in step A2, go  back to 

zeroes). 

consistent  with the  slope  constraints. 

step A 2 ,  otherwise  exit. 

As a  practical  matter,  the  search  required to find the highest 
possible velocity in step  A2 of Algorithm  A  may  be  fairly expen- 
sive, especially since i t  may be repeated  many  times for a  single 
point.  A  simpler  approach is to just  try  adding a particular incre- 
ment  to  each  velocity,  and  then  make  the  increment  smaller on 
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successive passe%  of the  algorithm.  This  gives 

Algorlthm A’ : 
Al’. Set  all  velocities to values which are  realizable  (usually  all 

A2’. Set  the  current  increment to some large value. 
A3’. Push  each  intermediate  point of the  curve  up by an amount 

equal to the  current  increment, if this is consistent  with the 
slope constraints. 

A4’. If any of the  velocities were changed in step A3’, go back to 
step A3’. 

stop.  Otherwise  halve  the  increment  and  go to A3’. 

zeroes). 

A5’. If the  current  increment is smaller than  the desired  tolerance, 

Algorithm A‘ is really just a combination of gradient  and 
binary  search  techniques. The direction  in which the  curve  must 
move (i.e. the  gradient  direction) is known a priori, since  increasing 
the velocity always  decreases the  traversal  time,  and  the  amount of 
the  change is successively halved, as in a  binary  search,  until  some 
desired  accuracy is achieved.  Clearly,  this  algorithm will terminate 
in a  finite  number of steps.  Algorithm A’ is very simple,  except 
possibly for  the  slope  constraint  check  required  in  step A3’. This 
requires  a knowledge of the  dynamics  and  actuator  characteristics 
of the  robot. Note that  as discussed earlier  inadmissible  regions  are 
determined by the  slope  constraints. However, this check is a sim- 
ple  “go/no  go”  check,  and  can be isolated as a  single  function  call. 
(Hereafter  this  function will be called  the conalrninf  function.)  
Hence  the  trajectory  planner  can be used with  other  robots by 
changing a single, though possibly complicated,  function. 

Another  important  characteristic of the  constraint  function is 
locality. In the case discussed above,  the  constraints  are expressed 
in terms of X, p ,  and * We need two  points  to  determine  the 

slope 2 so the  constraint  depends  only upon two  points.  There- 
lore  when  a  point of the  curve has i ts  p value  changed,  it is con- 
strained only by the  two  adjacent  points  (due to the  slope con- 
straints);  the  rest of the  curve  has  no influence. This allows much 
calculation to proceed in parallel.  Step A3’ of Algorithm A‘ can be 
divided  into  two  sequential  steps,  one which increments  the  odd 
numbered  points  and  one which increments  the  even  numbered 
ones.’ Since the even  numbered  points  stay  the  same while the  odd 
numbered  ones  are  being  incremented,  and  vice  versa,  the  points 
either  side of the incremented  points  remain  stationary, so that  the 
constraint  checks  are  valid. (If all points  were  tested  simultane- 
ously,  then i t  is possible, for example, to increment  two  adjacent 
points;  since in each  case the  constraint  check would be  made  on 
the assumption that  the  other  point  was  remaining  stationary,  it is 
possible that  the new configuration would not  meet  the  required 
constraints.) 

It is easily seen that  the process in  Algorithm A’ can be 
extended to more  complicated  constraints.  For  example,  constraints 
on  the jerk  (the  derivative of the  torque or acceleration) only 
require  a  more  complicated  constraint  function, i.e., both Eqs. (4a) 
and (4b). Of  course  in  this  case  the  constraint  function  needs  three 
points to calculate second derivatives of the speed.  Thus  the con- 
straints  on  a single point will be functions of fur0 points  either  side 
of  the  point  being  checked,  rather  than  one  point. This alfects  the 
degree of parallelism which can be achieved; step A3’ would require 
three pasws instead of two. It  also  affects  the convergence 
properties of the  algorithm, as will be seen later in the  examples of 
Section 5. 

d X ’  

d l ’  

As a  simple  illustration of how the  algorithm  works, consider 
a simple one-dimensional problem.  Suppose we wish to move an 
object of mass m from z=O to z=4. Further,  suppose  that  there 
is no friction,  and that  there  are  constant  bounds on the  magnitude 
of the applied force. There will be only one  parametric  function f , 

which may be taken  to  be  the  identity  function, so that X=z. We 
then  have 

If we consider X-intervals of length  1,  then  the  discrete  approxima- 
tion to  the parameterized  “curve” will have 5 points. The accelera- 
tion p = p -  can be approximated as ’ der 

d X  

The  torque  constraints  then  become 

If we use m = 1, F,, = 2, and X,, - X, = 1 for  all i ,  this 
reduces to 

I p:+1- P? I 5 4. (9) 
Now consider  what  happens if Algorithm  A is applied.  We may 
look at   the intermediate  points of the  curve in sequence. First, 
point 1 can  be raised by 2, since the  adjacent  points  have p values 
of zero (i.e. p o = p p O ) ,  and I 9 - 0’ I = 4. Raising  &he  middle 
point,  point 2, we are  constrained by the  fact  that p3 = 0, which 
limits p2 to 2 also. Likewise, we may  change ps to 2. This com- 
pletes  step  2 of Algorithm A. Since some of the p values  changed, 
we try  to increase them again. This dime only  point 2 can be 
raised, giving a  value of p2 = 2fi .  On  the  next pass, no p values 
change, so Algorithm A terminates. It is easily verified that  the 
solution  obtained  from  Algorithm  A is indeed the  optimal  solution 
to the  discretized  problem.  (Fig. 1 shows the discretized  trajectory 
after passes zero, one, and two of Algorithm A.) 

Now look at  what  happens when we use Algorithm A‘ . Say 
we start with  an  increment of 2. Then  the result of the first  pass of 
Algorithm A‘ is  the  same as the result of the  first  pass of Algo- 
rithm A, namely p1 = p2 = ps = 2. If the increment is cut  to 1, 
then  there is no  change.  Cutting  the  increment  to 1/ 2, we may 
raise the middle  point to  2.5. Continuing in this  fashion, the mid- 
dle  point  gets closer and closer to 2&, the  correct  result.  (Fig.  2 
shows the  trajectory  alter passes zero, one,  three,  and  four of A l p  
ritbm A’ .) 

4. (COMPUTATPBNAL REQUIREMENTS 
The  PTIA, unlike  dynamic  programming [IO], requires rela- 

tively  little  memory; it requires only one floating  point  number per 
interpolation  point. However, computation of the  CPU  time 
requirements is interesting. 

Obviously, the  computation  time  must increase at least 
linearly  with  the  number of interpolation  points  on  the  curve, that 
is, the  size of X intervals. In fact,  the  time increases as the square 
of the  number of interpolation  points. To see why this is so, con- 
sider  what  happens  when  the  number of interpolation  points is 
doubled. Since there  are  twice as many  points to check on each 
pass of the  algorithm,  the  computation  time  must increase by a 
factor of two. Recalling that  the (torque constraints  translate  into 
slope  constraints,  it is clear that  the  ratio of the  amount by which 
a  p-value  may be raised to  the  distance  between X-values will be 
approximately  constant.  Therefore  halving  the  spacing of the inter- 
polation  points  halves the size of the  steps which can be taken in 
the p direction,  thus  doubling  the  number of steps.  This  factor oP 
two  times  the  factor of two which results  directly from doubling 
the  number of points gives a  factor of four increase in computation 
time. If doubling  the  number of interpolation  points  quadruples  the 
computation  time,  then  the  time  dependence is quadratic in the 
number of points, i.e., 0 ( N f  where N x  is the number of the X 
intervals. 

‘Thus, step A$ reqnircs two passea 
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6. NUMERICAL EXAMPLES 
For  comparison  purposes, we will use the  same  example  robot 

considered in [lo] and [SI. This  robot is the Bendix PACS  arm, 
which is cylindrical  in  configuration  and is driven by fixed-field DC 
motors.  (We  consider only the  first  three  joints.)  The  dynamics 
and  actuator  characteristics of this  robot  are given in 181. 

First we consider only constraints  on  joint torques/forcea and 
motor  voltages,  without  considering  constraints  on  their  deriva- 
tives. The  torque  and  voltage  constraints  can  be  found in [SI. The 
perturbation  trajectory  planner  was  written in the C  programming 
language,  and  run  on  a VAX-11/780 under the Unix operating sys- 
tem.  The  planner was tried  with  a  straight-line  path,  a geodesic in 
“inertia  space” (see [8] ), and a joint  interpolated  path.  (The 
joint-interpolated  path has the form q’ = q: + p (q; - q:), where 
0 5 p 5 1 and q: and q; are  the  points at which the  curve  starts 
and finishes.) The traversal  times for these  paths.are 1.79 seconds, 
1.59 seconds  and 1.80 seconds respectively. Plots of p vs. X, joint 
positions vs. time,  and  motor  voltage vs. time  are  shown  in Figs. 3a 
through 3c. The  traversal  times  and  the  various  plots  are  virtually 
identical to  the solutions  obtained in [SI. 

To  demonstrate  the  application of the  perturbation  technique 
to problems  in which there  are  Constraints  on  the  derivatives of the 
torques, Le., jerk  constraints  (4b), we consider the  same problem 
with  the  additional  constraint  that  the  time  derivatives of the  joint 
torques  and  forces be less than 100, i.e., K, =lo0 for  all 15i I n  . 
The  time  derivatives of the  torques  are  computed using the iden- 
tity 

Thr. derivative -2 was  estimated  by  calculating  the  difference 
+ ;.en the applied  torques on successive intervals  and  dividing bs 
the  average of the  lengths of the intervals.  For  a  straight-line  path 
with 25 interpolation  points,  the  traversal  time  is 2.04 seconds. 
The p vs. X plot is shown in  Fig. 4. For 50 points, the  traversal 
time is 2.26 seeonds; the phase  plane  plot is shown in Fig. 5. Note 
that  the  trajectory has a  “bump” in it;  the process has not con- 
verged to  the proper  solution. To understand why this  happens, 
consider  the  situation  shown  in  Fig. 6. The solid line shows the 
current  trajectory,  and  the  dashed  lines show what  happens when 
either of the  two  interior  points is raised. In either case, a  jerk 
limit is exceeded,  even  though the  jerk  constraint would very possi- 
bly be met if 60th points were raised simultaneously.  Neither  point 
can move before the  other  does,  resulting in a sort of “deadlock”. 
Similar  situations  can  occur  with  longer sequences of points. If jerk 
constraints  are  to be included,  then obviously we must  prevent  this 
sort of situation  from  occurring.  One way to accomplish this is to  
perform the  trajectory  planning  operation  several  times  with  some 
added  constraints,  relaxing  the  constraints  each  time  the  trajectory 
is “improved”. The  constraints used here were simple  velocity lim- 
its.  On  each pass, the velocity  limit is raised. If the velocity incro 
ment is small  enough, the  top of the  phase  trajectory  remains  flat, 
and  the  regions of high  inflection which cause  the  anomalies in the 
phase  trajectory  never  get  a  chance to appear.  With  this modifica- 
tion,  a  velocity  increment of 0.1 a t  each  pass  gives the results plot- 
ted in Figs. 7a  through 7c for  a  straight line with 50 points. 100 
points  and  a  velocity  increment of 0.025 gives the results  plotted  in 
Fig.  8a  through &. The calculated  traversal  times  are 2.03 seconds 
in both  cases. 

6. CONCLUSION 

d u  
dX 

A  minimum-time  trajectory  planning  scheme has been 
presented which (i) is extremely  simple for actual  implementation, 
and (ii) allows the use of very  general  types of torque  constraints. 
This  trajectory  planner  has been shown to give  the  same results as 
the  trajectory  planner  described in [9] for  the  paths  and  torque 
constraints  given in [SI. In addition,  this  scheme has been applied 
to a  case  where  there  are  limits  on  jerk as well as torque. 

Since the  PTIA is simple but general  enough to accommodate 

various  realistic  constraints, it  has high potential use for  automati- 
cally  generating  trajectories of the growing  number of industrial 
robots. 
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Fig. 3a. Phase plane plot for straight line. 
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Fig.  3c. Motor voltage vs. time for straight line. 

Fig. 2. Results of Algorithm A 
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Fig.  3b. Joint position vs. time for straight line. 
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Fig. 4. Phase plane plot for straight line, 25 interpolation 
points, with jerk constraints. 
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Fig. 5. Phase plane plot for straight line, 50 interpolation 
points, with jerk constraints. 

Fig. 7. Phase plane plot for straight line, 50 interpolation 
points, velocity increment 0.1. 

0 1 2 3 

Fig. 6. Illustration of "deadlock" which may occur when 
jerk constraints are applied. 
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Fig. 8a. Phase plane plot for straight line, 100 interpolat,ion 
points, velocity increment 0.025. 

Fig. &. 

- l o o 0  1 Fig.  8b. Position vs. time for straight line, 100 interpolation points, velocity increment o.~25.  
Motor voltage vs. time for straight line, 100 interpolation 

points, velocity increment 0.025. 
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