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ABSTRACT

A number of trajectory planning algorithms are
available for determining a time history of the joint
torques, positions, and velocities required to move a
manipulator along a given geometric path in minimum
time. These schemes require knowledge of the robot's
dynamics, which in turn depend upon the characteris-
tics of the payload which the robot is carrying. In prac-
tice, the dynamic properties of the payload will not be
known exactly, so that the dynamics of the robot, and
hence the required joint torques, must be calculated
for a nominal set of payload characteristics. But since
these trajectory planners generate nominal joint
torques which are at the limits of the robot's capabili-
ties, moving the robot along the desired geometric path
at speeds calculated for the nominal payload may
require torques which exceed the robot's capabilities.
In this paper, bounds on joint torque uncertainties are
derived in terms of payload uncertainties. This allows
the trajectory planner to incorporate payload uncer-
tainties into the trajectory planning process.

1. INTRODUCTION

Various algorithms are available for performing
trajectory planning for robots, i.e., generating a time
history of desired positions, velocities, accelerations
and torques [1,4]. These trajectory planners require
knowledge of the robot's dynamics, which in turn
depend upon the characteristics of the payload being
carried. In practice, the exact characteristics of the
payload will not be known; since the trajectory planners
referenced above need to know the exact dynamics of
the robot, the trajectory planning process must be car-
ried out with dynamics which are calculated for a nomi-
nal payload. This practice can lead to difficulties. To
see why this is the case, note that these trajectory
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planners generate nominal torques which are at the
limits of the robot’'s capabilities for the given dynamics
Moving the robot along the desired path at speeds cal-
culated for the nominal payload may therefore require
torques which are beyond the robot's capabilities if the
payload differs from the nominal one. If the robot's
joints are controlled by independent servoes, as is usu-
ally the case, then attempting to make the robot move
along the nominal trajectory will result in one or more
joints "falling behind'’, so that the robot strays from
the desired geometric path. In other words, the trajec-
tory generated by the trajectory planner is realizable
for the nominal payload, but not for the actual payload.

There are a number of adaptive controllers which
can compensate for the changes in load, provided that
the plant (i.e. the robot joint drive) does not saturate
[2]. However if the plant saturates, as may happen if
the actual and nominal payloads differ too much, then
these controllers cannot possibly compensate for load
changes. It is the objective of this paper to present an
analysis of the torque errors caused by payload
changes, and incorporate the error information inte
the trajectory planning process se as to avoid satura-
tion of the individual actuators.

Changes in payload characteristics will be
expressed as errors in the pseudo-inertia of the pay-
load; the pseudo-inertia is a matrix containing the
mass and first and second moments of the payload. It
will be shown that bounds on the joint torque errors
can be calculated in terms of the norm of the error in
the pseudo-inertia of the payload, given the robot's
kinematics. The general trajectory planning algorithm
given in [5] can then be modified to handle uncertain-
ties in the dynamics caused by the payload. If the
actual and nominal payloads are described by the
pseudo-inertias [y and Iy respectively, then for a given
positive real number E, the algorithm generates a tra-
jectory which is realizable for all payloads /, for which
la -Inll= E.

.In order to determine errors in the torques, the
dynamic equations of the robot are required. In tensor

notation, the dynamic equations describing the
behavior of a robot take the general form
w = Iyq + Cud g + Ryq + g (1.1)

where w; is the i** generalized force, ¢ is the i** gen-
eralized coordinate, di; is the inertia matrix, Cy is an
array of Coriolis coefficients, defined by



=18y ¥ A
Ca =3 aq* * a¢ oq'
The matrix Ry is the viscous friction matrix, and g is
the gravitational force. The summation convention has
been used here, so that all product terms in (1.1) are
summed from 1 to N over repeated indices, where N is
the number of degrees of freedom of the robot. The
inertia matrix Ji;, the Coriolis array Cy; and the gravi-
tational loading vector g; are all functions of the posi-
tion of the robot and the payload pseudo-inertia.

It will be assumed that the path which the robot is
expected to follow has been given as a parameterized
curve in joint space, i.e., the joint coordinates q' are
given in terms of a single scalar A by the equations

¢ = SHN), 08 AS A

This allows all of the joint positions, velocities, and
accelerations to be expressed in terms of the scalar
~arameter A and its time derivatives. Plugging these
‘zlations into the dynamic equations gives torgque in
terms of these quantities also. More specifically, we
have

(1.2)

(1.3)

af’ d?fi ,
w = Jﬁit)-\-y+{lﬂ—d-'>% (1.4)
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where u = A is the pseudo-velocity. The quantities J;;,
Cin. and g; depend upon the masses and moments of
inertia of the robot's links. The robot's payload is fixed
to the last link, and hence must be regarded as part of
the last link for purposes of calculating the dynamic
coefficients. Therefore J;;, Cye, and g will change as
the characteristics of the payload vary.

We may write Eq. (1.4) as
w = MALyp+ GNNIE + R(Vu+ Si(Aly)

where the coefficients M;, @;. K. aknd S; are given by

(1.5)

2pj
a=iynil + el L. =0

j
R=Ry % , and S =g;(/y). The functional dependence

of Jy. Cyi and g on the payload Iy has been shown
explicitly. Then the dynamics of the system after the
payload has been perturbed may be written

uy = B\ Iy + A0+ QN Iy + ALy
+ RN+ S\ Iy + Aly)

In order to avoid excessive torque requirements,
we wish to compute a set of velocities and accelerations
& and g such that if the nominal torques w; are given by
(1.5), then the actual torques uy given by (1.6) will be
realizable, i.e.,

u‘mm(xyl,[,) < u; < u-',mu(A'“) ’ (17)

Formally, the Robust Tragjectory Planning {RTP) prob-
lem may be stated as follows:

(1.6)

Given a geometric path described as a parameter-
ized curve, the torque limits uf® and uf** as func-
tions of A and w the dynamics of the robot when
carrying the nominal payload Iy, and a bound £ on
the norm of the difference between the pseudo-
inertias of the actual and nominal payloads, deter-
mine the fastest trajectory (sequence of {(A.u)
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pairs) such that the torques u; given by (1.8)
satisfy the constraints (1.7) for all points on the
trajectory and for all payload errors Aly such that
||A IN” < k.

We will solve this. problem by calculating the
worst-case torque error, as a function of A, w, and w, for
a given payload error, and decreasing the torque limits
by this amount when doing trajectory planning.

The rest of the paper is organized as follows: in
Section 2, torque errors are calculated in terms of
changes to the payload pseudo-inertia. In Section 3
bounds on the joint torque errors are derived in terms
of bounds on the norm of the pseudo-inertia error. Sec-
tion 3 also discusses how these results can be incor-
porated into the trajectory planning process. Section 4
presents a numerical example, and the paper concludes
with Section 5.

2. CALCULATION OF DYNANMIC COEFFICIENT ERRORS

For a given path, we need to know the changes to
the coefficients M;, &. R, and S; in Eq. {1.5) which
result irom changes in the dynamics of the robot. In
the sequel, changes in dynamics will be assumed to
come from changes in payload characteristics, While
changes in friction coefficients, and hence changes to
R;, also contribute to changes in required torques, such
changes are independent of changes in payload charac-
teristics, and for the sake of simplicity will not be dealt

with here.?
Determining the change to M;, we have

() = 3 () L (2.1)
and

Hilly + Aly) = 3y + A1) S (2.2)
so that

My (Iv.Aly) = My + Aly) —Hi(Iy) (2.3)

Iyl + Aly) =3 ()| 25

By (. Iy) 55

Differences between nominal and actual payload
characteristics cause changes in the coefficients Iy
Cyr. and g in equation (1.1). Here we determine the
relationship between changes in these coefficients and
changes in payload characteristics.

Changes in payload characteristics will result in
changes to the pseudo-inertia tensor of the last joint of
the robot, i.e., the pseudo-inertia tensor will have the
value [y + Aly instead of Iy. In order to obtain &M;, we
consider how this affects the inertia matrix. The coeffi-
cients in the inertia matrix are given in [3] as

4 8T, = OT)
J;(ly) = [——E L —"] (2.4)

A p=m§x(i,j) 3‘1’ ’ aq‘
where T, is the 4x4 homogeneous transformation

matrix which transforms vectors Eiven in the coordi-
nate system associated with the p* link of the robot to
world or base coordinates, and 4 is the pseudo-inertia
of the p** link given in the p** link’s coordinate frame.

23uch changes are usually determined experimentally.



Introducing an error Aly into the pseudo-inertia of
the last joint gives

N4 aT ar’l
J Uy + Aly) = v —21 —£ (2.5)
v p=m¥x(i.j) oq’ P aq'
ﬁ
+ Tr| — (IN + AIN)
Subtracting (2.4) from (2.5) gives
oT, 6'1'
8y (I Aly) = 8y(Aly) = Tr| 5 q’,’ Iy ﬁ (2.8)

Note that the error in the inertia matrix is linear in the
pseudo-inertia error, and is independent of the nominal
payload. To tind 6Mi. simply plug {(2.6) into (2.3), giving
&M, = EQL Tr (2.7)
7 dA
Computation of the errors 6@ follows the same pat-
tern as the computation of ;. The errors in the
Coriolis terms can be determined in much the same

way as the errors in the inertia matrix. From [3] we
have

8°T, aTT
Cisi = —2 Ip’_‘?] (2.8)
p=max (i.j.k) éq’dq* * oq

The errors in the Coriolis terms due to errors in pay-
load characteristics are therefore given by

8Ty 8Th
= Tr T Nn—= . (2.9
&z g 2V og (2.9)
The definition of & gives
ot , a‘r} d2fi

2.10
ET' 6q5 Noaq | da? (2.10)

Ty aTh dfi ds*

+ r Iy— .

Z:z,,: [6qiaq" ] dx dA

Now we need to know the error in the gravitational
terms. The gravitational forces g; are given by [3]

(2.11)

where G= [00g 0]7 1s the gravitational force vector,
m, is the mass of the ¥ link, g is the acceleration due
to gravity, and ¥, = [Z ¥ Z 1] is the center of mass of
the k™ link given in the coordinates of the k* frame.
If we define w;, = m;T,, then we have

g Pyl (2.12)

But w, is just the last column of the pseudo-inertia
matrix Z, so that

o
X 9T . |0

& = -~ GT— (2.13)
' kz=:i aqt (1)

As before, introducing an error into the pseudo-inertia
of the last link gives
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We may now calculate the error in u; by adding up
the individual components, giving

b = My + 6QF + 6S;. (2.15)

3. CALCULATION OF TORQUE ERROR BOUNDS

If the errors Aly were known exactly, then the
torque errors could also be computed exactly. Of
course, in practice Ay will not be known exactly. How-
ever, if bounds on the norm of AJy can be obtained
then we may find bounds on du;.

To obtain these bounds, note that éM;, 6@;, and &S
are all functions of the pseudo-inertia error Aly; in
tact, they are linear in A Iy, so that du is also linear in
Afy. 1f we write

&y, = Z(Aly), (3.1)

then we wish to maximize or minimize the linear func-
tion Z with respect to Aly, subject to {jAlyll < E, where
£ is the bound on the pseudo-inertia error,

At this point, some observations are in order. First
as we noted before, the errors in the &y depend linearly
upen the pseudo-inertia error Aly. Second, note also
that dua; depends only on the kinematics of the robot
and on the desired velocity and acceleration, not on the
nominal dynamics. These facts are consequences of the
fact that both kinetic and potential energy are linear
in mass, as can be seen from the derivation of thee
Lagrangian form of the dynamic equations. One conse-
quence of the linearity of the linearity of the dynamic
equations is that forces caused by the nominal robot
dynamics and those caused by errors in the dynamics
can be separated, as shown above. The implication of
this is that much of the error analysis can proceed
without regard to the nominal dynamics of the robot.

The linearity of the &y in the pseudo-inertia has
some other practical consequences as well. Consider
the maximization which must be performed in order to
evaluate du;. This maximization requires that the
space of 4% 4 symmetric matrices with nerm less than
F be searched, which in general is a rather formidable
problem. However, by choosing a particular class of
matrix norms, the problem can be made quite simple
in fact, it can be transformed inte a linear program-
ming problem.

To see how this transformation can be performed
consider the problem of maximizing the function Z in
equation (3.1), namely

Problem A maximize Z(M) = )} Bi; My; (3.2)
LI )

subject to M| < £ and M= M” (3.8)

Treatment of the minimization problem proceeds
analogously to problem A. We will show that problem A
transforms into a linear programming problem if the
norm used to constrain the matrix M in (3.3) is chosen
properly. This will be accomplished by eliminating
some absolute values from the constraints.

Z(M), the function to be maximized, is a linear

function of M. It remains to be shown that the con-
straints can be made linear. Of course if the norm used



in problem A is arbitrary, then in general the con-
straints will not be linear. However, there is a set of
norms, all very easy to calculate, which will yield linear
constraints. Consider the class of functions F: R** 4» R*
given by F(M) = max o; (M), where

o) = 3 3 g Mg .

f=lk=1
The matrix l-norm and =-norm, maxg&, | and 2 | My |

are all functions of this form. It is easily shown t.hat if
O‘m > O foralli, j and k, and if for every pair of indices
(j.k) there is an 4 such that ay # 0, then F(M) is a
norm. Problem A with this class of norms becomes

Problem B: maximize Z(M) = 3}, 8;My (3.4)
iy

ZE%IHM < E

subject to maxl
li=w=1

and H_&g = lg,-.

This problem obviously is equivalent to

Problem C: maximize Z(M) = ¥ ) 8;My (3.5)
tJ

subject to 2 2 o My | = E

J=1k=1

and HJ = ij

Problem C may be transformed into a standard
linear programming problem by making the substitu-
tions H(j = P‘J _Mj and }“‘j‘ = Pi‘,' + N"j. where Pu and
N;; are non-negative real numbers, and eliminating the
symmetry constraint on M. Thus the problem reduces
to

maximize Z(P,N) = Z 2 B (Pg —Ng)
j=lk=j

4 4
subjectto ) ) a'yu(Pp + N )< F
j=lk=j

and P‘,’ 0 N(‘, 0
where
Qe ji=k
Xk = Oy + Oy JPE
and

Bij i=j
B = oy + B i#5

Now that torque error bounds can be obtained from
pseudo-inertia errors, these results must be incor-
porated into the trajectory planning process. Direct use
of the results derived above in the trajectory planner
described in [4] is not easy, since this trajectory
planner requires that we solve (1.5) for uin terms of A,
. and ug;. This solution is required because the trajec-
tory planner must convert torque ranges into u ranges.
When errors are introduced, we have

WA < Mu+ QU+ Ru+ S
+ ua%iﬁr{w‘“" Qs + di}

< Mip+ Qui + Ru+ S

* B Ww + 62 + 6&}

< ufT(Au).

For given A and w these inequalities determine a range
of values of 1 However, the worst-case values of &M;
6Q;, end 65 depend upon u which in turn depends upon
the values of &M;. 6@, and 4S;, so finding the allowable
range of values of u explicitly is difficult. Of course
these equations can be solved numerically. For exam-
ple, to find the maximum allowable value of u the equa-
tion

Hpt+ Quf + Ru+ S

max { 6 + 6Qu R + 85

= ufPex{\,
ws ufPeE(, 1)

can be solved by bisection for s

A simpler solution to the problem is to use the tra-
jectory planner described in [8)]. This trajectory
planner only needs to have available a test function
which determines whether or not a given (A,uu) triple
requires excessive torque; in effect, it automatically
performs the numerical search for the allowable values
of 4 But such a function is easily constructed, since
for a given (A, y,p) we can easily minimize or maximize
dui in (2.15), and see if u; + G exceeds uP**(A,u) or

+ &f® falls below w®B(A,u). In particular, the fol-
lowmg algorithm checks to see if a particular (Auu)
triple meets all the torque constraints:

for each joint i do

begin
compute m

= Mi(\p+ G2
+ B(Mut+ S

compute duf** = Hlfnaxﬁ{ SH; (A A Iy

+ 0Q(NAIN)E + 65 (A B Iy)

compute duf*® = mlnz{dﬂ (A Iy)u

|18 Inli=
+ @()\,A[N)[La + d&, A.A[N) 5

it u + suM® < gPB(A L), then return REJECT;
if uf + 2> > uP2%()\u), then return REJECT;
end;
return ACCEPT



It should be noted that this function is called for
each (\4) peir; it does not, for example, reject a (A
triple based on an error which is computed for all posi-
tions or all velocities. As a consequence, speed is sacri-
ticed only when absolutely necessary to guarantee that
the trajectory will be realizable for all payloads within
the allowable range.

4, NUMERICAL EXANPLE

As an example, we will apply the methods of the
previous section to the first three joints of the Bendix
PACS robot arm. This arm is cylindrical in configuration
and is driven by DC servos. Its dynamics and actuator
characteristics, as well as the trajectory planner used,
are described in [8).

The coordinate transform Ty for the PACS arm is

gcosﬁ 0 -sin® -rsind

isind O cosd rcos?
B=|"9 4 o0 (¢1)
l C 9 0 1

The partial derivatives of Ty are easily computed, and
the resulting dynamic coeeficient errors

dr
2
8My= (Hy  + Hss + 2rHg + T H“)dk +H“d)\
dz dé dr d®z
Ml, = H“ﬁ, W, = H“‘d_)\ +H“d_)\; w H“dxa

8Qe= (Hyy + Heg + 2rHsy + r2H o) 3% zm

der dr d3d
48 2
o6& = Hud)\g Hud)\g (Hu*"'H«)[E']
6S; = Hyug, 6S4=65 =0

where g is the acceleration due to gravity and where
the matrixH= AL,

We will use the norm
4 4
PN 2% By

where oy > 0. This makes the problem of finding the

error bounds very simple. It is easily seen that if the

functional to be maximized is Z = }}} A;Hy, then the
iJ

maximum over H for ||H|< £ occurs whep all the H;;

are zero except for those Hy for which |f;/¢; | is a

maximum; this number times £ is also the maximum
value of Z. If we use

o=
% T 1/2 iwj

then the resulting bounds on the |&y | are

I} =

| dz d?z
o= |2 is L2t gan)
|duyl = max EX3 daﬁ d—zr/f’
7l T
dd - dr as
ZTdA,uA- 21'!”\2;,? 2:“‘ 1y L
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The joint torques that can be applied to the PACS
arm are limited by saturation of the drive motors
which gives a constant torque or force limit for each
joint. In addition, there are limits on the voltages which
can be applied to the motors; so we need to know how
the errors in the joint torques transiate into errors in
ihe motor voltages. It will be assumed ihat the back-
EMF constant, winding resistance, and voltage source
resistance are known exactly, though this is not neces-
sary. Since for a given speed voltage is a linear func-
tion of torque, i.e., ¥. = 4w + B, the change in voltage
will be 6¥; = A;&1;. These changes in volitage can then
be added to the nominal voltage and tested against the
motor voltage limits in much the same way that the
torques are checked against the motor torque satura-
tion limits.

The perturbation to the nominal dynamics of the
manipuiator will be caused by placing a cube with edges
of length L and uniform mass density p in the gripper of
the robot, with its center of mass coincident with the
origin of the end effector coordinate system. The
pseudo-inertia of this cube is

5
lsz 0 0 0
1 ;s
- 0 12pL 0 0
3= 1 5
0 S YA
0 0 0 pLY
The norm of this “error” is ||A/Js]| = pL? + %:pLs. The

maximum torque error for a given range of pseudo-
inertia errors occurs when the error bound £ is pre-
cisely equal to the norm of the actual pseudo-inertia
error. Therefore the most stringent test of the results
of the previous section is to use a tight error bound
i.e., E = ||AL5)l. This has been done for a cube with sides
of 5 centimeters and densities of 0, 6, 12, 18, 24, and 30
grams/cc. The path traversed is a straight line from
the (Cartesian) point {0.7,0.7,0.1) to (0.4,-0.4,0.4). For
comparison, the true optimal solution has been calcu-
lated, using the actual dynamics (including the effects
of the cube in the gripper). The results are summarized
in Tables 1 through 5. Table 1 gives traversal times for
the true optimal solution and for the case in which
errors are included. The "percent difference” column
gives the percentage by which the true optimal traver-
sal time is exceeded. Tables 2 and 3 give minimum and
maximurn voltages, respectively. The actual and nomi-
nal values are both computed for the "'nominal” trajec-
tory, i.e. the trajectory which is calculated with errors
included. The actual voltages are those required to
move the robot with the cube in the gripper, while the
nominal values are those which are required without
the cube (i.e. with the nominal payload.) The minimum
and maximum voltages available are -40 and 40 volts



and it is easily seen that these limits are not exceeded
for any joint or for either payload. Tables 4 and 5 give
the minimum and maximum torques or forces for each
joint. The torque or force limits are given at the head of
the column for the appropriate joint; again, the limits
are not exceeded.

The phase plane { A vs. u ) plot and motor voltage
vs. time plot for the zero-density case are shown in Fig-
ures la and 1b. Since the error is zero in this case, the
results are exact. For a density of 12 grams/cec., the
optimal and nominal (i.e. with errors included) phase
plane plots are shown in Figure 2a. Figure 2b gives joint
positions vs. time: 2 and r are in meters, 4in radians.
Figures 2c through 2e give nominal and actual motor
voltages required to drive the robot along the nominal
trajectory for the z, % and r joints respectively. (The
nominal voltages are those which would be required if
the actual payload were identical to the nominal pay-
load. The actual torques are the torques required to
keep the robot with the perturbed payload on the nomi-
nal trajectory.) Figures 3a through 3e show the same
plots for a density of 24 grams/cc.

It was noted above that none of the joint torque or
voltage constraints was violated. However, the
minimum voltage for the r joint at one point meets the
lower voltage limit. This indicates that the trajectory
which is generated when payload errors are included is
indeed the fastest possible trajectory for the given
range of possible payloads; for this particular point, the
worst-case payload happens to have the same charac-
teristics as the actual payload. A larger payload would
have resulted in violation of a voltage constraint.

Another point to consider is the relationship
between the nominal and optimal phase trajectories. It
is expected that the nominal phase trajectory will be
lower than the optimal trajectory; a nominal trajectory
which was higher than the optimal one would lead to a
contradiction of the optimality of the optimal trajec-
tory. Also, the difference between the optimal and nom-
inal trajectories increases as the payload error bound
increases. This would be expected, since the nominal
trajectory must accomodate all payloads within a given
range; as the range of payloads increases, the worst-
case errors also increase, resulting in more restrictive
limits on the nominal torques, and hence slower trajec-
tory traversal times.

5. CONCLUSIONS

A method for including payload inertia errors in
the manipulator trajectory planning process has been
presented. Errors in the payload inertia are character-
ized by bounds on the norm of the difference between

Deasity Time {Secoads) perceat difference
Nominal | Optimal
0 1.789 1.789 0
6 1.034 1.844 1.9%
12 2.076 1.898 9.4%
18 2.213 1.950 13.5%
24 2.340 2.002 16.9%
30 2.459 2.054 19.7%

Table 1. Traversal times for sominal and optimal trajectories
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the actual and nominal pseudo-inertias of the payload,
Given such a bound, it has been shown that a trajectory
can be constructed which meets all torque and force
constraints for all actual payloads, provided that the
norm of the difference of the pseudo-inertias of the
actual and nominal payloads differs by less than the
given error bound. This technique was applied to the
Bendix PACS robot for a number of different payloads,
and the resulting trajectories were shown not to violate
any joint torque or motor voltage constraints. In the
worst case, in which the actual payload mass differs
from the nominal mass by approximately one third of
the robot’s rated maximum load, the traversal time was
less than twenty percent over the optimal value,
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Density z joiat 4 joiat r_joimt
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Density 2 joist § joimt r joiat

Nomiusal | Actual [ Nominal | Actual | Nomin: Actual

0 37.64 37.64 39.5%6 0.5 40.00 40.00

6 3.4 38.03 7.4 N7 .62 32.60

12 .79 38.04 17.04 18.25 201 2748
18 33.78 37.61 10.61 112t 279 2494
24 35.12 37.54 7% 789 2139 24
0 3100 37.09 5.39 5.98 19.51 22.39

Table 3. Maxi quired voltages for inal and actual payloads.




Misimum Torgues/forces
Dessity | : joint (Newtons) | # joint (Newton-Metens) | r joist (Newtons)
Limit = 629 Nt. Limit = -170 N¢t.-M. | Limit = -15.7 Nt.
Nominal | Actsal i Actual Nomisal | Actsa
0 333.52 | 33352 | -112.29 -112.29 E 2 -9.99
[} 33501 | 34220 | -104.78 -105.71 947 -9.9%9
12 383.02 376.62 -81.70 -80.26 -9.02 -9.9
18 37303 | 304.00 -£291 84.43 -8.61 -9.99
24 T 408.17 -48.15 -490.55 -8.2¢ -9.99
0 380.11 415.72 -3.14 -40.43 -7.92 -9.98

Table 4. Misimum required torques/forces for nominal aad actual payloads.

Maxi Torques /forces

Density | : joiat (Newtons) | 4 joist (Newton-Meters) | r joint (Newtons)
Limit = 629 Nt. Limit = 170 Nt-M. Limit = 15.7 Nt
Nominal | Actual | Nominal Actual Nominal | Actual

[} 421.31 | 421.31 | 16172 161.72 10.63 10.03

[} 418.68 426.52 150.3% 152.36 815 8.18

12 414.50 430.04 78.43 30.48 6.76 6.89

18 406.68 429.55 51.% 53.41 5.96 6.25

24 40217 | 43231 3818 40.19 5.36 587

| %0 400.42 437.96 30.20 3220 4.89 5.61
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Figure 2a. Phase plane plots for density 12.0 g./cc.

Figure 2b. Joint position vs. time for density 12.0 g./cc.
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Table 5. Maximum required torques/forces for pomisal and actual payloads

motor voltage
r motor voltage
z motor voltage

|



Figure 3a. Phase plane plots for density 24.0 g./cc.
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Figure 2e.

Nominal and actual motor voltages
for r ioint, - ~sity 12.0 g./cc.

Figure 3b. Joint position vs. time for density 24.0 g./cc.
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Figure 3e
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for r joint, density 24.0 g./cc.



