INCORPORATION OF PAYLOAD UNCERTAINTIES INTO ROBOT TRAJECTORY PLANNING

Kang G. Shin
Department of Electrical Engineering and Computer Science The University of Michigan
Ann Arbor, Michigan 48109

Neil D. McKay
Computer Science Department General Motors Research Laboratories
Farren Michigan 48090

Abstract

A number of trajectory planning algorithms are available for determining a time history of the joint torques, positions, and velocities required to move a manipulator along a given geometric path in minimum time. These schemes require knowledge of the robot's dynamics, which in turn depend upon the characteristics of the payload which the robot is carrying. In practice, the dynamic properties of the payload will not be known exactly, so that the dynamics of the robot, and hence the required joint torques, must be calculated for a nominal set of payload characteristics. But since these trajectory planners generate nominal joint torques which are at the limits of the robot's capabilities, moving the robot along the desired geometric path at speeds calculated for the nominal payload may require torques which exceed the robot's capabilities. In this paper, bounds on joint torque uncertainties are derived in terms of payload uncertainties. This allows the trajectory planner to incorporate payload uncertainties into the trajectory planning process.

1. INTRODUCTION

Various algorithms are available for performing trajectory planning for robots, i.e., generating a time history of desired positions, velocities, accelerations and torques [1,4]. These trajectory planners require knowledge of the robot's dynamics, which in turn depend upon the characteristics of the payload being carried. In practice, the exact characteristics of the payload will not be known; since the trajectory planners referenced above need to know the exact dynamics of the robot, the trajectory planning process must be carried out with dynamics which are calculated for a nominal payload. This practice can lead to difficulties. To see why this is the case, note that these trajectory

[^0]planners generate nominal torques which are at the limits of the robot's capabilities for the given dymamics Moving the robot along the desired path at speeds calculated for the nominal payload may therefore require torques which are beyond the robot's capabilities if the payload differs from the nominal one. If the robot's joints are controlled by independent servoes, as is usually the case, then attempting to make the robot move along the nominal trajectory will result in one or more joints "falling behind", so that the robot strays from the desired geometric path. In other words, the trajectory generated by the trajectory planner is realizable for the nominal payload, but not for the actual payload.

There are a number of adaptive controllers which can compensate for the changes in load, provided that the plant (i.e. the robot joint drive) does not saturate [2]. However if the plant saturates, as may happen if the actual and nominal payloads differ too much, then these controllers cannot possibly compensate for load changes. It is the objective of this paper to present an analysis of the torque errors caused by payload changes, and incorporate the error information into the trajectory planning process so as to avoid saturation of the individual actuators.

Changes in payload characteristics will be expressed as errors in the pseudo-inertia of the payload; the pseudo-inertia is a matrix containing the mass and first and second moments of the payload. It will be shown that bounds on the joint torque errors can be calculated in terms of the norm of the error in the pseudo-inertia of the payload, given the robot's kinematics. The general trajectory planning algorithm given in [5] can then be modified to handle uncertainties in the dynamics caused by the payload. If the actual and nominal payloads are described by the pseudo-inertias I_{A} and I_{N} respectively, then for a given positive real number E, the algorithm generates a trajectory which is realizable for all payloads I_{A} for which $\left\|I_{A}-I_{N}\right\| \leq E$

In order to determine errors in the torques, the dynamic equations of the robot are required. In tensor notation, the dynamic equations describing the behavior of a robot take the general form

$$
\begin{equation*}
\mathbf{u}_{i}=\mathrm{J}_{i j} \ddot{\mathbf{q}}^{j}+\mathbf{C}_{i j k} \dot{\mathbf{q}}^{j} \dot{\mathbf{q}}^{k}+\mathbf{R}_{i j} \dot{\mathbf{q}}^{j}+\mathbf{g}_{i} \tag{1.1}
\end{equation*}
$$

where $\mathbf{u}_{\mathbf{i}}$ is the $i^{\text {th }}$ generalized force, \mathbf{q}^{i} is the $i^{\text {th }}$ generalized coordinate, $\mathrm{J}_{i j}$ is the inertia matrix, $\mathrm{C}_{i j k}$ is an array of Coriolis coefficients, defined by

$$
\begin{equation*}
C_{w k}=\frac{1}{2}\left(\frac{\partial L_{i j}}{\partial q^{k}}+\frac{\partial L_{k}}{\partial q^{j}}-\frac{\partial J_{j k}}{\partial q^{i}}\right) \tag{1.2}
\end{equation*}
$$

The matrix $\mathbf{R}_{i j}$ is the viscous friction matrix, and $\mathbf{C}_{\boldsymbol{6}}$ is the gravitational force. The summation convention has been used here, so that all product terms in (1.1) are summed from 1 to N over repeated indices, where N is the number of degrees of freedom of the robot. The inertia matrix $J_{i j}$, the Coriolis array $\mathrm{C}_{i j k}$ and the gravitational loading vector g_{i} are all functions of the position of the robot and the payload pseudo-inertia.

It will be assumed that the path which the robot is expected to follow has been given as a parameterized curve in joint space, i.e., the joint coordinates q^{i} are given in terms of a single scalar λ by the equations

$$
\begin{equation*}
\mathbf{q}^{i}=f^{i}(\lambda), \quad 0 \leq \lambda \leq \lambda_{\max } \tag{1.3}
\end{equation*}
$$

This allows all of the joint positions, velocities, and eccelerations to be expressed in terms of the scalar harameter λ and its time derivatives. Plugging these elations into the dynamic equations gives torque in terms of these quantities also. More specifically, we have

$$
\begin{align*}
u_{i}= & d_{i j} \frac{d f^{j}}{d \lambda} \mu+\left\{d_{i j} \frac{d^{2} f^{j}}{d \lambda^{2}}\right. \tag{1.4}\\
& \left.+C_{i j k} \frac{d f^{j}}{d \lambda} \frac{d f^{k}}{d \lambda}\right\} \mu^{2}+\mathbf{R}_{i j} \frac{d f^{j}}{d \lambda} \mu+\mathbf{g}_{i}
\end{align*}
$$

where $\mu \equiv \lambda$ is the pseudo-velocity. The quantities $J_{i j}$, $C_{i j k}$, and g_{i} depend upon the masses and moments of inertia of the robot's links. The robot's payload is fixed to the last link, and hence must be regarded as part of the last link for purposes of calculating the dynamic coefficients. Therefore $\mathrm{J}_{i j}, \mathrm{C}_{i j k}$, and g_{i} will change as the characteristics of the payload vary.

We may write Eq. (1.4) as
$u_{i}=M_{i}\left(\lambda_{1} I_{N}\right) \dot{\mu}+Q_{i}\left(\lambda_{i} I_{N}\right) \mu^{2}+R_{i}(\lambda) \mu+S_{i}\left(\lambda_{1} I_{N}\right)$
where the coefficients M_{i}, Q_{i}, R_{i}, and S_{i} are given by $Q_{i} \equiv \mathrm{~J}_{i j}\left(I_{N}\right) \frac{d^{2} f^{j}}{d \lambda^{2}}+\mathrm{C}_{i j k}\left(I_{N}\right) \frac{d f^{j}}{d \lambda} \frac{d f^{k}}{d \lambda}, \quad M_{i} \equiv \mathrm{~J}_{i j}\left(I_{N}\right) \frac{d f^{j}}{d \lambda}$, $R_{i} \equiv \mathbf{R}_{i j} \frac{d f^{j}}{d \lambda}$, and $S_{i} \equiv \mathbf{g}_{i}\left(I_{N}\right)$. The functional dependence of $\mathrm{J}_{i j}, \mathrm{C}_{i j k}$ and g_{i} on the payload I_{N} has been shown explicitly. Then the dynamics of the system after the payload has been perturbed may be written

$$
\begin{align*}
\mathbf{u}_{i}^{\prime}=M_{i}\left(\lambda, I_{N}+\Delta I_{N}\right) \dot{\mu} & +Q_{i}\left(\lambda, I_{N}+\Delta I_{N}\right) \mu^{2} \tag{1.6}\\
& +R_{i}(\lambda) \mu+S_{i}\left(\lambda, I_{N}+\Delta I_{N}\right)
\end{align*}
$$

In order to avoid excessive torque requirements, we wish to compute a set of velocities and accelerations μ and μ such that if the nominal torques u_{i} are given by (1.5), then the actual torques \mathbf{u}_{i}^{\prime} given by (1.6) will be realizable, i.e.,

$$
\begin{equation*}
\mathbf{u}_{i}^{\min }(\lambda, \mu) \leq \mathbf{u}_{i}^{\prime} \leq u_{i}^{\max }(\lambda, \mu) . \tag{1.7}
\end{equation*}
$$

Formally, the Robust Trajectory Planning (RTP) problem may be stated as follows:

Given a geometric path described as a parameterized curve, the torque limits $u^{\text {min }}$ and $u^{\max }$ as functions of λ and μ, the dynamics of the robot when carrying the nominal payload I_{N}, and a bound E on the norm of the difference between the pseudoinertias of the actual and nominal payloads, determine the fastest trajectory (sequence of (λ, μ)
pairs) such that the torques $\mathbf{u}_{\mathbf{i}}^{\prime}$ given by (1.6) satisfy the constraints (1.7) for all points on the trajectory and for all payload errors ΔI_{N} such that $\left\|\Delta I_{N}\right\| \leq E$.
We will solve this problem by calculating the worst-case torque error, as a function of λ, μ, and μ, for a given payload error, and decreasing the torque limits by this amount when doing trajectory planning.

The rest of the paper is organized as follows: in Section 2. torque errors are calculated in terms of changes to the payload pseudo-inertia. In Section 3 bounds on the joint torque errors are derived in terms of bounds on the norm of the pseudo-inertia error. Section 3 also discusses how these results can be incorporated into the trajectory planning process. Section 4 presents a numerical example, and the paper concludes with Section 5.

2. CALCULATION OF DYNAIC COEFFICIENT ERRORS

For a given path, we need to know the changes to the coefficients M_{i}, Q_{i}, R_{i}, and S_{i} in Eq. (1.5) which result irom changes in the dynamics of the robot. In the sequel, changes in dynamics will be assumed to come from changes in payload characteristics. While changes in friction coefficients, and hence changes to R_{i}, also contribute to changes in required torques, such changes are independent of changes in payload characteristics, and for the sake of simplicity will not be dealt with here. ${ }^{2}$

Determining the change to M_{i}, we have

$$
\begin{equation*}
M_{i}\left(I_{N}\right)=\mathrm{J}_{i j}\left(I_{N}\right) \frac{d f^{j}}{d \lambda} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{i}\left(I_{N}+\Delta I_{N}\right)=\mathrm{J}_{i j}\left(I_{N}+\Delta I_{N}\right) \frac{d f^{j}}{d \lambda} \tag{2.2}
\end{equation*}
$$

so that

$$
\begin{align*}
\delta M_{i}\left(I_{N}, \Delta I_{N}\right) & \equiv M_{i}\left(I_{N}+\Delta I_{N}\right)-M_{i}\left(I_{N}\right) \tag{2.3}\\
& =\left\{\mathrm{J}_{i j}\left(I_{N}+\Delta I_{N}\right)-\mathrm{J}_{i j}\left(I_{N}\right)\right\} \frac{d f^{j}}{d \lambda} \\
& \equiv \delta \mathrm{~J}_{i j}\left(I_{N}, \Delta I_{N}\right) \frac{d f^{j}}{d \lambda}
\end{align*}
$$

Differences between nominal and actual payload characteristics cause changes in the coefficients $\mathrm{J}_{i j}$ $\mathrm{C}_{i j k}$, and g_{i} in equation (1.1). Here we determine the relationship between changes in these coefficients and changes in payload characteristics.

Changes in payload characteristics will result in changes to the pseudo-inertia tensor of the last joint of the robot, i.e., the pseudo-inertia tensor will have the value $I_{N}+\Delta I_{N}$ instead of I_{N}. In order to obtain δM_{i}, we consider how this affects the inertia matrix. The coefficients in the inertia matrix are given in [3] as

$$
\begin{equation*}
\mathrm{J}_{i j}\left(I_{N}\right)=\sum_{p=\max (i, j)}^{N} \operatorname{lr}_{r}\left(\frac{\partial \mathbf{T}_{p}}{\partial \mathbf{q}^{j}} I_{p} \frac{\partial \mathbf{T}_{p}^{T}}{\partial \mathbf{q}^{i}}\right) \tag{2.4}
\end{equation*}
$$

where T_{p} is the 4×4 homogeneous transformation matrix which transforms vectors given in the coordinate system associated with the $p^{t}{ }^{R}$ link of the robot to world or base coordinates, and I_{p} is the pseudo-inertia of the $p^{t h}$ link given in the $p^{t h}$ link's coordinate frame.

[^1]Introducing an error ΔI_{N} into the pseudo-inertia of the last joint gives

$$
\begin{align*}
\mathrm{d}_{i j}\left(I_{N}+\Delta I_{N}\right)=\sum_{p=\max (i, j)}^{N-1} & \operatorname{Tr}\left(\frac{\partial \mathbf{T}_{p}}{\partial \mathbf{q}^{j} I_{p}} \frac{\partial \mathbf{T}_{p}^{T}}{\partial \mathbf{q}^{i}}\right) \tag{2.5}\\
& +\operatorname{Tr}\left(\frac{\partial \mathbf{T}_{N}}{\partial \mathbf{q}^{j}}\left(I_{N}+\Delta I_{N}\right) \frac{\partial \mathbf{T} K}{\partial \mathbf{q}^{i}}\right)
\end{align*}
$$

Subtracting (2.4) from (2.5) gives

$$
\begin{equation*}
\delta \mathrm{L}_{i j}\left(I_{N}, \Delta I_{N}\right)=\delta \mathrm{J}_{i j}\left(\Delta I_{N}\right)=\operatorname{Tr}\left(\frac{\partial \mathrm{T}_{N}}{\partial \mathrm{q}^{i}} \Delta I_{N} \frac{\partial \mathbf{T}_{N}}{\partial \mathbf{q}^{i}}\right) . \tag{2.6}
\end{equation*}
$$

Note that the error in the inertia matrix is linear in the pseudo-inertia error, and is independent of the nominal payload. To find δM_{i}, simply plug (2.6) into (2,3), giving

$$
\begin{equation*}
\delta M_{i}=\sum_{j} \frac{d f^{j}}{d \lambda} T r\left(\frac{\partial \mathbf{T}_{N}}{\partial \mathbf{q}^{j}} \Delta I_{N} \frac{\partial T_{N}}{\partial \mathbf{q}^{i}}\right) . \tag{2.7}
\end{equation*}
$$

Computation of the errors δQ_{i} follows the same pattern as the computation of δH_{i}. The errors in the Coriolis terms can be determined in much the same way as the errors in the inertia matrix. From [3] we have

$$
\begin{equation*}
\mathbf{C}_{i j k}=\sum_{p=\max (i, j, k)}^{N} \operatorname{Tr}\left(\frac{\partial^{2} \mathbf{T}_{p}}{\partial \mathbf{q}^{j} \partial \mathbf{q}^{k}} I_{p} \frac{\partial \mathbf{T}_{p}^{T}}{\partial \mathbf{q}^{i}}\right) . \tag{2.8}
\end{equation*}
$$

The errors in the Coriolis terms due to errors in payload characteristics are therefore given by

$$
\begin{equation*}
\delta C_{i j k}=\operatorname{Tr}\left(\frac{\partial^{2} \mathbf{T}_{N}}{\partial \mathbf{q}^{j} \partial \mathbf{q}^{k}} \Delta I_{N} \frac{\partial \mathbf{T}^{T}}{\partial \mathbf{q}^{i}}\right) . \tag{2.9}
\end{equation*}
$$

The definition of Q_{i} gives

$$
\begin{align*}
\delta Q_{i}=\sum_{j} & \operatorname{Tr}\left(\frac{\partial \mathbf{T}_{N}}{\partial \mathbf{q}^{j}} \Delta I_{N} \frac{\partial \mathbf{T}_{N}}{\partial \mathbf{q}^{i}}\right) \frac{d^{2} f^{j}}{d \lambda^{2}} \tag{2.10}\\
& +\sum_{j} \sum_{k} T_{r}\left(\frac{\partial^{2} \mathbf{T}_{N}}{\partial \mathbf{q}^{j} \partial \mathbf{q}^{k}} \Delta I_{N} \frac{\partial \mathbf{T} /}{\partial \mathbf{q}^{i}}\right) \frac{d f^{j}}{d \lambda} \frac{d f^{k}}{d \lambda} .
\end{align*}
$$

Now we need to know the error in the gravitational terms. The gravitational forces g_{i} are given by [3]

$$
\begin{equation*}
\mathbf{g}_{i}=\sum_{k=i}^{N}-m_{k} \mathbf{G}^{T} \frac{\partial \mathbf{T}_{k}}{\partial \mathbf{q}^{i}} \overline{\mathbf{r}}_{k} \tag{2.11}
\end{equation*}
$$

where $\mathbf{G}=[00 \mathrm{~g} 0]^{T}$ is the gravitational force vector, m_{k} is the mass of the $k^{\text {th }}$ link, g is the acceleration due to gravity, and $\overline{\boldsymbol{r}}_{k}=[\overline{\boldsymbol{x}} \overline{\boldsymbol{y}} \overline{\boldsymbol{z}}$ 1] is the center of mass of the $k^{t h}$ link given in the coordinates of the $k^{\text {th }}$ frame. If we define $\boldsymbol{w}_{k} \equiv m_{k} \overline{\bar{F}}_{k}$, then we have

$$
\begin{equation*}
\mathbf{g}_{i}=-\sum_{k=i}^{N} \mathbf{G}^{T} \frac{\partial \mathbf{T}_{k}}{\partial \mathbf{q}^{i}} \mathbf{w}_{k} \tag{2.12}
\end{equation*}
$$

But \boldsymbol{w}_{k} is just the last column of the pseudo-inertia matrix I_{k}, so that

$$
\mathbf{g}_{i}=-\sum_{k=i}^{N} \mathbf{G}^{T} \frac{\partial \mathbf{T}_{k}}{\partial \mathbf{q}^{i}} I_{k}\left[\begin{array}{l}
0 \tag{2.13}\\
0 \\
0 \\
1
\end{array}\right]
$$

As before, introducing an error into the pseudo-inertia of the last link gives

$$
\delta \mathrm{S}=\delta=-\mathrm{G}^{T} \frac{\partial \mathbf{T}_{N}}{\partial \mathrm{q}^{4}} \Delta I_{N}\left[\begin{array}{l}
0 \tag{2.14}\\
0 \\
0 \\
1
\end{array}\right] .
$$

We may now calculate the error in u_{i} by adding up the individual components, giving

$$
\begin{equation*}
\delta u_{i}=\delta M_{i} \dot{\mu}+\delta Q_{i} \mu^{2}+\delta S_{i} . \tag{2.15}
\end{equation*}
$$

3. CALCULATION OF TORQUE ERROR BOUNDS

If the errors ΔI_{N} were known exactly, then the torque errors could also be computed exactly. Of nourse. in practice ΔI_{N} will not be known exactly. However, if bounds on the norm of ΔI_{N} can be obtained then we may find bounds on our,

To obtain these bounds, note that $\delta M_{i}, \delta Q_{i}$, and δS_{i} are all functions of the pseudo-inertia error ΔI_{N}; in fact, they are linear in ΔI_{N}, so that $\delta \mathrm{H}_{4}$ is also linear in $\Delta I y$. If we write

$$
\begin{equation*}
\delta \mathbf{u}_{i}=Z\left(\Delta I_{N}\right) \tag{3.1}
\end{equation*}
$$

then we wish to maximize or minimize the linear function Z with respect to ΔI_{N}, subject to $\left\|\Delta I_{N}\right\| \leq E$, where E is the bound on the pseudo-inertia error.

At this point, some observations are in order. First as we noted before, the errors in the duy depend linearly upon the pseudo-inertia error ΔI_{N}. Second, note also that $\delta \mathrm{b}_{3}$ depends only on the kinematics of the robot and on the desired velocity and acceleration, not on the nominal dynamics. These facts are consequences of the fact that both kinetic and potential energy are linear in mass, as can be seen from the derivation of thee Lagrangian form of the dynamic equations. One consequence of the linearity of the linearity of the dynamic equations is that forces caused by the nominal robot dynamies and those caused by errors in the dynamics can be separated, as shown above. The implication of this is that much of the error analysis can proceed sithout.regard to the nominal dynamics of the robot.

The linearity of the δu_{i} in the pseudo-inertia has some other practical consequences as well. Consider the maximization which must be performed in order to evaluate δu_{i}. This maximization requires that the space of 4×4 symmetric matrices with norm less than E be searched, which in general is a rather formidable problem. However, by choosing a particular class of matrix norms, the problem can be made quite simple in fact, it can be transformed into a linear programming problem

To see how this transformation can be performed consider the problem of maximizing the function Z in equation (3.1), namely

$$
\begin{align*}
\text { Problem A: } & \text { maximize } Z(\mathbf{M})=\sum_{i} \sum_{j} \beta_{i j} \mathbf{M}_{i j} \tag{3.2}\\
& \text { subject to }\|\mathbf{M}\| \leq E \text { and } \mathbf{M}=\mathbf{M}^{T} \tag{3.3}
\end{align*}
$$

Treatment of the minimization problem proceeds analogously to problem A. We will show that problem A transforms into a linear programming problem if the norm used to constrain the matrix \mathbf{M} in (3.3) is chosen properly. This will be accomplished by eliminating some absolute values from the constraints.
$Z(\mathbf{M})$, the function to be maximized, is a linear function of \mathbf{M}. It remains to be shown that the constraints can be made linear. Of course if the norm used
in problem A is arbitrary, then in general the constraints will not be linear. However, there is a set of norms, all very easy to calculate, which will gield linear constraints. Consider the class of functions $F: \mathbf{R}^{4 \times 4} \rightarrow \mathbf{R}^{+}$ given by $F(\mathbf{M})=\max \sigma_{i}(\mathbf{M})$, where

$$
\sigma_{i}(\mathbf{M})=\sum_{i=1 k}^{4} \sum_{=1}^{4} a_{i j k}\left|\mathbf{M}_{j k}\right|
$$

The ratrix 1-norm and ∞-norm, $\max _{i, j}\left|\mathbf{M}_{4 j}\right|$ and $\sum_{i, j}\left|\mathbf{M}_{4 j}\right|$ are all functions of this form. It is easily shown that if $\alpha_{i j k} \geq 0$ for all i, j and k, and if for every pair of indices (j, k) there is an i such that $\alpha_{i j k} \neq 0$, then $F(\mathbf{M})$ is a norm. Problem A with this class of norms becomes

$$
\begin{align*}
& \text { Problem B: maximize } Z(\mathbf{M})=\sum_{i} \sum_{j} \beta_{i j} \mathbf{M}_{i j} \tag{3.4}\\
& \text { subject to } \max _{i}\left(\sum_{j=1}^{4} \sum_{i=1}^{4} \alpha_{i j k}\left|\mathbf{M}_{j k}\right|\right) \leq E \\
& \text { and } \mathbf{M}_{j k}=\mathbf{M}_{k j} .
\end{align*}
$$

This problem obviously is equivalent to

$$
\begin{align*}
& \text { Problem C: maximize } Z(\mathbf{M})=\sum_{i} \sum_{j} \beta_{i j} \mathbf{M}_{i j} \tag{3.5}\\
& \qquad \begin{array}{l}
\text { subject to } \sum_{j=1}^{4} \sum_{k=1}^{4} a_{i j k}\left|\mathbf{M}_{j k}\right| \leq E \\
\text { and } \mathbf{H}_{j k}=\mathbf{H}_{k j} .
\end{array}
\end{align*}
$$

Problem C may be transformed into a standard linear programming problem by making the substitutions $\mathbf{Y}_{i j}=P_{i j}-N_{i j}$ and $\left|\mathbf{M}_{i j}\right|=P_{i j}+N_{i j}$, where $P_{i j}$ and $N_{i j}$ are non-negative real numbers, and eliminating the symmetry constraint on \mathbf{M}. Thus the problem reduces to

$$
\begin{aligned}
& \text { maximize } Z(\mathrm{P}, \mathrm{~N})=\sum_{j=1}^{4} \sum_{k=j}^{4} \beta_{j k}\left(\mathbf{P}_{j k}-\mathbf{N}_{j k}\right) \\
& \text { subject to } \sum_{j=1 k=j}^{4} \sum_{i j k}^{4} \alpha_{i j k}^{\prime}\left(\mathbf{P}_{j k}+\mathbf{N}_{j k}\right) \leq E \\
& \text { and } P_{i j} \geq 0, N_{i j} \geq 0
\end{aligned}
$$

where

$$
\alpha_{i j k}=\left\{\begin{array}{cc}
a_{i j k} & j=k \\
a_{i j k}+\alpha_{i k j} & j \neq k
\end{array}\right.
$$

and

$$
\beta_{i j}=\left\{\begin{array}{cc}
\beta_{i j} & i=j \\
\beta_{i j}+\beta_{j i} & i \neq j
\end{array}\right.
$$

Now that torque error bounds can be obtained from pseudo-inertia errors, these results must be incorporated into the trajectory planning process. Direct use of the results derived above in the trajectory planner described in [4] is not easy, since this trajectory planner requires that we solve (1.5) for μ in terms of λ, μ_{1} and u_{i}. This solution is required because the trajectory planner must convert torque ranges into μ ranges. When errors are introduced, we have

$$
\begin{aligned}
u^{\min }(\lambda, \mu) \leq & \Lambda_{i} \dot{\mu}+Q_{i} \mu^{2}+R_{i} \mu+S_{i} \\
& +\min _{\| \Delta I_{N} \mid \leqslant S}\left\{\delta M_{i} \dot{\mu}+\delta Q_{i} \mu^{2}+\delta S_{i}\right\} \\
\leq & M_{i} \dot{\mu}+Q_{i} \mu^{2}+R_{i} \mu+S_{i} \\
& +\max _{\left|\Delta I_{N}\right| \leq E}\left\{\delta K_{i} \dot{\mu}+\delta Q_{i} \mu^{2}+\delta S_{i}\right\} \\
\leq & \mathbf{u}^{\max }\left(\lambda_{i} \mu\right) .
\end{aligned}
$$

For given λ and μ_{4} these inequalities determine a range of values of μ However, the worst-case values of δH_{i} δQ_{i}, and $d S_{i}$ depend upon μ which in turn depends upon the values of $\delta H_{i}, \delta Q_{i}$, and δS_{i}, so finding the allowable range of values of μ explicitly is difficult. Of course these equations can be solved numerically. For example, to find the maximum allowable value of μ, the equation

$$
\begin{aligned}
M_{i} \dot{\mu}+ & Q_{i} \mu^{2}+R_{i} \mu+S_{i} \\
& +\max _{i \Delta I_{N} \| S}^{E}\left\{\delta M_{i} \mu+\delta Q_{i} \mu^{2}+\delta S\right\}=u^{\max }(\lambda, \mu)
\end{aligned}
$$

can be solved by bisection for μ
A simpler solution to the problem is to use the trajectory planner described in [6]. This trajectory planner only needs to have available a test function which determines whether or not a given (λ, μ, μ) triple requires excessive torque; in effect, it automatically performs the numerical search for the allowable values of μ But such a function is easily constructed, since for a given (λ, μ, μ) we can easily minimize or maximize δu_{i} in (2.15), and see if $u_{i}+\delta u_{i}^{\max }$ exceeds $u_{i}^{\max }(\lambda, \mu)$ or $\mathbf{u}_{i}+\delta u_{i}^{\text {min }}$ falls below $\mathbf{u}_{i}^{\min }(\lambda, \mu)$. In particular, the following algorithm checks to see if a particular ($\lambda, \mu, \dot{\mu}$) triple meets all the torque constraints:

```
for each joint \(\boldsymbol{i}\) do
begin
    compute \(\begin{aligned} u_{i}^{N}= & M_{i}(\lambda) \dot{\mu}+Q_{i}(\lambda) \mu^{2} \\ & +R_{i}(\lambda) \mu+S_{i}(\lambda) ;\end{aligned}\)
    compute \(\dot{\delta u_{i} \max }=\max _{\left\|\Delta I_{N}\right\| \leqslant}\left\{\delta M_{i}\left(\lambda, \Delta I_{N}\right) \dot{\mu}\right.\)
            \(\left.+\delta Q_{i}\left(\lambda, \Delta I_{N}\right) \mu^{2}+\delta S_{i}\left(\lambda, \Delta I_{N}\right)\right\} ;\)
    compute \(\delta u_{i}^{\text {min }}=\min _{\left|\Delta I_{N}\right| \Sigma E\{ }\left\{\delta M_{i}\left(\lambda, \Delta I_{N}\right) \dot{\mu}\right.\)
    \(\left.+\delta Q_{i}\left(\lambda, \Delta I_{N}\right) \mu^{2}+\delta S_{i}\left(\lambda, \Delta I_{N}\right)\right\} ;\)
    if \(\mathbf{u}_{i}^{N}+\delta u_{i}^{\min }<u_{i}^{\min }(\lambda, \mu)\), then return REJECT;
    if \(\mathbf{u}_{i}^{N}+\delta \mathbf{u}_{i}^{\max }>\mathbf{u}_{i}^{\max }(\lambda, \mu)\), then return REJECT
```

end;
return ACCEPT

It should be noted that this function is called for each (λ, μ) pair; it does not, for example, reject a (λ, μ, i) triple based on an error which is computed tor all positions or all velocities. As a consequence, speed is sacrificed only when absolutely necessary to guarantee that the trajectory will be realizable for all payloads within the allowable range.

4. NUIERRICAL EXAYPLE

As an example, we will apply the methods of the previous section to the first three joints of the Bendix PACS robot arm. This arm is cylindrical in contiguration and is driven by DC servos. Its dynamics and actuator characteristics, as well as the trajectory planner used, are described in [6].

The coordinate transform T_{s} for the PACS arm is

$$
T_{G}=\left|\begin{array}{cccc}
\cos v & 0 & -\sin v & -r \sin v \tag{4.1}\\
\sin v & 0 & \cos v & r \cos v \\
0 & -1 & 0 & z \\
0 & 0 & 0 & 1
\end{array}\right|
$$

The partial derivatives of T_{9} are easily computed, and the resulting dynamic coeeficient errors

$$
\begin{aligned}
\delta M_{9}= & \left(H_{11}+H_{38}+2 r H_{34}+r^{2} H_{44}\right) \frac{d v}{d \lambda}+H_{14} \frac{d r}{d \lambda} \\
\delta M_{z}= & H_{44} \frac{d z}{d \lambda} ; \delta H_{r}=H_{14} \frac{d v}{d \lambda}+H_{44} \frac{d r}{d \lambda} ; \delta Q_{z}=H_{44} \frac{d^{2} z}{d \lambda^{2}} \\
\delta Q_{s}= & \left(H_{11}+H_{39}+2 r H_{34}+r^{2} H_{44}\right) \frac{d^{2} v}{d \lambda^{2}} \\
& +H_{14} \frac{d^{2} r}{d \lambda^{2}}+2\left(H_{34}+r H_{44}\right) \frac{d r}{d \lambda} \frac{d v}{d \lambda} \\
\delta Q_{r}= & H_{14} \frac{d^{2} v}{d \lambda^{2}}+H_{44} \frac{d^{2} r}{d \lambda^{2}}-\left(H_{34}+r H_{44}\right)\left(\frac{d v}{d \lambda}\right)^{2} \\
\delta S_{z}= & H_{44} g ; \delta S_{v}=\delta S_{r}=0
\end{aligned}
$$

where g is the acceleration due to gravity and where the matrix $\mathrm{H} \equiv \Delta I_{n}$.

We will use the norm

$$
\|\mathbf{H}\|=\sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{i j}\left|\mathbf{H}_{i j}\right|
$$

where $\alpha_{i j}>0$. This makes the problem of finding the error bounds very simple. It is easily seen that if the functional to be maximized is $Z=\sum_{i} \sum_{j} \beta_{i j} H_{i j}$, then the maximum over H for $\|H\| \leqslant E$ occurs when all the $H_{i j}$ are zero except for those $H_{i j}$ for which $\beta_{i j} / a_{i j} \mid$ is a maximum; this number times E is also the maximum value of Z. If we use

$$
\alpha_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
1 / 2 & i \neq j
\end{array}\right.
$$

then the resulting bounds on the $\left|\delta u_{i}\right|$ are

$$
\begin{aligned}
& \left.\left|\delta u_{z}\right| \leq\left|\frac{d z}{d \lambda} \dot{\mu}+\frac{d^{2} z}{d \lambda^{2}} \mu^{2}+g\right|\left|\Delta I_{N}\right| \right\rvert\, \\
& \left|\delta u_{s}\right| \leq \max \left\{\left|\frac{d v}{d \lambda} \dot{\mu}+\frac{d^{2} v}{d \lambda^{2}} \mu^{2}\right| \cdot\left|\frac{d r}{d \lambda} \dot{\mu}+\frac{d^{2} r}{d \lambda^{2}} \mu^{2}\right|,\right. \\
& \left|2 r \frac{d v}{d \lambda} \dot{\mu}+2 r \frac{d^{2} v}{d \lambda^{2}} \mu^{2}+2 \frac{d r}{d \lambda} \frac{d v}{d \lambda} \mu^{2}\right|
\end{aligned}
$$

$$
\begin{gathered}
\left.\left|r^{2} \frac{d v}{d \lambda} \mu+r^{2} \frac{d^{2} v}{d \lambda^{2}} \mu^{2}+2 r \frac{d r}{d \lambda} \frac{d v}{d \lambda} \mu^{2}\right|\right)\left\|\Delta I_{N}\right\| \\
\left|\sigma u_{r}\right| \leq \max \left(\left.\left|\frac{d v}{d \lambda^{2}} \mu+\frac{d^{2} v}{d \lambda^{2}} \mu^{2}\right| \cdot \|\left.\frac{d v}{d \lambda}\right|^{2} \mu^{2} \right\rvert\, .\right. \\
{\left[\frac{\frac{t r}{2 \lambda}}{2}+\frac{d^{2} r}{d \lambda^{2}} \mu^{2}-r\left(\frac{d v}{d \lambda}\right)^{2} \mu^{2}\right]\left\|\Delta I_{N}\right\| .}
\end{gathered}
$$

The joint torques that can be applied to the PACS arm are limited by saturation of the drive motors which gives a constant torque or force limit for each joint. In addition, there are limits on the voltages which can be applied to the motors; so we need to know how the errors in the joint torques translate into errors in the motor voltages. It will be assumed that the backEMF constant, winding resistance, and voltage source resistance are known exactly, though this is not necessary. Since for a given speed voltage is a linear function of torque, i.e., $V=H_{i} u_{i}+B_{i}$, the change in voltage will be $\delta V_{i}=A_{i} \delta u_{i}$. These changes in voltage can then be added to the nominal voltage and tested against the motor voltage limits in much the same way that the torques are checked against the motor torque saturation limits.

The perturbation to the nominal dynamics of the manipulator will be caused by placing a cube with edges of length L and uniform mass density ρ in the gripper of the robot, with its center of mass coincident with the origin of the end effector coordinate system. The pseudo-inertia of this cube is

$$
\Delta I_{\mathrm{s}}=\left|\begin{array}{cccc}
\frac{1}{12} \rho L^{5} & 0 & 0 & 0 \\
0 & \frac{1}{12} \rho L^{5} & 0 & 0 \\
0 & 0 & \frac{1}{12} \rho L^{5} & 0 \\
0 & 0 & 0 & \rho L^{3}
\end{array}\right|
$$

The norm of this "error" is $\left\|\Delta I_{3}\right\|=\rho L^{9}+\frac{1}{4} \rho L^{5}$. The maximum torque error for a given range of pseudoinertia errors occurs when the error bound E is precisely equal to the norm of the actual pseudo-inertia error. Therefore the most stringent test of the results of the previous section is to use a tight error bound i.e., $E=\left\|\Delta I_{3}\right\|$. This has been done for a cube with sides of 5 centimeters and densities of $0,6,12,18,24$, and 30 grams/ce. The path traversed is a straight line from the (Cartesian) point ($0.7,0.7,0.1$) to ($0.4,-0,4,0.4$). For comparison, the true optimal solution has been calculated, using the actual dynamics (including the effects of the cube in the gripper). The results are summarized in Tables 1 through 5. Table 1 gives traversal times for the true optimal solution and for the case in which errors are included. The "percent difference" column gives the percentage by which the true optimal traversal time is exceeded. Tables 2 and 3 give minimum and maximum voltages, respectively. The actual and nominal values are both computed for the "nominal' trajectory, i.e. the trajectory which is calculated with errors included. The actual voltages are those required to move the robot with the cube in the gripper, while the nominal values are those which are required without the cube (i.e. with the nominal payload.) The minimum and maximum voltages available are -40 and 40 volts
and it is easily seen that these limits are not exceeded for any joint or for either payload. Tables 4 and 5 give the minimum and maximum torques or forces for each joint. The torque or force limits are given at the head of the column for the appropriate joint: again, the limits are not exceeded.

The phase plane (λ vs. μ) plot and motor voltage vs. time plot for the zero-density case are shown in Figures 1 la and lb . Since the error is zero in this case, the resuits are exact. For a density of 12 grams $/ \mathrm{cc}$., the optimal and nominal (i.e. with errors included) phase plane plots are shown in Figure 2a. Figure 2 b gives joint positions vs. time; z and r are in meters, v in radians. Figures 2c through $2 e$ give nominal and actual motor voltages required to drive the robot along the nominal trajectory for the z, ϑ and r joints respectively. (The nominal voltages are those which would be required if the actual payload were identical to the nominal payload. The actual torques are the torques required to keep the robot with the perturbed payload on the nominal trajectory.) Figures 3a through 3e show the same plots for a density of $24 \mathrm{grams} / \mathrm{cc}$.

It was noted above that none of the joint torque or voltage constraints was violated. However, the minimum voltage for the r joint at one point meets the lower voltage limit. This indicates that the trajectory which is generated when payload errors are included is indeed the fastest possible trajectory for the given range of possible payloads; for this particular point, the worst-case payload happens to have the same characteristics as the actual payload. A larger payload would have resulted in violation of a voltage constraint.

Another point to consider is the relationship between the nominal and optimal phase trajectories. It is expected that the nominal phase trajectory will be lower than the optimal trajectory; a nominal trajectory which was higher than the optimal one would lead to a contradiction of the optimality of the optimal trajectory. Also, the difference between the optimal and nominal trajectories increases as the payload error bound increases. This would be expected, since the nominal trajectory must accomodate all payloads within a given range; as the range of payloads increases, the worstcase errors also increase, resulting in more restrictive limits on the nominal torques, and hence slower trajectory traversal times.

5. CONCLUSIONS

A method for including payload inertia errors in the manipulator trajectory planning process has been presented. Errors in the payload inertia are characterized by bounds on the norm of the difference between

Deasity	Time (Secoads)		
	percent difference		
0	1.789	1.789	0
6	1.034	1.844	4.9%
12	2.076	1.898	9.4%
18	2.213	1.950	13.5%
24	2.340	2.002	16.9%
30	2.459	2.054	19.7%

Table 1. Traversal times for nominal and optimal trajectories
the actual and nominal pseudo-inertias of the payload. Given such a bound, it has been shown that a trajectory can be constructed which meets all torque and force constraints for all actual payloads, provided that the norm of the difference of the pseudo-inertias of the actual and nominal payloads differs by less than the given error bound. This technique was applied to the Bendix PACS robot for a number of different payloads, and the resulting trajectories were shown not to violate any joint torque or motor voltage constraints. In the worst case, in which the actual payload mass differs from the nominal mass by approximately one third of the robot's rated maximum load, the traversal time was less than twenty percent over the optimal value.

REFERENCES

[1] J. E. Bobrow, S. Dubowaky, and J. S. Gibson, 'On the Optimal Control of Robotic Menipalators with Actuator Constraints," Procesdings of the 1983 Automatic Control Conference, pp. 782-787. June :983.
[2] A. J. Koivo and T. H. Guo, "Adaptive Linear Controller for Robotic Manipulators," IEEE Transactions on Automatic Controi, vol. AC-28, no. 2, pp 162-170, February 1983.
[3] R. P. C. Paul, Robot manipulators: Mathematics programming, and control. Cambridge. Mass. MIT Press, 1981.
[4] K. G. Shin and N. D. McKay, 'Minimum-Time Control of a Robotic Manipulator with Geometric Path Constraints," IEEE Transactions on Automatic Control, vol. AC-30, no. 6, pp. 531-541, June 1985.
[5] K. G. Shin and N. D. McKay, 'Robot Path Planning Using Dynamic Programming.' Proceedings of the 23 ${ }^{\text {rd }}$ CDC, pp. 1629-1635, Dec. 1984 (also to appear in IEEE Trans. on Automatic Control, vol. AC-31 no. 8, June 1986).
[6] K. G. Shin and N. D. McKay. "Minimum Time Trajectory Planning with General Torque Constraints," Proc. 1986 IEEE Conf. on Rbbotics and Automation.

Minimum Voltates						
Demsity	z jeint		0 joiat		r joint	
	Nomisal	Actual	Nomainl	Aetal	Nominal	Actual
0	29.88	29.86	-30.93	-30.93	-40.00	-40.00
6	30.34	30.91	-38.20	-38.52	-37.94	- $\mathbf{- 0 . 0 0}$
12	30.54	31.67	-33.05	-33.51	-36.12	-39.98
18	30.67	32.50	-24.92	-25.37	-34.47	-30.99
24	30.78	33.07	-19.94	-20.36	-33.01	-80.00
30	30.86	33.73	-16.00	-17.18	-31.70	-30.50

Table 2. Minimom repeired voltuges for mominal and actad payloads.

Maximum Voltage						
Density	2 joint		0 joint		\bigcirc joiat	
	Nominal	Actax	Nomial	Actual	Nominal	Actual
0	37.04	37.64	39.86	30.86	40.00	40.00
6	37.40	38.03	37.14	37.73	32.62	32.60
12	36.79	38.04	17.64	18.25	77.01	27.48
18	35.78	37.61	10.61	11.21	23.79	24.94
24	35.12	37.54	7.30	7.59	21.39	23.41
30	34.00	37.00	5.39	8. $\%$	19.51	22.39

Minimun Toryes/forees						
Density	8 joint (Newtoes)		0 joinl (Newtor-Meters)		P joint (Newtops)	
	Limit $=-629$ Nt.		Linit $=-170$ Nt.-M		Limit $=-15.7 \mathrm{Nt}$.	
	Nersial	Actan	Nomias	Aetal	Nomial	Actus
0	333.52	333.52	-112.29	-112.29	-9.00	-9.99
6	335.91	342.20	-104.78	-105.71	-9.47	-9.90
12	303.02	376.62	-57.70	-60.26	-0.02	-9.90
18	373.03	394.00	-02.91	-4.43	-8.61	-9.99
24	37784	406.17	-48.15	-60.55	-8.24	-9.00
30	380.11	415.72	-30.14	-00.43	-7.92	-9.98

Tabte 4. Misimum required torques/forces for momial and setual payloads.

Figure 1a. Phase plane plot for zero errors.

Figure 2a. Phase plaze plots for deasity $12.0 \mathrm{~g} . / \mathrm{cc}$.

Maximum Torques/forcer						
Deasity	z joint (Newtons)		1 joiat (Newtom-Meters)		P joint (Newtons)	
	Limit $=629 \mathrm{Nt}$.		Limit $=170$ Nt.-M.		Limit $=15.7 \mathrm{Ni}$.	
	Nominal	Actad	Nominal	Actual	Nominal	Actual
0	421.31	421.31	161.72	161.72	10.03	10.03
6	418.68	426.52	150.39	152.36	8.15	8.18
12	414.50	430.04	78.43	80.48	6.78	6.89
18	400.68	429.55	51.30	53.41	5.08	6.25
24	402.17	432.31	38.18	40.19	5.36	5.87
30	400.42	437.88	30.20	32.20	4.89	5.61

Figure lb. Voltage vs. time for zero errors.

Figure 2b. Joint position vs. time for deasity $12.0 \mathrm{~g} . / \mathrm{cc}$.

Figure 2c.
Nominal and actual motor voltages for z joint, density $12.0 \mathrm{~g} . / \propto$.

Figure 2 d.
Nominal and actual motor voltages for joint, density $12.0 \mathrm{~g} . / \mathrm{cc}$.

Figure $2 e$.
Nominal and actual motor voltages for r joint, sity $12.0 \mathrm{~g} . / \mathrm{cc}$.

Figure 3a. Phase plane plots for density $24.0 \mathrm{~g} . / \mathrm{cc}$.

Figure 3b. Joint position vs. time for density $24.0 \mathrm{~s} . / \mathrm{cc}$.

Nminal and actual motor voltages for z joint, density 24.0 g ./cc.

Ficure 3 c
Nominal and actual motor voltages for joint, density 24.0 g ./cc.

Figure $3 e$
Neminal and actual notor voltages for r joint, density $24.0 \mathrm{~g} . / c c$.

[^0]: ${ }^{1}$ The work reported here is supported in part by the NSP grant No. BCS-8400038 and the US APOSR contract No. PS5B15-85-C-5105. Any opinions, fimdings, and conchusions or recommendations in this paper are thowe of the authors and do not necenarily reflect the viem of the funding agencies.

[^1]: Such changes are usually determined experimentally.

