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A number of trajectory planning algorithms are
available for determining a time history of the joint
torques, positions, and velocities required to move a
manipulator along a given geometric path in minimum
time. These schemes require knowledge of the robot's
dynamics, which in turn depend upon the characteris-
tics of the payload which the robot is carrying. In prac-
tice, the dynamic properties of the payload will not be
known exactly, so that the dynamics of the robot, and
hence the required joint torques, must be calculated
for a nominal set of payload characteristics. But since
these trajectory planners generate nominal joint
torques which are at the limits of the robot's capabili-
ties, moving the robot along the desired geometric path
at speeds calculated for the nominal payload may
require torques which exceed the robot's capabilities.
In this paper, bounds on joint torque uncertainties are
derived in terms of payload uncertainties. This allows
the trajectory planner to incorporate payload uncer-
tainties into the trajectory planning process.

1. INTRODUCTION
Various algorithms are available for performing

trajectory planning for robots, i.e., generating a time
history of desired positions, velocities, accelerations
and torques [1,4]. These trajectory planners require
knowledge of the robot's dynamics, which in turn
depend upon the characteristics of the payload being
carried. In practice, the exact characteristics of the
payload will not be known; since the trajectory planners
referenced above need to know the exact dynamics of
the robot, the trajectory planning process must be car-
ried out with dynamics which are calculated for a nomi-
nal payload. This practice can lead to difficulties. To
see why this is the case, note that these trajectory
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planners generate nominal torques which are at the
limits of the robot's capabilities for the given dynaics
Moving the robot along the desired path at speeds cal-
culated for the nominal payloadL may therefore require
torques which are beyond the robot's capabilities if the
payload differs from the nominal one. If the robot's
joints are controlled by independent servoes, as is usu-
ally the case, then attempting to make the robot move
along the nominal trajectory will result in one or more
joints "falling behind", so that the robot strays from
the desired geometric path. In other words, the trajec-
tory generated by the trajectory planner is realizable
for the nominal payload, but not for the actual payload.

There are a number of adaptive controllers which
can compensate for the changes in load, provided that
the plant (i.e. the robot joint drive) does not saturate
[2]. However if the plant saturates, as may happen if
the actual and nominal payloads differ too much, then
these controllers cannot possibly compensate for load
changes. It is the objective of this paper to present an
analysis of the torque errors caused by payload
changes, and incorporate the error information into
the trajectory planning process so as to avoid satura-
tion of the individual actuators.

Changes in payload characteristics will be
expressed as errors in the pseudo-inertia of the pay-
load; the pseudo-inertia is a matrix containing the
mass and first and second moments of the payload. It
will be shown that bounds on the joint torque errors
can be calculated in terms of the norm of the error in
the pseudo-inertia of the payload, given the robot's
kinematics. The general trajectory planning algorithm
given in [5] can then be modified to handle uncertain-
ties in the dynamics caused by the payload. If the
actual and nominal payloads are described by the
pseudo-inertias IA and IN respectively, then for a given
positive real number E, the algorithm generates a tra-
jectory which is realizable for all payloads IA for which
IA -INl< E.

.In order to determine errors in the torques, the
dynamic equations of the robot are required. In tensor
notation, the dynamic equations describing the
behavior of a robot take the general form

w = IAi? + yS iq + Rqq + g, (1t)

where ui is the iih generalized force, q is the itf gen-
eralized coordinate, Jj is the inertia matrix, C:i- is an
array of Coriolis coefficients, defined by
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C =21 + # a,|(1.2)

The matrix RK is the viscous friction matrix, and & is
the gravitational force. The summation convention has
been used here, so that all product terms in (1.1) are
summed from 1 to N over repeated indices, where N is
the number of degrees of freedom of the robot. The
inertia matrix J4, the Coriolis array R;* and the gravi-
t<ational loading vector g& are all functions of the posi-
tion of the robot and the payload pseudo-inertia.

It will be assumed that the path which the robot is
expected to follow has been given as a parameterized
curve in joint space, i.e., the joint coordinates q' are
given in terms of a single scalar A by the equations

qi = fI(A)), 0 As A (1.3)

This allows all of the joint positions, velocities, and
accelerations to be expressed in terms of the scalar
narameter A and its time derivatives. Plugging these
elations into the dynamic equations gives torque in
terms of these quantities also. More specifically, we
have

Ifdv'dA I( q dA2 (114)

IfIdkm1 If1i A + gi

where jz A is the pseudo-velocity. The quantities ii,
Cq, and gi depend upon the masses and moments of
inertia of the robot's links. The robot's payload is fixed
to the last link, and hence must be regarded as part of
the last link for purposes of calculating the dynamic
coefficients. Therefore J', Ct, and & will change as
the characteristics of the payload vary.

We may write Eq. (1.4) as

Us = MA4(AIN)j'+ Qi (AI xN)s2 + R1 (A)p + S (A,IN) (1.5)

where the coefficients Mi, Q4. R, and , are given by

Qiit, (IN)Ae + d1IA IA Ji (IN)AL

Ri Rj dfI and Si (IN). The functional dependence
of J. Cok and gi on the payload IN has been shown
explicitly. Then the dynamics of the system after the
payload has been perturbed may be written

l't = M(A, IN + AIa)jM+ Qi(A, Ir + A4IN)A (1.6)
+ R1(A)g+ SJ(A, IN + AIN)

In order to avoid excessive torque requirements,
we wish to compute a set of velocities and accelerations
g and A such that if the nominal torques a4 are given by
(i.5), then the actual torques ua given by (1.6) will be
realizable, i.e.,

utP(X,) c, U' '_ up"(A,). (1.7)

pairs) such that the torques u!i given by (1.6)
satisfy the constraints (1.7) for all points on the
trajectory and for all payload errors AIN such that
IIA sIz,rI E.
We will solve this problem by calculating the

worst-case torque error, as a function of A, p4 and g for
a given payload error, and decreasing the torque limits
oy this amount when doing trajectory planning.

The rest of the paper is organized as follows: in
Section 2, torque errors are calculated in terms of
changes to the payload pseudo-inertia. In Section 3
bounds on the joint torque errors are derived in terms
of bounds on the norm of the pseudo-inertia error. Sec-
tion 3 also discusses how these results can be incor-
porated into the trajectory planning process. Section 4
presents a numerical example, and the paper concludes
with Section 5.

2. CALCUIATfON OF DYNAMIC COEFFCIENT EIRRORS
For a given path, we need to know the changes to

the coefficients M4, QI 14, and 5 in Eq. (1.5) which
result from changes in the dynamics of the robot. ln
the sequel, changes in dynamics will be assumed to
come from changes in payload characteristics. While
changes in friction coefficients, and hence changes to
R, also contribute to changes in required torques, such
changes are independent of changes in payload charac-
teristics, and for the sake of simplicity will not be dealt
with here.2

Determining the change to M, we have

(2.l)5XiA (IN) = 1tU (IN) mL
and

Mi(IN + AIN) = Jij(IN + AIN)
so that

dM4(IHI A IN) MI (IN + A IN) -M(MII)

j{V(3 + AIN) X df

-- ij (IN IN) dm

(2.2)

(2.3)

Differences between nominal and actual payload
characteristics cause changes in the coefficients k,Z
C*, and & in equation (1.1). Here we determine the
relationship between changes in these coefficients and
changes in payload characteristics.

Changes in payload characteristics will result in
changes to the pseudo-inertia tensor of the last joint of
the robot, i.e., the pseudo-inertia tensor will have the
value IN + AIN instead of 4H. In order to obtain dM4, we
consider how this affects the inertia matrix. The coeffi-
cients in the inertia matrix are given in [3] as

Formally, the Robust Ttjectory Planning (RTP) prob-
lem may be stated as follows:

Given a geometric path described as a parameter-
ized curve, the torque limits UflJfl and ujp' as func-
tions of A and / the dynamics of the robot when
carrying the nominal payload IN, and a bound E on
the norm of the difference between the pseudo-
inertias of the actual and nominal payloads, deter-
mine the fastest trajectory (sequence of (A,4)

(2.4)Iv (I) = p E(j) [ , r i j

where T'p is the 4x 4 homogeneous transformation
matrix which transforms vectors jiven in the coordi-
nate system associated with the pt link of the robot to
world or base coordinates, and Ip is the pseudo-inertia
of the pth' link given in the pih link's coordinate frame.

Such chard are ummI!y determined emetaly.
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Introducing an error AIN into the pseudo-inertia of
the last joint gives

kV(I +A81X) = , 1@; G (2.5)

+ tha Ix+AR)ai].

Subtracting (2.4) from (2.5) gives

&g(In.XIR) =kV(A1=a\) 8q2.6)

aT

N3ote that the error in the inertia matrix is linear in the
pseudo-inertia error, and is inependet of the nominal
payload. To find 64 simply plug (2.6) into (2.3), giing

,^ (IN OATN) =7rTN A (2.7)

6cm] q~ q

Computation of the errors marollows tne same pat-
tern as the computation of I. The errors in the
Coriolis terms can be determpined in much the same
way as the errors in the inertia matrix. From [3] we
have

Ny r 0F1a2TP OTTl](2B

pdfx(iTk 8qO 'J (2.8)

The errors in the Coriolis terms due to errors in pay-
load characteristics are therefore given by

9 | aq2TN XaqTk] (2.9)

The definition of a gives

c5Qi = S+ OTNTJ-AIR--- 1 (2.10)

6cm Octt IA2̂fJ f

Now we need to know the error in the gravitational
terms. The gravitational forces g4 are given by [3]

g,= 5 - Gj-r. (211)

where G = [00mgx ofs the gravitational force vector,
mk is the mass of thekC" link, g is the acceleration due
to gravityeandrtk = [tV i ] is the center of mass of
the k11' link given in the coordinates of the kuW frame.
If we defineWtion Lk? then we have

g, = E aqi s

But w, is just the last column of the pseudo-i]
matrix I*, so that

[0
gi -CT 'T,I4 g

As before, introducing an error into the pseudo-i]
of the last link gives

(2.12)

nertia

(2.14)4a= 4kt=-=TrT-N IN 0

0

We may now calculate the error in wi by adding up
the individual components, giving

A( = WiA + 6Qp +d (2.15)

3. CALCUlATION OF TORQUE EFRROR BOUNDS
If the errors A1, were known exactly, then the

torque errors could also be computed exactly. Of
course. in practice AIN will not be known exactly. How-
ever, if bounds on the norm of AIj can be obtained
then we mav find bounds on &u^.

To obtain these bounds, note that Mi, drQi, and 65j
are all functions of the pseudo-inertia error AIN; in
fact, they are linear in A Is, so that & is also linear in
A Tv. If we write

6U4 = fAIV), (3.1)
Lhen we wish to maximize or minimize the linear func-
tion Z with respect to AIN, subject to IA Iyfl < E, where
K is the bound on the pseudo-inertia error.

At this point, some observations are in order. First
as we noted before, the errors in the 4 depend linearly
upon the pseudo-inertia error A@I. Second, note also
that &ui depends only on the kinematics of the robot
and on the desired velocity and acceleration, not on the
nominal dynamics. These facts are consequences of the
fact that both kinetic and potential energy are linear
in mass, as can be seen from the derivation of thee
Lagrangian form of the dynamic equations. One conse-
quence of the linearity of the linearity of the dynamic
equations is that forces caused by the nominal robot
dynamics and those caused by errors in the dynamics
can be separated, as shown above. The implication of
this is that much of the error analysis can proceed
withbiltregard to the nominal dynamics of the robot.

The linearity of the 6w in the pseudo-inertia has
some other practical consequences as well. Consider
the maximization which must be performed in order to
evaluate &u,. This maximization requires that the
space of 4x 4 symmetric matrices with norm less than
E be searched, which in general is a rather formidable
problem. However, by choosing a particular class of
matrix norms, the problem can be made quite simple
in fact, it can be transformed into a linear program-
ming problem.

To see how this transformation can be performed
consider the problem of mamizing the function Z in
equation (3.1), namely

Problem A: maximize Z(M) = Z fyM
i J

subject to NIMII;c E and M= MT

(3.2)

(3.3)

Treatment of the minimization problem proceeds
(2.13) analogously to problem A. We will show that problem A

transforms into a linear programming problem if the
norm used to constrain the matrix M in (3.3) is chosen

nertia properly. This will be accomplished by eliminating
some absolute values from the constraints.

Z(M), the function to be maximized, is a linear
function of M. It remains to be shown that the con-
straints can be made linear. Of course if the norm used
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in problem A is arbitrary, then in general the con-
straints will not be linear. However, there is a set of
norms, all very easy to calculate, which will yield linear
constraints. Consider the class of functions F: RxR4
given by F(M) = max oj (M), where

a*,tM)a=E 4 1t
1= ik= 1

The m-atrix 1-norm and c -norm, max 1M and S MI

are all functions of this form. lt is easily shown that if
a.* - Ofor all i, j and k, and if for every pair of indices
(j,k) there is an i such that %k s 0, then F(M) is a
norm. Problem A with this class of norms becomes

Problem B: maximize Z(M) = ESS#I4 (3.4)

(44

subject to max 155czc,I p;IM-,Ij E

i J=jil*E,I !

and Ms = 4M

This problem obviously is equivalent to

Problem C: maximize Z(M) = E-FpqMfjttif (3.5)

subject to EE %k wIM,!I9 E
J= lk = I

and M,-t = 4j.

Problem C may be transformed into a standard
linear programming problem by making the substitu-
tions Mv = P, -N., and i Mqj = Pi + NV, where Pj and
NV are non-negative real numbers, and eliminating the
symmetry constraint on M. Thus the problem reduces
to

maximize Z(P,N) = E5 I (Pik -Nt)
j= It=j

subject to E Eax*(Pjk +N,). E
1= lk=j

and Piq - 0, Nj > O

where

a ijk ap; + 4kj i$ k
and

pf p t=j
= po + g, is j

Now that torque error bounds can be obtained from
pseudo-inertia errors, these results must be incor-
porated into the trajectory planning process. Direct use
of the results derived above in the trajectory planner
described in [4] is not easy, since this trajectory
planner requires that we solve (1.5) for ,u in terms of X,
p and u,. This solution is required because the trajec-
tory planner must convert torque ranges into ,u ranges.
When errors are introduced, we have

ut(ks) s M4+Qs + sA +

+ I~w4+Qn&~
* AB + 6Q + a}

s M,I +42 + R ps + 5j

+ max4 d&Ws,+ dQ.A +¼

5 uttkg)

For given X and g these inequalities determine a range
of values of ,. However, the worst-case values of &4i
64, and S depend upon p. which in turn depends upon
the values of &iL 64, and d%, so finding the allowable
range of values of A explicitly is difficult. Of course
Lhese equations can be solved numerically. For exam-
ple, to find the maximum allowable value of /4 the equa-
tion

giS +max4&+ S}

+ maxlWsi + &GuA $5 = W=(X,,u)Problem~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~il IN maimz Z()

can be solved by bisection for p.
A simpler solution to the problem is to use the tra-

jectory planner described in [6]. This trajectory
planner only needs to have available a test function
which determines whether or not a given (X,gg) triple
requires excessive torque; in effect, it automatically
performs the numerical search for the allowable values
of ,4 But such a function is easily constructed, since
for a given (X,,.j) we can easily minimize or maximize
A in (2.15), and see if uw + AF1 exceeds upax(X,g) or
ui + &iFm falls below uff(X,A). In particular, the fol-
lowing algorithm checks to see if a particular (X,p,g)
triple meets all the torque constraints:

for each joint i do

begin
compute uiN= Mit(A),+ Q(X)g

+ R?(X(A)++(A);

compute A ma'1= trm 4 OMd(XA4IJ)p

+ 4 (X.AJ]v)g + aS(X, IN)};

compute 6Lrin = 1 l (X4 Iy)i

+ Q' (X, AIN)p + OS(XAINJ):

if u,N + &it4m c uj,"'(pA,), then return REJECT;

if ut + &rm' > uP¶a(X), then return REJECT;

end;

return ACCEPT
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It should be noted that this fuaction is called for
each (A pair; it does not, for example reject a (X,pA
triple band on an error which is computed for oU post-
tions or ci velocities. As a consequence, speed is sacri-
ficed only when absolutely necessary to guarantee that
the trajectory will be realizable for all payloads within
the allowable range.

4. NUMRICAL KIIAMPL1
As an example, we will apply the methods of the

previous section to the first three joints of the Bendix
PACS robot arm. This arm is cylindrical in configuration
and is driven by DC servos. Its dynamics and actuator
characteristics, as well as the trajectory planner used,
are described in [6].

The coordinate transform Ts for the PACS arm is

cosO 0 -sin O -rsintj
'sinG 0 Cos4 rcos4 (4.1)Ta1 0 4 0 (41

3 0 1
The partial derivatives of T5 are easily computed. and
the resulting dynamic coeeficient errors

6Se= (HiI +Hss 2rH3s+r"H")d + Hi4ddX d

M=HH4d-; Mr =dz- + dr; O= H4"dX drIfdXj+HXj

Q'd= (Hii+ H33+ 2rHs4+ rH4) dA2
dcf2r drcdi3

+ H14 d2 + 2(H4+ rH44) dA d 2

Q = Hi4r H+ dr _(H3 + rH4) dA

dS= H4g; 5S3 6, = 0
where g is the acceleration due to gravity and where
the matrix H AI,I

We will use the norm

IHII = E aq Ht
i= Ij= I

where a > 0. This makes the problem of finding the
error bounds very simple. It is easiiy seen that if the
functional to be maximized is Z = EZ&Hi, then the

maximum over H for 1111 s E occurs whep all the Hi
are zero except for those 114 for which J/ is a
maximum; this number times E is also the maximum
value of Z. If we use

{q1/2 isj

then the resulting bounds on the 1&i are

diX d2z

¾.olmax{jap+ /i4jA+;dr /s2
[i°1 i ]~dXA dN28 df dX2/

dtdA d2rdr dAT

I2dA r\BM2(+]/h2}NANi
i*3 a A +r A1!1 ||dr A I I2

dXld+dd= r|i ? l X

The joint torques that can be applied to the PACS
arm are limited by saturation of the drive motors
which gives a constant torque or force limit for each
joint. In addition, there are limits on the voltages which
can De applied to the motors- so we need to know how
the errors in the joint torques translate into errors in
Lhe motor voltages, It will be assumed that the back-
EMF constant, winding resistance, and voltage source
resistance are known exactly, though this is not neces-
sarv. Since for a given soeec voltage is a linear func-
tion of torque, i.e., = + the change in voltage
will be 6Vi = %&z4 These changes in voltage can then
be added to the nominal voltage and tested against the
motor voltage limits in much the same way that the
torques ae checked against the motor torque satura-
tion limits.

The perturbation to the nominal dynamics of the
manipuiator will be caused by placing a cube with edges
of length L and uniform mass density p in the gripper of
the robot, with its center of mass coincident with the
origin of the end effector coordinate system. The
pseudo-inertia of this cube is

AIS =

1 pLS o12

12

0

0

0 0

0 0

3 OpL 012
0 0 pPS

The norm of this "error' is A1I311 = pL3 + pL5. The
maximum torque error for a given range of pseudo-
inertia errors occurs when the error bound £ is pre-
cisely equal to the norm of the actual pseudo-inertia
error. Therefore the most stringent test of the results
of the previous section is to use a tight error bound
i.e., E = !A Isli. This has been done for a cube with sides
of 5 centimeters and densities of 0, 6, 12, 18, 24, and 30
grams/cc. The path traversed is a straight line from
the (Cartesian) point (0.7,0.7,0. 1) to (0.4-0.40.4). For
comparison, the true optimal solution has been calcu-
lated, using the actual dynamics (including the effects
of the cube in the gripper). The results are summarized
in Tables I through 5. Table 1 gives traversal times for
the true optimal solution and for the case in which
errors are included. The ''percent difference"' column
gives the percentage by which the true optimal traver-
sal time is exceeded. Tables 2 and 3 give minimum and
maximum voltages, respectively. The actual and nomi-
nal values are both computed for the 'nominal'' trajec-
tory, i.e. the trajectory which is calculated with errors
included. The actual voltages are those required to
move the robot with the cube in the gripper, while the
nominal values are those which are required without
the cube (i.e. with the nomiial payload.) The minimum
and maximum voltages available are -40 and 40 volts
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and it is easily seen that these limits are not exceeded
for any joint or for either payload. Tables 4 and 5 give
the minimum and maximum torques or forces for each
joint. The torque or force limits are given at the head of
the column for the appropriate joint; again, the limits
are not exceeded.

The phase plane ( X vs. ) plot and motor voltage
vs. time plot for the zero-density case are shown in Fig-
ures la and lb. Since the error is zero in this case, the
results are exact. For a density of 12 grams/cc., the
optimal and nominal (i.e. with errors included) phase
plane plots are shown in Figure 2a. Figure 2b gives joint
positions vs. time: z and r are in meters, Oin radians.
Figures 2c through 2e give nominal and actual motor
voltages required to drive the robot along the nominal
trajectory for the z, l and r joints respectively. (The
nominal voltages are those which would be required if
the actual payload were identical to the nominal pay-
load. The actual torques are the torques required to
keep the robot with the perturbed payload on the nomi-
nal trajectory.) Figures Sa through 3e show the same
piots for a density of 24 grams/cc.

Tt was noted above that none of the ioint torque or
voltage constraints was violated. However, the
minimum voltage for the r joint at one point meets the
lower voltage limit. This indicates that the trajectory
which is generated whenL payload errors are included is
indeed the fastest possible trajectory for the given
range of possible payloads; for this particular point, the
worst-case payload happens to have the same charac-
teristics as the actual payload. A larger payload would
have resulted in violation of a voltage constraint.

Another point to consider is the relationship
between the nominal and optimal phase trajectories. It
is expected that the nominal phase trajectory will be
lower than the optimal trajectory: a nominal trajectory
which was higher than the optimal one would lead to a
contradiction of the optimality of the optimal trajec-
tory. Also, the difference between the optimal and nom-
inal trajectories increases as the payload error bound
increases. This would be expected, since the nominal
trajectory must accomodate all payloads within a given
range; as the range of payloads increases, the worst-
case errors also increase, resulting in more restrictive
limits on the nominal torques, and hence slower trajec-
tory traversal times.

5. CONCLUSIONS
A method for including payload inertia errors in

the manipulator trajectory planning process has been
presented. Errors in the payload inertia are character-
ized by bounds on the norm of the difference between

the actual and nominal oseudo-inertias of the payload,
Given such a bound, it has been shown that a trajectory
can be constructed which meets all torque and force
constraints for all actual payloads, provided that the
norm of the difference of the pseudo-inertias of the
actual and nominal payloads differs by less than the
given error bound. This technique was applied to the
Bendix PACS robot for a number of different payloads,
and the resulting trajectories were shown not to violate
any joint torque or motor voltage constraints. In the
worst case, in which the actual payload mass differs
from the nominal mass by approximately one third of
the robot's rated maximum load, the traversal time was
less than twenty percent over the optimal value.
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24 36.12 37.54 7.30 7.9 21.39 23.41
30 34.89 37.09 5.39 5.98 I19.61 122.39



Ta 4. Mfinimum euired toeqes/roee for nmLiaml ad actual payads. Table 6. Maximum required torque/foroes for nomial ad actual palads.

Figure la. Phase plane plot for zero errors.

Optimal

With aTors

zooo

Figure lb. Voltage vs. time for zero errors.

tint position
r tint position
z pint position

Figure 2a. Phae plne plots for density 12.0 g./ec. Figure 2b. Joint position vs. time for density 12.0 g./cc.
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Minum T q e/fo

-Dewily i2ot (N_ w_ join (Newton-Metes rjoTist wto_)
Limit-429N. Lit -170N .M Limit --15.7Nt.

,Nominal Actual A lt - I
0 333.52 333.52 -112-i -112t29 99

6 336.91 342.20 -104.78 -106.71 -9.47 -9.99
12 393.02 376.62 47.70 -9.02 .9.99
18 373.03 394.OD 42.91 4443 4.61

24 377 40617 -4.15 -49 4.24 -9.W
3O 0 .11 415.72 J ~:!A!3-7

Maximum TorenJfare 1
Density ajit (Ne.wtoas) 4joistjNewtos-Mte!!PJ- r joint (Newtongs)

Limit - 629 Nt. Lin - 170 Nt.-M. Limit= 1571 Nt.
No,mimal Actal Nomials Actial Nominal Actual

0 421.31 421.31 161.72 161.72 w o0. 10.03
6 41368 43.52 110.39 162.39 8.16 8.18
12 414.30 43.04 7&843 3948 6.76 689
18 405.68 429.55 51.39 6341 5.96 6.25
24 402.17 432.M31 X S 40.19 5.36 6.87
:0 400.42 437-9. 30.M 32.D 4.89 5.61
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Figure 2c.
tNminal ard actual ator voltages
for z joint, density 12.0 g./cc.

f\;77)
.L= - -Mt

Figure 2d.

Ntital and actual mcor voltages
for 0 joirt, dersity 2.0 g./cc.

Figure 2e.
Ntninal and actual nctor voltages
for r joint, -city 12.0 g./cc.
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Figure 3a. Phase plane plots for density 24.0 g./cc.
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Figure 3b. Joint position vs. time for density 24.0 g./cc.
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Ft ise 3r
Nininal and actual ctor voltages
for z joint, density 24.0 g./cc.

icre 33d
Nrnl%I aid actual ator voltages
for I joint, density 24.0 g./cc.

Figure 3e
Nminal and actual mDor voltages
for r joint, density 24.0 g./oc.
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