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ABSTRACT 

The control of industrial  robots is usually divided into several 
sequential stages. Trajectory  planning  is  an  important off-line 
stage which is concerned with the generation of a time history of a 
robot’s joint position, velocity, acceleration, and  input torques. 

A number of trajectory planning methods have been 
developed 111, [4]-[6], [lo], 1111, 1131, which usually entail complex 
computations and algebraic manipulations. Programming  this  sort 
of trajectory planners is very complex and error-prone, thereby lim- 
iting  their applicability. To remove this  limitation, we have begun 
the development of software for automating  the  trajectory plan- 
ning, called the  Automatic  Trajeclorv  Plonner  Generator  (ATPG). 
This  paper describes important  components of the ATPG: three 
trajectory planners, data  structures for describing geometric paths, 
generation of the robot’s dynamic  equations  and  constraint func- 
tions, and ancillary software. A large portion of the  ATPG has 
been completed, and  the remaining portion is currently under 
dwelopment. 

1. INTRODUCTION 
Due to the complexity and nonlinearity of the robot’s dynam- 

ics, the  robot  control problem is usually divided into several sub- 
problems, which are first solved individually and then combined. 
From a task planner we obtain  an ordered sequence of points in 
Cartesian  space which represent a collision-free path if we connect 
them properly (e.g., by spline functions or straight line segments). 
The geometric path generator  (i)  transforms  this  Cartesian points 
to the corresponding points in joint space, and  (ii) using the 
transformed points in joint space, generates a geometric path which 
is a parameterized curve in joint  space (to be  discussed in Section 
2). The trajectory  planner receives these geometric paths as input 
and  determines a time history of position, velocity, acceleration, 
and  input torques which are fed to a trajectory tracker. The tra- 
jectory tracker  drives the robot to follow the desired trajectory 
specified by the trajectory  planner with feedback information on a 
subset of position, velocity, acceleration, and  input torques. 

As can be  seen from  the results presented in our previous 
papers[4], [lo], [Ill, [13] and  others [I), 131, [6], writing trajectory 
planning programs  can  be a laborious task. Before actually writing 
the program, kinematic and dynamic  equations  must be derived, 
and actuator  constraints  must be described. In addition, other 
mundane  details, such as what  data  structures  to use, must be  con- 
sidered. The aim of this  paper is to describe the process of trajec- 
tory  planner generation in detail,  and present sufficient guidelines 
so that  the entire process can be automated. 

There  are  two  major reasons for automating  the  trajectory 
planner generation process. First, generating a trajectory planner 
without  computer assistance consumes much expensive human 
labor, even if the task is performed only occasionally. This is due 
in large part  to  the perils of hand calculation; deriving dynamic 
Pquations by hand is  slow and error-prone. Second, writing a tra- 
jectory planner is time-consuming. To understand why this second 
factor  is  important, consider the use of trajectory planners as robot 
design aids. If trajectory planners can be generated quickly, then a 
hypothetical  robot design can be  tested easily and accurately; the 
robot  can be pushed to its working limits, and the designer can 
then check to see, for example, if any  joints  are under-powered. It 
also makes  the effects of design changes easy to evaluate, since a 
new trajectory  planner  can  be generated quickly, and a new set of 
tests  can be run. 

The  paper is organized as follows. For completeness we  begin 
in the  next section with a brief description of the  trajectory plan- 
ning problem and  its solutions. In Section 3, the  major com- 
ponents of a trajectory planning system are described. This 
description includes both functional descriptions of the components 
and suggestions regarding  implementation  details such as the 
choice of data structures. The generation of these components  can 
then be reduced to algorithmic form suitable  for  computer imple- 
mentation. The paper concludes with Section 4, where the  status 
of our  automatic  trajectory  planner is given. 

2. TRAJECTORY  PLANNING  PROBLEM  AND ITS 
SOLUTIONS 

Before discussing the problem of generating an automatic  tra- 
jectory planner, we  will first describe briefly the trajectory plan- 
ning problem and  its solutions. ( S e e  [lo], 1111, [13] for detailed 
descriptions.) 

For the  trajectory planning problem, we have to consider the 
effects of restricting the  manipulator’s motion to a l i e d  collision- 
free path, which is specified by a geometric path generator. In 
what follows, the  manipulator will  be restricted to   mne  geometric 
path 

9’ = f ’(A), 0 5 x 5 x, 
where q’ is the position of the i - th  joint and 1 is a scalar param- 
eter. Since the  parameter x along with the  functions f ’ com- 
pletely describes joint positions, it will  be  referred to as the “posi- 
tion”  variable.  The i - t h  joint velocity then becomes 
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where is the paeudo-velocifg of the  manipulator.  Plugging 
this  into  the usual  dynamic  equations 

ui = Ji,(q)iJ + Ci,h ;1‘ ik + Ri, i, + gi(q) (3) 

gives the following equations of motion  along the  the geometric 
path 

X ’ P  ( 4 4  

where uj is the torque/force  applied at the i - th  joint, Jij the 
N X N  inertia  matrix, Ci,k. the Coriolis force array, Ri, the 
matrix  representing  viscous  frrction, gi the  gravitational  force,  and 
N the  number of the robot’s  joints. The Einstein  summation con- 
vention is used here,  and all indices  run  from 1 to A’.. 

It is of course  assumed that  the coordinates qi vary  continu- 

ously with X. It  is also assumed that  the derivatives df‘ and 

- exist,  and that  the derivatives - are never all zero d2f df  
d X2 d X  

simultaneously.  This  ensure8 that  the  path never  retraces itself as 
X goes from 0 to Am=. Such a retrace would force.the  parameter x 
to take  a discontinuous jump in  order for the point q’ to move  for- 
ward  continuously. 

It should  be  noted that in practice the geometric paths  are 
given  in  Cartesian  coordinates.  While it is in general  difficult to 
convert a curve in Cartesian  coordinates to that in joint coordi- 
nates,  it is relatively  easy to perform the conversion for individual 
points.  One  can  then  pick a sufficiently  large  number of points on 
the  Cartesian  path,  convert to joint Coordinates, and  use some sort 
of interpolation  technique  (e&  cubic  splines) to obtain a similar 
path in joint space  (see [6] for an example).  Introducing  some 
shorthand  notation,  let 

d X  

We  can  then  express J3q. (4b) by: 

ui == Mi; + Qip2 + R i p  -I- Si. 

Note  that  the  quantities listed  above  are  functions of x. For  the 
sake of brevity, the  functional dependence is not  indicated in what 
Follows. 

The goal of automation is to produce goods at  as low a  cost 
as possible. In practice,  costs  may  be  divided into  two groups: r i e d  
and  variable.  Variable  costs  depend upon details of the manufac- 
turing  process,  and  include,  in  the  cases  where  robots are used, that 
part of the cost of driving a robot which varies  with  robot  motion, 
and  some  maintenance  costs.  Fixed  costs  are  those which remain 
constant on a per-unit-time  basis.  Fixed  costs  include  taxes,  heat- 
ing costs,  building  maintenance,  and,  in the c s e  of a robot, the 
portion of the electric power which the  robot uses to run its com- 
puter  controller  and other peripheral devices. If one  assumes that 
the fixed  costa dominate,  then  cost  per  item  produced will be pro- 
portional to the  time  taken to produce the item. In other  words, 
minimum  cost is equivalent to minimum  production  time. A loose 
statement of the minimum-cost  trajectory  planning  problem is as 
rollows: 

Whsi controls will drive  a  given  robot  along  a specified curve 
in j o L t  space  with  minimum  cwt, given  constraints on initial 

and  final  velocities aid on control  signal  magnitudes? 
As was seen in Epe. (l), (2), (4a)  and (4b), this form of the problem 
reduces the complexity of the  control problem by introducing a sin- 
gle  parameter X which  describea the robot’s  position. The  time 
derivative of this parameter  and  the  parameter itself  completely 
deseribe the  current  state  (joint positions  and  velocities) of the 
robot. The control  problem  then  becomes  essentially a two dimen- 
sional  minimum-cost  control  problem  with  some state  and  input 
constraints. 

The minimum-cost  control  problem  can be stated as follows. 
Given a curve  in  the  robot’s  joint  space (or some  equivalent 
coordinate  system), the robot’s  dynamic  properties,  and the 
robot’s actuator characteristics,  what set of signals to  the 
actuators will drive  the robot  from its  current  state to a 
desired final state  with minimum cost? 

To  state  the above  problem  more  formally,  assume that  the 
geometric  path is given in the form of a parameterized  curve a8 in 
Eq. (1). Also assume that  the constraints on the  actuator torques 
can be expressed in terms of the  state of the system, i.e., in terms 
of the robot’s  speed  and  position, 80 that 

u E E(qA = E A P )  (6) 

where u=(ul,uz, . . . , u )T is a vector of actuator 
torques/forces,  and E ; R NN XRN --+ RN and E, : R2 + RN 
are  set functions, N is the number of joints  &he  robot has. Given 
the functions j ’ , the  set functions E and El, the desired  initial 
and  final  velocities,  and the  manipulator  dynamic  equations  (4a) 
and (4b), the  trajectory planning  problem is to find the controls 
u(X) which minimize the cost  functional C given by 

A practical  aspect of the  trajectory planning  problem is that 
of the description of curves  and the  actual calculation of actuator 
torques.  Some  suitable  method of representing  curves is required, 
and all computations  involving  those  curves  should  be  done 
automatically. In particular,  it should  be possible, given  a  robot’s 
dynamic  equations, to  generate  a  trajectory planner  for that robot. 
This is especially  desirable  in view of the  fact  that  the dynamic 
equations of all but  the simplest  robots are very complicated,  and 
any manipulation of such  equations will  be prone to human  error. 

One  possible  approach to  the solution of the above  trajectory 
:,! anoing problem is to apply  one of the  standard  tools of optimal 
control  theory,  Pontryagin’s  maximum  principle. However, this 
approach  requires  solving  a  two-point  boundary  value  problem for 
a non-linear  system of differential  equations  with  non-linear con- 
straints;  clearly,  this  does  not  lead to a tractable solution. The 
maximum  principle  also  sheds  little or no light on the  other auxili- 
ary  problems,  such as sensitivity to parameter  variations. More 
over,  since the  trajectory planning  problem  frequently  requires 
state  or mixed state-control  constraints,  the  maximum  principle is 
not  usually  applicable.  Therefore, we have  taken a more  intuitive 
but systematic  approach to develop the  three  trajectory  planners in 
[lo], [Ill, [13], whose brief descriptions  are  given below for com- 
pleteness. (A similar  approach  was  also propmd independently of 
ours [I].) 

The  first method is referred to BB the phaee plane method. It 
is so called  because it makes use of plots of the  “pseud~velocity” 
p E X vs. the position  parameter X. Such  a  plot,  in which a vel+ 
city is plotted as a function of position, is generally  referred to a8 a 
“phase  plane  plot”,  hence the name.  Actually  all  three  trajectory 
planners  make  use of this  idea in  one way or another,  and  from 
here on, the  term  “trajectory”  will be taken to mean  “phase  trac 
jectory”, or X-p plot. 

The phase  plane  method is in  general  applicable only to 
minimum  time  problems, i.e., 

c (7’) 
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Since onb minimum-time  solutions ftre to be considered, it useful 
to consider how this restriction  on the objective  function  can be 
used. Obviously,  minimizing traversal times is equivalent to max- 
imizing traversal speed. Given this  fact, it is easy to that, at 
least in the simplest case, the  minimum  time  solution  consists  of an 
accelerating  and a decelerating part;  the robot should  accelerate at 
ita maximum  rate,  then  “put on the brakes” at precisely that time 
which will bring it to a stop  at  the destination  point.  Of  course, 
there will in general be wme velocity  limits as well as acceleration 
limits. The velocity  limits  are imposed by the interaction of 
velocity-dependent  force  terms in the dynamic  equations  and the 
actuator torque  limits; the  actuators must  generate enough torque 
to overcome  these forces and  keep the manipulator on the desired 
path. If the robot is to avoid these velocity limits,  then the trajec- 
tory must alternately  accelerate  and  decelerate,  and the switching 
points  should be timed so that  the trajectory just barely misses 
exceeding the velocity  limits. A more precise description of this 
method  can be found in [lo], including a derivation  of the velocity 
limits  and an algorithm for generating the optimal  trajectoriw. 
Other complications  are a h  discussed there. 

aS an alternative, we have used dynamic  programming to 
solve the trajectory  planning problem 1111. Dynamic programming 
is an  impracticd method  for d v i n g  the general path planning 
problem  lor  an arm with a large  number  of  joints,  since  there  are 
two state variables  per joint,  thus requiring a 2M dimensional 
grid. (This is a classic example  of the “curse of dimensionality”.) 
However, when the  path is given, there  are  only  two state  variabk 
(Le., x and p) ;  thus only a %dimensional grid is  required. 

To une dynamic  programming, the grid is set up so that  the 
position parameter X is used as the  stage variable. Thus 8) 

“column” of the grid  corresponds to a lied vdue of X, while a 
“row” corresponds to a fixed p value. One starts at the desired 
final  state  (the  last column of the grid,  with the mw corresponding 
to the desired final /s value) and assigns that  state zero cost. All 
other states with  position X,, are given a cost of infinity.  Then 
the usual  dynamic  programming  algorithm  can  be  applied. The 
algorithm starts  at  the  last column. For each  point i the previous 
column one finds all the accessible points in the  current column, 
determines the  minimum  cost to go from the previous to  the 
current column,  and  increments  costs  accordingly. For each of the 
previous grid points, the  optimal choice of the next grid point is 
recorded.  When the initial state is reached, the  optimal trajectov 
is found by following the pointer  chain which starts at the given 
b i t i d  state. In the case at hand, determining which points  are 
accessible from one column to the next is simply a matter of check- 
ing to see if the slope of the curve  connecting the two  points gives 
a permissible value. (The slope limits  can be found from the con- 
straints on the  actuator torques (6))  The incremental  cost is  com- 
puted for  minimum  cost problems, 80 a running sum can  be  kept 
for  the  total coet. 

Dynamic  programming haa the advantage that  it is a well- 
established  and well-understood optimization  method. It also gives 
the control law for any point on the curve,  and so makes provision 
for the  robot to vary its speed if necessary. (This  of C O U ~  assumes 
that  the robot stays on the desired path.) On the other  hand,  if it 
is  implemented  in the most  obvious  and  straightforward  manner, it 
requires a large  array for computations,  and if the array  size is to 
be known in advance  then an upper bound On the velocity 
needed. In practice, there may be artificially  impwed velocity 
bounds, but in general it would be necessary to either  calculate 
velocity bounds in advance or create  a new (larger) grid and s tad 
all  over if the trajectory left  the grid. The computation  times also 
increase  rather quickly as the density of the grid, and hence the 
accuracy of the solution, increases. Some modifications to the  dg0- 
&hm are suggested in 171 which should considerably  increase its 
speed. 

It should  also be noted that dynamic  programming may still 
be used even if the robot’s actuator torque  constraints  are not 
independent  of  one  another; this is not the case with the phase 
plane  method. Making.  the phase  plane  algorithm work lor non- 

independent actuators would require that  the space of actuator 
torques be searched  for an acceleration bound. Dynamic program- 
ming only requires that a function be available which returns a 
yee-or-no answer to the question “if this acceleration is desired, will 
the required  torques be realizable?”. The dynamic  programming 
algorithm itself performs the search of the  actuator torque space. 

A third  algorithm, called the  perturbation  trajectorg improve- 
ment algorithm (PTIA), is developed as a simple but powerfui 
method 1131. This algorithm is in some  respects  similar to the 
dynamic  programming  algorithm,  though  like the phase  plane 
method it is only applicable to minimum  time problems. This 
algorithm starts with  an initial feasible trajectory, and perturbs the 
trajectory  in such a way that  the traversal time for the trajectory 
decreases, while the trajectory  remains  feasible. This method has 
most of the advantages of the dynamic  programming  method, and 
can be modified to generate  minimum-time  trajectories when there 
are limits on the jerk, or the derivative of the ‘acceleration, as well 
as limits on joint torques. 

a. TRAJECTORY PLANNING SYSTEM STRUCTU 
A trajectory  planner is of no uee in  isolation; it must be par$ 

of a larger  system. Is a practical  robot  control  system, the tmjec- 
tory planner receives a path description  from a geometric path 
planner, which generates the geometric path description  from task 
descriptions.  After the  trajectory planner has assigned timing infor- 
mation to  this  path,  it is passed on to a tracker which drives the 
robot in real  time. However, if the trajectory  planner  is being used 
as a design aid, as suggested above, the geometric path planner, 
the  path tracker,  and the robot will not  actually be present. In t h i  
case, a driver  for  generating  geometric paths and a stub for analyz- 
ing the trajectory  planner output  are required. Such a system is 
shown schematically in Fig. I. 

The precise character of the trajectory  planner, the driver 
routine, and  the  stub  are determined largely by the choice of 
representations  for the  input and output  data  and by the particular 
type of trajectory  planner chosen. These  subjects  are discussed in 
the following subsections. 

3.1. Data Stauetum for Reprementhg Geometric Paths 
Choosing the  type of data  structure used to represent 

geometric paths  is probably the single most important decision to 
be made in designing a  path planning  system. It influences not just 
the design of the trajectory  planner, but  the design of the 
geometric path planner and  the  tracking system a8 well. This 
being (the case, the geometric path representation  must be con- 
sidered very carefully.  Several  options are considered here, and 
their  implications for the trajectory  planning  system design are 
investigated. 

Three geometric path descriptions  are discussed here: expres- 
sion trees,  splines,  and arrays of points. An expression tree is a 
linked structure in which the  internal nodes of the tree  represent 
operators, the subtrees  lying below a given node represent the 
operands for that node, and the leaves are  irreducible expressions 
such as constants or variables.  Such trees are  equivalent to alge- 
braic expressions. Splines are  sequences of curve8 which are con- 
nected  end-to-end.  These  curves usually are chosen so that they 
have some particular  number of continuous  derivatives, even at  the 
points where the curve  segments  meet.  For  example, if cubic poly- 
nomials  are used to connect the intermediate  points,  then it is pos- 
sible to have  continuous  first  derivatives. The second derivatives 
exist,  but in general  are  discontinuous.  Finally, a curve  can be 
represented as a sequence of points. The points  must be  chosen so 
that any  reasonably  smooth  curve which connects  all the points 
will not  deviate too much from the actual desired path. 

Expression trees  have the advantage that their  manipulation 
as algebraic  expressions is easy. Such manipulations mimic the 
processes carried out by humans, and the results  are  complete alge- 
braic expressions. Such manipulations  are required for deriving the 
robot’s  dynamic  equations, so a formula  manipulation  system  of 
some sort will be required anyway. However, expression trees  have 
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the disadvantage  that introducing new types of curves  for the 
robot  to traverse may require that new types of operators be 
created. Also, the  paths which robots are expected to traverse  often 
are composed of connected pieces rather  than single  analytic 
curves. Some sort of conditional  operator,  such as a Heaviside step, 
is then required,  and this introduces  problems when the curve is 
differentiated; the resulting  analytic expression may contain delta 
functions. 

Cubic (or other) splines  can be thought of as a restricted  case 
of an expression tree. The expression tree will consist of the  sum of 
many  conditional expressions, where each  conditional expression 
consists of two  step functions  multiplied by a cubic polynomial. 
For instance, the segment of a spline which passes from point 5 to 
point 6 might be represented as 

8 (X-Xsb (x,-x)PS(x), (8) 
where 

0 if qX0 
#(0)=(1 if 420  (9) 

and ps(X)  is a cubic  polynomial in X. The  problem discussed 
above  for  expression trees also  apply to cubic  splines. 

A simple  array of points  does  not lend itself to symbolic 
manipulation of any sort. However, most of the calculations which 
the  trajectory planner  must  carry out  can be done  numerically, so 
this is not a big  disadvantage. The major  disadvantage of this 
method is that  the  path is not really completely specified; the 
motion  between the interpolation  points  is  undetermined. However, 
if the density of interpolation  points  is  high  enough, this will not 
matter in  practice.  Indeed, the  perturbation and  dynamic  program- 
ming trajectory  planners,discretize the trajectory  planning problem 
anyway, and  the dilferential  equations that need to be solved when 
using the  phaseplane  method must in practice  be solved using 
discrete,  approximate  methods. The representation  is very simple, 
and for that reason was used in  most of the examples  presented in 
[lo], [ll], [13]. It is a h  a very  easy structure to attach other infor- 
mation  to; if the geometric path is represented as an  array of 
points,  and the points  are reprwnted as a structure or reeord,  then 
time,  torque, and velocity  information  can be attached  to each 
point by simply adding new fields to the record.  Attaching thi 
information to a spline or an expression tree is much more  difficult. 
For these reasons, an array of points  appears to be a good choice of 
data  structures. 

The  data  structure used in the examples in this paper is 
shown in Fig. 2a. It is a iecord,  and  it  contains  information which 
applies to  the  path as a whole: the  maximum  value of the parame- 
ter x, the  number of joints the robot has, and the  number of 
interpolation  points on the curve. In addition,  this record contains 
pointers to  several  arrays,  including an  array of X-values for  each 
point on the curve. Finally, it contains a pointer to an array of 
“joint  paths”, where each joint  path is an array of joint  data 
values, one array  element per point. It is in these arrays  that  the 
information  pertaining to the individual  joints,  such a8 the 
dynamic  coefficients Mi ,. Qi, R .  and Si in Eq. (5), the 

parametric  derivatives - q’ and - , and the  joint torques u, 

and motor  voltages Vi, are  stored. A typical structure for these 
values (the Di, in Fig.  2a) is-shown in  Fig. 2b. 

The trajectory  planning process can be expressed  entirely  in 
terms of operations on this  data structure. The  input  to  the trajec- 
tory  planner  is a sequence of points,  and the  ultjmate goal of the 
trajectory planner is to fill in the values of p, p, I ,  e&. at each 
point on the curve. The intermediate steps are to compute the 

values of the parametric  derivatives - and - d Q‘ 
d X  

d2qi , calculate 
d X2 

the dynamic  coefficients Mi; Qi , Ri , and Si, and  finally  apply a 
trajectory planning  algorithm which generates p,  p, t , and U; for 
1 S i l N .  

d X  d X2 

8.2. Selection Of 8 TrJectory Plannlng Mcfhod 
The choice of geometric path representations  influences the 

structure of the  entire  path planning  system,  from the geometric 
path Planner down through the tracking  system. The choice of tm 
jectorY Planning  techniques has more localized effects, but  the 
effects on the implementation of the  trajectory planner, which are 
of primary  concern  here, are major.  Assuming that minimum-time 
trajectories are desired, the perturbation  method  should be chosen 
rather  than dynamic  programming,  since it is  considerably faster 
and  can handle  more general  torque  constraints. The phase  plane 
method is the fastest of the  three techniques  described in Section 2, 
but  cannot be generalized to handle all the kinds of torque con- 
straints  that  the  perturbation  method can  handle. The  toque con- 
straints a h  must be incorporated into  the phase  plane  algorithm 
in several P h e s ,  making  changes to the torque  limits  more diffj. 
cult in a phase-plane trajectory planner than in a perturbation tra- 
jectory  planner. The perturbation  method  isolates the torque con- 
straints  into a single constraint function,  thereby  isolating the 
toque constraint checks from the  rest of the trajectory  planner. 

Because of the ease  of  construction of perturbation  trajectory 
planners,  and because of the  natural way that they  break up  into 
modules, they would appear to be good choices for a computer- 
generated  trajectory  planner. The major  components of such a tra. 
jectory  Planner  are shown in Fig. 3. The components are  a  deriva. 
tive generator, a dynamic  coefficient generabr,  and  the trajectory 
planning  algorithm  itself. Note  that  the constraint  function “p l~gs  
into”, or links  to, the trajectory  planning  algorithm  only,  and that 
the trajectory  planning  algorithm itself is the  same  regardless of 
the torque  constraints. The trajectory  planning  algorithm is 
the  same  for  any  robot,  regardless of its dynamics;  everything that 
the trajectory  planning  algorithm  needs to know about  the robot’s 
dynamics  is  distilled into  the dynamic  coellicients M i ,  Qi , Ri , 
and Si. The derivative  generator can be a simple  numerical p m  
cedure  and is independent of the robot  characteristics &, M) th& 
only the Constraint  function  and the dynamic  coefficient  generator 
need ever be chaneed. 
ad. Omeratlon of Dynamlc Equatlonm 

SO far, very little has been said about  the  actual generation 
of the dynamic  equations  for  robots. This  is  the most time- 
consuming,  labor-intensive  and  error-prone part of the trajectory 
planner  generation process, and M) is the most important  part to 
automate.  Computer generation of dynamic  equations may be 
timwonsuming,  but  it is certain  to be several  orders of magnitude 
faster  than hand  calculation, and certainly will be more  accurate. 

Though it sometimes is possible to derive’  dynamic  equations 
of simple  robots  relatively quickly in ad hoc ways, such tricks are 
difficult  to apply  systematically. However, syetematic  methods do 
exist;  see [SI. These  systematic  methods, combined with a system 
for doing  symbolic  algebra,  such as MACSYMA [8] and  REDUCE 
[3], and a symbolic  differentiator mate  the generation  of  dynamic 
equations  fairly  straightforward.  While the resulting  equations may 
not be in simplest  form,  they will certainly  be  correct. 

It is important  to  note  that having the dynamic  equations in 
simplest  form may not always be necessary. In particular, this is 
the case if the  trajectory planning  system i s  to be used primarily as 
a tool for robot design. in that  situation,  the trajectory  planner 
will probably  be  run  several  times and  then thrown  away BS design 
changes are made. It ia much more  important  that  the trajectory 
planner be generated  quickly than  that  it run quickly.  (Essentially 
the  same reasoning is used to justify the existence of elow optimiz- 
ing  and fast non-optimizing  compilers  for  conventional  computer 
languages; there usually is no sense in  spending  ten  minutes to 
optimize a small program that will be run only once or twice.) 

A schematic of the  robot dynamics  generation process is 
shown in Fig. 4. The user first describes the robot’s kinematics; 
this can be done by specifying the  number of joints,  whether the 
joint is revolute or prismatic, the various joint offsets and twists, 
and  the link  lengths. The resulting  transformation  matrices  can be 
computed as in 191. Once  the forward  kinematics of the  robot  are 



known, the user may describe the link inertias. A simple version of 
a dynamic  equation  generator  may  just  prompt  the user  for the 
link pseudo-inertias; a more sophisticated version  would compute 
the  inertias  from CAD  models of the  robot links. Given the 
kinematics and the pseudo-inertias, the  inertia  matrix,  the Coriolis 
coefficient array and the  gravitational forces can be calculated 
using the formulas in [9]. It is for these computations that a sym- 
bolic differentiator is needed, since the kinematic transform 
matrices  must be differentiated with respect to  the  joint variables. 

The  output of the  dynamic  equation  generator will be  arrays 
of expression trees representing the  inertia  matrix,  the Coriolis 
coefficient array,  and  the  gravitational force terms. These  must be 
translated from arrays of expression trees to some  form  suitable for 
compilation by whatever high-level language compiler is chosen as 
an  implementation language. If the  target language has pointers to 
procedures, then  appropriate  representation  of,  for example, the 
inertia  matrix would be a two-dimensional array of pointers to pro- 
cedures; each  element of the  array would  be set to point to a lunc- 
tion which  would compute  the  appropriate  inertia  matrix  coefri 
cient, given the robot’s current position. This requires only that  the 
expression tree  representations be translated  into  appropriate com- 
puter code, a very simple task. 

8.4. Generating the Constraint Function 
Generating  the  constraint function for a dynamic program- 

ming or perturbation  trajectory planner poses some problems which 
are  not  amenable to  general solution. Actuator torque constraints 
may in general be  quite complicated; for example, in a cabledriven 
robot  arm, moving one drive  cable may move several joints, cables 
will stretch,  and  the cables must all be kept under positive tension. 
Generating  constraint  functions for completely arbitrary  actuators 
is obviously very difficult, if not impossible.  However, not every 

which  is practically realizable, need be considered. By restricting 
actuator which is theoretically possible, nor even every actuator 

the  trajectory planner generator to a few very common actuator 
types,  most practical robot designs can be handled. 

One type of actuator which is very common is  the D.C. 
toque  motor. The  torque bounds for such a device are  determined 
by the  saturation  limits of the  motor  itsell  and  by  the properties of 
the amplifier which drives the  motor. In addition,  there  are limits 
on the time  derivative of the  torque which are imposed by the 
motor  inductance  and  the drive amplifier voltage limits, but these 
constraints  can often be ignored  in practice. Since only a few 
parameters  are needed to describe the  motor  torque limits, generat- 
ing constraint  functions for this case is a fairly simple process. 

Other  types of actuators,  such as hydraulic se lym,  may also 
be described in a simple manner provided that effects euch as 
delays  due  to  the  finite speed of propagation of pressure waves are 
ignored. As long as these effects are  small,  the resulting constraint 
function should produce a useful trajectory planner. 

a.6. Ancillary Software 

As indicated in Fig. 1, the  trajectory planner is not  the only 
component of a path planning system; if the  trajectory planner is 
to be used as a design tool, a driver for  generating  test data and a 
stub lor analyzing  trajectory  planner  output  are  both required. 

The  stub can be a very simple routine. Most o l  the  time a 
graphical representation of joint speeds and forces  suffices, and the 
generation of such output  can be performed in a manner which 
does not depend on  the  kinematics or dynamics of tbe robot. The 
driver  routine, on the  other  hand, may depend rather heavily  upon 
the  robot’s kinematics. If the designer wants  to  evaluate  the perfor- 
mance of the  robot as it moves along a Cartesian straight line, then 
the inverse kinematics of the  robot  are required. This causes some 
problems, since the inverse kinematics of robot  arms  cannot in  gen- 
eral be computed in  closed form, and because the inverse kinematic 

tnjectory  plmners, CAD modeling of the robot links, etc. 
‘such as completion of the three tnjectory planners, inclusion of the other 

solutions  are  not always unique.  However, many robots fall into a 

kinematics  can be computed lop a generic member of each 
rrl~tif-ely small  set of kinematic configurationa, so that  the in\,+-+ 

kinematic class. Then  the designer need  only plug the precise  link 
dimensions into a standard formula. (See 121 for an example.) While 
this  approach may not work for certain exotic robot designs, it 
probably will cover the  vast  majority of robots seen  in practice. 

Another desirable feature of the  driver routine is the genera- 
tion of geodesics  in inertia space. The  traversal  times for these 
curves  are near-optimal 1121, and so will  give the  robot designer an 
estimate of the  robot’s maximum capabilities. Since the differential 
equations of inertial geodesics are directly obtainable from the 
robot’s dynamic equations, much of the work o l  writing a geodesic 
generator will have been done already. The equations need  only  be 
incorporated  into  an  appropriate differential equation solver. 

The proposed trajectory  planner generation system is shown 
schematically in Fig. 5. The user provides kinematics, link inertias, 
and  actuator  characteristics,  and  the planner generator produces a 
trajectory planner, a stub, and a driver. The  driver allows selection 
of straight line paths in joint space, Cartesian  straight lines, and 
geodesics. 

1. CONCLUDING REMARKS 
Most of the work performed to date on the  automatic genera- 

tion of trajectory planners consists of the construction of a system 
for manipulation of algebraic expressions and a symbolic differen- 
tiator.  These  routines consist of about 1400 lines of 6, with  an 
additional 1300 lines of code for  testing  the differentiator. Though 
these  utilities only constitute a portion of the  trajectory  planner 
generating  system,  they  are very important components. The larg- 
est single component of the  trajectory planner generator will most 
likely be  the  dynamic  equation generator, of which the algebraic 
manipulation system is an  integral  part. 

Also completed is the  stub for generating  trajectory  planner 
output, which consists of about 250 lines of code for the main rou- 
tine and about 2700 lines for various graphical plots. 

Some of the  rest of the code for the trajectory planner con- 
sists of l i e d  modules; these portions can  be taken from the code 
already written for the numerical examples in [lo], Ill], 1131, and 
used either directly or with minor modifications. The example for 
the phase plane plot  method in 1101 has been coded with about 350 
lines of C,  that for the  dynamic programming method in 1111 with 
about 400 lines, and that for the  perturbed  trajectory improvement 
algorithm in 1131 with only 50 lines for the main routine and about 
150 lines for generating  the  constraint function. 

Though much work remains to  be done,’ it is clear  from the 
discussion presented here  that  the  major problems involved in pro- 
ducing  an  automatic  trajectory  planner  generator involve writing 
some large  but well-defined  pieces of code; there  are no major con- 
ceptual or theoretical problems to be solved. 
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