
AUTOMATIC GENERATION OF TRAJECTORY PLANNERS
FOR INDUSTRIAL ROBOTS’

Kang G. Shin + and Neil D. McKay *
+Department of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, Michigan 48109

++Computer Science Department
General Motors Research Laboratories, Warren, Michigan 48090

ABSTRACT

The control of industrial robots is usually divided into several
sequential stages. Trajectory planning is an important off-line
stage which is concerned with the generation of a time history of a
robot’s joint position, velocity, acceleration, and input torques.

A number of trajectory planning methods have been
developed 111, [4]-[6], [lo], 1111, 1131, which usually entail complex
computations and algebraic manipulations. Programming this sort
of trajectory planners is very complex and error-prone, thereby lim-
iting their applicability. To remove this limitation, we have begun
the development of software for automating the trajectory plan-
ning, called the Automatic Trajeclorv Plonner Generator (ATPG).
This paper describes important components of the ATPG: three
trajectory planners, data structures for describing geometric paths,
generation of the robot’s dynamic equations and constraint func-
tions, and ancillary software. A large portion of the ATPG has
been completed, and the remaining portion is currently under
dwelopment.

1. INTRODUCTION
Due to the complexity and nonlinearity of the robot’s dynam-

ics, the robot control problem is usually divided into several sub-
problems, which are first solved individually and then combined.
From a task planner we obtain an ordered sequence of points in
Cartesian space which represent a collision-free path if we connect
them properly (e.g., by spline functions or straight line segments).
The geometric path generator (i) transforms this Cartesian points
to the corresponding points in joint space, and (ii) using the
transformed points in joint space, generates a geometric path which
is a parameterized curve in joint space (to be discussed in Section
2). The trajectory planner receives these geometric paths as input
and determines a time history of position, velocity, acceleration,
and input torques which are fed to a trajectory tracker. The tra-
jectory tracker drives the robot to follow the desired trajectory
specified by the trajectory planner with feedback information on a
subset of position, velocity, acceleration, and input torques.

As can be seen from the results presented in our previous
papers[4], [lo], [Ill, [13] and others [I), 131, [6], writing trajectory
planning programs can be a laborious task. Before actually writing
the program, kinematic and dynamic equations must be derived,
and actuator constraints must be described. In addition, other
mundane details, such as what data structures to use, must be con-
sidered. The aim of this paper is to describe the process of trajec-
tory planner generation in detail, and present sufficient guidelines
so that the entire process can be automated.

There are two major reasons for automating the trajectory
planner generation process. First, generating a trajectory planner
without computer assistance consumes much expensive human
labor, even if the task is performed only occasionally. This is due
in large part to the perils of hand calculation; deriving dynamic
Pquations by hand is slow and error-prone. Second, writing a tra-
jectory planner is time-consuming. To understand why this second
factor is important, consider the use of trajectory planners as robot
design aids. If trajectory planners can be generated quickly, then a
hypothetical robot design can be tested easily and accurately; the
robot can be pushed to its working limits, and the designer can
then check to see, for example, if any joints are under-powered. It
also makes the effects of design changes easy to evaluate, since a
new trajectory planner can be generated quickly, and a new set of
tests can be run.

The paper is organized as follows. For completeness we begin
in the next section with a brief description of the trajectory plan-
ning problem and its solutions. In Section 3, the major com-
ponents of a trajectory planning system are described. This
description includes both functional descriptions of the components
and suggestions regarding implementation details such as the
choice of data structures. The generation of these components can
then be reduced to algorithmic form suitable for computer imple-
mentation. The paper concludes with Section 4, where the status
of our automatic trajectory planner is given.

2. TRAJECTORY PLANNING PROBLEM AND ITS
SOLUTIONS

Before discussing the problem of generating an automatic tra-
jectory planner, we will first describe briefly the trajectory plan-
ning problem and its solutions. (S e e [lo], 1111, [13] for detailed
descriptions.)

For the trajectory planning problem, we have to consider the
effects of restricting the manipulator’s motion to a l i e d collision-
free path, which is specified by a geometric path generator. In
what follows, the manipulator will be restricted to mne geometric
path

9’ = f ’(A), 0 5 x 5 x,
where q’ is the position of the i - th joint and 1 is a scalar param-
eter. Since the parameter x along with the functions f ’ com-
pletely describes joint positions, it will be referred to as the “posi-
tion” variable. The i - t h joint velocity then becomes

The work reported here is supported in part by the NSF grant No. ECS-8409938 and the US AFOSR contract Nos. F496M82-C-
0089 and F33615-85C-5105. Any opinions, findings, and conclusions or recommendations in this paper are those of the authors
and do not necessarily refleet the view of the funding agencies.

(2)

CH2282-2/86/0000/0260$01.00 0 1986 IEEE
260

where is the paeudo-velocifg of the manipulator. Plugging
this into the usual dynamic equations

ui = Ji,(q)iJ + Ci,h ;1‘ ik + Ri, i, + gi(q) (3)

gives the following equations of motion along the the geometric
path

X ’ P (4 4

where uj is the torque/force applied at the i - th joint, Jij the
N X N inertia matrix, Ci,k. the Coriolis force array, Ri, the
matrix representing viscous frrction, gi the gravitational force, and
N the number of the robot’s joints. The Einstein summation con-
vention is used here, and all indices run from 1 to A’..

It is of course assumed that the coordinates qi vary continu-

ously with X. It is also assumed that the derivatives df‘ and

- exist, and that the derivatives - are never all zero d2f df
d X2 d X

simultaneously. This ensure8 that the path never retraces itself as
X goes from 0 to Am=. Such a retrace would force.the parameter x
to take a discontinuous jump in order for the point q’ to move for-
ward continuously.

It should be noted that in practice the geometric paths are
given in Cartesian coordinates. While it is in general difficult to
convert a curve in Cartesian coordinates to that in joint coordi-
nates, it is relatively easy to perform the conversion for individual
points. One can then pick a sufficiently large number of points on
the Cartesian path, convert to joint Coordinates, and use some sort
of interpolation technique (e& cubic splines) to obtain a similar
path in joint space (see [6] for an example). Introducing some
shorthand notation, let

d X

We can then express J3q. (4b) by:

ui == Mi; + Qip2 + R i p -I- Si.

Note that the quantities listed above are functions of x. For the
sake of brevity, the functional dependence is not indicated in what
Follows.

The goal of automation is to produce goods at as low a cost
as possible. In practice, costs may be divided into two groups: r i e d
and variable. Variable costs depend upon details of the manufac-
turing process, and include, in the cases where robots are used, that
part of the cost of driving a robot which varies with robot motion,
and some maintenance costs. Fixed costs are those which remain
constant on a per-unit-time basis. Fixed costs include taxes, heat-
ing costs, building maintenance, and, in the c s e of a robot, the
portion of the electric power which the robot uses to run its com-
puter controller and other peripheral devices. If one assumes that
the fixed costa dominate, then cost per item produced will be pro-
portional to the time taken to produce the item. In other words,
minimum cost is equivalent to minimum production time. A loose
statement of the minimum-cost trajectory planning problem is as
rollows:

Whsi controls will drive a given robot along a specified curve
in j o L t space with minimum cwt, given constraints on initial

and final velocities aid on control signal magnitudes?
As was seen in Epe. (l), (2), (4a) and (4b), this form of the problem
reduces the complexity of the control problem by introducing a sin-
gle parameter X which describea the robot’s position. The time
derivative of this parameter and the parameter itself completely
deseribe the current state (joint positions and velocities) of the
robot. The control problem then becomes essentially a two dimen-
sional minimum-cost control problem with some state and input
constraints.

The minimum-cost control problem can be stated as follows.
Given a curve in the robot’s joint space (or some equivalent
coordinate system), the robot’s dynamic properties, and the
robot’s actuator characteristics, what set of signals to the
actuators will drive the robot from its current state to a
desired final state with minimum cost?

To state the above problem more formally, assume that the
geometric path is given in the form of a parameterized curve a8 in
Eq. (1). Also assume that the constraints on the actuator torques
can be expressed in terms of the state of the system, i.e., in terms
of the robot’s speed and position, 80 that

u E E(qA = E A P) (6)

where u=(ul,uz, . . . , u)T is a vector of actuator
torques/forces, and E ; R NN XRN --+ RN and E, : R2 + RN
are set functions, N is the number of joints &he robot has. Given
the functions j ’ , the set functions E and El, the desired initial
and final velocities, and the manipulator dynamic equations (4a)
and (4b), the trajectory planning problem is to find the controls
u(X) which minimize the cost functional C given by

A practical aspect of the trajectory planning problem is that
of the description of curves and the actual calculation of actuator
torques. Some suitable method of representing curves is required,
and all computations involving those curves should be done
automatically. In particular, it should be possible, given a robot’s
dynamic equations, to generate a trajectory planner for that robot.
This is especially desirable in view of the fact that the dynamic
equations of all but the simplest robots are very complicated, and
any manipulation of such equations will be prone to human error.

One possible approach to the solution of the above trajectory
:,! anoing problem is to apply one of the standard tools of optimal
control theory, Pontryagin’s maximum principle. However, this
approach requires solving a two-point boundary value problem for
a non-linear system of differential equations with non-linear con-
straints; clearly, this does not lead to a tractable solution. The
maximum principle also sheds little or no light on the other auxili-
ary problems, such as sensitivity to parameter variations. More
over, since the trajectory planning problem frequently requires
state or mixed state-control constraints, the maximum principle is
not usually applicable. Therefore, we have taken a more intuitive
but systematic approach to develop the three trajectory planners in
[lo], [Ill, [13], whose brief descriptions are given below for com-
pleteness. (A similar approach was also propmd independently of
ours [I].)

The first method is referred to BB the phaee plane method. It
is so called because it makes use of plots of the “pseud~velocity”
p E X vs. the position parameter X. Such a plot, in which a vel+
city is plotted as a function of position, is generally referred to a8 a
“phase plane plot”, hence the name. Actually all three trajectory
planners make use of this idea in one way or another, and from
here on, the term “trajectory” will be taken to mean “phase trac
jectory”, or X-p plot.

The phase plane method is in general applicable only to
minimum time problems, i.e.,

c (7’)

26 1

Since onb minimum-time solutions ftre to be considered, it useful
to consider how this restriction on the objective function can be
used. Obviously, minimizing traversal times is equivalent to max-
imizing traversal speed. Given this fact, it is easy to that, at
least in the simplest case, the minimum time solution consists of an
accelerating and a decelerating part; the robot should accelerate at
ita maximum rate, then “put on the brakes” at precisely that time
which will bring it to a stop at the destination point. Of course,
there will in general be wme velocity limits as well as acceleration
limits. The velocity limits are imposed by the interaction of
velocity-dependent force terms in the dynamic equations and the
actuator torque limits; the actuators must generate enough torque
to overcome these forces and keep the manipulator on the desired
path. If the robot is to avoid these velocity limits, then the trajec-
tory must alternately accelerate and decelerate, and the switching
points should be timed so that the trajectory just barely misses
exceeding the velocity limits. A more precise description of this
method can be found in [lo], including a derivation of the velocity
limits and an algorithm for generating the optimal trajectoriw.
Other complications are a h discussed there.

aS an alternative, we have used dynamic programming to
solve the trajectory planning problem 1111. Dynamic programming
is an impracticd method for d v i n g the general path planning
problem lor an arm with a large number of joints, since there are
two state variables per joint, thus requiring a 2M dimensional
grid. (This is a classic example of the “curse of dimensionality”.)
However, when the path is given, there are only two state variabk
(Le., x and p) ; thus only a %dimensional grid is required.

To une dynamic programming, the grid is set up so that the
position parameter X is used as the stage variable. Thus 8)

“column” of the grid corresponds to a lied vdue of X, while a
“row” corresponds to a fixed p value. One starts at the desired
final state (the last column of the grid, with the mw corresponding
to the desired final /s value) and assigns that state zero cost. All
other states with position X,, are given a cost of infinity. Then
the usual dynamic programming algorithm can be applied. The
algorithm starts at the last column. For each point i the previous
column one finds all the accessible points in the current column,
determines the minimum cost to go from the previous to the
current column, and increments costs accordingly. For each of the
previous grid points, the optimal choice of the next grid point is
recorded. When the initial state is reached, the optimal trajectov
is found by following the pointer chain which starts at the given
b i t i d state. In the case at hand, determining which points are
accessible from one column to the next is simply a matter of check-
ing to see if the slope of the curve connecting the two points gives
a permissible value. (The slope limits can be found from the con-
straints on the actuator torques (6)) The incremental cost is com-
puted for minimum cost problems, 80 a running sum can be kept
for the total coet.

Dynamic programming haa the advantage that it is a well-
established and well-understood optimization method. It also gives
the control law for any point on the curve, and so makes provision
for the robot to vary its speed if necessary. (This of C O U ~ assumes
that the robot stays on the desired path.) On the other hand, if it
is implemented in the most obvious and straightforward manner, it
requires a large array for computations, and if the array size is to
be known in advance then an upper bound On the velocity
needed. In practice, there may be artificially impwed velocity
bounds, but in general it would be necessary to either calculate
velocity bounds in advance or create a new (larger) grid and s tad
all over if the trajectory left the grid. The computation times also
increase rather quickly as the density of the grid, and hence the
accuracy of the solution, increases. Some modifications to the dg0-
&hm are suggested in 171 which should considerably increase its
speed.

It should also be noted that dynamic programming may still
be used even if the robot’s actuator torque constraints are not
independent of one another; this is not the case with the phase
plane method. Making. the phase plane algorithm work lor non-

independent actuators would require that the space of actuator
torques be searched for an acceleration bound. Dynamic program-
ming only requires that a function be available which returns a
yee-or-no answer to the question “if this acceleration is desired, will
the required torques be realizable?”. The dynamic programming
algorithm itself performs the search of the actuator torque space.

A third algorithm, called the perturbation trajectorg improve-
ment algorithm (PTIA), is developed as a simple but powerfui
method 1131. This algorithm is in some respects similar to the
dynamic programming algorithm, though like the phase plane
method it is only applicable to minimum time problems. This
algorithm starts with an initial feasible trajectory, and perturbs the
trajectory in such a way that the traversal time for the trajectory
decreases, while the trajectory remains feasible. This method has
most of the advantages of the dynamic programming method, and
can be modified to generate minimum-time trajectories when there
are limits on the jerk, or the derivative of the ‘acceleration, as well
as limits on joint torques.

a. TRAJECTORY PLANNING SYSTEM STRUCTU
A trajectory planner is of no uee in isolation; it must be par$

of a larger system. Is a practical robot control system, the tmjec-
tory planner receives a path description from a geometric path
planner, which generates the geometric path description from task
descriptions. After the trajectory planner has assigned timing infor-
mation to this path, it is passed on to a tracker which drives the
robot in real time. However, if the trajectory planner is being used
as a design aid, as suggested above, the geometric path planner,
the path tracker, and the robot will not actually be present. In t h i
case, a driver for generating geometric paths and a stub for analyz-
ing the trajectory planner output are required. Such a system is
shown schematically in Fig. I.

The precise character of the trajectory planner, the driver
routine, and the stub are determined largely by the choice of
representations for the input and output data and by the particular
type of trajectory planner chosen. These subjects are discussed in
the following subsections.

3.1. Data Stauetum for Reprementhg Geometric Paths
Choosing the type of data structure used to represent

geometric paths is probably the single most important decision to
be made in designing a path planning system. It influences not just
the design of the trajectory planner, but the design of the
geometric path planner and the tracking system a8 well. This
being (the case, the geometric path representation must be con-
sidered very carefully. Several options are considered here, and
their implications for the trajectory planning system design are
investigated.

Three geometric path descriptions are discussed here: expres-
sion trees, splines, and arrays of points. An expression tree is a
linked structure in which the internal nodes of the tree represent
operators, the subtrees lying below a given node represent the
operands for that node, and the leaves are irreducible expressions
such as constants or variables. Such trees are equivalent to alge-
braic expressions. Splines are sequences of curve8 which are con-
nected end-to-end. These curves usually are chosen so that they
have some particular number of continuous derivatives, even at the
points where the curve segments meet. For example, if cubic poly-
nomials are used to connect the intermediate points, then it is pos-
sible to have continuous first derivatives. The second derivatives
exist, but in general are discontinuous. Finally, a curve can be
represented as a sequence of points. The points must be chosen so
that any reasonably smooth curve which connects all the points
will not deviate too much from the actual desired path.

Expression trees have the advantage that their manipulation
as algebraic expressions is easy. Such manipulations mimic the
processes carried out by humans, and the results are complete alge-
braic expressions. Such manipulations are required for deriving the
robot’s dynamic equations, so a formula manipulation system of
some sort will be required anyway. However, expression trees have

262

the disadvantage that introducing new types of curves for the
robot to traverse may require that new types of operators be
created. Also, the paths which robots are expected to traverse often
are composed of connected pieces rather than single analytic
curves. Some sort of conditional operator, such as a Heaviside step,
is then required, and this introduces problems when the curve is
differentiated; the resulting analytic expression may contain delta
functions.

Cubic (or other) splines can be thought of as a restricted case
of an expression tree. The expression tree will consist of the sum of
many conditional expressions, where each conditional expression
consists of two step functions multiplied by a cubic polynomial.
For instance, the segment of a spline which passes from point 5 to
point 6 might be represented as

8 (X-Xsb (x,-x)PS(x), (8)
where

0 if qX0
#(0)=(1 if 420 (9)

and ps(X) is a cubic polynomial in X. The problem discussed
above for expression trees also apply to cubic splines.

A simple array of points does not lend itself to symbolic
manipulation of any sort. However, most of the calculations which
the trajectory planner must carry out can be done numerically, so
this is not a big disadvantage. The major disadvantage of this
method is that the path is not really completely specified; the
motion between the interpolation points is undetermined. However,
if the density of interpolation points is high enough, this will not
matter in practice. Indeed, the perturbation and dynamic program-
ming trajectory planners,discretize the trajectory planning problem
anyway, and the dilferential equations that need to be solved when
using the phaseplane method must in practice be solved using
discrete, approximate methods. The representation is very simple,
and for that reason was used in most of the examples presented in
[lo], [ll], [13]. It is a h a very easy structure to attach other infor-
mation to; if the geometric path is represented as an array of
points, and the points are reprwnted as a structure or reeord, then
time, torque, and velocity information can be attached to each
point by simply adding new fields to the record. Attaching thi
information to a spline or an expression tree is much more difficult.
For these reasons, an array of points appears to be a good choice of
data structures.

The data structure used in the examples in this paper is
shown in Fig. 2a. It is a iecord, and it contains information which
applies to the path as a whole: the maximum value of the parame-
ter x, the number of joints the robot has, and the number of
interpolation points on the curve. In addition, this record contains
pointers to several arrays, including an array of X-values for each
point on the curve. Finally, it contains a pointer to an array of
“joint paths”, where each joint path is an array of joint data
values, one array element per point. It is in these arrays that the
information pertaining to the individual joints, such a8 the
dynamic coefficients Mi ,. Qi, R . and Si in Eq. (5), the

parametric derivatives - q’ and - , and the joint torques u,

and motor voltages Vi, are stored. A typical structure for these
values (the Di, in Fig. 2a) is-shown in Fig. 2b.

The trajectory planning process can be expressed entirely in
terms of operations on this data structure. The input to the trajec-
tory planner is a sequence of points, and the ultjmate goal of the
trajectory planner is to fill in the values of p, p, I , e&. at each
point on the curve. The intermediate steps are to compute the

values of the parametric derivatives - and - d Q‘
d X

d2qi , calculate
d X2

the dynamic coefficients Mi; Qi , Ri , and Si, and finally apply a
trajectory planning algorithm which generates p, p, t , and U; for
1 S i l N .

d X d X2

8.2. Selection Of 8 TrJectory Plannlng Mcfhod
The choice of geometric path representations influences the

structure of the entire path planning system, from the geometric
path Planner down through the tracking system. The choice of tm
jectorY Planning techniques has more localized effects, but the
effects on the implementation of the trajectory planner, which are
of primary concern here, are major. Assuming that minimum-time
trajectories are desired, the perturbation method should be chosen
rather than dynamic programming, since it is considerably faster
and can handle more general torque constraints. The phase plane
method is the fastest of the three techniques described in Section 2,
but cannot be generalized to handle all the kinds of torque con-
straints that the perturbation method can handle. The toque con-
straints a h must be incorporated into the phase plane algorithm
in several P h e s , making changes to the torque limits more diffj.
cult in a phase-plane trajectory planner than in a perturbation tra-
jectory planner. The perturbation method isolates the torque con-
straints into a single constraint function, thereby isolating the
toque constraint checks from the rest of the trajectory planner.

Because of the ease of construction of perturbation trajectory
planners, and because of the natural way that they break up into
modules, they would appear to be good choices for a computer-
generated trajectory planner. The major components of such a tra.
jectory Planner are shown in Fig. 3. The components are a deriva.
tive generator, a dynamic coefficient generabr, and the trajectory
planning algorithm itself. Note that the constraint function “p l~gs
into”, or links to, the trajectory planning algorithm only, and that
the trajectory planning algorithm itself is the same regardless of
the torque constraints. The trajectory planning algorithm is
the same for any robot, regardless of its dynamics; everything that
the trajectory planning algorithm needs to know about the robot’s
dynamics is distilled into the dynamic coellicients M i , Qi , Ri ,
and Si. The derivative generator can be a simple numerical p m
cedure and is independent of the robot characteristics &, M) th&
only the Constraint function and the dynamic coefficient generator
need ever be chaneed.
ad. Omeratlon of Dynamlc Equatlonm

SO far, very little has been said about the actual generation
of the dynamic equations for robots. This is the most time-
consuming, labor-intensive and error-prone part of the trajectory
planner generation process, and M) is the most important part to
automate. Computer generation of dynamic equations may be
timwonsuming, but it is certain to be several orders of magnitude
faster than hand calculation, and certainly will be more accurate.

Though it sometimes is possible to derive’ dynamic equations
of simple robots relatively quickly in ad hoc ways, such tricks are
difficult to apply systematically. However, syetematic methods do
exist; see [SI. These systematic methods, combined with a system
for doing symbolic algebra, such as MACSYMA [8] and REDUCE
[3], and a symbolic differentiator mate the generation of dynamic
equations fairly straightforward. While the resulting equations may
not be in simplest form, they will certainly be correct.

It is important to note that having the dynamic equations in
simplest form may not always be necessary. In particular, this is
the case if the trajectory planning system i s to be used primarily as
a tool for robot design. in that situation, the trajectory planner
will probably be run several times and then thrown away BS design
changes are made. It ia much more important that the trajectory
planner be generated quickly than that it run quickly. (Essentially
the same reasoning is used to justify the existence of elow optimiz-
ing and fast non-optimizing compilers for conventional computer
languages; there usually is no sense in spending ten minutes to
optimize a small program that will be run only once or twice.)

A schematic of the robot dynamics generation process is
shown in Fig. 4. The user first describes the robot’s kinematics;
this can be done by specifying the number of joints, whether the
joint is revolute or prismatic, the various joint offsets and twists,
and the link lengths. The resulting transformation matrices can be
computed as in 191. Once the forward kinematics of the robot are

known, the user may describe the link inertias. A simple version of
a dynamic equation generator may just prompt the user for the
link pseudo-inertias; a more sophisticated version would compute
the inertias from CAD models of the robot links. Given the
kinematics and the pseudo-inertias, the inertia matrix, the Coriolis
coefficient array and the gravitational forces can be calculated
using the formulas in [9]. It is for these computations that a sym-
bolic differentiator is needed, since the kinematic transform
matrices must be differentiated with respect to the joint variables.

The output of the dynamic equation generator will be arrays
of expression trees representing the inertia matrix, the Coriolis
coefficient array, and the gravitational force terms. These must be
translated from arrays of expression trees to some form suitable for
compilation by whatever high-level language compiler is chosen as
an implementation language. If the target language has pointers to
procedures, then appropriate representation of, for example, the
inertia matrix would be a two-dimensional array of pointers to pro-
cedures; each element of the array would be set to point to a lunc-
tion which would compute the appropriate inertia matrix coefri
cient, given the robot’s current position. This requires only that the
expression tree representations be translated into appropriate com-
puter code, a very simple task.

8.4. Generating the Constraint Function
Generating the constraint function for a dynamic program-

ming or perturbation trajectory planner poses some problems which
are not amenable to general solution. Actuator torque constraints
may in general be quite complicated; for example, in a cabledriven
robot arm, moving one drive cable may move several joints, cables
will stretch, and the cables must all be kept under positive tension.
Generating constraint functions for completely arbitrary actuators
is obviously very difficult, if not impossible. However, not every

which is practically realizable, need be considered. By restricting
actuator which is theoretically possible, nor even every actuator

the trajectory planner generator to a few very common actuator
types, most practical robot designs can be handled.

One type of actuator which is very common is the D.C.
toque motor. The torque bounds for such a device are determined
by the saturation limits of the motor itsell and by the properties of
the amplifier which drives the motor. In addition, there are limits
on the time derivative of the torque which are imposed by the
motor inductance and the drive amplifier voltage limits, but these
constraints can often be ignored in practice. Since only a few
parameters are needed to describe the motor torque limits, generat-
ing constraint functions for this case is a fairly simple process.

Other types of actuators, such as hydraulic se lym, may also
be described in a simple manner provided that effects euch as
delays due to the finite speed of propagation of pressure waves are
ignored. As long as these effects are small, the resulting constraint
function should produce a useful trajectory planner.

a.6. Ancillary Software

As indicated in Fig. 1, the trajectory planner is not the only
component of a path planning system; if the trajectory planner is
to be used as a design tool, a driver for generating test data and a
stub lor analyzing trajectory planner output are both required.

The stub can be a very simple routine. Most o l the time a
graphical representation of joint speeds and forces suffices, and the
generation of such output can be performed in a manner which
does not depend on the kinematics or dynamics of tbe robot. The
driver routine, on the other hand, may depend rather heavily upon
the robot’s kinematics. If the designer wants to evaluate the perfor-
mance of the robot as it moves along a Cartesian straight line, then
the inverse kinematics of the robot are required. This causes some
problems, since the inverse kinematics of robot arms cannot in gen-
eral be computed in closed form, and because the inverse kinematic

tnjectory plmners, CAD modeling of the robot links, etc.
‘such as completion of the three tnjectory planners, inclusion of the other

solutions are not always unique. However, many robots fall into a

kinematics can be computed lop a generic member of each
rrl~tif-ely small set of kinematic configurationa, so that the in\,+-+

kinematic class. Then the designer need only plug the precise link
dimensions into a standard formula. (See 121 for an example.) While
this approach may not work for certain exotic robot designs, it
probably will cover the vast majority of robots seen in practice.

Another desirable feature of the driver routine is the genera-
tion of geodesics in inertia space. The traversal times for these
curves are near-optimal 1121, and so will give the robot designer an
estimate of the robot’s maximum capabilities. Since the differential
equations of inertial geodesics are directly obtainable from the
robot’s dynamic equations, much of the work o l writing a geodesic
generator will have been done already. The equations need only be
incorporated into an appropriate differential equation solver.

The proposed trajectory planner generation system is shown
schematically in Fig. 5. The user provides kinematics, link inertias,
and actuator characteristics, and the planner generator produces a
trajectory planner, a stub, and a driver. The driver allows selection
of straight line paths in joint space, Cartesian straight lines, and
geodesics.

1. CONCLUDING REMARKS
Most of the work performed to date on the automatic genera-

tion of trajectory planners consists of the construction of a system
for manipulation of algebraic expressions and a symbolic differen-
tiator. These routines consist of about 1400 lines of 6, with an
additional 1300 lines of code for testing the differentiator. Though
these utilities only constitute a portion of the trajectory planner
generating system, they are very important components. The larg-
est single component of the trajectory planner generator will most
likely be the dynamic equation generator, of which the algebraic
manipulation system is an integral part.

Also completed is the stub for generating trajectory planner
output, which consists of about 250 lines of code for the main rou-
tine and about 2700 lines for various graphical plots.

Some of the rest of the code for the trajectory planner con-
sists of l i e d modules; these portions can be taken from the code
already written for the numerical examples in [lo], Ill], 1131, and
used either directly or with minor modifications. The example for
the phase plane plot method in 1101 has been coded with about 350
lines of C, that for the dynamic programming method in 1111 with
about 400 lines, and that for the perturbed trajectory improvement
algorithm in 1131 with only 50 lines for the main routine and about
150 lines for generating the constraint function.

Though much work remains to be done,’ it is clear from the
discussion presented here that the major problems involved in pro-
ducing an automatic trajectory planner generator involve writing
some large but well-defined pieces of code; there are no major con-
ceptual or theoretical problems to be solved.

REFERENCES

J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “On the
Optimal Control of Robotic Manipulators with Actuator
Constraints,” Proc. of American Control Conference, pp.
782787, June 1983.

S. J. Derby, ”Kinematic Elasto-Dynamic Analysis and Com-
puter Graphic Simulation of General Purpose Robot Mani-
pulators,” Ph.D. thesis, Rensselaer Polytechnic Institute,
Troy, New York, August 1981.

A. C. Hearn, “REDUCE User’s Manual,” Report, UCP-19,
University of Utah, 1973.

264

[41 B. K. Kim and K. G . Shin, “Minimum-Time Path Planning
for Robot Arms with Their Dynamics Included,” IEEE

2, pp. 213-223, March/April 1985.
Trana. on System, Man, and Cybernetiea, vol. SMG15, no.

(51 J. Y. S . Luh and C. S. Lin, “Optimal Path Planning for
Mechanical Manipulators,” ASME Journal of Dynamic Sya-
tema, Measurementa, and Control, vol. 102, pp. 142-151,
June 1981.

[6] C. S . Lin, P. R. Chang, and J. Y. S. Luh, “Formulation and
Optimization of Cubic Polynomial Joint Trajectories for
Mechanical Manipulators,” IEEE Trana. on Automatic Con-
trol, vol. AC-28, no. 12, pp. 1066-1074, December 1983.

171 N. D. McKay, “Minimum-Cost Control or Robotic Manipu-
lators with Geometric Path Constraints,” Ph.D. thesis, The
”niversity of Michigan, Ann Arbor, MI, September 1985.

[SI J. Moses, “Algebraic Simplification: A Guide for the Per-
plexed,” Proceedings of the second ACM Sympoaium on
Symbolic and Algebraic Manipulation, New York, pp., 282-
304, 1971.

kinematics
imk inertias

Curve endpoints

Curve type
I

J--l Driver

I Tr

i
Generator I

. .- Curve w i th
timing informatton

v

-& Program generatlon
Stub

A Date flow

[91 R. P. C. Paul, Rolot manipulatora: Mathematica, propran:.
ming, and control, MIT Press, Cambridge, Mass., 1981.

[lo] K. G. Shin and N. D. McKay, “Robot Path Planning Using
Dynamic Programming,’’ Proc. of dSrd CDC, December
1984. (Also to appear in IEEE Trana. on Automatic Con-
trol.)

1111 , “Minimum-Time Control of Robotic Mani-
pulators with Geometric Path Constraints,” IEEE Trana. on
Automatic Control, vol. AC-30, no. 6, pp. 531-541, June
1985.

1121 , “Selection of Near-Minimum Time
Geometric Paths for Robotic Manipulators,” Proc. o j
ACC85. (Also to appears in IEEE Trana. on Automatic
Control.)

1131 , “Minimum-Time Trajectory Planning for
Industrial Robots with General Torque Constraints,” Robot
Systems Division Technical Report, RSD-TR-13-85, Center
for Research and Integrated Manufacturing (CRIM), The
University of Michigan, Ann Arbor, MI, September 1985.

a) Path data structure

b) The structure D,,.

Figure 2. Robot path data structures
Graphical output

Figure 1. Overview of ATPG system

265

Parameterized curve r r lc t lm COefflclents KlWmatlC m t a L l d Psew-Inertla

Curve with derivatives

Dynamic

Calculator kinematics
Coefficient Dynamic E q w t i m

nd link inertias

Curve wtrn

derivatives and

dynamic coefficients

v
Trajectory

Actuator &racteristiB

Curve with
timing information
d nominal taw

~-& apriwi information

___* Data flow

4
Computer Transforms

of Transforms

R,] J,] &

Figure 4. Schematic of dynamic equations generator

Figure 3. Trajectory planner structure

link dimensions 1 ink

Equation
Generator

Forward

Figure 5. ATPG structure

Equations
O f
geodesics

ertias actua

driver
vw-

trajactor
PI-

!tor data

266

