
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, NO. 6 , JUNE 1986 49 1

A Dynamic Programming Approach to Trajectory
Planning of Robotic Manipulators

Abstract-This paper presents a solution to the problem of mhimking
the cost of moving a robotic manipulator along a specified geometric path
subject to input torque/force constraints, taking the coupled, nonlinear
dynamics of the manipulator into account. The proposed method uses
dynamic programming (DP) to find the positions, velocities, accelera-
tions, and torques that minimize cost. Since the use of parametric
functions reduces the dimension of the state space from 2n for an n-
jointed manipulator, to two, the DP method does not suffer from the
“curse of dimensionality.” While maintaining the elegance of our
previous trajectory planning method, we have developed the DP method
for the general case where 1) the actuator torque limits are dependent on
one another, 2) the cost functions can have an arbitrary form, and 3)
there are constraints on thejerk, or derivative of the acceleration. Also,
we have shown that the DP solution converges as the grid size decreases.

As numerical examples, the trajectory planning method is simulated for
the first three joints of the PACS arm, which is a cylindrical arm
manufactured by the Bendix Corporation.

I. INTRODUCTION

E FFICIENT control of industrial robots is a key to the success
of contemporary industrial automation which is built around

robots, more specifically robotic manipulators. The problem of
robot control is very complex because of the nonlinearity and
couplings in robot dynamics and is therefore usually solved by a
two-stage optimization. The first stage is called path or
trajectory planning, and the second stage is called control or
trajectory (or path) tracking. The trajectory tracker is responsi-
ble for making the robot’s actual position and velocity match
desired values of position and velocity [9], [16]; the desired values
are provided to the tracker by the trajectory planner. The
trajectory planner receives as input spatial path descriptor [5], [6]
from which it calculates a time history of the desired positions,
velocities, and joint torques. Note that the reason for dividing the
control scheme in this way is for tractability of the robot control
problem.

Earlier trajectory planners, such as those presented in [7], [8]
use linear and/or nonlinear programming to generate desired
positions, velocities, and accelerations. These methods assume
that the desired path is given in terms of the path’s endpoints and a
set of intermediate points or comer points. Along each segment of
the path the (constant) maximum accelerations and velocities are
given. In general, these constant bounds may be quite inaccurate
for some parts of the segment, since worst-case bounds for the

paper is based on a prior submission of March 23, 1984. Paper recommended
Manuscript received January 16, 1985; revised November 22, 1985. This

by Associate Editor, W. J. Book. This work was supported in part by the
National Science Foundation under Grant ECS-8409938 and the U. S. Air
Force Office of Scientific Research under Contracts F49620-82-C-0089 and

Science, The University of Michigan, Ann Arbor, MI 48109.
K. G. Shin is with the Department of Electrical Engineering and Computer

Computer Science, The University of Michigan, Ann Arbor, MI 48109. He is
N. D. McKay was with the Department of Electrical Engineering and

now with the Computer Science Department, General Motors Research
Laboratories. Warren, MI 48090.

IEEE Log Number 8607827.

F33615-85-C-5105.

whole segment must be used. Additionally, these methods provide
no rigorous means of obtaining the maximum accelerations and
velocities; thus, once the trajectory planning process has been
completed, the solution must be validated to make certain that the
robot’s capabilities are not exceeded.

The algorithms presented in [2] and [121, [13] do not suffer
from either of these problems, since they calculate acceleration
and velocity limits directly from the given path and the robot’s
dynamic equations and actuator characteristics. The method
presented in [2] uses phase plane plots to construct the optimal (in
the minimum-time sense) trajectory for a given robot path. It is
assumed that the path is given in parameterized form, and that the
actuator torque limits are functions only of the position and
velocity of the manipulator. This method will solve the minimum-
time trajectory planning problem for a wide variety of robots,
provided the actuator torque limits are independent of one
another. We have developed a similar method in [12] indepen-
dently of [2]. However, the technique for d9termining switching
points in [I21 is different from that used in [2]. It is more direct,
but requires that the torque bounds be at most quadratic in the
velocity. In practice, this is usually the case, so the limitations on
the forms of the torque bounds should not significantly limit the
applicability of the method. Moreover, the method in [12] can
handle the general case where the feasible regions in the phase
plane are not simply connected, whereas that in [2] cannot.

While these methods are quite elegant, they do have some
drawbacks. First, they work only for minimum time problems. In
situations where driving the robot consumes large amounts of
power, the assumption that minimum time is equivalent to
minimum cost may not be valid. Second, it is assumed that the
joint torques can be changed instantaneously. This is only
approximately true, and indeed it is desirable to limit the
derivatives of the joint torques (or: equivalently, the jerk, or
derivative of the acceleration) to prevent excessive mechanism
wear. Third, they are unable to handle the general case where the
actuator torque limits are dependent on one another. This
dependency occurs, for example, when a robot uses a common
power supply for the servoamplifiers for all joints.

The correction of these deficiencies is the aim of this paper.
The method proposed here is to use dynamic programming [3],
rather than the methods described above, to find the optimal phase
plane trajectory. Unlike those methods, dynamic programming
places few restrictions on the cost function that is to be minimized.
Putting limits on jerk is also possible, and interdependence of
torque bounds can be handled fairly painlessly, as will be seen
later. Since the use of parametric functions reduces the dimension
of the state space from 2n for an n-jointed manipulator to two, the
dynamic programming method does not suffer from the “curse of
dimensionality.”

The remainder of this paper is divided into four sections.
Section II gives a detailed description of the problem. Section III
presents a solution algorithm using dynamic programmlag.
Section IV deals with the convergence of the dynamic program-
ming algorithm. Section V presents numerical examples using the
Bendix PACS arm. Using these numerical examples, first, we
compare the results of the direct minimum-time phase plane
methods [13] to those of the dynamic programming technique.

0018-9286/86/0600-0491$01.00 O 1986 IEEE

492 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, NO. 6, JUNE 1986

Second, we examine the sensitivity of the trajectory planning
solution to the grid size. Third, the dynamic programming method
is applied to the general case where 1) cost functions other than
minimum time, and 2) coupling among the actuator torque bounds
are considered. Finally, Section VI states conclusions drawn from
our results.

II. PROBLEM STATEMENT

The goal of automation is to produce goods at as low a cost as
possible. The minimumcost trajectory planning (MCTP) in the
two staged realization of manipulator control, i.e., planning first
and tracking next, is thus of utmost importance to any effort in
accomplishing the goal.

A loose statement of the MCTP problem is as follows:

What control signals will drive a given robot from a given
initial configuration to a given final configuration with as low a
cost as possible, given constraints on the magnitudes and
derivatives of the control signals and constraints on the
intermediate configurations of the robot, i.e., given that the
robot must not hit any obstacles?

While the problem of avoiding obstacles in the robot’s
workspace [5], [6] is not a control theory problem in the normal
sense, the problem of moving a mechanical system in minimum
cost is. One way to sidestep the collision avoidance problem,
then, is to assume that the desired path has been specified apriori,
for example as a parameterized curve in the robot’s joint space.
If this assumption is added, then one obtains a second, slightly
different problem statement:

What controls will drive a given robot along a specified curve
in joint space with minimum cost, given constraints on initial
and final velocities and on control signals and their deriva-
tives?

This form of the problem reduces the complexity of the control
problem by introducing a single parameter that describes the
robot’s position. The time derivative of this parameter and the
parameter itself completely describe the current state (joint
positions and velocities) of the robot. The control problem then
becomes a two-dimensional minimumcost control problem with
some state and input constraints.

Usually, a geometric path can be constructed by connecting
endpoints and intermediate points with some means such as
straight line segments or cubic splines. In such a case, the
geometric path can be given in the form of a parameterized curve2

q’=f’(h), O<h<A,, (2.1)

where qi is the position of the ith joint, q = [qi, q2, * . e , q“]
represents the joint position vector for an n-jointed manipulator,
and the initial and fiial points on the geometric path correspond to
the points X = 0 and h = X-. Also assume that the set of
realizable torques can be given in terms of the state of the system,
i.e., in terms of the robot’s position and velocity. Then we have

U = (U I , 112, U n) T E E (q , 4) (2.2)

where q is the first derivative of q with respect to time, and ui is
the ith actuator torque/force. E is a function from R” X R” to the
space of sets in R”. In other words, given the position and
velocity, E determines a set in the input space. The input torques

intermediate knot points which, if necessary, are transformed pointwise to
I The task planner generates a sequence of Cartesian points and additional

points in joint space [ll]. These joint points are then interpolated to form a
geometric path in joint spaces, e.g., [4]. However, this process is not in the
S C ~ of the present paper.

- Note, however, that the determination of an “optimal” (in some sense)
parametric functionf is an open research problem. See [14] for an example.

ui are realizable for position q and velocity q if and only if the
torque vector u is in the set E (q , q) . 3

In practice, it is desirable to limit the derivatives of the joint
torque (or, equivalently, derivative of the acceleration, or the
jerk) to prevent excessive mechanism wear. This need introduces
inequalities

1~ii1SKi (2.3)

where Ki is a constant.
The manipulator dynamic equations usually take the form

where the Einstein summation convention is used, and

Jjj = the inertia matrix,
C,k = the array of centrifugal and Coriolis coefficients,
Rjj = the viscous friction matrix, and
G, = the gravitational loading vector.

If the equations of the parameterized path are plugged into the
dynamic equations, then they become (see [12] for a detailed
derivation)

u . = J . . - p + d f j . (J..-+c.. d2fJ -- d f J d f k) p 2 + R . . - d f J
I lJ dh IJ dh2 lJk dh dh dh P + G *

(2.5)

Here, p is the time-derivative of the parameter X, i.e., p = X.
The cost C will be assumed to take the form

C = Lo\, 8, ui) dh.
hmax
0

The MCTP problem then becomes that of minimizing (2.6)
subject to (2.5) and the inequalities (2.2) and (2.3).

III. MCTP USING DYNAMIC PROGRAMMING

To see how dynamic programming can be applied to this
problem, first note that by using the parameterized path (2. l), the
dimensionality of the problem has been reduced; there will be
only two state variables X and p, regardless of how many joints
the robot has. The “curse of dimensionality” has therefore been
avoided. To apply dynamic programming, one first must divide
the phase plane (X - ,u plane) into a discrete grid. Then, the costs
of going from one point on the grid to the next must be calculated.
Note that since ui is a function of h and p as shown in (2.5), (2.6)
are given strictly in terms of X and p; thus the cost computation
can be done entirely in phase coordinates. Once costs have been
computed, the usual dynamic programming algorithm can be
applied, and positions, velocities, and torques can be obtained
from the resulting optimal trajectory and (2.1) and (2.5).

The informal description given above describes the general
approach to the MCTP problem. In detail, there are some
complications. Therefore, some simplifying but realistic assump
tions will be made as we proceed. First, rewrite (2.5) in a more
convenient form

ui=Mik + Qip2 + Rip + Si (3.1)

where

3 This dependence can be Seen easily in the case of DC servodnven
manipulators.

SHIN AND MCKAY: TRAJECTORY PLANNING OF ROBOTIC MANIPULATORS 493

Note that Mi, Qi, Ri, and S; are all functions of the parameter X,
but their dependencies on X are omitted throughout this paper for
notational simplicity.

Now choose the grid’s Xdivisions to be small enough so that
the functions Mi, Qi, Ri, Si, and df ’ /dh do not change
significantly over a single interval. Then, the coefficients of (3.1)
are‘effectively constant. We may also form a single equation from
equations (3.1) by taking the projection of the input torque vector
ui onto the velocity vector df’/dh, obtaining the single equation

U E u;-=M,i+Qp’+Rp+S (3.2)

where M = M;df’/dh, Q = Qidf’/dX, R = R;df’/dX, and S
= S;df’/dh. Using the fact that p = X, we may divide (3.2) by p
to obtain

df’
d h

- U = M - + Q p + R + - S
P cc cc
1 i 1

(3.3)

or, using the identity , i /p = (dp/dt)/(dx/dr) = dp/dA, we have

M-+Qp+R+-(S-U)=O. dF 1
d h P (3.4)

Note that (3.4) does not explicitly depend on time. Therefore, for
purposes of carrying out the dynamic programming algorithm, we
may treat the quantities X and p as a stage variable and a single-
state variable rather than two state variables. Using (3.4) as our
(single) dynamic equation, and noting that M , Q, R , and S are
approximately constant over one X-interval, we need to find a
solution to (3.2) which meets the boundary conditions

p(Xk)=hLoI P (k k + I) = P l (3.5)

in the interval [X,, X k + l]. In order to do this, some form for the
inputs ui needs to be chosen. It should be noted that as the DP grid
becomesfiner, the precise form of the curves joining the points of
the grid matters less. As long as the curves are smooth and
monotonic, the choice of curves makes a smaller and smaller
difference as the grid shrinks. The implication of this is that we
may choose virtually any curve that is convenient, and as long as
the grid size is small, the results should be a good approximation
to the optimal trajectory.

We will use the form

u;=Q;p2+Rip+ V, (3.6)

for the input, where the Vi are constants that may be chosen to
make the solution meet the boundary conditions (3.5). Form (3.6)
was chosen because it yields particularly simple solutions.

In what follows, we obtain first a solution without the torque
bound interaction, and then extend the solution to accommodate
torque constraints of a much more general type.

A . Case of Noninteracting Torque Bounds

When the joint torque bounds do not interact, the sets E in (2.2)
are given by

E (q , Q)={(uI , un)Tlumin(q, Q)suisukax(q> 4)) .

(3.7)

Taking the projection of the input torque vector, as given by
(3.6), onto the velocity vector df’/dh gives U = Qp2 + Rp +
V, where Y = V,df’/dh. Plugging this into (3.4) and simplifying
gives

Solving this equation, we get

(3.9)

Evaluating the constant of integration K and the constant V so that
(3.9) meets the boundary conditions (3.5), one obtains

Solving for p in terms of X gives4

(3.10)

P = S h , + l - h) p : t (h r - h ,) p : (3.11)
h k + l - h k

Now that the path is known over one X-interval, we need to
know the inputs ui and the components of the incremental cost.

To evaluate the input torques, we may use (3.1) and the value of
,i. Noting that i = b / p - p pdp/dX and using (3 . Q we obtain

p=-- ’ (‘- ‘) - constant. M (3.12)

The quantities M and S are given, and, using (3.11) and (3.12), V

which gives = (Jif - , u ;) / 2 (h k + I - hk). Therefore, the
equations for ui become

Can be GdCUlated t0 be = S M/2*(Jii - p ;) / & + l - h k) ,

2 2

u;=Qip2+R;p+S;+M;. P l - P O (3.13)
2 (x k + l - X k)

Assuming the joint torque limits are independent, determining
whether joint i ever demands any unrealizable torques requires
that we know the maximum and minimum values of ui over the
interval [X,, X k + (or equivalently over the interval [min (po, pI),
max (u,,, pl)] since h is a monotonic function of p over the interval
under consideration). The maxima/minima may occur at one of
three p values, namely b, p I , and the value of p that maximizes
or minimizes ui over the unrestricted range of p. In the latter case,
the value of ,u is p m = - Ri/2Qi. If the condition

min b o , pJsp , smax b o , 111) (3.14)

holds, then the point pm needs to be tested. Otherwise, the torques
must be computed and checked only at the endpoints of the
interval.

Given the formulas for the velocity and the joint torques, the
incremental cost can be found using the formula

(3.15)

where p and ui are given as functions of X by formulas (3.1 1) and
(3.13), respectively. It may be possible to evaluate this integral
directly; if not, then the integral may be approximated by any of
the standard techniques. Section IV shows that the DP algorithm
converges when the integral is approximated using the Euler
method. Using more sophisticated algorithms should give faster
convergence than the Euler method.

With these formulas at hand, it is now possible to sate the
dynamic programming algorithm in detail. Initially, the algorithm
will be stated for the case in which there are no limits on the time
derivatives of the torques. These constraints will be considered
later in Section III-C. The algorithm, given the dynamic equations
(2.5), the equations of the curve (2. l), the joint torque constraints
(3.7), and the incremental cost (3.15), is as follows.

SI: Determine the derivatives df’/dh of the parametric

’ In [12] we proved that p 2 0 is always true.

494 IEEE TRANSACTIONS ON AUTOMATIC COhmOL, VOL. AC-31, NO. 6, JUNE 1986

functions y(A), and from these quantities and the dynamic
equations determine the coefficients of (3.1) and (3.2).
S2: Divide the (A, p) phase plane into a rectangular grid with

NA divisions on the A-axis and N, divisions on the p-axis.
Associate with each point (A,,,, p,) on the grid a cost C,,,, and a
“next row” pointer P,,,,. Set all costs C,, to infinity, except for
the cost of the desired final state, which should be set to zero. Set
all the pointers P,, to null, i.e., make them point nowhere. Set the
column counter a to NA.

S3: If the column counter a is zero, then stop.
S4: Otherwise, set the current-row counter f l to 0.
S.5: If f l = N,, go to S12.
S6: Otherwise, set the next-row counter y to 0.
S7: If y = N,, go to S11.
S8: For rows f l and y, generate the curve that connects the (a

- 1,fl) entry to the (a, y) entry. For this curve, test, as described
in the previous paragraphs, to see if the required joint torques are
in the range given by inequalities (3.7). If they are not, go to S10.
S9: Compute the cost of the curve by adding the cost C , to the

incremental cost of joining point (a - 1,fl) to point (a, y). If this
cost is less than the cost Ca-l,a, then set Ca-l,s to this cost, and
set the pointer P,-l,a to point to that grid entry (a, y) that
produced the minimum cost, i.e., set P a - I , ~ to y.
SIO: Increment the next-row counter y and go to S7.
SII: Increment the current-row counter f l and go to S5.
S12: Decrement the column counter a and go to S3.
Finding the optimal trajectory from the grid is then a matter of

tracing the pointers P,, from the initial to the final state. If the
first pointer is null, then no solution exists; otherwise, the
successive grid entries in the pointer chain give the optimal
trajectory. Given the optimal trajectory, it is then possible to
calculate joint positions, velocities, and torques.

B. Case of Interacting Torque Bounds

It has been assumed in the preceding discussion that the joint
torque limits do not interact, i.e., that increasing the torque on one
joint does not decrease the available torque at another joint. This
assumption manifests itself in the form of the torque constraint
inequalities (3.7). This assumption is probably correct in many
cases, but in others it certainly is not. Here it will be assumed that
the inequalities (3.7) are replaced with the constraint (2.2),
namely (ul, u:, * , u ”) ~ E E (q , 4) .

There are a number of situations in which joint torque limits
might interact. Consider, for example, a robot that has a common
power supply for the servoamplifiers for all joints. The power
source will have some finite limit on the power it can supply, so
that the sum of the power consumed by all the joints must be less
than that limit. A similar situation arises when a single pump
drives several hydraulic servos. The pump will have finite limits
on both the pressure and the volume flow it can produce. Such
interacting torque bounds must be considered along with the
noninteracting bounds, such as servomotor saturation limits. It is
interesting to note that the limits described above all produce set
functions E in (2.2) which are convex. For example, if the sum of
the power consumed (or produced) in all the joints is bounded,
one obtains

PminIu;Qi5Pm. (3.16)

For any given velocity, this is just the region between a pair of
parallel hyperplanes in the joint space. Likewise, for independent
torque bounds, the realizable torques are contained in a hyper-
rectangular prism,. another convex region. Since the intersection
of any number of convex sets is a convex set, any combination of
these constraints will also yield a convex constraint set. In this
light, it is reasonable to make the assumption that the set E (4, q)
is convex. This assumption is important in the analysis that
follows.

To see how we may make use of this convexity condition,

consider the test for realizability of torques used in the method
presented thus far. This test made explicit use of the assumption
that the torque bounds do not interact. In order to handle
interacting torque bounds using an approach like that of Section
IU-A, it must be possible to determine whether all torques are
realizable over any given X-interval. If the torques have the form
used in (3.6), then this is in general not possible with any finite
number of tests; even in the two-dimensional case, the torques
trace out conics in the input space, and there is no general way to
determine whether a segment of a conic is entirely contained
within a convex set.

Although the question of whether a set of torques is realizable
cannot in general be given a definite answer, the realizability
question can be answered in some cases. To see how this can be
done, consider again the tests for realizability previously de-
scribed. The maximum and minimum torques for each joint are
determined, and these torques are checked. While (3.6) describes
a curve in the joint torque space, the individual torque limits
describe a box-shaped volume. The curve describing the joint
torques will be entirely contained inside this box. Thus, if every
joint in the box is admissible, then so is every point on the curve.
This “reduces” the problem of determining whether every point
of a onedimensional set is realizable to the problem of determin-
ing whether every point of a higher-dimensional set is realizable.
However, this higher-dimensional set has a special shape; it is a
convex polyhedron, and will be contained in the (convex) set E if
and only if all its vertices are in E. Thus, by testing a finite
number of points, the question of whether a particular set of
torques is realizable may sometimes by given a definite “yes”
answer.

If this test does not give a definite answer, then the set of inputs
in question must be discarded, even though that set may in fact be
realizable. However, as the grid size shrinks, the size of the
bounding box for the torques also shrinks, so that in the limit the
test becomes a test of a single point. Therefore, as the grid
shrinks, the percentage of valid torques thrown away approaches
zero, and the optimal solution will be found.
This method of handling interacting torque bounds requires

only one change in the DP algorithm. Step S8, which checks to
see if the torques are realizable, must be replaced with a step that
generates all comers of the bounding box and tests these points for
realizability. If any of the comers does not represent a realizable
set of torques, then the test fails. Thus, we have the following.

S8’: For rows 6 and y, generate the curve that connects the (a
- 1, /3) entry to the (a, y) entry. For this curve, generate the
maximum and minimum torques at each joint. Check each torque
n-tuple formed from the maximum and minimum joint torques.
(These are the comers of the bounding box.) If any of these n-
tuples are not contained in the set E, then go to S10.

C. Accommodation of Jerk Constraints

The methods described thus far have ignored the jerk con-
straints (2.3) which limit the derivatives of the joint torques.
Taking these limits into account effectively requires that a third
state variable be added. That variable can be taken to be the
pseudoacceleration $, say v = $. Differentiating the equation
for the torque, one obtains

u i = ~ j v + M j 3 + Q i p 2 + 2 Q j p v + R ; ~ + R i v + S j . (3.17a)

Using the identity d$/dt = (d$/dA)(dA/dt) = d$/dA.p, th is
equation becomes

(3.17b)

If there are no jerk constraints, then the parameter $ in (3.1)
can be manipulated as needed. When there are jerk constraints,

SHIN AND MCKAY: TRAJECTORY PLANNING OF ROBOTIC MANIPULATORS 495

points in one column can be connected to each of the N,, points in
the next column. Each test must be done, but some of the tests are
simpler than others. If the cost at the next grid point is infinite,
then there is no point in doing any further calculations. If, on the
other hand, the cost is f i t e , then input torque bounds must be
checked, and if the input torques are admissible, then costs must
be calculated and compared. Although actual computation times
will vary with the particular problem being solved, the way the
time varies with grid sue can be roughly determined. To get a
bound on this time, assume that all the tests and computations
must be performed. Then each step of the dynamic programming
algorithm requires KN: s, where K is a quantity which depends
upon the computer being used and the number of joints the robot
has. There are Nh - 1 such steps, so the time required is less than
K(NA - 1)N:. In other words, the execution time is roughly
proportional to the cube of the grid density. In practice, the value
of the constant K must be evaluated experimentally. This has been
done for the numerical example, which does indeed show a time
dependence proportional to (Nh - 1)N:.

The dependence of execution time on the number of joints n ,
i.e., the dependence of the constant K on n , is more difficult to
assess. K in the equation above depends on both n and the
representation used to describe the curve to be traversed. The
functions Mi and Ri depend on the matrices Jij and R,,
respectively, and the Coriolis term Qj depends on the three-
dimensional array Cijk. In general, then, it might be expected that
the evaluation of the function Qi might take time proportional to
the cube of the number of joints. (See, for example, [151.) In any
case, the time required for evaluation of the dynamic coefficients
is heavily dependent upon the configuration of the robot.
Fortunately, in practical cases the number of joints would usually
be no more than six, and almost certainly would be less than eight.
Since these functions only need to be evaluated once per X-
division of the DP grid, their evaluation will probably be only a
minor part of the total time consumed. This being the case, the
dependence of execution time on n is not an important factor. (For
the numerical example considered here, this is certainly true.)

If the algorithm for handling interacting joints is used, then the
dependence of the time on the number of joints increases
exponentially with the number of joints, since there are 2“ comers
on the bounding box for the input. While this would seem to make
the algorithm useless, it should be noted that the size of the
bounding box decreases as the grid size shrinks, so that in practice
it may be sufficient to test a single point in the box, say the center,
instead of testing all 2” comers.

we must instead manipulate 3 in (3.1%). Equation (3.17b) and
constraints (2.3) then give constraints on 3, just as (3.1) and
constraints (2.2) yield constraints on i .

To solve the optimization problem with jerk constraints using
dynamic programming, a three-dimensional grid is required, with
one dimension for each of X, p , and Y. Some form must be
assumed for the “inputs” ri,, as was done for I(; when there were
no jerk constraints, i.e., (3.6). Because the grid points that the DP
algorithm must join from a pair of planes, rather than a pair of
lines or columns, as in the two-dimensional case, the form of the
input must contain two arbitrary constants instead of one. If only
one parameter is used, then it will not be possible to connect
arbitrarily chosen points in the DP grid. The problem is thus
inherently more complicated than the two-dimensional case, at
least in terms of the algebra required to produce a solution. The
procedure is otherwise the same as that for the two-dimensional
case.

D. Algorithm CompIexity

The usefulness of the dynamic programming technique depends
on its being reasonably efficient in terms of use of computing
resources, i.e., it must run reasonably fast and must not use too
much memory. Since the trajectory planning is done off-he, the
algorithm’s time requirements are not particularly critical; never-
theless, the time required must not be exorbitant if trajectory
planning is to be worthwhile. Likewise, computer memory is
relatively inexpensive, but nevertheless puts some limits on the
accuracy with which the dynamic programming algorithm can be
performed. In this section we present an approximate analysis of
the time and memory requirements of the algorithm. Of course,
precise numbers will depend rather heavily upon such variables as
the computer on which the algorithm is to run, the language in
which it is implemented, the compiler used, and the skill of the
programmer who writes the code, so the expressions derived here
contain a number of implementationdependent constants.

It is easy to compute the storage requirements for the algorithm.
The memory allotted to the program itself is essentially fmed. The
size of the grid used for the dynamic programming algorithm
varies with the fineness of the grid and the amount of storage
required per point on the grid. The grid has N, rows and NA
columns. Each entry must contain a cost C and a pointer P. The
size of an entry will then be GS = S, + S,,, where GS is the
storage requirement for a single point of the grid, and S, and S,
are the amounts of storage required to record the cost and the
pointer to the next row, respectively. In the implementation
presented here, parameterized curves are represented as arrays of
points. If one assumes that there is one point per X-division, then
there is an additional sd + NA&, where Si is the storage required
for one interpolation point on the curve and S d is a certain fixed
storage per curve. Multiplying GS by the number of grid entries
and adding the amount of storage PS required for the program and
the storage required for the curve gives total storage TS as

Ts=Ps+N~N,(s,+s,)+N~s;+sd. (3.18)

For the numerical example presented in this paper, all
arithmetic was done in double precision, and integers and pointers
are four bytes long. Then for a six-jointed manipulator the storage
required is, ignoring the program storage

TS=12NANP+8O+448N~. (3.19)

Thus, for a 20 X 80 grid, the storage required is 28 240 bytes.
This can, of course, be reduced considerably by using single
rather than double precision; however, even using double
precision, the storage required is generally available on small
microprocessors.

Calculating the time required to perform the dynamic program-
ming algorithm is somewhat more difficult. There will be Nh - 1
steps, where each step requires testing to see if each of the N,,

IV. CONVERGENCE PROPERTIES

The previous section describes the complexity of the DP
algorithm. It is obvious from the discussion that the fineness of the
DP grid will have a significant impact on the running time of the
algorithm. It will also affect the accuracy of the results. This
section describes the effect of the grid density on the accuracy of
the DP solution in a quantitative manner.

Bellman proved in [l] that discrete approximations to a
continuous optimal control problem will converge (in a sense to be
defined) as the step size of the DP stage variable decreases.
However, the class of systems to which Bellman’s proof applies
does not cover those considered in this paper. In particular,
Bellman assumes that the dynamic equations of the system are not
functions of the stage variable, which is the same as X in this
paper. We proved a theorem in [lo], which is an extension of that
of Bellman in that it allows the dynamic equation and cos: functlon
to be (possibly discontinuous) functions of the stage variable. The
proof presented in [lo] also corrects some minor errors in
Bellman’s proof.

Like Bellman’s proof in [11: we proved that a sequence of
discrete dynamic programming processes with decreasing step
sizes will produce, under appropriate conditions, a convergent
sequence of return functions. It should be noted that the optimal

496 E E E TRANSACTIONS ON AUTOMATIC CONTROL. VOL. AC-31, NO. 6, JUNE 1986

control policy may not converge even though the return functions
do. But since the return function is of primary interest, not the
details of the control policy, control policy convergence is not
generally important.

From the discussion thus far, it is clear the the manipulator
dynamics and required constraints take the form

where the control variable us must meet some set of constraints

Q&, p, U) S O , q = l , 2, * * a , c. (4.2)

Also write the objective function J to be maximized as follows:

Jw=eoL(x&)+ S,"- F (X , p9 (4.3)

subject to the initial condition p(0) = po. Note that the boundary
condition ,u(h& = pfcan be enforced by taking 8(p(Xmar)).to be
zero if p = pf and - 03 otherwise. The dynamic programming
method approximates this continuous problem by discretizing the
dynamic equation and objective function using the Euler method,
giving

P k + I = P k + G (X k , p k , u k) A (4.4)

N - I

(4.5)

fn+l(C)=SuP [F (h -n - l , C, VIA
"

+fn(C+G(XN-n-It C, u) A)] , nrO. (4.9)

Note that sup has been used instead of max. This is done to allow
the use of discontinuous functions and constraint sets which are
not closed. It does not materially change the results of the dynamic
programming process in that we may make the return function f n
as close to the optimal value as we please. To see this, consider a
single stage of an N-stage process. For each k and E > 0, we may
makefk to be within ~ / 2 ~ of its optimal value, thus makingLv be
within 2~ of the optimum. Since E may be as small as we please, a
control strategy can be constructed which will make the return
function agree with the optimum value to within any desired
tolerance.

We are now in a position to state the main theorem. It states that
the return functions for the dynamic programming problem
converge, provided that the functions F and G satisfy some
Lipschitz conditions everywhere except at a finite number of jump
discontinuities, and provided that the variable p can be guaranteed
to stay within appropriate bounds.

This is the same as in the previous discussions.

Theorem: Let the input u satisfy 0 I u I 1, and let F and G
satisfy the Lipschitz conditions

IF(X1, c1, u)-F(Xz, cz, u) (~ ~ I c 1 - ~ * l Q + ~ I ~ 1 - ~ 2 I ~

1 m , CI, u) - F (A , c2, ~) l~Klc1-C2Iu

lG(11, C I , u)-GO\z, c2, U)~~LICI-CZI '+CIX~-XZI*

(G (L CI, v)-G(X, CZ, ~) ~ ~ L ~ c I - c z ('

where (Y > 0, y 2 1, /3 2 0, and 6 2 0, for all admissible X and
u, for all pmin 5 cI, cz 5 p- , and for all XI , and X2 such that the
interval [min (X,, Xz), max (X,, X,)] does not contain any of the N d
points of discontinuity d l , dz, . * -, d,%,< Also let F and G satisfy

IF(X1, Clr U)-F(hz, cz, u) l IK Ic1 -c2 lQ+B

and

JG(X1, C I , u)-G(Xz, ~ 2 . ~) J (L I C I - C ~ ~ ~ ' + C

for all admissible XI , A2, cI, cz, and u. Then the discrete dynamic
programming process yields return functions which converge to a
limit as the step size A goes to zero, provided that p k can be
guaranteed to stay in the interval [bin, pmJ.

The proof of this theorem requires the establishment of four
lemmas, but their proofs are not included here due to page
limitation. Interested readers are referred to [101.

Roughly speaking, this theorem states that when the functions
F and G are continuous of sufficiently high order in p and
piecewise continuous in the stage variable X, then the discrete
dynamic programming process converges.

One important point is that in order to apply the theorem, it
must be guaranteed that F~ stays within the range in which the
Lipschitz conditions are valid. This can be accomplished in
several ways. If, for example, G(1, ,LA,,,,, u) s 0 and G(X, pmin,
u) 2 0 for all X, then the optimal trajectory can never escape the
interval hLmin, pJ. Another way to assure containment in this
interval is to construct an objective function which guarantees that
trajectories which stray outside the interval are heavily penalized
and therefore never selected. This method works for the examples
in this paper; since the examples all penalize time, they all have
terms which are inversely proportional to velocity, and so keep
the velocity ,u greater than some E > 0.

V. NUMERICAL EXAMPLES

To demonstrate the use of the dynamic programming al-
gorithm, we present several examples. These examples use the
first three joints of a cylindrical electricallydriven manipulator,
the Bendix PACS arm. The first two joints of this same robot were
used in [131 to demonstrate the phase plane method for obtaining
minimum time trajectories, so a direct comparison of the methods
is possible. In addition, several examples will treat cases to which
the phase plane technique does not apply.

Before presenting the example, an explicit form of the objective
function must be chosen. The objective function used here has one
component proportional to traversal timel T, and another compo-
nent proportional to frictional and electrical energy losses. The
servodrives of the arm are assumed to consist of voltage source in
series with a resistor and an ideal DC motor. This gives the form

- T ST

-0 - 0
C=r,T+r, \ Rijq'qJ dt+r, \ I j R y dt

=r, dX+r, Jy pzRij dX dX d f ' d f J
" 0

SHIN AND MCKAY: TRAJECTORY PLANNING OF ROBOTIC MANIPULATORS 497

where r, and re are related to revenue generated per item and the
energy costs of the motion, respectively, and Zi and RT are the
motor currents and resistances for joint i. Since the joint torques ui
are related to the motor currents Zj by the relationships ui = k;/
k;Zi, where k; and kg are the motor constant and the motor
gearing, respectively, the sum in (5.1) can be written as Xi
(k;)2R;/(k;)uf . The torques ui are given in terms of X, p, and i
by (3.2), which is quadratic in p, so the integral in (5.1) can be
expressed in terms of integrals of powers of p.

Since the path is known over one X-interval, we can
determine the components of the incremental cost. To do this, we
-need the integrals l / p dh, j ? + l p dX, [? + I p 2 dX, and

j k k p 3 dX.~In general, we have x k ; 1

\ L /

Equations (5.1), (5 .2) , and (3.1) give the incremental cost as

It should be noted that this cost function always has a - term
unless the time penalty is zero and the robot is not influenced by
gravity. (In this case, the optimal solution is not to move at all!)
Therefore, the cost function will prevent the trajectory from going
to zero velocity unless forced by boundary conditions. Also, since
torques and motor voltages are bounded, the velocity p is
bounded. Thus p in the DP algorithm stays within some interval
[pCmin, p , J , as is required for convergence. Since the maximum
and minimum values of the control variable can be computed
from (3.1), we may define a new control variable p by the
relationship

so that p ranges from zero to one. It is easily shown that the other
conditions of the convergence theorem are met if the parameter-
ized curve is suitably well behaved, so the DP algorithm will
converge with this cost function.

The dynamic equations and actuator characteristics for the
PACS arm are given in [141, and are summarized here in Table I.
A diagram of the arm is given in Fig. 1. The DP algorithm was
implemented in the C programming language running under
UNIX on a VAX11-780. The parameterized curves are repre-
sented as sequences of points. All computations are done for a
path which is a straight line from (0.7, 0.7, 0.1) to (0.4, -0.4,
0.4), all (Cartesian) coordinates being given in meters.

To verify the correctness of the dynamic programming al-
gorithm, it was first applied to the simple two-degree-of-freedom
robot which was used in [12]. This robot moves in polar
coordinates, i.e., it has a 0 joint and an r joint, and was moved
from the point (1, 1) to the point (1, - 1) along a straight line. The
phase plane plots for minimum time, with 10 X 10 and 40 X 40
DP grids are plotted in Fig. 2 , along with the phase plane plots
calculated by the phase plane method. Reassuringly, the trajecto-
ries calculated by the DP method seem to converge to the correct
minimum-time phase plane plot as the grid gets finer.

Fig. 3 shows the phase plane plot for a 10 X 10 grid with a pure
minimum time cost function. As can be seen from this figure, joint
torque/force versus time plots have close resemblance to motor

TABLE I
DYNAMIC COEFFICIENTS AND ACTUATOR CHARACTERISTICS FOR PACS

ARM

Parameter Deseri tion
Satoration torque 01 B motor

Satoration torque of z motor
Lower voltage limit lor B joint

Lower voltage limit lor z joint
V a- UDner voltane limit lor B ioint

?;at Satamtion torque d r motor

I v.* Lower voltage Limit lor r joint

2.0 Nt.-M.
0.05 Nt.-hi.
2.0 Nt.-M.

-40 v
-40 v.

.. v;- 40 v. Upper voltage limit lor r joint
V#-

k I
Upper voltage lipit lor I joint

k-
k P

0.00318 Meter+adian Gear ratio lor z drive k?
0.00318 Meters/radian Gear ratio lor r drive k?

Motor constant fop B joint
Motor constant lor b joint

0.0397 Nt.-M./amp

kF Motor constant lor z joint
0.79557 X lo4 Nt.-M/amp

0 . W Nt.-M./amp

40 v.
0.01176 Gear ratio for 0 drive

R,"

kz
Friction coellicient 01 r joint kr

Friction coellicient 01 B joint kt

I n Motor and power supply resistance, E joint R,?
I n Motor and power supply rc&tance, r joint R,"
I n Motor and power supply resistance, B joint

MI
Friction coefficient 01 z F i t

Mass of r joint
M. b of I joint
Jt Moment 01 inertia around B axin
K Moment of inertia onset term

8.0 Kg.-M. ' /~ee . /rd .
4.0 Kg./=.
1.0 Kg./=.

10.0 Kg.
40.0 Kg.

12.3183 Kg.-M. *
3.0 Kg.-M.

Fig. 1. Diagram of the Bendix PACS robot arm.

T- rnhlmun tlm wlut(m

L

Fig. 2. Minimum time phase plane plots for a polar manipulator with 10 X
10 and 40 x 40 grids. voltage versus time plots.- Hence, joint torque/force versus time

498 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, NO. 6, J U N E 1986

1

P

(e)

Fig. 3. (a) Minimum time phase plot for PACS arm, 10 x 10 grid. (b) 0
joint torque versus time, 10 X 10 grid. (c) r joint force versus time, 10 x
10 grid. (d) z joint force versus time, 10 x 10 grid. (e) Motor voltages
versus time, 10 x 10 grid.

plots will not be included in the remaining figures. Fig. 4 is the
same, except that the grid is 40 columns by 160 rows. The
calculated traversal times for 10 X 10, 20 X 40, and 40 X 160
gjds are 2.000, 1.972, and 1.905 s, respectively, compared to
1.782 s as calculated by the phase plane method.

Figs. 5 and 6 show phase plane plots for a time penalty of 1
unitls and an energy penalty of 10 units/J. Note that the trajectory
is lower than that which is obtained if only time is penalized. The
grid sizes are 10 X 10 and 20 X 40.

Figs. 7 and 8 show the results for a minimum time trajectory
when, in addition to the torque and voltage constraints given in
Table I, the total power sunk or sourced by the robot is limited to
2 kW.

The time consumed by the algorithm was measured for several
different grid sizes , with, however, 400 interpolation points on the
curve regardless of grid size. Computation of the dynamic

coefficients for 400 points usually took from 0.350 to 1 .O s of real
time, so the computation time is probably about 0.35 s. The
computation times for the dynamic coefficients vary as the cube of
the number of joints. Thus, for a manipulator with six degrees of
freedom instead of three we would expect about eight times as
much computation. Taking 100 times the 0.35 s, to be very
conservative, gives 35 s for 400 points. But 400 interpolation
points are hardly necessary for a grid with a value of 40 for Nx; 80
points would certainly be adequate, giving a computation time of
about 7 s for the dynamic coefficients, not an unreasonable figure
if the motion is to be repeated a large number of times.

The times given in Table II are real times for the DP algorithm
on a lightly loaded system (average of approximately 2 tasks
running concurrently). The times must therefore be regarded as
approximations to the actual computation times. Table II also lists
the function 6 x 10 -‘NNxN;, which seems to give a good match

SHIN AND MCKAY: TRAJECTORY PLANNING OF ROBOTIC MANIPULATORS 499

V

1

(b)

Motor voltages versus time, 40 x 160 grid.
Fig. 4. (a) Minimum time phase plot for PACS arm, 30 x

V
I

Fig. 6. (a) Phase plot for PACS arm, (b) r m m u m . . time-energy, 20 X 40 grid.
(b) Motor voltages versus time, 20 X 40 grid. 160 grid. (b)

I (b) I (b)
Fig. 5 . (a) Phase plot for PACS arm, minimum time-energy, 10 x 10 grid. Fig. 7. (a) Minimum time phase plot for PACS arm with power limit, 10 x

(b) Motor voltages versus time, 10 x 10 grid. 10 grid. (b) Motor voltages versus time, 10 x 10 grid.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, NO. 6, JUNE 1986

I
(b)

Fig. 8. (a) Minimum time phase plot for PACS arm with power limit. 20 X
40 grid. (b) Motor voltages versus time, 20 x 40 grid.

TABLE II
COMPUTATION TIMES FOR DIFFERENT GRID SIZES (SECONDS)

N , 1 N, I minimum I average predicted
10 I 10 I 1.217 I 1.355 I 0.6 -~
10

70.8 110.367 92.050 80 20
19.2 25.5 19.917 40 20
2.4 5.260 3.583 20

40 38.4 33.856 29.967 40

to the actual running time, as predicted in Section III-D. It should
be noted that the program was run with all debugging features
enabled, and that no serious attempt was made to optimize the
source code. Indeed, there are redundant computations in several
places which could be eliminated.

The effect of grid size on the quality of the results of the
dynamic programming algorithm is of practical importance. The
grid must be fine enough to give good results but not so fine that
the time required to perform the DP algorithm is excessive.
Intuitively, varying the number of rows and number of columns in
the grid will have different effects on the results. Varying the
number of columns (the number of h-divisions) varies the
accuracy of the dynamic model; using a smaller size yields a more
accurate approximation to the true dynamic model, since the
“pieces” in the piecewise-constant dynamic model will be
smaller. Varying the number of rows (the number of p-divisions)
varies the accuracy of the approximation to the true minimum-cost
solution; a finer grid size will in general yield a beter approxima-
tion.

Another important factor is the ratio of the number of rows to
the number of columns. If the number of columns is very large
and the number of rows is very small, then the slope of the curves
connecting one point in the DP grid to another must be either zero
or very large. Since the torque bounds induce bounds on the slope
of the curve, it is possible that the DP algorithm may not even be
able to connect a point to its nearest diagonal neighbor. In this
case, the algorithm will give no solution at all. Therefore, when
choosing grid size, one must 1) choose the X-divisions to be small

enough to make the piecewise-constant dynamic model of the
robot sufficiently accurate, 2) choose the p-divisions to be small
enough so that the resulting trajectory is a satisfactory approxima-
tion to the true minimum-cost trajectory, and 3) make sure that the
pdivisions are small enough so that the slope of a curve
connecting two adjacent points in the grid is small.

VI. CONCLUSIONS

We have presented a new, elegant manipulator trajectory
planning method for which dynamic programming is used as a
main tool. Because of the reduced dimensionality, use of dynamic
programming does not suffer from the “curse of dimensionality”
and provides power and flexibility to handle very general cost
functions and constraints. Moreover, we proved that the DP
method produces a solution which converges as the h interval
approaches zero.

The results are significant in that the present method can
provide a simple approximation to the truly optimal trajectory
solution to any desired degree of accuracy, whereas the wnven-
tional methods either treat only special cases or resort to complex
approximations or unrealistic assumptions on constraints.

REFERENCES

R. Bellman, “Functional equations in the theory of dynamic program-
ming-IV, A direct convergence proof,” Annak Math., vol. 65, pp.
215-223. Mar. 1957.
J . E . Bobrow, S. Dubowsky, and J . S. Gibson, “On the optimal control
of robotic manipulators with actuator constraints,” in Proc. 1983
Amer. Contr. Conf., June 1983, pp. 782-787.
D. E. Kirk, Optimal Control Theory: An Introduction. Engle-
wood Cliffs, NJ: hentice-Hall, 1971. pp. 53-106.
C.-S. Lin, P.-R. Chang, and J. Y. S. Luh, “Formulation and

manipulators,’’ IEEE Trans. Automat. Contr., vol. AC-28, pp.
optimization of cubic polynomial joint trajectories for industrial

1066-1074, Dec. 1983.
T. Lozano-Perez, “Spatial planning: A configuration space approach,”

J. Y . S. Luh and C. E. Campbell, “Collision-free path planning for
IEEE Trans. Comput., vol. C-32, pp. 108-119, Feb. 1983.

industrial robots,” in Proc. 21st Conf. Decision Contr., Dec. 1982,

J. Y. S. Luh and C. S. Lin. “Optimum path planning for mechanical
manipulators,’’ ASME J, Dynam. Syst., Measurement, Contr., vol.

J. Y. S. Luh and M. W. Walker, “Minimum-time along the path for a
102, pp. 142-151, June 1981.

mechanical arm,” in Proc. 16th Conf. Decision Contr., Dec. 1977,

L. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “Resolved-

Automat. Contr., vol. AC-25, pp. 468-474, June 1980.
acceleration control of mechanical manipulators,” IEEE Trans.

N. D. McKay, “Minimum-cost control of robotic manipulators with
geometric path constraints,” Center for Research on Integrated
Manufacturing, Univ. Michigan, Robot Syst. Division Tech. Rep.

R. P. C. Paul, Robot Manipulators: Mathematics, Programming,
and Control. Cambridge, MA: M.I.T. Press, 1981.
K. G . Shin and N. D. McKay, “Minimum-time control of a robotic
manipulator with geometric path constraints,’’ in Proc. 22nd Conf.
Decision Contr., Dec. 1983. pp. 1449-1457; also in IEEE Trans.

pp. 84-88.

pp. 755-759.

RSD-TR-16-85, Oct. 1985, pp. 94-111.

Automar. Contr.. vol. AC-30. pp. 531-541. June 19x5
131 -. “Open-loop minimum-timLcontrol of mechanical manipulators

and its application.” in Proc. 1984 Amer. Conrr. Conf., San Diego,

141 -, ‘’Selection of near nunmum-time geometric paths for robotic
CA, June 1984, pp. 1231-1236.

manipulators,” Center for Research on Integrated Manufacturing,
Univ. Michigan, Robot Syst. Division Tech. Rep. RSD-14-84, Oct.

151 J . L. Tumey. T. N. Mudge, and C. S. G . Lee. ”Connection between
1984; and this issue, pp. 501-511.

control,” Center for Research on Integrated Manufacturing, Univ.
formulations of robot arm dynamics with applications to simulation and

161 D. E. Whitney, “Resolved motion rate control of manipulators and
Michigan, Robot Syst. Division Tech. Rep. RSD-TR4-82, Nov. 1982.

human prostheses,” IEEE Trans. Man-Machine Syst., vol MMS-10,
pp. 47-53, June 1969.

Kang G. Shin (S’75-M’78-SM’83), for a photograph and biography, see this
issue, p. 511.

Neil D. McKay, for a photograph and biography, see this issue, p. 511.

