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A Dynamic  Programming  Approach to Trajectory 
Planning of Robotic Manipulators 

Abstract-This paper presents a solution to the problem of mhimking 
the cost of moving a robotic manipulator along a specified geometric path 
subject to input torque/force constraints, taking the coupled, nonlinear 
dynamics of the manipulator into  account. The proposed method uses 
dynamic programming (DP) to  find the positions,  velocities, accelera- 
tions,  and torques that minimize cost. Since the use of parametric 
functions reduces the dimension of the state space from 2n for an n- 
jointed manipulator, to two, the DP method does  not  suffer  from the 
“curse of dimensionality.” While maintaining the elegance of  our 
previous trajectory planning method, we have developed the DP method 
for the general case where 1) the actuator torque limits are dependent on 
one  another, 2) the cost  functions can have an arbitrary form, and 3) 
there are constraints on thejerk,  or derivative of the acceleration. Also, 
we have shown that the DP  solution converges as the grid size decreases. 

As numerical examples, the trajectory planning method is simulated for 
the first three joints  of the PACS arm, which is a cylindrical arm 
manufactured by the Bendix Corporation. 

I. INTRODUCTION 

E FFICIENT control of industrial robots is a key to the success 
of contemporary industrial automation which is built around 

robots, more specifically robotic manipulators. The problem of 
robot control is very complex because of the nonlinearity and 
couplings in robot dynamics and is therefore usually solved by a 
two-stage optimization. The first stage is called path or 
trajectory planning, and the second stage is called control or 
trajectory (or path) tracking. The trajectory tracker is responsi- 
ble for making the robot’s actual position and  velocity match 
desired values of position and velocity [9], [16]; the desired values 
are provided to the tracker by the trajectory planner. The 
trajectory planner receives as input spatial path descriptor [5], [6] 
from which it calculates a time history of the desired positions, 
velocities, and joint torques. Note  that the reason for dividing the 
control scheme in this way is for tractability of the robot control 
problem. 

Earlier trajectory planners, such as those presented in [7], [8] 
use linear and/or nonlinear programming to generate desired 
positions, velocities, and accelerations. These methods assume 
that the desired path is given in terms of the path’s endpoints and a 
set of intermediate points or  comer points. Along each segment of 
the path the (constant) maximum accelerations and velocities are 
given. In general, these constant bounds  may be quite inaccurate 
for some parts of the segment, since worst-case bounds for the 
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whole segment must be used. Additionally, these methods provide 
no rigorous means of obtaining the maximum accelerations and 
velocities; thus, once the trajectory planning process has been 
completed, the solution must be validated to make certain that the 
robot’s capabilities are not exceeded. 

The algorithms presented in [2] and [121, [13] do not suffer 
from either of these problems, since they calculate acceleration 
and velocity limits directly from the given path and the robot’s 
dynamic equations and actuator characteristics. The method 
presented in [2] uses phase plane plots to construct the optimal (in 
the minimum-time sense) trajectory for a given robot path. It is 
assumed that the path is given in parameterized form, and that the 
actuator torque limits are functions only of the position and 
velocity  of the manipulator. This method  will solve the minimum- 
time trajectory planning problem for a wide variety of robots, 
provided the actuator torque limits are independent of one 
another. We have developed a similar method in [12] indepen- 
dently of [2]. However, the technique for d9termining switching 
points in [I21 is different from that used in [2]. It is more direct, 
but requires that the torque bounds be at most quadratic in the 
velocity. In practice, this is usually the case, so the limitations on 
the forms of the torque bounds should not significantly limit the 
applicability of the method. Moreover, the method in [12] can 
handle the general case where the feasible regions in the phase 
plane are not simply connected, whereas that in [2] cannot. 

While these methods are quite elegant, they do have some 
drawbacks. First, they work only for minimum time problems. In 
situations where driving the robot consumes large amounts of 
power, the assumption that minimum time is equivalent to 
minimum cost may  not be valid. Second, it  is assumed that the 
joint torques can be changed instantaneously. This is only 
approximately true, and indeed it is desirable to limit the 
derivatives of the joint torques (or: equivalently, the jerk,  or 
derivative of the acceleration) to prevent excessive mechanism 
wear. Third, they are unable to handle the general case where the 
actuator torque limits are dependent on one another. This 
dependency occurs, for example, when a robot uses a common 
power supply for the servoamplifiers for all joints. 

The correction of these deficiencies is the aim of this paper. 
The method proposed here is to use dynamic programming [3], 
rather than the methods described above, to find the optimal phase 
plane trajectory. Unlike those methods, dynamic programming 
places few restrictions on the cost function that is to be minimized. 
Putting limits on jerk is also possible, and interdependence of 
torque bounds can be handled fairly painlessly, as will be seen 
later. Since the use of parametric functions reduces the dimension 
of the state space from 2n for an n-jointed manipulator to two, the 
dynamic programming method does not suffer from the “curse of 
dimensionality.” 

The remainder of this paper is divided into four sections. 
Section II gives a detailed description of the problem. Section III 
presents a solution algorithm using dynamic programmlag. 
Section IV deals with the convergence of the dynamic program- 
ming algorithm. Section V presents numerical examples using the 
Bendix PACS arm. Using these numerical examples, first, we 
compare the results of the direct minimum-time phase plane 
methods [13] to those of the dynamic programming technique. 
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Second, we examine the sensitivity of the trajectory planning 
solution to the grid size. Third, the dynamic programming method 
is applied to the general case where 1) cost functions other than 
minimum time, and 2) coupling among the actuator torque bounds 
are considered. Finally, Section VI states conclusions drawn from 
our results. 

II. PROBLEM  STATEMENT 

The goal of automation is to produce goods at as low a cost as 
possible. The  minimumcost trajectory planning (MCTP) in the 
two staged realization of manipulator control, i.e., planning first 
and tracking next, is thus of utmost importance to any effort in 
accomplishing the goal. 

A loose statement of the MCTP problem is as follows: 

What control  signals  will  drive a given  robot from a given 
initial  configuration to a given  final  configuration with as low a 
cost as possible,  given  constraints  on the magnitudes and 
derivatives of the  control  signals and constraints on  the 
intermediate  configurations of the  robot, i.e., given  that  the 
robot  must  not  hit  any obstacles? 

While the problem of avoiding obstacles in the robot’s 
workspace [5], [6] is not a control theory problem in the normal 
sense, the problem of  moving a mechanical system in  minimum 
cost is. One way to sidestep the collision avoidance problem, 
then, is to assume that the desired path has been specified apriori, 
for example as a parameterized curve in the robot’s joint space. 
If this assumption is added, then one obtains a second, slightly 
different problem statement: 

What controls  will drive a given  robot  along a specified  curve 
in joint space  with  minimum cost, given  constraints on  initial 
and final  velocities and  on control  signals and their  deriva- 
tives? 

This form of the problem reduces the complexity of the control 
problem by introducing a single parameter that describes the 
robot’s position. The time derivative of this parameter and the 
parameter itself completely describe the current state (joint 
positions and velocities) of the robot. The control problem then 
becomes a two-dimensional minimumcost control problem with 
some state and input constraints. 

Usually, a geometric path can be constructed by connecting 
endpoints and intermediate points with some means such as 
straight line segments or cubic splines. In such a case, the 
geometric path can be given in the form of a parameterized curve2 

q’=f’(h),  O<h<A,, (2.1) 

where qi is the position of the ith joint, q = [qi, q2,  * . e ,  q“] 
represents the joint position vector for an n-jointed manipulator, 
and the initial and fiial points on the geometric path correspond to 
the points X = 0 and h = X-. Also assume that the set of 
realizable torques can be given in terms of the state of the system, 
i.e., in terms of the robot’s position and velocity. Then we have 

U = ( U I ,  112, U n ) T  E E ( q ,  4)  (2.2) 

where q is the first derivative of q with respect to time, and ui is 
the ith actuator torque/force. E is a function from R” X R” to the 
space of sets in R”. In other words, given the position and 
velocity, E determines a set in the input space. The input torques 

intermediate knot points which, if necessary, are transformed pointwise to 
I The task planner generates a sequence of Cartesian points and additional 

points in joint  space [ll]. These  joint points are then interpolated to  form a 
geometric path in  joint  spaces, e.g., [4]. However, this process is not in the 
S C ~  of the present paper. 

- Note, however, that the determination of an  “optimal” (in some sense) 
parametric functionf is an open research problem. See [14] for  an example. 

ui are realizable for position q and velocity q if and only  if the 
torque vector u is  in the set E ( q ,  q ) . 3  

In practice, it is desirable to limit the derivatives of the joint 
torque (or, equivalently, derivative of the acceleration, or the 
jerk) to prevent excessive mechanism wear. This need introduces 
inequalities 

1~ii1SKi (2.3) 

where Ki is a constant. 
The manipulator dynamic equations usually take the form 

where the Einstein summation convention is used, and 

Jjj = the inertia matrix, 
C,k = the array of centrifugal and Coriolis coefficients, 
Rjj = the viscous friction matrix, and 
G, = the gravitational loading vector. 

If the equations of the parameterized path are plugged into the 
dynamic equations, then they become (see [12] for a detailed 
derivation) 

u . = J . . - p +  d f j  . ( J..-+c.. d2fJ -- d f J d f k )  p 2 + R . . -  d f J  
I lJ dh IJ dh2 lJk dh   dh  dh P + G *  

(2.5) 

Here, p is the time-derivative of the parameter X, i.e., p = X. 
The cost C will be assumed to take the form 

C =  Lo\, 8, ui) dh. 
hmax 
0 

The  MCTP problem then becomes that of minimizing (2.6) 
subject to (2.5) and the inequalities (2.2) and (2.3). 

III. MCTP USING DYNAMIC PROGRAMMING 

To see how dynamic programming can be applied to this 
problem, first note  that by using the parameterized path (2. l),  the 
dimensionality of the problem has been reduced; there will be 
only two state variables X and p, regardless of  how  many joints 
the robot has. The  “curse of dimensionality” has therefore been 
avoided. To apply dynamic programming, one first must divide 
the phase plane (X - ,u plane) into a discrete grid. Then, the costs 
of going from one point on the grid to the next  must be calculated. 
Note  that since ui is a function of h and p as shown in (2.5), (2.6) 
are given strictly in terms of X and p;  thus the cost computation 
can be done entirely in phase coordinates. Once costs have been 
computed, the usual dynamic programming algorithm can be 
applied, and positions, velocities, and torques can be obtained 
from the resulting optimal trajectory and (2.1) and (2.5). 

The informal description given above describes the general 
approach to the MCTP problem. In detail, there are some 
complications. Therefore, some simplifying but realistic assump 
tions will be made as we proceed. First, rewrite (2.5) in a more 
convenient form 

ui=Mik + Qip2 + Rip + Si (3.1) 

where 

3 This dependence can be Seen easily in the case of DC servodnven 
manipulators. 
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Note that Mi, Qi, Ri, and S; are all functions of the parameter X, 
but their dependencies on X are omitted throughout this paper for 
notational simplicity. 

Now choose the grid’s Xdivisions to be small enough so that 
the functions Mi, Qi,  Ri, Si, and df ’ /dh  do not change 
significantly over a single interval. Then, the coefficients of (3.1) 
are‘effectively constant. We may also form a single equation from 
equations (3.1) by taking the projection of the input torque vector 
ui onto the velocity vector df’/dh, obtaining the single equation 

U E u;-=M,i+Qp’+Rp+S (3.2) 

where M = M;df’/dh, Q = Qidf’/dX, R = R;df’/dX, and S 
= S;df’/dh. Using the fact that p = X, we  may divide (3.2) by p 
to obtain 

df’ 
d h  

- U = M - + Q p + R + - S  
P cc cc 
1 i 1 

(3.3) 

or, using  the  identity , i /p = (dp/dt)/(dx/dr) = dp/dA, we  have 

M-+Qp+R+-(S-U)=O. dF 1 
d h  P (3.4) 

Note that (3.4) does not explicitly depend on time. Therefore,  for 
purposes of carrying out the dynamic programming algorithm, we 
may treat the quantities X and p as a stage variable and a single- 
state variable rather than two state variables. Using (3.4) as our 
(single) dynamic equation, and noting that M ,  Q, R ,  and S are 
approximately constant over one X-interval,  we need to find a 
solution to (3.2) which meets the boundary conditions 

p(Xk)=hLoI P ( k k + I ) = P l  (3.5) 

in the interval [X,, X k +  l]. In order to do this, some form for the 
inputs ui needs to be chosen. It should be noted that as the DP grid 
becomesfiner, the precise form of the curves joining the points of 
the grid matters less. As long as the curves are smooth and 
monotonic, the choice of curves makes a smaller and smaller 
difference as the grid shrinks. The implication of this is that we 
may choose virtually any curve that is convenient, and as long as 
the grid size is small, the results should be a  good approximation 
to the optimal trajectory. 

We will use the form 

u;=Q;p2+Rip+ V,  (3.6) 

for the input, where the Vi are constants that may be chosen to 
make the solution meet the boundary conditions (3.5). Form (3.6) 
was chosen because it yields particularly simple solutions. 

In what follows, we obtain first a solution without the torque 
bound interaction, and then extend the solution to accommodate 
torque constraints of  a much more general type.  

A .  Case of Noninteracting  Torque Bounds 

When the joint torque bounds do not interact, the sets E in (2.2) 
are given by 

E ( q ,  Q)={(uI ,  un)Tlumin(q, Q)suisukax(q> 4 ) ) .  

(3.7) 

Taking the projection of the input torque vector, as given by 
(3.6), onto the velocity vector df’/dh gives U = Qp2 + Rp + 
V,  where Y = V,df’/dh. Plugging this into (3.4) and simplifying 
gives 

Solving this equation, we get 

(3.9) 

Evaluating the constant of integration K and the constant V so that 
(3.9) meets the boundary conditions (3.5), one obtains 

Solving for p in terms of X gives4 

(3.10) 

P = S h , + l - h ) p : t ( h r - h , ) p :  (3.11) 
h k + l - h k  

Now that the path is known over one X-interval, we need to 
know the inputs ui and the components of the incremental cost. 

To evaluate the input torques, we may use (3.1) and the value of 
,i. Noting that i = b / p - p  pdp/dX and using ( 3 . Q  we obtain 

p=-- ’ ( ‘- ‘) - constant. M (3.12) 

The quantities M and S are given, and, using (3.11) and (3.12), V 

which gives = (Jif - , u ; ) / 2 ( h k + I  - hk). Therefore, the 
equations for ui become 

Can be GdCUlated t0 be = S M/2*(Jii - p ; ) / & + l  - h k ) ,  

2 2  

u;=Qip2+R;p+S;+M;. P l - P O  (3.13) 
2 ( x k + l - X k )  

Assuming the joint torque limits are independent, determining 
whether joint i ever demands any unrealizable torques requires 
that we  know the maximum and minimum values of ui over the 
interval [X,, X k +  (or equivalently over the interval [min (po, pI), 
max (u,,, pl)] since h is  a monotonic function of p over the interval 
under consideration). The maxima/minima may occur at one of 
three p values, namely b, p I ,  and the value of p that maximizes 
or minimizes ui over the unrestricted range of p.  In the latter case, 
the value of ,u is p m  = - Ri/2Qi. If the condition 

min b o ,  pJsp , smax  b o ,  111) (3.14) 

holds, then the point pm needs to be tested. Otherwise, the torques 
must be computed and checked only at the endpoints of the 
interval. 

Given the formulas for the velocity and the joint torques, the 
incremental cost can be found using the formula 

(3.15) 

where p and ui are given as functions of X by formulas (3.1 1) and 
(3.13), respectively. It may be possible to evaluate this integral 
directly; if not, then the integral may be approximated by any  of 
the standard techniques. Section IV shows that the DP algorithm 
converges when the integral is approximated using the Euler 
method. Using more sophisticated algorithms should give faster 
convergence than the Euler method. 

With these formulas at hand, it  is  now possible to sate the 
dynamic programming algorithm in detail. Initially, the algorithm 
will be stated for the case in which there  are no limits on the time 
derivatives of the torques. These constraints will be considered 
later in Section III-C. The algorithm, given the dynamic equations 
(2.5), the equations of the curve (2. l), the joint torque constraints 
(3.7), and the incremental cost (3.15), is as follows. 

SI:  Determine the derivatives df’/dh of the parametric 

’ In [12] we proved that p 2 0 is always true. 
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functions y(A), and from these quantities and the dynamic 
equations determine the coefficients of (3.1) and (3.2). 
S2: Divide the (A, p )  phase plane into a rectangular grid with 

NA divisions on the A-axis and N, divisions on the p-axis. 
Associate with each point (A,,,, p,) on the grid a cost C,,,, and  a 
“next row” pointer P,,,,. Set all costs C,, to infinity, except for 
the cost of the desired final state, which should be set to zero. Set 
all the pointers P,, to null, i.e., make them point nowhere. Set the 
column counter a to NA. 

S3: If the column counter a is zero, then stop. 
S4: Otherwise, set the current-row counter f l  to 0. 
S.5: If f l  = N,, go  to S12. 
S6: Otherwise, set the next-row counter y to 0. 
S7: If y = N,, go  to S11. 
S8: For rows f l  and y, generate the curve that connects the (a 

- 1,fl)  entry to the (a, y) entry. For this curve, test, as described 
in  the previous paragraphs, to see if the required joint torques are 
in  the range given by inequalities (3.7). If they are not, go to S10. 
S9: Compute the cost of the curve by adding the cost C ,  to the 

incremental cost of joining point (a - 1,fl) to point (a, y). If this 
cost is less than the cost Ca-l,a, then set Ca-l,s to this cost, and 
set the pointer P,-l,a to point to that grid entry (a, y) that 
produced the minimum cost, i.e., set P a - I , ~  to y. 
SIO: Increment the next-row counter y and go to S7. 
SII: Increment the current-row counter f l  and go to S5.  
S12: Decrement the column counter a and go to S3. 
Finding the optimal trajectory from the grid is then a matter of 

tracing the pointers P,, from the initial to the final state. If the 
first pointer is null, then no solution exists; otherwise, the 
successive grid entries in the pointer chain give the optimal 
trajectory. Given the optimal trajectory, it is then possible to 
calculate joint positions, velocities, and torques. 

B. Case of Interacting Torque Bounds 

It has been assumed in the preceding discussion that the joint 
torque limits do not interact, i.e., that increasing the torque on one 
joint does not decrease the available torque at another joint. This 
assumption manifests itself  in the form of the torque constraint 
inequalities (3.7). This assumption is probably correct in many 
cases, but in others it certainly is not. Here it  will be assumed that 
the inequalities (3.7)  are replaced with the constraint (2.2), 
namely (ul, u:, * ,  u ” ) ~  E E ( q ,  4 ) .  

There are a number of situations in which joint torque limits 
might interact. Consider, for example, a robot that has a common 
power supply for the servoamplifiers for all joints. The power 
source will have some finite limit on the power it can supply, so 
that the sum  of the power consumed by all the joints must  be less 
than that limit. A similar situation arises when  a single pump 
drives several hydraulic servos. The pump will have finite limits 
on both the pressure and the volume flow it can produce. Such 
interacting torque bounds must be considered along with the 
noninteracting bounds, such as servomotor  saturation limits. It is 
interesting to note that the limits described above all produce set 
functions E in (2.2) which are convex. For example, if the sum of 
the power consumed (or produced) in all the joints is bounded, 
one obtains 

PminIu;Qi5Pm. (3.16) 

For any given velocity, this is just the region between a pair of 
parallel hyperplanes in the joint space. Likewise, for independent 
torque bounds, the realizable torques are contained in a hyper- 
rectangular prism,. another convex region. Since the intersection 
of any number of convex sets is a convex set, any combination of 
these constraints will also yield a convex constraint set. In this 
light, it  is reasonable to make the assumption that the set E (4, q )  
is convex. This assumption is important in the analysis that 
follows. 

To see how  we  may make use of this convexity condition, 

consider the test for realizability of torques used in the method 
presented thus far. This test made explicit use of the assumption 
that the torque bounds do not interact. In order to handle 
interacting torque bounds using an approach like that of Section 
IU-A, it must be possible to determine whether all torques are 
realizable over any given X-interval.  If the torques have the form 
used  in (3.6), then this is in general not possible with  any finite 
number of tests; even in the two-dimensional case, the torques 
trace out conics in the input space, and there is no general way to 
determine whether a segment of a conic is entirely contained 
within a convex set. 

Although the question of whether a set of torques is realizable 
cannot in general be given a definite answer, the realizability 
question can be answered in some cases. To see how this can be 
done, consider again the tests for realizability previously de- 
scribed. The maximum and minimum torques for each joint are 
determined, and these torques are checked. While (3.6) describes 
a curve in the joint torque space, the individual torque limits 
describe a box-shaped volume. The  curve describing the joint 
torques will be entirely contained inside this box.  Thus, if every 
joint in the box is admissible, then so is every point  on the curve. 
This “reduces” the problem of determining whether every point 
of  a onedimensional set is realizable to the problem of determin- 
ing whether every point of a higher-dimensional set is realizable. 
However, this higher-dimensional set has a special shape; it is  a 
convex polyhedron, and will be contained in the (convex) set E if 
and only if all its vertices are in E.  Thus, by testing a finite 
number of points, the question of whether a particular set of 
torques is realizable may sometimes by given a definite “yes” 
answer. 

If this test does not give a definite answer, then the set of inputs 
in question must  be discarded, even though that set may  in fact be 
realizable. However, as the grid size shrinks, the size of the 
bounding box for the torques also shrinks, so that  in the limit the 
test becomes a test of a single point. Therefore, as the grid 
shrinks, the percentage of  valid torques thrown away approaches 
zero, and the optimal solution will be found. 
This method of handling interacting torque bounds requires 

only one change in the DP algorithm. Step S8, which checks to 
see if the torques are realizable, must be replaced with  a step that 
generates all comers of the bounding box and tests these points for 
realizability. If  any  of the comers does not represent a realizable 
set of torques, then the test fails. Thus, we have the following. 

S8’: For rows 6 and y, generate the curve that connects the (a 
- 1, /3) entry to the (a, y) entry. For this curve, generate the 
maximum and minimum torques at each joint. Check each torque 
n-tuple formed from the maximum  and minimum joint torques. 
(These are the comers of the bounding box.) If any of these n- 
tuples are not contained in the set E,  then go to S10. 

C. Accommodation of Jerk Constraints 

The methods described thus far have ignored the jerk con- 
straints (2.3) which limit the derivatives of the joint torques. 
Taking these limits into account effectively requires that a third 
state variable be added. That variable can  be taken to be the 
pseudoacceleration $, say v = $. Differentiating the equation 
for the torque, one obtains 

u i = ~ j v + M j 3 + Q i p 2 + 2 Q j p v + R ; ~ + R i v + S j .  (3.17a) 

Using the identity d$/dt = (d$/dA)(dA/dt) = d$/dA.p, th is 
equation becomes 

(3.17b) 

If there are no jerk constraints, then the parameter $ in (3.1) 
can be manipulated as needed. When there are  jerk constraints, 
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points in one column can be connected to each of the N,, points in 
the next column. Each test must be done, but some of the tests are 
simpler than others. If the cost at the next grid point is infinite, 
then there is no point in doing any further calculations. If, on the 
other hand, the cost is f i t e ,  then input torque bounds must be 
checked, and if the input torques are admissible, then costs must 
be calculated and compared. Although actual computation times 
will vary with the particular problem being solved, the way the 
time varies with grid sue  can be roughly determined. To get a 
bound on this time, assume that all the tests and computations 
must be performed. Then each step of the dynamic programming 
algorithm requires KN: s, where K is a quantity which depends 
upon the computer being used and the number of joints the robot 
has. There are Nh - 1 such steps, so the time required is less than 
K(NA - 1)N:. In other words, the execution time is roughly 
proportional to the cube of the grid density. In practice, the value 
of the constant K must be evaluated experimentally. This has been 
done for the numerical example, which does indeed show a time 
dependence proportional to (Nh - 1)N:. 

The dependence of execution time on the number of joints n ,  
i.e., the dependence of the constant K on n ,  is more difficult to 
assess. K in the equation above depends on both n and the 
representation used to describe the curve to be traversed. The 
functions Mi and Ri depend on the matrices Jij and R,, 
respectively, and the Coriolis term Qj depends on the three- 
dimensional array Cijk. In general, then, it might be expected that 
the evaluation of the function Qi might take time proportional to 
the cube of the number of joints. (See, for example, [ 151.) In any 
case, the time required for evaluation of the dynamic coefficients 
is heavily dependent upon the configuration of the robot. 
Fortunately, in practical cases the number of joints would usually 
be no more than six, and almost certainly would be less than eight. 
Since these functions only need to be evaluated once per X- 
division of the DP grid, their evaluation will probably be only a 
minor part of the total time consumed. This being the case, the 
dependence of execution time on n is not  an important factor. (For 
the numerical example considered here, this is certainly true.) 

If the algorithm for handling interacting joints is used, then the 
dependence of the time on the number of joints increases 
exponentially with the number of joints, since there are  2“  comers 
on the bounding box for the input. While this would seem to make 
the algorithm useless, it should be noted that the size of the 
bounding box decreases as the grid size shrinks, so that in practice 
it  may be sufficient to test a single point in the box, say the center, 
instead of testing all 2”  comers. 

we must instead manipulate 3 in (3.1%). Equation (3.17b) and 
constraints (2.3) then give constraints on 3, just as (3.1) and 
constraints (2.2) yield constraints on i .  

To solve the optimization problem with jerk constraints using 
dynamic programming, a three-dimensional grid is required, with 
one dimension for each of X, p ,  and Y. Some form must be 
assumed for  the  “inputs” ri,, as was done for I(; when there were 
no jerk constraints, i.e., (3.6). Because the grid points that the DP 
algorithm must join from a pair of planes, rather than a pair of 
lines or columns, as in the two-dimensional case, the form of the 
input  must contain two arbitrary constants instead of one. If only 
one parameter is used, then it  will  not be possible to connect 
arbitrarily chosen points in the DP grid. The problem is thus 
inherently more complicated than the two-dimensional case, at 
least in terms of the algebra required to produce a solution. The 
procedure is otherwise the same as that for the two-dimensional 
case. 

D. Algorithm CompIexity 

The usefulness of the dynamic programming technique depends 
on its being reasonably efficient in terms of use of computing 
resources, i.e., it must run reasonably fast and must  not use too 
much memory. Since the trajectory planning is done off-he,  the 
algorithm’s time requirements are not particularly critical; never- 
theless, the time required must  not be exorbitant if trajectory 
planning is to be worthwhile. Likewise, computer memory is 
relatively inexpensive, but nevertheless puts some limits on the 
accuracy with which the dynamic programming algorithm can be 
performed. In this section we present an approximate analysis of 
the time and memory requirements of the algorithm. Of course, 
precise numbers will depend rather heavily  upon such variables as 
the computer on which the algorithm is to run, the language in 
which it is implemented, the compiler used, and the skill  of the 
programmer who writes the code, so the expressions derived here 
contain a number of implementationdependent constants. 

It is easy to compute the storage requirements for the algorithm. 
The memory allotted to the program itself is essentially fmed. The 
size of the grid used for the dynamic programming algorithm 
varies with the fineness of the grid and the amount of storage 
required per point on the grid. The  grid has N, rows and NA 
columns. Each entry must contain a cost C and a pointer P.  The 
size of an entry will then be GS = S, + S,,, where GS is the 
storage requirement for a single point of the grid, and S, and S, 
are the amounts of storage required to record the cost and the 
pointer to the next row, respectively. In the implementation 
presented here, parameterized curves are represented as arrays of 
points. If one assumes that there is one point per X-division, then 
there is an additional sd + NA&, where Si is the storage required 
for one interpolation point on the curve and S d  is a certain fixed 
storage per  curve. Multiplying GS by the number of grid entries 
and adding the amount of storage PS required for the program and 
the storage required for the curve gives total storage TS as 

Ts=Ps+N~N,(s,+s,)+N~s;+sd. (3.18) 

For the numerical example presented in this paper, all 
arithmetic was done in double precision, and integers and pointers 
are four bytes long. Then  for a six-jointed manipulator the storage 
required is, ignoring the program storage 

TS=12NANP+8O+448N~. (3.19) 

Thus,  for a 20 X 80 grid, the storage required is 28 240 bytes. 
This can, of course, be reduced considerably by  using single 
rather than double precision; however, even using double 
precision, the storage required is generally available on small 
microprocessors. 

Calculating the time required to perform the dynamic program- 
ming algorithm is somewhat more difficult. There will  be Nh - 1 
steps, where each step requires testing to see if each of the N,, 

IV. CONVERGENCE PROPERTIES 

The previous section describes the complexity of the DP 
algorithm. It is obvious from the discussion that the fineness of the 
DP grid will have a significant impact on the running time  of the 
algorithm. It will also affect the accuracy of the results. This 
section describes the effect of the grid density on the accuracy of 
the DP solution in a quantitative manner. 

Bellman proved in [l] that discrete approximations to a 
continuous optimal control problem will converge (in  a sense to be 
defined) as the step size of the DP stage variable decreases. 
However, the class of systems to which Bellman’s proof applies 
does not cover those considered in this paper. In particular, 
Bellman assumes that the dynamic equations of the system are not 
functions of the stage variable, which is the same as X in this 
paper. We proved a theorem in [lo], which is an extension of that 
of  Bellman  in that it allows the dynamic equation and cos: functlon 
to be (possibly discontinuous) functions of the stage variable. The 
proof presented in [lo] also corrects some minor errors in 
Bellman’s proof. 

Like Bellman’s proof in [ 11: we proved that a sequence of 
discrete dynamic programming processes with decreasing step 
sizes will produce, under appropriate conditions, a convergent 
sequence of return functions. It should be noted that the optimal 
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control policy may  not converge even though the return functions 
do. But since the return function is of primary interest, not the 
details of the control policy, control policy convergence is  not 
generally important. 

From the discussion thus far, it is clear the the manipulator 
dynamics and required constraints take the form 

where the control variable us must meet some set of constraints 

Q&, p, U ) S O ,  q = l ,  2, * * a ,  c. (4.2) 

Also write the objective function J to be maximized as follows: 

Jw=eoL(x&)+ S,"- F ( X ,  p9 (4.3) 

subject to the initial condition p(0) = po. Note that the boundary 
condition ,u(h& = pfcan be enforced by taking 8(p(Xmar)).to be 
zero if p = pf and - 03 otherwise. The dynamic programming 
method approximates this continuous problem by discretizing the 
dynamic equation and objective function using the Euler method, 
giving 

P k + I = P k + G ( X k ,   p k ,   u k ) A  (4.4) 

N -  I 

(4.5) 

fn+l(C)=SuP [F (h -n - l ,  C, VIA 
" 

+fn(C+G(XN-n-It C, u ) A ) ] ,  nrO. (4.9) 

Note that sup has been used instead of max. This is done to allow 
the use  of discontinuous functions and constraint sets which are 
not closed. It does not materially change the results of the dynamic 
programming process in that we  may make the return function f n  
as close to the optimal value as we please. To see this, consider a 
single stage of an N-stage process. For each k and E > 0, we  may 
makefk to be within ~ / 2 ~  of its optimal value, thus makingLv be 
within 2~ of the optimum. Since E may be as small as we please, a 
control strategy can be constructed which  will make the return 
function agree with the optimum value to within  any desired 
tolerance. 

We are now  in a position to state the main theorem. It states that 
the return functions for the dynamic programming problem 
converge, provided that the functions F and G satisfy some 
Lipschitz conditions everywhere except at a finite number of jump 
discontinuities, and provided that the variable p can be guaranteed 
to stay within appropriate bounds. 

This is the same as in the previous discussions. 

Theorem: Let the input u satisfy 0 I u I 1, and let F and G 
satisfy the Lipschitz conditions 

IF(X1, c1, u)-F(Xz,  cz, u ) ( ~ ~ I c 1 - ~ * l Q + ~ I ~ 1 - ~ 2 I ~  

1 m ,  CI, u ) - F ( A ,  c2, ~) l~Klc1-C2Iu  

lG(11, C I ,  u)-GO\z, c2, U)~~LICI-CZI '+CIX~-XZI*  

( G ( L  CI,  v)-G(X, CZ, ~ ) ~ ~ L ~ c I - c z ( '  

where (Y > 0, y 2 1, /3 2 0, and 6 2 0, for all admissible X and 
u, for all pmin 5 cI, cz 5 p- ,  and for all XI ,  and X2 such that the 
interval [min (X,, Xz), max (X,, X,)] does not contain any  of the N d  
points of discontinuity d l ,  dz, . * -, d,%,< Also  let F and G satisfy 

IF(X1, Clr U)-F(hz, cz, u) l IK Ic1 -c2 lQ+B 

and 

JG(X1, C I ,  u)-G(Xz, ~ 2 .  ~ ) J ( L I C I - C ~ ~ ~ ' + C  

for all admissible XI ,  A2, cI, cz, and u. Then the discrete dynamic 
programming process yields return functions which converge to a 
limit as the step size A goes to zero, provided that p k  can be 
guaranteed to stay in the interval [bin, pmJ. 

The proof of this theorem requires the establishment of four 
lemmas, but their proofs are not included here due to page 
limitation. Interested readers are referred to [ 101. 

Roughly speaking, this theorem states that when the functions 
F and G are continuous of sufficiently high order in p and 
piecewise continuous in the stage variable X, then the discrete 
dynamic programming process converges. 

One important point is that in order to  apply the theorem, it 
must be guaranteed that F~ stays within the range in which the 
Lipschitz conditions are valid. This can be accomplished in 
several ways. If,  for example, G(1, ,LA,,,,, u )  s 0 and G(X, pmin, 
u )  2 0 for all X, then the optimal trajectory can never escape the 
interval hLmin, pJ. Another way to assure containment in this 
interval is to construct an objective function which guarantees that 
trajectories which stray outside the interval are heavily penalized 
and therefore never selected. This method works for the examples 
in this paper; since the examples all penalize time, they all have 
terms which are inversely proportional to velocity, and so keep 
the velocity ,u greater than some E > 0. 

V. NUMERICAL EXAMPLES 

To demonstrate the use of the dynamic programming al- 
gorithm, we present several examples. These examples use the 
first three joints of a cylindrical electricallydriven manipulator, 
the Bendix PACS arm. The first two joints of this same robot were 
used in [ 131 to demonstrate the phase plane method for obtaining 
minimum time trajectories, so a direct comparison of the methods 
is possible. In addition, several examples will treat cases to which 
the phase plane technique does not apply. 

Before presenting the example, an explicit form of the objective 
function must be chosen. The objective function used here has one 
component proportional to traversal timel T,  and another compo- 
nent proportional to frictional and electrical energy losses. The 
servodrives of the arm  are assumed to consist of voltage source in 
series with a resistor and an ideal DC motor. This gives the form 

- T  ST 

-0 - 0  
C=r,T+r, \ Rijq'qJ dt+r,  \ I j R y  dt 

=r, dX+r, Jy pzRij  dX dX d f '  d f J  
" 0  
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where r, and re are related to revenue generated per item  and the 
energy costs of the motion, respectively, and Zi and RT are the 
motor currents and resistances for joint i. Since the joint torques ui 
are related to the motor currents Zj by the relationships ui = k;/ 
k;Zi, where k;  and kg are the motor constant and the motor 
gearing, respectively, the sum in (5.1) can be written as Xi 
(k;)2R;/(k;)uf .  The torques ui are given in terms of X, p, and i 
by (3.2), which is quadratic in p, so the integral in (5.1) can be 
expressed in terms of integrals of powers of p.  

Since the path  is known over one X-interval, we can 
determine the components of the incremental cost. To do this, we 
-need the integrals l / p  dh,  j ? + l  p dX, [ ? + I  p 2  dX, and 

j k k  p 3  dX.~In general, we have x k ;  1 

\ L /  

Equations (5.1), (5 .2) ,  and (3.1) give the incremental cost as 

It should be noted that this cost function always has a - term 
unless the time penalty is zero and the robot  is  not influenced by 
gravity. (In this case, the optimal solution is  not to move at all!) 
Therefore, the cost function will prevent the trajectory from going 
to zero velocity unless forced by boundary conditions. Also, since 
torques and motor voltages are bounded, the velocity p is 
bounded. Thus p in the DP algorithm stays within some interval 
[pCmin, p , J ,  as is required for convergence. Since the maximum 
and minimum values of the control variable can be computed 
from (3.1), we  may define a new control variable p by the 
relationship 

so that p ranges from zero to one. It is easily shown that the other 
conditions of the convergence theorem are met  if the parameter- 
ized curve is suitably well behaved, so the DP algorithm will 
converge with this cost function. 

The dynamic equations and actuator characteristics for the 
PACS arm are given in [ 141, and are summarized here in Table I. 
A diagram of the arm is given in Fig. 1. The DP algorithm was 
implemented in the C programming language running under 
UNIX on a VAX11-780. The parameterized curves are repre- 
sented as sequences of points. All computations are done for a 
path  which  is a straight line from (0.7, 0.7, 0.1) to (0.4, -0.4, 
0.4), all (Cartesian) coordinates being given in meters. 

To verify the correctness of the dynamic programming al- 
gorithm, it was first applied to the simple two-degree-of-freedom 
robot which was  used in [12]. This robot moves in polar 
coordinates, i.e., it has a 0 joint and an r joint, and was  moved 
from the point (1, 1) to the point (1, - 1) along a straight line. The 
phase plane plots for minimum time, with 10 X 10 and 40 X 40 
DP grids are plotted in Fig. 2 ,  along with the phase plane plots 
calculated by the phase plane method. Reassuringly, the trajecto- 
ries calculated by the DP method seem to converge to the correct 
minimum-time phase plane plot as the grid gets finer. 

Fig. 3 shows the phase plane plot for a 10 X 10 grid with a pure 
minimum time cost function. As can be seen from this figure, joint 
torque/force versus time plots have close resemblance to motor 

TABLE I 
DYNAMIC  COEFFICIENTS  AND  ACTUATOR CHARACTERISTICS FOR PACS 

ARM 

Parameter  Deseri  tion 
Satoration torque 01 B motor 

Satoration torque of z motor 
Lower voltage limit lor B joint 

Lower voltage limit lor z joint 
V a- UDner voltane  limit lor B ioint 

?;at Satamtion torque d r motor 

I v.* Lower voltage Limit lor r joint 

2.0 Nt.-M. 
0.05 Nt.-hi. 
2.0 Nt.-M. 

-40 v 
-40 v. 

.. v;- 40 v. Upper  voltage limit lor r joint 
V#- 

k I  
Upper voltage lipit lor I joint 

k- 
k P  

0.00318 Meter+adian Gear  ratio lor z drive k? 
0.00318 Meters/radian Gear  ratio lor r drive k? 

Motor constant fop B joint 
Motor constant lor b joint 

0.0397 Nt.-M./amp 

kF Motor constant lor z joint 
0.79557 X lo4 Nt.-M/amp 

0 . W  Nt.-M./amp 

40 v. 
0.01176 Gear ratio for 0 drive 

R," 

kz 
Friction coellicient 01 r joint kr 

Friction coellicient 01 B joint kt 

I n  Motor and  power  supply resistance, E joint R,? 
I n  Motor and  power  supply  rc&tance, r joint R," 
I n  Motor and  power  supply  resistance, B joint 

MI 
Friction  coefficient 01 z F i t  

Mass of r joint 
M. b of I joint 
Jt Moment 01 inertia  around B axin 
K Moment of inertia onset term 

8.0 Kg.-M. ' /~ee . /rd .  
4.0 Kg./=. 
1.0 Kg./=. 

10.0 Kg. 
40.0 Kg. 

12.3183 Kg.-M. * 
3.0 Kg.-M. 

Fig. 1. Diagram of the Bendix PACS robot arm. 

T- rnhlmun tlm wlut(m 

L 

Fig. 2. Minimum time phase plane plots for a polar manipulator with 10 X 
10 and 40 x 40 grids. voltage versus time plots.- Hence, joint torque/force versus time 



498 IEEE TRANSACTIONS  ON AUTOMATIC CONTROL, VOL. AC-31, NO. 6, J U N E  1986 

1 

P 

(e) 

Fig. 3. (a) Minimum  time  phase  plot for PACS arm, 10 x 10 grid. (b) 0 
joint torque  versus  time, 10 X 10 grid. (c)  r joint force  versus time, 10 x 
10 grid. (d) z joint force versus  time, 10 x 10 grid. (e) Motor voltages 
versus  time, 10 x 10 grid. 

plots will  not be included in the remaining figures. Fig. 4 is the 
same, except that the grid is 40 columns by 160 rows. The 
calculated traversal times for 10 X 10, 20 X 40, and 40 X 160 
gjds are 2.000, 1.972, and 1.905 s, respectively, compared to 
1.782 s as calculated by the phase plane method. 

Figs. 5 and 6 show phase plane plots for a time penalty of 1 
unitls and an energy penalty of 10 units/J. Note that the trajectory 
is lower than that which is obtained if only time is penalized. The 
grid sizes are 10 X 10 and 20 X 40. 

Figs. 7 and 8 show the results for a minimum time trajectory 
when, in addition to the torque and voltage constraints given in 
Table I, the total power sunk or sourced by the robot is limited to 
2 kW. 

The time consumed by the algorithm was measured for several 
different grid sizes ,  with, however, 400 interpolation points on the 
curve regardless of grid size. Computation of the dynamic 

coefficients for 400 points usually took from 0.350 to 1 .O s of real 
time, so the computation time is probably about 0.35 s. The 
computation times for the dynamic coefficients vary as the cube of 
the number of joints. Thus,  for a manipulator with six degrees of 
freedom instead of three we  would expect about eight times as 
much computation. Taking 100 times the 0.35 s, to be very 
conservative, gives 35 s for 400 points. But 400 interpolation 
points are hardly necessary for a grid with a value of 40 for Nx; 80 
points would certainly be adequate, giving a computation time of 
about 7 s for the dynamic coefficients, not  an unreasonable figure 
if the motion is to be repeated a large number of times. 

The times given in Table II are real times for the DP algorithm 
on a lightly loaded system (average of approximately 2 tasks 
running concurrently). The times must therefore be regarded as 
approximations to the actual computation times. Table II also lists 
the function 6 x 10 -‘NNxN;, which seems to give a good match 
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V 

1 

(b) 

Motor voltages versus  time, 40 x 160  grid. 
Fig. 4. (a) Minimum time phase plot for PACS arm, 30 x 

V 
I 

Fig. 6. (a)  Phase plot for PACS arm, (b) r m m u m  . . time-energy, 20 X 40 grid. 
(b) Motor voltages versus  time, 20 X 40 grid. 160  grid. (b) 

I (b) I (b) 
Fig. 5 .  (a)  Phase plot for PACS arm, minimum  time-energy, 10 x 10  grid.  Fig. 7. (a) Minimum time phase plot for PACS arm with power limit, 10 x 

(b) Motor voltages versus  time,  10 x 10 grid.  10  grid. (b) Motor voltages versus  time, 10 x 10  grid. 
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I 
(b) 

Fig. 8. (a) Minimum time phase plot for  PACS arm with power limit. 20 X 
40 grid. (b) Motor voltages versus time,  20 x 40 grid. 

TABLE II 
COMPUTATION TIMES FOR DIFFERENT GRID SIZES (SECONDS) 

N ,  1 N, I minimum I average predicted 
10 I 10 I 1.217 I 1.355 I 0.6 -~ 
10 

70.8 110.367 92.050 80 20 
19.2 25.5 19.917 40 20 
2.4 5.260 3.583 20 

40 38.4 33.856 29.967 40 

to the actual running time, as predicted in Section III-D. It should 
be noted that the program was run  with all debugging features 
enabled, and that  no serious attempt was  made to optimize the 
source code. Indeed, there are redundant computations in several 
places which could be eliminated. 

The effect of grid size on the quality of the results of the 
dynamic programming algorithm is of practical importance. The 
grid must be fine enough to give good results but  not so fine  that 
the time required to perform the DP algorithm is excessive. 
Intuitively, varying the number of rows and number of columns in 
the grid will have different effects on the results. Varying the 
number of columns (the number of h-divisions) varies the 
accuracy of the dynamic model; using a smaller size yields a more 
accurate approximation to the true dynamic model, since the 
“pieces” in the piecewise-constant dynamic model  will  be 
smaller. Varying the number of rows (the number of p-divisions) 
varies the accuracy of the approximation to the true minimum-cost 
solution; a finer grid size will in general yield a beter approxima- 
tion. 

Another important factor is the ratio of the number of rows to 
the number of columns. If the number of columns is  very large 
and the number of rows is very small, then the slope of the curves 
connecting one point in  the DP grid to another must be either zero 
or very large. Since the torque bounds induce bounds on the slope 
of the curve, it  is possible that the DP algorithm may  not even be 
able to connect a point to its nearest diagonal neighbor. In this 
case, the algorithm will give no solution at all. Therefore, when 
choosing grid size, one must 1) choose the X-divisions to be small 

enough to make the piecewise-constant dynamic model of the 
robot sufficiently accurate, 2) choose the p-divisions to be small 
enough so that the resulting trajectory is a satisfactory approxima- 
tion to the true minimum-cost trajectory, and 3) make sure that the 
pdivisions  are small enough so that the slope of a curve 
connecting two adjacent points in the grid is small. 

VI. CONCLUSIONS 

We have presented a new, elegant manipulator trajectory 
planning method for which dynamic programming is used as a 
main tool. Because of the reduced dimensionality, use of dynamic 
programming does not suffer from the “curse of dimensionality” 
and provides power and flexibility to handle very general cost 
functions and constraints. Moreover, we proved that the DP 
method produces a solution which converges as the h interval 
approaches zero. 

The results are significant in that the present method can 
provide a simple approximation to the truly optimal trajectory 
solution to any desired degree of accuracy, whereas the wnven- 
tional methods either treat only special cases or resort to complex 
approximations or unrealistic assumptions on constraints. 
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