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On Scheduling Tasks with a Quick Recovery
from Failure

C. M. KRISHNA, MEMBER, IEEE, AND KANG G. SHIN, SENIOR MEMBER, IEEE

Abstract- Multiprocessors used in life-critical real-time sys-
tems must recover quickly from failure. Part of this recovery
consists of switching to a new task schedule that ensures that hard
deadlines for critical tasks continue to be met. We present a
dynamic programming algorithm that ensures that backup, or
contingency, schedules can be efficiently embedded within the
original, "primary" schedule to ensure that hard deadlines con-
tinue to be met in the face of up to a given maximum number of
processor failures. Several illustrative examples are included.

Index Terms -Fault-tolerant and real-time multiprocessors,
hard deadlines, primary and contingency schedules, primary and
ghost clones, notification times.

I. INTRODUCTION

D IGITAL computers have become an essential part of
real-time control systems. Such computers are called

real-time (control) computers (SIFT [1] is a good example).
Real-time computers are required to be fast and reliable and
usually execute (cQntrol) tasks periodically. There are usu-
ally several concurrently executing tasks on a real-time com-
puter, which communicate with each other at the beginning
(for input) and the end (for output) of execution, but not
during execution. This, along with the speed and reliability
requirement, naturally leads to a popular structure of real-
time computers: a multiprocessor with each processor having
its own private memory.

It is important to allocate and schedule real-time tasks on
the processors of such a multiprocessor so that all real-time
requirements (hard deadlines') may be met even in the pres-
ence of processor failures. Assume that we have an algorithm
P which allocates and schedules the tasks on the processors
quasioptimally so as to meet all task deadlines. Our goal in
this paper is to devise a technique whereby algorithm P can
be modified to generate fault-tolerant schedules which guar-
antee that the real-time computer can tolerate a given number
of processor failures, and still deliver acceptable (albeit
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'Deadlines and hard deadlines will be used interchangeably throughout the
paper.

degraded) performance. We call this modified procedure
algorithm Q. We will show that if algorithm P is optimal ac-
cording to criterion given below, so is algorithm Q in the
sense that if no processor failures occur, the schedules de-
veloped by Q are the best possible under the constraints
described below.
The optimization criterion uses cost functions developed

in [2], [3]. Real-time control computers are in the feedback
loop of the controlled process, and so their task response
time translates into feedback delay, and tends to degrade the
quality of control provided. This can be quantified for each
task byfi(Ci) wheref is the cost function associated with task
i and Ci is the associated response time. The cost function is
a monotonically nondecreasing2 function of the task response
time and can be derived from the performance index used in
control theory to describe the system's objectives. See [3] for
a detailed derivation.
A schedule defines the task response times, and by adding

up the costs accrued by the various tasks, a cost can be
associated with the schedule. Also, hard deadlines exist for
the tasks since the system must operate in real time. A sched-
ule is said to be optimal if it has minimal cost under the
constraint of meeting all deadlines.

Tasks are run periodically, and each release of a task is
called a version. For fault tolerance, multiple copies of ver-
sions are executed in parallel, with voting or some other
mechanism for deriving the output. When a processor fails,
the versions scheduled on it and not already started must be
replaced to maintain adequate fault tolerance. Such a con-
tingency cannot entirely be handled in real time because the
allocation/scheduling problem is time consuming. A prede-
termined course of actions has to be designed which can be
executed sufficiently quickly. We solve this problem by hav-
ing contingency schedules which can be quickly manipulated
upon processor failure. A constraint we impose, which con-
serves memory, is that only one contingency schedule is
needed per processor.
We now introduce some terminology. The multiple copies

of versions are called clones. There are two types of clones:
primary and ghost. A primary clone is executed in the
normal course of things. A ghost clone is a backup copy
which lies dormant until it is activated to take the place of a
corresponding primary or previously activated ghost whose
processor has failed. Each ghost clone of version j has a
notification time, v7, associated with it. After this time, the

2In this paper, we will assume later that the cost function is monotonically
increasing in the response time.

0018-9340/86/0500-0448$01.00 C 1986 IEEE

448



KRISHNA AND SHIN: SCHEDULING TASKS

system is blind to the need to activate it. The following
example might help establish this concept.

Suppose there are three primary clones of version a. Call
them Pal, Pa2, and Pa3. Let the processors on which they are
supposed to run be /31, /32, and /33, respectively. Let there be
only one ghost clone of that version: call it ga . If the deadline
of ga. is tda, and its run time ra, ga must begin executing by
Ta = tda - ra at the latest if it is to meet its deadline. Let the
system monitor the status of Pal, Pa2, and Pa3 at instants
T,= {tll t2, * ... ,}, T2 = {t12, t2, ,}, and T3 = {t'
ta3,.*. ,} respectively. Such monitoring may be done either
implicitly (by voting at version completion instants) or ex-
plicitly (by executing test routines at given moments). The
means of monitoring are irrelevant to this paper; it matters
only that because the loading is assumed to be deterministic,
the sets T1, T2, and T3 are available. Then, the notification
time of ghost ga is Va = max{f | ' Ta, 4 E T1 U
T2 U T3}.

This paper is organized as follows. The next section con-
tains the problem statement and some background material.
In Section III we present the main result with its related
proofs. Section IV provides an illustrative example, and the
paper concludes with a discussion in Section V. A list of the
more commonly used notation forms the Appendix.

II. PROBLEM STATEMENT AND AssuMPTIoNs

Assume that the given algorithm P can be split into two
subalgorithms: P1 which finds the optimal allocation of tasks
to processors and also the optimal schedule, by calling P2
which is an optimum scheduler for uniprocessor systems.

For reliability reasons the real-time computer runs a cer-
tain number ni, of clones of version i in parallel, i.e., ni > 1.
It is said to sustain up to Nsus, failures if, despite the failure
of up to Nsust processors in any sequence, the system is
able -after the failures have been identified and the system
has been reconfigured- to schedule tasks so that ni clones of
version i for all i (including some activated ghosts) can be
executed in parallel without deadlines being missed.
Our problem is to develop an algorithm Q that can be used

in conjunction with PI and P2 to obtain an optimal schedule
when enough ghosts are incorporated into the schedule to
sustain up to Nsust processor failures, and also obtain con-
tingency schedules that can be invoked when the system is
notified that a given ghost is to be activated. This must be
done subject to the constraints a) that only two (i.e., primary
and contingency) schedules per processor need to be stored,
and b) that no major computation is required to activate
a ghost.

Both these constraints stem from practical considerations:
the need to conserve memory and (on-line) time. If unlimited
memory or unlimited time were available, the problem would
become trivial: one would obtain a separate schedule for each
possible sequence of processor failures, or one would re-
calculate an optimal schedule each time a processor failed.
Neither course of action is open to us for obvious practical
reasons.
The schedule to be derived is locally-preemptive, i.e.,

tasks resident on the same processor are allowed to preempt

one another, but tasks resident on separate processors are not.
The locally-preemptive regime has been assumed in order to
avoid the possibility of causing excessive congestion on the
interconnection structure within the multiprocessor. It also
removes the need to allow for queueing delays as part of the
schedule.
Some assumptions follow.
Al) The interrepair interval, L, is much smaller than the

mean time between successive processor failures.
A2) The release time, deadline, and computational de-

mand of each version are deterministic. So is L.
A3) The number of processors available is sufficient to

satisfy all deadlines and reliability requirements.
Al) is reasonable, considering that mean times between

processor failures are nowadays in the 1000-10000-hour
range. A2 follows in part from the tasks being released peri-
odically. The run time will be a random variable due to
data-dependent conditional branches in the code, but worst-
case numbers can be used to safely represent a deterministic
run time. Without sufficient processors, we clearly cannot
proceed with a scheduling operation, which justifies A3).
As noted before, in order to sustain the allowed-for number

of processor failures, ghost clones of the various critical
task3 are scheduled. Now, ghost clones are not activated if
there is no processor failure, and we have assumed in Al) that
failures are not common. So, the only constraint upon the
scheduling of the ghosts is that their hard deadlines must be
met: we are not unduly concerned with the efficiency of a
schedule that has one or more ghosts activated. Although the
ghosts are initially passive, and do not in that state require
any processor time, they represent a latent demand for pro-
cessor time that must be allowed for. For this reason, they
affect the scheduling of the primary clones (since they share
processors with them), and tend to lower the efficiency of the
primary schedules. This can best be illustrated through the
following example. Consider a processor to which are allo-
cated primary clones 1 and 2, and ghost clone 3. Let their
release times be rel1 = 1, rel2 = 2, and rel3 = 3, their dead-
lines be tdl = 11, td2 = 12, and td3 = 7, and their cost func-
tions be f1(t) = t - 1 t . 1, f2(t) = (t - 2)2 t > 2, and
f3(t) = O0 for arguments t less than the corresponding hard
deadlines, and infinity above them. Let their run times be
ri = 6, r2 = 0.5, and r3 = 4, respectively. Without the
ghost, the optimal primary schedule is as shown in Fig. 1 (a).
However, although the ghost is not initially activated, does
not even form a part of the primary schedule, and if not
activated needs no processor time, we must always allow for
the possibility of its being activated, and then occupying the
processor from t = 3 to t = 7. To do this, the only accept-
able primary schedule is that shown in Fig. l(b) (cost =

25.25), which is much more expensive than the one in
Fig. 1(a) (cost = 9.75).

Since, in the overwhelming majority of cases, the primary
schedules are the only ones that will be executed, their effi-

3A task is said to be critical if it has a hard deadline, which if violated, can
lead to catastrophe.

4The ghost cost functionf3 is consistent with the definition of the ghost cost
functions in general, as in the next paragraph.
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(b)
Fig. 1. Effect of ghosts on primary schedules: an example. (a) Optimal

primary schedule without influence of ghost 3. (b) Optimal primary schedule
showing influence of ghost 3.

ciency is of prime concern. Any fault-tolerant scheduling
with ghosts must, therefore, strive to minimize the increased
cost of the primary schedule that can be attributed to the
existence of the ghosts, while ensuring, if the ghosts ever

have to be activated, that their hard deadlines are met. For
this reason, we define the ghost cost functions as identically
zero for values of the response time less than their associated
hard deadlines. Since the penalty to be paid for an activated
ghost's missing its deadline is as great as that for a primary
clone, the ghost cost function for response times greater than
the deadline will continue to be infinity. When this ghost cost
function is used as input to an algorithm that performs opti-
mal scheduling, the result will be to degrade the efficiency of
the primary schedules by as little as is consistent with the
need to allow the ghost clones to meet their deadlines. We
also assume that the cost functions of the primary clones for
response times less than their hard deadlines are mono-

tonically increasing, not just monotonically nondecreasing as

defined in [2], [3]. Given that the set of real numbers is
everywhere dense, this inflicts no practical inaccuracy on our

calculations.
The number of ghosts per critical task, and the scheduling

rules that they follow, are developed in the next section.

III. MAIN RESULT

We begin by stating certain conditions that the ghosts
should satisfy.

Cl) Each version must have ghost clones scheduled on

N1Ust processors, and a ghost and a primary of the same version
may not be scheduled on the same processor.

C2) Ghosts are conditionally transparent. That is to say,
a) two ghost clones may overlap in the schedule if and only
if none of their corresponding primary clones are scheduled
on the same processor, and b) primary clones may overlap
ghosts on the same processor, and may indeed be scheduled
without regard for the ghosts, so long as the following condi-
tion is met: for every instant t in the schedule, if all ghosts
whose notification time is greater than t are activated, the
schedule for beyond t can be reordered to ensure that all
ghosts and all primaries allocated to that processor meet their
hard deadlines, provided only that when some ghosts mutu-
ally overlap, at most one of them is activated.

An illustration of C2 is provided in Fig. 2. In this example,
the notification time of a ghost is its release time. (Note that
the notification time should be less than or equal to its corre-
sponding release time.) In Fig. 2(a), we see an overlap of
primary and ghostly clones that show condition C2: when the
system is notified that the ghost is to be activated, the sched-
ule for beyond that time can be reordered to ensure that all
hard deadlines are met. Fig. 2(b) shows an overlap that does
not meet condition C2: in the event that the ghost is activated,
either ghost i or primary j will miss its deadline.
Lemma 1: Cl and C2 are necessary and sufficient condi-

tions for up to Nust processor failures to be sustained.
Proof: The necessity of C1 is obvious. Consider ghost

clones g, and g2 of two versions VI and V2 which overlap in
the schedule of some processor p in such a way that if both
of them are activated, at least one of them will miss its
deadline. Let p(VI) and p(V2) be the sets of processors allo-
cated to run the primary clones of V1 and V2, respectively. If
p(v1) n p(V2) = A :$ 0, there exists a processor q E A. If
Ip(VI) U p(V2)I ' Nsust and there are exactly Nsust ghost
clones for each version, the failure of processor q together
with (Ns,s, - 1) processors in the set p(V1) U p(V2) - {q}
results in a situation in which it is impossible to replace all the
failed clones by ghosts. If p(VI) U p(V2)I < Nsust and there
are exactly Nust ghost clones for each version, let y(V1) and
y(V2) be the processors carrying the ghost clones of VI and V2,
respectively. By definition, p E y(V1) U y(V2). If all the
processors in p(VI) U p(V2) and Ns - Ip(VI) U p(V2)1 of
the processors in y(V1) U y(V2) - {p} fail, then again it will
be impossible to activate the requisite number of ghosts. This
proves the necessity of C2(a); that of C2(b) may be similarly
shown.
The proof of sufficiency is similar, and is left to the reader.

E
We can now turn to obtaining algorithm Q. We begin by

stating some additional definitions and notation pertinent to
algorithm Q. A hole arising out of an allocation of tasks to a
particular processor is defined as an interval in which it is
impossible to schedule any of the allocated primary clones
due to their release times and deadlines. A point in the sched-
ule representing time t is in a hole if and only if i) the dead-
lines of all primary clones released prior to t are less than t,
and ii) no primary clone is released at t. Clearly, a hole
depends, only on the allocation of primary clones and not on
their specific positioning in a schedule. In other words, all
feasible schedules for a given allocation of primaries have the
same holes. In order to avoid confusion, we emphasize that
not all blank spaces in a schedule need be holes: under our
definition, only zones in which it is impossible to schedule
any allocated primary clone are holes.

Algorithm P2 has, as input, the deadlines of the clones, and
the remaining run times. Running P2(A) means that P2 is
invoked with the set of clones A allocated to the processor.
By initializing P2 at some time X we mean that P2 generates
a schedule starting at T, using the inputs mentioned above.
We denote the set of ghosts that have been allocated by P1 to
processor i by Oi. By ghosti(j) we mean thejth ghost (in order
of notification time) allocated to processor i. Ghost'(O) is a
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Overlapped schedule

Vi tdi

Ghost i Activated

(a)

ghist i
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..

.i tdi tdi

(b)
Fig. 2. Illustration of condition C2. (a) permissible overlap.

(b) Impernissible overlap.

dummy ghost, requiring 0 time, which is introduced for no-

tational convenience.
Algorithm Q adjusts or transforms the hard deadlines to

accommodate the ghost schedule as shown below at Step 3b).
A deadline transformation is said to befeasible if, when it is
possible to generate a feasible schedule of clones with pre-
transformed deadlines, it is also possible to do so after the
clones' deadlines have been transformed. Finally, we define
P* to be a modification of P2 that fills the holes to the extent
possible with ghosts. In the event of more than one ghost
competing for the same hole space, P2 will try to overlap
them. If it is not possible to do this and still satisfy condition
C2 (recall that if ghosts overlap in the schedule, only one of
the overlapping ghosts can be activated), priority will be
given to the ghost with the earliest deadline. The remaining
ghosts will be scheduled as primary clones, with the cost
functions indicated earlier, with the additional condition that
the time-slices given to the ghosts under the schedule are
moved as far right as possible, consistent with the need to
meet all hard deadlines. This last condition is easily met. For,
with all primaries having monotonically increasing cost func-
tions, the only case in which this is not automatically done by
P2 is when it would not alter the finishing time of a primary
clone. In that event, all that is required to do is to "nest" the
ghost within the primary as far right as possible. This means

that, for any given time t, the nonprimary-hole space occu-

pied by the ghosts prior to t is the minimum possible.
Algorithm Q is as follows. Let the set of primaries and

ghosts allocated to i be 7r and Oi, respectively. For every

allocation of primaries and ghosts to processors by PI do
Steps 1-6 for every processor i:

Step 1) Record the holes for processor i, defined by the
allocation.

Step 2) Run P*(1ir U Oi). Return control to P, if the
schedule is found to be infeasible. Otherwise, record the
positions of the ghosts in G.

Step 3) Set] := 0, and, while Oi is nonempty, do a)-f).
a) Initialize P2 at vghostq(p. (* See definition of initialization

above *)
b) Set Oi := 0- {ghosti(j)}.
c) Transform the hard deadlines of the primary clones

k E iri to be t$f - util (O, t where t2) is the original hard
deadline of clone k and util G(a, b) is the nonprimary-hole
space occupied by the ghosts in 0,, according to the ghost
schedule G. (* Guarantees there is enough time redundancy
for all deadlines to be met if one or more ghosts in G are
activated. *)

d) Run P2(rr) with these new deadlines, and let Sij be the
schedule obtained. (* Sij is the contingency schedule, a por-
tion of which will be used to obtain the optimal schedule. *)

e) Calculate the remaining run time of the clones sched-
uled in d) by subtracting from the current remaining run time
the duration for which they were scheduled in the interval
[ZVghosti(j), Vghost,(j+ 1)].

f) Setj:=j + 1.
Step 4) If all primary clones k E ,ri have not been com-

pleted by Vghbsti(J, set t -= t', initialize P2 at vghOst1(j) and run
P2(rTi), recording the output in Sij.

Step 5) Form schedule S by piecing together the sched-
ules represented by S; in the interval [Vghosti(j), Vghost1(j+)]
Letting {Ck}, k E 7ri be the completion times of the primary
clones k according to schedule Si, compute Xkevi fk(Ck), and
return this value as the cost associated with Si. (* See below
for explanation. *)

Step 6) Restore all hard deadlines of the primary clones
k E Tri to their original values tdk.

Notice that only in Step 2 are the ghosts scheduled: this
ghost schedule determines the position of the ghosts for the
given allocation. Q puts out a matrix of contingency sched-
ules Sij, with the optimal primary schedules (optimality is
proved below in Theorem 2) being given by S*, where i is
the processor index and j the notification sequence index.
Contingency schedule Sij is invoked at time vghosti(j) if
a) ghosti(j) is to be activated, and b) all ghosts I with vi < Vj
and allocated to processor i will not be activated.
Q is a dynamic programming algorithm. For every pro-

cessor i in the system, it begins by obtaining the ghost posi-
tions. Then, it obtains the optimal schedule that also satisfies
conditions C 1 and C2 for the ghosts in 0 . This is schedule Si.
The portion of SiO in the interval [v0, lghost0()] is also the corre-
sponding portion of S*. Run times of each primary clone are
reduced by the amount of time they have been scheduled for
under Sij in the interval [v0, Vghost,(l)]. Then, at vghosti(l),
ghosti(l) is discarded from Oi, and the above procedure is
repeated to obtain Si.. The portion of Sij in the interval
[Vghost{1), vghOst(2)] is the corresponding portion of S*. Pro-
ceeding in this manner, Q pieces together the optimum pri-
mary schedule, which is the one that will be run if there is no
ghost invocation. If ghost'(n) is activated and no ghost allo-
cated to that processor with notification time prior to that of
n is activated, the contingency schedule to be followed is Si.
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This schedule will ensure that even if any or all of succeeding
ghosts (i.e., ghosts in Oi with notification times greater than
vghosti(n)) are activated, all hard deadlines of tasks assigned by
P1 to processor i will continue to be met. The actual schedule
to be used in the case of failure is then trivially obtained by
amalgamating the ghost schedule onto the contingency
schedule. When a ghost is activated, it retains its position as
defined in the ghost schedule, interrupting any primary clone
that may be occupying the same time-stretch in the con-
tingency schedule. This effect can propagate, and all primary
clones that are affected by this are moved right by an appro-
priate amount.

Fig. 3 provides an illustration of this. In this example, it is
assumed that there is no hole for inserting the ghosts in the
schedule prior to the deadline t = 40 of all the primary
clones a, ,B, y, and 6. If only ghost i is activated, then it
retains in the actual schedule the position it had in the ghost
schedule ahd interrupts primary ,3. If ghosts i, j, and k are all
activated, each ghost retains its position as prescribed by the
ghost schedule, appropriately interrupting and translating the
primary clones.
Theorem 1: If step 2 ofQ yields a schedule for a processor

i which meets all deadlines, then schedule S* which also
satisfies all deadlines exists.

Proof: This follows immediately from the fact that
ghosts are only scheduled by P* either in the holes left by
step 2 of Q, or at the last possible moment (consistent with
the need to satisfy all hard deadlines). Indeed, owing to the
way we have defined P* the schedule of ghosts G obtained
fromP * is the one for which util G' (0, t) is a minimum for any
ghost schedule G' and time t if all deadlines are to be satis-
fied. All this means that if one or more primaries cannot be
scheduled feasibly under the deadline transformation in
Step 2, neither can a feasible schedule be found in Step 2,
leading to a contradiction. a

Theorem 2: If P is optimal, S* is optimal, under the con-
straints imposed above.

Proof: Let schedule S* found by Q not be optimal for
some i. Then there exists a schedule S', with an objective
function value less than that of S*, and in which at least one
primary clone is scheduled to finish after the transformed
hard deadline as defined in Step 3b). Consider one such clone
j, assigned to processor i. Let clone j finish at time 8 in
schedule S* and e in schedule S'. By assumption, E > 8. Let
8 be in the notification interval h, i.e., 8 E [Pghosti(h),
Vghosti(h+ )]. Denote by utili (a, b) the amount of nonhole space
occupied on processor i by ghosts in the set B = {c vc >
Vghosti(h) and c is allocated to i} in the interval [a, b]. Clearly,
e E (t4) - utili(O, t(4)), d)), where t(y) denotes the original
(i.e., pretransformed) deadline of clone j. If utili(O,
E) = utili(O, t$)), then, by the minimality of utili, we have a
contradiction: clone j will miss its deadline if all the ghosts
in B are activated.

So, utili(O, e) < utili(O, tX"), i.e., utili(e, t(O)) > 0. If all
ghosts in B scheduled prior to e are activated, then clone j's
finishing time will be increased
by at least utili(O, E) + utili(e, utili(0, e) + e).
Now, utili(e, utili(O, E) + E) = o- > 0, since otherwise
utilj(utilj(O, E) + E,tj5)) > tdi - E-utili(O,E), a con-

3.0 5.5 6.5 8.7 10.0 12.5

Ghost Schedule

0.0 2.0 4.0 6.0 16.0 18.0

Schedule So

ar I i
0.0 2.0 3.0 5.5 6.5 8.5 16.0 18.0

Schedule If only Is Activated

| l| i |, |7 | |
j [

| m
0.0 2.0 3.0 5.5 6.5 8.7 10.0 12.5 14.2 16.0 18.0

Schedule if i. j, and k are Activated

Fig. 3. Amalgamating ghost and contingency schedules.

tradiction. So, the finishing time for clone j will be in-
cremented again, this time by or. Similarly, we can show that
utili(utilf(0, E) + E, utili(O, e) + E + crl) = c2 > 0, and so
on. An infinite sequence {Co} will be generated.
Now, if we can show that ,1o0 = utilj(O, to)) - utilj(O,

E), we have proved that S' is infeasible.
Suppose, to the contrary, that k ak = m < util (0, tP)) -
utilj (0, E).
Then, utili(E + m + utili(O,e),t'j) = utili(,t()) - utili(O,
E) - m. Then, clearly, we have utili(e + m + utili(O, e),
<d(0))s tI9)° - e - m - utili(O0 e), i.e., e ' t j ) -

util,(O, tTO , a contradiction. So S ' does not exist.
It is important to realize that it is only S' that is optimal,

i.e., that a contingency schedule Si,, is, taken as a whole, not
guaranteed to be optimal in that one or more of the schedules
that arose from superimposing the ghost schedule on the
contingency schedule need not be optimal.
We turn next to the question of relaxing assumption Al. If

Al is relaxed because the mean time between successive
processor failures is small, our method breaks down since S,
can no longer be regarded as the optimal cost associated with
a given task allocation. Fortunately, as remarked earlier, the
mean time between failures is usually not small.

It is more likely, however, that Al must be relaxed because
the interrepair interval of the computer system is very long.
This is true, for example, of computers aboard spacecraft. In
such a case, it is useful to use the contingency schedules not
for the entire duration of the mission, but to cover the interval
during which a new optimum schedule (complete with a new
primary and corresponding contingency schedules) is com-
puted. This is profitable as long as the mean time between
successive processor failures is much greater than the time
taken to compute a new optimum schedule.
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Finally, we look at the burden this algorithm places on the
computer during operation. This consists solely of amalgam-
ating the ghost schedule with the contingency schedule,
which amounts only to preempting the contingency schedule
with the ghosts wherever necessary. The maximum number
of preemptions is equal to the number of ghosts, and so the
overhead for any given processor is directly proportional to
the number of ghosts carried on that processor. Specifically,
it is the product of the number of ghosts and the time con-
sumed in handling preemptions. Since the latter time is usu-
ally very small, this is indeed an on-line algorithm.
By contrast, nothing can be said a priori about the com-

plexity of the algorithm Q, since it depends on the given
algorithm P.

IV. EXAMPLE

We illustrate here the formation of an optimal schedule for
a given allocation (specified by algorithm P1). We provide
schedules for one of the processors only: the others are simi-
larly derived.
Assume that P, has allocated primary clones of task ver-

sions 1, 2, 3, and 4, and ghost clones of versions 5, 6, 7, and
8 to this processor. The cost function for primary clones of
version i is given by:

(t(5-i) if t < tdi
t(o otherwise.

The hard deadlines for the task versions are tdl = 130,
td2 = 110, td3 = 90, td4 = 60, td5 = 22, td6 = 39, td7 55,
and td8 = 130. The run time, rt, of all these versions is
15 time units. The release times are: reli = i for i 1, 2,
3,4, rel5 = 0, rel6 = 24, rel7 = 40, and rel8 = 90. Ghost
notification times are: V5 = 0, V6 = 20, V7 = 40, and
8= 90. These values were chosen arbitrarily, and have no

physical significance by themselves.
The algorithm P2 employed by us is a heuristic that takes

scheduling decisions at the release and at the finishing of
clones. At each of these moments t, it computes, given the set
of available clones R (i.e., clones released, but not yet
finished), an array of values V(i), where V(i) =
Yj*i,jERRf(t + rrti + rrtj), and rrtk is the remaining (at time t)
run time of clone k. The clone scheduled is I such that
V(l) = minjeR V(]).
The holes are the intervals [0, 1) and (130, oo). The con-

tingency schedules are shown in Fig. 4. The optimal sched-
ule S* for that processor is pieced together from these as
shown. This schedule, together with the cost it represents, is
returned to algorithm P,.

In Fig. 5, we show the actual schedule$ followed upon
ghost activation. The case treated is one in which con-
tingency schedule Sio has had to be invoked, i.e., the system
has been notified that ghost 5 is to be activated. If only
ghost 5 is activated, then it occupies the schedule during the
intervals allocated to it by the ghost schedule, G. Primary
clone 4 is thus preempted, and only resumes execution after
ghost 5 has stopped running at time 22. The rest of the sched-
ule gets shifted right by 14 time units to absorb the nonhole
space occupied by ghost 5. If ghosts 5 and 6 are activated,

5 7mr [7
01 8 22 24 3940 55 105 120

Ghost Schwdule, G
11

41 3

1 4 19 31 46 61

Contingency Schedule Sio

1 4 3 2
,1 1 6 3 1 46 61

Contingency Schedule S

2 41 3

3t1 46 61
12 46'461 Contingency Schedule Si2* ~~~~~~4

3

46 60 61

Contingency Schedule Si3

*1 iILKF7]1
1 16

05-O

E0 35

>s = 20

46 60 61

Optimal Schedule Si

v7 =-40 4

yfi(Ci) = 112,072
i1=

Fig. 4. Obtaining S*.

then primary 4 is interrupted twice: once by 5 and then by 6.
In each case, it must wait for the ghosts to complete before
resuming execution. The rest of the'schedule now gets shifted
right by 29 time units. If ghosts 5 and 7 are activated, primary
4 is interrupted only by ghost 5, but primary 1 is also inter-
rupted, by ghost 7. If ghosts 5, 6, and 7 are activated, then
primary 4 is interrupted thrice, once by each of the ghosts, as
shown. Notice that primary 4 just manages to meet its dead-
line: if it, in its turn, had not interrupted primary 1 upon
release, this would have been impossible.

If the system is notified that ghost 5 is not to be activated,
then schedule S0 is discarded. Since- V = 0, this can be done
at time 0, which is why S* does not contain any portion of Si0.

V. DiscussiON

This paper has introduced a dynamic programming algo-
rithm to generate fault-tolerant schedules out of a given
nonfault-tolerant schedule. This algorithm is expected to
be used in embedded computers where extremely high
reliabilities are required. Examples are aircraft-, spacecraft-,
and nuclear reactor-controllers, life-support systems, genera-
tion and distribution of electric power, etc.
The usefulness of this approach increases as increased de-

mands are made on reliability: in the "obvious" approach
which has all clones primary, an extremely stringent re-
liability requirement would swamp the system with 4 large
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5 1 4
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5 1
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5 5 4 4

14 1 5 1[ 6 11 7 1 41 1 T 3 2
0 14 8 22 24 39 40 55 60 75 90 105

Schedule if Ghosts 5. 6. and 7 are Activated

Fig. 5. Schedules when ghosts are activated.

number of primary clones, with all the implications that this
would have for the computer response times and the con-
sequent quality of (control) service provided by the compu-
ter. An example of this is provided in Fig. 6, where the
obvious approach is used, all the clones in the earlier example
being declared primary. The degradation in response times is
clear on comparison with Fig. 5.

There are many obvious extensions to this work. One is to
investigate the sensitivity of the optimal solution to changing
the number of schedules each processor may carry: in this
paper, we restricted it to two.

APPENDix
LIST OF IMPORTANT SYMBOLS

P: A nonfault-tolerant scheduling algorithm which
can be decomposed into two subalgorithms P1
and P2. PI finds the optimal allocation of tasks to
processors and also the optimal schedule by call-
ing P2, which is an optimum scheduler for uni-
processor systems.

Q: A fault-tolerant scheduling algorithm derived
from P.

fi(Ci: Cost accrued due to a response time of Ci for
version i.

1

1 5 11 6 1 7 1 4 111 3 1 2 1 8 I

0 15 24 3940 55 70 75 90 105 120

4
E fi(C1) = 3,725,796i_1

Fig. 6. All clones treated as primary.

L: Interrepair interval of the computer system.
Vj: Notification time of ghostj.
tdi: Hard deadline of version i. tN2 is the original hard

deadline of clone k.
Nsust: The maximum number of processor failures that

the system can tolerate.
p(V): The set of processors allocated to run the primary

clones of version V.
YM(V): The set of processors carrying the ghost clones

of V.
rTi (0,): The set of primaries (ghosts) allocated to pro-

cessor i.
ghost (j): The jth ghost (in order of notification time) allo-

cated to processor i.
util '(a, b): The amount of nonhole space in the interval

[a, b] occupied by the ghosts in 0i, according to
the ghost schedule G.

Sij: A contingency schedule on processor i, a portion
of which is used to obtain the optimal schedule
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