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ABSTRACT

A number of tr7aectory or path planning algorithms
exist for calculating the joint positions, velocities, and
torques which will drive a robotic manipulator along a given
geometric path in minimum time. However, the time
depends upon the geometric path, so the traversal time of
the path should be considered again for geometric planning.
There are algorithms available for finding minimum distance
paths, but even when obstacle avoidance is not an issue
minimum (Cartesian) distance is not necessarily equivalent
to minimum time.

In this paper, we have derived a lower bound on the
time required to move a manipulator from one point to
another, and determined the form of the path which minim-
izes this lower bound. As a numerical example, we have
applied the path solution to the first three joints of the
Bendix PACS arm, a cylindrical robot. This example does
Indeed demonstrate that the derived approximate sokltions
require less time than Cartesian straight-lne (minimum-
distance) paths and joint-interpolated paths, i.e. those
paths for which joint positions qt are given by
q! = ai + b'X.

1. INTRODUCTION
Productivity increase Is the goal of the utmost lmpor-

tance In contemporary automation with programmable
robotic manipulators. Dring robotic manipulators as fast
as possible, I.e. minimum time control of manipulators, is an
Important means of achieving this goal. Minimum time con-
trol of manipulators generates several interesting but diffi-
cult control and planning problems. This paper Is Intended
to treat one such problen, that Is, minimum time geometric
path planning for manipulators.

Loosely speaking, the problem of minimum time control
(MTC) of a manipulator is concemed with the determination
of control signals that will drive the manipulator from a

given Initial configuration to a given final configuration In as
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short a time as possible, given constraints on the-magni-
tudes of the control signals and constrakits on the inter-
mediate configurations of the manipulator, i.e., given that
the manipulator must not hit any obstacles. In general, it is
extremely difficult, If not knpossible, to obtain an exact
closed form solutions to the MTC problem due mainly to (i)
the nonlinearity and coupling in the manipulator dynamics
and (ii) the complexity involved with collision avoidance
One way to sidestep the collision avoidance problem (ii) is
to assume that the desked geometric or spatial path has
been specifled a priorL As to the difficulty (i), although
there are a few suboptimal solutions derived using approxi-
mate manipulator dynamics [2,3], the MTC problem is usu-
ally dIvded Into two subprobems, l.e., trajectory (or path)
planning and trajectory (or path) tracking, each of which
Is then solved separately. From a task planner we obtain
a collision-free path in Cartesian space. This path is
ttananfnmad to the corresponding path In joint space, giving
a geometric path which is a parameterized curve in joint
space. The trajectory planner receives these geometric
paths as input and determines a time history of position,
velocity, acceleration, and joint torques which are then fed
to the trajectory tracker.

With the division outlined above, we have formulated in
[8,9] the minimum time trajectory planning (MTTP) problem
to determine controls which will drive a given manipulator
along a specified curve in joint space in minimum time, given
constraints on Initial and final positions and velocities as
well as on contrbl signal magnitudes. Since a geometric
path can be described as a parameterized curve, and the
geometric path is assumed to be given, trajectory planning
Is relatively simple. By introducing a single parameter which
describes the manipulator's position, the dimensionality of
the problem has been reduced considerably. The current
state (joint positions and velocities) of the manipulator can
be described in terms of the parameter used to describe
the geometric path and Its time derivative. The MTTP prob-
lem is therefore essentially a ±wndimensional minimum time
control problem with some state and input constraints.

More formally, assume that the geometric path is given
In the form of a parameterized curve, say

qt=f(X),I .X)A,, 1 (1.1)

where qt Is the position of the i -th jont, and the initial and
final points on the trajectory correspond to the points X= 0
and A= Am.. respectively. The functions fI are continuous
and differentiable, and their derivatives mnust be continuous
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and piecewise differentiable. Also assume that the bounds
on the actuator torques can be expressed in terms of the
state of the system, i.e, the manipulator's speed and posl-
tion, so that

u1B(q,4) -> u < ur(q,4) (1.2)

where uit is an n-dimensional vector of actuator
torques/forces; u1mn and u-,in are n-dimensional vectors
that represent the maximum and minimum torque bounds,
respectively; and n is the number of joints that the manipu-
lator has. (The vector inequality (1.2) denotes
component-wise inequalities.) Given the functions f i in Eq.
(1.1), the inequality (1.2), the desired Initial and final posi-
tions and velocities, and the marnpulator dynamic equations
to be given in Eq. (3.1), the MTTP problem is to find
q(X) and 4(X), and hence the controls u (x) which mininsze
the traveral time T. See [8-10] for more detailed descrip-
tions of our solution to the MTTP problem. Bobrow et a.L
obtained simiar soutions Independently of ours [1].

In terms of the trajectory planning problem, the
geometric path planning problem is the problem of picking
the parametric functions f . In contrast to the trajectory
planning problm, in which the desired solutions can be
expressed In terms of the position parameter A and Its first
and second time derivatives, the geometric path planning
problem requres that a set of functons be chosen from an
Inf loit dimensional space, thereby leading to a more diffi-
cuft problem to solve.

In this paper, we will deveiop a method for determining
an approximate minimum time geometric path for the trajec-
tory planners described in [8,10]. This is a significant
departure from most of the conventional planning methods
In which geometric path planning [4, 5] Is performed
without considering the robot's dynamic behavior. Specifi-
cally, we intend in this paper to consider the effects of
actuator constraints and robot dynamics in both geometric
path and trajectory planning.

This paper is organized as follows. In Section 2, we
state formally the minimum time geometric path planning
(MTGPP) problem to be solved hi conjunction with trajec-
tory planning. Section 3 discusses some interesting
dynanic properties of mandpulators that are useful for
deriving solutio to the MTGPP problem. In Section 4, we
present (i) an exact solution to the MTGPP problem under
certain restricted conditions, (i) a method for finding lower
bounds on the traveral time from one point to another, and
(i) the paths which result from (a) minimIzing the traversal
time bounds and (b) maxmizing the velocity bounds derived
In [8, 9]. Section 5 shows how our solutins are applied to
the first three joits of a.cylindrical maripulator, caNed the
PACS arm, manufactured by the Bendix Corporation. The
paper concludes with Section 6.

2. PROBLEM STATEMENT
The mimum the trajectory plaming algorithms

described hi [8,10] give the time history of manipulator's
pcostion. velocity, and joint torques requAred for the minimum
time traversa of a gea geometric path. However, these
algorthms give no finn indication of how to pick a geometric
path. The chosen geometic path idealy should be that
which avolds all obstacles and can be traversed with the
mnmum time. In conjunction with trajectory planning, the
abtaum time geometric path planning (MTGPP) problem can
be stated as follows.
Problem W :

Sven the solution to the mnimu the trajectory
prning problem, choose the geomnetric path, or
the functiorn fi In Eq. (1.1), so as to iininize
the traversal time.

We wll take approaches to this problem which are
totaly different from the conventional control techniques
such as use of the Pontryagn's mximm principle. FIrt,
the minimum time path wil be determined for a restricted
class of robotic marnpuators using some geometric tech-
niques. Second, a method wiN be proposed for generating
approximate minimum time geometric paths for more general
manipulators. Note that these slutions are derived for
collision-free space motlins. Extension of the solutions to
the case of obstacle avoldance is also indicated in the
Concluskon. We begin in the next section with a few
dynamic properties of manipulators that are needed.

3. DYNAMIC PROPERTIES OF MIPULATORS
In this section we wi introduce some properties of

manipulators which will prove to be useful later on. Most of
these properties relate to the "Inertia space" of the mani-
pulator, i.e., that Riemannian space which has the
manipulator's inertia matrix as Its metric tensor. The
dynamic equations of a manipulator can be derived from
Lagrange's equations, and take the form

us = J + [jk,i ]vt + Kj + g (3.1)

where uj is the generalized force/torque applied to the
i -th int, v' is the generalized velocity of the i -th jolnt,
kii is the inertia matrix, Rv is the viscous friction matrix,
and g, is the gravitational force on the i-th jint. The sum-
mation convention has been used here, and all sums range
from 1 to n for an n-jnted manipulator. It should also be
noted that kj Rv-, and g& may in general be functions of
the generalized coordinates qt. The symbol [jk ,i] is a
Chrlstoffel symbol of the firt kind, defined as

[jkE(3.1)c2anbwritten as

Eq. (3.1 ) can be written as

Icj

(3.2)

where Jq -J is the absolute derivative of velocity with
respect to time. (See [1 1 ] for more details.)

For our purposes, we wiN define arc length dis by the
quadratic form ds2 = 4jdqtdq1. Since the kinetic energy
of the manipulator is given by K= 2k4i d iiV, it can be

2 vdt dt
seen that the Inflnitesimal arc ds In this space is related to
the Nnetic energy of the manipulator by the formula

The dynamic equatons may now be expressed in terms
of the arc length s and the time derivatives of s. We have,
since the absolute derivative obeys the chain rule,

Ui = kw i + Kt +&

Using the relationship vJ = IS! A! then

& P ds| dst p ds i

(3.3)

(3.4)

where pI _- is the unit tangent to the manipulator's
path.But ds

d pi d: = ds +pI 6 ds
(3.5)

Applying the product rule and chain rule to the absoklte
derivative In (3.5) and using the fact that the absolute
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derivative of a scalar is just its ordinary derivative gives

k<=4#| |i +kPd2 +RvP' +gt
The work W done on the manipulator is

W = fwcdqt = dsi = fwpis.

Pkagging in the expression for uit from Eq. (3.6),

J|;iJP i= d dt+ kPi djdJJds ds

fP,je,ppddtdss + fgr ds,

between any two configurations of the manipulator Is a
g:midacn inertia space provided that the iftal and final

.6) velocities are zero.

Proof: The total power sunk or sourced by the mani-
pulator is limited by symnetrical constant bounds, i.e.,
-'ma&x! P e Pm.r Then by Eq. (3.1 0), applyig the con-

.7) stant maximum power gives

p = p"",. = ds d s =IL_
dit 'it2 dt

(4.1)

where M _ds. Solving the differential Eq. (4.1) gives
_"di

1 2 =
2 li= tPmai, or s-vW70t2

(3.8)
(4.2)

since the manipulator starts at rest.

Using the facts that the curvature vector is

orthogonal to the unit tangent pI and that pt is a unit vec-
tor, i.e., that J5pip' = 1, Eq. (3.8) transforms to

w=X dst d- dsdtsf + f&j pi
!

dsi + fgp, s

ff 14 4jsIiss+f r,pj'is (3ft )Thepwcnm by phmausl+fgrs just

The power consumed by the manipulator is just
2

g1pjds (3.10)

4. MINEUM TIME GEOMETRIC PATH PLANNING
As was previously pointed out, use of the maximum

principle for solving the MTGPP problem is practicaNy kmpos-
sible. Altemative approaches must be sought. In this sec-
tion we will develop three methods for generating geometric
paths. For the first two we use energy methods to derive a
lower bound on path traversal times, and for the third
method we use the velocity limits derived In (8,9g].

First it will be shown that geodesics in Inertia space,

i.e. solutions of the differential equations d( %q ), are

the optimal solutions to the MTGPP problem under some res-
tricted condions. Though the condtlons required in the
speclal case are not met by realistic manipulators, the proof
does provide a simple kistration of the method used here
for obtaining lower bounds on traversal time; the curves
which minimize the lower bound for the more general case
can then be found using essentially the same technique
used In the special case, giving an absolute lower bound on
the time required to move from one point to another. Then
the use of the derived traversal time bounds and the velo-
city Emi*ts derived In [8,9] are used to find approximations
to minimum time paths.

4.1. A Special Case
It wiN now be shown that If a manipulator has no fric-

fton terms and no gavitatknal terms and the limitatins on
the joint torques conmist only of Emit on the total power
supplied to (or taken fr) the manipulator, then the
minimum time geometrc paths are geodesics In inertia
space. Fomally, we have the following theorem:

Theorem 1: 11 a manipulator Is frlctonless and has
zero gravitational terms, L.e. = 0 and & = 0 in the
dynamic equations (3.1), and the only restrictions on the
torques appled to the manipulator arise from constant,
symmetric lits on the total power supplied to (or taken
from) the manipulator, then the minimum-time geometrc path

Obviously, minimizing the traversal time for a given

path requires that we maximize the "velocity" dd. This in
turn requires that the power P be maximized. Therefore,
the maximum distance s which can be traveled in time t is
given by Eq. (4.2).

Looking now at the end of the curve, we wish to have
zero velocity at the end of the motion. Again, since we wish
to minimize the traversal time, we want to stop as quickly
as possible, which requires that we drain energy from the
system as fast as possible. Applying the minimum power,

A = Pm Solving this equation givesdt

19/ Pmn(Trt), or s = S 2 mL ( -t) (4.3)

where S is the total "length" of the curve which is to be
traversed and T Is the (unknown) time when the destina-
tion point is reached.

At some point in the middle of the curve there must be
a switch from acceleration to deceleration. Let the time,
distance, and velocity at this point be denoted by t,, s,
and p4, respectively. Eqs. (4.2) and (4.3) must give identi-
cal results at the switching point, so we have

4 = 2Pmota = 2Pma(T -t3) (4.4a)

and

52 -F(T-tw)2 2,i* (4.4b)

EHimnating t, from these equations gives

(4.5)T 9 s
T=4POm

The total time T increases monotonlcally with S, so minimum
distance In Inertia space Is, In thIs case, equivalent to
minimum time. Therefore the geodesic, being the curve of
shortest "distance" between any two points, Is the optimal
geometric path. QE.D.

The conditons under which this proof of optimalty
appWlie are not realitic, particularly the conditlon that
gavitational terms be absent. The proof of optimalty
depends on the absence of gravtational terms because the
presence of such tems makes th power supplled to the
manipulator a function of position rather than a function
only of the kinetic energy of the manipulator. The require-
ment that the jint torques/forces be only constralned by a
total power limit for the entire manipulator is aiso unreals-
tic. However, it is possible In practice to obtaln bounds on
the total avaiable power for the more genwal case; In the
next subsection, such bounds wil be used to find bounds
on traversal times.
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4.2. Traversi Time Bounds
In this subsection, we show how energy methods simi-

far to those used In the previous subsection may be used to
obtain iower bounds on the time required to move from one
point in th&robot's workspace to another. We start with Eq.
(3.10), the formula for Pg, the power supplied to the mang

pulator. If we write P =dt dt2 P dt
tdtsand Pg = gjp

then we have

Pt = Pt -P7 -PG, (4.6)

We wil find bounds on P1 by fhnding bounds on Pt, P1,
and P1. But before computing these bounds, we need the
following rebult:

LerxKa 1: The 2-norm of the vector p is bounded by:
1

=
1 p 1 1

- (4.7)
"AuJ~) fx(J) flf2 -(Pj73

where

J,wl) - nmm =, (J) max
d

(The quadratic form Ji0ppi has been written In vector form
as pTipi) XA,(J) Is the smallest eigenvalue of J for alt
positions a and X=^(J) is defined simNarty.

Proof: Since p' is a unit vector in inertia space, we
have k.ptpi = pTJp 1. Then we have

1 = pTJPp = TpPR min p;] 2

Ukewise, we have

1 = prJp- prp'p5 max | 2I2IilVPp r- j VPp
Since I is positive definite and symmetric, its eigenvectors
span Rn. Expanding p in terms of the eigenvectors of I
shows that f2 (j) = &.(j) and fi() = Xa(J), which,
combined with the above inequalities, proves the lemma.

Q.ED.
We now compute bounds on the total applied power Pt.

It wil be assumed here that bounds on Pg arise from con-
stant bounds on the Joint torques and fron constant bounds
on the total applied power.1 Then, we have

Lerma 2: If dt > 0, then

max Pmi,, .d) Pt S min{PM,.7dt}
where P,,n and PM= are the minimm and maximum powers

that can be supplied to the robot, (= 11
, and

U|1ws 11 2 Is the maximum 2-norm of the torque vector.

Prod: By defoniton, we have Pt = uip d!. The

component of the torque in the direction of motion, upt,
can be bounded by

(4.8)IlUsp1'l. IIIlurmn211p 112. ln i

We therefore have

I8ouwnds of tWs form cm ally be found from mcfl saJtyrfon
brques aid from limit conpowor supply currents aid voitqn.

Pt > maxVPmi`n. H1 12 = maxjPi,, fitJ
and

Pt < minJP[Z. d dt} = min.Pm 3J}dt
Q.E.D

Lemma 3: Pf L bounded by 9.-- p. < #dk
where = Amin(R) d Am(R)

.max(j) A~m(l)
Proof: By an argument siNlar to that used to derive

bounds on II pII2 we have
Xm,n(HR) I1 2z pTRpS Xm (R)HP11 2 so that, by Lemma

1,

>,in(R) c p7RFP < Amax(R)
xmax(J) p minp)

Multiplying by /? gives the desired result.

(4.9)

Q.E.D.

Lemma 4: The gravitational energy contribution P

is bounded by e_SPo <9*1dtwhere - = ~11Pi12 dt
Proof: We have

(4.10)gigpi < 11 gi 1121g1a1p2g- II& 112

by Lemma 1. Multiplying by dk proves the lemma. Q.E.D.

Using bounds derived in Lemmas 2 through 4, we are
now hi a position to obtain bounds on P,.

Lemma b. Ifwe define,- > 0J2-- d~~~~~~~Ct
max{Pmin, -4e? -I

P; c min{Pm=. -0Lh + *A
Proving this Lemma is just a matter of plugging the

bounds obtained in Lemmas 2 through 4 into Eq. (4.8b).

We can now determine maximum velocities, as was
done In the previous subsection. We have the following
theorem:

Theorem 2: If the initial and final veiocities are zero
then

iA -e min, PM e11- ],++te (r4) -11

where T is the traversal time of the path and
#, + '/9 + 4-VPmax

Pm =

Proof: Consider two cases. In the first case, let P,
be baited by the joint torque bounds. Then we have
-4t. P.! i4 so that

9V -(t +ots Mj'e w2 + ( + OA (4.11)

But then, since we are considering positive values of u,

-# *-0 +Oc l W + (* + (4.12)

We must have zero velocity at the beginng and end of the
path. If the (as yet unknown) traversal time is T, then

2W.prowd."> 0 in (8].
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1l

and

1, ": -++-V(eftr) -1 (4.13b)

In the second case, limits are imposed by the total
power limits, i.e. Prin 5 Psc Pm Then we have

Pmin42it'MS A4"d Pmaz fO +* (4.14)

Again, we are only considering positive values of p4 since in
general Pmin < 0, the lower bound in this inequality will
always be less than zero. Therefore the roots of the lower
bound occur for negative values of p, and we cannot place
an upper bound on p, On the other hand, the upper bound
has a positive root. Since we are starting at M = 0, that
value of M for which dg goes to zero cannot be exceeded,
and we have dt

= +V___ +49Pma. (4.15)
2g

Since inequalities (4.13a), (4.13b), and (4.15) must all be
met, the theorem follows. Q.E.D.

To find lower bounds on traversal times, consider a
manipulator, call it the super-manipulator, for which the
constraints on Joint torques are such that Eqs. (4.1 3a),
(4.13b) and (4.15) apply. Then the super-manipulator has
limits only on the 2-norm of the tangential component of the
torque vector and on the total kinetic energy. Since these
constraints apply for the original manipulator, the old
manipulator's realizable torques are a subset of the super-
manipulator's, so that the super-manipulator can do any-
thing that the original manipulator can do. Thus any path
can be traversed by the super-manipulator at least as
quickly as the actual manipulator could traverse it. Finding
the minimum traversal time for the super-manipulator there-
fore gives a lower bound on the traversal time for the origi-
nal manipulator.

Finding the lower bound on the traversal time T for the
super-manipulator Ls simple. It is just a matter of finding a
value of T such that the area under the velocity vs. time
curve Is equal to the geodesic distance S between the ini-
tial and final points. Formally, we have

Theorem 3: Let the times t l and t2 be given by

d
p
Y [ + t-A4eand

roe i *+C A

(4.1 Ca)

(4.1 Sb)

If t1 and t2 are beth real and tj!s t2, then the minimum
traversal time T for the super-manipulator can be found by
solving the equation

S=J4 -m +P T - log|K + ] (4.17)

T-log

If tf is not real or t I> t2, then T can be found by solving
the simultaneous equations

±+ttC(1 -a -t) = VIS(eVS) 1) (4.1 8a)

S -it1 1 (eV(TIS i) -( tg

Proof: Finding the distance travelled, the area under
the velocity vs. time curve, requires that we consider the
two cases described above, which correspond to (i) the
case in which the velocity limit p. is reached, and (ii) the
case where it Is not. Case (i) is relatively simple. First, we
need to know the points where the curves described In
(4.13a) and (4.13b) reach the limiting veloctty p,. These
times may be obtained from (4.13a) and (4.13b) by setting
A= p4n and solving for t. These times are just t1 for
(4.13a) and t2 for (4.13b). Then the area under the velo-
city vs. time curve will be given by

S = J1 1 -e -0 a

+ km,cdt + tLeC(0-r) -1>dt
~1

= Mm -
pm + (m )

yt0 (

- # logl- -+ l ^ logl+¢-

Since S is linear in T, determining T is easy.
In case (0i, we have a single switching time t,, and we

may match positions and velocities as was done In the spe-
cial case in the previous subsection. Matching velocities
gives (4.18a). Matching positions gives

Sa

S.w = iot± -.e-s'Idt
9'

(4.20)

which, when Integrated, gives equation (4.1 8b)
Q.E.D.

Unfortunately, Eqs. (4.20) cannot be solved for t, In
closed form. However, we can still use these equations to
prove that T increases monotonically with 5, and thus
prove that the optimal path for the super-manipulator Is a
geodesic. This being known, the geodesic distance S
between the initial and final points can be calculated, and
Eq. (4.20) can be solved numerically.

Theorem 4: The mimum traversal time T for the
super-manipulator Increases monotonicafly with the geo-
desic length S of the traversed path.

Proof: To prove that T increases monotonicaly with S
dSwe will show that d- > 0. If case (i) of Theorem 3 holds,

then the result is obvlous. Case (i) is slightly more compli-
cated. First, we differentlate (5.23a) and (4.20) with
respect to the switching time t,, giving

(4.21 a)

(4.21 b)

8 -0, = Bef a dtT _ 1

±-±. 1 -ie ]

= | dT
_ I aV(Tr4' 1
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Solving (4.21 a) for ddtT, pluggng Into (4.21 b), solving
dS df dS dT'(4.21b)for -S, and dMdingg - by - gives

1 i
=

dta
# B..+1-

dtaI dt(rs;(4.22)
9*I +

we "[i iv(TtlwiJ

which is greater than zero. Q.E.D.

If the actual lower bound is required, then Eq. (5.23a)
may be solved for T. To do this, we may make use of the
equations for t, and t2g. The maximum velocity M. can be
varied In these equations until ti = f2 = t4; then this value
of f4 can be used in (4.21 a), which can be solved for T.

4.3. Approxinate Minimum Time Paths
In this subsection we consider two methods for gen-

erating geometric paths which are approximately minimum
time. The first method uses the traversal time bounds
derived in the prevous, section and the second method
uses the velocity bounds derived in [8, 9].

First, consider the lower bounds on traversal time. If
these bounds are good estimates of the actual traversal
times, then minimizing the lower bound should approximately
minimize the traversal tine. Since the lower bound increases
monotonically with the geodesic length S of the traversed
curve, geodesics (minimum-length curves) must ininmize the
lower bound. The "near optimal" paths may then be deter-
mined by ¶olvin9 the differential equations for a geodesic,

namely 5 0= . This method of generating near-

minimum time paths can be applied to most practical robots;
however, It places no penalties on forces which are orthog-
onal to the traversed path, so that path curvature is not
penalized. If any further constraints are applied which force
the introduction of curvature terms, then ignoring the mag-
nitude of the curvature terms could make the lower bound a
poor estimate of the actual traversal time, causing a poor
choice of path. The minimization of lower bounds leads to
the selection of shortest-distance paths in inertia space,
which could have corners at which the manipulator must
come to a complete stop. Path segments of high curvature
also slow the manipulator down. Thus it is necessary to
strike a compromise between curves of shortest distance
and curves of smallest curvature. (This naturally leads to
the second method of generating near-minimum time
geometric paths.)

In order to reach such a compromise, we choose as an
objective function the product of the length of the curve
and some measure of the total curvature. This, of course,
requires some quantitative measure of both curvature and
distance In an n-dimensional space where n is the number
of maripulator joints. One obvious measure of total curva-
ture is the reciprocal of the maximum velocity, as computed
In [8,9]. If the path is expressed in terms of an arbitrary
parameter x, then the expression
t dA (4.23)

would appear to be a good choice, where a x and Ama(A)
Is the velocity limit at position A. This expression is
independent of the parameterization chosen, and
Increases both as the length of the curve increases and as
the curvature Increases.

In order to use (4.23), the value of the maximum velo-
city (A) is required. In [8, 9] we have derived this
bound in terms of the manipulator's torque bounds and Its
dynamic equations. The set of admissible accelerations A is

given by a set of inequalities of the form

ur M'A + Qi +& + 5* A es (4.24)

where

!di - rAdfCi L + [jk ,i 1dff diA
K}U dAX $d d

For a given position A and velocity p, these inequalities
gives a range of accelerations I and so may be thought of
as assigning upper and lower acceleration bounds to each
point (A,,u) in the phase plane. Since these inequalities must
hold for all joints of the manipulator, the acceleration must
fall between the greatest of the lower acceleration bounds
and the least of the upper bounds. When one of the upper
acceleration bounds is smaller than one of the lower
acceleration bounds for some phase point (A,,), there are
no acceleratios which will keep the manipulator on the
desired path. Thus the acceleration bounds generate res-
trictions on the velocities at the phase points which can be
encountered during a traversal of the path. These relation-
ships can be thought of as assigning velocity limits to a
given position A.

Now consider a frictionless manipulator, i.e. one for
which the quantities 14 are zero. Also assume that at every
point on the path the manipulator is capable of stopping and
holding its position. Then we have

U4f 5 Si< wmn (4.25a)

at all points on the path. (This will hereafter be referred to
as the "strong manipulator assumption".) If the parameter A
is deflned to be the arc length s in inertia space, then Q is
just the inertia matrix J3 muitiplied by the curvature vector

i! . But if the path chosen is a geodesic, the curvature

vector is zero, and hence Q =- 0. Then the inequality
(4.24) reduces to

Uf C< M*I+ Si wC (4.25b)

which is independent of the velocity p. and by the strong
manipulator assumption is satisfied identically for u= 0. But
if the bounds on 4 are independent of p. there can be no
velocity limits; in other words, p,,(A) = -, so that the
integrand of (423) is zero. Thus In this case the optimal
solution coincides with that obtained from minimizng traver-
sal times.

It may appear at first that the geodesic, since it max-
mizes velocity bounds, must be the true minimum time path.
However, as shown in [8,9] the manipulator must meet
acceleration as well as velocity constraints. It would then
be expected that along the optimal geometric path the
maximum acceleration would be maximized during an
accelerating portion of the path and the minimum accelera-
tion would be minimized during a decelerating portion. This
does not happen along a geodesic, but a similar
phenomenon occurs: the acceleration bounds "spread out".
To see this, note that velocity limits occur because the
acceleration bounds become very close. Since the velocity
bounds have been eliminated by choosing a geodesic as the
path, the acceleration bounds must never get close. Hence
maximizing velocity bounds also gives a large range of
accelerations to choose from. This would lead one to
expect that geodesics are good, if not optimal, choices for
geometric- paths.

In summary, we have two criteria for selecting near-
minimum time gemetric paths for a manipulator, one based
on the minimization of a lower bound on the manipulator's
traversal time and the other based on the minimization of
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the product of the path's length and its curvature. In either
case, when the near-optimal path is determined, the path ls
found to be & geodesic In inertia space. This geodesic can
be constructed by soMng a set of differential equations
and applying appropriate boundary conditions.

5. EXAMPLES
To demonstrate the utility of the solutions described

above, the traversal times for various geometric path have
been calculated, using the method of [8,9], for the Bendix
PACS arm. This arm Is cylindrical In configuration, and Is
driven by fixed-field D.C. motors. Only the dynamics of the
first three joints are considered here (see Figure 1). We
construct three paths, a straight line, a geodesic, and a
joint-interpolated curve. (The joint-interpolated curve has
the form q'= qg + A(q) -q_), where 0 sA 1 and q and
) are the points at which the curve starts and finishes.)

Both construction of geodesics and trajectory planning
require that the dynamic equations (3.1) of the robot be
known. In particular, the inertia matrix and Coriolis coeffi-
cients are needed In order to construct geodesics. For the
first three joints of the manipulator the inertia matrix takes
the form

J -Kr + Mrr2 O O (5 1)
0 Mt 0

0 o M1

where ql = 4 q2 = r, and q3 = z. The constants Mg and
M, are the masses which the r and a axes must move. Jt
Is the moment of inertia around the 0 axis when r Is zero.
The K term is present because the center of mass of the
structure for the r joint does not coincide with the 0axis
when r Is zero. The values of Js, K, Mg, and M., along with
friction coefficients and actuator characteristics, may be
found in [71 The Christoffel symbols of the first kind
(Cornhs coefficients) are found by differentiating 4J.
Those symbols which are non-zero are

[12,I] = [21,1] = Mir - f [11,2] = -Mir (5.2a)

The geodesics are solutions of the equatons
k= 1 9 + [ jk,i] la de Plugging Eqs. (5.1)ds2dsd

through (5.2b) Into this equation gives the equations of the
geodesics as

0 = (Jg -Kr + Mg r2) 120 + (2Mr_K) I dl (5.3a)

0=4d2 + 1 2 -gtr 2 ds] ds 3dz K d]
PI

(5.3b)
ds 2-Mtr

0= rd.s (5.3c)

In addition, we have the normality condition

(It-KYr + Mtr ) +$+M,[ j)+M5[f l=i(s
|ds] l~ds |ds]

The geodesics are found by soving these equations numer-
lcaly.

The gravitational term for this manipulator are partic-
ularly simple; the gravitational forces on the r and t5olnts
are zero, and the force on the z joint Is M4g.

Trajectory planning also requires knowiedge of the
robot's actuator characteristics. To determine actuator
characteristics, consider a DC servo consisting of a voltage
source, a resistance RI", an Inductance L, and an Ideal
motor, I.e., a device which generates a torque proportional
to the current passing through It. The voltage sorce Is the

power supply, the resistance Is the sum of the voltage
source resistance and the motor winding resistance, and
the inductance isthe Inductance of the motor windings.

It wiN be assumed here that the inductance L can be
neglected. This frequentiy is the case for D.C. motors,
since the electrical time constant of such systems is gen-
erally much shorter than the mechanical time constant.
Given that the torque T is proportional to the current, i.e.
T= k"'!, it can be shown from conservation of power that
the voltage V, across the ideal motor Is just kMIn where c
is angular velocity. Since, If the motor Is not In saturation,

;;, vm V, -k'%i
r= km and I= where W. is the

Rm R
source voltage, we can solve for torque in terms of voltage
and angular velocity, givingkEN (k"')2 55k Vs fi. ~~~~~(5.5)

RM Rm
Assuming the power supply has constant voltage linits of
Vm3l and Vmx, this gives torque limits of

km m (r kZm vnax.C (5.6a)
R' Rm Rm R"l

In addition, at some point the iron in the motor saturates,
with the result that increasing the current through the
motor has no effect on the torque. This yields two more
(constant) torque limits, so we also require that

e <S < (5.b)

Taking the gear ratio kg into account, this gives torque lim-
its of

urn = max[&V,

and

km n.i(n m)2 dq' (6.7a)

RzmkE 4ih(kg)2 dN.

4'a Jk"' J~( 4)2urmA = minf t
5(-)7b)

A trajectory planner for this robot was written In the C
programming language and run under the LUNIX3 operating
sWstem on a VAX-i 1/7804. The trajectory planner was
used to generate trajectories for a straight ie, a geo-
desic, and a jint interpolated curve, each of which
extended from the Cartesian point (0.7,0.7,0.1) to (0.4,-
0.4,0.4), all coordinates being measured In meters. Phase
plane plots (plots of the speed ,u versus position A), plots
of position 4q vs. tine, and plots of motor voltage vs. time
are shown In Figures 2a through 4c. Figures 2a through 2c
are for the straight ne, Figures 3a through 3c are for the
jont interpolated curve and Figures 4a through 4c are for
the geodesic. The traversal times for these paths are
1.782, 1.796, and 1.588 seconds respectively, showing
that the geodesic does Indeed have the shortest traversa
time.

6. CONCLUSIONS
Two methods (excluding the special case) have been

proposed for finding geometric paths which allow a robotic
manipulator to move from one point to another In minimum
time or approximately minimum time; If obstacle avoidance Is
not a consideratin, both methods yield the same result.
While these methods do not directly address the problem of
obstacle avoidance, they do demonstrate that the problem
of chooslng minimum time paths is not simple, and hI particu-
lar they show that minimum time Is not In general equivalent
to minimum Cartesian distance.

3UNIX Is a trademark of Bdt Latnatowin.

41/AX s a tradarak of D/gltaf Equlp Corporaion.
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Two approaches to the obstacle avoidance problem
suggest themsetves. If the geodesic which connects the
desired Iial and final positins of the manipulator happens
to pass through an obstacle, then we may piece together
geodesics to give a path which has shortest geodesic,
rather than Cartesian, distance. This again has the disad-
vantage that the.path will have coners at which the mani-
pulator must stop, but these corners could presumably be
rounded off, as in [6].

On the other hand, Eq. (4.23) provides a means of
evaiuating the "goodness" of any given path without actu-
ally calculating the path's traversal time. If several paths
can be found which avoid collisions with obstacles, then
each one can be evaluated and the best one chosen on the
basis of formula (4.23). This presumes that some method
can be developed for generating colision-free paths
quickly. It also presumes that at least some of the paths
generated by the algorithm are reasonably close to the
optimal path. But since minimization of the product of curva-
ture and distance gives paths with short traversal times,
some guidelines for generating paths are now available.
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Figure 1. Schematic diagram of the rst
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Figure 3a. Phase plane plot for joint-interpolated path Figure 3b. Joint position vs. time for joint-interpolated path
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