
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 6 , JUNE 1985 53 1

Minimum-Time Control of Robotic Manipulators with
Geometric Path Constraints

Abstruct-Conventionally, robot control algorithms are divided into
two stages, namely, path or trajectory planning and path tracking (or
path control). This division has been adopted mainly as a means of
alleviating difficulties in dealing with complex, coupled manipulator
dynamics. Trajectory planning usually determines the timing of manipu-
lator position and velocity without considering its dynamics. Conse-
quently, the simplicity obtained from the division comes at the expense of
efficiency in utilizing robot’s capabilities.

To remove at least partially this inefficiency, this paper considers a
solution to the problem of moving a manipulator in minimum time along
a specified geometric path subject to input torque/force constraints. We
first describe the manipulator dynamics using parametric functions which
represent geometric path constraints to be honored for collision avoid-
ance as well as task requirements. Second, constraints on input torqued
forces are converted to those on the parameters. Third, the minimum-
time solution is deduced in an algorithm form using phase-plane
techniques. Finally, numerical examples are presented to demonstrate
utility of the trajectory planning method developed.

I
I. INTRODUCTION

NDUSTRIAL robots have emerged as a primary means of
contemporary automation due to their potential for productivity

increase and product quality improvement. Obviously, a robot
should be controlled so as to produce as many units as possible per
dollar invested. This in turn naturally leads to the need for
minimum-time control of robots.

There are a variety of algorithms available for robot control.
These algorithms usually assume that the control structure of the
robot has been divided into two levels. The lower level is called
control or path tracking, and the upper level is called path or
trajectory planning. The path tracker attempts to make the
robot’s actual position and velocity match some desired values of
position and velocity; the desired values are provided to the
controller by the trajectory planner. The trajectory planner
receives as input some sort of geometric path descriptor from
which it calculates a time history of the desired positions and
velocities. The path tracker then tries to minimize the deviation of
the actual position and velocity from the desired values.

The control scheme is divided in this way because the process
of robot control, if considered in its entirety, is very complicated,
since the dynamics of all but the simplest robots are highly
nonlinear and coupled. Dividing the controller into the two parts
makes the whole process simpler. The path tracker is frequently a
linear controller (e.g., a PID controller). While the nonlinearities
of manipulator dynamics frequently are not taken into account at
this level, such trackers can generally keep the manipulator fairly
close to the desired trajectory.

Unfortunately, the simplicity obtained from the division into

20, 1984. Paper recommended by Past Associate Editor, J. Y. S. Luh. This
Manuscript received August 4, 1983; revised November 26, 1983 and April

work was supported m paa by the National Science Foundation under Grant ECS
8409938, the U.S. Air Force Office of Scientiiic Research under Contract F4%20-
82-C-0089 and the Robot Systems Division, Center for Research and Jntepted
Manufacturing (CRLM), The University of Michigan, Ann Arbor, MI.

Computer Science, The University of Michigan, Ann Arbor, MI 48109.
The authors are with the Department of Electrical Engineering and

trajectory planning and path tracking comes at the expense of
efficiency. The source of the inefficiency is the trajectory planner.
In order to use the robot at maximum efficiency, the trajectory
planner must be aware of the robot’s dynamic properties, and the
more accurate the dynamic model is, the better the robot’s
capabilities can be used. However, most of the trajectory planning
algorithms presented to date assume very little about the robot’s
dynamics. The usual assumption is that there are constant or
piecewise constant bounds on the robots velocity and acceleration
[9], [lo]. In fact, these bounds vary with position, payload mass,
and even with payload shape. Thus, in order to make the constant-
upper-bound scheme work, the upper bounds must be chosen to be
global greatest lower bounds of the velocity and acceleration
values; in other words, the worst case limits have to be used.
Since the moments of inertia seen at the joints of the robot, and
hence the acceleration limits, may vary by a factor of three or
more, such bounds can result in considerable inefficiency or
underutilization of the robot.

To alleviate the inefficiency, this paper presents a solution to
the minimum-time manipulator control problem subject to con-
straints on its geometric path and input torques/forces. The
solution will be in the form of a trajectory planning algorithm, and
will take into account the details of the dynamics of the
manipulator. The output of the trajectory planner will be the true
minimum-time solution, and so will be useful as a standard against
which the performance of other trajectory planning algorithms
may be measured. Note that the problem and its solution
considered in this paper are different from the near minimum-time
control methods in [4], [5] .

Bobrow et al. [11, [2] have independently come to conclusions
similar to our own. Although their formulation of the problem is
similar to ours, their solution algorithm and motivations are
different from ours in several respects. In their work, no specific
form is assumed for the actuator torque bounds except that they be
functions only of the robot’s current position and velocity. We
have assumed that the velocity dependence is at most quadratic,
which allows a more concrete treatment of some aspects of the
problem while still allowing treatment of most of the actuators
found in practice. The assumption of quadratic velocity bounds
combined with the assumption that the parametric equations of the
curve to be followed are piecewise analytic (again, an assumption
which presents no practical difficulties) permits construction of a
proof that our algorithm terminates in a finite number of steps. By
contrast, Bobrow’s work relies on the hypothesis that there are a
finite number of switching points. Finally, both [l], [2], this paper
make use of phase plane techniques, and both use the
idea of a set of admissible velocities for a given position. This
naturally leads to the idea of an “admissible region” in the phase
plane. Bobrow’s solution implicitly assumes that this region is
simply connected. However, we show in this paper that 1) the
admissible region may not be simply connected, possibly making
some steps of Bobrow’s algorithm impossible, 2) our algorithm
terminates within a finite number of steps even for nonsimply
connected admissible regions, and 3) the resulting algorithm is
optimal for the general case, Le., for nonsimply connected
admissible regions.

The remainder of this paper is divided into five sections.

0018-9286/85/0600-0531$01.00 O 1985 E E E

532 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 6 , JUNE 1985

Section II describes a method for making the manipulator dynamic
equations more tractable and a method for handling input torque
constraints. Section III contains a detailed formulation of the
minimum-time control problem. Also, the form of the optimal
solution is deduced using phase-plane techniques. Section N
presents an algorithm for generating minimum-time trajectories,
and proofs of the convergence of the algorithm and optimality of
the generated trajectories. In Section V, we discuss some simple
examples to demonstrate the utility of our trajectory planning
algorithm. The final section discusses the significance of the
results.

II. PARAMETERIZED ROBOT DYNAMICS WITH INPUT TORQUE
CONSTRAINTS

Before delving headlong into the problem of minimum-time
control, a dynamic model of the manipulator is required. There
are a number of ways of obtaining the dynamic equations of a
robot arm, i.e., the equations which relate joint forces and torques
to positions, velocities, and accelerations. The Lagrange formula-
tion of mechanism dynamics yields a set of differential equations
which are easy to manipulate for robot control problems, and so
will be used here [3], [111. The dynamic equations take the form

~i = Jo{q)Q’ + RijQJ + CUdq)4’qk + G,{q) (1)

where ui is the ith generalized force, q i is the ith generalized
coordinate, Jii the inertia matrix, Gi the gravitational force on the
ith joint, Cub the Coriolis force array, and R, is the viscous
friction matnx. The Einstein summation convention has been
used, and all indexes run from one to n inclusive for an n-degree-
of-freedom robot.

The motion of the robot arm will not, of course, be completely
unconstrained. In fact, it will later be assumed that the manipula-
tor must be constrained to a fixed path in joint space, and that the
path is given as a parameterized curve. The curve is assumed to
be given by a set of n functions of a single parameter X, so that we
are given

q’= f’(X), OShlX,

where X is a parameter for describing the desired path, and it is
assumed that the coordinates q’ vary continuously with X and that
the path never retraces itself as X goes from 0 to X-.

It should be noted that in practice the spatial paths are given in
Cartesian coordinates. While it is in general difficult to convert a
curve in Cartesian coordinates to that in joint coordinates, it is
relatively easy to perform the conversion for individual points.
One can then pick a sufficiently large number of points on the
Cartesian path, convert to joint coordinates, and use some sort of
interpolation technique (e.g., cubic splines) to obtain a similar
path in joint space (see [8] for an example).

Returning to the problem at hand, we may use the parameter-
ization of the q’ and differentiate with respect to time, giving

where p A. The equations of motion along the curve (i.e., the
geometric path) then become

h = p (4a)

dfj df
Adx

+ Cjjk(X) - - p*.

and b are the velocity and the acceleration along the path,
respectively.

With this parameterization, there are two state variables, i.e., X
and p, but (n + 1) equations. One way to look at the system is to
choose the equation = p and one of the remaining equations as
state equations, regarding the other equations as constraints on the
inputs and on F;. However, the problem has a more appealing
symmetry if a single differential equation is obtained from the n
equations given by multiplying the ith equation by df/& and sum
over i, giving

df df’ df d fJ dfk
” A dA AdxdA

+ R . . - - p + C,&) - - - p2. (5)

This formulation has a distinct advantage. Note that the coefficient
of i is quadratic in the vector of derivatives of the constraint
functions. Since a smooth curve’ can always be parameterized in
such a way that the first derivatives never all disappear simultane-
ously, and since the inertia matrix is positive definite, the whole
equation can be divided by the nonzero positive coefficient of b,
providing a solution forb in terms of X and p . Now there are only
two state equations, and the original n equations can be regarded
as constraints on the inputs and on b (more on this will be
discussed later).

With this formulation, the state equations become

Consider now the constraints on the inputs, namely, u k 5 ui
5 ui,, and (4b). The dynamic equations (4b) can be viewed as
having the following form: ui = g,(X)b + h,{X, p). For a given
state, i.e., given X and p , this is just a set of parametric equations
for a line, where the parameter is i . The admissible controls,
then, are those which are on this line in the input space and also
are inside the rectangular prism formed by the input magnitude
constraints. Thus, the rectangular prism puts bounds on b. The
reason for converting from bounds on the input torques/forces to
bounds on the pseudoacceleration i is that all the positions,
velocities, and accelerations of the various joints are related to one
another through the parameterization of the path. Given the
current state (X, p), the quantity b, if known, determines the input
torques/forces for all of the joints of the robot, so that
manipulation of this one scalar quantity can replace the manipula-
tion of n scalars (the input torques) and a set of constraints (the
path parameterization equations).

For evaluating the bounds on C; explicitly, (4b) can be plugged
into the inequalities ukin 5 ui 5 u& so that

the starting and destination points. If it is not, still we can dwide the path into
We assumed to have a smooth curve for describing the gjven path between

smooth subpaths. Then, the above assumption becomes valid. Note that if X is used to represent arc length along the path, then p

SHIN AND MC KAY: ROBOTIC MANIPULATORS WITH GEOMETRIC PATH CONSTRAINTS 533

Introducing some shorthand notation, let

We then have

U ~ ~ - (M ~ ~ + Q ~ ~ ~ + R ~ ~ + S ~ I U - , . (7b)

Note that the quantities listed above are functions of X. For the
sake of brevity, the functional dependence is not indicated in what
follows.

Manipulation of these inequalities gives (assuming that Mi # 0)

where

LB; u Lh(Mi > 0) + u -(Mi < 0) - (Qip + Rip + Si)
Mi

and

uk,(Mi>O)+~A,(Mi<O)-(Qip~+Rip+Si)
Mi

UBi

The expression (Mi > 0) evaluates to one if Mi > 0, zero
otherwise. Since these constraints must hold for all n joints, i
must satisfy maxi LB; I b I mini UBi, or GLB(X, p) I i I

Note that it has not been assumed here that u k n and u- are
constants; they may indeed be arbitrary functions of X and p.
Later these quantities will be assumed to have specific, relatively
simple forms, but these forms should be adequate to describe most
of the actuators used in practice.

The difference between the trajectory planning algorithm to be
presented and those which are conventionally used can be seen in
terms of the equation above. Assume that the parameter X is arc
length in Cartesian space. Then p is the speed and ,h the
acceleration along the geometric path. Since most conventional
trajectory planners put constant bounds on the acceleration over
some particular (frequently the entire) interval, one would have
GLB(X, p) I bmin I b I ,itmax I LUB(X, p), where imin and
imx are constants. The conventional techniques, then, restrict the
acceleration more than is really necessary. Likewise, constant
bounds on the velocity will also be more restrictive than
necessary.

L U m , PI.

In . FORMULATION OF OPTIMAL CONTROL PROBLEM

With the manipulator dynamic equations and joint torque/force
constraints in suitable form, we can address the actual control
problem. Problems which require the minimization of cost
functions subject to differential equation constraints can be
expressed very naturally in the language of optimal control
theory. The usual method of solving such a problem is to employ
Pontryagin’s maximum principle [6]. The maximum principle
yields a two-point boundary value problem which is, except in
some simple cases, impossible to solve in closed form, and may
be difficult to solve numerically as well. We will therefore not use
the maximum principle, but will use some simpler reasoning,
taking advantage of the specific form of the cost function and of
the controlled system.

In the case considered here, minimum cost is equated with
minimum time, thus maximizing the operating speed of the robot.

The cost function can then be expressed as T = 12 1 .dt where the
final time tf is left free. It is assumed here that the desired
geometric path of the manipulator has been preplanned,2 and is
provided to the minimum-time controller in parametric form, as
described earlier [i.e., (3)]. Further, assume that the q’ are
parameterized in such a way that the initial point corresponds to X
= 0, the final point corresponds to X = X,,, and that the df /A
never all become zero simultaneously. This guarantees that the
state equations (6a) and (6b) exist, and also guarantees that as X
increases from 0 to X,, the path never retraces itself.

Given this form for the dynamic equations, we have the
minimum time path planning (MTPP) problem as follows.

Problem MTPP: Find x* = (X*, p*) and uTby minimizing T
subject to (6a), (6b), ufin 5 ui I u-, 0 i X I X,, and the
boundary conditions p(0) = po, p (f f) = pf, X(0) = 0, and
= &.

Before doing any further manipulations on the state equations,
define the functions.

df dfJ
A m M@) EJii(h) - - ,

Again, for convenience the dependence of the above coefficients
on X will be omitted in the sequel. Now rewrite the state equations
in the following form:

A=p (94

/i=- [U - Q p 2 - R p - S] .
1

M (9b)

The M term is a quadratic form reminiscent of the expression
for the manipulator’s kinetic energy. In fact, if the parametric
expressions for the Qi are plugged into the formula for kinetic
energy, one obtains the expression 2K = Mp2. The Q term
represents the Components of the Coriolis and centrifugal forces
which act along the path plus the fictitious forces generated by the
restriction that the robot stay on the parameterized path. The R
term represents frictional components, and S gives the gravita-
tional force along the path. U is the projection of the input vector
onto the velocity vector.

At this point, it is instructive to look at the system’s behavior in
the phase plane. The equations of the phase-plane trajectories can
be obtained by dividing (9b) by (9a). This gives

-
dt

It is interesting to note that the total time T it takes to go from
initial to final states is

The idea, then, is to minimize this integral subject to the given

meet task requirements.
This is done at the stage of task planning to avoid collision as well as to

5 34 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 6 , JUNE 1985

constraints. We therefore want to make the pseudovelocity p as
large as possible, a result which would be expected intuitively.

The constraints on b have two effects. One effect is to place
limits on the slope of the phase trajectory. The other is to place
limits on the value of p. To obtain the limits on d p / A , one simply
divides the limits on ,i by p, since d p / A = b / p .

To get the constraints on p, it is necessary to consider the
bounds on b. If, for particular values of X and p, we have LUB(X,
p) < GLB(X, p) then there are no permissible values of b.
Therefore, for each value of X we can assign a set of values of p as
determined by the inequality LUB(X, p) - GLB(X, p) 2 0. This
inequality holds if and only if UBI@, p) - LBj(X, p) 2 0 for all i
and j . The intersection of the regions determined by these
inequalities produces a region of the phase outside of which the
phase trajectory must not stray. This region will hereafter be
referred to as the admissible region of the phase plane. Using the
equations for the lower and upper bounds for all i and j ,

Rearranging this inequality,

+ [
u&(Mj<o)-u~,(Mi>o)

lMil

It will prove convenient to “symmetrize” the input torque
bounds in the discussion which follows. Each joint has a mean
torque ub and a maximum deviation A i given by

The inequality (12a) can then be rewritten as

M; Mj M; Mj Mi Mj

[UL M; M, uL] + [lMil A i lMjl AJ] - -+- 20.

At this point, a specific form for the torque bounds will be
assumed. If the maximum and minimum torques for each joint are
functions only of the states q’ and q ‘ (Le., the actuator torques are
all independent of one another) and are at most quadratic in the
velocities q ’ , then the inequality yields a simple quadratic in p.
This allows one to solve for the velocity bounds using the
quadratic formula. A particulary simple and useful special case is
that encountered when the actuator is a futed-field DC motor with
a bounded voltage input. In this case, the torque constraints take
the form uLx = V k + kkqi and liLi, = VAn + kLqi where
Vi min and V& are proportional to the voltage limits and k b is a
constant which depends upon the motor winding resistance,
voltage source resistance, and back E.M.F. generated by the
motor. Let V,,, = (V- + V 3 / 2 and Ai = V k x - V&. Then
we get

From here on, the case outlined above will be used for the sake
of simplicity. The only changes required for the more general case
of quadratic velocity dependence of the torque bounds is a
redefinition of the coefficients in some the equations which
follow.

Introducing yet more shorthand notation, let

Noting that (at least in this case), A , = -Aj i , B, = - Bjj, C,
= Cji, and D, = Djj , we have the inequalities

A,p2+B,p+C,+D,r0 and -A,p2-B,p+C”-D,r0. (12~)

The second inequality is obtained by interchanging i and j and
using the symmetry or antisymmetry of the coefficients. Only the
cases where i # j need be considered, so there are n(n - 1)/2
such pairs of equations, where n is the number of degrees of
freedom of the robot.

If A , = B, = 0, we have C, - D, 2 0 and C, + Djj 2 0,
which are always true if the robot is “strong” enough so that it
can stop and hold its position at all points on the desired path. If
A , = 0 and B, # 0, then we have a pair of linear inequalities
which determine a closed interval for p. If A , # 0, then, without
loss of generality, we can assume that A , > 0. Then the left-hand
side of the first of the inequalities (12c) is a parabola which is
concave upward, whereas for the second, it is concave downward.
When the parabola is concave downward, then the inequality
holds when p is between the two roots of the quadratic. If the
parabola is concave upward, then the inequality holds outside of
the region between the roots (Fig. 1). Thus, in one case p must lie
within a closed interval and in the other it must lie outside an open
interval, unless of course the open interval is of length zero. In
that case, the inequality is always satisfied and the roots of the
quadratic will be complex.

Since the admissible values of p are those which satisfy all of
the inequalities, the admissible values must lie in the intersection
of all the regions determined by the inequalities. There are n(n -
1)/2 inequalities which give closed intervals, so the intersection of
these regions is also a closed interval. The other n(n - 1)/2
inequalities, when intersected with this closed interval, each may
have the effect of “punching a hole” in the interval (Fig. 2). It is
thus possible to have, for any particular value of X, a set of
admissible values for p which consists of as many as n(n - 1)/2
+ 1 distinct intervals. When the phase portrait of the optimal path
is drawn, it may be necessary to have the optimal trajectory dodge
the little “islands” which can occur in the admissible region of the
phase plane. (Hereafter, these inadmissible regions will be
referred to as blands of inadmissibility, or just islands.) It
should be noted, though, that if there is no friction, then Bij = 0,
which means that in the concave upward case the inequality is
satisfied for all values of p. Thus, in this case there will be no
islands in the admissible region.

In addition to the constraints on p described above, we must
also have p L 0. This can be shown as follows: if p < 0, then the
trajectory has passed below the line p = 0. Below this line, the
trajectories always move to the left, since p = A / d t < 0. Since
the optimal trajectory must approach the desired final state
through positive values of p, the trajectory would then have to
pass through p = 0 again, and would pass from p < 0 to p > 0 at
a point to the left of where it had passed from p > 0 to p < 0.

SHIN AND MC KAY: ROBOTIC MANIPULATORS WITH GEOMETRIC PATH CONSTRAINTS 535

1 -Aiju2 - B . .‘a + C . - D..
11 1 3 11

I--=;------ ---1 CAdmiss ib le ~

I Values of b I

I I I

+ A . . c 2 + B . .L + Ci l + D i j
11 11

/
Values of !J

Inaemissihle -
U

I
1

Fig. 1. Admissible regions of p determined by a pair of parabolic
constraints.

b
I Constraint 1

I

b

I ’

I ’

I

Intersection
of Constraints

Fig. 2. Intersection of admissible regions of p .

Thus, in order to get to the desired final state, the trajectory would
have to cross itself, forming a loop. But, then, there is no sense in
traversing the loop; it would take less time to just use the crossing
point as a switching point. Thus, we need consider only those
points of the phase plane for which p 2 0.

Another way of thinking about the system phase portrait is to
assign a pair of vectors to each point in the phase plane. One
vector represents the slope when the system is accelerating (i.e., ,i
is maximized) and the other represents the slope for deceleration
(i.e., i~ is minimized). This pair of vectors looks like a pair of
scissors, and as the position in the phase plane changes, the angles
of both the upper and lower jaws of the pair of scissors change. In
particular, the angle between the two vectors varies with position.
The phase trajectories must, at every point of the phase plane,
point in a direction which lies between the jaws of the scissors. At
particular points of the phase plane, though, the jaws of the
scissors close completely, allowing only a single value for the
slope. At other points the scissors may try to go past the closed
position, allowing no trajectory at all. This phenomenon, and the
condition p 1 0, determine the admissible region of the phase
plane. This is illustrated in Fig. 3. Note that the boundary of the

Fig. 3. Phase portrait showing acceleration and deceleration vectors at each
state with = 0.

admissible region passes through those points which have only a
single vector associated with them, corresponding to those states
where only a single acceleration value is permitted.

Iv . DETERMINATION OF OPTIMAL TRAJECTORIES

For illustrative puposes, we first present an algorithm for
finding the optimal trajectories for which there are no islands in
the phase plane which need to be dodged. The only restrictions,
then, will be that p must lie between a pair of values which are
easily calculable, given X. The optimal trajectory can be con-
structed by the following steps called the algorithm for construct-
ing optimal trajectories, no islands (ACOTNI).

Step 1: Start at X = 0, ,u = po and construct a trajectory that
has the maximum acceleration value. Continue this curve until it
either leaves the admissible region of the phase plane or goes past
X = X,. Note that “leaves the admissible region” implies that if
part of the trajectory happens to coincide with a section of the
admissible region’s boundary, then the trajectory should be
extended along the boundary. It is not sufficient in this case to
continue the trajectory only until it touches the edge of the
admissible region.

Step 2: Construct a second trajectory that starts at h = X,,, p
= pf and proceeds backwards, so that it is a decelerating curve.
This curve should be extended until it either leaves the admissible
region or extends past X = 0.

Step 3: If the two trajectories intersect, then stop. The point at
which the trajectories intersect is the (single) switching point, and
the optimal trajectory consists of the first (accelerating) curve
from X = 0 to the switching point, and the second (decelerating)
curve from the switching point to X = X,, (Fig. 4).

Step 4: If the two curves under consideration do not intersect,
then they must both leave the admissible region. Call the point
where the accelerating curve leaves the admissible region X]. This
is a point on the boundary curve of the admissible region (Fig. 5).
If the boundary curve is given by p = g(X), then search along the
curve, starting at X,, until a point is found at which the quantity
4(X) d p / A - dg/& changes sign. (Note that since g(h)
determines @e boundary of the admissible region, there is only
one allowable value of d p / A . Also note that if g(X) has a
discontinuity, d g / A must be treated as + 03 or - 03 depending
upon the direction of the jump.) This point is the next switching
point. Call it Ad.

Step 5: Construct a decelerating trajectory backwards from h d
until it intersects an accelerating trajectory. This gives another
switching point (see point A in Fig. 6) .

Step 6: Construct an accelerating trajectory starting from b.
Continue the trajectory until it either intersects the final decelerat-
ing trajectory or it leaves the admissible region. If it intersects the
decelerating trajectory, then the intersection gives another switch-
ing point (see paint C in Fig. 6), and the procedure terminates. If
the trajectory leaves the admissible region, then go to Step 4.

IEEE TRANSACTIONS ON AUTOMATIC COhTROL. VOL. AC-30. NO. 6. JUNE 1985 536

A = (
u = (

11 Boundary

I
Switching
Point

Fig. 4. Case when accelerating and decelerating curves intersect with p,, =
0.

11
Admissible

Fig. 5. Case when accelerating and decelerating curves do not intersect.

+Accerlerate’ Decelerate ‘Accelerat; Decelerate I
A, B, and C are switching points
B is a point of osculation between

g(Z1 and the trajectory

Fig. 6. Complete optimal trajectory formed by ACOTNI with three switching
points.

This algorithm yields a sequence of alternately accelerating and
decelerating curves which gives the optimal trajectory. Before
discussing the optimality of the trajectory, one has to show that all
steps of the ACOTNI are possible and that the ACOTNI will
terminate.

Addressing the first question, Steps 1-3, 5, and 6 are clearly
possible. Step 4 requires finding a sign change of the function
4(h). Since d(h) must be greater than zero where the accelerating
trajectory leaves the admissible region and less than zero where
the decelerating trajectory leaves, there must be a sign change.
Therefore, all steps are possible.

In order to prove that ACOTNI terminates, we must make some
assumptions about the form of the functionsf(h). In particular, it

will be assumed that the f -are piecewise analytic and are
composed of a finite number of pieces in addition to being real-
valued. Under these assumptions, the following theorem proves
the convergence of ACOTNI within a finite number of iterations.

Theorem I: If the functions f’ are composed of a finite number
of analytic, real-valued pieces, then the function 4(X) has a finite
number of intervals over which it is identically zero and a finite
number of zeros outside those intervals.

Proof: The inertia matrix, Coriolis array, and gravitational
loading vector are all piecewise analytic in the q’, and since the
f(h) are analytic in h, the inertia matrix, etc., when expressed as
functions of X [as in (4a) and (4b)l are piecewise analytic and have
a finite number of analytic pieces. The functions Mi, Qi, Ri, Si of
(7b) are, therefore, also piecewise analytic. Since a real-valued
analytic function with no singularities in a finite interval must
either have a finite number of zeros in that interval or be
identically zero, the quantities Mi must either be identically zero
in the interval considered or have a finite number of zeros. We
cannot have all of the Mi zero, for if that were the case we would
have J i p S /dAdf/dA = M&’/dA = 0, which is not allowed by
hypothesis. If only one of the Mi is nonzero, then there is no
boundary curve to deal with, and so no zeros. With two or more
not identically zero, there will be a boundary curve. The curve is
given by one of the equations (12c) (with “ 2 ” replaced by
“ = ”) for some pair of indexes i and j . Since the coefficients A ,
B , C, and D in (12c) are analytic except at the zeros of the Mi,
and because the Mi have a finite number of zeros, we can divide
the interval under consideration further, using the zeros of the Mi
as division points. Within each subinterval, then, only one of the
equations (12c) holds. Since (12c) determines p as an analytic
function of h within this interval, the bounding curve g(h) is
piecewise analytic. The curve 4(h), then, is also piecewise
analytic and is either identically zero or has a finite number of
zeros in each subinterval. Thus, since $(X) either is identically
zero in each subinterval or has a finite number of zeros in the
subinterval, the number of subintervals is finite, and the number
of intervals is finite, the number of zeros and zero-intervals is
finite. Q.E.D.

Finally, the following theorem proves the optimality of the
solution generated by the ACOTNI.

Theorem 4: Any trajectory generated by the ACOTNI is
optimal in the sense of minimum-time control.

Proof: Proof of this theorem is straightforward. Let r be the
trajectory generated by ACONTI, and let r be a trajectory with a
shorter traversal time. Now observe three facts. 1) From the form
(1 1) of the cost T, there must be a point (A,,, p‘) on r ‘ which is
higher than the point (A,,, p) on r, i.e., p ’ > p . Otherwise, we
would not have a trajectory with a smaller travel time. 2) The
trajectory I’ consists of alternately accelerating and decelerating
segments, and can therefore be divided into sections which consist
of one accelerating and one decelerating segment. 3) The
admissible portions of these sections which lie above J? are
bounded on the left and right by either the line h = 0, the line h =
X,,, the boundary of the admissible region, or the ACOTNI
trajectory itself. Now consider the point (X, p ’) and the trajectory
r ’ . This trajectory, if extended backward and forward from (A,,,
p ’) must intersect a single section of the ACOTNI trajectory at
two or more points, since otherwise it would either leave the
admissible region or not meet the initial or final boundary
conditions. One such point must occur for X < X, and one must
occur for h > A,,. But since the accelerating segment of the
trajectory precedes the decelerating segment, the new trajectory
must either intersect the accelerating part of the ACOTNI
trajectory twice, intersect the decelerating part twice, or first
intersect the accelerating part then the decelerating part. But since
the torques were chosen so as to minimize or maximize U in (lo),
any of these situations leads to a contradiction of a theorem on
differential inequalities presented in [7]. Q.E.D.

The whole idea of the algorithm is to generate trajectories
which come as close as possible to the edge of the admissible

SHIN AND MC KAY: ROBOTIC MAhTPULATORS WITH GEOMETRIC PATH CONSTRAINTS 537

region without actually passing outside it. Thus, the trajectories
just barely touch the inadmissible region. In practice this would,
of course, be highly dangerous, since minute errors in the control
inputs or measured system parameters would very likely make the
robot stray from the desired path. Theoretically, however, this
trajectory is the minimum-time optimum.

We are now in a position to consider the general case, i.e., the
case in which friction, copper losses in the drive motor? etc., are
sufficient to cause islands in the phase plane. In this case, the
algorithm is most easily presented in a slightly different form.
Since there may be several boundary curves instead of one, it is
not possible to search a single function for zeros, as was done in
ACOTNI. Thus, instead of looking for zeros as the algorithm
progresses, we look for them all at once instead, and then
construct the trajectories which "just miss" the boundaries,
whether the boundaries be the edges of the admissible region or
the edges of islands. The appropriate trajectories can then be
found by searching the resulting directed graph, always taking the
highest trajectory possible, and backtracking when necessary.
More formally, the algorithm for construction of optimal trajecto-
ries (ACOT) is as follows.

Step I : Construct the initial accelerating trajectory (same as
ACOTNI).

Step 2: Construct the final decelerating trajectory (same as
ACOTNI).

Step 3: Calculate the function $(X) for the edge of the
admissible region and for the edges of all the islands. At each of
the sign changes of 4(X), construct a trajectory for which the sign
change is a switching point, as in ACOTNI Steps 5 and 6. The
switching direction (acceleration-to-deceleration or vice-versa)
should be chosen so that the trajectory does not leave the
admissible region. Extend each trajectory until it either leaves the
admissible region, or goes past Xmx.

Step 4: Find all the intersections of the trajectories. These are
potential switching points.

Step 5: Starting at X = 0, p = po, traverse the grid formed by
the various trajectories in such a way that the highest trajectory
from the initial to the final points is followed. This is described
below in the grid traversal algorithm (GTA). Traversing the grid
formed by the trajectories generated in Steps 3 and 4 above is a
search of a directed graph, where the goal to be searched for is the
final decelerating trajectory. If one imagines searching the grid by
walking along the trajectories, then one would try to keep making
left turns, if possible. If a particular turn led to a dead end, then it
would be necessary to backtrack, and take a right turn instead.
The whole procedure can best be expressed recursively, in much
the same manner as tree traversal procedures.

The algorithm consists of two procedures, one which searches
accelerating curves and one which searches decelerating curves.
The algorithm is as follows.

A ccSearch

On the current (accelerating) trajectory, find the last switching
point. At this point, the current trajectory meets a decelerating
curve. If that curve is the final decelerating trajectory, then the
switching point under consideration is a switching point of the
final optimal trajectory. Otherwise, call DecSearch, starting at the
current switching point. If DecSearch is successful, then the
current point is a switching point of the optimal trajectory.
Otherwise, move back along the current accelerating curve to the
previous switching point and repeat the process.

DecSearch

O n the current (decelerating) trajectory, find the first switching
point. Apply AccSearch, starting on this point. If successful, then
the current point is a switching point of the optimal trajectory.
Otherwise, move forward to the next switching point and repeat
the process.

These two algorithms always look first for the curves with the
highest velocity, since AccSearch always starts at the end of an
accelerating curve and DecSearch always starts at the beginning
of a decelerating curve. Therefore, the algorithm finds (if
possible) the trajectory with the highest velocity, and hence the
smallest traversal time.

The proofs of optimality and convergence of this algorithm are
virtually identical to those of ACOTNI, and will not be repeated
here. Note that in the convergence proof for ACOTNI the fact that
there is only a single boundary curve in the zero-friction case is
never used; the same proof therefore applies in the high-friction
case.

V. APPLICATION EXAMPLES

To show how the minimum-time algorithm works, a numerical
example follows. The robot used in the example is a simple two-
degree-of-freedom robot with one revolute and one prismatic
joint, i.e., a robot which moves in polar coordinates. Despite its
simplicity, the example robot is sufficient to show the most important
aspects of our trajectory planning method. The path chosen is a
straight line. Before applying the minimum-time algorithm, we
must derive the dynamic equations for the robot. This requires
calculation of the inertia matrix, so masses and moments of inertia
of the robot must be given.

A drawing of our hypothetical robot is shown in Fig. 7. The
robot consists of a rotating fixture with moment of inertia Je
through which slides a uniformly dense rod of length L, and mass
Mr. The payload has mass M, and moment of inertia Jp, and its
center of mass is at the point (x , y) which is L, units of length
from the end of the sliding rod.

In the examples presented here, the robot will be moved from
the point (1, 1) to the point (1, - 1). The equation of the curve can
be expressed as r = sec 0, where 0 ranges from + n/4 to - d 4 .
Introducing the parameter X, one possible parameterization is

Now introduce the shorthand expressions M, = M, + M,, K

Plugging these expressions and the expressions for the derivatives
of r and 0 into the dynamic equations gives (see [121 for a detailed
derivation) I \

Mr(Lr + X,) and Jt e JO + Jp + Mr(Li + LrLp + L,2/3).

/ \

u,= -Mr sec (I --X) tan (;-X).

- k , sec (:-X) tan (;-X)p

+ [M, sec (:-X)

+ - - M r K sec (: - X)] p 2
2

ug= - [J t - K sec (;-X) +Mt sec2 (; - X)] . - k ~ p

+r ' (zu, Sec (+) sec (;-X)

- . tan (;-X).

538 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 6, kJNE 1985

\

Fig. 7. An example manipulator with extensoxy and rotational joints.

Solving for b, we have

- 1

+ ‘ t a n 2 (;-A)) +;-MI sec (;-A)]]

and

The signs of the coefficients of ur and ug are

- 1 O<X<-

+ I -<A<-
4 2

a

sgn (ur)= and sgn (ue) = 1.
?r a

and

For the r joint, consider the case when h < d4. Then we also have

SHIN AND MC KAY: ROBOTIC MANIPULATORS WITH GEOMETRK PATH CONSTRAINTS 539

and

For X > a/4 the limits have the signs of u& reversed.

admissible region. For X < r/4, (16b) and (16c) give
Equating upper and lower limits on gives the boundary of the

A p 2 + B p + C r 0

where

A = -KM, sec4 (1 - - X) +2M, s a 3 (3)

B=(J,kr-M,ks) sec - - X tan - - X -Kkr sec2 -- (:) (:) (1 9
. tan (: -A)+Mtkr tan (:-X) sec3 (:-X)

+u;, MI tan (;-X) sec (;-X).

Likewise, (16a) and (16d) give

- A ~ ~ - B ~ + c c ~ o .

The same inequalities, with urm negated, work when X 2 d 4 .
Finally, we need to determine the differential equations to be

solved. These equations are

the robot are given in Table I. Using these data, the differential
equations were solved numerically using the fourth-order Runge-
Kutta method, the program being written in C and run under the
U N I X 3 operating system on a VAX-111780.4 The derivative of the
boundary curve g(X) [needed to compute the function $(X)] was
calculated numerically, and the sign changes of $(X) found by
bisection. The graphs of the resulting trajectories and of the
boundary of the admissible region are given in Fig. 8 for the zero-
friction case and in Figs. 9 and 10 for the high-friction case.

Note in particular the shape of the admissible region boundary
in Fig. 9. For values of X less than about 0.42 there is not a single
range of admissible velocities, but two ranges. Thus, there is an
“island” in the phase plane, although the island is chopped off by
the constraint that X be positive. While the existence of such
islands may at first seem to defy intuition, the example shows that
they do indeed exist. In this case, the island does not really come
into play in the calculation of the optimal trajectory. Nevertheless,
the example does demonstrate that there may be situations where
the admissible region has a fairly Complicated shape. Since most
practical manipulators have more than two joints and have more
complicated dynamic equations than those of the simple robot
used here, it is conceivable that the admissible region of the phase
plane for a practical robot arm could have quite a complicated
shape.

As a final example, to demonstrate clearly the existence of
islands in the phase plane, we include a sketch of the admissible
region of the phase plane for a two-dimensional Cartesian robot
moving along a circular path. In this case, the dynamic equations
are a simple pair of uncoupled, linear differential equations with
constant coefficients, i.e., ux = mx + k&, uy = rnji + kyy
where m E mass of x and y joints, k, coefficient of friction of
x joint, and k, E coefficient of friction of y joint.

Moving this manipulator in a unit circle, say in the first
quadrant, requires that

x = cos X, y = sin X, OIXI-.

Plugging these expressions and their derivatives into the dynamic
equations gives

7r

2

ux= - m i sin X - r n p 2 cos X-kxp sin X

u, = - mi cos X- mp2 sin X - kyp cos X.

Now let the torque bounds be - T i ux, u, I + T. Then the
bounds on are

- T-mp2 cos X - kxp sin X

* [-uo-ur sec (;-X) tan (;-X)
rn sin h

. + T - ntp2 cos X - kxp sin X sps
rn sin X

/ \ , \ and

- T + mu2 sin X - k,u cos X
rn cos X

+ T+ mp2 sin X - kyp cos1
rn cos X

IGs

A=p.
UNIX is a trademark of Bell Laboratories.

The numerical values of the various constants which describe VAX is a trademark of the Digital Equipment Corporation.

540 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 6 , JUNE 1985

TABLE I
DATA FOR THE EXAMPLE ROBOT

Constant Description Value
1, hioment of inertia of B joint l e KP-hi

Mass of sliding rod
Length of rod

Payload mms
Moment of inertia of payload

Length of payload
Maximum force on r joint
Maximum torque on B joint
Friction coeflicient 01 r joint
Friction coefficient of I joint
Friction coefficient of 0 joint

4.0 Kg.
2.0 M.
lod Kg.-hi
1.0 Kg.
0.1
1.0 Kg.-M/scc?
1.0 Kg.-hp2/sec2
0.0 (low friction)

0.0
15.0 (high friction)

t
0.8

-Boundary Curve
-optimal rrajectory
m2;In;ssible

0.6

0 . 0 1 ‘ I I I I y I
O A 0 . 6 B 1 . 2 c L *

2

Fig. 8. Optimal trajectory and inadmissible region in case of no island.

IJ

4

m r n a d m i s s i b l e

-~oundary Curve

R e g i o n

Fig. 9. Inadmissible region in high-friction case.

U

0.6

0 . 4

0.2

-Boundary Curve
-Optimal Taleccory

I L ; a I n a + s s l b l e
Reglon

A.0.C: Switchlnq Points

0 . 6 A 0 1 .2 1
2

Fig. 10. Optimal trajectory in high-friction case with expanded view of Fig.
9.

13.0

2 . 5

2 . 0

1.5

1.0

0.5

h
C 0.2 0.4 0 . 6 0 . 8 1.0 1.2 1 . 4 I ! i

Fig. 11 . Example of feasible region with an inadmissible island.

The admissible region consists of the region where the inequalities
given above allow some value of the acceleration i ~ , as previously
described. Simplifying the resulting inequalities gives the admissi-
ble region as that area of the phase plane where

m p 2 + (kx- ky)p sin X cos X+ T(sin X + cos L)rO

and

-mpz+ (kx- ky)p sin X cos X+ T(sin X + cos L)>O.

Using the values m = 2, k, = 0, ky = 10, and T = ,.&ives
the region plotted in Fig. 11 and clearly shows the island.

VI. DISCUSSION AND CONCLUSION

In this paper we have presented a method for obtaining
trajectories for minimum-time control of a mechanical arm given
the desired geometric path and input torque constraints.

As was already pointed out, the optimal trajectory may actually
touch the boundary of the admissible region, generating a rather
dangerous case. However, if slightly conservative torque bounds
are used in the calculations, then the actual admissible region will
be slightly larger than the calculated admissible region, giving
some margin for error.

The algorithm has been presented for both the case in which
there are no islands in the phase plane and that in which islands do
occur. In both cases, the algorithms produce trajectories which
“just miss” the inadmissible region, whether the portion of the
inadmissible region missed is an island or the region determined
by the upper velocity limit. Since the algorithm generates the true
minimum-time solution, rather than an approximation to it, the
results from the algorithm can provide an absolute reference
against which other trajectory planning algorithms can be mea-
sured.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
constructive comments and pointing out the missing references
[I], [2] in the original version of this paper.

 REFERENCE^

[l] J . E. Bobrow, “Optimal control of robotic manipulators,” Ph.D.

[2] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “On the optimal control
dissertation, Univ. Calif., Los Angela, CA, Dec. 1982.

robotic manipulators with actuator constraints,” in Proc. 1983 Amer.
Con@. C o n ? , S a n Francisco, CA, June 1983, pp. 782-787.

[3] D . Ter Haar, Elements of Hamiltonian Mechanics, 2nd ed. New
York: 1971, pp. 35-49.

SHIN AND MC KAY: ROBOTIC MANIPULATORS WITH GEOMETRIC PATH CONSTRAINTS 54 1

M. E. Kahn and B. E. Roth, “The near minimum-time control of open-
loop articulated kinematic chains,’‘ ASME J. DSMC, vol. 93, pp.

B. K. Kim and K. G. Shin, “Suboptimal control of industrial
164-172, Sept. 1971.

maniwlators with a weighted minimum time fuel criterion,” IEEE

D. E. Kirk, Optimal Control Theory: An Introduction. Engle-
Tra&. Automat. Cont;, vol. AC-30, pp. 1-10, Jan. 1985.

V. Lakshmikantham and S. Leela, Differential and Integral Inequali-
wrood Cliffs: NJ: RenticeHall, 1971, pp. 227-238.

C.-S. Lin, P.-R. Chang, and J . Y. S . Luh, ”Formulation and
ties. New York: Academic, 1969, pp. 41-43.

optimization of cubic polynomial joint trajectories for mechanical
manipulators,” IEEE Trans. Automat. Contr., vol. AC-28, pp.

J. Y. S . Luh and M. W. Walker, “Minimum-time along the path for a
1066-1074, Dec. 1983.

mechanical arm,” in Proc. 16th Conf. Decision Contr., Dec. 1977,

J . Y. S. Luh, and C. S. Lin, “Optimum path planning for mechanical
manipulators,“ ASME J. Dynum. Syst., Measurement, Contr., vol.
2, pp. 330-335, June 1981.
R. P. C. Paul, Robot Manipulators: Mathematics, Programming,

K. G. Shin and N. D. McKay, “Open-loop minimum-time control of
and Control. Cambridge, MA: M.I.T. Press, 1981, pp. 157-195.

mechanical manipulators and its application,” in Proc. 1984 Amer.
Contr. Conf., San Diego, CA, June 1984, pp. 1231-1236.

pp. 755-759.

Kang G. Shin (S’75-M’78-SM’83) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea, in 1970, and
both the M S . and Ph.D. degrees in electrical
engineering from Cornell University, Ithaca, N Y ,

From 1478 to 1982 he was on the faculty of
Rensselaer Polytechnic Institute, Troy, N Y . He was
also a Visiting Scientist at the U S . Air Force Flight
Dynarrucs Laboratory in the Summer of 1479 and at
Bell Laboratories. Holmdel, NJ, in the Summer of

1980, where his work was concerned with distributed airborne computing and

’ ’ in 1976 and 1978, respectively.

cache memory architecture, respectively. He taught short courses for the IBM
Computer Science Series in the area of computer architecture. S i September
1982, he has been with the Dqmtment of Electrical Engineering and Computer
Science, The University of Michigan, Ann Arbor, whwe he is currently an
Associate Professor. His current teaching and research interem are m the areas of
dishiiuted real-time and fault-tolerant computing, computer architecture, and robot
control, planning, and e g .

Dr. Shin is a member of Slgma Xi, Phi Kapp Phi, and the Association for
Complting Machinery.

Neil D. McKag was born in Albany, NY, on May
5 , 1958. He received the B.S. degree in electrical
engineering from the University of Rochester,
Rochester, N Y , in 1980 and the M S . degree in
1982 from Rensselaer Polytechnic Institute, Troy,
NY.

While at Rensselaer Polytechnic Institute, he was
a Rockwell Fellow. He is currently completing the
Ph.D. degree in electrical engineering at the
University of Michigan, Ann Arbor. His research
interests include robot control, robot path planning,
and optimal control theory.

