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Minimum-Time Control of Robotic Manipulators with 
Geometric Path Constraints 

Abstruct-Conventionally, robot  control  algorithms are divided  into 
two  stages,  namely, path or trajectory planning and path tracking (or 
path control). This  division has been adopted mainly as  a means of 
alleviating  difficulties in dealing  with  complex,  coupled manipulator 
dynamics.  Trajectory  planning  usually determines the timing of manipu- 
lator  position  and  velocity without considering its dynamics.  Conse- 
quently,  the  simplicity  obtained  from  the  division  comes at  the expense  of 
efficiency  in  utilizing  robot’s  capabilities. 

To remove at least partially this  inefficiency,  this paper considers  a 
solution  to the  problem of  moving  a  manipulator in minimum  time  along 
a  specified  geometric  path  subject  to  input  torque/force  constraints. We 
first  describe the  manipulator  dynamics  using parametric functions which 
represent geometric  path  constraints to be  honored  for  collision  avoid- 
ance as well as task requirements.  Second,  constraints  on input torqued 
forces are converted  to  those on the parameters. Third, the minimum- 
time  solution  is  deduced  in  an  algorithm  form using phase-plane 
techniques. Finally, numerical examples are  presented to demonstrate 
utility of the trajectory planning  method  developed. 

I 
I. INTRODUCTION 

NDUSTRIAL robots have emerged as a primary means  of 
contemporary automation due to their potential for productivity 

increase and product quality improvement. Obviously, a robot 
should be controlled so as to produce as many units as possible per 
dollar invested. This in turn naturally leads to the  need for 
minimum-time control of robots. 

There are a variety of algorithms available for robot control. 
These algorithms usually assume that the control structure of the 
robot has been divided into two levels. The lower level is called 
control or path tracking, and the upper level is called path or 
trajectory planning. The path tracker attempts to make the 
robot’s actual position and velocity match some desired values of 
position and velocity; the desired values are provided to the 
controller by the trajectory planner. The trajectory planner 
receives as input some sort of geometric path descriptor from 
which it calculates a time history of the desired positions and 
velocities. The path tracker then tries to minimize the deviation of 
the actual position and velocity from the desired values. 

The control scheme is divided in this way because the process 
of robot control, if considered in  its entirety, is very complicated, 
since the dynamics of all but the simplest robots are highly 
nonlinear and coupled. Dividing the controller into the two parts 
makes the whole process simpler. The path tracker is frequently a 
linear controller (e.g., a PID controller). While the nonlinearities 
of manipulator dynamics frequently are not taken into account at 
this level, such trackers can generally keep the manipulator fairly 
close to the desired trajectory. 

Unfortunately, the simplicity obtained from the division into 
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trajectory planning and path tracking comes at the expense of 
efficiency. The source of the inefficiency is the trajectory planner. 
In order to use the robot at maximum efficiency, the trajectory 
planner must be  aware of the robot’s dynamic properties, and the 
more accurate the dynamic model is, the better the robot’s 
capabilities can be used. However, most of the trajectory planning 
algorithms presented to date assume very little about the robot’s 
dynamics. The usual assumption is that there are constant or 
piecewise constant bounds on the robots velocity and acceleration 
[9], [lo]. In fact, these bounds vary with position, payload mass, 
and even with payload shape. Thus, in order to make the constant- 
upper-bound scheme work, the upper bounds  must be chosen to be 
global greatest lower bounds of the velocity and acceleration 
values; in other words, the worst case limits have to be used. 
Since the moments of inertia seen at the joints of the robot, and 
hence the acceleration limits, may vary by a factor of three or 
more, such bounds can result in considerable inefficiency or 
underutilization of the robot. 

To alleviate the inefficiency, this paper presents a solution to 
the minimum-time manipulator control problem subject to con- 
straints on its geometric path and input torques/forces. The 
solution will be in the form of a trajectory planning algorithm, and 
will take into account the details of the dynamics of the 
manipulator. The output of the trajectory planner will be the true 
minimum-time solution, and so will be useful as a standard against 
which the performance of other trajectory planning algorithms 
may  be measured. Note that the problem and its solution 
considered in this paper are different from the near minimum-time 
control methods in [4], [5 ] .  

Bobrow et al. [ 11, [2] have independently come to conclusions 
similar to our  own. Although their formulation of the problem is 
similar to ours, their solution algorithm and motivations are 
different from ours in several respects. In their work, no specific 
form is assumed for the actuator torque bounds except that they be 
functions only of the robot’s current position and velocity. We 
have assumed that the velocity dependence is at most quadratic, 
which allows a more concrete treatment of some aspects of the 
problem while still allowing treatment of most of the actuators 
found  in practice. The assumption of quadratic velocity bounds 
combined with the assumption that the parametric equations of the 
curve to be followed are piecewise analytic (again, an assumption 
which presents no practical difficulties) permits construction of a 
proof that our algorithm terminates in a finite number of steps. By 
contrast, Bobrow’s work relies on the hypothesis that there  are a 
finite number of switching points. Finally, both [l], [2], this paper 
make use of phase plane techniques, and both use the 
idea of a set of admissible velocities for a given position. This 
naturally leads to the idea of an “admissible region” in the phase 
plane. Bobrow’s solution implicitly assumes that this region is 
simply connected. However, we  show in this paper that 1) the 
admissible region may not be simply connected, possibly making 
some steps of Bobrow’s algorithm impossible, 2) our algorithm 
terminates within a finite number of steps even for nonsimply 
connected admissible regions, and 3) the resulting algorithm is 
optimal for the general case, Le., for nonsimply connected 
admissible regions. 

The remainder of this paper is divided into five sections. 
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Section II describes a method for making the manipulator dynamic 
equations more tractable and a method for handling input torque 
constraints. Section III contains a detailed formulation of the 
minimum-time control problem. Also, the form of the optimal 
solution is deduced using phase-plane techniques. Section N 
presents an algorithm for generating minimum-time trajectories, 
and proofs of the convergence of the algorithm and optimality of 
the generated trajectories. In Section V, we discuss some simple 
examples to demonstrate the utility  of our trajectory planning 
algorithm. The final section discusses the significance of the 
results. 

II. PARAMETERIZED ROBOT DYNAMICS WITH INPUT TORQUE 
CONSTRAINTS 

Before delving headlong into the problem of  minimum-time 
control, a dynamic model of the manipulator is required. There 
are a number of ways of obtaining the dynamic equations of a 
robot arm, i.e., the equations which relate joint forces and torques 
to positions, velocities, and accelerations. The Lagrange formula- 
tion of mechanism dynamics yields a set of differential equations 
which are easy to manipulate for robot control problems, and so 
will be used here [3], [ 111. The dynamic equations take the form 

~i = Jo{q)Q’ + RijQJ + CUdq)4’qk + G,{q) (1) 

where ui is the ith generalized force, q i  is the ith generalized 
coordinate, Jii the inertia matrix, Gi the gravitational force on the 
ith joint, Cub the Coriolis force array, and R, is the viscous 
friction matnx.  The Einstein summation convention has  been 
used, and all indexes run from one to n inclusive for an n-degree- 
of-freedom robot. 

The motion of the robot arm will not, of course, be completely 
unconstrained. In fact, it will later be assumed that the manipula- 
tor must be constrained to a fixed path  in joint space, and that the 
path is given as a parameterized curve. The  curve is assumed to 
be given by a set of n functions of a single parameter X, so that we 
are given 

q’= f’(X), OShlX, 

where X is a parameter for describing the desired path, and it is 
assumed that the coordinates q’ vary continuously with X and that 
the path never retraces itself as X goes from 0 to X-. 

It should be noted that in practice the spatial paths are given in 
Cartesian coordinates. While it is in general difficult to convert a 
curve in Cartesian coordinates to that in joint coordinates, it  is 
relatively easy to perform the conversion for individual points. 
One can then pick a sufficiently large number of points on the 
Cartesian path, convert to joint coordinates, and use some sort of 
interpolation technique (e.g., cubic splines) to obtain a similar 
path  in joint space (see [8] for an example). 

Returning to the problem at hand, we  may  use the parameter- 
ization of the q’ and differentiate with respect to time, giving 

where p A. The equations of motion along the curve (i.e., the 
geometric path) then become 

h = p  (4a) 

dfj  df 
Adx 

+ Cjjk(X) - - p*. 

and b are the velocity and the acceleration along the path, 
respectively. 

With this parameterization, there are two state variables, i.e., X 
and p,  but (n + 1) equations. One way to look at the system is to 
choose the equation = p and one of the remaining equations as 
state equations, regarding the other equations as constraints on the 
inputs and on F;. However, the problem has a more appealing 
symmetry if a single differential equation is obtained from the n 
equations given by multiplying the ith equation by df/& and sum 
over i, giving 

df  df’ df   d fJ  dfk  
” A  dA AdxdA 

+ R . . -  - p + C,&) - - - p2. (5 )  

This formulation has a distinct advantage. Note that the coefficient 
of i is quadratic in the vector of derivatives of the constraint 
functions. Since a smooth curve’ can always be parameterized in 
such a way  that the first derivatives never all disappear simultane- 
ously, and since the inertia matrix is positive definite, the whole 
equation can be divided by the nonzero positive coefficient of b,  
providing a solution forb  in terms of X and p .  Now there are only 
two state equations, and the original n equations can be regarded 
as constraints on the inputs and on b (more on this will be 
discussed later). 

With this formulation, the state equations become 

Consider now the constraints on the inputs, namely, u k  5 ui 
5 ui,, and (4b).  The dynamic equations (4b) can be viewed as 
having the following form: ui = g,(X)b + h,{X, p).  For a given 
state, i.e., given X and p ,  this is just a set of parametric equations 
for a line, where the parameter is i .  The admissible controls, 
then, are those which are on this line in the input space and also 
are inside the rectangular prism formed by the input magnitude 
constraints. Thus, the rectangular prism puts bounds on b. The 
reason for converting from bounds  on the input torques/forces to 
bounds on the pseudoacceleration i is that all the positions, 
velocities, and accelerations of the various joints are related to one 
another through the parameterization of the path. Given the 
current state (X, p), the quantity b,  if known, determines the input 
torques/forces for all of the joints of the robot, so that 
manipulation of this one scalar quantity can replace the manipula- 
tion of n scalars (the input torques) and a set of constraints (the 
path parameterization equations). 

For evaluating the bounds on C; explicitly, (4b) can be plugged 
into the inequalities ukin 5 ui 5 u& so that 

the starting and destination points. If it is not, still we can dwide  the path into 
We assumed to have a smooth curve for describing the gjven path between 

smooth subpaths. Then,  the above assumption becomes valid. Note that if X is used to represent arc length along the path, then p 
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Introducing some shorthand notation, let 

We then have 

U ~ ~ - ( M ~ ~ + Q ~ ~ ~ + R ~ ~ + S ~ I U - , .  (7b) 

Note that the quantities listed above are functions of X. For the 
sake of brevity, the functional dependence is not indicated in what 
follows. 

Manipulation of these inequalities gives (assuming that Mi # 0) 

where 

LB; u Lh(Mi > 0) + u -(Mi < 0) - (Qip  + Rip + Si) 
Mi 

and 

uk,(Mi>O)+~A,(Mi<O)-(Qip~+Rip+Si) 
Mi 

UBi 

The expression (Mi > 0) evaluates to one if Mi > 0, zero 
otherwise. Since these constraints must  hold for all n joints, i 
must satisfy maxi LB; I b I mini UBi, or GLB(X, p) I i I 

Note that it has not been assumed here that u k n  and u- are 
constants; they may indeed be arbitrary functions of X and p.  
Later these quantities will be assumed to have specific, relatively 
simple forms, but these forms should be adequate to describe most 
of the actuators used in practice. 

The difference between the trajectory planning algorithm to be 
presented and those which are conventionally used can be seen in 
terms of the equation above. Assume that the parameter X is arc 
length in Cartesian space. Then p is the speed and ,h the 
acceleration along the geometric path. Since most conventional 
trajectory planners put constant bounds on the acceleration over 
some particular (frequently the entire) interval, one would have 
GLB(X, p )  I bmin I b I ,itmax I LUB(X, p),  where imin and 
imx are constants. The conventional techniques, then, restrict the 
acceleration more than is really necessary. Likewise, constant 
bounds on the velocity will also be more restrictive than 
necessary. 

L U m ,  PI. 

In .  FORMULATION OF OPTIMAL CONTROL PROBLEM 

With the manipulator dynamic equations and joint torque/force 
constraints in suitable form, we can address the actual control 
problem. Problems which require the minimization of cost 
functions subject to differential equation constraints can be 
expressed very naturally in the language of optimal control 
theory. The usual method  of solving such a problem is to employ 
Pontryagin’s maximum principle [6]. The maximum principle 
yields a two-point boundary value problem which is, except in 
some simple cases, impossible to solve in  closed form, and may 
be difficult to solve numerically as well. We will therefore not  use 
the maximum principle, but will use some simpler reasoning, 
taking advantage of the specific form of the cost function and  of 
the controlled system. 

In the case considered here, minimum cost is equated with 
minimum time, thus maximizing the operating speed  of the robot. 

The cost function can then be expressed as T = 12 1 .dt where the 
final time tf is left free. It is assumed here that the desired 
geometric path of the manipulator has been preplanned,2 and is 
provided to the minimum-time controller in parametric form, as 
described earlier [i.e., (3)]. Further, assume that the q’ are 
parameterized in such a way that the initial point corresponds to X 
= 0, the final point corresponds to X = X,,, and that the df /A 
never all become zero simultaneously. This guarantees that the 
state equations (6a) and (6b) exist, and also guarantees that as X 
increases from 0 to X,, the path never retraces itself. 

Given this form for the dynamic equations, we have the 
minimum time path planning (MTPP) problem as follows. 

Problem MTPP: Find x* = (X*, p*) and uTby minimizing T 
subject to (6a), (6b), ufin 5 ui I u-, 0 i X I X,, and the 
boundary conditions p(0)  = po, p ( f f )  = pf,  X(0) = 0, and 
= &. 

Before doing any further manipulations on the state equations, 
define the functions. 

df dfJ 
A m  M@) EJii(h) - - , 

Again, for convenience the dependence of the above coefficients 
on X will be omitted in the sequel. Now rewrite the state equations 
in the following form: 

A=p (94 

/i=- [ U - Q p 2 - R p - S ] .  
1 

M (9b) 

The M term is a quadratic form reminiscent of the expression 
for the manipulator’s kinetic energy. In fact, if the parametric 
expressions for the Qi are plugged into the formula for kinetic 
energy, one obtains the expression 2K = Mp2. The Q term 
represents the Components  of the Coriolis and centrifugal forces 
which act along the path plus the fictitious forces generated by the 
restriction that the robot stay on the parameterized path. The R 
term represents frictional components, and S gives the gravita- 
tional force along the path. U is the projection of the input vector 
onto the velocity vector. 

At this point, it  is instructive to look at the system’s behavior in 
the phase plane. The equations of the phase-plane trajectories can 
be obtained by dividing (9b) by (9a). This gives 

- 
dt 

It is interesting to note that the total time T it takes to go from 
initial to final states is 

The idea, then, is to minimize this integral subject to the given 

meet  task  requirements. 
This is done  at the stage of task planning to  avoid  collision as well as to 
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constraints. We therefore want to make the pseudovelocity p as 
large as possible, a result which would be expected intuitively. 

The constraints on b have two effects. One effect is to place 
limits on the slope of the phase trajectory. The other is  to place 
limits on the value of p. To obtain the limits on d p / A ,  one simply 
divides the limits on ,i by p,  since d p / A  = b / p .  

To get the constraints on p,  it  is necessary to consider the 
bounds on b. If, for particular values of X and p,  we have LUB(X, 
p)  < GLB(X, p)  then there are no permissible values of b. 
Therefore,  for each value of X we can assign a set of values of p as 
determined by the inequality LUB(X, p)  - GLB(X, p)  2 0. This 
inequality holds if and only if UBI@, p )  - LBj(X, p)  2 0 for all i 
and j .  The intersection of the regions determined by these 
inequalities produces a region of the phase outside of which the 
phase trajectory must  not stray.  This region will hereafter be 
referred to as the admissible region of the phase plane. Using the 
equations for the lower and upper bounds for all i and j ,  

Rearranging this inequality, 

+ [  
u&(Mj<o)-u~,(Mi>o) 

lMil 

It will prove convenient to “symmetrize” the input torque 
bounds in the discussion which follows. Each joint has a mean 
torque ub and a maximum deviation A i  given by 

The inequality (12a) can then be rewritten as 

M; Mj M; Mj Mi Mj 

[ UL M; M, uL] + [ lMil A i  lMjl AJ ] - -+- 20. 

At this point, a specific form for the torque bounds will be 
assumed. If the maximum and minimum torques for each joint are 
functions only of the states q’ and q ‘  (Le., the actuator torques are 
all independent of one another) and are at most quadratic in the 
velocities q ’ ,  then the inequality yields a simple quadratic in p.  
This allows one to solve for the velocity bounds using the 
quadratic formula. A particulary simple and  useful special case is 
that encountered when the actuator is a futed-field DC motor  with 
a bounded voltage input. In this case, the torque constraints take 
the form uLx  = V k  + kkqi and liLi, = VAn + kLqi where 
Vi min and V& are proportional to the voltage limits and k b  is a 
constant which depends upon  the motor winding resistance, 
voltage source resistance, and  back E.M.F. generated by the 
motor. Let V,,, = (V- + V 3 / 2  and Ai = V k x  - V&. Then 
we get 

From here on, the case outlined above will be used for the sake 
of simplicity. The only changes required for the more general case 
of quadratic velocity dependence of the torque bounds is a 
redefinition of the coefficients in some the equations which 
follow. 

Introducing yet more shorthand notation, let 

Noting that (at least in this case), A ,  = -Aj i ,  B, = - Bjj, C, 
= Cji, and D,  = Djj ,  we have the inequalities 

A,p2+B,p+C,+D,r0 and -A,p2-B,p+C”-D,r0.  (12~)  

The second inequality is obtained by interchanging i and j and 
using the symmetry or antisymmetry of the coefficients. Only the 
cases where i # j need be considered, so there are n(n - 1)/2 
such pairs of equations, where n is the number of degrees of 
freedom of the robot. 

If A ,  = B, = 0, we have C, - D, 2 0 and C, + Djj 2 0, 
which are always true if the robot is “strong” enough so that it 
can stop and hold its position at all points on the desired path. If 
A ,  = 0 and B, # 0, then we have a pair of linear inequalities 
which determine a closed interval for p. If A ,  # 0, then, without 
loss of generality, we can assume that A ,  > 0. Then the left-hand 
side of the first of the inequalities (12c) is a parabola which is 
concave upward, whereas for the second, it is concave downward. 
When the parabola is concave downward, then the inequality 
holds when p is between the two roots of the quadratic. If the 
parabola is concave upward, then the inequality holds outside of 
the region between the roots (Fig. 1). Thus, in one case p must lie 
within a closed interval and in the other it  must lie outside an open 
interval, unless of course the open interval is of length zero. In 
that case, the inequality is always satisfied and the roots of the 
quadratic will be complex. 

Since the admissible values of p are those which satisfy all of 
the inequalities, the admissible values must lie in the intersection 
of all the regions determined by the inequalities. There are n(n - 
1)/2 inequalities which give closed intervals, so the intersection of 
these regions is also a closed interval. The other n(n - 1)/2 
inequalities, when intersected with this closed interval, each may 
have the effect of “punching a hole” in the interval (Fig. 2). It is 
thus possible to have, for any particular value of X, a set of 
admissible values for p which consists of as many as n(n - 1)/2 
+ 1 distinct intervals. When the phase portrait of the optimal path 
is drawn, it  may be necessary to have the optimal trajectory dodge 
the little “islands” which can occur in the admissible region of the 
phase plane. (Hereafter, these inadmissible regions will be 
referred to as blands of inadmissibility, or just islands.) It 
should be noted, though, that if there is no friction, then Bij = 0, 
which means  that in the concave upward case the inequality is 
satisfied for all values of p.  Thus, in this case there will be no 
islands in the admissible region. 

In addition to the constraints on p described above, we  must 
also have p L 0. This can be shown as follows: if p < 0, then the 
trajectory has passed below the line p = 0. Below this line, the 
trajectories always move to the left, since p = A / d t  < 0. Since 
the optimal trajectory must approach the desired final state 
through positive values of p, the trajectory would then have to 
pass through p = 0 again, and would  pass from p < 0 to p > 0 at 
a point to the left of where it had passed from p > 0 to p < 0. 
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Fig. 1. Admissible  regions of p determined  by  a  pair of parabolic 
constraints. 
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Fig. 2. Intersection of admissible  regions of p .  

Thus, in order to get to the desired final state, the trajectory would 
have to cross itself, forming a loop. But, then, there is  no sense in 
traversing the loop; it  would take less time to just use the crossing 
point as a switching point. Thus, we  need consider only those 
points of the phase plane for which p 2 0. 

Another way  of thinking about the system phase portrait is to 
assign a pair of vectors to each point  in the phase plane. One 
vector represents the slope when the system is accelerating (i.e., ,i 
is maximized) and the other represents the slope for deceleration 
(i.e., i~ is minimized). This  pair of vectors looks like a pair of 
scissors, and as the position in the phase plane changes, the angles 
of  both  the upper and lower jaws of the pair of scissors change. In 
particular, the angle between the two vectors varies with position. 
The phase trajectories must, at every point of the phase plane, 
point  in a direction which lies between the jaws of the scissors. At 
particular points of the phase plane, though, the jaws of the 
scissors close completely, allowing only a single value for the 
slope. At other points the scissors may try to go past the closed 
position, allowing no trajectory at all. This phenomenon, and the 
condition p 1 0, determine the admissible region of the phase 
plane. This is illustrated in  Fig. 3. Note that the boundary of the 

Fig. 3. Phase  portrait showing  acceleration and deceleration  vectors at each 
state with = 0. 

admissible region passes through those points which have only a 
single vector associated with them, corresponding to those states 
where only a single acceleration value is permitted. 

Iv .  DETERMINATION OF OPTIMAL TRAJECTORIES 

For illustrative puposes, we first present an algorithm for 
finding the optimal trajectories for which there are no islands in 
the phase plane which need to be dodged. The only restrictions, 
then, will be that p must lie between a pair of values which are 
easily calculable, given X. The optimal trajectory can  be con- 
structed by the following steps called the algorithm for construct- 
ing optimal trajectories, no islands (ACOTNI). 

Step 1: Start at X = 0, ,u = po and construct a trajectory that 
has the maximum acceleration value. Continue this curve until it 
either leaves the admissible region of the phase plane or goes past 
X = X,. Note that “leaves the admissible region” implies that if 
part of the trajectory happens to coincide with a section of the 
admissible region’s boundary, then the trajectory should be 
extended along the boundary. It is not sufficient in this case to 
continue the trajectory only until  it touches the edge of the 
admissible region. 

Step 2: Construct a second trajectory that starts at h = X,,, p 
= pf and proceeds backwards, so that it is a decelerating curve. 
This curve should be extended until it either leaves the admissible 
region or extends past X = 0. 

Step 3: If the two trajectories intersect, then stop. The point at 
which the trajectories intersect is the (single) switching point, and 
the optimal trajectory consists of the first (accelerating) curve 
from X = 0 to the switching point, and the second (decelerating) 
curve  from the switching point to X = X,, (Fig. 4). 

Step 4: If the two curves under consideration do not intersect, 
then they must  both leave the admissible region. Call the point 
where the accelerating curve leaves the admissible region X]. This 
is a point on the boundary curve of the admissible region (Fig. 5). 
If the boundary curve is given by p = g(X), then search along the 
curve, starting at X,, until a point is found at which  the quantity 
4(X) d p / A  - dg/& changes sign. (Note that since g(h) 
determines @e boundary of the admissible region, there is only 
one allowable value of d p / A .  Also note  that if g(X) has a 
discontinuity, d g / A  must be treated as + 03 or - 03 depending 
upon the direction of the jump.) This point is the next switching 
point. Call it Ad. 

Step 5: Construct a decelerating trajectory backwards from h d  
until it intersects an accelerating trajectory. This gives another 
switching point (see point A in Fig. 6) .  

Step 6: Construct an accelerating trajectory starting from b. 
Continue the trajectory until it either intersects the final decelerat- 
ing trajectory or it leaves the admissible region. If it intersects the 
decelerating trajectory, then the intersection gives another switch- 
ing point (see paint C in Fig. 6), and the procedure terminates. If 
the trajectory leaves the admissible region, then go to Step 4. 
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Fig. 4. Case when accelerating and decelerating curves intersect with p,, = 
0. 

11 
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Fig. 5. Case when accelerating and decelerating curves do not intersect. 
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Fig. 6.  Complete optimal trajectory formed by ACOTNI with three switching 
points. 

This algorithm yields a sequence of alternately accelerating and 
decelerating curves which gives the optimal trajectory. Before 
discussing the optimality of the trajectory, one has  to  show  that all 
steps of the ACOTNI are possible and that the ACOTNI will 
terminate. 

Addressing the first question, Steps 1-3, 5, and 6 are clearly 
possible. Step 4 requires finding a sign change of the function 
4(h). Since d(h) must  be greater than zero where the accelerating 
trajectory leaves the admissible region and less than zero where 
the decelerating trajectory leaves, there must  be a sign change. 
Therefore, all steps are possible. 

In order to prove that ACOTNI terminates, we must  make some 
assumptions about the form of the functionsf(h). In particular, it 

will be assumed that the f -are piecewise  analytic and are 
composed of a finite number of pieces in addition to being real- 
valued. Under these assumptions, the following theorem proves 
the convergence of ACOTNI within a finite number of iterations. 

Theorem I:  If the functions f’ are composed of a finite number 
of analytic, real-valued pieces, then the function 4(X) has a finite 
number of intervals over which it is identically zero and a finite 
number of zeros outside those intervals. 

Proof: The inertia matrix, Coriolis array, and gravitational 
loading vector are all piecewise analytic in the q’, and since the 
f(h) are analytic in h, the inertia matrix, etc., when expressed as 
functions of X [as in (4a) and (4b)l are piecewise analytic and have 
a finite number of analytic pieces. The functions Mi, Qi, Ri, Si of 
(7b) are, therefore, also piecewise analytic. Since a real-valued 
analytic function with no singularities in a finite interval must 
either have a finite number of zeros in that interval or be 
identically zero, the quantities Mi must either be identically zero 
in the interval considered or have a finite number of zeros. We 
cannot have all of the Mi zero,  for if that were the case we would 
have J i p S  /dAdf/dA = M&’/dA = 0, which is  not allowed by 
hypothesis. If  only one of the Mi is nonzero, then there is no 
boundary curve to deal with, and so no zeros. With two or more 
not identically zero, there will be a boundary curve. The curve is 
given by one of the equations (12c) (with “ 2 ” replaced by 
“ = ”) for some pair of indexes i and j .  Since the coefficients A ,  
B ,  C, and D in (12c) are analytic except at the zeros of the Mi, 
and because the Mi have a finite number of zeros, we can divide 
the interval under consideration further, using the zeros of the Mi 
as division points. Within each subinterval, then, only one of the 
equations (12c) holds. Since (12c) determines p as an analytic 
function of h within this interval, the bounding curve g(h) is 
piecewise analytic. The curve 4(h), then, is also piecewise 
analytic and is either identically zero or has a finite number of 
zeros in each subinterval. Thus, since $(X) either is identically 
zero in each subinterval or has a finite number of zeros in the 
subinterval, the number of subintervals is finite, and  the number 
of intervals is finite, the number of zeros and zero-intervals is 
finite. Q.E.D. 

Finally, the following theorem proves the optimality of the 
solution generated by the ACOTNI. 

Theorem 4: Any trajectory generated by the ACOTNI is 
optimal in the sense of minimum-time control. 

Proof: Proof of this theorem is straightforward. Let r be the 
trajectory generated by ACONTI, and let r be a trajectory with a 
shorter traversal time. Now observe three facts. 1) From the form 
(1 1) of the cost T, there must be a point (A,,, p‘) on r ‘ which  is 
higher than the point (A,,, p )  on r, i.e., p ’  > p .  Otherwise, we 
would  not have a trajectory with a smaller travel time. 2) The 
trajectory I’ consists of alternately accelerating and decelerating 
segments, and can therefore be divided into sections which consist 
of one accelerating and one decelerating segment. 3) The 
admissible portions of these sections which lie above J? are 
bounded on the left and right by either the line h = 0, the line h = 
X,,, the boundary of the admissible region, or the ACOTNI 
trajectory itself. Now consider the point (X, p ’ )  and the trajectory 
r ’ . This trajectory, if extended backward and forward from (A,,, 
p ’ )  must intersect a single section of the ACOTNI trajectory at 
two or more points, since otherwise it  would either leave the 
admissible region or not  meet  the initial or final boundary 
conditions. One such point  must occur for X < X, and one must 
occur for h > A,,. But since the accelerating segment of the 
trajectory precedes the decelerating segment, the new trajectory 
must either intersect the accelerating part of the ACOTNI 
trajectory twice, intersect the decelerating part twice, or first 
intersect the accelerating part then the decelerating part. But since 
the torques were chosen so as to minimize or maximize U in (lo), 
any  of these situations leads to a contradiction of a theorem on 
differential inequalities presented in [7]. Q.E.D. 

The whole idea of the algorithm is  to generate trajectories 
which come as close as possible to the edge of the admissible 
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region without actually passing outside it. Thus, the trajectories 
just barely touch the inadmissible region. In practice this would, 
of course, be highly dangerous, since minute errors in the control 
inputs or measured system parameters would  very likely make the 
robot stray from the desired path. Theoretically, however, this 
trajectory is the minimum-time optimum. 

We are now  in a position to consider the general case, i.e., the 
case in  which friction, copper losses in the drive motor? etc.,  are 
sufficient to cause islands in the phase plane. In this case, the 
algorithm is most easily presented in a slightly different form. 
Since there may be several boundary curves instead of one, it  is 
not possible to search a single function for  zeros,  as was done in 
ACOTNI. Thus, instead of looking for zeros as the algorithm 
progresses, we look for them all at once instead, and then 
construct the trajectories which  "just  miss" the boundaries, 
whether the boundaries be the edges of the admissible region or 
the edges of islands. The appropriate trajectories can then be 
found by searching the resulting directed graph, always taking the 
highest trajectory possible, and backtracking when necessary. 
More formally, the algorithm for construction of optimal trajecto- 
ries (ACOT) is as follows. 

Step I :  Construct the initial accelerating trajectory (same as 
ACOTNI). 

Step 2: Construct the final decelerating trajectory (same as 
ACOTNI). 

Step 3: Calculate the function $(X) for the edge of the 
admissible region and for the edges of all the islands. At each of 
the sign changes of 4(X), construct a trajectory for which the sign 
change is a switching point, as in ACOTNI Steps 5 and 6. The 
switching direction (acceleration-to-deceleration or vice-versa) 
should be chosen so that the trajectory does not leave the 
admissible region. Extend each trajectory until it either leaves the 
admissible region, or goes past Xmx. 

Step 4: Find all the intersections of the trajectories. These are 
potential switching points. 

Step 5: Starting at X = 0, p = po, traverse the grid formed by 
the various trajectories in such a way that the highest trajectory 
from the initial to the final points is followed. This is described 
below  in the grid traversal algorithm (GTA). Traversing the grid 
formed by the trajectories generated in Steps 3 and 4 above is a 
search of a directed graph, where the goal to be searched for is the 
final decelerating trajectory. If one imagines searching the grid by 
walking along the trajectories, then one would  try to keep making 
left turns, if possible. If a particular turn led to a dead end, then it 
would be necessary to backtrack, and take a right turn instead. 
The whole procedure can best  be expressed recursively, in  much 
the same manner as tree traversal procedures. 

The algorithm consists of two procedures, one which searches 
accelerating curves and one which searches decelerating curves. 
The algorithm is as follows. 

A ccSearch 

On the current (accelerating) trajectory, find the last switching 
point. At this point, the current trajectory meets a decelerating 
curve. If that curve is the final decelerating trajectory, then the 
switching point under consideration is a switching point  of the 
final optimal trajectory. Otherwise, call DecSearch, starting at the 
current switching point. If DecSearch is successful, then the 
current point  is a switching point of the optimal trajectory. 
Otherwise, move back along the current accelerating curve to the 
previous switching point and repeat the process. 

DecSearch 

O n  the current (decelerating) trajectory, find the first switching 
point. Apply AccSearch, starting on this point. If successful, then 
the current point is a switching point  of the optimal trajectory. 
Otherwise, move forward to the next switching point and repeat 
the process. 

These two algorithms always look first for the curves with the 
highest velocity, since AccSearch always starts at the end of  an 
accelerating curve and DecSearch always starts at the beginning 
of a decelerating curve.  Therefore, the algorithm finds (if 
possible) the trajectory with the highest velocity, and hence the 
smallest traversal time. 

The proofs of optimality and convergence of this algorithm are 
virtually identical to those of ACOTNI, and will  not be repeated 
here. Note that  in the convergence proof for ACOTNI the fact that 
there is only a single boundary curve in the zero-friction case is 
never used; the same proof therefore applies in the high-friction 
case. 

V. APPLICATION EXAMPLES 

To show how the minimum-time algorithm works, a numerical 
example follows. The robot used in the example is a simple two- 
degree-of-freedom robot with one revolute and one prismatic 
joint,  i.e., a robot which moves in polar coordinates. Despite its 
simplicity,  the  example  robot is sufficient to show  the  most  important 
aspects of our trajectory planning method. The path chosen is a 
straight line. Before applying the minimum-time algorithm, we 
must derive the dynamic equations for  the robot. This requires 
calculation of the inertia matrix, so masses and moments of inertia 
of the robot must be given. 

A drawing of our hypothetical robot is shown in Fig. 7. The 
robot consists of a rotating fixture with  moment  of inertia Je 
through which slides a uniformly dense rod of length L, and mass 
Mr. The payload has mass M, and moment of inertia Jp, and its 
center of mass is at the point (x ,  y )  which is L, units of length 
from the end of the sliding rod. 

In the examples presented here, the robot will be moved from 
the point (1, 1) to the point (1, - 1). The equation of the curve can 
be expressed as r = sec 0, where 0 ranges from + n/4 to - d 4 .  
Introducing the parameter X, one possible parameterization is 

Now introduce the shorthand expressions M, = M, + M,, K 

Plugging these expressions and the expressions for the derivatives 
of r and 0 into the dynamic equations gives (see [ 121 for a detailed 
derivation) I \  

Mr(Lr + X,) and Jt e JO + Jp + Mr(Li + LrLp + L,2/3). 

/ \  

u,= -Mr sec (I --X ) tan (;-X). 

- k ,  sec (:-X) tan (;-X)p 

+ [M, sec (:-X) 

+ - - M r  K sec ( : - X ) ] p 2  
2 

ug= - [ J t - K  sec (;-X) +Mt  sec2 ( ; - X ) ] . - k ~ p  

+r ' (zu,  Sec (+) sec (;-X) 

- . tan  (;-X). 
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\ 

Fig. 7. An example  manipulator with extensoxy  and rotational joints. 

Solving for b,  we have 

- 1  

+ ‘ t a n 2  (;-A)) +;-MI sec (;-A)]] 

and 

The signs of the coefficients of ur and ug are 

- 1  O<X<- 

+ I  -<A<- 
4 2  

a 

sgn (ur)= and sgn (ue) = 1. 
?r a 

and 

For the r joint, consider the case when h < d4. Then we also have 
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and 

For X > a/4 the limits have the signs of u& reversed. 

admissible region. For X < r/4, (16b) and (16c) give 
Equating upper and lower limits on gives the boundary of the 

A p 2 + B p + C r 0  

where 

A =  -KM, sec4 (1 - - X  ) +2M, s a 3  ( 3 )  

B=(J,kr-M,ks) sec - - X  tan - - X  -Kkr sec2 -- (: ) (: ) (1 9 
. tan ( : -A)+Mtkr tan (:-X) sec3 (:-X) 

+u;, MI tan (;-X) sec (;-X). 

Likewise, (16a) and (16d) give 

- A ~ ~ - B ~ + c c ~ o .  

The same inequalities, with urm negated, work when X 2 d 4 .  
Finally, we need to determine the differential equations to be 

solved. These equations are 

the robot are given in Table I. Using these data, the differential 
equations were solved numerically using the fourth-order Runge- 
Kutta method, the program being written in C and run under the 
U N I X 3  operating  system on a VAX-111780.4 The derivative of the 
boundary curve g(X) [needed to compute the function $(X)] was 
calculated numerically, and the sign changes of $(X) found by 
bisection. The graphs of the resulting trajectories and of the 
boundary of the admissible region are given in Fig. 8 for the zero- 
friction case and in Figs. 9 and 10 for the high-friction case. 

Note in particular the shape of the admissible region boundary 
in Fig. 9. For values of X less than about 0.42 there is not a single 
range of admissible velocities, but two ranges. Thus, there is an 
“island” in the phase plane, although the island is chopped off by 
the constraint that X be positive. While the existence of such 
islands may at first seem to defy intuition, the example shows that 
they do indeed exist. In this case, the island does not really come 
into play in the calculation of the optimal trajectory. Nevertheless, 
the example does demonstrate that there may be situations where 
the admissible region has a fairly Complicated shape. Since most 
practical manipulators have more than two joints and have more 
complicated dynamic equations than those of the simple robot 
used here, it  is conceivable that the admissible region of the phase 
plane for a practical robot arm could have quite a complicated 
shape. 

As a final example, to demonstrate clearly the existence of 
islands in the phase plane, we include a sketch of the admissible 
region of the phase plane for a two-dimensional Cartesian robot 
moving along a circular path. In this case, the dynamic equations 
are a simple pair of uncoupled, linear differential equations with 
constant coefficients, i.e., ux = mx + k&, uy = rnji + kyy 
where m E mass of x and y joints, k, coefficient of friction of 
x joint, and k, E coefficient of friction of y joint. 

Moving this manipulator in a unit circle, say in the first 
quadrant, requires that 

x =  cos X, y =  sin X, OIXI-. 

Plugging these expressions and their derivatives into the dynamic 
equations gives 

7r 

2 

ux= - m i  sin X - r n p 2  cos X-kxp sin X 

u, = - mi cos X-  mp2 sin X - kyp cos X. 

Now let the torque bounds be - T i ux, u, I + T. Then the 
bounds on are 

- T-mp2 cos X -  kxp sin X 

* [-uo-ur sec (;-X) tan (;-X) 
rn sin h 

. + T -  ntp2 cos X -  kxp sin X sps 
rn sin X 

/ \  , \  and 

- T +  mu2 sin X -  k,u cos X 
rn cos X 

+ T+ mp2 sin X -  kyp cos1 
rn cos X 

IGs 

A=p. 
UNIX is a  trademark of Bell Laboratories. 

The numerical values of the various constants which describe VAX is a trademark of the  Digital  Equipment  Corporation. 



540 IEEE TRANSACTIONS ON AUTOMATIC  CONTROL, VOL. AC-30, NO. 6 ,  JUNE 1985 

TABLE I 
DATA FOR THE EXAMPLE ROBOT 

Constant  Description  Value 
1, hioment of inertia of B joint l e  KP-hi 

Mass of sliding rod 
Length of rod 

Payload mms 
Moment of inertia of payload 

Length of payload 
Maximum  force on r joint 
Maximum torque on B joint 
Friction  coeflicient 01 r joint 
Friction  coefficient of I joint 
Friction  coefficient of 0 joint 

4.0 Kg. 
2.0 M. 
lod Kg.-hi 
1.0 Kg. 
0.1 
1.0 Kg.-M/scc? 
1.0 Kg.-hp2/sec2 
0.0 (low friction) 

0.0 
15.0 (high friction) 

t 
0.8 

-Boundary Curve 
-optimal rrajectory 
m2;In;ssible 

0.6 

0 . 0 1  ‘ I I  I I  y I 
O A  0 . 6  B 1 . 2  c L * 

2 

Fig. 8. Optimal trajectory and inadmissible region in case of no island. 

IJ 

4 

m r n a d m i s s i b l e  

-~oundary  Curve 

R e g i o n  

Fig. 9. Inadmissible region in high-friction case. 
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I L ; a I n a + s s l b l e  
Reglon 

A.0.C:  Switchlnq  Points 
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2 

Fig. 10. Optimal trajectory in high-friction case with expanded view of Fig. 
9. 

13.0 

2 . 5  

2 . 0  

1.5 
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Fig. 11 .  Example of feasible region with an inadmissible island. 

The admissible region consists of the region where the inequalities 
given above allow some value of the acceleration i ~ ,  as previously 
described. Simplifying the resulting inequalities gives the admissi- 
ble region as that area of the phase plane where 

m p 2 +  (kx- ky)p sin X cos X+ T(sin X +  cos L)rO 

and 

-mpz+ (kx-  ky)p sin X cos X+ T(sin X +  cos L)>O. 

Using the values m = 2, k, = 0, ky = 10, and T = ,.&ives 
the region plotted in Fig. 11 and clearly shows the island. 

VI. DISCUSSION AND CONCLUSION 

In this paper we have presented a  method for obtaining 
trajectories for minimum-time control of a mechanical arm given 
the desired geometric path and input torque constraints. 

As was already pointed out, the optimal trajectory may actually 
touch the boundary of the admissible region, generating a rather 
dangerous case. However, if slightly conservative torque bounds 
are used in the calculations, then the actual admissible region will 
be slightly larger than the calculated admissible region, giving 
some margin for error. 

The algorithm has been presented for both the case in  which 
there are no islands in the phase plane and  that in which  islands do 
occur. In  both cases, the algorithms produce trajectories which 
“just miss” the inadmissible region, whether the portion of the 
inadmissible region missed is an island or the region determined 
by the upper velocity limit. Since the algorithm generates the true 
minimum-time solution, rather than an approximation to it,  the 
results from the  algorithm can provide an absolute  reference 
against which other trajectory planning algorithms can be mea- 
sured. 
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