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Abstract—A framework for the intelligent control of industrial manipu-
lators is described. The control structure that is described is designed to 
take full advantage of the improved sensing capabilities and more powerful 
languages that have become, or are now becoming, available. The frame-
work is a hierarchical structure in which the aspects of motion control are 
isolated in independent layers of the organization. A scheme for control 
(which is conceptually replicated at each level of the structure) is intro-
duced that is nontraditional in orientation; this control scheme is specifi-
cally intended to operate in the framework presented. The control scheme 
is not strictly organized, but rather achieves the some pose in response to 
both the intended goal and the real-world conditions. Two adjacent layers 
of the hierarchy are discussed in detail. These layers are capable of 
providing noncompliant control of a multijointed manipulator. It is indi-
cated where other aspects of intelligent machine control are located in this 
structure, but there are no details presented regarding their operating 
specifics such as vision, taction, and collision avoidance. Of the two layers, 
the low-level mechanism is responsible for servoing a single joint indepen-
dently. The individual low-level controllers are then integrated and coordi-
nated by the higher level controller. Because of the nature of the flexible 
control scheme, the control is adaptive to manipulator dynamics without 
explicit modeling. 

I. INTRODUCTION 

A N INTELLIGENT ROBOT should be capable of 
performing a variety of assigned tasks, be aware of 

its environment, and be able to effectively respond to 
unexpected events. Therefore, it will be able to accommo-
date for misalignment of parts in the workspace, perform 
tasks described in an abstract manner, and be capable of 
fine detail work. In order to have the preceding capabili-
ties, an intelligent robot will require visual and/or tactile 
sensing and interpretation, goal-seeking task executors, col-
lision avoiding path planners, and a versatile manipulator 
control structure. Though last on the list, the flexible 
control structure is that which will enable the others to 
effectively interface with the manipulator. 

In this paper we present a structured framework for this 
flexible control system. It is felt that such control tech-
niques will enable robotic systems to take full advantage of 
the improved sensing capabilities and more powerful task-
oriented languages that are now beginning to emerge. 
These two components (i.e., sensing and languages) are 
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placing an unprecedented demand on the control subsys-
tem, namely, that the controller be able to react quickly to 
a series of changing directives. 

These developments have made it necessary to re-
examine the organization of the robot control and comput-
ing structures. It has become quite clear that a hierarchical 
organization is needed, at least in defining the logical 
structure of the system as shown in [1], [2], [9], [13]. In a 
hierarchical system the information available to, and used 
by, a particular level is unique to the function performed 
on that level. For example, in a high-level task-oriented 
language, objects are referred to with nouns that represent 
the object (e.g., bracket, screw, baseplate), are manipulated 
by action verbs (e.g., attach, procure, insert, tighten) with 
possible modifiers (e.g., smoothly, quickly), and are subject 
to constraints (e.g., until finger-tight). This contrasts sharply 
with the lower level language, where objects are described 
by mathematical frames and manipulated via transforma-
tions, and where constraints must be carefully defined and 
properly effected. And on yet a lower logical level, motion 
is carried out in an «-dimensional mathematical space for 
an «-jointed robot, specified by joint servo rates, and 
subject to the physical forces/torques of moving compo-
nents. 

The control of a manipulator has long been regarded 
difficult because of the nonlinearity and joint couplings in 
its dynamics. To circumnavigate this difficulty, the manip-
ulator control problem is usually divided into trajectory or 
path planning and trajectory or path control. Trajectory 
planning is concerned with the calculation of the timing of 
joint position and velocity from a geometric path supplied 
by a task planner. This is done off-line normally by mini-
mizing total traveling time subject to certain constraints 
(e.g., constraints on accelerations [5], [10], or those on 
input torques [3], [15]). 

The prime task of path control is to generate the individ-
ual joint motions needed to move from a place to the 
desired destination following a path specified by the trajec-
tory planner. There are three well-known methods of path 
control that are all kinematically oriented. These are "re-
solved motion position control" [10], "resolved motion rate 
control" [17], and "resolved motion acceleration control" 
[4]. See [7] for an excellent survey of work done thus far in 
the area of manipulator control. 

Note that most conventional works deal with only specific 
subproblems of the manipulator control and planning 
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Fig. 1. Hierarchical structure of a robot control system. 

without considering their integration. For a few examples, 
see [11] for robot kinematics, [8] and [12] for compliant 
control, [16] for planning of Cartesian straight-line trajec-
tories, myriad publications elsewhere for robot vision, etc. 
Unlike the conventional works, this paper considers a 
structured framework for assembling these control and 
planning submodules into a flexible, powerful system. Con-
sequently, complex mathematics are intentionally avoided 
in the discussion that follows. It should be noted that the 
main contribution of this paper is to provide a robot control% 

framework that is flexible, powerful enough to accommo-
date current and future solutions to almost all specific 
robot control and planning problems.1 

This paper is organized top-down. In Section II the 
manipulator control system is decomposed into a hierarchi-
cal structure. Section III deals with both the concepts of 
high- and low-level motions. Sections IV and V discuss the 
noncompliant controls of high- and low-level motions, 
respectively. The paper concludes with Section VI. 

II. HIERARCHY IN THE MANIPULATOR CONTROL 

SYSTEM 

A flexible manipulator control system is organized as a 
hierarchical framework. The levels of the hierarchy are 
cleanly divided: information processed at a particular level 
is not directly available to other levels of the structure.2 

There are two paths of information flow: upward and 
downward. Downward moving data represents the flow of 

1 Solving such specific problems is not the intent of this paper and may 
even lead to several volumes of books. Moreover, some of these specific 
problems are as of now unsolved research problems, e.g., dynamic detec-
tion of obstacles and avoidance of collision. 

2A concept widely upheld in structured programming. 

command; a level may issue commands only to the level 
immediately below. Upward moving data comprises the 
flow of feedback information; the feedback-based control 
of a level is closed in the level immediately above. Informa-
tion is abstracted as it flows upwards through the hierarchy; 
more physically specific information is processed in the 
lower levels of the hierarchy. Each level filters and trans-
forms the data it receives producing a more abstract repre-
sentation for further upward flow. Fig. 1 schematically 
depicts the levels and information flows of the hierarchy. 

The lowest level is a (joint motor) torque controller, 
which generates a drive current for the corresponding joint 
and receives feedback regarding the motor torque. Above 
this is the velocity control level, which is responsible for 
specifying a desired servo rate and employs tachometric 
feedback for velocity stabilization. Both the torque (or 
acceleration) and velocity controllers are implemented in a 
single hardware feedback system called a single axis inter-
face. 

Above the single axis interface is a position controller. 
The position controller generates velocity requests that are 
then issued to its subordinates, the single axis interfaces. It 
receives position feedback information from a shaft angle 
encoder.3 Control of a single axis is performed by a 
software process called a single axis control element 
(SACE);4 the S ACE must deal with the dynamic forces/ 
torques acting on the axis. 

The individual joint position controllers are integrated 
into an overall structure at the next higher level. It is this 
level that the concept of a manipulator emerges from the 
separate individual joints. The major task executing at this 
level is called the chasing point sphere of influence motion 
model (CPSIMM). This model provides the capabilities for 
coordinated joint control. CPSIMM is organized to control 
the position and orientation of the end-effector in Carte-
sian space. In addition to this control function, visual/ 
tactile sensing can be interfaced at this level. 

Above this level, the hierarchy is flexible and may in-
clude other high-level systems that are responsible for the 
intelligent functions of the entire manufacturing systems. 
Note that CPSIMM supports a single environmentally 
sensitive manipulator, whereas the next higher levels ex-
tend this awareness to the full complement of workstation 
devices. Trajectory planning occurs at the lowest level of 
the higher (than CPSIMM) level structure and its upper 
level is usually a goal-seeking task planner. 

III. MOTION CONTROL CONCEPTS 

The motion control strategy developed for our frame-
work is a distributed control mechanism, that is, the con-
trol function is not centralized to a particular location but 
exists simultaneously in different forms in different loca-
tions. Control is not only distributed over the levels of the 

3 The position encoder is considered to reside (logically) at the position 
controller level, although physically it is a component of the lowest level 
— the manipulator itself. 

4 Typically the SACE resides within a microprocessor-based joint con-
troller. 
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hierarchy, but across multiple processors existing on any 
particular level. 

On any level of the hierarchy, the processors operate 
independently of their colleagues. Each processor receives 
commands from a coordinating processor on the level 
above itself, and in turn issues commands to those 
processors below and directly attached to itself. Organiza-
tionally, the system is a tree structure where a given node 
may have multiple children, but will always have only one 
parent. 

To effect motion control, we have allocated two levels of 
the structure: a low level that performs joint motion on a 
per-joint basis, and a high level that performs Cartesian 
motion on a per-manipulator basis. We posit the existence 
of a high-level trajectory generator that would generate 
motion requests for the manipulator; this level would in 
turn receive input from a task planner. 

The higher level performs motion in a context. It is the 
responsibility of the trajectory generator to select the ap-
propriate context of motion coordination. The lower level 
performs motion in a mode. It is the responsibility of the 
higher level to select a motion mode for each joint con-
troller. Each of the joint controllers contains a number of 
functional units called fixed function modules. These mod-
ules may be connected together in different ways, each 
form yielding different control characteristics. The low-level 
motion modes are achieved by different fixed function 
forms. The form, or mode, changes in response to sensed 
real-world events (and thus we refer to the system as 
"flexible" or "auto-reorganizing") and to commands from 
the higher level. 

In general this is true of every level in the hierarchy: that 
any processor contains a number of fixed function modules 
that are auto-reorganizing. The particular form determines 
the control characteristics as the level attempts to control 
its child processor(s). The form changes either by com-
mand from above, or because some situation in its children 
changes. 

A. High-Level Concepts 

The chasing point sphere of influence motion model is the 
process that allows for all of the high-level control func-
tions. CPSIMM may be regarded as a bridge between a 
higher level path generator and the low-level joint motion 
controllers. It is responsible for coordinating multiple axes 
to provide uniform end-effector motion and maps the 
multiple joint space domains into a single Cartesian refer-
ence frame. Tactile sensing and processing capabilities may 
be available to CPSIMM. 

The capabilities CPSIMM must provide are indicated by 
the needs of higher level task systems; the higher level 
structure generates macroprimitives that are the base units 
or steps of an assembly procedure. As such they are 
primitives with respect to the higher level, but with respect 
to effecting such primitives they entail much coordinated 
maneuvering of the lower level motion controllers, and are 
therefore macro in scope. CPSIMM must accept these 

macroprimitives and produce a series of microprimitives 
that are local in scope (i.e. joint specific). The lower levels 
execute the microprimitives. 

Since CPSIMM is a high-level function, it performs 
motion in a context. The context determines how the 
motion is to be interpreted and executed. CPSIMM sup-
ports three motion contexts: preplanned path context, dy-
namic chasing point context, and dynamic point injection 
context (which will be discussed later in this section). 

1) Chasing Point: The motion contexts all share in com-
mon the concept of a chasing point. The chasing point is a 
point in the «-dimensional joint space; it also describes a 
desired end-effector position (location and orientation). 

All of the motion contexts operate by specifying the 
chasing point. The low-level controllers will cause the 
end-effector to align with the chasing point. High-level 
control of the end effector is achieved by judicious move-
ment of the chasing point; as the end-effector approaches 
alignment with the chasing point, the point is moved 
according to the rules of the current context. As the point 
is moved through space, the end-effector is always seeking 
the most current target or chasing point. The result of this 
behavior is that the end-effector is tracing out a path in 
space—a path that is determined by the movement of the 
chasing point. 

2) Sphere of Influence: The sphere of influence is a 
sphere whose origin is the chasing point, and is of a radius 
equal to the length of the end-effector. As the motion 
context moves the chasing point through space, it must 
insure that no known object in the workspace intersects the 
volume of the sphere. This technique is employed as the 
lowest level of the collision avoidance mechanism. 

If the curvilinear lines are drawn between chasing point 
positions according to the anticipated end-effector path, 
the sphere may be moved along this path to provide the 
locus of all points passed through. The solid volume so 
described will be a curvilinear (i.e., sinuous) cylinder. A 
second order collision avoidance is obtained by insuring 
that the curvilinear cylinder does not contain any known 
objects, in whole or in part.5 

3) Preplanned Path Context: This context is used when 
the end-effector must be moved through the workspace 
according to an a priori determined path at a specified 
speed. Traditional teach-based playback systems operate in 
a context similar to this. 

Paths in this context are composed of a finite set of 
distinguishable individual path segments. These segments 
are contiguous and connected, although the derivative is, 
more often than not, discontinuous. The motion starts and 
stops at end points. The intersection of two path segments 
is an intermediate point. The velocity along each path 
segment is independently specifiable. The ability to provide 
constant velocity paths in the Cartesian domain is made 
possible by the independence of segment velocities. 

A path is formed by a finite sequence of points in 
Cartesian space, which are then transformed into points in 

5 For clarity of the intent of this paper, we have not considered 
sophisticated obstacles such as "pseudo-obstacles" in [61. 
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joint space by solving inverse kinematic equations [11]. The 
path segment between two points in joint space is de-
termined by the particular physical construction of the 
manipulator.6 However, even this path cannot be assumed 
to be the actual path that will be followed. At each 
intermediate point the joint velocities must change to prop-
erly follow the next segment, thus requiring acceleration. If 
the motion is to be smooth, the position, velocity, and 
acceleration must all be continuous functions of time. 
Thus, a smooth acceleration must be performed at each 
intermediate point. 

We define a region of space around each intermediate 
point, called an (.-neighborhood. All path segment transi-
tions will occur inside of this neighborhood. When the 
end-effector enters the neighborhood, the joints are accel-
erated to the velocities needed for the next path segment. 
The size of the neighborhood, e, is determined by the 
maximum amount of time that may be needed to smoothly 
accelerate from one velocity to the next. 

The complete motion path is accomplished by targeting 
the next point in the sequence. The current target is used to 
define the chasing point. When the end-effector enters the 
chasing point centered c-neighborhood, the next inter-
mediate point is used to describe the new position of the 
chasing point. The joint controllers are instructed to accel-
erate to the velocity required for the new path segment. 

4) Dynamic Chasing Point Context: This context allows a 
path to be determined in real-time. The paths are usually 
determined with the aid of environmental feedback such as 
vision, sonar, proximity or touch sensing. This context can 
also be used for teaching/creating a preplanned path; a 
joystick control can be used to move the chasing point. 
The end-effector will always move towards the chasing 
point—when the end-effector reaches the point, its motion 
is stopped. 

When the speed of motion is high, the motion in this 
context is not as predictable as the motion produced by the 
preplanned path context because the manipulator may 
possibly be undergoing continually changing acceleration. 
When the chasing point is moving slowly, and the manipu-
lator is moving at a low speed, fine control of the path is 
possible. The chasing point is always kept "just ahead" of 
the actual end-effector position. 

5) Dynamic Point Injection Context: If a preplanned 
path is being traversed and an unexpected object is detected 
within the projected sphere of influence, then an additional 
set of intermediate points may be injected into the existing 
path stream.7 This is accomplished by temporarily sus-
pending the preplanned path context and entering the 
dynamic point injection context. Injected points are calcu-
lated one at a time. This context must circumnavigate the 
object and bring the end-effector back to the preplanned 
path. The mechanism associated with this context then 

6 For cylindrical manipulators, the segments are arcs of Archimedean 
spirals. 

7 The necessity of this context is obvious, but we are not implying any 
solution to the problem of dynamic detection of obstacles and avoidance 
of collision. 
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instructs the preplanned path context to advance its index 
into the path segment table so that it may resume path 
traversal with correct information about the next segment 
to execute. 

B. Low-Level Concepts 

The low-level control of motion is performed with respect 
to the individual axes of the manipulator. At this low level 
the concept of a manipulator does not exist; low-level 
control is responsible for servoing a single axis in its joint 
space. The axes are treated individually and are indepen-
dent at this level. Dynamical effects impacting an axis are 
compensated for by an adaptive feedback control algorithm 
that will be briefly discussed later in Section V (see [14] for 
detail). A joint (position) controller employs the algorithm 
to adaptively servo the axis according to a variety of 
contexts; these contexts are called modes. 

The particular mode in effect is chosen by either 
CPSIMM or the current mode. CPSIMM selects modes in 
an effort to coordinate the multiple axes. An active mode 
may cause another mode to take control when either 
unexpected or specific anticipated events occur. 

Briefly, there are four major modes of motion. Mode 1 
(Ml) attempts to bring the axis to a specified joint space 
coordinate in a specified amount of time. Mode 2 (M2) will 
accelerate the axis from its current velocity to a specified 
velocity. This change will be performed subject to the 
constraint that the acceleration will not exceed the rated 
joint capacity. Mode 3 (M3) will decelerate the axis to a 
stop. This may be accomplished by two methods. In the 
first method, the axis stops as quickly as possible (e.g., an 
emergency stop). In the second method, the axis is slowed 
and stopped at a specified joint coordinate. Mode 4 (M4) 
will maintain the axis at a joint coordinate. This is an 
active, dynamic process due to the effects arising from, for 
example, gravitational forces. 

For its implementation on digital computers, joint con-
trol is performed in discrete time intervals. A real-time 
clock periodically interrupts the joint controller to invoke 
execution of the low level motion control software. When 
the software is invoked it schedules the current motion 
mode controller for execution. The mode controllers per-
form their particular function with the aid of several fixed 
function modules, some of which are discussed in Sec-
tion V. 

1) Mode 1 Motion: Mode 1 motion will servo the joint 
from its current position in joint space to a desired target 
coordinate pd, subject to the constraint that the target 
coordinate will be achieved in a specified amount of time 
Tc, called the time to converge. When the axis achieves the 
target coordinate, it may have a nonzero velocity and/or a 
nonzero acceleration. Mode 1 motion is further char-
acterized by an c multiplier (EPS). In this mode a neigh-
borhood is defined about pd.

s The minimum size of the 

8 This neighborhood is related to the c-neighborhood of an intermediate 
point in the preplanned path context. 
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neighborhood c0, is the maximal distance required to stop 
the axis (i.e., when moving at maximum speed). The size of 
the neighborhood is actually determined by EPS. 

£ = c0*2E P S. (1) 

This technique for the expansion of e0 was chosen because 
it allows a limited precision EPS to select a large range of 
6-neighborhood sizes. 

A mode 1 motion is completely specified by supplying it 
with the values of pd, Tc, and EPS. Only EPS need not be 
explicitly defined; it has a default value of zero. 

When mode 1 is invoked the joint controller must be 
informed of the high-level intent: stop when the target 
coordinate is achieved (i.e., CPSIMM is targeting a 
terminus), or motion is to be continued (i.e., CPSIMM is 
passing through an intermediate point). When the axis 
enters its €-neighborhood, SACE signals CPSIMM via an 
interrupt, causing mode 3 to take control. Mode 3 is 
divided into two submodes, namely, mode 3a and mode 3b. 
If this is a terminus, mode 3b is started, and if this is an 
intermediate point, mode 3a is initiated instead. 

2) Mode 2 Motion: Mode 2 is used to link one Ml 
motion to another. When mode 2 is invoked the joint is 
driven from its current velocity to a requested velocity. The 
time required to do this can be of two forms: a) the 
acceleration is performed in minimum time, that is, the 
maximally allowed joint acceleration will be used, or b) 
the joint is accelerated in a fixed amount of time. The fixed 
value must be greater than or equal to the smallest time 
that any acceleration may require. 

The desired acceleration is determined by generating a 
polynomial description of velocity curve (see Section V-B 
for detail). This curve, and its derivative, will not have any 
discontinuities to prevent any jerky motion, and the deriva-
tive will never exceed the rated capacity of the joint. 

The mode 2 controller configures the fixed function 
modules such that the velocity requests (generated by a 
polynomial function) are fed directly to the servo driver. 
Mode 2 does not monitor the actual behavior of the servo; 
it does not compensate for discrepancies between requested 
velocities and actual joint velocities. When the time for the 
transition expires, the mode 2 controller will issue an 
interrupt to signify completion, and will continue to re-
quest the velocity at the desired target velocity. 

SACE executes mode 2 motion by comparing the gener-
ated velocity profile with actual joint behavior; this process 
is called a behavior matching. For the generation of the 
velocity profile we use the current velocity estimated from 
measurements of joint position. SACE also computes a 
time expansion index on the basis of the current and 
desired velocities. See Section V for more on this. 

3) Mode 3 Motion: The mode 3 controller will servo the 
joint to a halt from its current velocity. The time required 
for the deceleration (to a stop) is determined by the upper 
limit of the integral of the velocity profile, that is, M3 will 

attempt to bring the axis to a stop at the target coordinate. 
Mode 3 has two submodes designated by M3a and M3b. 
The former is used when passing near an intermediate 
point, whereas the latter is used when targeting terminal 
points. That is, M3a does not require the end-effector to 
stop exactly at the target, whereas M3b does. 

In M3a the controller will bring the axis to a stopped 
state in the vicinity of the target point. When the axis is 
stopped, an interrupt is generated to indicate this, and a 
modified variant of the mode 4 controller (called M4M) is 
invoked to maintain the axis at its current resting position. 

In M3b the controller will terminate the mode when a 
certain small velocity vs is achieved. When this occurs 
mode 4 is initiated to maintain position at the final target 
point. In the event that the current axis position is not the 
target point, the smallness of vs allows M4 to bring the axis 
to the target point without overshoot. The completion 
interrupt is not generated. 

Both M3a and M3b share in common the characteristic 
that they will bring the axis motion to a halt as close to the 
target point as is possible. To effect such motion SACE 
uses a polynomial-based velocity profile to calculate a 
trajectory. M3b differs from M3a in that the controller 
monitors the actual velocity. When the velocity is less than 
some preset limit vs, control is transferred to mode 4; M4 
is instructed to bring the axis to the target point. 

4) Mode 4 Motion: The mode 4 controller will maintain 
the axis at a particular position. The mode operates by 
comparing the current position pa to the desired position 
pd9 generating an error signal, and maps this error signal 
into a velocity request. The velocity request is used for 
subsequent actualization. 

Mode 4 may be invoked in two ways. In the first, the 
standard operating procedure, the controller will bring the 
axis to the target point from wherever it currently is. 
Because M4 makes no attempt to insure the smoothness of 
the acceleration, it should not be relied upon for gross 
servoing of an axis. The modified procedure, M4M, will set 
the target point equal to the value of the current coordinate 
at the time M4M is invoked. This procedure, used to keep 
the axis at its current position, should only be used when 
the velocity is small; otherwise, the axis may be driven at 
an exceedingly excessive acceleration. 

The error, pd — pa, will be used by the mode 4 controller 
to generate a velocity request that will bring the axis 
towards the target coordinate. The controller can be 
instructed to generate an interrupt when the target coordi-
nate is first achieved. For M4M the first instance of this 
(when first invoked) is not considered an achievement of 
the target coordinate—it will generate an interrupt at the 
first occurrence of pa = pd after the mode is initiated. 

A special variant of mode 4 called M4D (dynamic) is 
available for use when the high-level processes are dynami-
cally moving the end-effector through space. In M4D the 
convergence of the approach to the terminus can be speci-
fied. M4D will generate an interrupt when the axis first 
enters the e-neighborhood, but it will not interrupt when 

Pa = Pd-
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IV. HIGH-LEVEL MOTION CONTROL 

The motion control concepts as developed in the previ-
ous section are designed to support each other in such a 
way that the versatility and capabilities of the manipulator 
control system are maximized. The details that are specific 
to the high-level motion controller (CPSIMM) are those 
that relate to the appearance of end-effector paths. The 
details that concern the low-level (SACE) solely are those 
that involve a single axis only. 

The constituent components of CPSIMM are those that 
support the motion control contexts. These contexts sched-
ule the individual axis controllers to perform various low-
level control modes. The arrangement of low-level modes 
in a time-sequenced pattern allows a high-level motion 
pattern to appear. 

Similarly, SACE organizes the available modules into a 
structure that will actualize the desired modal motion. The 
SACE system is self-organizing, that is, it is capable of 
structuring the data flow paths between its constituent 
modules. 

The high-level concept of motion is divided into two 
styles: planned and dynamic paths. Although these two are 
quite different in temperament, they are very similar in 
that they achieve motion control with the same repertoire 
of available low-level motion modes. 

Planned paths are defined by a set of points which 
roughly describe the path. These paths may be examined 
from two viewpoints: description and actualization. The 
description will require the development of the notion of a 
simultaneously convergent path in joint space. The actuali-
zation viewpoint centers on the development of descriptor 
nodes', these nodes are information packets describing the 
path segments. 

Dynamic paths are constructed according to environ-
mental and other external dictates. Dynamic paths are far 
more subtle than planned paths; effective execution of a 
dynamic path is predicated on the availability of side 
information, information that is deducible from the nature 
of the task. This side information will imply an approach 
to configuring the low-level modes. 

A. Preplanned Paths 

1) Path Description: A path begins at a starting point, 
moves through a series of intermediate points, and con-
cludes at a terminus. The motion is initiated by targeting 
the first intermediate point. The data concerning a path 
segment is contained in a descriptor node associated with 
the intermediate point. When the segment is completed, the 
next segment's node is accessed to provide the data needed 
to continue the motion. Motion does not stop at each 
intermediate point; motion halts only at the terminus. 

A node contains several sets of data: a set is required for 
each axis involved with the motion. Each set contains a 
desired target coordinate pd, and e multiplier (EPS), and a 
time to converge, Tc. 

These parameters are derived from two vectors associ-
ated with each point. The first vector, P, identifies the 

position of the robot's wrist in Cartesian (robot) space. The 
second vector, O, describes the orientation of the end-
effector at that point. In coordinating motion the two sets 
of degrees-of-freedom comprising P and O are treated 
independently. Orientation may be controlled along each 
path segment (as is required when the orientation must be 
held constant in Cartesian space), it may be controlled 
independently of, but simultaneously with, the position 
control of the path so that the desired orientation is 
achieved when the terminus is reached, or it may be 
brought into alignment after the final position is achieved. 

In transit orientation is not performed in the following 
treatise, its development is a logical extension of the model 
described. 

Assume that the current position of the hand in robot 
space is (Xi9 Yi9 Zt) corresponding to some joint coordinate 
(£/>#/> ?/) and the position of the current target point 
is (Xf,Yf,Zf) corresponding to some joint coordinate 
(£y, 0y, fy). Each axis must change its joint space position 
by an amount that is the difference between the target 
coordinate value and the current value, namely, Δ£ = £y -
£,·, Δ0 = 0y - 0f., and Δ£ = fy - £.. Since the maximum 
allowed joint velocity for each axis is constrained by the 
hardware, and thus known (i.e., υ™3*, v™**, v™**),9 then the 
minimum possible time for each axis is to reach its destina-
tion is in degenerate form, for we are neglecting accelera-
tion as a first-order approximation: t% = Δξ/ν™3*, ίθ = 
Δθ/υ™**, and ίζ = Δξ/ν™**. Because the use of these con-
stants is in determining a minimum time, if the servo 
cannot realize this velocity in actual operation (due to 
payload and other dynamical effects), the actual time will 
be greater than the calculated minimum time, which is as it 
should be. Only in the no payload situation, the servo 
would actually be able to perform in close to calculated 
minimum time. 

In order to account for acceleration, another approxima-
tion will be made. Because CPSIMM does not know the 
current axis velocities, a worst case approximation will be 
made to insure that the second-order time approximations 
will be large enough to always allow the segment motion to 
accommodate any required velocity changes. The maxi-
mum allowed accelerations are also predefined: 
af**, a™**, a™8*. Assume that the current velocity is the 
largest negative velocity possible, and that the next path 
segment will require the largest positive velocity allowed. 
The total velocity change is twice the allowed maximum 
velocity.10 The acceleration time required to produce such 
a velocity change is 

tH = Ivf^/af^ 

tae = 2νΓ/αΓ 

tai = 2v?™/a™. (2) 

9By "maximum allowed joint velocity" we refer to that velocity which 
can be achieved by the joint in a no load situation as determined by the 
torque and velocity limits of the servomotor. 

10 We are here assuming that the maximal positive and negative veloci-
ties are of the same magnitude. 
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The second-order minimal time approximation is found by 
adding this acceleration time to the first-order transit time 

' Γ = h + *a( 

' Γ = U + '„, 
tr = h + tat. (3) 

The second-order approximation is required when the 
segment transit times are small compared to the minimum 
acceleration time of (2). When either a) intermediate points 
are close together or b) the velocity changes between 
segments is not large, then a third-order approximation can 
be used. 

The third-order approximation determines the accelera-
tion time required between path segments. The velocity of 
the path segments is approximated by using the first-order 
time approximations. Let ί.(/ - 1) be the first-order time 
approximation for the current path segment / — 1 of axis 

j , and tj(i) be the first-order approximation for the upcom-
ing path segment /. The average velocity along path seg-
ment i for axis j is found by dividing the joint path length, 
AyO'X by the first-order approximation 

Vj{i) = àj(i)/tj(i). (4) 

The velocity change required between two adjacent path 
segments / — 1, and / is 

toju-i,, = «,■('') - »jO - 1) (5) 

and the minimum time required for acceleration is 

'„; = Δ , , : , _ 1 , , Λ ™ \ (6) 

Thus the minimum time to be allotted for traversing seg-
ment /' for axis j is 

t™(i) = tJ + ta,. (7) 

Whether first-, second-, or third-order transit times are 
computed depends upon the nature of the motion in the 
context. The techniques converge at this point for further 
calculation. Let /min be the minimum time value calculated 
for the axis j . Then, select the largest of the axis times 

'move = max if". (8) 
j 

This is the minimum time required for all axes to reach 
their respective target coordinates; it represents the time 
required for a simultaneously convergent motion, and is 
therefore used as the time parameter of the motion, i.e., 
Tc = tmove. This Tc parameter must be common to all axes 
involved in a motion segment. The total time of the motion 
is the sum of the segment time-to-converge values. 

Lastly, the e multiplier (EPS) must be specified. This 
multiplier controls the tolerance or accuracy to which the 
path actually passes through the intermediate point. An 
EPS value of zero requires the manipulator to pass close to 
the intermediate point. Larger values of EPS lessen the 
required "closeness." 

2) Actualization: To execute the path, the preplanned 
path context (PPP-C) controller first employs mode 2 to 

bring the axis up to speed. Mode 2 interrupts to indicate 
that the axis is close to the desired speed. When all the axes 
have so interrupted, PPP-C invokes mode 1. The pd, Tc, 
and EPS parameters of the next target node are sent to the 
axis controllers, and mode 1 is initiated. PPP-C then pre-
pares the next parameter packet and transmits these to the 
SACE communication buffer area. One of the advantages, 
if multiple processors are used, is that several independent 
but related sets of calculations are being performed simul-
taneously. The communications between these processes 
are woven between the control functions. 

Each low-level controller brings its axis towards its target 
coordinate. When an axis enters its c-neighborhood, it 
slows down as it completes its targeting of the terminus. 
SACE informs CPSIMM that the e-neighborhood has been 
entered. PPP-C waits for all of the axes involved in the 
path segment to enter their c-neighborhood; when this 
condition is met CPSIMM is assured of two facts: 1) that 
the end-effector is sufficiently close to the intermediate 
point, and 2) that all axes are resynchronized in space for 
continued coordinated control. CPSIMM then instructs 
SACE to accelerate the axis to the velocity required for the 
next path segment using mode 2 (the data is already in the 
SACE communication buffer area). When up to speed, 
mode 1 is reinvoked using this data. 

The cycle is repeated until the data for the terminus is 
loaded into the SACE buffer area. After this motion is 
initiated, PPP-C, waits for the set of interrupts to indicate 
that all 6-neighborhoods have been entered. Normally the 
axes are slowing down to target the terminus and the 
controller is bringing the velocity to zero using M3b. 
However, when the terminus is the current node, the SACE 
controllers are instructed to use M3a instead. This will 
automatically invoke M4 when the controller slows the axis 
sufficiently. When M4 brings the axis to a stop on the 
terminus, it interrupts CPSIMM. When all the interrupts 
are received, PPP-C has completed the preplanned path. 

B. Dynamic Path Modification 

The details of the techniques that properly execute the 
dynamic point injection context (DPI-C) are not contained 
within the scope of this paper;11 but insight into the need 
for this capability has led to its inclusion here, so that we 
may illustrate how such function can be incorporated into 
the structure. 

Two techniques predominate for the dynamic inclusion 
of points extraneous to a preplanned path. In the first 
technique, the axis is servoed as quickly as is possible 
towards a target point; the path is not determined. In the 
second technique, the injected point determines a path. 

The first technique is used to avoid a collision with an 
obstacle: an intermediate target point in space is de-
termined that is both far from the interfering object and 
that does not significantly deviate from the current, pre-

11 Dynamic path calculation is a subject related to dynamic collision 
avoidance; it is not the intent of the present paper to solve this problem, 
nor implies that we have solved that problem. 
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planned path. In this way the controller need not fight the 
axis inertia, it must only redirect the path. Such a point can 
be targeted by low-level M4 motion control. Although the 
path is not anticipatable, the end-effector can be expected 
to move toward the injected target point with a speed that 
is inversely proportional to the distance, i.e., the farther 
away the point, the faster the axis moves towards it, 
slowing down as the point is approached. 

The second technique is used once the end-effector is 
near the dynamically injected point. A high-level dynamic 
path planner generates a new preplanned path that merges 
with the old path, avoiding the obstacle. This dynamic path 
can be calculated in transit, and is controlled by the tenets 
of the PPP-C context. 

C. Dynamically Created Paths 

The dynamic chasing point context (DCP-C) allows the 
manipulators to be servoed in real-time according to en-
vironmentally determined information. In this context, the 
axes are servoed using a variant of the low-level M4D 
controller. 

Although dynamically determined path control is ex-
tremely difficult and is also beyond the scope of this work, 
the general concept is as follows. In M4D, the controller 
brings the axis to the target point with a moderate velocity. 
The diminution of employed velocity is specified to M4D 
by the setting of a parameter.12 Unlike the normal M4 
operation, an e-neighborhood is employed. When the end-
effector enters the €-neighborhood about the current chas-
ing point, the point is moved. The low-level controllers, 
always executing M4D, will cause the end-effector to al-
ways chase after the point. 

V. LOW-LEVEL CONTROL 

Low-level control entails servoing the axis in the joint 
domain. From this perspective there is no concept of a 
manipulator, only a single highly nonlinear servo position-
ing system. The dynamical effects manifest at this level, 
and must be handled appropriately. 

The axis control is accomplished via feedback and is 
closed at this level. SACE, a software process executing in 
this level microprocessor, is responsible for the control 
function. SACE performs motion control by scheduling a 
variety of modular components into configuration suitable 
for effecting the style of motion called for. 

The configured set of modules is conceptually described 
as an adaptive feedback control algorithm. The algorithm 
is a primitive learning system that attempts to dynamically 
ascertain the axis' motion behavior. It adapts to the per-
ceived axis forces; it compensates not only for the ever-
changing dynamics, but allows motions to be defined 
without requiring specification of operating speed and 
payload (see [14] for detail). 

12 This parameter k affects the damping of the control algorithm and 
will be discussed in Section V. 

SACE can configure the adaptive algorithm for the 
execution of four motion modes. By appropriately selecting 
sequences of motion modes, the high-level CPSIMM 
achieves coordinated end-effector motion. 

A discrete-time motion model is used to guide the servo-
ing of an axis as a linear function of time. The model 
computes the velocity needed to bring the axis from its 
current joint position to the target point in exactly the 
amount of time Tc. This velocity is not constant because 
the changing dynamical effects impact actual axis motion. 

We have to estimate the axis velocity on the basis of a 
known position history, because 1) axis velocity informa-
tion is required by the other modules, and 2) the hierarchi-
cal organization presents the joint controller with position 
information only. 

For the adaptive control algorithm, we use estimated 
axis response to condition future control. That is, it adjusts 
the velocity requests generated by the motion mode con-
trollers into a form that will cause the axis to actually 
perform as requested. 

The velocity profile described by a third-order poly-
nomial is employed to guide a motion that smoothly 
changes the joint servo rate to achieve some requested axis 
velocity. The profile imposes boundary conditions to create 
a smooth blending function. It then expands this function 
in the time domain so the axis will be able to perform the 
desired motion; however, this method does not generate 
time-constrained velocity profiles. A modified version of 
the above will bring the axis from an initial velocity to rest 
while attempting to bring the axis as close to the target 
point as is possible. 

The difference between the axis' real position and the 
desired position will be used to servo the axis in such a way 
that the axis is brought to the target point without over-
shoot. 

In the following discussions, the modular components of 
SACE are discussed in detail. 

A. Discrete-Time Motion Model (DTMM) 

The DTMM is an interrupt driven software process that 
generates velocity requests for a single joint.13 The DTMM 
goal is to bring the joint to the desired target coordinate in 
a specified amount of time i.e., the time to converge Tc. 

Fig. 2 shows a trajectory for an axis at some joint 
position x0 at time zero, terminating at the target coordi-
nate pd at time Tc. The horizontal time axis has been 
subdivided into n elements of width δ/, where 8t is the 
iteration period of the interrupting real-time clock: 

The average amount of motion required per iteration is 

13A nonmaskable interrupt from the real-time clock causes SACE to 
schedule the DTMM when a motion mode using it is active. 
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D I S C R E T E T I M E i 

Fig. 2. An idealized discrete-time motion model. 

•-Desired t a rge t coordinate 

Time-to-Converge 
D I S C R E T E T I M E i 

Fig. 3. Actual functioning of the discrete-time motion model. 

If the controller can cause this movement to take place, 
then the axis will achieve the target coordinate in exactly 
the required amount of time Tc. However, for a real-world 
device, this behavior is not attainable because of nonlinear 
dynamics (friction at the least) and inertia. This model 
does imply a control goal—the iteratively generated solu-
tion for a time constrained velocity profile. We now modify 
this idealized model so that it compensates for the nonideal 
performance of actual moving systems. 

If we let the DTMM calculate anew the trajectory of Fig. 
2 at each iteration period, it will generate a sequence of 
velocity requests Δχ; / + 1, where / ranges from zero to 
n — 1. That is, at each interrupt a new velocity request will 
be calculated based upon the remaining distance and time 
to travel. 

In Fig. 3 we illustrate a plausible response to the initial 
velocity request calculated by (10). At the next interrupt a 
new linear path is constructed, the slope of which is the 
desired velocity. Let pa denote the actual joint position at 
time /', then the velocity request for this iteration is 

T I M E (t/τ) 

Fig. 4. A generic velocity profile curve. 

Equation (11) can be used at each interrupt to generate 
the velocity request. One effect of this technique is a 
velocity creep that accrues until the axis attains its average 
operating velocity. The terminal velocity that is reached is 

lim Δχ 
/ - * « - ! 

i , i + 1 · (12) 

Δχ /,/ + ! (Pd-Pa)/(" - 0 · 

Because of this velocity creep, an axis should never be 
requested to move at its maximum allowed velocity (doing 
so will invalidate the guarantee of a simultaneously conver-
gent motion path). 

B. Generation of Velocity Profile 

The velocity profile used by the mode 2 controller is 
determined by a polynomial function describing smooth 
transitions from a given initial velocity to a specified 
desired velocity. Since the polynomial function represents a 
velocity profile in the time domain, its derivative represents 
acceleration. In general, a third-order polynomial is suffi-
cient for smooth transitions. The polynomial can then be 
specified by four boundary conditions: the initial and final 
values of both the polynomial and its derivative. 

Since we are concerned with one complete move, the 
initial and final acceleration are assumed to be zero. A 
generic velocity profile generated is illustrated in Fig. 4. 
The general form of an equation describing such a curve is 

V = C3T)3 4- C2î)
2 + QTJ + C0 (13) 

where the C, are constants to be determined. The deriva-
tive of (13) is the acceleration curve, and is represented by 

A = 3C3TJ2 + 2C2TJ + Q . (14) 

At the start of a blend (η = 0), the velocity is Vt and the 
acceleration is assumed to be zero. This provides two 
boundary conditions ν\η=0 = Vi9 Α\η=0 = 0. At the end of 
the blend (η — 1), the velocity should be the specified 
velocity Vf and the acceleration should be zero. This yields 
two additional boundary conditions: V\v = 1 = Vf, Α \ η = ζ 1 = 
0. From these boundary conditions one can obtain coeffi-
cients C0 = Vi9 Cx = 0, C2 = 3(Vf - Vt\ and C3 = -2(Vf 

(H) -Vt). 
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The polynomial must be mapped to real time. To do 
this, (13) can be written as 

F = C 3 | 3 + C 2 ^ 4 - C ^ + C 0 (15) 

where £ = / / τ , τ represents the total time used in perfor-
ming the velocity blending, and t e [0, τ] is real time. The 
value of τ is found by insuring that the maximum accelera-
tion is not required to exceed the rated maximal accel-
eration for the axis (i.e., A™** for the y'th joint). The 
acceleration is 

A = [3C3|2 + 2C2£ + C j / r . (16) 

The maximum acceleration occurs when the derivative of 
this is zero. This occurs when ξ = 0.5, i.e., t = τ /2 . The 
maximum acceleration is 

Amax = ΛΙί-ο.5 = [3C3/4 + C 2 ] / T = 3(Vf- F , . ) / 2 T . 

(17) 

To find the minimum time Tmin for joint j such that the 
profile will always require the maximally allowed joint 
acceleration,14 A™3*, without exceeding it, solve for τ when 
A _ j m a x 

^ = ^{Vf-V,)/2Af (18) 

That the acceleration will never be required to be exceeded 
is guaranteed by the fact that the time computed here is for 
minimum time. If the servo cannot realize this acceleration 
in actual operation (due to payload for example), the 
actual time will be greater than the calculated minimum 
time. 

The largest such minimum time for some joint j occurs 
when the initial and final velocities are opposite in sign, 
and are the largest permissible velocities magnitudewise, 
that is, a complete velocity turnaround: 

= 3VJ
m™/Afax. (19) 

For the mode 3b controller we need also smooth transi-
tions from an initial velocity to zero velocity such that a 
specific distance is traversed. This can be achieved simi-
larly to the above using a polynomial of the same form as 
(13). Because the desired velocity Vf is zero, the coefficients 
of (13) are C0 = Vi9 Cx = 0, C2 = -3Vi9 C3 = 2Vt. Sub-
stituting these into (13) yields the polynomial 

V = 2Vrf - 3Vtf + Vi 

and is mapped to real time as 

F = F , [ 2 ( / / T ) 3 - 3 ( Ì / T ) 2 + I ] . 

(20) 

(21) 

The polynomial generates a velocity curve of the form as 
shown in Fig. 5. Using the curve, we can calculate the 
distance traversed s to be Vj/2. It is desired that this 
distance be the size of the ^-neighborhood, thus e = Vtr/2 
from which the time of motion is found τ = 2e/Vi. The 

14By "maximum allowed joint acceleration" we refer to that accelera-
tion which can be achieved by the joint in a no load situation as 
determined by the physical joint torque motor limits. 

h 
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TIME ( t/τ) 

Fig. 5. A generic velocity curve used for mode 3 control. 

acceleration is given by the derivative of (21): 

A = Vt[f>{t/rf - 6 ( / / T ) ] / T . (22) 

The maximum acceleration occurs at / = τ /2 , and is 

^ m a x = - 3 F , / 2 r . (23) 

The time required for the transition can be found 

T = 3V,/2Amax. (24) 

Minimum time occurs when maximally allowed accelera-
tion is used, i.e., Tmin = 3Vi/2A™ax, and the upper bound 
is found when the axis is at the maximum velocity: 
Tmin max = 3^m a x/2^7

m a x. The minimum size €-neighbor-
hood is found from this by c0 = 0.5 Vi τ, 

min max 

3{ Vjmax}2/AAf^. Also one can obtain the distance required 
in stopping the axis: 

s = 3Vi
2/2At (25) 

This implies that for Vt < Vjmax, the distance traversed in 
stopping the axis s is always less than c0. 

C. Velocity Estimation 

We need to estimate the current axis velocity from a 
position history. The position of the axis is determined by 
SACE at each real-time clock tick interrupt. The current 
and last / values are saved. The current velocity is 
determined as a function of these / + 1 values. Because the 
axis velocity is always changing, it is not necessary for / to 
be large, in fact, a large / would infuse the velocity 
estimate with inappropriate data; the velocity estimator is 
a short-term memory function. 

Fig. 6 illustrates a position history with / = 2. Let x 
denote the joint coordinate and / be the current time 
(clock tick number). The change in position between two 
consecutive known positions is 

υίχ;_Λ ,· = Xj - xi_l. (26) - 1 , / 

The change in position is also given by the average velocity 
for the segment 

Δχ,-^^^+ν,.,)/!. (27) 

Solving (26) and (27) for the current velocity yields 

Vt = 2 Δ * , . , , - Vt_,. (28) 
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Fig. 6. Position history used for velocity estimation. 

The velocity at time / — 1 is approximated by 

<Vi_l) = (x,-xl_2)/2 (29) 

where the angle brackets indicate an estimate. Substituting 
(29) into (28) and then simplifying the result, we get 

<^.> = 3x,/2 - 2*,_x - x,._2/2. (30) 

D. Discrete Error Corrector 

The discrete error corrector moves the axis with a veloc-
ity that is proportional to the distance remaining (i.e., the 
error). The distance remaining at some interrupt-invoked 
iteration is xr = pd — pa. In order to reduce the propensity 
for overshoot, and to provide a mechanism for control-
ling the rate of convergence, the selection of velocity re-
quest Δ*/ > / + 1 is quantized. An integer valued parameter k 
specifies the quantization.15 All velocity requests in the 
range of 1 to k are mapped to 1, and those in the range 
k 4- 1 to 2 k are forced to be 2, etc. The ranging is 
performed by 

Δ*,,,+ι = l(*r +(k - l ) sgn (x r ) )Aj (31) 

where Δχ/ / + 1 is the desired velocity for the upcoming 
iteration period, and sgn is the sign function.16 This func-
tion produces the ranging 

Ax / , / + ! 

0, if xr = 0 

j9 i f x r * 0 
(32) 

where j is the integer that satisfies 

k*(j-l) + l<xr^k*j. (33) 

The k parameter affects speed performance: an increase 
in k slows the rate of convergence. This effect is illustrated 
in Fig. 7.17 It is important to note that the introduction of 
such k eliminates undesirable effects, e.g., overshoots, of a 

15k is related to the damping factor of the algorithm. 
16 It returns a value of + 1 , 0, or - 1 . 
17 During performing system test or calibration, the k parameter was 

selected experimentally. For completeness, follow-up activity can be per-
formed to generate a heuristic that selects k based on manipulator 
kinematics and dynamics. 

pure proportional control. This is an interesting departure 
from the conventional controls such as PID control. 

E. Behavior Matching 

This module attempts to ascertain the effects imposed on 
the axis by the dynamical forces. It estimates the disparity 
between the drive signal St at iteration / and the resultant 
motion. The behavior matching assumes this disparity is 
linear18 

St = αΦ, + β (34) 

where Φ, is the velocity requested at iteration /, ß an 
offset, and a a constant of proportionality. 

A first-order approximation for β is obtained by assum-
ing the offset is the difference between the last request 
Φ/_1 and the achieved velocity Vt

a 

β = Φ,-! - V*. (35) 

The first-order approximation for a is gotten by gener-
ating a performance index κ, which compares the change 
in requested velocity to the change in actual velocity 

" = ( Φ , - ι - Φ , - 2 ) / ( ^ ΰ - ^ - ι ) (36) 

and expanding αΦ, to Φζ 4- κΔΦ/_1 y where Δ Φ ^ 7 = 
Φ, — Φ/_χ. This procedure maps the change ΔΦ/_1 . 
according to the measured change arising from the previ-
ous response /c, as illustrated in Fig. 8. 

To improve this, a history of performance indices Ki are 
kept. A second-order polynomial is fitted to the three most 
recent values: κ,_2, Κ/_ι, and κ,. An estimate of the future 
value ( K / + 1 ) is calculated. 

A generic quadratic polynomial q = C2t
2 + Cxt + C0 

passes through points A, B, C at times t = 0,0.5,1, respec-
tively. This leads to coefficient values of C2 = 2 A - 4B + 
2C, C\ = AB — 3B — C, C0 = A. The next point D occurs 
at t = 3/2, and is given by D = A - 3B + 3C. Using this 
information, the estimated performance index at iteration 
i is 

<*/+!> = " / - I " 3 K / - I + 3* / · (37) 

Employing this in place of κ leads to second-order behav-
ior matching 

[Φ|Κβ]Ι· = Φί+<κ/ + 1>ΔΦ/_1 > / (38) 

where [·]7 indicates that this is a velocity request condi-
tioned on measured velocity. The drive signal S, is pro-
duced by 

S,= W L + jS. (39) 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

In this paper a robot control framework, incorporating 
CPSIMM and SACE, has been developed in a structured 
fashion. The individual components of this framework has 
been clearly identified and their details specified. 

A first-order control process, consisting of Ml and M4 
only, has been implemented and its behavior examined. By 

8Although it is not, it is suitable as an approximation. 
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Fig. 7. Convergence of discrete error correction for mode 2 (with τ 
TIME 

100 ms). 
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Mapping of behavior matching. 

first-order it is meant that the subtleties of a quality 
solution have been treated lightly. Therefore there exists 
ample room for improving the performance of this system. 

There are two parameters in the adaptive feedback con-
trol algorithm that are used for tuning. These are 1) the 
period 8t between iterations of the algorithm, and 2) the 
convergence control k of M4. Experiments were performed 
in which these parameters were changed; the effect upon 
system behavior was as expected. Tuning was found to be a 
simple and straightforward process. For experimentation 
with a six-joint, cylindrical manipulator called the PACS 
arm (manufactured by Bendix Corporation), we selected a 
revolute joint with a rest position perpendicular to the 
plane of the base (i.e., the link hung vertically). This type 
of axis experiences nonlinear gravitational effects as it 
rotates. In addition, a stiff spring was attached from the 
end-effector to the base to exacerbate the nonlinearities. 
Tests were made with a variety of loads held by the 
grippers. With these different loads the joint was moved 
with various speeds so that the Coriolis effect would have 
impact on the test system as well (at faster motion rates). 

In the tests the control algorithm brought the axis to the 
desired position in the requested amount of time. System 
variables were logged on a display device so that analysis 
could be performed. As Fig. 9 shows, the path quickly 
converged to linear form. Note that the low-order bits in 
the velocity requests become significant as / -> Tc because 
they are inversely proportional to tr = Tc - t. However, 
this is about the area of the c-neighborhood. We would 
then enter another mode before these "nasty behaviors" 
manifested. 

Accidentally dropped loads, which might severely impact 
a traditional controller, were quickly recovered in the adap-
tive environment. This experiment was done by snatching 
the load away from the robot during the motion. Also, a 
defined motion path was traversed nearly identically under 
different load conditions. 

Although the tests we performed are simple, the results, 
as indicated above, are quite favorable. Furthermore, the 
general and flexible nature of our system structure should 
form a foundation for the intelligent control of the growing 
number of various types of industrial manipulators. 
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