
78 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-15, NO. 1, JANUARY/FEBRUARY 1985

A Structured Framework for the Control
of Industrial Manipulators

KANG G. SHIN, SENIOR MEMBER, IEEE, AND STUART B. MALIN, MEMBER IEEE

Abstract—A framework for the intelligent control of industrial manipu-
lators is described. The control structure that is described is designed to
take full advantage of the improved sensing capabilities and more powerful
languages that have become, or are now becoming, available. The frame-
work is a hierarchical structure in which the aspects of motion control are
isolated in independent layers of the organization. A scheme for control
(which is conceptually replicated at each level of the structure) is intro-
duced that is nontraditional in orientation; this control scheme is specifi-
cally intended to operate in the framework presented. The control scheme
is not strictly organized, but rather achieves the some pose in response to
both the intended goal and the real-world conditions. Two adjacent layers
of the hierarchy are discussed in detail. These layers are capable of
providing noncompliant control of a multijointed manipulator. It is indi-
cated where other aspects of intelligent machine control are located in this
structure, but there are no details presented regarding their operating
specifics such as vision, taction, and collision avoidance. Of the two layers,
the low-level mechanism is responsible for servoing a single joint indepen-
dently. The individual low-level controllers are then integrated and coordi-
nated by the higher level controller. Because of the nature of the flexible
control scheme, the control is adaptive to manipulator dynamics without
explicit modeling.

I. INTRODUCTION

A N INTELLIGENT ROBOT should be capable of
performing a variety of assigned tasks, be aware of

its environment, and be able to effectively respond to
unexpected events. Therefore, it will be able to accommo-
date for misalignment of parts in the workspace, perform
tasks described in an abstract manner, and be capable of
fine detail work. In order to have the preceding capabili-
ties, an intelligent robot will require visual and/or tactile
sensing and interpretation, goal-seeking task executors, col-
lision avoiding path planners, and a versatile manipulator
control structure. Though last on the list, the flexible
control structure is that which will enable the others to
effectively interface with the manipulator.

In this paper we present a structured framework for this
flexible control system. It is felt that such control tech-
niques will enable robotic systems to take full advantage of
the improved sensing capabilities and more powerful task-
oriented languages that are now beginning to emerge.
These two components (i.e., sensing and languages) are

Manuscript received October 13, 1983; manuscript revised August
1984. This work was supported in part by the US AFOSR under Contract
F49620-82-C-0089 and by the New York State Science and Technology
Foundation under Grant SSF 81-3.

K. G. Shin is with the Department of Electrical Engineering and
Computer Science, The University of Michigan, Ann Arbor, MI 48109.

S. B. Malin is with the Advanced Manufacturing Systems, IBM Corpo-
ration, Boca Raton, FL 33432.

placing an unprecedented demand on the control subsys-
tem, namely, that the controller be able to react quickly to
a series of changing directives.

These developments have made it necessary to re-
examine the organization of the robot control and comput-
ing structures. It has become quite clear that a hierarchical
organization is needed, at least in defining the logical
structure of the system as shown in [1], [2], [9], [13]. In a
hierarchical system the information available to, and used
by, a particular level is unique to the function performed
on that level. For example, in a high-level task-oriented
language, objects are referred to with nouns that represent
the object (e.g., bracket, screw, baseplate), are manipulated
by action verbs (e.g., attach, procure, insert, tighten) with
possible modifiers (e.g., smoothly, quickly), and are subject
to constraints (e.g., until finger-tight). This contrasts sharply
with the lower level language, where objects are described
by mathematical frames and manipulated via transforma-
tions, and where constraints must be carefully defined and
properly effected. And on yet a lower logical level, motion
is carried out in an «-dimensional mathematical space for
an «-jointed robot, specified by joint servo rates, and
subject to the physical forces/torques of moving compo-
nents.

The control of a manipulator has long been regarded
difficult because of the nonlinearity and joint couplings in
its dynamics. To circumnavigate this difficulty, the manip-
ulator control problem is usually divided into trajectory or
path planning and trajectory or path control. Trajectory
planning is concerned with the calculation of the timing of
joint position and velocity from a geometric path supplied
by a task planner. This is done off-line normally by mini-
mizing total traveling time subject to certain constraints
(e.g., constraints on accelerations [5], [10], or those on
input torques [3], [15]).

The prime task of path control is to generate the individ-
ual joint motions needed to move from a place to the
desired destination following a path specified by the trajec-
tory planner. There are three well-known methods of path
control that are all kinematically oriented. These are "re-
solved motion position control" [10], "resolved motion rate
control" [17], and "resolved motion acceleration control"
[4]. See [7] for an excellent survey of work done thus far in
the area of manipulator control.

Note that most conventional works deal with only specific
subproblems of the manipulator control and planning

0018-9472/85/0100-0078$01.00 ©1985 IEEE

SHIN AND MALIN: CONTROL OF INDUSTRIAL MANIPULATORS 79

Task
Planning

Fig. 1. Hierarchical structure of a robot control system.

without considering their integration. For a few examples,
see [11] for robot kinematics, [8] and [12] for compliant
control, [16] for planning of Cartesian straight-line trajec-
tories, myriad publications elsewhere for robot vision, etc.
Unlike the conventional works, this paper considers a
structured framework for assembling these control and
planning submodules into a flexible, powerful system. Con-
sequently, complex mathematics are intentionally avoided
in the discussion that follows. It should be noted that the
main contribution of this paper is to provide a robot control%

framework that is flexible, powerful enough to accommo-
date current and future solutions to almost all specific
robot control and planning problems.1

This paper is organized top-down. In Section II the
manipulator control system is decomposed into a hierarchi-
cal structure. Section III deals with both the concepts of
high- and low-level motions. Sections IV and V discuss the
noncompliant controls of high- and low-level motions,
respectively. The paper concludes with Section VI.

II. HIERARCHY IN THE MANIPULATOR CONTROL

SYSTEM

A flexible manipulator control system is organized as a
hierarchical framework. The levels of the hierarchy are
cleanly divided: information processed at a particular level
is not directly available to other levels of the structure.2

There are two paths of information flow: upward and
downward. Downward moving data represents the flow of

1 Solving such specific problems is not the intent of this paper and may
even lead to several volumes of books. Moreover, some of these specific
problems are as of now unsolved research problems, e.g., dynamic detec-
tion of obstacles and avoidance of collision.

2A concept widely upheld in structured programming.

command; a level may issue commands only to the level
immediately below. Upward moving data comprises the
flow of feedback information; the feedback-based control
of a level is closed in the level immediately above. Informa-
tion is abstracted as it flows upwards through the hierarchy;
more physically specific information is processed in the
lower levels of the hierarchy. Each level filters and trans-
forms the data it receives producing a more abstract repre-
sentation for further upward flow. Fig. 1 schematically
depicts the levels and information flows of the hierarchy.

The lowest level is a (joint motor) torque controller,
which generates a drive current for the corresponding joint
and receives feedback regarding the motor torque. Above
this is the velocity control level, which is responsible for
specifying a desired servo rate and employs tachometric
feedback for velocity stabilization. Both the torque (or
acceleration) and velocity controllers are implemented in a
single hardware feedback system called a single axis inter-
face.

Above the single axis interface is a position controller.
The position controller generates velocity requests that are
then issued to its subordinates, the single axis interfaces. It
receives position feedback information from a shaft angle
encoder.3 Control of a single axis is performed by a
software process called a single axis control element
(SACE);4 the S ACE must deal with the dynamic forces/
torques acting on the axis.

The individual joint position controllers are integrated
into an overall structure at the next higher level. It is this
level that the concept of a manipulator emerges from the
separate individual joints. The major task executing at this
level is called the chasing point sphere of influence motion
model (CPSIMM). This model provides the capabilities for
coordinated joint control. CPSIMM is organized to control
the position and orientation of the end-effector in Carte-
sian space. In addition to this control function, visual/
tactile sensing can be interfaced at this level.

Above this level, the hierarchy is flexible and may in-
clude other high-level systems that are responsible for the
intelligent functions of the entire manufacturing systems.
Note that CPSIMM supports a single environmentally
sensitive manipulator, whereas the next higher levels ex-
tend this awareness to the full complement of workstation
devices. Trajectory planning occurs at the lowest level of
the higher (than CPSIMM) level structure and its upper
level is usually a goal-seeking task planner.

III. MOTION CONTROL CONCEPTS

The motion control strategy developed for our frame-
work is a distributed control mechanism, that is, the con-
trol function is not centralized to a particular location but
exists simultaneously in different forms in different loca-
tions. Control is not only distributed over the levels of the

3 The position encoder is considered to reside (logically) at the position
controller level, although physically it is a component of the lowest level
— the manipulator itself.

4 Typically the SACE resides within a microprocessor-based joint con-
troller.

80 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-15, NO. 1, JANUARY/FEBRUARY 1985

hierarchy, but across multiple processors existing on any
particular level.

On any level of the hierarchy, the processors operate
independently of their colleagues. Each processor receives
commands from a coordinating processor on the level
above itself, and in turn issues commands to those
processors below and directly attached to itself. Organiza-
tionally, the system is a tree structure where a given node
may have multiple children, but will always have only one
parent.

To effect motion control, we have allocated two levels of
the structure: a low level that performs joint motion on a
per-joint basis, and a high level that performs Cartesian
motion on a per-manipulator basis. We posit the existence
of a high-level trajectory generator that would generate
motion requests for the manipulator; this level would in
turn receive input from a task planner.

The higher level performs motion in a context. It is the
responsibility of the trajectory generator to select the ap-
propriate context of motion coordination. The lower level
performs motion in a mode. It is the responsibility of the
higher level to select a motion mode for each joint con-
troller. Each of the joint controllers contains a number of
functional units called fixed function modules. These mod-
ules may be connected together in different ways, each
form yielding different control characteristics. The low-level
motion modes are achieved by different fixed function
forms. The form, or mode, changes in response to sensed
real-world events (and thus we refer to the system as
"flexible" or "auto-reorganizing") and to commands from
the higher level.

In general this is true of every level in the hierarchy: that
any processor contains a number of fixed function modules
that are auto-reorganizing. The particular form determines
the control characteristics as the level attempts to control
its child processor(s). The form changes either by com-
mand from above, or because some situation in its children
changes.

A. High-Level Concepts

The chasing point sphere of influence motion model is the
process that allows for all of the high-level control func-
tions. CPSIMM may be regarded as a bridge between a
higher level path generator and the low-level joint motion
controllers. It is responsible for coordinating multiple axes
to provide uniform end-effector motion and maps the
multiple joint space domains into a single Cartesian refer-
ence frame. Tactile sensing and processing capabilities may
be available to CPSIMM.

The capabilities CPSIMM must provide are indicated by
the needs of higher level task systems; the higher level
structure generates macroprimitives that are the base units
or steps of an assembly procedure. As such they are
primitives with respect to the higher level, but with respect
to effecting such primitives they entail much coordinated
maneuvering of the lower level motion controllers, and are
therefore macro in scope. CPSIMM must accept these

macroprimitives and produce a series of microprimitives
that are local in scope (i.e. joint specific). The lower levels
execute the microprimitives.

Since CPSIMM is a high-level function, it performs
motion in a context. The context determines how the
motion is to be interpreted and executed. CPSIMM sup-
ports three motion contexts: preplanned path context, dy-
namic chasing point context, and dynamic point injection
context (which will be discussed later in this section).

1) Chasing Point: The motion contexts all share in com-
mon the concept of a chasing point. The chasing point is a
point in the «-dimensional joint space; it also describes a
desired end-effector position (location and orientation).

All of the motion contexts operate by specifying the
chasing point. The low-level controllers will cause the
end-effector to align with the chasing point. High-level
control of the end effector is achieved by judicious move-
ment of the chasing point; as the end-effector approaches
alignment with the chasing point, the point is moved
according to the rules of the current context. As the point
is moved through space, the end-effector is always seeking
the most current target or chasing point. The result of this
behavior is that the end-effector is tracing out a path in
space—a path that is determined by the movement of the
chasing point.

2) Sphere of Influence: The sphere of influence is a
sphere whose origin is the chasing point, and is of a radius
equal to the length of the end-effector. As the motion
context moves the chasing point through space, it must
insure that no known object in the workspace intersects the
volume of the sphere. This technique is employed as the
lowest level of the collision avoidance mechanism.

If the curvilinear lines are drawn between chasing point
positions according to the anticipated end-effector path,
the sphere may be moved along this path to provide the
locus of all points passed through. The solid volume so
described will be a curvilinear (i.e., sinuous) cylinder. A
second order collision avoidance is obtained by insuring
that the curvilinear cylinder does not contain any known
objects, in whole or in part.5

3) Preplanned Path Context: This context is used when
the end-effector must be moved through the workspace
according to an a priori determined path at a specified
speed. Traditional teach-based playback systems operate in
a context similar to this.

Paths in this context are composed of a finite set of
distinguishable individual path segments. These segments
are contiguous and connected, although the derivative is,
more often than not, discontinuous. The motion starts and
stops at end points. The intersection of two path segments
is an intermediate point. The velocity along each path
segment is independently specifiable. The ability to provide
constant velocity paths in the Cartesian domain is made
possible by the independence of segment velocities.

A path is formed by a finite sequence of points in
Cartesian space, which are then transformed into points in

5 For clarity of the intent of this paper, we have not considered
sophisticated obstacles such as "pseudo-obstacles" in [61.

SHIN AND MALIN: CONTROL OF INDUSTRIAL MANIPULATORS

joint space by solving inverse kinematic equations [11]. The
path segment between two points in joint space is de-
termined by the particular physical construction of the
manipulator.6 However, even this path cannot be assumed
to be the actual path that will be followed. At each
intermediate point the joint velocities must change to prop-
erly follow the next segment, thus requiring acceleration. If
the motion is to be smooth, the position, velocity, and
acceleration must all be continuous functions of time.
Thus, a smooth acceleration must be performed at each
intermediate point.

We define a region of space around each intermediate
point, called an (.-neighborhood. All path segment transi-
tions will occur inside of this neighborhood. When the
end-effector enters the neighborhood, the joints are accel-
erated to the velocities needed for the next path segment.
The size of the neighborhood, e, is determined by the
maximum amount of time that may be needed to smoothly
accelerate from one velocity to the next.

The complete motion path is accomplished by targeting
the next point in the sequence. The current target is used to
define the chasing point. When the end-effector enters the
chasing point centered c-neighborhood, the next inter-
mediate point is used to describe the new position of the
chasing point. The joint controllers are instructed to accel-
erate to the velocity required for the new path segment.

4) Dynamic Chasing Point Context: This context allows a
path to be determined in real-time. The paths are usually
determined with the aid of environmental feedback such as
vision, sonar, proximity or touch sensing. This context can
also be used for teaching/creating a preplanned path; a
joystick control can be used to move the chasing point.
The end-effector will always move towards the chasing
point—when the end-effector reaches the point, its motion
is stopped.

When the speed of motion is high, the motion in this
context is not as predictable as the motion produced by the
preplanned path context because the manipulator may
possibly be undergoing continually changing acceleration.
When the chasing point is moving slowly, and the manipu-
lator is moving at a low speed, fine control of the path is
possible. The chasing point is always kept "just ahead" of
the actual end-effector position.

5) Dynamic Point Injection Context: If a preplanned
path is being traversed and an unexpected object is detected
within the projected sphere of influence, then an additional
set of intermediate points may be injected into the existing
path stream.7 This is accomplished by temporarily sus-
pending the preplanned path context and entering the
dynamic point injection context. Injected points are calcu-
lated one at a time. This context must circumnavigate the
object and bring the end-effector back to the preplanned
path. The mechanism associated with this context then

6 For cylindrical manipulators, the segments are arcs of Archimedean
spirals.

7 The necessity of this context is obvious, but we are not implying any
solution to the problem of dynamic detection of obstacles and avoidance
of collision.

81

instructs the preplanned path context to advance its index
into the path segment table so that it may resume path
traversal with correct information about the next segment
to execute.

B. Low-Level Concepts

The low-level control of motion is performed with respect
to the individual axes of the manipulator. At this low level
the concept of a manipulator does not exist; low-level
control is responsible for servoing a single axis in its joint
space. The axes are treated individually and are indepen-
dent at this level. Dynamical effects impacting an axis are
compensated for by an adaptive feedback control algorithm
that will be briefly discussed later in Section V (see [14] for
detail). A joint (position) controller employs the algorithm
to adaptively servo the axis according to a variety of
contexts; these contexts are called modes.

The particular mode in effect is chosen by either
CPSIMM or the current mode. CPSIMM selects modes in
an effort to coordinate the multiple axes. An active mode
may cause another mode to take control when either
unexpected or specific anticipated events occur.

Briefly, there are four major modes of motion. Mode 1
(Ml) attempts to bring the axis to a specified joint space
coordinate in a specified amount of time. Mode 2 (M2) will
accelerate the axis from its current velocity to a specified
velocity. This change will be performed subject to the
constraint that the acceleration will not exceed the rated
joint capacity. Mode 3 (M3) will decelerate the axis to a
stop. This may be accomplished by two methods. In the
first method, the axis stops as quickly as possible (e.g., an
emergency stop). In the second method, the axis is slowed
and stopped at a specified joint coordinate. Mode 4 (M4)
will maintain the axis at a joint coordinate. This is an
active, dynamic process due to the effects arising from, for
example, gravitational forces.

For its implementation on digital computers, joint con-
trol is performed in discrete time intervals. A real-time
clock periodically interrupts the joint controller to invoke
execution of the low level motion control software. When
the software is invoked it schedules the current motion
mode controller for execution. The mode controllers per-
form their particular function with the aid of several fixed
function modules, some of which are discussed in Sec-
tion V.

1) Mode 1 Motion: Mode 1 motion will servo the joint
from its current position in joint space to a desired target
coordinate pd, subject to the constraint that the target
coordinate will be achieved in a specified amount of time
Tc, called the time to converge. When the axis achieves the
target coordinate, it may have a nonzero velocity and/or a
nonzero acceleration. Mode 1 motion is further char-
acterized by an c multiplier (EPS). In this mode a neigh-
borhood is defined about pd.

s The minimum size of the

8 This neighborhood is related to the c-neighborhood of an intermediate
point in the preplanned path context.

82 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-15, NO. 1, JANUARY/FEBRUARY 1985

neighborhood c0, is the maximal distance required to stop
the axis (i.e., when moving at maximum speed). The size of
the neighborhood is actually determined by EPS.

£ = c0*2E P S. (1)

This technique for the expansion of e0 was chosen because
it allows a limited precision EPS to select a large range of
6-neighborhood sizes.

A mode 1 motion is completely specified by supplying it
with the values of pd, Tc, and EPS. Only EPS need not be
explicitly defined; it has a default value of zero.

When mode 1 is invoked the joint controller must be
informed of the high-level intent: stop when the target
coordinate is achieved (i.e., CPSIMM is targeting a
terminus), or motion is to be continued (i.e., CPSIMM is
passing through an intermediate point). When the axis
enters its €-neighborhood, SACE signals CPSIMM via an
interrupt, causing mode 3 to take control. Mode 3 is
divided into two submodes, namely, mode 3a and mode 3b.
If this is a terminus, mode 3b is started, and if this is an
intermediate point, mode 3a is initiated instead.

2) Mode 2 Motion: Mode 2 is used to link one Ml
motion to another. When mode 2 is invoked the joint is
driven from its current velocity to a requested velocity. The
time required to do this can be of two forms: a) the
acceleration is performed in minimum time, that is, the
maximally allowed joint acceleration will be used, or b)
the joint is accelerated in a fixed amount of time. The fixed
value must be greater than or equal to the smallest time
that any acceleration may require.

The desired acceleration is determined by generating a
polynomial description of velocity curve (see Section V-B
for detail). This curve, and its derivative, will not have any
discontinuities to prevent any jerky motion, and the deriva-
tive will never exceed the rated capacity of the joint.

The mode 2 controller configures the fixed function
modules such that the velocity requests (generated by a
polynomial function) are fed directly to the servo driver.
Mode 2 does not monitor the actual behavior of the servo;
it does not compensate for discrepancies between requested
velocities and actual joint velocities. When the time for the
transition expires, the mode 2 controller will issue an
interrupt to signify completion, and will continue to re-
quest the velocity at the desired target velocity.

SACE executes mode 2 motion by comparing the gener-
ated velocity profile with actual joint behavior; this process
is called a behavior matching. For the generation of the
velocity profile we use the current velocity estimated from
measurements of joint position. SACE also computes a
time expansion index on the basis of the current and
desired velocities. See Section V for more on this.

3) Mode 3 Motion: The mode 3 controller will servo the
joint to a halt from its current velocity. The time required
for the deceleration (to a stop) is determined by the upper
limit of the integral of the velocity profile, that is, M3 will

attempt to bring the axis to a stop at the target coordinate.
Mode 3 has two submodes designated by M3a and M3b.
The former is used when passing near an intermediate
point, whereas the latter is used when targeting terminal
points. That is, M3a does not require the end-effector to
stop exactly at the target, whereas M3b does.

In M3a the controller will bring the axis to a stopped
state in the vicinity of the target point. When the axis is
stopped, an interrupt is generated to indicate this, and a
modified variant of the mode 4 controller (called M4M) is
invoked to maintain the axis at its current resting position.

In M3b the controller will terminate the mode when a
certain small velocity vs is achieved. When this occurs
mode 4 is initiated to maintain position at the final target
point. In the event that the current axis position is not the
target point, the smallness of vs allows M4 to bring the axis
to the target point without overshoot. The completion
interrupt is not generated.

Both M3a and M3b share in common the characteristic
that they will bring the axis motion to a halt as close to the
target point as is possible. To effect such motion SACE
uses a polynomial-based velocity profile to calculate a
trajectory. M3b differs from M3a in that the controller
monitors the actual velocity. When the velocity is less than
some preset limit vs, control is transferred to mode 4; M4
is instructed to bring the axis to the target point.

4) Mode 4 Motion: The mode 4 controller will maintain
the axis at a particular position. The mode operates by
comparing the current position pa to the desired position
pd9 generating an error signal, and maps this error signal
into a velocity request. The velocity request is used for
subsequent actualization.

Mode 4 may be invoked in two ways. In the first, the
standard operating procedure, the controller will bring the
axis to the target point from wherever it currently is.
Because M4 makes no attempt to insure the smoothness of
the acceleration, it should not be relied upon for gross
servoing of an axis. The modified procedure, M4M, will set
the target point equal to the value of the current coordinate
at the time M4M is invoked. This procedure, used to keep
the axis at its current position, should only be used when
the velocity is small; otherwise, the axis may be driven at
an exceedingly excessive acceleration.

The error, pd — pa, will be used by the mode 4 controller
to generate a velocity request that will bring the axis
towards the target coordinate. The controller can be
instructed to generate an interrupt when the target coordi-
nate is first achieved. For M4M the first instance of this
(when first invoked) is not considered an achievement of
the target coordinate—it will generate an interrupt at the
first occurrence of pa = pd after the mode is initiated.

A special variant of mode 4 called M4D (dynamic) is
available for use when the high-level processes are dynami-
cally moving the end-effector through space. In M4D the
convergence of the approach to the terminus can be speci-
fied. M4D will generate an interrupt when the axis first
enters the e-neighborhood, but it will not interrupt when

Pa = Pd-

SHIN AND MALIN: CONTROL OF INDUSTRIAL MANIPULATORS 83

IV. HIGH-LEVEL MOTION CONTROL

The motion control concepts as developed in the previ-
ous section are designed to support each other in such a
way that the versatility and capabilities of the manipulator
control system are maximized. The details that are specific
to the high-level motion controller (CPSIMM) are those
that relate to the appearance of end-effector paths. The
details that concern the low-level (SACE) solely are those
that involve a single axis only.

The constituent components of CPSIMM are those that
support the motion control contexts. These contexts sched-
ule the individual axis controllers to perform various low-
level control modes. The arrangement of low-level modes
in a time-sequenced pattern allows a high-level motion
pattern to appear.

Similarly, SACE organizes the available modules into a
structure that will actualize the desired modal motion. The
SACE system is self-organizing, that is, it is capable of
structuring the data flow paths between its constituent
modules.

The high-level concept of motion is divided into two
styles: planned and dynamic paths. Although these two are
quite different in temperament, they are very similar in
that they achieve motion control with the same repertoire
of available low-level motion modes.

Planned paths are defined by a set of points which
roughly describe the path. These paths may be examined
from two viewpoints: description and actualization. The
description will require the development of the notion of a
simultaneously convergent path in joint space. The actuali-
zation viewpoint centers on the development of descriptor
nodes', these nodes are information packets describing the
path segments.

Dynamic paths are constructed according to environ-
mental and other external dictates. Dynamic paths are far
more subtle than planned paths; effective execution of a
dynamic path is predicated on the availability of side
information, information that is deducible from the nature
of the task. This side information will imply an approach
to configuring the low-level modes.

A. Preplanned Paths

1) Path Description: A path begins at a starting point,
moves through a series of intermediate points, and con-
cludes at a terminus. The motion is initiated by targeting
the first intermediate point. The data concerning a path
segment is contained in a descriptor node associated with
the intermediate point. When the segment is completed, the
next segment's node is accessed to provide the data needed
to continue the motion. Motion does not stop at each
intermediate point; motion halts only at the terminus.

A node contains several sets of data: a set is required for
each axis involved with the motion. Each set contains a
desired target coordinate pd, and e multiplier (EPS), and a
time to converge, Tc.

These parameters are derived from two vectors associ-
ated with each point. The first vector, P, identifies the

position of the robot's wrist in Cartesian (robot) space. The
second vector, O, describes the orientation of the end-
effector at that point. In coordinating motion the two sets
of degrees-of-freedom comprising P and O are treated
independently. Orientation may be controlled along each
path segment (as is required when the orientation must be
held constant in Cartesian space), it may be controlled
independently of, but simultaneously with, the position
control of the path so that the desired orientation is
achieved when the terminus is reached, or it may be
brought into alignment after the final position is achieved.

In transit orientation is not performed in the following
treatise, its development is a logical extension of the model
described.

Assume that the current position of the hand in robot
space is (Xi9 Yi9 Zt) corresponding to some joint coordinate
(£/>#/> ?/) and the position of the current target point
is (Xf,Yf,Zf) corresponding to some joint coordinate
(£y, 0y, fy). Each axis must change its joint space position
by an amount that is the difference between the target
coordinate value and the current value, namely, Δ£ = £y -
£,·, Δ0 = 0y - 0f., and Δ£ = fy - £.. Since the maximum
allowed joint velocity for each axis is constrained by the
hardware, and thus known (i.e., υ™3*, v™**, v™**),9 then the
minimum possible time for each axis is to reach its destina-
tion is in degenerate form, for we are neglecting accelera-
tion as a first-order approximation: t% = Δξ/ν™3*, ίθ =
Δθ/υ™**, and ίζ = Δξ/ν™**. Because the use of these con-
stants is in determining a minimum time, if the servo
cannot realize this velocity in actual operation (due to
payload and other dynamical effects), the actual time will
be greater than the calculated minimum time, which is as it
should be. Only in the no payload situation, the servo
would actually be able to perform in close to calculated
minimum time.

In order to account for acceleration, another approxima-
tion will be made. Because CPSIMM does not know the
current axis velocities, a worst case approximation will be
made to insure that the second-order time approximations
will be large enough to always allow the segment motion to
accommodate any required velocity changes. The maxi-
mum allowed accelerations are also predefined:
af**, a™**, a™8*. Assume that the current velocity is the
largest negative velocity possible, and that the next path
segment will require the largest positive velocity allowed.
The total velocity change is twice the allowed maximum
velocity.10 The acceleration time required to produce such
a velocity change is

tH = Ivf^/af^

tae = 2νΓ/αΓ

tai = 2v?™/a™. (2)

9By "maximum allowed joint velocity" we refer to that velocity which
can be achieved by the joint in a no load situation as determined by the
torque and velocity limits of the servomotor.

10 We are here assuming that the maximal positive and negative veloci-
ties are of the same magnitude.

84 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-15, NO. 1, JANUARY/FEBRUARY 1985

The second-order minimal time approximation is found by
adding this acceleration time to the first-order transit time

' Γ = h + *a(

' Γ = U + '„,
tr = h + tat. (3)

The second-order approximation is required when the
segment transit times are small compared to the minimum
acceleration time of (2). When either a) intermediate points
are close together or b) the velocity changes between
segments is not large, then a third-order approximation can
be used.

The third-order approximation determines the accelera-
tion time required between path segments. The velocity of
the path segments is approximated by using the first-order
time approximations. Let ί.(/ - 1) be the first-order time
approximation for the current path segment / — 1 of axis

j , and tj(i) be the first-order approximation for the upcom-
ing path segment /. The average velocity along path seg-
ment i for axis j is found by dividing the joint path length,
AyO'X by the first-order approximation

Vj{i) = àj(i)/tj(i). (4)

The velocity change required between two adjacent path
segments / — 1, and / is

toju-i,, = «,■('') - »jO - 1) (5)

and the minimum time required for acceleration is

'„; = Δ , , : , _ 1 , , Λ ™ \ (6)

Thus the minimum time to be allotted for traversing seg-
ment /' for axis j is

t™(i) = tJ + ta,. (7)

Whether first-, second-, or third-order transit times are
computed depends upon the nature of the motion in the
context. The techniques converge at this point for further
calculation. Let /min be the minimum time value calculated
for the axis j . Then, select the largest of the axis times

'move = max if". (8)
j

This is the minimum time required for all axes to reach
their respective target coordinates; it represents the time
required for a simultaneously convergent motion, and is
therefore used as the time parameter of the motion, i.e.,
Tc = tmove. This Tc parameter must be common to all axes
involved in a motion segment. The total time of the motion
is the sum of the segment time-to-converge values.

Lastly, the e multiplier (EPS) must be specified. This
multiplier controls the tolerance or accuracy to which the
path actually passes through the intermediate point. An
EPS value of zero requires the manipulator to pass close to
the intermediate point. Larger values of EPS lessen the
required "closeness."

2) Actualization: To execute the path, the preplanned
path context (PPP-C) controller first employs mode 2 to

bring the axis up to speed. Mode 2 interrupts to indicate
that the axis is close to the desired speed. When all the axes
have so interrupted, PPP-C invokes mode 1. The pd, Tc,
and EPS parameters of the next target node are sent to the
axis controllers, and mode 1 is initiated. PPP-C then pre-
pares the next parameter packet and transmits these to the
SACE communication buffer area. One of the advantages,
if multiple processors are used, is that several independent
but related sets of calculations are being performed simul-
taneously. The communications between these processes
are woven between the control functions.

Each low-level controller brings its axis towards its target
coordinate. When an axis enters its c-neighborhood, it
slows down as it completes its targeting of the terminus.
SACE informs CPSIMM that the e-neighborhood has been
entered. PPP-C waits for all of the axes involved in the
path segment to enter their c-neighborhood; when this
condition is met CPSIMM is assured of two facts: 1) that
the end-effector is sufficiently close to the intermediate
point, and 2) that all axes are resynchronized in space for
continued coordinated control. CPSIMM then instructs
SACE to accelerate the axis to the velocity required for the
next path segment using mode 2 (the data is already in the
SACE communication buffer area). When up to speed,
mode 1 is reinvoked using this data.

The cycle is repeated until the data for the terminus is
loaded into the SACE buffer area. After this motion is
initiated, PPP-C, waits for the set of interrupts to indicate
that all 6-neighborhoods have been entered. Normally the
axes are slowing down to target the terminus and the
controller is bringing the velocity to zero using M3b.
However, when the terminus is the current node, the SACE
controllers are instructed to use M3a instead. This will
automatically invoke M4 when the controller slows the axis
sufficiently. When M4 brings the axis to a stop on the
terminus, it interrupts CPSIMM. When all the interrupts
are received, PPP-C has completed the preplanned path.

B. Dynamic Path Modification

The details of the techniques that properly execute the
dynamic point injection context (DPI-C) are not contained
within the scope of this paper;11 but insight into the need
for this capability has led to its inclusion here, so that we
may illustrate how such function can be incorporated into
the structure.

Two techniques predominate for the dynamic inclusion
of points extraneous to a preplanned path. In the first
technique, the axis is servoed as quickly as is possible
towards a target point; the path is not determined. In the
second technique, the injected point determines a path.

The first technique is used to avoid a collision with an
obstacle: an intermediate target point in space is de-
termined that is both far from the interfering object and
that does not significantly deviate from the current, pre-

11 Dynamic path calculation is a subject related to dynamic collision
avoidance; it is not the intent of the present paper to solve this problem,
nor implies that we have solved that problem.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-15, NO. 1, JANUARY/FEBRUARY 1985 85

planned path. In this way the controller need not fight the
axis inertia, it must only redirect the path. Such a point can
be targeted by low-level M4 motion control. Although the
path is not anticipatable, the end-effector can be expected
to move toward the injected target point with a speed that
is inversely proportional to the distance, i.e., the farther
away the point, the faster the axis moves towards it,
slowing down as the point is approached.

The second technique is used once the end-effector is
near the dynamically injected point. A high-level dynamic
path planner generates a new preplanned path that merges
with the old path, avoiding the obstacle. This dynamic path
can be calculated in transit, and is controlled by the tenets
of the PPP-C context.

C. Dynamically Created Paths

The dynamic chasing point context (DCP-C) allows the
manipulators to be servoed in real-time according to en-
vironmentally determined information. In this context, the
axes are servoed using a variant of the low-level M4D
controller.

Although dynamically determined path control is ex-
tremely difficult and is also beyond the scope of this work,
the general concept is as follows. In M4D, the controller
brings the axis to the target point with a moderate velocity.
The diminution of employed velocity is specified to M4D
by the setting of a parameter.12 Unlike the normal M4
operation, an e-neighborhood is employed. When the end-
effector enters the €-neighborhood about the current chas-
ing point, the point is moved. The low-level controllers,
always executing M4D, will cause the end-effector to al-
ways chase after the point.

V. LOW-LEVEL CONTROL

Low-level control entails servoing the axis in the joint
domain. From this perspective there is no concept of a
manipulator, only a single highly nonlinear servo position-
ing system. The dynamical effects manifest at this level,
and must be handled appropriately.

The axis control is accomplished via feedback and is
closed at this level. SACE, a software process executing in
this level microprocessor, is responsible for the control
function. SACE performs motion control by scheduling a
variety of modular components into configuration suitable
for effecting the style of motion called for.

The configured set of modules is conceptually described
as an adaptive feedback control algorithm. The algorithm
is a primitive learning system that attempts to dynamically
ascertain the axis' motion behavior. It adapts to the per-
ceived axis forces; it compensates not only for the ever-
changing dynamics, but allows motions to be defined
without requiring specification of operating speed and
payload (see [14] for detail).

12 This parameter k affects the damping of the control algorithm and
will be discussed in Section V.

SACE can configure the adaptive algorithm for the
execution of four motion modes. By appropriately selecting
sequences of motion modes, the high-level CPSIMM
achieves coordinated end-effector motion.

A discrete-time motion model is used to guide the servo-
ing of an axis as a linear function of time. The model
computes the velocity needed to bring the axis from its
current joint position to the target point in exactly the
amount of time Tc. This velocity is not constant because
the changing dynamical effects impact actual axis motion.

We have to estimate the axis velocity on the basis of a
known position history, because 1) axis velocity informa-
tion is required by the other modules, and 2) the hierarchi-
cal organization presents the joint controller with position
information only.

For the adaptive control algorithm, we use estimated
axis response to condition future control. That is, it adjusts
the velocity requests generated by the motion mode con-
trollers into a form that will cause the axis to actually
perform as requested.

The velocity profile described by a third-order poly-
nomial is employed to guide a motion that smoothly
changes the joint servo rate to achieve some requested axis
velocity. The profile imposes boundary conditions to create
a smooth blending function. It then expands this function
in the time domain so the axis will be able to perform the
desired motion; however, this method does not generate
time-constrained velocity profiles. A modified version of
the above will bring the axis from an initial velocity to rest
while attempting to bring the axis as close to the target
point as is possible.

The difference between the axis' real position and the
desired position will be used to servo the axis in such a way
that the axis is brought to the target point without over-
shoot.

In the following discussions, the modular components of
SACE are discussed in detail.

A. Discrete-Time Motion Model (DTMM)

The DTMM is an interrupt driven software process that
generates velocity requests for a single joint.13 The DTMM
goal is to bring the joint to the desired target coordinate in
a specified amount of time i.e., the time to converge Tc.

Fig. 2 shows a trajectory for an axis at some joint
position x0 at time zero, terminating at the target coordi-
nate pd at time Tc. The horizontal time axis has been
subdivided into n elements of width δ/, where 8t is the
iteration period of the interrupting real-time clock:

The average amount of motion required per iteration is

13A nonmaskable interrupt from the real-time clock causes SACE to
schedule the DTMM when a motion mode using it is active.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-15, NO. 1, JANUARY/FEBRUARY 1 9 8 5

D I S C R E T E T I M E i

Fig. 2. An idealized discrete-time motion model.

•-Desired t a rge t coordinate

Time-to-Converge
D I S C R E T E T I M E i

Fig. 3. Actual functioning of the discrete-time motion model.

If the controller can cause this movement to take place,
then the axis will achieve the target coordinate in exactly
the required amount of time Tc. However, for a real-world
device, this behavior is not attainable because of nonlinear
dynamics (friction at the least) and inertia. This model
does imply a control goal—the iteratively generated solu-
tion for a time constrained velocity profile. We now modify
this idealized model so that it compensates for the nonideal
performance of actual moving systems.

If we let the DTMM calculate anew the trajectory of Fig.
2 at each iteration period, it will generate a sequence of
velocity requests Δχ; / + 1, where / ranges from zero to
n — 1. That is, at each interrupt a new velocity request will
be calculated based upon the remaining distance and time
to travel.

In Fig. 3 we illustrate a plausible response to the initial
velocity request calculated by (10). At the next interrupt a
new linear path is constructed, the slope of which is the
desired velocity. Let pa denote the actual joint position at
time /', then the velocity request for this iteration is

T I M E (t/τ)

Fig. 4. A generic velocity profile curve.

Equation (11) can be used at each interrupt to generate
the velocity request. One effect of this technique is a
velocity creep that accrues until the axis attains its average
operating velocity. The terminal velocity that is reached is

lim Δχ
/ - * « - !

i , i + 1 · (12)

Δχ /,/ + ! (Pd-Pa)/(" - 0 ·

Because of this velocity creep, an axis should never be
requested to move at its maximum allowed velocity (doing
so will invalidate the guarantee of a simultaneously conver-
gent motion path).

B. Generation of Velocity Profile

The velocity profile used by the mode 2 controller is
determined by a polynomial function describing smooth
transitions from a given initial velocity to a specified
desired velocity. Since the polynomial function represents a
velocity profile in the time domain, its derivative represents
acceleration. In general, a third-order polynomial is suffi-
cient for smooth transitions. The polynomial can then be
specified by four boundary conditions: the initial and final
values of both the polynomial and its derivative.

Since we are concerned with one complete move, the
initial and final acceleration are assumed to be zero. A
generic velocity profile generated is illustrated in Fig. 4.
The general form of an equation describing such a curve is

V = C3T)3 4- C2î)
2 + QTJ + C0 (13)

where the C, are constants to be determined. The deriva-
tive of (13) is the acceleration curve, and is represented by

A = 3C3TJ2 + 2C2TJ + Q . (14)

At the start of a blend (η = 0), the velocity is Vt and the
acceleration is assumed to be zero. This provides two
boundary conditions ν\η=0 = Vi9 Α\η=0 = 0. At the end of
the blend (η — 1), the velocity should be the specified
velocity Vf and the acceleration should be zero. This yields
two additional boundary conditions: V\v = 1 = Vf, Α \ η = ζ 1 =
0. From these boundary conditions one can obtain coeffi-
cients C0 = Vi9 Cx = 0, C2 = 3(Vf - Vt\ and C3 = -2(Vf

(H) -Vt).

SHIN AND MALIN! CONTROL OF INDUSTRIAL MANIPULATORS 87

The polynomial must be mapped to real time. To do
this, (13) can be written as

F = C 3 | 3 + C 2 ^ 4 - C ^ + C 0 (15)

where £ = / / τ , τ represents the total time used in perfor-
ming the velocity blending, and t e [0, τ] is real time. The
value of τ is found by insuring that the maximum accelera-
tion is not required to exceed the rated maximal accel-
eration for the axis (i.e., A™** for the y'th joint). The
acceleration is

A = [3C3|2 + 2C2£ + C j / r . (16)

The maximum acceleration occurs when the derivative of
this is zero. This occurs when ξ = 0.5, i.e., t = τ /2 . The
maximum acceleration is

Amax = ΛΙί-ο.5 = [3C3/4 + C 2] / T = 3(Vf- F , .) / 2 T .

(17)

To find the minimum time Tmin for joint j such that the
profile will always require the maximally allowed joint
acceleration,14 A™3*, without exceeding it, solve for τ when
A _ j m a x

^ = ^{Vf-V,)/2Af (18)

That the acceleration will never be required to be exceeded
is guaranteed by the fact that the time computed here is for
minimum time. If the servo cannot realize this acceleration
in actual operation (due to payload for example), the
actual time will be greater than the calculated minimum
time.

The largest such minimum time for some joint j occurs
when the initial and final velocities are opposite in sign,
and are the largest permissible velocities magnitudewise,
that is, a complete velocity turnaround:

= 3VJ
m™/Afax. (19)

For the mode 3b controller we need also smooth transi-
tions from an initial velocity to zero velocity such that a
specific distance is traversed. This can be achieved simi-
larly to the above using a polynomial of the same form as
(13). Because the desired velocity Vf is zero, the coefficients
of (13) are C0 = Vi9 Cx = 0, C2 = -3Vi9 C3 = 2Vt. Sub-
stituting these into (13) yields the polynomial

V = 2Vrf - 3Vtf + Vi

and is mapped to real time as

F = F , [2 (/ / T) 3 - 3 (Ì / T) 2 + I] .

(20)

(21)

The polynomial generates a velocity curve of the form as
shown in Fig. 5. Using the curve, we can calculate the
distance traversed s to be Vj/2. It is desired that this
distance be the size of the ^-neighborhood, thus e = Vtr/2
from which the time of motion is found τ = 2e/Vi. The

14By "maximum allowed joint acceleration" we refer to that accelera-
tion which can be achieved by the joint in a no load situation as
determined by the physical joint torque motor limits.

h
U
O

>

TIME (t/τ)

Fig. 5. A generic velocity curve used for mode 3 control.

acceleration is given by the derivative of (21):

A = Vt[f>{t/rf - 6 (/ / T)] / T . (22)

The maximum acceleration occurs at / = τ /2 , and is

^ m a x = - 3 F , / 2 r . (23)

The time required for the transition can be found

T = 3V,/2Amax. (24)

Minimum time occurs when maximally allowed accelera-
tion is used, i.e., Tmin = 3Vi/2A™ax, and the upper bound
is found when the axis is at the maximum velocity:
Tmin max = 3^m a x/2^7

m a x. The minimum size €-neighbor-
hood is found from this by c0 = 0.5 Vi τ,

min max

3{ Vjmax}2/AAf^. Also one can obtain the distance required
in stopping the axis:

s = 3Vi
2/2At (25)

This implies that for Vt < Vjmax, the distance traversed in
stopping the axis s is always less than c0.

C. Velocity Estimation

We need to estimate the current axis velocity from a
position history. The position of the axis is determined by
SACE at each real-time clock tick interrupt. The current
and last / values are saved. The current velocity is
determined as a function of these / + 1 values. Because the
axis velocity is always changing, it is not necessary for / to
be large, in fact, a large / would infuse the velocity
estimate with inappropriate data; the velocity estimator is
a short-term memory function.

Fig. 6 illustrates a position history with / = 2. Let x
denote the joint coordinate and / be the current time
(clock tick number). The change in position between two
consecutive known positions is

υίχ;_Λ ,· = Xj - xi_l. (26) - 1 , /

The change in position is also given by the average velocity
for the segment

Δχ,-^^^+ν,.,)/!. (27)

Solving (26) and (27) for the current velocity yields

Vt = 2 Δ * , . , , - Vt_,. (28)

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-15, NO. 1, JANUARY/FEBRUARY 1985

Z
o
h

C
0<

DISCRETE TIME

Fig. 6. Position history used for velocity estimation.

The velocity at time / — 1 is approximated by

<Vi_l) = (x,-xl_2)/2 (29)

where the angle brackets indicate an estimate. Substituting
(29) into (28) and then simplifying the result, we get

<^.> = 3x,/2 - 2*,_x - x,._2/2. (30)

D. Discrete Error Corrector

The discrete error corrector moves the axis with a veloc-
ity that is proportional to the distance remaining (i.e., the
error). The distance remaining at some interrupt-invoked
iteration is xr = pd — pa. In order to reduce the propensity
for overshoot, and to provide a mechanism for control-
ling the rate of convergence, the selection of velocity re-
quest Δ*/ > / + 1 is quantized. An integer valued parameter k
specifies the quantization.15 All velocity requests in the
range of 1 to k are mapped to 1, and those in the range
k 4- 1 to 2 k are forced to be 2, etc. The ranging is
performed by

Δ*,,,+ι = l(*r +(k - l) sgn (x r))Aj (31)

where Δχ/ / + 1 is the desired velocity for the upcoming
iteration period, and sgn is the sign function.16 This func-
tion produces the ranging

Ax / , / + !

0, if xr = 0

j9 i f x r * 0
(32)

where j is the integer that satisfies

k*(j-l) + l<xr^k*j. (33)

The k parameter affects speed performance: an increase
in k slows the rate of convergence. This effect is illustrated
in Fig. 7.17 It is important to note that the introduction of
such k eliminates undesirable effects, e.g., overshoots, of a

15k is related to the damping factor of the algorithm.
16 It returns a value of + 1 , 0, or - 1 .
17 During performing system test or calibration, the k parameter was

selected experimentally. For completeness, follow-up activity can be per-
formed to generate a heuristic that selects k based on manipulator
kinematics and dynamics.

pure proportional control. This is an interesting departure
from the conventional controls such as PID control.

E. Behavior Matching

This module attempts to ascertain the effects imposed on
the axis by the dynamical forces. It estimates the disparity
between the drive signal St at iteration / and the resultant
motion. The behavior matching assumes this disparity is
linear18

St = αΦ, + β (34)

where Φ, is the velocity requested at iteration /, ß an
offset, and a a constant of proportionality.

A first-order approximation for β is obtained by assum-
ing the offset is the difference between the last request
Φ/_1 and the achieved velocity Vt

a

β = Φ,-! - V*. (35)

The first-order approximation for a is gotten by gener-
ating a performance index κ, which compares the change
in requested velocity to the change in actual velocity

" = (Φ , - ι - Φ , - 2) / (^ ΰ - ^ - ι) (36)

and expanding αΦ, to Φζ 4- κΔΦ/_1 y where Δ Φ ^ 7 =
Φ, — Φ/_χ. This procedure maps the change ΔΦ/_1 .
according to the measured change arising from the previ-
ous response /c, as illustrated in Fig. 8.

To improve this, a history of performance indices Ki are
kept. A second-order polynomial is fitted to the three most
recent values: κ,_2, Κ/_ι, and κ,. An estimate of the future
value (K / + 1) is calculated.

A generic quadratic polynomial q = C2t
2 + Cxt + C0

passes through points A, B, C at times t = 0,0.5,1, respec-
tively. This leads to coefficient values of C2 = 2 A - 4B +
2C, C\ = AB — 3B — C, C0 = A. The next point D occurs
at t = 3/2, and is given by D = A - 3B + 3C. Using this
information, the estimated performance index at iteration
i is

<*/+!> = " / - I " 3 K / - I + 3* / · (37)

Employing this in place of κ leads to second-order behav-
ior matching

[Φ|Κβ]Ι· = Φί+<κ/ + 1>ΔΦ/_1 > / (38)

where [·]7 indicates that this is a velocity request condi-
tioned on measured velocity. The drive signal S, is pro-
duced by

S,= W L + jS. (39)

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this paper a robot control framework, incorporating
CPSIMM and SACE, has been developed in a structured
fashion. The individual components of this framework has
been clearly identified and their details specified.

A first-order control process, consisting of Ml and M4
only, has been implemented and its behavior examined. By

8Although it is not, it is suitable as an approximation.

SHIN AND MALIN: CONTROL OF INDUSTRIAL MANIPULATORS 89

Fig. 7. Convergence of discrete error correction for mode 2 (with τ
TIME

100 ms).

><
H
S
0
ω
>
α
w
>
Ü

«<
0
A
H
H
m » ^ σ w es

A L
X X : REQUESTED VELOCITY, Φ

• · : ACHIEVED VELOCITY, V

-* L
a j *

fA p r ♦
I '

i 1

| | ' ! [1 1

~ t
1

1
1
1
1
1 k*
1 '

1
1
1

' ! fc>

k<=a/b

Fig. 8.

DISCRETE TIME

Mapping of behavior matching.

first-order it is meant that the subtleties of a quality
solution have been treated lightly. Therefore there exists
ample room for improving the performance of this system.

There are two parameters in the adaptive feedback con-
trol algorithm that are used for tuning. These are 1) the
period 8t between iterations of the algorithm, and 2) the
convergence control k of M4. Experiments were performed
in which these parameters were changed; the effect upon
system behavior was as expected. Tuning was found to be a
simple and straightforward process. For experimentation
with a six-joint, cylindrical manipulator called the PACS
arm (manufactured by Bendix Corporation), we selected a
revolute joint with a rest position perpendicular to the
plane of the base (i.e., the link hung vertically). This type
of axis experiences nonlinear gravitational effects as it
rotates. In addition, a stiff spring was attached from the
end-effector to the base to exacerbate the nonlinearities.
Tests were made with a variety of loads held by the
grippers. With these different loads the joint was moved
with various speeds so that the Coriolis effect would have
impact on the test system as well (at faster motion rates).

In the tests the control algorithm brought the axis to the
desired position in the requested amount of time. System
variables were logged on a display device so that analysis
could be performed. As Fig. 9 shows, the path quickly
converged to linear form. Note that the low-order bits in
the velocity requests become significant as / -> Tc because
they are inversely proportional to tr = Tc - t. However,
this is about the area of the c-neighborhood. We would
then enter another mode before these "nasty behaviors"
manifested.

Accidentally dropped loads, which might severely impact
a traditional controller, were quickly recovered in the adap-
tive environment. This experiment was done by snatching
the load away from the robot during the motion. Also, a
defined motion path was traversed nearly identically under
different load conditions.

Although the tests we performed are simple, the results,
as indicated above, are quite favorable. Furthermore, the
general and flexible nature of our system structure should
form a foundation for the intelligent control of the growing
number of various types of industrial manipulators.

REFERENCES

[1] A. J. Barbera, J. S. Albus, and M. L. Fitzgerald, "Hierarchical
control of robots using minicomputers," in Proc. 9th Int. Symp. on
industrial Robots, Washington, DC, Mar. 1979, pp. 449-461.

[2] D. Graupe and G. N. Saridis, "Principles of intelligent controls for
robotics, prosthetics and orthotics," in Proc. NSF Workshop on
Research Needed to Advance the State of Knowledge in Robotics,
Newport, RI, Apr. 1980.

[3] B. K. Kim and K. G. Shin, "An efficient minimum-time robot path
planning under realistic constraints," in Proc. 1984 Amer. Control
Con/., San Diego, CA, June 1984, pp. 296-303.

[4] J. Y. S. Luh, M. W. Walker, and R. Paul, "Resolved-acceleration
control of mechanical manipulators," IEEE Trans. Automat. Contr.,
vol. AC-25, no. 3, pp. 468-474, June 1980.

[5] J. Y. S. Luh and C. S. Lin, "Optimum path planning for mechanical
manipulators," Trans. ASME J. Dynamic Syst., Meas., Contr., vol.
102, pp. 142-151, June 1981.

90 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-15, NO. 1, JANUARY/FEBRUARY 1985

• Conditioning on estimated velocity is done for Mode I motion
by the Behavior Matching

• Unconditioned velocity request is generated by DTMM

(Tc< Pi)

TIME

Fig. 9. Convergence of adaptive feedback control algorithm.

[6] J. Y. S. Luh and C. E. Campbell, " Collision-free path planning for [12]
industrial robots," in Proc. 21 CDC, Dec. 1982, pp. 84-88.

[7] J. Y. S. Luh, "An anatomy of industrial robots and their controls,"
IEEE Trans. Automat. Contr., vol. AC-28, no. 2, pp. 133-153, Feb. [13]
1983.

[8] M. T. Mason, "Compliance and force control for computer con- [14]
trolled manipulators," IEEE Trans. Syst., Man, Cybern., vol. SMC-
11, no. 6, pp. 418-432, Dec. 1981.

[9] N. D. McKay and K. G. Shin, "A microprocessor-based robot [15]
control system with a two-level hierarchy," in Proc. 20th ΙηίΊ
Svmp. on Mini and Micro Computers and Their Applications, Cam-
bridge, MA, July 1982. [16]

[10] R. P. C. Paul, "The mathematics of computer controlled manipula-
tor," in Proc. Joint Automatic Control Conf., vol. 1, 1977, pp.
124-131. [17]

[11] , Robot Manipulators: Mathematics, Programming and Con-
trol. Cambridge, MA: MIT Press, 1981.

M. H. Raibert and J. J. Craig, "Hybrid position/force control of
manipulators," Trans. ASMEJ. Dynamic Syst., Meas., Contr., vol.
102, pp. 126-133, 1981.
K. G. Shin and S. B. Malin, "A hierarchically distributed robot
control system," in Proc. COMPSAC'80, Oct. 1980, pp. 814-820.

, " Dynamic adaptation of robot control to its actual behav-
ior," in Proc. 1981 IEEE Conf. on Cybernetics and Society, Atlanta,
GA, Oct. 1981.
K. G. Shin and N. D. McKay, "An efficient robot arm control
under geometric path constraints," in Proc. 22nd CDC, Dec. 1983,
pp. 1449-1457.
R. H. Taylor, " Planning and execution of straight-line manipulator
trajectories," IBM J. of Research and Development, vol. 23, pp.
424-436, 1979.
D. E. Whitney, " Resolved motion rate control of manipulators and
human prosthesis," IEEE Trans. Man-Machine Syst., vol. MMS-10,
no. 2, pp. 47-53, June 1969.

