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ABSTRACT 

An integrated  multi-robot ayatem (IMRS) consists of two 
or more robots, machinery and sensors, and is capable OF exe- 
cut,ing  almost all industrial processcs with efficiency, flexibility 
and reliability. 

In order to  support a distributed,  modular  architecture of 
an IMRS in [SNIN8?], we propose in  this  paper low-level com- 
munication and synchronization  primitives for the IMRS. This 
is done by comparing and analyzing the primitives 
developed/proposed  for general concurrent  programming,  and 
carefully  examining the generic structure  and  interactions of 
IMRS processes. 

1. INTRODUCTION 
Conventionally, MRS’s are all centrally  controlled; that  

is,  control  tasks  for  an MRS may  be  distributed over a  net- 
work of processors or reside  in  a uniprocessor but are all exe- 
cuted  under  directives  or  the supervision of one central  task. 
Although  almost all manufacturing processes can be  accom- 
plished using a central  controller,  communications  bottleneck- 
ing and unreliability (that occur3 at  the central  controller) 
become major  problems a3 systems become more  sophisticated. 
For  this  reason we have  defined in  [SHIN841 a new MRS, 
called integrated multi-robot sy~tem (IMRS), as a collection of 
two  or more robots, sensors, and  other comput.er controlled 
machinery,  such tha t  

each robot is controlled by its own set of dedicated  tasks, 
which communicate  to allow synchronization  and con- 
currency  between  robot processes,* 
the  tasks  are  executing in true parallelism, 
it is adaptable to  either  centralized or decentralized con- 
trol, and 
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e tasks  may be  used for  controlling other  machinery, sensor 
1 /0  procrnning, communication  handling,  or  just. plain 
computations. 

We have already taken  the  first  step  toward solving the diffi- 
cult IMRS software  system, by analyzing  industrial processes 
and examining  the- high-level communications needed to solve 
these processes  [SIIIN84]. We now look at the low-level  com- 
munications needed. Before doing so, we first  present back- 
ground  research  in  related  areas. 

There  are numerous  robot langua~es designed (see 
[BONN821 for  a  survey) which can  control more than one 
robot  simultaneously  (i.e.  AL[MUJT79], AML/V[IBM81]). 
They  both allow the control of two robots a t  once, by using 
concurrent  tasks. The  tasks  can be synchronized using sema- 
phores. The principal  motive  behind  this design was t o  allow 
two  operations to be controlled at  once  with  synchronization 
points  to allow serialized  motion process [SHiN84]. This res- 
tricts  the  potential  amount of parallelism and limits the classes 
of processes that  can be  attained.  Another problem is that  it 
does not  lend itself to  integating different  machinery  via a 
structured  communications  approach. 

Some  work has been done on distributed  industrial pro- 
cess control (e.g. ISTEU84]), but  the results  are  not easily 
transportable to an MRS.  (STEW841 has described a 
distributed,  fault-tolerant  system used for  controlling  soaking 
pit  furnaces.  Each furnace is controllcd by its own microcom- 
puter syst.em, and  the  microcomputer  systems  are logically 
paired so should  one  system  fail, the paired  system would  con- 
trol two furnaces.  This  system is reported to  have high relia- 
bility? but  the classes of parallelism involved in the furnace 
application  are  far less complex than  the classes of parallelism 
needed in an IMRS, as  are  the applicat,ions that need to  be 
coded. The action of one IMRS process could completely alter 
the action of many  other IMRS processes, or many  robots 
might  have t o  work on one  common process, requiring  tightly- 
coupled communication  and  synchronization. An IMRS needs 
a more  intricate  communications  structure  to  handle  this com- 
plex dynamic  environment. 

There  has been considerably more research in the area of 
communicating  concurrent  tasks.  Numerous languages have 
been designed which contain  primitives that allow tasks to 
synchroniee  and  communicate  via  various techniques. One 
technique used is meaaage pawing. Some of the languages 
which utilize message passing are Distributed Proceases (DP) 
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[HANS78],  Communicating  Sequential  Processes (CSP) 
IHOAR781, and A d a  [DoD82]. The Monitor is another  tech- 
nique  used to enforce  exclusive access rights to common  pro- 
cedures and  data.  Concurrent  Pascal [HANS771 uses  monitors 
to link  different tasks.  Although the communication  mechan- 
isms in these  languages  are  different, it  is claimed that for 
several  common  applications that do  not involve  real-time con- 
straints,  either mechanism  can  be used [ANDR83], and  that  at 
an abstract level, their  relative  powers  are  equal.  This  has 
been  shown  theoretically  and  by  benchmarking  them  against 
standard problems.  However,  these  languages  are  recent 
advances  in  computer science, and  have  not been  amply  tested 
in distributed  environments,  especially  those  dealing  with 
real-time  control.  With GM’s  work on MAP [BROW84], and 
the  Department of Defense’s work with Ada [DoD82], our 
knowledge will soon expand  in  this  area.  For the meantime, 
we explore the communications  primitives  needed  in  an IMRS 
by looking at  the process structure  and module  architecture 
[SHIN84]. 

Consequently, we need to select the IMRS  communication 
and  synchronization  primitives that  can meet the conflicting 
demands of an  IMRS (i.e. reliable, efficient, natural,  easy-te 
use,  powerful). In this  paper we intend  to meet this need by 
carefully  examining the  nature of industrial  processes  and  the 
primitives  existing/proposed  in  general  concurrent  program- 
ming. I t  should be noted  that  there  has been  little work deal- 
ing  with  an  IMRS  and  its  intertask  communications  and  syn- 
chronization. 

This  paper is organized as follows. In Section 2 we com- 
pare  and critically review the existing  communication  and  syn- 
chronization  primitives  in the context of IMRS applications. 
In Section  3 we discuss the need  for  different  primitives  for the 
five  classes of industrial  processes  identified  in [SHIN84]. In 
Section 4 we advocate f i rs t  port-directed  communications and 
then propose the primitives  most  suitable  for  an  IMRS. Sec- 
tion 5 concludes the paper  with  a  discussion on how our work 
solves the IMRS communication  primitives  problem. 

2. COMPARISON OF EXISTING PRIMITIVES 
Stotts[STOT82]  has  pointed  out  thirteen design  issues 

that need to be  considered  when  designing a concurrent 
language. The issues  most  pertinent to  an IMRS are  task 
creation,  task  destruction, communication and  synchronization 
mechanisms, and  real-time  support,  and reliability. In this 
section, we present the concepts and issues underlying the 
communication  and  synchronization  primitives, by looking at 
three different  concurrent  programming  languages, Comrnuni- 
rating  Sequential  Processes  (CSP) [HOAR78], Distributed 
Procesaea (DP) IHANS781, and Ada  IDoD821. Many of the 
ideas  discussed  in t,his section are  drawn from [WEGN83], 
[ANDR83], and [WELS81]. 

Andrews [ANDR83]  classifies concurrent  programming 
languages into  three  different classes,  procedure-oriented, 
message-oriented, and  operation-oriented.  Procedureoriented 
languages (e.g. Concurrent PASCAL,  Modula,  Mesa,  Edison) 
use monitors as the basis for  intertask communications.  These 
are not well suited  in  a  distributed  environment  because  an 
efficient  implementation  requires  shared  variables. Message- 
oriented  languages (e.g. CSP,  Gypsy,  Plits,  Thoth) use rend 
and  receive  primitives for  communications  and  synchroniza- 
tion  between  tasks. An implementation  does  not  require 
shared  variables,  and  thus is appropriate  for  a  distributed 

rnvironment[GENT81].  Exclusion  on a variable  needed by dif- 
ferent  tasks  can be achieved  by  using  a proprietor  task which 
accepts  messages  from  different tasks in  exclusive  fashion. 
The  last class,  operation-oriented  languages (e.g. DP,  Ada), use 
the  remote  procedure call as the means  for intertask communi- 
cations.  One  task  can call a  procedure (Le. entry ) in another 
task by sending an implicit  message to  the called  procedure. 
While the called  procedure is executing, the calling task is 
blocked.  When the called  procedure  has  completed  execution, 
a  return message is sent,  and  the blocked task  may  then 
resume. We  say  that  a rendezvous has  occurred  between the 
two  tasks, when the  two  threads of execution  have  been united 
into one  while the  remote  procedure call is executing.  Since an 
implicit send  and  receive operation is performed in a remote 
proredure call, this class is a  rigid  st.ructuring of the message- 
oriented class. 

Due to  the  distributed  nature of an IMRS and also  most 
aut.omated  systems, i t  is best to use either  the message- 
oriented or operation-oriented  classes of concurrent  program- 
ming  [ANDR83]. These classes are  appropriate because mes- 
sage  passing  between  processors  does  not  require  shared 
memory.  Message  passing can also be reliably  implemented. 
In this  section we discuss  issues  underlying  message  based 
primitives. We use CSP, DP, and  Ada  for examples.  These 
three languages  have  vastly  different  mechanisms, and will 
serve well. 
( A )  Blocking  vs.  nonblocking  primitives 
(B) Task  addressing 
[C) Message format 
(D) Reliability and  communications  failure. 

Each of these  issues is discussed  comparatively  in the following 
subsections. 

2.1. Blocking vs. Nonblocking 
A  communication  primitive is said to be blocking if the 

task executing the primitive is halted  until  the  communication 
is performed, or nonblocking if the  communications requested 
by the primitive  do  not  cause  the  task  to  halt.  The blocking 
send  and  receive are the most  commonly seen  primitive^,^ 
e.g. CSP  and  Thoth. However,  in  many  cases  (especially  in  an 
IMRS)  blocking is undesirable  due to  its delay  in  response and 
limitation to  parallelism. To  this  end, slight  modifications to  
the blocking  primitives  have  been  made in some  concurrent 
languages. For example,  Ada  provides the ability  to cancel the 
entry  call  or accept when  blocking  results,  whereas CSP does 
not. DP uses a  blocking rend only to  a remote,  passive  pro- 
cedure (e.g. monitor-like  routines that  do  not require  a 
receive). A call is performed as soon as all the  threads of con- 
trol in the called task have either  terminated  or been 
suspended a t  a  guarded  region. 

Advantages  and  disadvantages of blocking and nonblock- 
ing  primitives  are: 

The blocking  primitives  perform  implicit  synchronization, 
and thus no new notation is needed to  provide 

ing a bounded buffer task.  The nonblocking receive is not sensible. since 
q h e  nonblocking send is not needed, since it can be simulated by us 

the task receiving the message will perform aome operation based on  the 
message. Interrupts are usually used instead of a nonblocking receive. 
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synchronization.  However,  this  convenience  does  not 
come without  disadvantage;  namely,  blocking  primitives 
restrict parallelism.  A task  that is blocked at  a send or 
receive cannot  continue  execution. The parallelism that 
could  exist is reduced to a single thread of control. 

0 Blocking  primitives  need no message  buffering,  whereas 
nonblocking  ones  do. Thus,  the  implementation of block- 
ing primitives  need  not  deal  with  updating  message 
buffer  pointers  and  testing  for  buffer  overflow.  In  case of 
nonblocking  primitives,  hiding the above  implementation 
details  from the user  may  sometimes  lead to incorrect 
programs. 
Implementation of blocking  primitives is straightforward. 

By using operating  system kernel  routines  and  queues,  a  task 
can  easily be blocked and  unblocked. Busy waiting (spin lock- 
ing)  could  also be used, but would  only be appropriate when 
the communications  bottleneck the  computations [ROBE81]. 

As alternatives to  nonblocking  primitives, [GENT811 pro- 
poses  two  semantics. The  first is to use a  bounded  buffer to  
simulate  a nonblocking send.  The second is to use condit ional 
primitives. A conditional  primitive is one that sends  (or 
receives) the message  only if the  other  communicator is already 
blocked. This is exactly  what  Ada  uses  by conditional  entry 
calls and else clauses  in  a select construct. 

The  reply primitive  in  [GENT81],[CHER84] is valuable 
for distributed systems. The idea  behind the  reply is to 
require that every send-receive message transfer issue  a 
reply from the callee  back to unblock the caller. By reversing 
the role of send  and  receive, nonblocking  semantics  are  virtu- 
ally attained (Le. administrator in  [GENTSI]).  When com- 
pared to remote  procedure calls, this provides  additional  paral- 
lelism because the caller is unblocked as soon as  the critical 
section of code  for receive in the called task  has completed. 
This also  can  be  implemented  more  reliably that  the  standard 
send-receive because  every  message transaction is  bi- 
directional  and  implementation  can  assume  this  [BIRR84]. 

2.2. Task   Address ing  
Task  addressing refers t o  bow the  tasks  in a  message 

transfer  are named. CSP uses E w a y  naming; both the  receive 
and  send primitives  must  name  the  tasks  to  participate in the 
message transfer.  Ada  and DP both use I-way naming, an 
entry or external  procedure  call  needs  only  name the  task  and 
the procedure to be  executed.  Ada’s accept, a9 well as the 
common  procedures  in  a DP task, have “open ears” to  a call 
from  any task.  Advantages of each  are: 

0 Nondeterminisrn in the receiver is attained  with 1-way 
naming. If the called procedure  were  required to  name a 
source task for input,  the  named source  might  not be 
ready, even though  the called  procedure w2s ready.  A 
conditional receive may  alleviate this problem. In such  a 
case,  a  repetitive  looping  with  a  conditional receive for 
all the possible  sources is needed.  After the  first  accept, 
the  accept body  would then be executed. In the mean 
time,  many  other en t ry  calls could  arrive  and  would 
thus be queued.  Rather than being  unqueued  randomly, 
the repetitive  looping  would  impose  ordering of the 
accepts,  and nondeterminism is lost.  Complete non- 
determinism is a  way to exploit  parallelism  [GENT81], 
but looping  around  conditional receives leads to deter- 
minism and inefficiency. 

o 1-way  naming  facilitates the creation and  updating of 
library  routines. It  would be nearly  impossible to write  a 
library  routine  using 2-way naming. A library  routine 
must  accept  calls  from any source,  and  this  cannot  easily 
be done if the library  procedure  must  name  each  source 
procedure. 

e %way  naming allows a  task  to  accept  sends only  from  a 
particular caller. This  protection may  be  needed if the 
system is being used in  a  malicious  environment. 

Other possibilities  exist to  the 1- and 2- way naming 
schemes  discussed  above. A port is a  symbolic  name that 
allows  an extra level of indirection [SILBBl].  Messages are  sent 
to a  port  rather  than  a  task. Typically,  many tasks may  send 
messages to  a  port,  but only  one task is  allowed to receive  a 
message from  a port.  Port  directed communications  are 
preferable  for IMRS’s for  many  reasons,  and will  be discussed 
further in  Section 4.1. 

2.3. Message F o r m a t  
The message format refers to  how a message is 

represented.  The most  common message format is simply  a 
list of typed  parameters.  The  parameters  contain values 
which  are  passed  between tasks, provided parameter  types 
agree.  Another  message  format is a  string of characters,  which 
each task may interpret differently  by  using  a  different  tem- 
plate (i.e. variant record in PASCAL). The message  format 
plays  an important role  in any  distributed  system, because 
assumptions  concerning the message format allows a  more effi- 
cient  implementation.  For  this  reason,  most  distributed sys- 
tems  opt  for  using  fixed  length  messages. If a message is  
shorter  than  the fixed length,  then  dummy bytes  are  padded. 
If  a message is longer, then it is broken into packets. 
transmitted  a  packet a t  a  time,  and  then  reconstructed at  the 
destination  processor. It has been shown that 32 bytes is the 
most  appropriate size for  a message [CHER84],[SHOC80]. 
CSP, DP, and Ada all provide messages of arbitrary  length via 
parameters  to  the message  primit,ives, but real-time  systems 
such as IMRS’s should  avoid  using  multiple  packet  messages 
because of their  potential  overhead. Some systems  provide 
additional  primitives  for  transferring  large  messages. For 
example, Thoth provides  a .Transfer primitive  [GENT81], 
the V kernel  provides the  CopyTo  and  CopyFrom primi- 
tives  ICHER84). We prefer t o  fix the message  size of each 
transaction. 

2.4. Reliability and Communicat ions  Fai lure  
This issue can never  be  avoided,  yet  most  published 

works  entirely  sidestep  this  issue.  This  may be for  several rea- 
sons. Reliability  primarily  depends on the  implementation  and 
is difficult to  treat. Another  related  topic is fault tolerance, 
i.e. how to perform  error  detection and recovery. The reliabil- 
ity  and  fault  tolerance issue  does propagate up to  the user 
interface,  particularly  in the comprehension  aspect. The user 
must be able to invoke  his own error  handlers  when  time lim- 
its  are  not being met,  a  task  dies, or the messages become cor- 
rupted. If the primitives  provide the user a simple model, then 
it will be easier to program  fault-tolerant systems. To this 
end, we advocate  port-directed  communications,  see  Section 
4.1. 
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3. COMMUNICATIONS NEEDED FOR INDUS- 
TRIAL PROCESSES 

The process structure of an IMRS  is hierarchical. An 
industrial process can be  decomposed into  several sub- 
processea,  which are  further  divided,  and so on. Eventually, 
the  industrial process is divided  into  many  indivisible  sub- 
processes.  Each  of  these  processes is programmed with  a  a 
module. Each  module  consists of computational  tasks. We 
define  the module architecture as (i) the  structure of a  module, 
and (ii) the logical structure  and/or  communication  paths  that 
connect the modules  in an IMRS (see [SHIN841 for a detailed 
description). 

Before  we propose  communication  and  synchronization 
primitives, we examine the  nature of communications  and syn- 
chronization  needed  for  industrial  (sub)processes.  This is done 
on the basis of the five  classes of industrial processes that we 
have  identified  in [SHIN84]. In the following, we briefly re- 
introduce the definitions of the five  classes and  then discuss 
specific  communications  need of each  class. 

Independent  Process: Use and  update of state variables 
through  proprietors will be the most  common  communications 
need of an  independent process.  Another use of for  indepen- 
dent processes is a  job  reporting process that performs  inven- 
tory,  statistics,  and  material  handling  operations. Depsnding 
on the urgency of the communication,  different  methods  are 
required.  Nonblocking  message  passing  would be  used when 
message  receipt is not  time  critical or mandatory. Blocking 
message passing  would be  used when the  sending  task could 
not  continue  until it knew for  certain that  the  destination  task 
had received the message (e.g. sending  a status  update  to  a 
database in the console room).  A task  that is part of an 
independent  process  may  even  need a response to  a  message 
before it can  continue (i.e. a state variable must be changed if 
the  task is to continue  operating).  These  needs  require mes- 
sage  passing and remote  procedure calls. To no surprise,  these 
are  the  communication  primitives  needed  for the furnace  appli- 
cation ISTEU841, which can be classified as an independent 
process. 

Loosely-Coupled  Process:  Because the actions  depend on one 
another,  the  controlling  tasks  are  constantly  sending messages 
between  themselves  regarding their  actions  and  status.  When 
a  task reaches  a  point  in  execution  where it is about to  per 
form the next  step in the subprocess, it needs to  know the 
status of the  other subprocesses. It  can  either look into  a local 
database,  ask  the  other process  for  its status, or  ask  a  server 
task  for  information  about  the  state of the process. The first 
approach requires  message  passing  between tasks,  the second 
remote  procedure calls, and  the  third  a  proprietor  or monitor. 
Because the  tasks control  independenf  subprocesses,  synchroni- 
zation points between tasks  are  not needed. Thus, nonblock- 
ing  semantics  are  preferred  for  this  process  class. The com- 
munications  must be  quick,  since  actions  in the process are 
delayed  while the communications  are being  performed. Effi- 
ciency is less of a  concern here because the frequency  between 
messages is bound  by the actions of the process,  which are 
infrequent  in  comparison t o  processor cycles. 
Tightly-Coupled  Process: The subprocesses of this process are 
controlled  vertically,  with the child being a slave of the parent. 
The child  should  always  perform an action requested by the 
parent immediately. The child r i l l  probably have to return a 
status message after each  directive  from the parent, so the 

parent  can decide the  next  directive to  give to  the child. Thus 
a  remote  procedure call is sufficient. An interrupt  approach 
would  lead to  a  more  inefficient, and  unnatural  solution  for 
tightly-coupled  processes.  Since the remote  procedure  calls 
will likely be executed often, it is crucial that  its implementa- 
tion  not  entail  too much  overhead.  Roberts [ROBE811 
suggests that  this  may be difficult, and  that lower-level primi- 
t.ives should be used instead. 
Serialized h f o t i O f 3  Proceaa: This class  requires  one  or  more  sub- 
processes to be performed  before another subprocess  can com- 
mence. In the simplest of cases, this class  simply  requires 
signal /wait  synchronization  primitives.' In more  complicated 
cases,  information  would  have to be conveyed  between tasks, 
so the blocking  message  passing  could be used. We prefer to 
use messages for both cases,  with  null  messages  for 
signal/wait.  The only dificulty is that synchronization 
between  several tasks is difficult and  a  primitive  for  this is 
needed. 
Work-Coupled Proceaaes: Each  task will have to  maintain  an 
updated  database of all the  other  tasks  to which it is work- 
coupled. Thus blocking  message  passing is needed (premature 
unblocking of a  task would  cause  problems if a  crash  occurred 
before  several of the  sent messages  were  received). As soon as 
one of the  tasks of the work-coupled  process  receives the 
update message, the original task  may unblock. Care  must be 
taken  that  the  update messages are properly  forwarded to  
each task involved  in the work  coupling (i.e. the messages will 
have to be  sequenced so the  database  can  be correctly updated 
should the messages  arrive  in  improper  order'). 

4. COMMUNICATION  PRIMITIVES SUITABLE 
FOR AN IMRS 

The five  process  classes  utilize  communications  for dif- 
ferent purposes.  Independent  processes  send  messages to  com- 
mon tasks. Loosely-coupled  processes  query  each other or a 
common task  for  information  about  the process state.  Tightly 
coupled  processes  use  a  master/slave  control  approach.  Serial- 
ized motion  processes  use  communications for  synchronization 
and  event signaling. 

The  variety of concurrent  programming  languages  offer 
many  primitives  from  which to choose the  set  suitable  for  an 
IMRS. In this  section we select the primitives  appropriate  for 
an IMRS. Our discussion  consists of two  parts.  The first part 
deals  with  structuring the communication  channels  into  ports. 
The second part  deals  with  the  actual  primitives that .utilize 
the ports. 

4.1. Ports 
Ports  are  an  alternative  to  the 1-way and 2-way task 

addressing  discussed  Section 2.2. A  port is just a  symbolic 
name that two  tasks reference.  Having  messages  address  ports 
offers many  advantages. 

0 Accessing  a port does not require the program to be 
dependent on the existence of a  task.  Thus,  fault toler- 
ance is improved  since  communications can be  redirected 
by moving the  end of a port. 

Vhese processes are the  ones  handled in AL by using cvcntr WJWgl. 
l h i e  probably would  not  happen becauk the delay between  the  steps 

in an IMRS process a n  much  greater  than the mesage propagation  delay, 
but  ahould  nevertheless  be performed lor reliability. 
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e Communications  are  structured  into  channels  that  are 
declared by the user. This i s  easier to  use than direct 
naming, allows for  more  reliable and  fault-tolerant com- 
puting,  and lowers the  number of needed  primitives. 

The  ports  can be  tailored to  individual  needs,  providing 
the benefits of both 1- and 2-way naming. 
One task  declares the  port,  and is said to  o w n  the  port. 

The  other  tasks desiring to uae the  port  must declare this 
intent in their specification  sections (e.g.  [SILB84] employs  a 
ude statement in  CELL). The declaration  section of a  port is 
allowed to include  restrictions to  tailor  the  port  to individual 
needs. The  primary benefits  are 1) the declaration of ports 
allows  for  an adaptive  communication  system,  2)  a  smaller  set 
of primitives  can be used, and 3) interfacing  different  modules 
is easier. It  should be noted that ports are lorjcal channels; 
the physical  communication  channels  depend on the underly- 
ing implementation. 

In the most  general  case, there  are  many users and one 
owner. The  number of users  can,  theoretically, be unbounded, 
but is limited by the size of the memory  buffers  allocated. 
Bytes  are  sent  between the users and  the owner in free format, 
and it is the responsibility of the primitives that access the 
port  to ensure  compatibility.  One  of  the  primary  values, how- 
ever, is that when  a  port is declared,  restrictions [SILB81] can 
be included to configure the  port  to certain  specifications. 
Restrictions  can be placed on either  the user  end  or  owner end 
of the  port,  (i.e port wer reafrictions or pori owner  reatrs‘c- 
tions). 

Our proposed port restrictions  are: 
MeSS8ge Format  Restriction:  This restricts  the mes- 
sages at compile time  to  a  declared  format.  The owner 
and users of a port  declare  the message format  that  the 
port  can  handle,  which  would  then be tested  for  compati- 
bility at load-time. The  format could be a  record or a 
typed  formal  parameter  scheme as in  Ada. The  advan- 
tages of this  restriction  are  accidenbal  misuse  can be 
flagged a t  compile  time, the declaration  shows how the 
port is used,  and the run-time  mode is more  efficient. 
Further,  an  underlying  implementation may fix the 
packet  size  (Le. 32 bytes in Thoth (GENT811 and  the V- 
System  [CHER84]), and  this  restriction allows compile 
time  warning of an inefficient  size  message, ;.e. one 
requiring  multiple  packets. 
Message  Direction  Restriction: By restricting the 
direction of messages through  a  port, incorrect local usage 
can be flagged at  compile  time,  incorrect  global  usage6 
can be checked  when  a task is loaded, and  the  intertask 
communication  structure is easily  observable. How this is 
done  depends on the  primitives.  Ada declares the direc- 
tion of parameters,  since  they use the remote  procedure 
call (accept).  Another way, the one we prefer, is to use 
rend-receive-reply  with  the  port being  declared as a 
send or receive port. 

ing” M an input  end of the  port.  Since we are allowing separate compils- 
”Both a user and owner of a port may accidentally declare its “open- 

tion, thL  cannot be flagged until  the  tasks are loaded,  even  though dl the 
communications  on  the port s n  compatible with its defiiition. Thi is in- 
correct global wage, hut in correct locd usage. 

Port User List Restriction:  This is a  port  owner r e s  
triction that aslows the owner to  restrict  the set of possi- 
ble users. The  advantages  are 1) it is possible to create 
ports  between only two tasks, instead of the current 
many-torone  semantics,  and 2)  an  efficient  run-time 
implementation is possible.  When the  port owner of 
users  are  loaded,  system  routines will have to  test  for 
conflicts and  generate  load  errors if necessary. 
Number  of Active Users Restriction:  This is similar 
to  the  Port User  List Restriction,  except  instead we limit 
the  number of & communicating  users of the  port. 
The  rational behind this  restriction is that it limits the 
run-time  message  buffer  space  permitting  static  buffer 
allocation  instead of dynamic. As in the prior  restriction, 
a  load  error  results if a  conflict  results. 
Port Filter  Restriction: A filter is just  a  concurrently 
executing task  that intercepts,  processes,  and  relays  the 
messages. Zt is as if the  port was cut  into  two pieces, 
with the filter  spliced in. A  filter  can be placed on either 
the user end,  the owner  end, or both.  The  filter  task 
would declare the  port  along with the  restrictions. Primi- 
tives  in the  filter referencing the port  cause the messages 
to be transferred  between  the  filter  and the  other modrllp 
(or vice  versa). To communicate  with  the module that 
declares the  port  and  filter,  the primitives in the  filter 
will reference the predefined port name  FILTER.  For 
example,  suppose task T own$ a port P with a tiher  F as 
a restriction.  Then in task F, primitives  addressing P 
will communicate  with  a  user of port P, while primitives 
addressing  FILTER will communicate  with task T. A 
common  filter will be a  bounded  buffer used to simulate  a 
nonblocking send. A device  driver is another use of a 
port  filter. If all of a  port’s messages needed to be passed 
through  the  same  filter,  then  the  filter is placed on the 
owner’s end. Likewise, if a  particular user needed its OWQ 

filter,  then it would be  placed at  the user’s  end. Thus 
the  port  declaration in the owner and user  can  each  name 
filter tasks.  The  filter tasks can  raise  exceptions  when 
necessary,  invoking  handlers in either the filter  or  the 
task using the  port. 
Timed Port Restriction: Since we are  dealing with  a 
real-time  system, we provide  a  check that messages are 
delivered  within  a time  limit. A timed  port  restriction 
can be placed at both the user  and  owner  end. If either 
the one-way  message or  twwway rendezvous  (depending 
on the primitives) is not  completed by the  designated 
time,  then the  operating system  would  raise  a  timeout 
exception  in the originating  task. 
Port   Pr ior i t ies :   Port  priorities  are used to resolve 
queueing  conflicts.  A  single  port  priority  declared by the 
owner will be sufficient. The owner  end  priority would 
be  used to determine the highest  priority  nonempty  port, 
for  nondeterministic  constructs. We could  also allow user 
end  priorities  which  would  give  a further degree of flexi- 
bility (and complexity). The overhead of this  approach is 
not  justifiable,  and so we prefer a single  priority  per  port. 
These  restrictions  provide  the  user  an  easy way of taiior- 

ing  and  adjusting  the communication  channels the programs 
use. Rather  than  requiring inline  code that fixes the communi- 
cations  to  a  task,  the code  fixes the  communications to  a port. 
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4.2. The  Pr imi t ives   Needed  
Choosing the primitives  for  an  IMRS is as, if not more, 

important  than  the  robot interface. Using ports  takes  major 
strides  towards  integrating individual  modules, but  the primi- 
tives  dictate how easy i t  is to perform the communication  and 
synchronization  between  modules.  As  mentioned  in the Intro- 
duction,  there  are  many  concurrent  programming languages, 
but  the usefulness of each  primitive  has  not  been  proven  in 
real-time  distributed  systems. As distributed  systems become 
more popular, we expect the communications  to  evolve. lo 
this  wction we present the primitives that  are  appropriate  for 
s n  !!.?!IS. This is based on the discussion  in  Section 3. 

Primitive 

send 

receive 

reply 

query 

response 

o rde r  

wai t for  

Semantics 

blocking send. 

blocking receive. 

nonblocking reply. 

Used to asynchronously in- 
voke statments  in  one  task 
from another  task. Preemp- 
tion  may occur dependirg on 
the priorities  given  in the 
order  statement. 

A block of code at  the end of 
a  task  that is asynchronously 
invoked  by queries from 
other  tasks. 

Used to prioritize  conditions 
in a  task. 

Multiple-task  synchronization 
and communications. 

lb le  1.  Communication Primitiver Needed For  an IMRS 

send,  receive,  and  reply  are used for  both blocking  and 
nonblocking  message  passing  (see [GENT811 for  a good discus- 
sion on these  primitives). The semantics  are  straightforward, 
as  are  their  implementations. If task  A issues  a send  to  task 
B via  a  port,  then  task  A will remain  blocked  until it has 
received  a reply from task B. Task B executes a receive on a 
port. If task  B  executes its  receive before the  send has 
occurred, it becomes  blocked. Task  A  remains  blocked  until  a 
reply is executed by task B, thus every send-receive 
sequence  requires  a reply  to unblock tasks.  The  reply is 
nonblocking  because task  B knows that  task  A is already 
blocked a t  a send,  thus when the  reply is executed,  task B 
does  not  need to block. 2-way naming  (CSP)  can be attained 
by using  a  port  user  restriction.  1-way  naming (DP, Ada)  can 
be attained by using  a port  without  user  restrictions. Non- 

'Howeyer, we will not discuss  the  actual  design of a robot programming 
language, which requires other  developments  such as a real-time  distributed 
operating  system, CAD/CAM interface, etc.,  and is expected to take several 
years to complete. 

blocking  semantics are attained  via  a bounded-buffer port 
filter. An advantage of these  primitives is that  the protocol is 
a '2-way message transfer so remote  procedure  calls  are effec- 
tively simulated,  and  the work  done by Birrell and Nelson in 
creating  reliable  communications is applicable[BIRR84]. 

An efficient  implementation of send-receivereply is not 
difficult. By using  queues for  tasks blocked at a send or 
receive,  tasks  are removed  from the active  task pool and  busy 
waiting is avoided.  Using ports  introduces  additional  run-time 
overhead  (due to  the  extra level of indirection),  but  the imple- 
mentation is not  any more  complex than  the implementation 
discussed  by Roberts et. a/. [ROBE81]. Roberts et. ai. also dirc 
cuss  why  busy  waiting  might be preferred  over  queues  (which 
involve context switches  when  implemented on a  uniprocessor). 
They  state  that  context switches  are  more  expensive than busy 
waiting  when  the  communications  are  significantly  more fre- 
quent than  the  computations.  Except in the tightly-coupled 
processes of an  IMRS, the  intertask  communications will occur 
relatively  infrequently  in  comparison to  the  computations (i.e. 
a t  natural  intervals in the IMRS  process,  which are few and 
far between). Thus, ways  need to be  investigated to allow 
busy  waiting  for  primitives  using  ports  in  a  vertically  con- 
trolled  tightly-coupled  process. One possibility is to  create  a 
process type  restriction,  that allows the user to  specify the 
process  class of the  port.  The code  generated  for  a  port  could 
then use the process type  restriction to optimize the produced 
code. There  are, of course, other ways to cause  a  compiler to  
produce  different  code (e.g. metacommands), and  the advan- 
tages of each must be  examined. 

The  query,  response,  and  order  statements  are used to  
allow one task  to  interrupt  another  task.  When  a  task needs 
information  from  another  task, it queries the  other  task 
through  a  port.  This is similar to  an exception  being  raised  in 
Ada  or PL/I, except it happens across task  boundaries.  This 
cannot be simulated by using  multiple  tasks,  because  tasks 
cannot  share common  variables. The  appropriate  response 
handler at  the  other  end of the  port is then executed.  Two 
differences  between the  query - response mechanism and 
Ada  exceptions  are: (i)  Ada  does  not allow parameters to be 
passed, and  (ii)  after  an exception  handler has executed, con- 
trol  does not  continue  from the  interrupted  point.  The  query 
is thus similar to  a  remote  procedure call, except it preempts 
$.he current  thread of control.  The query causes the 
response  to be raised  in the  task  that owns t5e  port P o r t  
name,  provided the user is doing the  query.  Alternatively,  but 
less useful, the owner  could  execute the  query  and one of the 
users  would be interrupted.  (A  parent could  query its  children 
to check their  status.) 

A  technical  problem with  the  query - response is that 
in  a  real-time  system,  a  more  urgent  operation  should not be 
interrupted by a query.  Silberschatz [SILB84] has proposed 
an  order  statement, which is remotely  similar to  what we 
need. His order  statment is used  in CELL to  specify the 
priorities of threads of execution as they become  unblocked. 
The  order  statement is essentially a directive to  a user pro- 
grammable  scheduler, The  order  statement  contains a list of 
the  different  sections of a  task  arranged according to  their 
priorities; a preemption  requested by a query  will Occur 
depending on the  order.   The sections of a  task  that  appear 
in the  order  statement  are  the  response handlers,  pro- 
cedures,  functions, and background  code.  This gives the pro- 
grammer  real-time  control  over the different  sections of a  task, 
which is needed  in  an  IMRS and likely to  be  needed  in other 
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process  control  systems. 
The  last  primitive is the  wsitfor primitive,  and is needed 

to  allow more than  two  tasks  to synchronize and communi- 
cate.  Consider,  for  example, how to perform three way  syn- 
chronization  and  communication  with  the  other primitives. 
One  approach is to  have  one  task issue two consecutive 
receives.  The  other  two  tasks would then issue sends  to  this 
task via  a port.  This simple  soluticn  unfortunately  has  flaws: 
(i)  the  asymmetry allows  communications  only  between the 
sending  tasks  and  the receiving task. Even  though  three  tasks 
are  synchronized, the two  sending  tasks  cannot  directly com- 
municabe.  (ii) The  solution is not  very  safe,  since  accidental 
misuse  could  easily  occur if the wrong tmk entered the three- 
way  synchronization  by  performing  a send. (iii) The source 
code in all three  tasks does  not  make  clear what is really 
intended.  (iv)  This  method is inefficient as the number of 
tasks grows. The problem is that  the  send-receive is 
designed  for  a two-way rendezvous  only. The  waitfor primi- 
tive is our proposed  primitive to perform  n-way  rendezvous. 

A call to  waitfor includes  a  message,  a  function  name, 
and  a list of the  tasks  with which to synchronize. The seman- 
tics  are as follows. When  a  task  executes  a waitfor,  it 
remains  blocked  until all the  tasks named  in  its waitfor list 
have  executed  a waitfor.  When  a  set of tasks unblock 
because  their waitfor list become  satisfied, the named  func- 
tion  in  each waitfor would be executed.  When  the  function is 
completed,  execution of the  task  continues  after  the  waitfor. 
The functions  would  have  read  access to  all the messages 
pooled  by the  tasks involved  in the synchronization  via the 
waitfor.  The  rational behind  having  these  functions is that 
each task will have to respond  differently  according to  the 
messages. The  function would be written by the user, and 
would return  a single message by operating on the pooled mes- 
sages. To be correctly  used, if task A executes a wsitfor,  it 
should  not be allowed to  either  unblock other tasb yet  remain 
blocked or unblock itself yet have a task on one of the 
unblocking  tasks’ waitfor lists  still  remain  blocked.  Since it 
is too costly t o  insure  this feasible a t  run-time, the user is 
made responsible for avoiding  deadlock and  insure  correct 
usage.’ 

Note that  this is not  a language  primitive, but a system 
call, that provides an easy-to-use  method of multitask com- 
munications  and  synchronization.  Further,  note that since 
many  tasks  are involved  in  a  symmetrical  rendezvous,  ports 
are  not  applicable, so the  waitfor does not use ports. To 
implement the waitfoor, a message will have to be sent  to 
every  processor that contains a task in its waitfor list. o n e  
message  would  originate,  and  be  relayed  among the necessary 
processors.  Except for  an  unavoidable  framing window, the 
synchronization  occurs  simultaneously.  Once  again, i t  is 
intended  that each task unblocking  because of another  task 
executing  a ws i t for  is named in all the  wsitfors of the 
unblocking tasks.  That is, each  unblocking task  has identical 
wai t for  lists. To require this would  need  run-time  testing, and 
thus  the looser  semantics  are  preferred. 

How should we handle  nondeterminism and dequeueing of 
messages? To  obtain  nondeterminism, Ada’s select  statement 
is preferred. We do  not really w a n t  complete  nondeterminism 
in an IMRS,  since we must always  be  able to  predict  what will 
occur in a  given situation.  Thus, if more than one lelect alter 
native is open (Le., ready to  communicate), we choose the  mes 
sage  in FIFO fashion  from the highest  priority  port. (See the 

port priority  discussion  in  Section 3.1.) Silberschatz [SILBSI] 
prefera  complete  nondeterminism in dequeueing messages from 
a  port,  This will not work  in  a  real-time  system.  Alternatively, 
Gentleman[GENT81] pJoposes that  port priorities  can be  simrr- 
lated by using receiTre-specific messages  (2-way  naming), or by 
using  an  additional  task to  receive the message. These  alter- 
natives  can be used, but lead to  more unstructured solutions. 
The queueing and dequeueing  should be handled by a  sys- 
tematic  set of rules,  not  by  burdening the application  pro- 
grammer. If ports  do  not  have  a  priority,  they  are given a 
default  priority lower than any  user-specifiable  priorities  for 
ports.  This scheme will cost  siightly  more  to  implement  than 
nonpriority  ports,  because the run-time efficiency can be 
spared at a cost of extra  storage by appropriately  using 
pointers  into  multiple  linked lists. 

5 .  CONCLUSION 
In this  paper we have  explored the various  communica- 

tion  demands  brought  about by five  different types of 
processes, independent, loosely- coupled,  tightly-coupled, serial- 
i zed motion, and work-coupled procesaes. In order to  support 
the module architecture  in [SHIN84],  we have  developed  a  set 
of communications  and  synchronization  Primitives  needed  for 
an  IMRS.  We  have  also  completed but  not included  here (due 
to  the space  limitation)  a  concurrent  language  syntax  using  the 
selected  primitives  based on portdirected communications. 
The  development is based on  both  the  distinct, complex nature 
of an  IMRS and our knowledge of the existing  concurrent 
Languages. 

Undoubtedly, the IMRS will play  a  significant role in 
future robotics and  automation.  Integrating all the workcells 
and devices  leads to improvement of both  manufacturing pro- 
ductivity, reliability, and  safety. We  feel that  the primitives 
presented  in  this  paper  (and  the language  syntax  completed 
but  not included  here)  along with  the module architecture in 
[SHIN841 should  form  a g o d  foundation  for developing  such 
an IMRS. 
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