
COMMUNICATION PRIMITIVES FOR A DISTRLBUTED
MULTI-ROBOT SYSTEM’

Kang G. Shini and Mark E. Epstein++

+Computer Science and Engineering Division
Department of Elect,rical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109

++Advanced Robot,ics Systems Group
IBM Corporation

Boca Raton, Florida 33432

ABSTRACT

An integrated multi-robot ayatem (IMRS) consists of two
or more robots, machinery and sensors, and is capable OF exe-
cut,ing almost all industrial processcs with efficiency, flexibility
and reliability.

In order to support a distributed, modular architecture of
an IMRS in [SNIN8?], we propose in this paper low-level com-
munication and synchronization primitives for the IMRS. This
is done by comparing and analyzing the primitives
developed/proposed for general concurrent programming, and
carefully examining the generic structure and interactions of
IMRS processes.

1. INTRODUCTION
Conventionally, MRS’s are all centrally controlled; that

is, control tasks for an MRS may be distributed over a net-
work of processors or reside in a uniprocessor but are all exe-
cuted under directives or the supervision of one central task.
Although almost all manufacturing processes can be accom-
plished using a central controller, communications bottleneck-
ing and unreliability (that occur3 at the central controller)
become major problems a3 systems become more sophisticated.
For this reason we have defined in [SHIN841 a new MRS,
called integrated multi-robot sy~tem (IMRS), as a collection of
two or more robots, sensors, and other comput.er controlled
machinery, such tha t

each robot is controlled by its own set of dedicated tasks,
which communicate to allow synchronization and con-
currency between robot processes,*
the tasks are executing in true parallelism,
it is adaptable to either centralized or decentralized con-
trol, and

ECS-8409938 and the U.S. AFOSR Contract No. F4962Q-82-C-0089. Any
‘The work reported here is supported in part by the NSF Grant No.

opinions, findings, and conclusions or recommendations expressed in this

of the funding agencies.
publication are those of the authors and do not necessarily reflect the views

* “Process” will be used to denote the industrial output of the IMRS,
which is accomplished by a set of “tssks” executin& on one or more proms-
SOIS.

e tasks may be used for controlling other machinery, sensor
1 /0 procrnning, communication handling, or just. plain
computations.

We have already taken the first step toward solving the diffi-
cult IMRS software system, by analyzing industrial processes
and examining the- high-level communications needed to solve
these processes [SIIIN84]. We now look at the low-level com-
munications needed. Before doing so, we first present back-
ground research in related areas.

There are numerous robot langua~es designed (see
[BONN821 for a survey) which can control more than one
robot simultaneously (i.e. AL[MUJT79], AML/V[IBM81]).
They both allow the control of two robots a t once, by using
concurrent tasks. The tasks can be synchronized using sema-
phores. The principal motive behind this design was t o allow
two operations to be controlled at once with synchronization
points to allow serialized motion process [SHiN84]. This res-
tricts the potential amount of parallelism and limits the classes
of processes that can be attained. Another problem is that it
does not lend itself to integating different machinery via a
structured communications approach.

Some work has been done on distributed industrial pro-
cess control (e.g. ISTEU84]), but the results are not easily
transportable to an MRS. (STEW841 has described a
distributed, fault-tolerant system used for controlling soaking
pit furnaces. Each furnace is controllcd by its own microcom-
puter syst.em, and the microcomputer systems are logically
paired so should one system fail, the paired system would con-
trol two furnaces. This system is reported to have high relia-
bility? but the classes of parallelism involved in the furnace
application are far less complex than the classes of parallelism
needed in an IMRS, as are the applicat,ions that need to be
coded. The action of one IMRS process could completely alter
the action of many other IMRS processes, or many robots
might have t o work on one common process, requiring tightly-
coupled communication and synchronization. An IMRS needs
a more intricate communications structure to handle this com-
plex dynamic environment.

There has been considerably more research in the area of
communicating concurrent tasks. Numerous languages have
been designed which contain primitives that allow tasks to
synchroniee and communicate via various techniques. One
technique used is meaaage pawing. Some of the languages
which utilize message passing are Distributed Proceases (DP)

CH21152-71$5/000010910$01 .OQ 0 1985 IEEE
910

[HANS78], Communicating Sequential Processes (CSP)
IHOAR781, and A d a [DoD82]. The Monitor is another tech-
nique used to enforce exclusive access rights to common pro-
cedures and data. Concurrent Pascal [HANS771 uses monitors
to link different tasks. Although the communication mechan-
isms in these languages are different, it is claimed that for
several common applications that do not involve real-time con-
straints, either mechanism can be used [ANDR83], and that at
an abstract level, their relative powers are equal. This has
been shown theoretically and by benchmarking them against
standard problems. However, these languages are recent
advances in computer science, and have not been amply tested
in distributed environments, especially those dealing with
real-time control. With GM’s work on MAP [BROW84], and
the Department of Defense’s work with Ada [DoD82], our
knowledge will soon expand in this area. For the meantime,
we explore the communications primitives needed in an IMRS
by looking at the process structure and module architecture
[SHIN84].

Consequently, we need to select the IMRS communication
and synchronization primitives that can meet the conflicting
demands of an IMRS (i.e. reliable, efficient, natural, easy-te
use, powerful). In this paper we intend to meet this need by
carefully examining the nature of industrial processes and the
primitives existing/proposed in general concurrent program-
ming. I t should be noted that there has been little work deal-
ing with an IMRS and its intertask communications and syn-
chronization.

This paper is organized as follows. In Section 2 we com-
pare and critically review the existing communication and syn-
chronization primitives in the context of IMRS applications.
In Section 3 we discuss the need for different primitives for the
five classes of industrial processes identified in [SHIN84]. In
Section 4 we advocate f i rs t port-directed communications and
then propose the primitives most suitable for an IMRS. Sec-
tion 5 concludes the paper with a discussion on how our work
solves the IMRS communication primitives problem.

2. COMPARISON OF EXISTING PRIMITIVES
Stotts[STOT82] has pointed out thirteen design issues

that need to be considered when designing a concurrent
language. The issues most pertinent to an IMRS are task
creation, task destruction, communication and synchronization
mechanisms, and real-time support, and reliability. In this
section, we present the concepts and issues underlying the
communication and synchronization primitives, by looking at
three different concurrent programming languages, Comrnuni-
rating Sequential Processes (CSP) [HOAR78], Distributed
Procesaea (DP) IHANS781, and Ada IDoD821. Many of the
ideas discussed in t,his section are drawn from [WEGN83],
[ANDR83], and [WELS81].

Andrews [ANDR83] classifies concurrent programming
languages into three different classes, procedure-oriented,
message-oriented, and operation-oriented. Procedureoriented
languages (e.g. Concurrent PASCAL, Modula, Mesa, Edison)
use monitors as the basis for intertask communications. These
are not well suited in a distributed environment because an
efficient implementation requires shared variables. Message-
oriented languages (e.g. CSP, Gypsy, Plits, Thoth) use rend
and receive primitives for communications and synchroniza-
tion between tasks. An implementation does not require
shared variables, and thus is appropriate for a distributed

rnvironment[GENT81]. Exclusion on a variable needed by dif-
ferent tasks can be achieved by using a proprietor task which
accepts messages from different tasks in exclusive fashion.
The last class, operation-oriented languages (e.g. DP, Ada), use
the remote procedure call as the means for intertask communi-
cations. One task can call a procedure (Le. entry) in another
task by sending an implicit message to the called procedure.
While the called procedure is executing, the calling task is
blocked. When the called procedure has completed execution,
a return message is sent, and the blocked task may then
resume. We say that a rendezvous has occurred between the
two tasks, when the two threads of execution have been united
into one while the remote procedure call is executing. Since an
implicit send and receive operation is performed in a remote
proredure call, this class is a rigid st.ructuring of the message-
oriented class.

Due to the distributed nature of an IMRS and also most
aut.omated systems, i t is best to use either the message-
oriented or operation-oriented classes of concurrent program-
ming [ANDR83]. These classes are appropriate because mes-
sage passing between processors does not require shared
memory. Message passing can also be reliably implemented.
In this section we discuss issues underlying message based
primitives. We use CSP, DP, and Ada for examples. These
three languages have vastly different mechanisms, and will
serve well.
(A) Blocking vs. nonblocking primitives
(B) Task addressing
[C) Message format
(D) Reliability and communications failure.

Each of these issues is discussed comparatively in the following
subsections.

2.1. Blocking vs. Nonblocking
A communication primitive is said to be blocking if the

task executing the primitive is halted until the communication
is performed, or nonblocking if the communications requested
by the primitive do not cause the task to halt. The blocking
send and receive are the most commonly seen primitive^,^
e.g. CSP and Thoth. However, in many cases (especially in an
IMRS) blocking is undesirable due to its delay in response and
limitation to parallelism. To this end, slight modifications to
the blocking primitives have been made in some concurrent
languages. For example, Ada provides the ability to cancel the
entry call or accept when blocking results, whereas CSP does
not. DP uses a blocking rend only to a remote, passive pro-
cedure (e.g. monitor-like routines that do not require a
receive). A call is performed as soon as all the threads of con-
trol in the called task have either terminated or been
suspended a t a guarded region.

Advantages and disadvantages of blocking and nonblock-
ing primitives are:

The blocking primitives perform implicit synchronization,
and thus no new notation is needed to provide

ing a bounded buffer task. The nonblocking receive is not sensible. since
q h e nonblocking send is not needed, since it can be simulated by us

the task receiving the message will perform aome operation based on the
message. Interrupts are usually used instead of a nonblocking receive.

91 I

synchronization. However, this convenience does not
come without disadvantage; namely, blocking primitives
restrict parallelism. A task that is blocked at a send or
receive cannot continue execution. The parallelism that
could exist is reduced to a single thread of control.

0 Blocking primitives need no message buffering, whereas
nonblocking ones do. Thus, the implementation of block-
ing primitives need not deal with updating message
buffer pointers and testing for buffer overflow. In case of
nonblocking primitives, hiding the above implementation
details from the user may sometimes lead to incorrect
programs.
Implementation of blocking primitives is straightforward.

By using operating system kernel routines and queues, a task
can easily be blocked and unblocked. Busy waiting (spin lock-
ing) could also be used, but would only be appropriate when
the communications bottleneck the computations [ROBE81].

As alternatives to nonblocking primitives, [GENT811 pro-
poses two semantics. The first is to use a bounded buffer to
simulate a nonblocking send. The second is to use condit ional
primitives. A conditional primitive is one that sends (or
receives) the message only if the other communicator is already
blocked. This is exactly what Ada uses by conditional entry
calls and else clauses in a select construct.

The reply primitive in [GENT81],[CHER84] is valuable
for distributed systems. The idea behind the reply is to
require that every send-receive message transfer issue a
reply from the callee back to unblock the caller. By reversing
the role of send and receive, nonblocking semantics are virtu-
ally attained (Le. administrator in [GENTSI]). When com-
pared to remote procedure calls, this provides additional paral-
lelism because the caller is unblocked as soon as the critical
section of code for receive in the called task has completed.
This also can be implemented more reliably that the standard
send-receive because every message transaction is bi-
directional and implementation can assume this [BIRR84].

2.2. Task Address ing
Task addressing refers t o bow the tasks in a message

transfer are named. CSP uses E w a y naming; both the receive
and send primitives must name the tasks to participate in the
message transfer. Ada and DP both use I-way naming, an
entry or external procedure call needs only name the task and
the procedure to be executed. Ada’s accept, a9 well as the
common procedures in a DP task, have “open ears” to a call
from any task. Advantages of each are:

0 Nondeterminisrn in the receiver is attained with 1-way
naming. If the called procedure were required to name a
source task for input, the named source might not be
ready, even though the called procedure w2s ready. A
conditional receive may alleviate this problem. In such a
case, a repetitive looping with a conditional receive for
all the possible sources is needed. After the first accept,
the accept body would then be executed. In the mean
time, many other en t ry calls could arrive and would
thus be queued. Rather than being unqueued randomly,
the repetitive looping would impose ordering of the
accepts, and nondeterminism is lost. Complete non-
determinism is a way to exploit parallelism [GENT81],
but looping around conditional receives leads to deter-
minism and inefficiency.

o 1-way naming facilitates the creation and updating of
library routines. It would be nearly impossible to write a
library routine using 2-way naming. A library routine
must accept calls from any source, and this cannot easily
be done if the library procedure must name each source
procedure.

e %way naming allows a task to accept sends only from a
particular caller. This protection may be needed if the
system is being used in a malicious environment.

Other possibilities exist to the 1- and 2- way naming
schemes discussed above. A port is a symbolic name that
allows an extra level of indirection [SILBBl]. Messages are sent
to a port rather than a task. Typically, many tasks may send
messages to a port, but only one task is allowed to receive a
message from a port. Port directed communications are
preferable for IMRS’s for many reasons, and will be discussed
further in Section 4.1.

2.3. Message F o r m a t
The message format refers to how a message is

represented. The most common message format is simply a
list of typed parameters. The parameters contain values
which are passed between tasks, provided parameter types
agree. Another message format is a string of characters, which
each task may interpret differently by using a different tem-
plate (i.e. variant record in PASCAL). The message format
plays an important role in any distributed system, because
assumptions concerning the message format allows a more effi-
cient implementation. For this reason, most distributed sys-
tems opt for using fixed length messages. If a message is
shorter than the fixed length, then dummy bytes are padded.
If a message is longer, then it is broken into packets.
transmitted a packet a t a time, and then reconstructed at the
destination processor. It has been shown that 32 bytes is the
most appropriate size for a message [CHER84],[SHOC80].
CSP, DP, and Ada all provide messages of arbitrary length via
parameters to the message primit,ives, but real-time systems
such as IMRS’s should avoid using multiple packet messages
because of their potential overhead. Some systems provide
additional primitives for transferring large messages. For
example, Thoth provides a .Transfer primitive [GENT81],
the V kernel provides the CopyTo and CopyFrom primi-
tives ICHER84). We prefer t o fix the message size of each
transaction.

2.4. Reliability and Communicat ions Fai lure
This issue can never be avoided, yet most published

works entirely sidestep this issue. This may be for several rea-
sons. Reliability primarily depends on the implementation and
is difficult to treat. Another related topic is fault tolerance,
i.e. how to perform error detection and recovery. The reliabil-
ity and fault tolerance issue does propagate up to the user
interface, particularly in the comprehension aspect. The user
must be able to invoke his own error handlers when time lim-
its are not being met, a task dies, or the messages become cor-
rupted. If the primitives provide the user a simple model, then
it will be easier to program fault-tolerant systems. To this
end, we advocate port-directed communications, see Section
4.1.

912

3. COMMUNICATIONS NEEDED FOR INDUS-
TRIAL PROCESSES

The process structure of an IMRS is hierarchical. An
industrial process can be decomposed into several sub-
processea, which are further divided, and so on. Eventually,
the industrial process is divided into many indivisible sub-
processes. Each of these processes is programmed with a a
module. Each module consists of computational tasks. We
define the module architecture as (i) the structure of a module,
and (ii) the logical structure and/or communication paths that
connect the modules in an IMRS (see [SHIN841 for a detailed
description).

Before we propose communication and synchronization
primitives, we examine the nature of communications and syn-
chronization needed for industrial (sub)processes. This is done
on the basis of the five classes of industrial processes that we
have identified in [SHIN84]. In the following, we briefly re-
introduce the definitions of the five classes and then discuss
specific communications need of each class.

Independent Process: Use and update of state variables
through proprietors will be the most common communications
need of an independent process. Another use of for indepen-
dent processes is a job reporting process that performs inven-
tory, statistics, and material handling operations. Depsnding
on the urgency of the communication, different methods are
required. Nonblocking message passing would be used when
message receipt is not time critical or mandatory. Blocking
message passing would be used when the sending task could
not continue until it knew for certain that the destination task
had received the message (e.g. sending a status update to a
database in the console room). A task that is part of an
independent process may even need a response to a message
before it can continue (i.e. a state variable must be changed if
the task is to continue operating). These needs require mes-
sage passing and remote procedure calls. To no surprise, these
are the communication primitives needed for the furnace appli-
cation ISTEU841, which can be classified as an independent
process.

Loosely-Coupled Process: Because the actions depend on one
another, the controlling tasks are constantly sending messages
between themselves regarding their actions and status. When
a task reaches a point in execution where it is about to per
form the next step in the subprocess, it needs to know the
status of the other subprocesses. It can either look into a local
database, ask the other process for its status, or ask a server
task for information about the state of the process. The first
approach requires message passing between tasks, the second
remote procedure calls, and the third a proprietor or monitor.
Because the tasks control independenf subprocesses, synchroni-
zation points between tasks are not needed. Thus, nonblock-
ing semantics are preferred for this process class. The com-
munications must be quick, since actions in the process are
delayed while the communications are being performed. Effi-
ciency is less of a concern here because the frequency between
messages is bound by the actions of the process, which are
infrequent in comparison t o processor cycles.
Tightly-Coupled Process: The subprocesses of this process are
controlled vertically, with the child being a slave of the parent.
The child should always perform an action requested by the
parent immediately. The child r i l l probably have to return a
status message after each directive from the parent, so the

parent can decide the next directive to give to the child. Thus
a remote procedure call is sufficient. An interrupt approach
would lead to a more inefficient, and unnatural solution for
tightly-coupled processes. Since the remote procedure calls
will likely be executed often, it is crucial that its implementa-
tion not entail too much overhead. Roberts [ROBE811
suggests that this may be difficult, and that lower-level primi-
t.ives should be used instead.
Serialized h f o t i O f 3 Proceaa: This class requires one or more sub-
processes to be performed before another subprocess can com-
mence. In the simplest of cases, this class simply requires
signal /wait synchronization primitives.' In more complicated
cases, information would have to be conveyed between tasks,
so the blocking message passing could be used. We prefer to
use messages for both cases, with null messages for
signal/wait. The only dificulty is that synchronization
between several tasks is difficult and a primitive for this is
needed.
Work-Coupled Proceaaes: Each task will have to maintain an
updated database of all the other tasks to which it is work-
coupled. Thus blocking message passing is needed (premature
unblocking of a task would cause problems if a crash occurred
before several of the sent messages were received). As soon as
one of the tasks of the work-coupled process receives the
update message, the original task may unblock. Care must be
taken that the update messages are properly forwarded to
each task involved in the work coupling (i.e. the messages will
have to be sequenced so the database can be correctly updated
should the messages arrive in improper order').

4. COMMUNICATION PRIMITIVES SUITABLE
FOR AN IMRS

The five process classes utilize communications for dif-
ferent purposes. Independent processes send messages to com-
mon tasks. Loosely-coupled processes query each other or a
common task for information about the process state. Tightly
coupled processes use a master/slave control approach. Serial-
ized motion processes use communications for synchronization
and event signaling.

The variety of concurrent programming languages offer
many primitives from which to choose the set suitable for an
IMRS. In this section we select the primitives appropriate for
an IMRS. Our discussion consists of two parts. The first part
deals with structuring the communication channels into ports.
The second part deals with the actual primitives that .utilize
the ports.

4.1. Ports
Ports are an alternative to the 1-way and 2-way task

addressing discussed Section 2.2. A port is just a symbolic
name that two tasks reference. Having messages address ports
offers many advantages.

0 Accessing a port does not require the program to be
dependent on the existence of a task. Thus, fault toler-
ance is improved since communications can be redirected
by moving the end of a port.

Vhese processes are the ones handled in AL by using cvcntr WJWgl.
l h i e probably would not happen becauk the delay between the steps

in an IMRS process a n much greater than the mesage propagation delay,
but ahould nevertheless be performed lor reliability.

913

e Communications are structured into channels that are
declared by the user. This i s easier to use than direct
naming, allows for more reliable and fault-tolerant com-
puting, and lowers the number of needed primitives.

The ports can be tailored to individual needs, providing
the benefits of both 1- and 2-way naming.
One task declares the port, and is said to o w n the port.

The other tasks desiring to uae the port must declare this
intent in their specification sections (e.g. [SILB84] employs a
ude statement in CELL). The declaration section of a port is
allowed to include restrictions to tailor the port to individual
needs. The primary benefits are 1) the declaration of ports
allows for an adaptive communication system, 2) a smaller set
of primitives can be used, and 3) interfacing different modules
is easier. It should be noted that ports are lorjcal channels;
the physical communication channels depend on the underly-
ing implementation.

In the most general case, there are many users and one
owner. The number of users can, theoretically, be unbounded,
but is limited by the size of the memory buffers allocated.
Bytes are sent between the users and the owner in free format,
and it is the responsibility of the primitives that access the
port to ensure compatibility. One of the primary values, how-
ever, is that when a port is declared, restrictions [SILB81] can
be included to configure the port to certain specifications.
Restrictions can be placed on either the user end or owner end
of the port, (i.e port wer reafrictions or pori owner reatrs‘c-
tions).

Our proposed port restrictions are:
MeSS8ge Format Restriction: This restricts the mes-
sages at compile time to a declared format. The owner
and users of a port declare the message format that the
port can handle, which would then be tested for compati-
bility at load-time. The format could be a record or a
typed formal parameter scheme as in Ada. The advan-
tages of this restriction are accidenbal misuse can be
flagged a t compile time, the declaration shows how the
port is used, and the run-time mode is more efficient.
Further, an underlying implementation may fix the
packet size (Le. 32 bytes in Thoth (GENT811 and the V-
System [CHER84]), and this restriction allows compile
time warning of an inefficient size message, ;.e. one
requiring multiple packets.
Message Direction Restriction: By restricting the
direction of messages through a port, incorrect local usage
can be flagged at compile time, incorrect global usage6
can be checked when a task is loaded, and the intertask
communication structure is easily observable. How this is
done depends on the primitives. Ada declares the direc-
tion of parameters, since they use the remote procedure
call (accept). Another way, the one we prefer, is to use
rend-receive-reply with the port being declared as a
send or receive port.

ing” M an input end of the port. Since we are allowing separate compils-
”Both a user and owner of a port may accidentally declare its “open-

tion, thL cannot be flagged until the tasks are loaded, even though dl the
communications on the port s n compatible with its defiiition. Thi is in-
correct global wage, hut in correct locd usage.

Port User List Restriction: This is a port owner r e s
triction that aslows the owner to restrict the set of possi-
ble users. The advantages are 1) it is possible to create
ports between only two tasks, instead of the current
many-torone semantics, and 2) an efficient run-time
implementation is possible. When the port owner of
users are loaded, system routines will have to test for
conflicts and generate load errors if necessary.
Number of Active Users Restriction: This is similar
to the Port User List Restriction, except instead we limit
the number of & communicating users of the port.
The rational behind this restriction is that it limits the
run-time message buffer space permitting static buffer
allocation instead of dynamic. As in the prior restriction,
a load error results if a conflict results.
Port Filter Restriction: A filter is just a concurrently
executing task that intercepts, processes, and relays the
messages. Zt is as if the port was cut into two pieces,
with the filter spliced in. A filter can be placed on either
the user end, the owner end, or both. The filter task
would declare the port along with the restrictions. Primi-
tives in the filter referencing the port cause the messages
to be transferred between the filter and the other modrllp
(or vice versa). To communicate with the module that
declares the port and filter, the primitives in the filter
will reference the predefined port name FILTER. For
example, suppose task T own$ a port P with a tiher F as
a restriction. Then in task F, primitives addressing P
will communicate with a user of port P, while primitives
addressing FILTER will communicate with task T. A
common filter will be a bounded buffer used to simulate a
nonblocking send. A device driver is another use of a
port filter. If all of a port’s messages needed to be passed
through the same filter, then the filter is placed on the
owner’s end. Likewise, if a particular user needed its OWQ

filter, then it would be placed at the user’s end. Thus
the port declaration in the owner and user can each name
filter tasks. The filter tasks can raise exceptions when
necessary, invoking handlers in either the filter or the
task using the port.
Timed Port Restriction: Since we are dealing with a
real-time system, we provide a check that messages are
delivered within a time limit. A timed port restriction
can be placed at both the user and owner end. If either
the one-way message or twwway rendezvous (depending
on the primitives) is not completed by the designated
time, then the operating system would raise a timeout
exception in the originating task.
Port Pr ior i t ies : Port priorities are used to resolve
queueing conflicts. A single port priority declared by the
owner will be sufficient. The owner end priority would
be used to determine the highest priority nonempty port,
for nondeterministic constructs. We could also allow user
end priorities which would give a further degree of flexi-
bility (and complexity). The overhead of this approach is
not justifiable, and so we prefer a single priority per port.
These restrictions provide the user an easy way of taiior-

ing and adjusting the communication channels the programs
use. Rather than requiring inline code that fixes the communi-
cations to a task, the code fixes the communications to a port.

914

4.2. The Pr imi t ives Needed
Choosing the primitives for an IMRS is as, if not more,

important than the robot interface. Using ports takes major
strides towards integrating individual modules, but the primi-
tives dictate how easy i t is to perform the communication and
synchronization between modules. As mentioned in the Intro-
duction, there are many concurrent programming languages,
but the usefulness of each primitive has not been proven in
real-time distributed systems. As distributed systems become
more popular, we expect the communications to evolve. lo
this wction we present the primitives that are appropriate for
s n !!.?!IS. This is based on the discussion in Section 3.

Primitive

send

receive

reply

query

response

o rde r

wai t for

Semantics

blocking send.

blocking receive.

nonblocking reply.

Used to asynchronously in-
voke statments in one task
from another task. Preemp-
tion may occur dependirg on
the priorities given in the
order statement.

A block of code at the end of
a task that is asynchronously
invoked by queries from
other tasks.

Used to prioritize conditions
in a task.

Multiple-task synchronization
and communications.

lb le 1. Communication Primitiver Needed For an IMRS

send, receive, and reply are used for both blocking and
nonblocking message passing (see [GENT811 for a good discus-
sion on these primitives). The semantics are straightforward,
as are their implementations. If task A issues a send to task
B via a port, then task A will remain blocked until it has
received a reply from task B. Task B executes a receive on a
port. If task B executes its receive before the send has
occurred, it becomes blocked. Task A remains blocked until a
reply is executed by task B, thus every send-receive
sequence requires a reply to unblock tasks. The reply is
nonblocking because task B knows that task A is already
blocked a t a send, thus when the reply is executed, task B
does not need to block. 2-way naming (CSP) can be attained
by using a port user restriction. 1-way naming (DP, Ada) can
be attained by using a port without user restrictions. Non-

'Howeyer, we will not discuss the actual design of a robot programming
language, which requires other developments such as a real-time distributed
operating system, CAD/CAM interface, etc., and is expected to take several
years to complete.

blocking semantics are attained via a bounded-buffer port
filter. An advantage of these primitives is that the protocol is
a '2-way message transfer so remote procedure calls are effec-
tively simulated, and the work done by Birrell and Nelson in
creating reliable communications is applicable[BIRR84].

An efficient implementation of send-receivereply is not
difficult. By using queues for tasks blocked at a send or
receive, tasks are removed from the active task pool and busy
waiting is avoided. Using ports introduces additional run-time
overhead (due to the extra level of indirection), but the imple-
mentation is not any more complex than the implementation
discussed by Roberts et. a/. [ROBE81]. Roberts et. ai. also dirc
cuss why busy waiting might be preferred over queues (which
involve context switches when implemented on a uniprocessor).
They state that context switches are more expensive than busy
waiting when the communications are significantly more fre-
quent than the computations. Except in the tightly-coupled
processes of an IMRS, the intertask communications will occur
relatively infrequently in comparison to the computations (i.e.
a t natural intervals in the IMRS process, which are few and
far between). Thus, ways need to be investigated to allow
busy waiting for primitives using ports in a vertically con-
trolled tightly-coupled process. One possibility is to create a
process type restriction, that allows the user to specify the
process class of the port. The code generated for a port could
then use the process type restriction to optimize the produced
code. There are, of course, other ways to cause a compiler to
produce different code (e.g. metacommands), and the advan-
tages of each must be examined.

The query, response, and order statements are used to
allow one task to interrupt another task. When a task needs
information from another task, it queries the other task
through a port. This is similar to an exception being raised in
Ada or PL/I, except it happens across task boundaries. This
cannot be simulated by using multiple tasks, because tasks
cannot share common variables. The appropriate response
handler at the other end of the port is then executed. Two
differences between the query - response mechanism and
Ada exceptions are: (i) Ada does not allow parameters to be
passed, and (ii) after an exception handler has executed, con-
trol does not continue from the interrupted point. The query
is thus similar to a remote procedure call, except it preempts
$.he current thread of control. The query causes the
response to be raised in the task that owns t5e port P o r t
name, provided the user is doing the query. Alternatively, but
less useful, the owner could execute the query and one of the
users would be interrupted. (A parent could query its children
to check their status.)

A technical problem with the query - response is that
in a real-time system, a more urgent operation should not be
interrupted by a query. Silberschatz [SILB84] has proposed
an order statement, which is remotely similar to what we
need. His order statment is used in CELL to specify the
priorities of threads of execution as they become unblocked.
The order statement is essentially a directive to a user pro-
grammable scheduler, The order statement contains a list of
the different sections of a task arranged according to their
priorities; a preemption requested by a query will Occur
depending on the order. The sections of a task that appear
in the order statement are the response handlers, pro-
cedures, functions, and background code. This gives the pro-
grammer real-time control over the different sections of a task,
which is needed in an IMRS and likely to be needed in other

915

process control systems.
The last primitive is the wsitfor primitive, and is needed

to allow more than two tasks to synchronize and communi-
cate. Consider, for example, how to perform three way syn-
chronization and communication with the other primitives.
One approach is to have one task issue two consecutive
receives. The other two tasks would then issue sends to this
task via a port. This simple soluticn unfortunately has flaws:
(i) the asymmetry allows communications only between the
sending tasks and the receiving task. Even though three tasks
are synchronized, the two sending tasks cannot directly com-
municabe. (ii) The solution is not very safe, since accidental
misuse could easily occur if the wrong tmk entered the three-
way synchronization by performing a send. (iii) The source
code in all three tasks does not make clear what is really
intended. (iv) This method is inefficient as the number of
tasks grows. The problem is that the send-receive is
designed for a two-way rendezvous only. The waitfor primi-
tive is our proposed primitive to perform n-way rendezvous.

A call to waitfor includes a message, a function name,
and a list of the tasks with which to synchronize. The seman-
tics are as follows. When a task executes a waitfor, it
remains blocked until all the tasks named in its waitfor list
have executed a waitfor. When a set of tasks unblock
because their waitfor list become satisfied, the named func-
tion in each waitfor would be executed. When the function is
completed, execution of the task continues after the waitfor.
The functions would have read access to all the messages
pooled by the tasks involved in the synchronization via the
waitfor. The rational behind having these functions is that
each task will have to respond differently according to the
messages. The function would be written by the user, and
would return a single message by operating on the pooled mes-
sages. To be correctly used, if task A executes a wsitfor, it
should not be allowed to either unblock other tasb yet remain
blocked or unblock itself yet have a task on one of the
unblocking tasks’ waitfor lists still remain blocked. Since it
is too costly t o insure this feasible a t run-time, the user is
made responsible for avoiding deadlock and insure correct
usage.’

Note that this is not a language primitive, but a system
call, that provides an easy-to-use method of multitask com-
munications and synchronization. Further, note that since
many tasks are involved in a symmetrical rendezvous, ports
are not applicable, so the waitfor does not use ports. To
implement the waitfoor, a message will have to be sent to
every processor that contains a task in its waitfor list. o n e
message would originate, and be relayed among the necessary
processors. Except for an unavoidable framing window, the
synchronization occurs simultaneously. Once again, i t is
intended that each task unblocking because of another task
executing a ws i t for is named in all the wsitfors of the
unblocking tasks. That is, each unblocking task has identical
wai t for lists. To require this would need run-time testing, and
thus the looser semantics are preferred.

How should we handle nondeterminism and dequeueing of
messages? To obtain nondeterminism, Ada’s select statement
is preferred. We do not really w a n t complete nondeterminism
in an IMRS, since we must always be able to predict what will
occur in a given situation. Thus, if more than one lelect alter
native is open (Le., ready to communicate), we choose the mes
sage in FIFO fashion from the highest priority port. (See the

port priority discussion in Section 3.1.) Silberschatz [SILBSI]
prefera complete nondeterminism in dequeueing messages from
a port, This will not work in a real-time system. Alternatively,
Gentleman[GENT81] pJoposes that port priorities can be simrr-
lated by using receiTre-specific messages (2-way naming), or by
using an additional task to receive the message. These alter-
natives can be used, but lead to more unstructured solutions.
The queueing and dequeueing should be handled by a sys-
tematic set of rules, not by burdening the application pro-
grammer. If ports do not have a priority, they are given a
default priority lower than any user-specifiable priorities for
ports. This scheme will cost siightly more to implement than
nonpriority ports, because the run-time efficiency can be
spared at a cost of extra storage by appropriately using
pointers into multiple linked lists.

5 . CONCLUSION
In this paper we have explored the various communica-

tion demands brought about by five different types of
processes, independent, loosely- coupled, tightly-coupled, serial-
i zed motion, and work-coupled procesaes. In order to support
the module architecture in [SHIN84], we have developed a set
of communications and synchronization Primitives needed for
an IMRS. We have also completed but not included here (due
to the space limitation) a concurrent language syntax using the
selected primitives based on portdirected communications.
The development is based on both the distinct, complex nature
of an IMRS and our knowledge of the existing concurrent
Languages.

Undoubtedly, the IMRS will play a significant role in
future robotics and automation. Integrating all the workcells
and devices leads to improvement of both manufacturing pro-
ductivity, reliability, and safety. We feel that the primitives
presented in this paper (and the language syntax completed
but not included here) along with the module architecture in
[SHIN841 should form a g o d foundation for developing such
an IMRS.

REFERENCES

[ANDR83] Andrews, G.R., and Schneider, F.B., “Concepts and
Notations for Concurrent Programming,” A CM
Computing Surwegs, Mar. 1983, vol. 15, no. I , pp.
3-43.

[BIRR841 Birrell, A., and Nelson, B., “Implementing Remote
Procedure Calfs,” AGM Transaction8 on Computer
Systema, YO!. 2, no. I , Feb. 1984, pp. 38-59.

[BONN821 Bonner, S., and Shin, K. G. , “A Comparative
Study of Robot Languages,” Computer, vol. 15, no.
12, Dec. 1982, pp. 82-96.

[BROW841 Brown, A. D., “Using Communications Standards
to Link Factory Automation Systems“ Machine
Design, Aug. 1984, pp 123-126.

names. Rather than pjving a list o l task names to waitfor, the record could
’It may even be possible to define a predefined anay or record of task

be given. This could speed run-time efficiency, and may help d e b u d w .

916

[CHER84] Cheriton, D. R., “The V Kernel: A Software Base
for Distributed Systems,” IEEE Software, Apr.
1984, pp. 19-42.

[DoD82] U. S. Dept. of Defense, “Reference Manual for the
Ada Programming Language,” July 1982.

[GENT811 Gentleman, W. M., “Message Passing Between
Sequential Processes: the Reply Primitive and the
Administrator Concept,” Software Practice and
Ezperience, vol. 11, 1981, pp. 435-466.

[HANS771 Hansen, P. B., The Architecture of Concurrent
Programs, Prentice-Hall, Inc., 1977.

[HANS781 Hansen, P. B., “Distributed Processes: A Con-
current Programming Concept,” Communicationr
of the ACM, V01.21, No. 11, Nov. 1978, pp. 9 3 4
941.

[HOAR781 Hoare, C. A. R., “Communicating Sequential
Processes,” Communicationa o j the ACM, Aug.
1978, pp. 666-677.

[1BM81) IBM Corp., IBM Robot Systernll: AML Conceptr
and Uder’r Guide, Publication No. GA34-0180-1,
1981.

(MUJT791 Mujtaba, S., and Goldman, R., “AL Usen’
Manual,’’ SAIL Report, Jan. 1979.

[ROBEM] Roberts, E. S., et. al., “Task Management in Ada -
A Critical Evaluation for Real-Time Multiproces-
sors,” Software Practice and Ezperience, vol. 11,
1981, pp. 1019-1051.

[SHIN841 Shin, K. G., Epstein, M. E., and Volz, R. A., “A
Module Architecture for an Integrated Multi-Robot
System,” Technical Report, RSD-TR-10-84, Robot
Systems Division, Center for Research and
Integrated Manufacturing (CRIM), The University
of Michigan, Ann Arbor, MI, July 1984. Also
appeared in the Proc. o j the 28th Hawaii Int 1 C d .
on Sptern Scienccr, Jan. 1985.

(SILBBl] Silberschatc, A., “Port D m t e d Communicdon,”
The Computer Journal, vol. 24, no. 1, 1981, pp. 7 8
82.

[STEU84] Steualoff, H. U., “Advanced Real-Time Languages
for Distributed Industrial Process Control,” Gom-
pufer, Feb. 1984, pp. 37-48.

[STOT82] Stotts, P. D. Jr., “A Comparative Study of Con-
current Programming Languages,” ACM SIGPLA N
Notices, vol. 17, no. 9, Sept. 1982, pp. 76-87.

[WEGN83] Wegner, P., and Smolka, S. A., “Processes, Tasks,
and Monitors: A comparative Study of Concurrent
Programming Primitives,” IEEE Transaction8 on
Sojtware Engineering, vol. SE-9, no. 4, Jul. 1983,
pp. 446482.

W L S 8 l j Welsh, J., and Lister, A., “A Comparative Study of
Task Communication in Ada,” Software Practice
and Ezperience, vol. 11, 1981, pp. 257-290.

[SILB84] Silberschatz, A., “Cell: A Distributed Computing
Modularication Concept,” IEEE Trancactionr on
S+arc Engineering, ~ d . SEIO, n0.2, Mu. 1 W ,
pp. 178185.

917

