
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 8, AUGUST 1985

Ensuring Fault Tolerance of Phase-Locked Clocks

C. M. KRISHNA, KANG G. SHIN, AND RICKY W. BUTLER

Abstract-Processors within a real-time multiprocessor system must
be synchronized with as little overhead as possible. Although synchron-
ization can be achieved via both software (e.g., interactive convergence
and interactive consistency algorithms) and hardware (e.g., multistage
synchronizers and phase-locked clocks), phase-locked clocks are most
attractive due to their small overheads.

Despite the fact that synchronization of the multiprocessor system with
phase-locked clocks is totally different in nature from the interactive con-
sistency algorithm [1], we prove that it must satisfy the same condition
N . 3m + 1 where N is the total number of clocks in the multiprocessor
system and m is the maximum number of faults tolerable. We also present
results showing how to design phase-locked clocks so as to be impervious
to up to a given arbitrary number of malicious failures.

Index Terms -Interactive consistency and interactive convergence al-
gorithms, malicious failure, phase-locked clocks, synchronization.

I. INTRODUCTION

Synchronizing processors reliably is complicated because indi-
vidual faulty processors or clocks can act maliciously or dis-
ruptively. For example, a faulty clock might send conflicting time
signals to different receivers. Guaranteeing fault tolerance in the
face of such failures is nontrivial.

There are four well-known ways of keeping a system syn-
chronized despite malicious failures: the interactive consistency [1]
and the interactive convergence [2] algorithms, the multistage syn-
chronizer [5], and phase-locked clocks [8]. The first two of these
impose a significant overhead when a moderate-to-large system is
being synchronized. Estimates of the synchronization overhead in a
computer such as SIFT [2] show this dramatically (see [4] and
Fig. 1). By comparison, the time overheads of the multistage and
phase-locked clock designs are negligible. However, the multistage
arrangement requires too much hardware to be practical in large
systems. This paper concentrates on showing how to synchronize
large systems using phase-locked clocks.
Expanding phase-locked clocks is important for two reasons.

First, to synchronize a large number of processors with low over-
head, it is best for fault-tolerance purposes to have each processor
carry its own clock and for these clocks to be synchronized, rather
than have a stand-alone fault-tolerant clock providing timing signals
to the systen. Second, when one requires the kind of reliability
called for in aerospace or other life-critical applications, large
clocks are called for to ensure adequate fault tolerance.

Phase-locked clocks were first used to ensure that the processors
of FTMP [6] operated in lock step. We consider here a total of N
clocks to be synchronized in the face of up to m faulty clocks. The
basic theory behind their operation is simple. In Fig. 2, we provide
a schematic diagram of an individual clock. Each clock consists of
a receiver, which monitors the clock pulses of the N - 1 other

Manuscript received December 1, 1983; revised March 1, 1985. This work
was supported in part by NASA under Grant 1-296. Any opinions, findings,
and conclusions or recommendations expressed in this correspondence are
those of the authors and do not necessarily reflect the views of NASA.

C. M. Krishna was with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109. He is now with
the Department of Electrical and Computer Enginieering, University of Massa-
chusetts, Amherst, MA 01102.

K. G. Shin is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109.

R. W. Butler is with NASA Airlab, NASA Langley Research Center, Hamp-
ton, VA 23665.

S
d
N

..

g8-

z

C
w
Xc
OPc.
U
C.

d
N

z

1%

2

p =1IXp101--3p =-1x1l 0

p= 1x10-

coo.o
N&M?F PROC4I8RS 50.00

Resynchronization Interval = 100 ma
Fig. 1. Overhead of interactive convergence algorithm.

clocks in the arrangement, and these are used to generate a reference
signal. By comparing this reference to its own pulse, the receiving
clock computes an estimate of its own phase error. This estimated
phase error is then put into an appropriate filter, and the output of
the filter controls the clock oscillator's frequency. By thus control-
ling the frequency of the individual clocks, they can be kept in phase
lock and therefore synchronized for as long as the initial phase error
is below a prescribed bound, i.e., for as long as the clocks start
reasonably in Step and their drifts are sufficiently low. A discussion
of clock stability can be found in [7].
The arrangement for N = 4, m = 1 is, to our knowledge, the

only phase-locked clock constructed [8]. The four-clock arrange-
ment is simple enough for a proof of correctness to be obtained
by brute-force enumeration of all possible actions of the single
malicious clock. Expanding the clock is nontrivial. In fact, if we
try to allow for m =' 2, 3 by'expanding the system arbitrarily
without sufficient care, synchronization can be lost. We provide an
example of this in Section III.

The correspondence is organized as follows. In Section II,'we
present preliminary notation' and definitions. In Section III, we
show how damaging malicious failures can be. Our main resgult'is
contained in Section IV where we prove two important theorems
related to the design of phase-locked clocks so as to tolerate up to
a given arbitrary number of faults, and we conclude with Section V.

II. NOTATION AND DEFINITIONS
The following notation and definitions are used in this correspon-

dence.
Definition 1: If the overall system of clocks is properly syn-

chronized, all individual nonfaulty clocks must agree closely with

0018-9340/85/0800-0752$01.00 © 1985 IEEE

752

1EEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 8, AUGUST 1985

External Clock
Signals

Clock
Output

Fig. 2. Component of a phase-locked clock.

each other. A well-synchronized system thus has global clock cy-
cles. Global clock cycle i is the interval between the ith tick of the
fastest nonfaulty clock (i.e., the nonfaulty clock that has its ith tick
before those of all the other nonfaulty clocks) and the (i + l)th tick
of the fastest nonfaulty clock. For brevity, we shall denote global
clock cycle i by gcci.

Definition 2: Each of the clocks "sees" through its receiving
circuitry the ticks of the other clocks. These ticks, together with the
receiving clock's own tick, can be totally ordered in any gcci by
the relation "prior or equal to." Such an ordered set, called a tick
sequence, for clock a in gcci is denoted by SX. We shall frequently
drop the superscript for convenience: where this is done, it will be
understood that we are talking about some gcci.

If a nonfaulty clock c does not receive a tick from clock d within
a given timeout period in any global clock cycle, the tick for d
is arbitrarily assumed by c to be at the end of that timeout period.
The tick sequence of every nonfaulty clock therefore has exactly
N elements.

Definition 3: If clock a has clock b as its reference in some gcci,
it is said to trigger on b in that gcci.

Definition 4: Given the various triggers, we can draw a directed
graph with the clocks as the vertices, and the directed arcs reflecting
the relationship "triggers" in some gcci. Such a graph is called the
trigger graph. For example, in Fig. 3, a triggers b and c, and is
itself triggered by d, while d is triggered by b. A clique of clocks
is a component [9] of the trigger graph, i.e., a set of connected
vertices. In Fig. 3, there are two cliques: {a, b, c, d} and {e,f, g}.

Notation: G and NG are the sets of clocks and nonfaulty clocks,
respectively, in the system. There are N clocks in all, and up to m
failures must be sustained.

Definition 6: A partition of G is defined as P = {GI, G2} where
G1 and G2 are subsets of G with the following properties.

i) G= G U G2,
ii) GfnG2 nNG=cf,
iii) GnfNG# ,i = 1,2.
From i), each clock must belong to at least one of G1 and G2. From

ii), only faulty clocks may belong to both GI and G2. From iii), there
must be at least one nonfaulty clock in each of Gi and G2.

Definition 7: A clock a is said to be faster than a clock b in tick
sequence S if a precedes b in S. In a partition P = {G1, G2}, G1 is
said to be faster than G2 if every nonfaulty clock in GI is faster than
every nonfaulty clock in G2.

Notation: Given a partition P = {G1, G2}, NG, and NG2 are the
nonfaulty clocks in GI and G2, respectively. By Definition 6, nei-
ther NG1 nor NG2 can be empty, and NG, n NG2 = 4).

Definition 8: Cliques A and B (of clocks) are said to be non-
overlapping if the nonfaulty clocks of A are either all faster than
those of B, or vice versa.
Notation: Denote the position of a clock c in its own tick se-

quence S' in gcci by p'. Again, we shall frequently drop the super-
script for convenience. The reference signal (i.e., the trigger) is a
function ofN and ofp -. It is denoted byfc(N). By this, we mean that
clock c triggers on the fpc(N)th signal in Sc, not counting itself.

For the system to operate correctly, the nonfaulty clocks must be

b

d

e f

g
Fig. 3. Trigger graph: an example.

synchronized, i.e., have their ticks close together. This can only be
if nonoverlapping cliques are not allowed to form. Clearly, A and B
are nonoverlapping cliques if every nonfaulty clock in A is faster
than all nonfaulty clocks inB (or vice versa), and no nonfaulty clock
in either clique triggers on a clock in the other.

Also, correctness should imply that the clocks keep good time,
i.e., the length of every global clock cycle should be about that
of an ideal clock cycle. This dictates that a reference clock should
be either a nonfaulty clock, or a faulty clock sandwiched between
nonfaulty clocks. If this is not the case, and at least one nonfaulty
clock triggers on a faulty clock slower or faster than all the nonfaulty
clocks, and if there are no nonoverlapping cliques, then the entire
set of nonfaulty clocks would be abnormally slowed down or sped
up. We, therefore, have the following conditions of correctness.

Definition 9: Each of the following conditions of correctness
must be satisfied in gcci if the system is to be correctly operating in
every gccI.
C1. For all partitions P = {Gl, G2} of the set of clocks G, in which

the nonfaulty clocks in Gi are all faster than those in G2, each
of the following (K1 and K2) must apply.
Ki. If, in gcci, all clocks in NG, trigger on clocks in GI, then

there is at least one clock in NG2 that triggers on a clock
in G1. Furthermore, if no clock in NG2 triggers on a clock

753

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 8, AUGUST 1985

in NG,, at least one clock k E NG2 must trigger on a
faulty clock h E G, such that in the tick sequence Sk
there is at least one clock r E NG1 that is slower than the
clock h.

K2. If, in gcci, all clocks in NG2 trigger on clocks in G2, then
there is at least one clock in NG1 that triggers on a clock
in G2. Furthermore, if no clock in NG1 triggers on a clock
in NG2, at least one clock k E NG1 must trigger on a
faulty clock h E G2 such that in Sk there is at least one
clock r E NG2 that is faster than h.

C2. If a nonfaulty clock x triggers on a faulty clock y, then there
must exist nonfaulty clocks z1 and Z2 such that z1 is faster than
or equal to y, and y is faster than or equal to z2. Either z, or z2
may be x itself.

Finally, we assume that the transmission of clock signals through
the system takes negligible time and that the clocks are completely
connected. This ensures that all nonfaulty clocks are seen by all
clocks in the same mutual order.

III. MALICIOuS FAILURE AND CORRECT SYNCHRONIZATION
As remarked in Section I, the clockN = 4, m = 1 is the only one

actually constructed.
Unfortunately, if we try to allow form = 2, 3, by expanding

the system arbitrarily without sufficient care, the conditions of cor-
rectness can be violated. In fact, it is even possible for a system to
contain an arbitrarily large number of clocks and still be vulnerable
to just two malicious failures.
To see this, consider the following example. Let us choose, for

each clock y in the system, f,,(N) as the medium clock signal in the
tick sequence, not counting clock y. IfN is odd (and there is thus an
even number of "other" clocks), choose the slower of the two middle
clocks. Then, f,,(N) is only a function of N. We therefore drop the
subscript for this example. Choosing the median signal is certainly
good intuition.

Let there be only two faulty clocks, xl and x2, and n = N - 2
nonfaulty clocks al,**, an.
Case 1: N ' 7. Consider some gcci. Assume that ak is faster

than a, in gcci if k < 1. Now, let xi and x2 present themselves as the
fastest two clocks to al,*, a,, and as the slowest two clocks to the
other nonfaulty clocks, i.e., aP+, ,an, where p = Fn/2] =
f(N) - 1. Then, the set of tick sequences can be represented as
in Fig. 4.

Recalling that a clock triggers on the f(N)th tick in its tick se-
quence not counting itself, we can draw the trigger graph as in
Fig. 5. It follows that {al,I * , ap} and {ap+±,* ,an} will be two
nonoverlapping cliques, no matter how large n may be. It is easy to
work out the case for N = 7 to convince oneself of this fact.

Case 2: N ' 7. This is trivial, and showing that the system is
incapable of sustaining even two maliciously faulty clocks is left to
the reader.

This has been a cautionary tale of the unbridled use of intuition
in designing phase-locked clocks. Assured now that a more careful
approach is needed, we turn in the following section to showing how
to expand phase-locked clocks.

IV. MAIN RESULT
Our job is to i) find the lower bound on the size N of a system

of clocks that must sustain up to m maliciously faulty clocks, and
ii) find the functions fx(N) for x' = 1,.. N.
We begin with the following two lemmas.
Lemma 1: Condition C2 is satisfied if and only if there exist

functions f,(N) for x = 1, N,N, such that

min{m,x - 1} <f(N) < max{N - m,x}. (1)

Proof: Let k be a nonfaulty clock such that pk = x. We
must show that (1) holds for all x for which Pk is defined if and only
if condition C2 holds.
Suppose that there exist functions fx(N) for x = 1, * * *, N satis-

Fig. 4. Tick sequence for example in Section III.

al
a2

0

p +2

Fig. 5. Trigger graph for tick seq'uences in Fig. 4.

fying (1). This implies min{m,x - 1} + 1 < max{N - m,x} for
all x E {1,2,. ,N}, leading to N > 2m + 1. Hence, it is suf-
ficient to consider the following three cases.

i) x M:
Clearly, max{N - m,x} = N - m, min{m,x -1} = x - 1,

and therefore x - 1 < f(N) < -m. If the reference clock is
nonfaulty, we have nothing to prove. If it is faulty, then since there
are at most m faulty clocks, there must be at least one nonfaulty
clock slower than the reference clock from the right-hand half of the
inequality, fx(N) < N - m. Also, from the left-hand half of the
inequality, fi(N) > x - 1, and since clock k is nonfaulty, there is

Sa: XIX2ala2 a.
S 2: X1x2ala2 * a

Sa3: xx2aa2 n

Sa xlX2ala2 * a.

Sa +1:a1a2 anx 1x2

S 3 a 12a-2 an x 1 2

Sa ala2 * anxlx2

754

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 8, AUGUST 1985

a nonfaulty clock (i.e., k itself) faster than the reference clock.
C2 is satisfied.

ii) N - m 2 x > m:
min{m,x - 1} = m, max{N - m,x} = N - m, and therel

m + 1 ' fx(N) N - m - 1. Since at most m faulty clocks
ist, if the reference clock in Sk were faulty, it must appear in Si
slower than at least one nonfaulty clock (the right-hand half of
inequality) and faster than at least one nonfaulty clock (the left-h
half of the inequality), and C2 is satisfied.

iii) N . x > N -m:
min{m,x - 1} = m, max{N - m,x} = x, and m + I

fx(N) ' x - 1. As with the previous cases, there must appear i
at least one nonfaulty clock that is faster than the reference clc
if the reference clock is faulty. Also, since k is nonfaulty,
appears in the xth (i.e., pkth) position, there is at least one nonfa
clock, in particular clock k, that is slower than the reference cl
in Sk, thus satisfying C2.

Conversely, supposefx(N) s min{m,x - 1}. Then, C2 is
lated when faulty clocks appear in positions 1, .. , fx(N) of
Similarly, if f,(N) 2 max{N - m, x}, C2 is violated when fai
clocks appear in positions fx(N) + 1,.* , N of Sk.'

Q.E
Lemma 2: If all clocks in NG1 trigger only on clocks in G1 (wI

the notation is the same as in Definition 9), then the following
equivalent.

i) qi 2 minkeNG2 fpk() where qi is the number of nonfa
clocks in G1.

ii) Ki is satisfied.
Proof:

i) implies ii): If i) holds, then it is easy to see that no matter 1
the up to m faulty clocks in G arrange themselves, Ki is satisfi

ii) implies i): Suppose, to the contrary, that qi < minkE
fpk(N). Consider the nonempty set L = {y :y E NG2 and fpY(N
minkeNG2 fPk(N)}. Assume that there are i c m faulty clocks in
Since the faulty clocks may present themselves in any positioi
any tick sequence, consider the case where they present themsel
in the tick sequence of every y E L in the q1 + 1, * *, q,
positions. Then, there is no nonfaulty clock in G1 that is slower t
the reference clock of any clock in NG2, a contradiction.

Q.E
The two theorems below yield the main result of this corresp

dence.
Theorem 1: To ensure that, despite up to m malicious failul

the conditions of correctness are satisfied, the system must h
N . 3m + 1 clocks.

Proof: We will only consider here the case of partitii
P = {G1, G2} in which all clocks in NG1 trigger on clocks in G1.
other case (i.e., K2) can similarly be dealt with.

Let there be q1 and q2 clocks, respectively, in NG1 and NG2-
M {y :y E NG1 andfPY(N) = maxkNGlfpk(N)}. Let i < m be
number of faulty clocks that belong to G1. Then, the assumption
all nonfaulty clocks in G1 trigger on clocks in G1 is equivalen
saying that one of (2) and (3) must apply:

qi + i 2 maxfPk(N) + 1 = fy(N) + 1,
kENG1

which applies if there exists at least one py, y E M, such
py < fpy(N). The addition of 1 follows from the fact that clock y d
not count itself when counting to fpy(N). If py . fpY(N) for
y E M, (3) applies:

qi + i 2 max fpk(N).
kENGI

First consider the case where (2) applies. The condition that
(more specifically, KI) holds implies, from Lemma 2, that

q, 2 min fp,(N).
kENG2

'Once again, the addition of I occurs because a clock does not count it
when counting to f,(N).

Since this must be true for all partitions of G, we have for all
q, E {1, ,N -1:

q.2 max fpk(N) - i + 1
kENGI

if q, . minkoNG2 fpk(N). Hence, K1 can be written as

For all q, = , ,N -1,

{ql . max fpk(N) i + 1 D qi ' minfPk(N)}.
kENGI kENG2

In particular, this is true for q, = maXkeNGl fpk(N) -i + 1. Thus,

max fpk(N) - i + 1 2 min fp,(N)
kENGI kENG2

or

maxfPk(N) - min fpk(N) . i - 1.
kENG1 kENG2

(5)

Recall that this is true if (2) applies. Similarly, if (3) applies, we
have from an identical argument

max fpk(N) - min fpk(N) 2 i.
kENGI kENG2

(6)

Equations (2)-(6) must hold for all possible i. Since there are at
most m faulty clocks, we must have

max fpk(N) - min fp,(N) . m - 1
kENGI kENG2

if (2) applies, and

max fPk(N) - min fPk(N) . m
kENGI kENG2

(5')

(6')

if (3) applies.
We first consider the case where (2) applies. We claim that it

implies that N > 3m.
To see why, let y be the slowest clock inM and z the slowest clock

in L (withL defined as in Lemma 2). Then, due to Lemma 1 and (5')
the following inequality must hold:

max{N - m,py} > max fp,(N) . m - 1 + min fpk(N)
kENGI kENG2

> m - 1 + min{m,p., - 1}. (7)

Then up to m faulty clocks in the system can arrange themselves in
any order. In particular, they can so order themselves in S, that
p, - N - m, and so order themselves in S, that pz > m. Since
(7) must hold always, no matter what the faulty clocks do, we
must have

N - m > max fp,,(N) 2 m -1 + min fPk(N)
Let kENGI kENG2

the (m + (m + 1)
that from which we arrive at the inequality
it to

N > 3m.

(2) Recall that this applies whenever (2) holds. If, instead,

that plies, we can similarly show that
loes N > 3m + 1.

(8)

(9)

(3) ap-

(10)

Since we seek the smallestN to satisfy the conditions of correctness,
we have done if we can show that there exist functions f,(N) such

(3) that (2) always applies (and therefore (3) never applies), and for
C1 which (8) is satisfied. But, we can always constructf(N) to i) be

monotonically nonincreasing functions of x, and ii) satisfy (8): an
example of such a construction is provided in the statement of

(4) Theorem 2 below. Hence, (2) always applies, and N 2 3m + 1 is
the necessary condition.
The case when all clocks in NG2 trigger on clocks in G2 can be

tself similarly treated.
Q.E.D.

755

7U TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 8, AUGUST 1985

TABLE I
COMPARISON OF SYNCHRONIZATION METHODS

Technique Min.Cluster I/O Ports Overhead

Expanded Phase- 3m +1 gm2+3m Negligible
Locked Clock

Multistage .Synchroniz- 2m2+3m +1 8m3+1Bm2+10m +2 Negligible
ers (Davies and Wakerly

Inteiactive Conver- 3m +1 gmi2+3m Considerable
gence Algorithm (Gold-
berg, et al.)

m = number of faulty processors accommodated

Theorem 2: IfN 2 3m + 1 andf,(N) = {2m+ if x <N - m,
then the conditions of correctness are satisfied.

Proof: fx(N) as defined here satisfies Lemmas 1 and 2 and is
monotonically nonincreasing in x. Clearly, C2 holds. Also, it is easy
to see that if N > 3m, and (2) implies (4), then case Kl in
Definition 8 will hold. We therefore only have to show that the
definition off,(N) as given above satisfies (4) if (2) is satisfied. This
can easily be verified by a direct substitution.

Case K2 can be similarly seen to hold.
Q.E.D.

It should be noted that the set of functions fx(N) is not always
unique. From the proofs of Theorems 1 and 2, the following in-
equalities are sufficient:

i) m + 1 '5 fx(N) :' N -m -1 for all x = 1, * N,

ii) fx(N) > m-1 + fN-m(N) for all x < m +,

iii) fN .(N) -f(N) fm (N) forN-m > x > m + I,

iv) f1(N) ff(N) iffii j.

The intervals x . N - m and x c m + 1 arise from the up to m
faulty clocks in the system. 'All that we can tell about the fastest
nonfaulty clock g in the system [this clock must have the maxi-
mum value off,(N)] in clock g's tick sequence is that it is in the first
m + 1 clocks in that tick sequence. Similarly, all that we can tell
about the position of the slowest nonfaulty clock s in the system
[which must have the minimum value of f,(N)] is that it occupies
a place in the last m + 1 clocks. This leads at once to the intervals
x 2 N-m and x - m + 1.

It is interesting to note that if conditions Cl and C2 are both
satisfied, and the functions fx(N) are monotonically nonincreasing
in x, then a stronger condition than C2 automatically holds.

Corollary: If the conditions of correctness are satisfied, with the
fx(N) being defined as monotonically nonincreasing functions of x,
then the following condition C3 holds.
C3. Every nonfaulty clock necessarily triggers on either a nonfaulty

clock or a faulty clock that is sandwiched between the other
nonfaulty clocks.
Proof: Now, C3 follows immediately from C2 for all but the

fastest and slowest nonfaulty clocks.
Consider the fastest nonfaulty clock. In the course of proving

Theorem 1, it was established that N - m > fx(N) > m for all
x = 1, ,N, and that maxkeG fpk(N) - minkEG fpk(N) . m - 1
leading to 2m as the smallest value for maxkENGfPk(N) whereNG C G
is the set of nonfaulty clocks. From the monotonic nature (inpk) of the
fpk(N), the trigger for the fastest nonfaulty clock must lie in the inter-

val 2m + 1, * * ,N - m. But, since N . 3m + 1, any faulty clock
in this interval must be sandwiched between nonfaulty clocks.
The proof for the slowest nonfaulty clock is similar.

Q.E.D.

V. DiSCUSSION

In this correspondence, we have shpwn how to construct phase-
locked clocks that operate correctly in the face of up to a given
arbitrary number of malicious failures. As we saw in Section I, the
high overhead of the other methods of synchronization -time over-
head for software synchronization (i.e., interactive consistency and
interactive convergence algorithms) and hardware overhead for the
Davies and Wakerly arrangement -makes phase-locked clocks very
attractive candidates for fault-tolerant clocking arrangements due
to their small overheads. Table I is a comparison of the techniques for
synchronization in the face of malicious failure.

It would be interesting to make a comparative study of the various
algorithms that handle malicious failure and to try to establish a
unified theory from which the proofs for the interactive convergence
and interactive consistency algorithms, as well as those of Theorems 1
and 2 of this correspondence, would follow. We believe that theN >
3m requirement, which is common to all three algorithms, might be
a fruitful starting point in the search for such a unified theory.

REFERENCES

[I] M. Pease et al., "Reaching agreement in the presence of faults," J. ACM,
vol. 27, no. 2, pp. 228-234, Apr. 1980.

[2] J. Goldberg et al., "Development and analysis of the software imple-
mented fault-tolerance (SIFT) computer," NASA Contract Rep. CR-
172146, June 1983.

[3] J. H. Wensley et al., "SIFT: Design and analysis of a fault-tolerant com-
puter for aircraft control," Proc. IEEE, vol. 66, pp. 1240-1255, Oct.
1978.

[4] C. M. Krishna, K. G. Shin, and R. W. Butler, "Synchronization and fault-
masking in redundant real-time systems," in Dig. Papers, FTCS-14, June
1984, pp. 152-157.

[5] D. Davies and J. F. Wakerly, "Synchronization and matching in redundant
systems," IEEE Trans. Comput., vol. C-27, pp. 531-539, June 1978.

[6] A. L. Hopkins et al., "FTMP -A highly reliable fault-tolerant multi-
processor for aircraft," Proc. IEEE, vol. 66, pp. 1221-1239, Oct. 1978.

[7] A. W. Holt and J. M. Myers, "An approach to the analysis of clock net-
works," NASA Contract Rep. CR-166028, Nov. 1982.

[8] T. B. Smith, "Fault-tolerant clocking system," in Dig. Papers, FTCS-J1,
1981, pp. 262-264.

[9] F. Harary, Graph Theory. New York: Addison-Wesley, 1969.

Note on a Proposed Test for Random Number Generators

GEORGE MARSAGLIA

Abstract-A recently proposed test for uniform random number
generators is based on the mean and variance of the outcome of a sequence
of iterations. This note points out that many nonuniform random number
generators would pass such a test, and derives an improved test based on
the exact distribution of the outcome.

Manuscript received February 1, 1984; Tevised January 1, 1985.
The author is with the Department of Computer Science, Washington State

University, Pullman, WA 99164.

0018-9340/85/0800-0756$01.00 C 1985 IEEE

756

