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suboptimal Control of Industrial  Manipulators 
with a Weighted  Minimum Time-Fuel Criterion 

Absstracf-Even if a manipulator does not have to  follow a prespecified 
path (i.e., a time history of  position and velocity) due to the complexity 
and nonlinearity of the manipulator dynamics, control of manipulators 
has been conventionally divided into  two subproblems, namely path 
planning and path tracking, which are then separately and independently 
solved.  This may result in mathematically tractable solutions  bot cannot 
offer a solution that utilizes manipulators’ maximum capabilities (e.g., 
operating them at their maximum speed). 

To combat this problem, we have developed a suboptimal method for 
controlling manipulators that provides improved performance in both 
their operating speed and use of energy. The nonlinearity and the joint 
couplings  in the manipulator dynamics-a major hurdle in the design of 
robot control-are handled by a new concept of averaging the dynamics 
at each sampling interval. With the averaged dynamics, we have derived a 
feedback controller which has a simple structure allowing  for  on-line 
implementation with inexpensive mini- or microcompnters, and offers a 
near minimum time-fuel (NMTF) solution, thus enabling manipulators to 
perform nearly up to their maximum capability and efficiency. 

As a demonstrative example, we have simulated the proposed control 
method with a dynamic model of the Unimation PUMA 600 series 
manipulator on a DEC VAX-11/780. The simulation results agree with 
the expected high performance nature of the control method. 

R 
I. INTRODUCTION 

ECENTLY, robotics has emerged as an important field in 
engineering mainly because of its high potential for 

improving both the goals of manufacturing productivity and 
working environment. Industrial manipulators are computer- 
controlled mechanical devices and are the primary component in 
contemporary automation systems. It is therefore essential to 
design optimal manipulator systems with a suitable performance 
criterion which  is consistent with the foregoing goals. 

The performance of manipulators can be bettered by improving 
their mechanical construction and/or by using more effective 
controllers. In this paper we are only concerned with the latter. 
Although manipulator control problems can in general be classi- 
fied into four different types depending upon  if 1) they have to 
follow a prespecified path and/or 2) they operate in a collision- 
free workspace (see [ 101 for details), there are many applications 
which do not require robotic manipulators to strictly follow a 
prescribed path and,  also, collision with obstacles can  be avoided 
by specifying a few appropriate intermediate points in  the 
workspace for the manipulator to pass through [l 11. Conse- 
quently, in such a case the manipulator control problem can  be 
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converted to a more general form in which the manipulator is 
given freedom to move along any  path between any two given 
intermediate or end points. 

In view  of the preceding fact,  for many cases manipulators are 
desired to move from one point to another as fast and  with as little 
energy as possible. Consequently, it is important to design an 
efficient controller which requires less time and energy, thus 
pushing the manipulators to be operated at their maximum 
efficiency, i.e., with maximum operating speed and minimum 
energy. This consideration naturally leads to an optimal control 
problem of robotic manipulators with a minimum time-fuel 
criterion. However, it is in general very difficult to obtain an 
exact closed-form optimal solution to the problem since the 
dynamics of manipulators are highly nonlinear coupled functions 
of their positions and velocities, and also of their payloads. There 
are two alternative approaches conceivable for this problem: 

1) off-line minimum time path planning followed by on-line 
path tracking, and 

2) derivation of a suboptimal controller with realistic approxi- 
mations of the manipulator dynamics. 

For the first approach, when an optimal path planner is 
available, one can use one of  many well-known, on-line path 
tracking algorithms [4], [5 ] ,  [9], which drive the manipulator to 
follow the prescribed path  with the prescheduled velocities. These 
path tracking algorithms are based on the computed torque 
technique using Lagrangian or Newton-Euler formulation of 
manipulator dynamics. Also, there are a few known optimal path 
planners which determine a time history of desired joint position 
and velocity by minimizing the total traveling time for a given 
sequence of specified positions (describing the desired path) in 
joint coordinates [2], or in Cartesian coordinates [3], with global 
bounds on velocity and acceleration. Unlike path tracking 
algorithms, at the time of this writing there are no known methods 
for path planning which include the manipulator dynamics. Note 
that  the  maximum speed and acceleration of a manipulator vary 
with  its position, payload, and configuration. For example, an 
optimal path for a manipulator has to be generated on the basis of 
the maximum speed allowed under the worst (global) condition, 
since it may otherwise not be able to follow the prespecified path 
with the prescheduled velocities. This implies that  path planning 
has to be made with the global least upper bounds of all possible 
manipulator’s speeds and accelerations. Therefore, the full 
capability of the manipulator cannot be utilized if this approach is 
taken. 

The second approach can be adopted to nearly fully utilize the 
capability of individual manipulators. Only a few attempts have 
been made in this context due mainly to the difficulty in obtaining 
amenable solutions. Kahn and Roth [ 1 J linearized the manipulator 
dynamics at the final target point, and used the decoupled dynamic 
model to derive a near minimum-time controller. This method 
suffers from the fact that the linearized dynamic equations would 

’ As one reviewer pointed out, this alternative is converting  the  general 
endpoint  control  problem to a restricted  path-following  problem. This is 

off-line  computation  of  nominal  input  torques or linearization of the  dynamic 
mainly  because  the  latter  allows for easy handling of complex  dynamics, e.g., 

equations with respect to the  specified  path. 
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not be valid  if the manipulator is not located in the vicinity of the 
final target. Consequently, this method  is acceptable only  when 
manipulator motion is confined to a small region in the neighbor- 
hood of the target point. Lynch [6] developed a minimum-time 
controller for sequential axis operation. Only one axis was  moved 
at one time, simplifying the dynamic equations of the manipulator 
(e.g., linear time-invariant equations for a two-axis cylindrical 
manipulator), and hence the controller. However, the sequential 
control requires much more time (approximately n times more for 
an n-joint manipulator) than the simultaneous control of all joints. 
Also some results were derived on the basis of minimup energy 
control with a fixed terminal time [7], [SI, in which  they  used 
oversimplified dynamic models without considering manipula- 
tor's operating speed. 

For the second approach to manipulator control one may also 
attempt to use the methods known for handling the nonlinearity of 
aircraft engine control; that is sequential linearizations of the 
nonlinear dynamics near a set of steady-state operating conditions 
for perturbation equations as well as application of gain schedul- 
ing method as evidenced in [ 171, [ 181. However, this design 
method is not directly applicable to the manipulator control 
problem in which extremal values of the control magnitude (such 
as bang-bang control) are required. 

The second approach with a suitable suboptimal controller, if 
possible, is highly desirable due to the possible full-utilization of 
manipulator's capability. In this paper, we have adopted the 
second approach and have developed a suboptimal feedback 
controller for industrial manipulators with the weighted minimum 
time-fuel (MTF) criterion. The choice of this criterion is 
justified by its direct link to the goal of improving productivity 
and saving energy. The near-minimum time-fuel (NMTF) con- 
troller is derived in feedback form with a judicious approxima- 
tion in the calculation of switching curves for the controller. 
(Ideally, the switching curves have to be derived from the overall, 
exact manipulator dynamics.) Although the optimal controller is 
developed for continuous time domain, the manipulator dynamics 
are updated at each of discrete sampling instants. The above 
approximation of the dynamics is motivated by the fact that almost 
all manipulator control algorithms are nowadays implemented, 
hopefully in real-time, on digital computers, but the required 
computation for their exact realizations is prohibitively complex 
and time-consuming. Consequently, in order to cope with the 
nonlinearity and joint couplings in the manipulator dynamics, the 
model parameters of the manipulator are updated at each sampling 
interval on the basis of feedback information of positions and 
velocities. Then, an averaged  dynamics concept-which utilizes 
all available dynamic information of the current and the final 
states to update the dynamics continually at each sampling 
interval-is  newly introduced to design the proposed NMTF 
controller. Since the switching curves are derived for the current 
interval and then updated at the next sampling interval with 
feedback (of position and velocity), 1) the approximation error at 
a sampling instant is implicitly compensated, and 2) the averaging 
process can effectively handle the nonlinearity and joint couplings 
in the manipulator dynamics. As will be seen later, the update of 
the manipulator dynamics at each sampling interval and the 
averaged dynamics are both simple, and therefore regarded 
suitable for real-time implementation. 

The main contribution of this paper lies in that 1) the 
complexity of the manipulator dynamics-which has been a major 
obstacle in the design of robot control-is handled effectively by 
regular updates of the dynamics with the averaging process; 2) its 
structural simplicity allows for on-line implementation with mini- 
and microcomputers; 3) it has high potential for improving the 
manipulator efficiency in both operating speed and use of energy; 
and 4) it results in a closed-loop feedback controller, whereas 
most existing ones are open-loop MTF controllers. 

This paper is organized as follows. In Section 11 the algorithm 
for suboptimal cqntrol of manipulators with the MTF criterion is 
derived, and the method of updating the dynamic parameters with 

the averaged dynamics concept is presented. Also considered is 
the synchronization of each joint controller for simultaneous 
convergence of all manipulator joints to a target point. In Section 
III we analyze the amount of computation required for implement- 
ing the NMTF algorithm, particularly exploring the  possibility of 
real-time implementation. Section IV presents the simulation of 
the NMTF controller with a dynamic model  of the Unimation 
PUMA 600 series manipulator, and the paper concludes with 
Section V.  

u. THE NEAR-MINIMUM TIME-FUEL COKTROLLER 

A .  Derivation of the Controller 

Using the Lagrangian mechanics, one can derive explicit 
manipulator dynamic equations which relate generalized forces/ 
torques to the joint positions, velocities, and accelerations 

D(q)4 + w ? ,  4) + g(q) = I4  (1) 

where u is  an n X 1 generalized forcekorque vector, q, q, q are n 
X 1 vectors of generalized coordinates, velocities. and accelera- 
tions, respectively. D(q) is  an n X n inertia matrix, h(q, q) is an 
n X 1 Coriolis and centrifugal force vector. g(q) is an n x 1 
gravitational loading vector, and n is  the  number of joints in the 
manipulator. The inertia, the gravity loading, and  the Coriolis and 
centrifugal terms depend on the position of each joint as well as on 
the mass, first moment, and inertia of each link. These terms are 
also functions of manipulator's payload (i.e., tool and parts). The 
dynamic equations (1) can be converted to a state-variable 
representation with a 2n-dimensional state vector y = 
[ ( y p )  T(yL ' )  7 = [q '4 '] ( T  denotes here transpose) as follows: 

9 = a@) + BQ)u (2) 

where 

Each joint of the manipulator is separately driven by an electric 
motor or by a hydraulic motor, and naturally there exist certain 
limits in the magnitudes of driving forces or torques. Hence, 
constraints on the input vector u can be represented in general 

u - s u s u -  

where u - and u + are n X 1 vectors representing the minimum 
and the maximum values of  input forcehorque, respectively. This 
vector inequality denotes n inequalities component-wise, i.e., u/ 
5 u .  I -  < UT, j = 1, 2, e ,  n. Then, the weighted time-fuel 
optimal control problem can be stated as follows. 

Problem I :  Find control u*(r), to 5 t 5 r,, such that the 
system given by (2)  is steered to a given target point 

YVf 1 =Yf (4) 

from a given initial point. 

while minimizing the performance index 

subject to the input constraint (3). 
Note that this is an open terminal-time problem (Le., tf is left 
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free), and the parameter X is introduced to set a relative weight 
between time and fuel. When the value of X approaches zero, this 
becomes the fuel-optimal control problem, and  when the value of 
X becomes infinity, this approaches the time-optimal control 
problem. 

Using Pontryagin’s maximum principle [ 121, we can derive 
necessary conditions for  the optimal solution as follows. By 
minimizing the Hamiltonian functional for Problem 1, 

n 

Hb(t), u ( t ) 9  p(‘), t)’ ’+ l u J < f ) l  +PT(f)[a(y( t ) )+Bb(t))u(t) l  
j =  1 

(7) 

we can obtain the optimal control u*(t) satisfying the following 
inequality for all t E [to, t f] :  

Iu;(t)l + ~ * ~ ( t ) b ~ b * ( t ) ) u y ( t )  

I luJ{t)l +p*%,iy*(t))uj(t), fo r j=  1, 2, * e ,  n (8) 

where y*(t)  is the optimal state at time t ,  bJ@*(t)) the jth column 
of B(y*(t)), and p*(t)  is the costate vector determined by 

The properties used in this derivation are that 1) the components 
of u are mutually independent of one another (this is true in the 
manipulator control); 2) the Hamiltonian functional is linear in 
control; and 3) control is bounded. Therefore, the form of optimal 
control is f o r j  = 1, 2, a m . ,  n 

for ~ * ~ ( t ) b ~ @ * ( t ) ) >  1 

nonpositive  for p*=(t)bJ@*(t)) = 1 

for - 1 <p* T(t)bJ@*(t)) < 1 

nonnegative for p* ‘(t)bJ@*(t)) = - 1 

for p* T(t)b,&*(t)) < - 1. (10) 

Substituting uj of (10) into (2), we can obtain a 4n-dimensional 
differential equation withy*(f), p*(t)  and the boundary conditions 
described by (4) and ( 3 ,  resulting in a two-point boundary value 
problem; this is in general very difficult, if  not impossible, to 
solve. Only numerical solutions for all but extremely simple cases 
may  be obtained due to the nonlinearity and inertial couplings in 
the manipulator dynamics. 

Due to this difficulty, direct application of the maximum 
principle is not pursued here. Instead, we consider first optimal 
control of an approximate dynamic system for each individual axis 
and then update the concerned dynamics with feedback informa- 
tion to compensate for the errors induced by the approximation as 
well as for the nonlinearity in the dynamics. The system dynamic 
model, Le., (1) can be rewritten 

n 

d,AqMj==j-A{q, 41, j = l ,  2, * e . ,  n (11) 
i =  1 

where qj is the j th element of q, dj<q) is the (j, i)th element of 
D(qL J ( q ,  4 )  is the jth element off(q,  q )  = g(q) + h(q, 4).  

The  joints are coupled in (1 1) by inertia terms, direct use of 
which complicates the control system design. Instead, we rear- 
range (1 1) into 

q.-a J -  J{q)uj+bJ{q, 41 u), j = l ,  2, (12) 

where aJ{q) = DjF’ (41, P j ( q ,  4,  U) = x;=~,i+, D,r’ (q)& - 
CY=, Dj;’ (q)J(q,q), and 0;’ denotes the (i, ~)th element of 

D-I. The second term of (12) represents the coupling effects from 
other joints on the jth joint as well as Coriolis, centrifugal, and 
gravitational forces, which are the major hindrance in obtaining 
amenable optimal solutions to the manipulator control problem. 
However, (12) can be regarded as an uncoup!ed subsystem model 
for the j th joint of the manipulator if the value of pJ{q, q, u)  is 
calculated or approximated by some judicious means. In such a 
case Problem 1 can be solved, yielding a computationally simple 
solution that is implementable in real-time with mini- or micro- 
computers. To this end, we will in this paper pursue a method for 
calculating approximate values of  both aj(q), and fiJ{q, 4, u) ,  
which are nonlinear functions of the manipulator position, 
velocity, and input. 

The optimal control problem for each joint system of the 
manipulator is then stated as follows. 

Problem 2: Find the control UT ( t ) ,  0 I t I tf, such that the 
jth joint system with the state vector (x? , x? ) = (qj, q j )  I- 

is steered to a given target point x$ = (qjf, q j f ) T  from an initial 
point xjo = (qjo, qio)T,  while minimizing the performance index 
Jj(uj) = j‘f [Aj + (ujl]dt subject to the input constraint U ~ I  uj I 

Since the values of aj(q), and pJ{q, q, u) are nonlinear 
functions of the manipulator position, velocity, and input, it  is still 
impossible to obtain a closed-form solution to Problem 2. 
However, it would be possible to obtain a closed-form optimal 
solution if the values of aj and are time-invariant. Also, in this 
case, we can synthesize the solution in feedback form which is 
essential in robotic applications to effectively handle the manipu- 
lator dynamics that vary widely  with its position and payload. 
Consequently, we  1) assume both aj and to be constant over one 
sampling interval, and 2) modify them at each update time to 
include the preceding nonlinear dependence on q, q, and u. The 
latter is made on the basis of input as well as position and velocity 
feedbacks, and more on this will be discussed in Section 11-B. 
Hence, Problem 2 will be solved for a constant, continuous-time 
system which is modified at each of discrete sampling intervals. 

The optimal solution to Problem 2 when aJ{q) and pJ{q, q, u) 
are time-invariant, i.e., q j  = ajjuj + p j ,  can be synthesized in 
feedback form as below. The solution is obtained by extending 
the known optimal solution of the minimum time-fuel control 
problem with dynamics of q = u as in [ 121, but three cases should 
be considered separately according to the magnitudes of X j  and pi. 
Note that this system is controllable and the solution has no 
singularity region. The optimal solution is as follows. 

10 
U; 

A) When X j  > l f i j l .  
i) When zj” 2 0 

update at each  sampling intend is  computationally too demanding. m has  to 
The parameters can be updated at every  mth  sampling  interval if the 

be  determined by both  the  real-time  requirements and the  given  computation 
power. 
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zP=x?-xP 

z;=xr-xu 

y + =~aju + + f l j  
y - = a . u - + f l j  

4A.cu.u: S + = I + &  
+ Pj) ’ 

4AJaju J: S:= l - -  
(A, - Pj) ’ 

J i f  

I d  

J J J  

These equations indicate that UT ( t )  j = 1, 2, . . , n can be 
determined in feedback form with a set of switching curves as 
illustrated in Fig. 1. 

i) When z; 2 0 
B) When Oj > Ai > 0. 

0 if zjP<(zj~)~/2y~: 
u p )  = 

uJ: if z? 2 (2;) ’/2yJ: . (16) Fig. 1. Switching curves when X > IBI. 

ii) When 2; < 0 

These equations are illustrated in Fig. 2. 
C) When -Pi  > A, > 0. 

i) When z; 2 0 

u,? if zj” < (z;) ’/2PJ 

O if zy = (Z;)~/~PJ or zy> S,? (~;)~/2y,+ 

uJ: if (~;)~/2fl~<zP18i+(zr)~/2yf. 

ii) When 2; < 0 

uj’ if z?~(z;)~/2yf 
uj*( t )  = 

0 if zP>(z;)’/2y;. 

These equations are illustrated in Fig. 3. 

B. The Averaged  Dynamics 

In order to utilize the above solution for the case when aj and Oj 
are time-invariant, we have developed a me_thod for 1) approxi- 
mating their values at time r, p,(t) = [cij(t),  Bj(t)l T ,  that  represent 
an average behavior of the manipulator dynamics from the current 
state to the final target state, and 2) continuously updating those 
values to cope with the variation in the manipulator dynamics due 
to their nonlinear dependence on q, q, and I(. We call this 
approximation the averaged dynamics  method, which  is de- 
scribed below. At time ll ,  using the current position p ( t l ) ,  and 
the current velocity y”(tl), and the previous input u(tI - A T ) ,  
we calculate an approximate value of p,{tl) = [aJ{tl), OJ{tI) lT 
where AT denotes the sampling interval. In other words, the 
inertial couplings at time CI among different joints are approxi- 
mated  with  the input at time tI - AT, and the nonlinear 
dependence of the manipulator dynamics on q, q is taken into 
consideration by using manipulator’s actual behavior (i.e., its 
position and velocity). The latter implies that the approximation 
and update are made in feedback  form; so is the resulting 

Fig. 2. Switching curves when 0 > X. 

controller. Observe that pJ{tf) = [aJ{tf, OJ{lf)] can be determined 
(19) a  priori by using the given final target position and velocity. 

Then, the arithmetic average3 of these values at time tl 

is used to determine the optimal control input at time tl ,  u; , using 
the switching curves shown in Figs. 1-3. 

The averaged dynamics method is illustrated in Fig. 4. At time 
tI E [0, f f ] ,  the optimal control input should be determined based 
on the information of parameter function pJ{t), for t ,  I 5 tr. 
However, the parameter values are known for both the current 
state, pJ{fl), and the final state, pJ4rf), but  unknown for tl < t < 
t~. Since the switching times in the optimal control are determined 
on the basis of the dynamic equations in [ t l ,   t j ] ,  it  is necessary to 
find an approximate value of the parameter which represents the 
behavior of the manipulator during the entire remaining time 
period, i.e., [t,, ffl. In order to obtain such an approximate value 
of the parameter vector, pJ{tl). we  used the two known values of 
the parameter vector, i.e., pJ{tl) ,  and pJ{tf), and made a zeroth 
order approximation of the parameter vector function, pJ{f) ,  for f l  

Acutally,  this does not  have to be strictly an arithmetic average. A more 
general form would be pJ{r1) = qpJ(t,) + (1 - q)pJ{r,) where 0 5 q I 1. 
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Fig. 3 .  Switching curves when -0 > X. 

P a r a m e t e r  

P i ( t )  1' 

I I I 

I I I 
I I I 

I I I I 1 > 
O t2 t 3  tf Time 

Fig. 4. The  averaged  dynamics  method. 

5 t 5 t,. The same procedure is repetitively applied for t = t2, 
t3, - a. It is apparent from Fig. 4 that pJ{t) + pJjtf) as t + tp 

The averaged dynamics method takes advantage of the fact that 
the optimal control is dependent on the accumulation of nonlinear 
dynamics from the current state to the final state, and  we  know the 
coefficients of the manipulator dynamics for the current state and 
the final state. The modeling error in the averaged dynamics is 
also implicitly compensated at the time of the next update through 
position and velocity feedbacks which are used in the averaging 
process. 

C. Synchronization of Final Time 

If we use the same value for all Xi's in local, joint NMTF 
controllers, the final times q, j = 1, 2, - * ,  n may  not be the 
same for all joints. Hence, the synchronization of all joints with 
the same final time Tis achieved by adjusting X, for each jointj  as 
follows. 

First, using the switching curves in state space for each joint, 
we can obtain final time T,  for each joint j as a function of the 
initial position and velocity as well as the parameters for the jth 
joint of the manipulator. For example, if the initial state (x$,, x%) is 
in the region uj = UT in Fig. 1, then the control input sequence 

f 
TARGET ATWT -1 

MINIMUM 

PARAMETER 
UPDATE 

AVERAGED 
DYNAMICS 

Fig. 5. Block diagram of the  near-minimum  time-fuel controller. 

will be UT+ 0 + u; and the final time T j  is computed to be (see 
the Appendix for derivation of this equation): 

" 
q= -x, +[EJjXj-pj)+2] J (X;p/Ti+- 2i$ 

Ti' EJ@j - pj)* + (4 - 4Dj/7,7)Xj 

where 

(Yj= I/$ - 1/7 7 

7:' =Eju. +pi 
+: =Eju: +pj.  

J 

If the initial state is in the region uj = u;in Fig. 1 

(2  1b) 

Similarly, we can compute T,'s for Figs. 2 and 3. 
Then, choose which T,  is the longest, and let T = max { q, j = 

1, 2, - * e ,  n}. This implies that all joints will be synchronized 
with the slowest. Therefore,  for all but the slowest joint X j  has to 
be so adjusted (reduced) that each axis may have the same final 
time T. 

By arranging (21)  with T = T,, we get a second-order equation 
of X j  for each case. Then, we can solve this second-order equation 
and validate its roots with (21) to obtain a unique Aj for each joint. 

Also note that ideally, Xi's have to be recalculated whenever the 
switching curves are changed, requiring additional computation at 
each sampling interval. However, we can use their values at the 
first sampling interval for the entire control period as practical 
approximations for real-time implementation. 

D. Algorithm of the Near Minimum Time-Fuel Controller 

Using 1) n local near minimum-time-fuel (NMTF) controllers 
for an n-jointed manipulator, 2) the synchronization method 
discussed above, and 3) the continual updating of the parameters 
with the average dynamics method, we can derive a  global near 
minimum-time-fuel feedback controller as in Fig. 5, which is 
described below. 

1) Given the initial and final states, compute the parameters 
tiJ{tf), flJ{tf), and compute Xi, j = 1, 2, e ,  n in order to 

negligible or can be avoided  in  practice  by infrequent  update (say, every five 
This may cause a slight  asynchrony. But such  an  asynchrony is either 

sampling  periods) of Aj's with a separate, parallel processor. 
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synchronize the final time for all joints by  using (21). And, also 
set k = 0. 

2 )  Calculate coefficients of the manipulator dynamics using the 
current state information. 

3) For j = 1, 2, - . -, n, perform Steps 4)-6). 
4) Compute p,{k) = [G,{k), P,{k)17, using (20). 
5 )  Determine u,{k) using the switching curves described by 

6)  If Ixd - xj! < bp and IXjj - Xj \  < b , ,  then switch to a 
proportional + Integral controller until  the manipulator reaches 
the target point. Otherwise, k = k + 1, and go to step 2 ) .  

The NMTF controller is switched to a proportional + integral 
(PI) controller when the manipulator is  within a prescribed range 
of the final target state 

(14)-(19). 

u,{t) = sat (#mini, umaxj)[kp,tXg-xj) 

+ ik {k~(x,f-x,)+k~tX,f-Xj)}))dt+kd,{X,f-Xj)] 

where kpj, k$ , k: and kdj represent gains of the PI controller, 
and 

amin if a s a ~ , ,  

sat (amin, a,,,&)a= a if amin < a < I a- if a>a,,. 

The PI controller is employed because the bang-off-bang control 
is  not desirable in the vicinity  of the target state to prevent 
vibrations caused by frequent switchings of the control input, and 
therefore, the exact final state (xg, X$) cannot be achieved. The 
bounds bp and b, should be selected by  the designer to be large 
enough to prevent oscillatory behavior, but small enough to get a 
near-optimal solution. 

The NMTF control proposed in this paper deviates from the 
exact optimal solution due to the following two reasons. 

First, we used u(k - 1) (i.e., u(tl - AT) where 1, belongs to 
the kth sampling interval) to 1) calculate O,{k) for j = 1, 2, * . a ,  

n, and 2 )  approximate the inertial coupling terms at  time k.  These 
parameter values are then used for determining optimal control at 
sampling time k .  The use of  old  (by one sampling interval) control 
may introduce error in the calculation of the switching times. Let 
&(k) = u(k) - u(k - l),  Aa,{k) a,{k) - G,{k), and AO,{k) 

P,{k) - B,<k) for j = 1, 2, * ,  n. Then, &(k) makes  no 
contribution to Aa,{k), since a,{k) does not directly depend on 
u(k). This implies that  no additional error due to the decoupling is 
introduced in the calculation of  the parameter a,{k) for all j .  
However, the contribution of Au(k) to AO,{k), denoted by AB: 
(k),  is defined as Di;' (q(k))  Aui(k). Except the case 
when switching in the control input u,{k) occurs, Au,{k) = 0, and 
therefore A&' (k)  = 0. Therefore, error in  the decoupling occurs 
only  when switching in the control input takes place. Under 
normal operating conditions, there are usually two switchings in 
the manipulator control input between three different stages of 
control, namely, acceleration, cruise, and deceleration. Al- 
though  it is difficult to analyze due to the impossibility of 
determining optimal switching times, the decoupling error should 
not be significant because of this small number of switchings. 

Secondly, the NMTF control is based on the averaged dynamic 
equations, and thus may  not be optimal for the overall nonlinear 
system. If we know the optimal solution u*(t) ,  to 5 t I t,, then 
we  may be able to compare the performance indexes for both 
optimal and suboptimal solutions. However, we cannot analyti- 

the  last terms within [ ] of  this  equation can be  regarded as proportional 
Since  the  state  vector  consists of both  position  and  velocity,  the  first and 

control. So, the entire control  remains  to be the PI control. 

cally evaluate the suboptimality of the NMTF controller, since the 
exact optimal solution is impossible to determine. Note  that the 
optimal switching curves, if they exist, have  to  be determined on 
the  basis of the nonlinear dynamic behavior of the manipulator 
from the final state to intermediate state backward in time. 
Instead, we approximated the optimal switching curves for f,,,, 
I t 5 tf with  the swtiching curves based on constant p ( t )  for 
t,,,,, 5 t s t, which  was determined by the average dynamics 
method. The value of p( t )  is then  updated-producing  new 
switching curves-at the next iteration with  the state feedback of 
the manipulator so that the error generated by the approximation 
at  one iteration may  be implicitly compensated at  the subsequent 
iterations. This is a natural, linear time-varying approximation to 
the optimal nonlinear switching curves. Despite the impossibility 
of rigorous comparison between the optimal and the suboptimal 
solutions, this is a significant and novel departure from conven- 
tional manipulator controls in that, without sacrificing robot's 
capability and without requiring excessive computation, the 
NMTF can effectively handle the nonlinearity and joint couplings 
in the manipulator dynamics. 

III. COMPUTATION TIME REQUIREMENTS 

In this section we have explored the possibility of real-time 
implementation of the NMTF controller by analyzing its computa- 
tion time requirements. The computation time requirements are 
one of the deciding factors for the sampling interval needed for 
real-time implementation. For the update of the controller 
parameters used for the switching curves, it is necessary to 
calculate the manipula_tor dynamic parameters D(q), and-flq, d) ,  
and the values of Cr, where CU = (a, ,  . . * ,  a,)' and p 3 (PI, 
* * , 0,) T. Using the Newton-Euler formulation of the manipula- 
tor dynamics with forward recursive equations, D(q) and f (q .  q )  
can be computed with O(n?) multiplications and additions [16]. 
When the Jordan's method is employed, the inversion of D 
requires approximately (n3  - n 2 )  multiplications and n(n - 1)' 
additions. The computation of 0;. and 0 also needs O(n2) 
computation, but  with smaller coeffkients. The switching curves 
require additional O(n) computation. The total number of 
multiplications and additions required for the NMTF controller is 
summarized in Table I. 

As can be seen from Table I ,  the major computational burden 
lies in the computation of the manipulator dynamic parameters, 
not  in the computation of the control input. To investigate the 
feasibility of real-time implementation of the NMTF controller, 
we evaluated the required computation time for a specific example 
computer PDP-11/45, with a floating point processor FP 11-C. 
The floating point processor works in parallel with the central 
processor and can compute a floating point addition in 0.95 ps and 
a floating point multiplication in 2.52 ps both for 32 bit standard 
data. For the case of typical six degrees of freedom manipulators, 
it requires 1794 multiplications and 1806 additions, resulting in a 
total computation time of 6.2 ms.6 This figure represents only a 
specific hardware configuration; if we  use faster floating point 
processors and/or use integer arithmetic with suitable scaling, the 
computation time can be reduced further. Also, it  is apparent that 
the required computation time is expected to decrease as the 
related computer technology (particularly VLSI technology) 
advances. 

IV. SIMULATION RESULTS 

We have performed numerical simulation of the NMTF 
controller on DEC VAXl1/780 with a dynamic model  of the 
PUMA 600 series manipulator. The manipulator is manufactured 

This figure should  not  be  compared  to  the  computation  times  required for 
various  computed  torque  methods,  since  the NMTF controller is  totally 
different  from  them. 
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TABLE I 
COMPUTATION TIME REQUIREMENTS 

I Variables 11 Hultiplications 1 Additions I 

0, a " 2 +  3 "  " 2 + 3 "  

U I 1  " 17 n 

I 
(JOINT 6 )  

WRIST 

Fig. 6 .  Schematic  diagram of the PUMA 600 manipulator. 

TABLE II 
LINK COORDINATE SYSTEM FOR A PUMA 600 ROBOT 

by Unimation, Inc., and consists of six rotational joints, each of 
which is driven by  a dc servomotor. (See Fig. 6 for a schematic 
diagram of this manipulator.) 

Using the Denavit and Hartenberg representation, the orthonor- 
mal link coordinate system for the PUMA 600 manipulator is 
given in Table II. We employed the Lagrangian formulation to 

derive the PUMA manipulator dynamics as in (22), which is then 
used to simulate the behavior of the first three joints of the 
manipulator. 

g2 = - (a2m3 + a2m2 + m2Z2)C2g - m3Z3S2g 

where Jik is the (i, k)th element of the 4 X 4 inertia tensor, J, for 
the jth joint; d2, a2 are lengths related to the arm coordinate 
frame; (Z;, yi, Zi) represents the center of mass for link i; and for i, 
j = 1, 2, 3, Cj = COS (qj), Sj = sin (qj), Cj; = COS ( q j  + q;), Sji 
= sin ( q j  + qi). 

The remaining three joints are used mainly for orienting the 
end-effector, but they are not considered here for simplicity. Note 
that this simulator for the forward dynamics of the manipulator is 
not part of the controller and will be replaced by the manipulator 
in case of acutal implementation. 

The controller computes first the parameters associated with 
both the initial and the fiial states. At each sampling time, the 
controller computes the current values of the manipulator dynamic 
parameters, and then determines the parameters for the next 
iteration with the averaging between the current and final values. 
Control input is then determined using the switching curves as 
described in (14)-(19). The switching curves are constructed on 
the basis of the parameters updated. 

Numerical values used in this simulation are as follows. 
1) The mass, center of mass, and inertia of each joint of the 

2) The bounds on the control input torque are assumed to be 
PUMA manipulator are given in Table III. 

-300 nm S U l S 3 0 0  tUIl 

-400 nm SU21400 nm 

-200 nm S U ~ S ~ O O  nm. 

Observe that the choice of these parameters is made almost 
arbitrary for the sake of numerical demonstration and any of such 
choices does not change the basic performance of our manipulator 
control method. 

In order to examine the performance of the NMTF controller 
for different ranges of motion, the first three joints of the 
manipulator are commanded to move from various initial points to 
final points. The corresponding simulation results are given in 
Table IV and show that the NMTF controller performs well for 
a wide range of motions. Note that a sampling period of  1 ms is 
used in all simulations except the ones with results in Table VI. 
Particularly, the results indicate the relative insensitivity to the 
range of motion and are therefore in  sharp contrast with those 
reported in [ 13 which showed 20 percent or more overshoots for a 
small range of motion. 

For the case of no load Fig. 7(a) shows the response of each 
joint of the manipulator to the NMTF controller command, and 
Fig. 7(b) the corresponding control input applied to each joint. 
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TABLE Ill 
FOR THE PUMA 600 MANIPULATORS 

MASS,  FIRST MOMENTS, AND INERTIAS OF THE FIRST  THREE  LINKS 

lncnia I 

TABLE IV 
SIMULATION RESULTS WITH VARIOUS INITIAL AND FINAL CONDI- 

TIONS 

Bo.0 

B D O  IS0.0 80 0 

46 0 -30.0 -80.0 

-46.0 4s.o 

40 0 0 0  0.0 

-m o 

IS0 0 210.0 mo 

-45 0 -00.0 

011 0 31 0.19 

0: 

0.1 1.3 3: 

5.8 0.0 8 s  

5.2 5.0 

The first three joints of the manipulator are now ordered to 
move from initial joint angles (45', - 30", 150") to final joint 
angles (0", -60", 210"). Fig. 8 presents the case when the 
manipulator picks up a maximum load (i.e., 5 Ib = 2.25 kg), 
demonstrating the ability that, even with a maximum payload, the 
controller can drive the manipulator with  high performance. This 
result is not unexpected since the precise parameters and the load 
characteristics for the manipulator are assumed to be known to the 
NMTF controller. If these are unknown, one has to appeal to an 
adaptive control method similar to those in Dubowsky and 
DesForges [ 131, Koivo and Guo [ 141, and Kim  and Shin [ 151. 
Table V summarizes the simulated effects on overshoot in each 
joint when the weighting factor X is varied. It indicates that as the 
weighting factor increases, the NMTF controller approaches a 
near time-optimal controller, and tends to have a slight increase in 
overshoot. 

The effects of the variation of the sampling interval on 
overshoot are simulated and presented in Table VI. Since the 
dynamic model used for the NMTF controller is  updated at every 
sampling interval, these effects can be employed to measure 
implicitly the error induced by  both the averaging process and the 
discrete implementation on a digital computer. The sampling 
interval is varied from 0.001 s to 0.02 s and the result shows that 
as the sampling interval increases, the overshoot increases 
accordingly. This result is expected; the NMTF controller is 
derived for continuous-time domain with the averaged dynamic 
equations, and, therefore, it would become more accurate when 
the sampling interval gets smaller. In general, it is desirable to 
select the sampling interval which 1) provides acceptable/required 
accuracy, and 2) does not require excessive computation. 

Particularly, when the sampling interval is varied, the NMTF 

POSlt Lon 

Tlme ( sec ) 

m 210 '* 1 

0 . 0 0 0  .0500 ,1000 .1530 .moo .mo -3000 ,3500 .woo 

Tlme ( sec ) 

(a) 

tnuur torque 

300 . o  

r. 5 0.000 
0 
1 

n 
1 

Ttme ( sec 

-mo.o 4 I I  
0 . 0 0 0  .os00 , 1 0 0 0  .1mo .moo . m o  ,3000 .3mo .woo 

Tlme ( sec ) 

@) 

Fig. 7. (a) Manipulator  responses with no load. (b) Control  input  with  no 
load. 

control offers reasonably favorable performance as long as the 
sampling interval is  kept close to or below 5 ms. This result 
indicates that the NMTF controller can be implemented in real- 
time with a PDP-11/45 or similar computers as evidenced in the 
previous computation time analysis. 

Our simulation results have indicated that the manipulator can 
be driven at high speed with reasonable accuracy regardless of the 
load it  is carrying (see Table IV and Fig. 8). One can observe that 
since our  NMTF controller is developed on the basis of the 
averaged dynamics method, it is  not restricted to any range of 
motion (unlike the one in [l]). In addition to  high operation speed, 
this controller has a possibility of real-time implementation with a 
suitable choice of sampling and update intervals. As a whole, this 
simulation exhibits that the proposed control method has great 
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is not based on a conventional, separate path planning algorithm 
which does not take the manipulator dynamics into account and 
therefore results in the possible underutilization of manipulator's 
capability. The design of the NMTF controller has placed 
emphasis, particularly on the improvement of the manipulator 
performance by nearly fully utilizing the manipulator's capability. 
This was made possible with a judicious approximation with the 
averaging of the manipulator dynamics. This controller provides a 
feedback control algorithm with a simple updating structure so 
that  it can be implemented in real-time on mini- or microcompu- 
ters. Primarily, this controller is intended to provide fast 
operation speed with less energy as well as reasonable settling 
accuracy. 

The averaged dynamics method is a new solution to one of the 
most difficult problems in robot control, namely the nonlinearity 
and joint couplings in the manipulator dynamics. This is a simple 
yet  novel departure from conventional robot control techniques 
toward the goal of efficient control of the manipulator. 

It should be noted that the NMTF controller derived in this 
paper is concerned only  with free-space motion (i.e., noncom- 
pliant motion). For the compliant case, the dynamic equation 
becomes far  more complex; for example, the static friction terms 
cannot be ignored, but cannot be modeled accurately, either. With 
an accurate dynamic model  of the manipulator for the compliant 
case, and with a suitable performance criterion' an optimal 
controller could be derived. As of this writing, this is an unsolved, 
challenging problem in robot control. 

In short, the manipulator control method proposed here has 
great potential use-due to its high performance capability and 
simplicity in structure-in the design of intelligent, noncompliant 
controllers for the growing number of sophisticated industrial 
manipulators. 

P051t10rl 

0.000 .OM0 ,1000 . I 500  . a 0 0  .2MO . B O O  ,3500 . * O O O  

Tlme < sec 

Fig. 8. Manipulator  responses  with full load. 

TABLE V 
EFFECTS OF THE WEIGHTING FACTOR h ON OVERSHOOT (%) 

h Joint 3 Joint 2 Jolnl I 

10 08 0.0 2 2  

100 

2.0 3 3  I 6 8  1000 

1 3  0 0  5 0  

100,000 16.0 3 3  12 2 

TABLE VI 
EFFECTS OF SAMPLING INTERVAL (AT) ON OVERSHOOT (X)  

I A T  ( 1  Joint 1 I Joint 2 I Joint 3 

0.w1 1.3 0.0 5.0 

0.002 3.0 0.0 5.0 

0 005 2 2  0.0 12.6 

0 01 2i.i 12.0 22.1 

0.02 29.7 22.0 25.2 

potential for high performance with the capability of coping with 
the nonlinear, coupled dynamics of the manipulator. 

APPENDIX 

DERTVATION OF (21a) 

is the sum of three components: 1) taj, the traveling time 
from initial state x0 = (x$, , x> )=  to a point a on the switching 
curve zy = 5,: (z; )2/2y,: with control input uj = u,+, 2) tbj, the 
traveling time from the point A to a point B on the switching curve 
zf = (zj )2/29y with control input uj = 0, and 3) tcj, the traveling 
time from the point B to the origin in the state space with uj = u; . 

Then, one can get 

We obtain x; (B) as a function of x; (A), 

and then x; (A)  as a function of the initial condition x% , x% 

V. CONCLUSION 

We have presented the design of a manipulator feedback control 
system on the basis of the minimum time-fuel criterion, which has 
a direct link to the goal of improving productivity and saving 
energy. The design has focused on the following important 
features. Unlike most other existing methods, this control method 

Combining these equations, we can finally obtain (21a). 

significance in the compliant  case. 
' Note that  the  minimum  time  fuel criterion may not have much practical 
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