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Minimum-Time Path Planning for Robot 
Arms and Their Dynamics 

BYUNG KOOK KIM, MEMBER, IEEE, AND KANG G. SHIN, SENIOR MEMBER, IEEE 

Abstract—Path planning of a robot arm is concerned with the derivation 
of a history of positions and velocities to be followed by the robot arm. 
Despite its close relationship to the robot arm dynamics, conventional path 
planning does not take into account the robot arm dynamics, leading to the 
possible underutilization of the robot's capabilities. We have developed a 
minimum-time path-planning method in joint space with the consideration 
of the robot arm dynamics as well as other realistic constraints. The main 
differences between this method and others are 1) an absolute tolerance in 
the path deviation at each corner point can be specified, 2) local upper 
bounds on joint accelerations are derived from the arm dynamics so as to 
nearly fully utilize robot's capabilities, and 3) a set of local optimization 
problems—one at every local corner point—are employed to replace the 
global minimum-time problem, thus making the minimum-time path-plan-
ning problem simpler and easier to solve. As a demonstrative example we 
have applied the method to the path planning of the first three joints of the 
Unimation PUMA 600 series robot arm using its simulator on a DEC 
VAX-11 / 780. The example has indeed shown significant improvements in 
the total traveling time in addition to the ease and simplicity obtained from 
the decomposition of the global problem into a set of local optimization 
problems. 

I. INTRODUCTION 

HIGH POTENTIAL of robotics in industrial automa-
tion for both productivity increase and improvement 

of product quality can be fulfilled by maximally utilizing 
the capabilities offered by the growing number of flexible 
industrial robots. The optimal control of the robots is thus 
a key to the success in industrial automation. However, the 
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optimal control of robots, more specifically robotic arms, is 
known to be a very difficult problem due to a) their 
nonlinear, coupled dynamics; b) physical constraints, such 
as limits on the angular velocity and on the torque/force 
generated by each joint actuator [1]; and c) the danger of 
colliding with other objects in the workspace. The develop-
ment of the optimal control of robot arms1 has been 
significantly hampered by these difficulties, and, therefore, 
there are only a few known attempts in this direction, 
leading to suboptimal control solutions with performance 
indices of linear quadratic functional [2], minimum-time 
[3], and weighted time-fuel [4]. 

Recognizing the difficulties in the direct optimal control 
of the robot arm, we have usually relied on an alternative 
approach to the robot arm control problem using a two-
stage optimization, namely off-line path planning followed 
by on-line path tracking. Depending upon the system 
objective, both the path-planning and the path-tracking 
problems have to be solved by optimizing suitable criteria 
subject to the associated arm dynamics and other con-
straints. Conventionally, path tracking takes the arm dy-
namics into consideration [5], [6], whereas path planning 
does not, even though it calculates the timing of joint 
positions and velocities which are closely related to the arm 
dynamics. This fact may be justified in view of the diffi-
culty in obtaining path-planning solutions, but the result-
ing timing of positions and velocities may force the robot 
to be underutilized, e.g., the robot may be driven slower 
than necessary (see [14] for a detailed discussion on this). 

Usually the desired path is specified by a set of straight 
line segments connecting the corner points in Cartesian 
space, where each corner point represents position and 
orientation of the end-effector, and the constraints are 
given on the torque/force and angular velocity of each 

1 To distinguish this from most conventional controls of robot arms, we 
call this the direct optimal control of robot arms in this paper. 
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joint. Note that these corner points are determined by a 
task planner, considering both the application task at hand 
and the avoidance of collision with other objects in the 
workspace. Thus one must either convert the Cartesian 
path to joint paths and then solve the path-planning prob-
lem in joint space, or convert the joint force/torque bounds 
to the Cartesian ones and then solve the Cartesian 
path-planning problem. The latter conversion is usually 
done experimentally, since analytical conversion is too 
complicated [12]. The former conversion is performed 
point-to-point for sufficiently many points on the Carte-
sian path, and then the joint paths can be approximated 
with, for example, spline functions connecting the discrete 
points. 

An on-line Cartesian path-tracking scheme was pro-
posed by Paul [7] but requires too much computation to 
implement in real-time. The minimum-time path-planning 
problem was investigated by Luh and Lin [8], where they 
derived a method for obtaining a time history of positions2 

and velocities along the path with a minimum traveling 
time under the constraints of Cartesian limits on linear and 
angular velocities and accelerations. In the Cartesian space 
path planning, the motion on the path segment is well 
defined in the context of application, but—despite the 
existence of efficient inverse kinematics algorithms, e.g. 
[15]—its computational demand is too high for real-time 
implementation3 due to the required transformation of 
Cartesian coordinate points to joint coordinate points, and 
it also becomes difficult to handle the case when the robot 
arm is at degenerate positions. 

Due to its ability to be directly implemented, the path 
planning in joint space is also attractive. Paul [9] suggested 
a simple approach that eliminates stopping at each transi-
tion from one segment to another. The time for transition 
is fixed and is determined to allow velocity changes from 
maximum to minimum and vice versa. Lin et al. [10] used 
an approximation with cubic spline functions and devel-
oped a time-scheduling algorithm by minimizing the total 
traveling time subject to constant limits on speed, accelera-
tion, and jerk for each point. Taylor [11] proposed an 
iterative algorithm to compute sufficient number of inter-
mediate knot points in joint space so that the transforma-
tion error—the difference between the original Cartesian 
path and the path obtained from transforming back the 
joint path that is formed by a point-to-point transforma-
tion (from Cartesian to joint spaces) and linear interpola-
tions—may become smaller than the prescribed value. The 
path planning in joint space is simple and efficient, since it 
is limited only by maximum joint torques and velocities, 
and since degeneracies of the robot arm do not present any 
difficulty. The minimum-time path planning in joint space, 
which is dealt with in this paper, is particularly useful for 
specifying gross motion of the robot arm when 1) it oper-

2Henceforth, the term "position" is used to mean both position and 
orientation. 

3 Notice that there are many computation-intensive tasks to be per-
formed in real-time for intelligent robots, e.g., visual and tactile sensing 
and processing. 

ates in a collision-free space and 2) the minimum-time 
traveling is important. Also, the path planning in joint 
space is easily achievable since one can get close approxi-
mations in joint space to the straight line paths in Carte-
sian space by a) including sufficient number of inter-
mediate knot points in the Cartesian paths (in addition to 
corner points), and b) employing a linear interpolation in 
joint space so as not to exceed the specified maximum 
allowable tolerance in the transformation error. 

Conventional path planning in joint space uses a con-
stant bound on the acceleration. This bound must repre-
sent the global least upper bound (GLUB) of all operating 
accelerations in joint space so as to enable the robot arm to 
follow the prespecified path under any operating condition 
(e.g., position, orientation, and payload). It implies that the 
full capability of the robot arm cannot be utilized if the 
conventional approach is taken [14]. If the GLUB were not 
used, then one would have to determine whether a planned 
path is dynamically realizable, and if not, how to modify 
the path [16]. This implies that an additional validation 
and/or modification of a planned path is required for the 
conventional path planning. Moreover, the path deviations 
allowed at corner points are not considered explicitly, 
which is for the sake of simplicity of the solution rather 
than for the application reality. 

In this paper we consider a remedy for the above draw-
backs. We propose a path-planning method in joint space 
by minimizing the total traveling time, given a set of corner 
points4 in joint space and realistic constraints, that is, 
those on the generated torques/forces and angular veloci-
ties and on the deviation at each corner point in the joint 
paths. Note that 1) limits on the generated torques/forces 
in place of the accelerations introduce the robot arm 
dynamics into path planning, thus eliminating the need of 
an additional validation/modification of the planned path, 
and 2) absolute deviation bounds at corner points express 
the manufacturing reality more accurately and clearly than 
the case with implicit bounds (e.g., a fraction of the corre-
sponding segment). Furthermore, the path-planning method 
to be developed here can be decomposed into a set of local 
optimizations at corner points under a certain condition. A 
set of local bounds on acceleration, velocity, and path 
deviation are used in the decomposed local optimizations. 
Since the optimization in path planning requires bounds on 
accelerations, the bounds on torques are converted to a set 
of bounds on accelerations, each bound being valid only in 
the vicinity of a corner point. The conversion calls for the 
robot arm dynamics and therefore results in acceleration 
bounds that in turn yield paths that can nearly fully utilize 
the robot's capabilities. 

This paper is organized as follows. In Section II, the 
minimum-time path-planning problem is defined. Törque-
to-acceleration conversion of constraints is discussed in 

4 Note that there could be an extreme case where a path segment is too 
short to include the cruise stage. However, we do not consider here this 
extreme case since the intended use of the present method is concerned 
with relatively long path segments as in [8]. 
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Fig. 1. Example for illustrating Cartesian paths and linearly interpolated joint paths, (a) Cartesian path generated by a task 
planner, (b) Joint path corresponding to (a) with a linear interpolation, (c) Cartesian path with introduction of an 
intermediate knot point, (d) Joint path corresponding to (c) with a linear interpolation. 

Section III, and a solution to the path-planning problem is 
derived in Section IV. The proposed path planning is 
simulated on a DEC VAX-11/780 for the first three joints 
of the PUMA 600 series robot arm in Section V, showing 
the improvements in the total traveling time. 

II. PROBLEM STATEMENT 

Considering the task to be performed and interactions 
with the working environment [13], the task planner gener-
ates a desired (geometric) path for the robot arm in Carte-
sian space. The geometric path does not contain any timing 
information but includes only spatial positions and orien-
tations. The set of the desired corner points />(/), / = 
0,1, · · ·, M, in joint space can be obtained by transforming 
the Cartesian corner points (i.e., output of the geometric 
path planner) and intermediate knot points into joint space. 
The intermediate knot points in the Cartesian path are 
added to ensure that the transformation error must be 
smaller than the prescribed accuracy. The prescribed accu-
racy is supplied by the task planner. 

A path segment in joint space is formed by connecting, 
with a straight Une, two adjacent corner points (see [18] for 
the same concept of a straight line path segment in joint 

space). In order to have a better view of a straight line path 
segment in joint space, consider a simple example in Fig. 1. 
The example robot consists of two degrees of freedom: the 
one is rotational and the other extensory. Suppose the 
desired Cartesian path is formed by connecting three points 
(1,0), (1,1) and (0,1) with straight line segments (Fig. 
1(a)). The corresponding joint path can be approximated 
by first converting the three Cartesian corner points to 
joint points and then connecting them with straight line 
segments in joint space (see Fig. 1(b)). Note that additional 
Cartesian intermediate knot points may be required to 
meet the prescribed accuracy in the transformation error. 
See Fig. 1(c) for one such example in which the middle 
points of the Cartesian path is chosen as an intermediate 
knot point. The knot point is then treated just like a 
regular Cartesian corner point (Fig. 1(d)). Although selec-
tion of intermediate knot points is an interesting research 
problem, we will not pursue it here since it is out of the 
scope of this paper. 

Usually a joint path consists of three stages: accelera-
tion, cruise at a constant velocity, and deceleration.4 When 
transition from one path segment to another is to be made, 
it should be accompHshed as fast as possible while meeting 
the tolerance requirement in the path deviation. When the 
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robot arm moves along a first segment at its cruise speed, 
there are two possibilities for switching to the next seg-
ment, depending upon the tolerance of the path deviation. 
If the tolerance is tight, then the robot arm must first slow 
down before actual transition takes place. Otherwise, the 
robot arm can initiate the transition directly from its cruise 
speed along the first segment. Considering these two possi-
bilities, we define the following two terms, namely, transi-
tion and change segment. Transition TR(i) represents the 
stage of departing from the constant-velocity cruise along 
the segment S(i) and arriving at the constant-velocity 
cruise along the next segment S(i + 1). Transition is 
desired to be made smoothly, without stopping, and within 
the specified path deviation. Change segment CS(i) repre-
sents the stage of departing from S(i) and then arriving at 
S(i + 1). See Fig. 2 for an illustration of TR(i) and CS(i). 
In general change segment CS(i) is a part of transition 
TR(i). The TR(i) and CS(i) would be the same if no 
acceleration or deceleration along the corresponding path 
segments is needed to satisfy the constraint on the path 
deviation at the corner point />(/"), but they would be 
different otherwise. If we allow large bounds for the path 
deviations at corner points, the total traveling time will be 
reduced due to the widened spatial freedom in robot 
motion. However, there will be an increase in the probabil-
ity that the robot arm collides with obstacles. Hence, the 
path deviation bounds at corner points must be set by the 
task planner as a design variable, weighing between the 
total travehng time and the workspace requirement or 
collision avoidance. 

It is well known that robot arm dynamics are highly 
nonlinear coupled functions of position, payload, mass, 
etc. Also, due to the joint actuator characteristics, there 
exist bounds on joint angular velocities and torques/forces 

[1]· 
Considering all the factors mentioned above, the global 

minimum-time path planning (GMTPP) problem in joint 
space can be stated as follows. 

GMTPP Problem: Given a path composed of M seg-
ments S(/), / = 1,2, · · ·, M, formed by connecting (M + 1) 
corner points />(/), i = 0,1,· · ·, M with straight line seg-
ments in joint space, find a minimum-time travehng path 
that the robot arm follows within the prescribed path 
deviation bounds at corner points e(i), i = 1,2, · · ·, M — 1 
with the initial position and velocity </(0) = p(0), q(0) = 0 
and the final position and velocityq{tf) = p(M% q(tf) = 0 

subject to the limits on joint angular velocities, \vJ\ < υ^, 
and bounds on joint torques/forces \uJ\ < uJ

max9 j = 
1,2, · · ·, AÏ, where n is the number of the robot arm joints. 

The GMTPP problem naturally leads to a nonlinear 
programming problem with high dimensionality. If a tradi-
tional trapezoidal velocity profile (i.e., constant accelera-
tion -> cruise -> constant deceleration) is assumed for each 
segment, there will be 3M unknowns for the entire path 
planning. As evidenced in [8], this problem becomes very 
difficult to solve even when robot arm dynamics and the 
absolute path deviation are not considered. We have sought 
simple and, to some extent, heuristic solutions to the 
problem under the following assumption. 

Al) Each segment S(i) i = 1,· · ·, M is assumed to con-
sist of three segments, namely acceleration, cruise 
with a maximum allowable velocity, and decelera-
tion for transition from S(i) to S(i + 1). 

Assumption Al is realistic for many robot applications, 
particularly for gross motion and minimum-time controls. 
On the other hand, the assumption may not be realistic 
when the robot undergoes many short moves, i.e., fine 
motion planning. However, when we are concerned with 
such short, fine, and acrobatic motions, there are many 
more important and compelling requirements to be met 
than the minimum-time motion. This implies that Al is 
reasonable in the context of the minimum-time path plan-
ning, although it does not hold for a fine motion planning. 
Since Al may become invalid for short moves not only in 
joint space but also in Cartesian space, use of Al in [8] is 
believed to be justified by the same reasoning as described 
previously. 

Furthermore; under Al the GMTPP problem can be 
decomposed into a set of local minimum-time path-plan-
ning (LMTPP) problems. (In addition to the inclusion of 
the robot arm dynamics, this is a novel departure from [8], 
leading to a much simpler algorithm which can yet include 
the constraints on absolute path deviations.) Without loss 
of generality, for each LMTPP problem we can choose 
initial and final points q0(i) and qf(i) from S(i) and 
S(i + 1), respectively, at which the robot arm is to attain 
the maximum allowable velocities wmax(i) and wmax(i 4- 1), 
respectively (i.e., points located at their respective cruising 
portions of the path). The method for setting q0(i) and 
qf(i) will be discussed later in detail. The H>max(z), the 
maximum allowable velocity along S(i), can be repre-
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sented by 

"wOWOXO, (i) 
where #·(/) represents a unit vector along S(i), i.e., r(i) = 
5(/) / |5( / · ) | = (r 1( / ) , r 2 ( / ) , . · . , rw( / )) 7 , , and £(i) denotes 
the magnitude of the maximum allowable velocity in the 
direction of r(i). Using the limits on joint angular velocity 
«W = ( ^ a x ^ L · " ^ ^ ? (0 c a n b e actually com-
puted by 

m-*n'W»'J- + 'l-'1iM-'J-K (2) 

where σ(ζ) is defined by 

/ x / 1, if z > 0 
σ ( ζ ) = ( θ , i f z < 0 . 

Then, the GMTPP problem is converted to a set of 
LMTPP(0 for / = 1,2, · · ·, M - 1 as follows. 

LMTPP(i) Problem: Given a path composed of two 
segments S(i) and S(i + 1), formed by connecting q0(i), 
p(i), and fy(/) with straight Une segments in joint space, 
find a minimum-time traveling path that the robot arm can 
follow within the prescribed deviation bound e(i) at the 
corner point p(i), subject to the limits on joint angular 
velocities \vj\ < ?;max and bounds on joint torques/forces 

For the LMTPP problem, one may obtain necessary 
conditions for optimal solutions, resulting in a bang-bang 
solution in the nonsingular region. However, due to the 
coordination requirement among the joints of a single 
robot arm in following segments S(z), / = 1,· · ·, Af, con-
trol inputs for all but one joint (i.e., the slowest joint) are 
not to be bang-bang, meaning that there exist singular 
regions for all but one joint. Moreover, because of the 
complex nonlinear, coupled dynamics of robot arms, it is 
almost impossible to obtain any analytic or numerical 
solution to the LMTPP problem. Consequently, we explore 
some intrinsic properties of this problem and find a subop-
timal solution with an additional assumption. 

A2) A constant acceleration ac(i) is assumed during 
each change segment CS(i), i = 1,2,· · ·, M. 

Assumption A2 is employed to simplify the analysis of 
the path deviations at corner points by utilizing the local 
acceleration bounds around corner points p(i), i = 
1,2,· · ·, M - 1. Note, however, that this assumption does 
not impose any unrealistic demand on the path planning; 
if A2 is deemed unrealistic, one can divide CS(i) into a 
finite number of subregions within each of which a con-
stant acceleration is then assumed. Although this refine-
ment may improve transition timing at the expense of 
computational simplicity, we have not taken this course in 
Section V for clarity of our main purpose. Note that A2 
was also previously used in [18], where joint positions 
during a transition were interpolated as a quadratic func-
tion of time. 

I I I . TORQUE-TO-ACCELERATION CONVERSION OF 

CONSTRAINTS 

Since both the GMTPP and LMTPP problems are natu-
rally related to accelerations rather than to torques/forces, 
it is necessary to convert the constraints on torques/forces 
to those on accelerations. For this conversion we consider 
the nonlinear, coupled robot arm dynamics. Using the 
Lagrangian formulation, the dynamics of the robot arm 
can be described by 

D(q)q + h(q,q)+g{q) = u, (3) 

where u is an n X 1 generalized force/torque vector, and 
q,q,q are n X 1 vectors of generalized coordinates, veloci-
ties, and accelerations, respectively. The D(q) is an n X n 
inertial matrix, h(q,q) is an n X 1 viscous friction, Corio-
lis, and centrifugal force vector, g(q) is an « X 1 gravita-
tional loading vector, and n is the number of joints of the 
robot arm. The inertia, gravity loading, and Coriolis and 
centrifugal terms depend on the position of each joint as 
well as on the mass, first moment, and inertia of each link. 
Also note that these terms are functions of the robot arm's 
payload (i.e., tool and parts). 

The constraints on torques/forces are related to acceler-
ation by 

-"max < *>(q)q + h(q,q) + g(q) < nmax (4) 

W h e r e " m a x = ( " m a x , " m a x » ' * '^maxV' I f b ° t h ? a n d 4 are 

known, then bounds on q can be determined from the 
above inequality. However, these are unknown at the time 
of path planning, and hence some sort of approximations 
are needed. Since the constraints conversion is required 
only in the vicinity of the corner points,5 such approxima-
tions can be made rather easily and realistically. 

We have adopted an approximation algorithm for con-
verting the bounds on joint torques/forces to those on 
joint accelerations around the corner points. The algorithm 
can be described as follows. At every corner point p(i), 
i = 1,2,· · ·, M — 1 we compute the parameters of robot 
arm dynamics for three distinct cases with velocities (i.e., 
4) HWx(0, "Wei' + *)> a n d an average velocity wavg(i), 
but with the same positionqc(i) = p(i) + e(i),6 where e(i) 
is defined as a path deviation vector around p(i) with 
magnitude e(i) and with the same direction as the vector 
-#·(/) + r(i 4- 1). The wmax(/) is the cruise velocity ap-
proaching TR(i),wmaK(i + 1) is the cruise velocity de-
parting from TR(i), and the average velocity wavg(/) = 
(wmax(0 + wmaxO' + W 2 i s u s e d f o f approximating the 
velocity in the middle of change segment CS(i). If it is 
desired to set a uniform acceleration bound around each 

5 We only need the local acceleration bounds in the transition stages 
TR(i), i = 1,2,· · ·, M - 1, since maximum cruising velocity is applied 
outside transition stages. 

approximate values of q and q can be calculated for as many points 
around the corner point p(i) as necessary. Those values must be ap-
proximate on the basis of wmax(z'), wmax(i + 1), p(i), and e(i). For 
simplicity, we have used here only three different values of q and q. 
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corner point p(i\ one can select bounds cJ
max(i) and 

cmin(0 during transition TR(i). That is 
cLn(i) < DJ{qc{i))a(i) < c ^ i ) , j = 1,2,· · ·, n, 

(5) 
where a(i) denotes the acceleration during TR(i), Dj the 
y'th row of the matrix D, and 

*4ax(0 = m»11 {"4ax - hj{qc(i),wiVg(i)) - gJ(qc(i)), 

"4ax - hj(qc(i),wmax(i)) - gJ(qc(i)), 

«LK - hJ(qc(i),wmax(i + 1)) - gj(qc(i))} 

(6a) 

<ÌinO') = max {"4in - hJ{qc(i),wavg(i)) - gj(qc(i)), 

"4in - hJ(qc(i),wmax{i)) - gJ(qc(i)), 

«L· - *%(»'). »»«('' + i)) - sj{qXi))}-
(6b) 

This results in a feasible region with a polyhedron boundary 
for valid accelerations during TR(i). 

IV. THE MINIMUM-TIME PATH PLANNING 

The functional relationship of the proposed minimum-
time path planner to other components in the system is 
described in Fig. 3. With the preceding assumptions and 
discussions, the LMTPP(z') problem can be solved by the 
following steps for i = 1,· · ·, M - 1 (see Fig. 4 for an 
illustration of these steps).7 

SI) Cruise with the maximum velocity w0(/) = wmax(/) 
along the segment S{i) from q0(i) to qJJ\ where 
qa(i) is the point on S(i) at which TR(i) begins. 

7 Both start and termination of motion are not included here but can be 
found in the entire path-planning algorithm near the end of this section. 

Fig. 4. Individual steps in transition TR(i). 

52) Apply a constant deceleration a0(i) along segment 
S(i) from qa(i) to qb(i) at which CS(i) begins. 

53) Change segments (from S(i) to S(z + 1)) with con-
stant acceleration ac(i) from qb(i) loqd(i) passing 
throughfc(i), where qc(i) = p(i)+e(i), and qd(i) is 
the point at which CS(i) terminates. 

54) Apply a constant acceleration af{i) along segment 
S(i+1) from qa(i) to qf(i) attaining the cruise 
velocity wy(/)= wmax(/ + l) on S(/ + l). Note that 
TR(i) terminates at qf{i)· 

Steps S2 and S4 guarantee the solution even if e(i) is so 
small or tight that the direct transition from w0(i) to ny(/) 
with a constant acceleration ac(i) cannot be achieved. 
Hence, three constant accelerations are used here, namely, 
decelerating with a0(i) along £(/), changing segments with 
ac(i) from S(i) to S(i + 1), and then accelerating with 
af(i) along S(i + 1). These three accelerations are to be 
determined by the present path planner. 

Define the unit vectors along £(/) and S(i + 1), respec-
tively, as 

ΌίΟ-ΚΟ; '/(0 = r(i +1). (7) 
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Fig. 5. Transition components in state space, (a) r0 component, (b) η-
component. 

tory in Fig. 5, we can compute the traveling time T(i) 
required to move from qQ(i) to qf(i) and positions qa(i\ 
qh(i), and qd(i), as functions of a0(i), ac0(i), acf(i\ 
a / (0> w0(i), a n d W/(0· The dependence on segment / is 
omitted for notational simplicity both in Fig. 5 and in the 
following discussion. For convenience, let 

2en 

lc0 

2e 
+ 

Wn H> 
—J- and ο π ^ ^ + ^ + — + - . Ί €o , * f 

a cf 2a0 2cif wn wt 
r 0 7 

1) W h e n <ZC0T < w0, A C / T < wy, i.e., cruise -> 

deceleration -> change segment -> acceleration -> cruise, 

«„(0 = P - Tflco U 
a _£0 \ 2 + _^0_ 

a0 / 2a0 

i * ( 0 = P - 2 f l c o T 2 | b 

9Λ*) = P + 2acfT2rf 

1 
f / (0 = /> + 

2 M 1 ~ ^ Γ + 2 ^ 

r ( i ) = c0 + r 1 -
ho acf 

— T 
Mc0 

2n>n 

*c0 </ 
2wf 

' c / l (9a) 

2) When <2C0T > w0, acfr < vty, i.e., cruise -> change seg-
ment -* acceleration -> cruise, 

Then every vector can be uniquely decomposed into r0(i) 
and rf(i) components as follows (see Fig. 4) 

«o(» 

af(i 

ac(i 

wf(i 

p(')-4oU 

9f(i)-p{i 

)= -e0{i)r0(i) + ef(i)rf{i) 

) = -βοί'ΉΟ') 
) = af(i)rf(i) 

) = -«co(0»b(0 + acf{i)rf{i) 

) = w0(i)r0(i) 

) = * / (»>/ ( ' ) 

) = io('>o(0 

)-€,0>/(0 (8) 
where scalar quantities with subscripts 0 and / represent 
their respective r0 and rf components. The ζ0(ί) and £y(/) 
denote the magnitudes of vectors p(i) - q0(i) and qf(i) -
p(i), respectively. One can plot each transition component 
in state space as depicted in Fig. 5. In Step S4, the final 
condition qf(i) is set as a position when the velocity 
reaches wmax(/ + 1) with constant acceleration af(i). This 
value of qf{i) is used as the initial position in the next 
segment, i.e., q0(i 4- 1) = qf(i). Depending upon whether 
Steps S2 and S4 are required or not, we can consider four 
cases in the following analysis. Using the state space trajec-

9 o ( 0 = 1α(ί)=Ρ 
2tfcor° 

qA>)=P + ïacf{—Jrf 

ί / ( 0 =ρ + 
2 M * / / \ Û C O 2af 

^.^.Jifi.iÄWj.fäfi. (9b) 
0 ac0 af \ ac0 j \ af J 2wf 

3) W h e n ac0r < w0, acfT > wy, i.e., cruise -» 
deceleration -* change segment -> cruise, 

laiO-P- 2aco\l -

7 

«cou wf 

*cf 2an 

4h(i)=P-2aco\acfJ'o 

YV f 

«A') = « / ( ' ) = P - Yacfro 

acf a0 n o - , - ^ - 1 ^ - ^ . <*> 
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4) When ac0r ^ w0, acf7 > ny, i.e., cruise -> change seg-
ment -> cruise, 

,2 
Wn 

4α(0 = <lb(i) = P - JT-ro 
lc0 

,2 
f 

2a cf 

r ( / ) = l o + Ì / 
w0 wf 

(9d) 

Now, consider the calculation of a0(i) and af(i). We 
can easily show that dT(i)/da0(i) < 0, / = 1,· · ·, M — 1 
for the cases 1) and 3). This property implies that a0(i) 
should take as large a value as possible. Likewise, af(i) 
should take as large a value as possible. Hence, we can set 
the values of a0(i) and af(i) to attain maximum magni-
tudes in the directions of -r0(i) and rf(i), respectively. 

To determine ac(i\ which consists of two components 
ac0(i) and acf(i)we have to use the polyhedron boundary 
of the accelerations given by (5). Then the problem be-
comes a two-dimensional nonlinear optimization problem 
of minimizing (9) with respect to ac0(i) and acf(i) subject 
to linear constraints (5). For a solution to this problem, we 
can get the following useful property. 

Property: T(i) attains its minimum when the compo-
nents of ac(i) are maximized within the feasible region. 

It is easy to show dT(i)/dac0(i) < 0 and dT(i)/dacf(i) 
< 0. With these inequalities, proof of the above property is 
straightforward. The inequalities imply that for the mini-
mum of T(i) the components of the acceleration ac(i) 
should be maximized. But the values of ac0(i) and acf(i) 
are interrelated via the linear constraints (5). Hence the 
minimum of T(i) occurs at the boundary of inequalities 
(5), resulting in a one-dimensional optimization problem. 

The acceleration during change segment CS(i),ac(i), 
can be obtained with a suitable bisection algorithm search-
ing along the boundary of (5). Let Θ be the angle between 
a0(i) and af(i). The following iterations are performed for 
k = 1,2, · · · . Divide the angle Θ and generate a set of 
accelerations al having angles [(21 — l)/2k]0y I = 
1,2, · · ·,2*_1, and the corresponding traveling times Tkl. 
Compare Tkl and choose the minimum (which occurs at 
/ = /') and set it to Tk. If the bisecting angle 2~k0 gets 
smaller and improvement in Tk from Tk_l becomes insig-
nificant, then the algorithm terminates with ac(i) = av. 

For (the first) segment 5(1), we need a maximum accel-
eration until the velocity reaches wmax(l). No iteration is 
necessary for this segment. We can simply compute the 
maximum acceleration, and set qf(0) = qQ(V) f° r the next 
segment. For (the last) segment S(M\ we need to cruise 
with wmax(M) followed by the maximum deceleration to 
the final position p(M) and zero velocity. This segment 
can be considered as a reverse procedure of the first 
segment. The maximum deceleration time is computed 
backwards in time. 

The minimum-time path-planning algorithm discussed 
thus far can be summarized by the following algorithm: 

1) Set i = 0. 
1.1) Compute the maximum acceleration af(0). 

1.2) Compute the traveling time Γ(0). 
1.3) Compute the initial position for<jr0(l) S(l). 

2) Set / = i + l , then 
2.1) Compute the unit vectors r0(i) and rf(i). 
2.2) Compute a position qc(i) with the maximum 

path deviation during transition. 
2.3) Compute velocity bounds for w0(i) and wf(i). 
2.4) Compute the maximum deceleration a0(i) 

along S(i) and the maximum acceleration 
af(i) along 5( / + l) . 

2.5) Compute the acceleration ac(i) during change 
segment C5(/), and the traveling time T(i) by 
using the bisecting algorithm. 

2.6) Compute the initial position </0(/ + l) of the 
next segment. 

2.7) If i < M, then go to Step 2. 
3) For the last segment (i.e., i = M) 

3.1) Compute the maximum deceleration a0(M) 
toward (p(M),0) . 

3.2) Compute the traveling time T(M). 
4) Compute the total traveling time Ttotal = Efi0T(i). 

As can be seen in the above, the present path-planning 
algorithm requires only rudimentary calculations and sim-
ple one-dimensional optimizations; this is in sharp contrast 
to the method developed in [8] where a mathematical 
programming problem was solved for multiple variables by 
a complex approximate optimization technique. 

V. A PATH-PLANNING EXAMPLE 

Using a simulator of the PUMA 600 robot arm on a 
DEC VAX 11/780, we have simulated the proposed 
minimum-time path-planning algorithm. The PUMA arm 
is manufactured by Unimation, Inc., and consists of six 
rotational joints, each of which is driven by a dc servomo-
tor. 

We employed the Lagrangian formulation to derive the 
PUMA arm dynamics as in (10) with the coordinate system 
using the Denavit and Hartenberg representation in Table 
I, which is then used to simulate the behavior of the first 
three joints of the arm. The remaining three joints are not 
considered here for simplicity 

n n n 

Σ dijfàqj + Σ Σ hijk(q)qjqk 4- g.(q) = ui9 
j=\ j=lk=l 

i = l , 2 , . · · , / ! . (10) 

Typical terms have the following form: 

"ll(#) = A l l ~*~ A33 **" A33 ~*~ 2A34"2 "*" A44"2 

"•"A22 ~^~ A33 "*" A34"2 

"*vAll "*" ^ A l 4 a 2 + A44ö2 "*" A44f l2/^2 ~*~ A22^2 

"'"(All _ A33/C23 "*" 2A34fl2^-2*^23 

^211 = (All _ A22 "*" 2Al4f l2 + A * A "*" A44ö2 J^V^l 

" K A l l _ A33) ^23^23 — A34 f l 2 (QQ3 _ ^2^23/ 

g2 = -(a2m3 + a2m2 + m2x2)C2g - rn3z3S23g, 

where /-.-,, is the ( /', k)th element of the 4 x 4 inertia 
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TABLE I 
LINK COORDINATE SYSTEM FOR A PUMA 600 ROBOT 

Joint i 

1 

2 

3 

', 

Ί 

»2 

*3 

(mm) 

0 

149.5 

0 

(mm) 

0 

432 

0 

(deg.) 

-90 

0 

90 

Range 
(deg.) 

-160 to 160 

-225 to 45 

-45 to 225 

TABLE II 
MASS, FIRST MOMENTS, AND INERTIAS OF THE FIRST THREE JOINTS 

FOR THE PUMA 600 MANIPULATOR 

Link 

1 

2 

3 

Mass 

M 
[Kg) 

2.27 

15.91 

11.36 

Center of Mass 

M 

0.0 

-0.216 

0.0 

y 
(m) 

0.0 

0.0 

0.0 

M 

0.075 

0.0 

0.216 

Inertia 

7* 
(Kg m2) 

0.00376 

0.9897 

0.0074 

(Kg m2) 

0.00376 

0.1237 

0.0074 

7* 
(Kg m2) 

0.0169 

0.1237 

0.7067 

TABLE III 
CORNER POINTS AND TOLERANCES IN PATH DEVIATION USED FOR 

SIMULATION 

i 

0 

1 

2 

3 

4 

Joint 1 
(deg.) 

0.0 

0.0 

90.0 

90.0 

0.0 

Corner points, p(t 

Joint 2 
(deg.) 

0.0 

-90.0 

-90.0 

0.0 

0.0 

Joint 3 
(deg.) 

90.0 

135.0 

135.0 

90.0 

90.0 

Tolerances 

(deg.) 

0.0 

1.0 

1.0 

1.0 

0.0 

tensor, Ji9 for the /th joint; d2, a2 are lengths related to of mass, and inertia for each joint given in Table II. These 
the arm coordjnate frame; (xi9 yi9 zt) is the center of mass are approximate figures acquired from the manufacturer's 
for link /; and for /, j = 1,2,3 Cz = cos(#z), St = sin (#,·), specification. 
C/y = cos(^/ + qj), Sjj = sin(qi + q}). As shown in Table III, we selected a set of corner points 

For the PUMA simulator the above dynamic equations />(/), /' = 0,1,· · ·, Af, and path deviation bounds at these 
are computed with the numerical values of the mass, center corner points e(i), i = 1,· · ·, M — 1. The bounds on the 



222 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-15, NO. 2, MARCH/APRIL 1985 

TABLE IV 
TRAVELING TIME 

Local bounds 

Global bound 

T ■ 
x crxntt 
(sec.) 

3.015 

1.320 

(sec.) 

1.733 

4.860 

(sec.) 

4.748 

6.180 

TABLE V 
EFFECTS OF PATH DEVIATION BOUNDS ON TOTAL TRAVELING TIME 

Deviation bound 
(deg.) 

0.0 

1.0 

2.0 

4.0 

T 
■* erutie 
(sec.) 

3.024 

3.015 

3.009 

3.006 

T 
x tram. 
(sec.) 

1.951 

1.733 

1.714 

1.704 

Ttotal 
(sec.) 

4.976 

4.748 

4.723 

4.710 

control input torques are assumed to be \uY\ < 100 N · m, 
\u2\ < 150 N · m, and |w3| < 50 N · m, and the maximum 
angular velocity is set to 90°/s for each joint. Observe that 
the choice of these simulation values is arbitrary for the 
sake of numerical demonstration, and any of such choices 
does not change the basic performance of our path-plan-
ning method. The path planner computes the desired path 
(i.e., q and q) which requires the minimum total traveling 
time, using the algorithm developed in the previous sec-
tions. In order to examine the performance of the mini-
mum-time path planner we compared it with a path-plan-
ning method with global bounds on the acceleration with 
the same simulation data.8 The corresponding simulation 
results are given in Table IV. It shows that the minimum-
time path planner developed in this paper exhibits excel-
lent transition characteristics when compared with the one 
with global acceleration bounds. For this particular exam-
ple, the transition time Ttrans, is reduced to about one third 
of that with the global acceleration bound. The cruise time 
with local acceleration bounds is somewhat longer than the 
case with a global acceleration bound, because the fast 

8 Obviously, the path solution with global acceleration bounds is differ-
ent from the solution to the GMTPP problem. 

transition needs shorter transition distance and hence longer 
cruising distance. Including both the transition and cruise 
characteristics for the example, the present path-planning 
method showed a significant improvement in the total 
traveling time Ttotal (a 23% reduction). 

The effects of the path deviation bound at each corner 
point are simulated and presented in Table V. Here, all 
e(i) are set to an equal value for / = 1,· · ·, M — 1. As 
expected, the larger the deviation bound, the less the total 
traveling time because of the spatial freedom in motion. 
Particularly, one can see a drastic improvement in Ttrans at 
the beginning and then a slow improvement or a near 
saturation as the deviation tolerances increase. Note, how-
ever, that rcruise is relatively insensitive to the magnitudes 
of e(i), i = 1,2,· · ·, M. 

As a whole, for the example considered here our mini-
mum-time path planning has indeed shown a significant 
improvement in the total traveling time. 

VI. CONCLUDING REMARKS 

We have developed a minimum-time path-planning 
method in joint space with robot arm dynamics included. 
An absolute path deviation bound for each corner point 
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can be specified as a design variable. Local upper bounds 
on joint accelerations are derived from robot arm dynamics 
so as to nearly fully utilize the robot's capabilities, and a 
set of local one-dimensional optimization problems can 
replace the global minimum-time problem. The local opti-
mization problem is computationally simple with a small 
number of variables for each pair of segments, whereas the 
global optimization problem is computationally demanding 
since 1) a large number of variables should be considered 
simultaneously, and 2) special optimization techniques are 
required to get approximate solutions. Furthermore, for the 
GMTPP problem the number of variables in the optimiza-
tion process varies with the number of segments that form 
the entire path, whereas it does not for the LMTPP prob-
lem. The simulation results for the present method show 
that the transition times are considerably improved, lead-
ing to a significant reduction in the total traveling time. 

The torque-to-acceleration conversion of constraints was 
made on the basis of a heuristic approximation rather than 
an exact solution to the dynamic equations for the acceler-
ation. It is impossible to obtain the exact solution, yet the 
approximation can be controlled to provide realistic con-
version accuracy (by calculating acceleration bounds for as 
many subrogions around a corner point as necessary). One 
important assumption in this conversion is that the exact 
dynamic equations are known. Generally this assumption 
is not valid. It is, however, a realistic assumption in view of 
the fact that the robot arm is to execute the same task 
repetitively many times and, therefore, its dynamics can be 
learned prior to the actual execution (and also prior to 
path planning). 

There is another interesting approach to the minimum-
time path-planning problem, which was developed inde-
pendently by both Bobrow et al. [17] and Shin and McKay 
[14]. Both used a parametric function to describe the 
desired geometric path and also employed the phase plane 
approach to solve the minimum-time problem, resulting in 
a sequence of alternating acceleration and deceleration. 
Although the basic ideas for these two works are the same, 
they are quite different in several respects, e.g., search 
algorithms for switching points, guaranteed convergence, 
nature of the feasible regions in the phase plane, etc. 
However, despite its elegance, the phase plane approach is 
not applicable to the problems with constraints either on 
jerk as in [8] or on the path deviations at corner points, as 
we discussed in this paper. 

As one referee pointed out, due to practical reasons, the 
minimum-time solution may not be of the bang-bang type 
even with respect to the slowest joint actuator. However, 
once the robot arm dynamics are modeled by (3) and the 
controls are bounded, the minimum-time solution becomes 
the bang-bang type. This should be interpreted as a result 
of mathematical formalism rather than reality. For practi-
cal use of the bang-bang solution one may, for example, set 
bounds on the torques/forces tighter than the actual val-
ues. 

Path planning has not received much attention despite 
its importance. Particularly, there are numerous publica-

tions in the area of path control or tracking, where a 
perfect or at least a good path planner is always assumed 
to exist. Contrary to this assumption, there have been only 
a few published results in path planning. The imbalance 
between the two has to be resolved for the optimal or 
near-optimal utilization of robots' capabilities. Conse-
quently, a balanced combination of path planning and 
robot control is essential for future automation with robots. 
The minimum-time path planning presented here has aimed 
at this objective. 
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