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ABSTRACT 

An optimal  control  problem  containing  restrictions on control 
variables  and  integral  equality  and  inequality  constraints is con- 
sidered. A relatively  simple  and  self-contained  method  for  deriv- 
ing new second  order  necessary  conditions  for  such  problems is 
PreJented.  The new conditions  derived  here  generalize  some  of the 
results  reported in [3], [SI, [e]. The  method  developed is quite  gen- 
,era]  and is also  applicable to  optimal  control  problems  including 
state  or mixed  state-control  inequality  constraints  and to optimal 
control  problems  governed  by  partial  differential  equations. 

1. INTRODUCTION 
In a  recent  paper,  b'arga  [I]  presented  a  simple  and self- 

contained  derivation of new second  order  necessary  conditions  for 
an  abstract  optimization  problem  containing  restrictions  in  the 
form of finitely  many  equality  constraints  and  in  the  form of (pos- 
sibly  infinite-dimensional) inclusions in closed convex  sets. Hi? 
elegant proof is based on the  separation of convex  sets  and on 3 
suitable fixed point  theorem. ITnlike somewhat  similar  necessar) 
conditions  obtained  by  Bernstein (21 and  Bernstein  and  Gilbert [3], 
the  Lagrangetype  multipliers 1 of N'arga [I]  may  be  common  to 
all elements of a  certain  set Yap of critical  variations  (see  Section 
4 below)  and  need  not  be  chosen  separately for each  critical  varia- 
tion.  Furthermore,  the  set C in (11 defining the infinite  dimen- 
sional  constraints  may  be  an  arbitrary  closed  convex  set  and  not 
necessarily  a  cone.  These  appear t o  be important  improvements 
over the  results  reported in [2]. 131, [4]. See [5] for  a  survey of 
higher  order  necessary  conditions  in  unrestricted  optimal control 
problems. For related  work  (with  different  approaches) on res- 
tricted  problems,  see 121, [3], 141, [B], [7], [S] and  references  therein. 

The  main  goal of this  paper is to  present  a  self-contained  and 
relatively  simple  approach to  second  order  conditions  in  optimal 
control  problems  (governed  by  ordinary  differential  equations) 
including  constraints on the  control  variables,  and  integral  equal- 
ity  and  inequality  constraints.  The  second  order  conditions  that 
we obtain  here  generalize  Theorem 3.1 in [3] and  also  the  results  in 
[B]. The  theory  developed  can  also be extended  with  little  mcdifi- 
cation  to relaxed  controls  (although we do not  consider  relaxed 
controls  here)  and,  therefore,  generalize  some of the  results of [3] 
and 141. In a  forthcoming  paper we shall  apply  the  basic  idem we 
develop  here t o  optimal  control  problems  with  state or mixed 
state-control  inequality  constraints.  The  approach  makes use of 
the  dependence of solutions of differential  equations on parame 
ters,  the  ideas in LVarga [l]  and  our  previous  work  in [Q]. 

The  Paper is organized as follows. In Section 2, the  optimal 
control  problem is stated.  Section 3 introduces  the  notation  and 
assumptions  to be  used  in the  subsequent  sections. \Ye present 
the  main  results in Section 4 .  Section 5 deals  with  the  dependence 

'The  work  reported i n  this paper  was supported in part  by the NSF Gran t  
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of ~olutions  of  differential  equations on parameters. In Section 8 
proofs  are  completed,  and  the  paper  concludes  with  Section 7 .  

2. STATEMENT OF THE PROBLEM 
L.et I : = [ t  l . f 2 ]  be  a  fixed,  closed, and  bounded  interval of 

the real numbers R a n d  S R ' .  Let I V ( I , S ) ~  Lm(IIS),  and 
A C ( I  !S) denote.  respectively.  the  linear  spaces of all functions 
F : I - S  n h i c h  are  measurable,  measurable  and  essentially 
bounded.  and  absolutely  continuous.  For  open  sets X C R "  and 
I C R m ,  define 

x : = A C ( I , X ) ,  L T C M ( I . U ) ,  

: I X X X C '  - R R ,  

oi,  v j  : I X X X  I!' + R ,  i = 0,1, . . . ,Ai; j = 1, . . , , iV, 

4 J : = ( o  1,  . . . , 0.u), $ : = (el, . . . > Zl'V). 

@ : = (do,&, . ' . > 4 M ) l  

* : = (&,bl, . . . , d"fA, . ' . f 

The  optimal  control  problem is t o  find  a  pair ( z ( . ) ,u  (.)) in 

XXU which  minimizes the  functional 

subject to 



where F '  (Z) is identified  with  the  Jacobian  of F at  Z. If F is 
c2 on .A , then  the second  derivative of F at Z is defined to be 
the bilinear map 

F"  ( T )  : R' xR' -+ R ' ,  y = Z T  F f f  ( Z ) Z ~ .  
Here T denotes  the transpose and F I' (Z) is the Hessian  matrix 
of F .  The i t *  component of the  vector y is understood a 
yi = 2 TFi ' I  ( Z ) Z ~ ,  where Fi " (Z) is the r x r symmetric 
matrix of second  partial  derivatives of the i t h  component of F at 
a .  For  notational  simplicity, 

F" ( Z ) ( Z , , Z ~ )  : = ZTF" (Z)z2 ,  F" ( i i ) z2  : = F" (Z ) (Z ,Z )  

- 

Now suppose  that F : A ' X A 2  +R' is C', where 
Ai C R " ,  i = 1,2 are  open,  and  let ii = (Z1, Z& Zi € A ; .  
The  first  partial  derivative of F with  respect $0 a 1 at  a ,  denoted 
by F,1(Z), is the first  derivative of the  map F : A ,+I?',  where 
F ( a  ') : = F ( a  , , T 2 ) .  F,2(Z) is defined in the  obvious  manner. 
If F is C2, the  second  partial  derivative, 

c1 

We  begin  by  defining  the  sets x and u of,  respectively, 
- 

state  and  control  variations. 

( i )  X:= A C ( I ,  R " ) ,  

(ii) U G.L ,(I, R 1, 
- 

where 
is a  bilinear map identified with s ri X r, matrices of the second 

satisf ies both (a) and (p )  1, 

partial  derivatives of Fi . 

Assumotions 

Al .  For each t €1, the  functions 

( z ,u ) -+ f  ( f , z , u ) :  X X U  + R " ,  
( z , u ) - + @ ( f  , z , u ) :  X X U  -+R'+M, 
( z , U ) - + ? $ ( f , Z , u ) : X X U  +RN 

are all c2. 

A2. For each ( 2  ,u ) E X  X U , the  functions 

t -+ f ( t  , z , u ) :  I + R " ,  
t + @ ( t , z , u ) :  I +R'+M, 
t + $( t  , z , u )  : Z -+ R N  

are all measurable. 
A3. There exists a nonnegative  integrable  function k : I 

such  that for all ( t  ,z ,u ) € I  X X  X U ,  

I f  I + I f ,  I + I f ,  I +f,, I + If,,  I + If,, 

- + R  

. .  

I @ l  + I+, I + I + ,  I + I&, I + I@,, I + I+,, I S k .  
Remark 4.1. Recall that  for  unrestricted  problems,  that is for 
M = 0, N = 0, an  optimal  control ?i ( t  ) is said t o  be ringular 
in the sense of Pontryagin's  maximum  principle, 

if there is a nonempty  subset u of u - ii(.) (with u convex ) 

A4. U is convex  in R m .  

Throughout  this  paper, ( z ( . ) , ? i ( . ) ) € x X u  denotes  an such that (see [51,[g~) 
optimal  pair,  i.e., a solution to the  optimal  control  problem (1) - 
(4).  The  evaluation of functions on ( F ( . ) , C ( . ) )  will be represented ffU ( t  , T ( t  ) , z ( t  ) , ~ ( t  ))u ( t  = o f o r  all u(.) EU. (9) 

- 
Here H = q5 o + X T f  1 

d X ( t ) /  dt 
= - H , ( t , z ' ( t ) , r ( t ) , X ( \ ) ) ,  and X ( t 2 )  = 0. Condition (9) is 

610 



y ( t  ) is the  state  variation defined  in (7). Thus  the  above defini- 
tion of critical  variation  can be regarded as an extension of this 
definition of singular  controls t o  t,he  constrained  optimal  control 
problems. 

Remark 4.2. Condition (8) is essential in proving  satisfactory 
second  order  optimality  conditions in restricted optimization  prob- 
lems if it is desired  to  have  a  Lagrangetype  multiplier 1 indepen- 
dent of critical  variations  (that is, 1 common t o  all  elements of the 
set y ,~) .  See [I]. However,  in the  absence of (8), one  can  derive 
somewhat less satisfactory  conditions in  which the multipliem 1 
have  to be chosen  separately  for  each  critical  variation  (see 
Theorem 4.2  below and [3]). 

In what follows, the following  definitions will be  used. 

We now state our main  results. 

Theorem 4.1. If ( F ( . ) , C ( . ) )  solves the  problemdl) - (4)  under 
the  assLmptions A1 - A4, then  there exist 1 E R'+ tN and 

X(.) €x, such  that 

Remark 4.3. Note  that  condition (18) holds  for all elements 
( y (.), t) (.))E Y,,p T h a t  is, the  theorem  asserts  that  a Lagrange- 
type  multiplier 1 and  the  corresponding X exist  such tha t  (18) is 
satisfied  for all the  elements of y 0 p  

Theorem 4.2. Under  the  same  conditions of Theorem 4.L for 

each ( y  ( . ) ,u  (.))E Y, there  exist 1 ER l t h f + N  and X( .)EX such 
tha t  (11) - (18)  are  satisfied  and 

Remark 4.4. Theorem 4.1 corresponds t o  Theorem A in [I] for 
abstract  optimization  problems.  It  generalizes  Theorem 3.1 in [3] 
and  thus  the  result in [O]. Theorem 4 . 2  is less satisfactory in the 
sense that  the Jecond  order  optimality  condition (18) may  not hold 
for all ( y ( . ) , a  (.))E Y,. In other  words,  the  Lagrange-type 1 may 
not be common  to all the  elements of the  set of critical  variations. 
\$'e will prove  both  Theorems 4.1  and 4.2 by the  same  argument 
(although  the proof is much  simpler  for  Theorem  4.2). 

For additional  remarks  and  elaborations on Theorem  4.1, we 
refer the  reader  to 13). 

6 .  PARAMETER  DEPENDENCE OF SOLUTIONS OF 
DIFFERENTIAL EQUATIONS 

In this  section we  consider  a  suitable  perturbation of the dif- 
ferential  equation (2 )  and  study  the  dependence of the  sclution of 
the  perturbed  equation on the  parameters  defining  the  perturba- 
tion.  Materials in this  section  are  a  basis to   the proof of 
Theorems 4.1 and  4.2. 

Let c,  1 E I < 1, be  a  small  parameter  and let u ( . ) , w ( . ) E U  
be bounded  measurable  functions.  Clearly,  for  sufficiently  small E ,  

the  function U,  : = Ti + E U  + 2 c2w belongs t o  the open  set 

U .  Consider now the  initial  value  problem: 

N 

2 

For c = 0 we  have z c ( t )  = Z ( f ) ,  a.a. t €1 by  the 
uniqumess of solutions of ordinary  differential  equations.  Let y (,) 
be  the  solution of the  linear  initial-value  problem. 

where Ly : = dy dt - r', y, 

The  derivative azc(  t )/ 3~ exists  (see, e.g., [lo], Theorem 11.4.9, P. 
195) and  for c = 0 we have 

c-0 = y ( t  ) , a.a.t €1 

The second  derivative of 2 ,( t ) a t  E = 0 exists  by the  same 
argument  and  thus  setting 

,=O 

we have for a.a.t €1, 

2 ( t  1) = 0. 

Next let c2 0, c i j  2. 0, and di, 2 0 be nonnegative  real 
numbers  satisfying 

k 
e ; ,  = 1 f or each i = 0,1, . . . , M ,  

j -1  
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1 
dir = 1 I or each i = 0,1, , . . , M ,  

r -1 

where k and I are arbitrary  positive  integers. Also let 

M 

i PO 
e : = (eo,el, . . . , e M ) ,  ei 2 0, I e l  := ei = 1. 

Finally,  define 

u , ( t )  := E ( t )  + c v ( t )  + - ' c 2 w ( t )  
2 

z(tl) = 0, w as d e f i n e d  in (21). 

We have  to specify the  forms of y ( a )  and z (.) in these  relations. 
I t  follows from (23) tha t  

N 

where u j  (.) and w, (.) belong t o  u. Obviously, for 
Osc< 1, u ,(*) takes  values in the  set U. Consider now the 
initial-value  problem (18) with u c ( t  ) defined in (21): 

Comparing (23) and (27) and  taking  into  account  the  uniqueness 
of solution, we  see tha t  

Lemma 5.1. The  solution z r ( . )  of the  initial-value  problem (22) 
is of the  form 

where o (t') +O uniformly in t as e+O+ and y j  (.) and 2, (.) are 
solutions of 

a.a. t E I ,  zr(tl) = 0, r = 1, . . . , 1 , 
where 

Proof. Since the first  and  second  derivatives of 2, with  respect 
t o  t exist, we can  write 

z , ( t ) :  = h ( t )  + c y ( t )  + - ' € 2 2 ( t )  + o(e2) .  2 

Similarly,  from (24) and  definitions of c;j and d;, we have 

Comparing (28) and (28), we see  by the uniqueness of solution 
that  z has the  form  asserted in the  Lemma.  This  completes  the 
proof. 

Lemma 5.2.: 

t 2  t 2  

I@( t  ,z,(t),u,(t))dt = I S ( t ) d t  + - 1 c 2 H O +  a(c2,0) + (ao,O) 
t l  t l  

- 
2 

where cr(c2,8) -+O+ uniformly in t as c + 0+, H is an 
(A4 + 1) X ( M  + 1) matrix  whose  columns are defined by the  
(A4 + 1) vectors 
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and  where a. is the  nonpositive  number 
- 

5 o z , ( t )  OEK , OEC and K is opea.  Thus by  Lemma 5.1, either  there 
whele c o  denotes  the convex  hull.  Clearly, K and C are  convex, 

exists 1 : = ( 1 0 , 1 2 , 1 2 ) E  [O,m) x R M  x R N  satisfying 

Proof. Write  the  first  three  terms  of  the  Taylor series 
expansion of ip about t = 0, use  Lemma 5.1 and  the  fact  that 
(Yj ' .) ,uj(.))Eyog. 

6. COMPLETION OF PROOFS 

sets, which is a  special  case of Lemma V.2.1, p.299 of [lo]. 

Lemma 6.1. Let C be  a  convex  subset of 
R X R" XR h' , K an  open  convex  subset of 

R N ,  OE c' , OEE. Then  either  there  exists 
1 : = (lo.ll,12)E[0,m) X R M  X R N  such  that 

We  shall  use the following  lemma on separation of convex 

Remark 6.1. Similar  expansion  holds  for 
$ := ($1, . . . , t'l,y). 

l # O ,  I C  2 0, v c E C ,  a n d 1 2 k 5 0  v k E Z .  

Or  there  exist : = ((i,(i,(i)EC and pi , i =0,1, . . , , M 
such  that  the  set (ti,(/) i = 0,1, . . . , M is linearly 

independent, (i<O, $ E K , i =O,1 ,  , M ,  

P ; > O ,  i = O , l ,  . . . ,  M ,  pi = 1  and p i ( i = O .  
From  the  first  alternative we obtain 

for all ( y ( .), v ( . ) )E Yop and all ( z  (.), w (.)) satisfying (20). 

We  prove  that  the  second  alternative  cannot hold for the 
above  choices of K and C . So assume, on the  contrary,  that  the 
second  alternative  holds.  Thus  there  are  nonnegative  numbers 

c;j , c;j = 1 for i = 0,1, . . . , M and ( y;j (.),wij (.)) in 

Yep ( q ; i  (.),wij (,)) satisfying (21) such that 

{ . I  I 
* . i i  

i -0 i -0 

k 5  

j = I  

or there exist  points : = ((i,(i,(i)€C and  numbers 
M 

+ s , ( t ) z i i ( t )  + q, ( t )a i j ( t ) ]  dt .  

Lslng cij and d;, , the  functions w j  ( . )  and u', (.) in (21)  we 
(29) define u , ( . )  as in (20) and  find the corresponding ~ , ( t )  in (21).  

By Lemma 5 . 2  we have 
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+ - c2H 0 + (r(c2,8) + (ao,O) ,  
1 
2 

- 

where now the (1 + h 4 ) x ( l  + A!) matrix H with  linearly 
independent,  rolumns (<;,ti) defined  in (31), i = 0,1, . . . , AM, 
is nonsingular.  Let 

and  observe  that  there  exists 7 > 0 such tha t  

I 211-1a(t2,0) 1 55 Pmin f o r  I 0 I = 1 and 0 5 E < 5 (33) 
3 

Choose T sufficiently  small so tha t  

and 

The set S is clearly  compact  and  convex  and 

Furthermore,  the  mapping 

where /9' : = . . . , BM) is continuous  and it easily  follows 
from (34)-(34) t,hat  it  maps S $0-S. Therefore, it has a  fixed 
point s ES.  Let us write s = c0,  c=-l s I, I 0 I =l. Thus 
we have shown that for  some ;>O and 8, I 0 I = 1, 

and so, defining R. ;(.) and a the  same  way as z ,(.I and a but 
with 0 replacing E ,  0, it follows from (32) tha t  

- 

from which we deduce 

We  need  to show that  the  pair (Z G ( . ) ~ U  ;(.)) satisfies the ine 
quality  constraints (4).  An expression  similar to   the one in (32) 
yields 

t l  

= J &.(t ) d t  + - t2  ei + a 2  + 0(€2,0),  
1 M  
2 i - 0  

- 
t l  

- - z -  

where - a : = (az1, . . . , a 2 N ) ,  a z i  5 0 ,  is defined  similar t o  

a. but wit,h $ replacing do, and  where (r(t2,0)-+0 - as E-0 + uni- 

formly  in 0. Noting tha t  [&EK and a Z j  50, j=J, . . . , N ,  
we see tha t  for sufficiently  small E (specifically t = t )  each  com- 
ponent of the right-hand  side of (35) is nonpositive. In conclusion, 
we have  proven  that  t,he  pair ( Z  ; ( , ) l u  $.)) is an admissible  one a t  
which the  cost  functional is less than  the  minimum  value.  This 
contradict,ion shows that   the  second  alternative  cannot  hold.  We 
now derive  the  optimality  conditions ( l l b ( l 0 )  from (29) and (30). 

Conditions (11)-(13) are  just  equivalent  forms of (29). To 
derive (14)-(10), define the absolutely  cont,inuous  function 1 on f 

Setting 21 = 0 in (30) we have 

for all ( z ( . ) , w ( . ) )  satisfying (20). But  notice that (20) with 
u = 0 is  equivalent to  
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= rz(t)z(t) + ~ , , ( t ) w ( t ) ,  r ( t 1 )  = 0. (38) 
d f  
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7.  CONCLUSION 
In tbis  paper,  we  have  developed  a new method  for  deriving 

second  order  necessary  conditions  for  optimal  control  problems. 
The  method is applicable to a wide  range of optimal  control prob- 
lems  including state or mixed  state-control  inequality  constraints. 
I t  is also  suitable for control  systems  with  distributed  parameten. 
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