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Abstract- Conventionally, reliability analyses either assume
that a fault/error is detected immediately as it occurs, or ignore
damage caused by imperfect detection mechanisms and error
latency, namely, the time interval between the occurrence of an
error and the detection of that error.

In this paper we consider a remedy for this problem. We first
propose a model to describe the entire error detection process and
then apply the model to the analysis of the impact of error de-
tection on computer performance under moderate assumptions.
Error latency is used to measure the effectiveness of detection
mechanisms. Due to the presence of error latency, (i) it is possible
to have undetected errors at the end of process execution making
the computation result unreliable, and (ii) even if all errors were
detected before the completion of process, it is required to apply
complicated error recovery resulting in considerable computation
loss. We have used the model to (1) predict the probability of
producing an unreliable result, and (2) estimate the loss of
computation due to fault and/or error. The former can be used as
a measure of lack ofconfidence in the computation results whereas
the latter is important to the timing analysis, particularly for real-
time computations. Various error recovery techniques and their
associated overheads are considered for the estimation of the
computation loss which can be used for analyzing suitability for
time-critical applications.

Finally, a design problem associated with the error detection
process is discussed and a feasible design space is outlined.

Index Terms -Computation loss, diagnostics, error detection,
latent errors/faults, recovery methods, unreliable results.

I. INTRODUCTION

D URING the past decade or so, many reliability related
models for fault-tolerant computers have been pro-

posed. Usually, in these models, probability distribution
functions are employed to describe the occurrence of compo-
nent or system failure. Then, various measures such as
reliability, computation capacity, performability, etc. are
estimated and are then used to properly represent system
performance. Such approaches, however, do not consider
shortcomings in error detection mechanisms and recovery
methods. By contrast, we set out in this paper to present
results of a study that incorporates detection mechanisms and
recovery methods in system performance and reliability.

Consider the property of a fault. An input signal to a com-
puter may cause the fault to induce some errors, or it may
simply be unaffected by this fault and produce a correct
output. The fault is said to be latent if it does not harm normal
operations. The time interval between the moments of fault
occurrence and error occurrence is calledfault latency. For an
ultrareliable system, a latent fault is a considerable threat
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since it may cause a catastrophe in the event that more than
one latent fault becomes active at the same time. Bavuso
et al. investigated the problem of the latent fault and pro-
posed experiments to measure the time interval between the
moments of fault injection and error detection [1]. Their
study indicated that a significant proportion of faults is not
detected even after many iterations of a process.
When an error is generated, it is desired that the error

detection mechanisms associated with the system identify it
immediately. Nevertheless, some errors may not be captured
by error detection mechanisms upon occurrence and then
spread as a result of the subsequent flow of information.
Thus, the damage caused by an error will propagate until it
is detected and handled appropriately. See Fig. 1 for a typical
error detection process. The delay between the occurrence of
an error and the moment of its detection, called error latency,
is important to damage assessment, error recovery, and estab-
lishing confidence in the computation results. This delay has
been defined by Courtois as detection time [2], [3] and by
Shedletsky as latency difference [4]. Courtois also presented
results of on-line tests of the M6800 microprocessor that
included the distributions of detection time for certain de-
tection mechanisms. Shedletsky proposed a technique to
evaluate the error latency based on the "fault set" philosophy
and the probability distribution of input signals.
When error latency is significant, there is the possibility of

the system putting out incorrect computation results since
there may be some undetected errors at the output phase.
Also, even if the system detects all errors before the output
phase, the computation achieved during the latent period may
already have been contaminated, and thus be useless. In
practice, error latency is never zero, and in the event of an
error the whole system is delayed by the more complicated
recovery that is required to remove the contamination that is
spread during error latency.
To evaluate these two effects -the probability of produc-

ing an unreliable result and the computation loss resulting
from error- it is necessary to examine the error detection
mechanisms incorporated in computer systems and their
respective capabilities. One may then establish a different
recovery strategy for the errors captured by each distinct
detection mechanism, thus obtaining the most appropriate
possible recovery performance and execution cost. To evalu-
ate error handling capability including tradeoffs between
various detection mechanisms and recovery methods, it is
necessary to consider recovery performance and execution
cost, taken as a whole.

In this paper, a model is proposed to describe error de-
tection processes and to estimate their influence on system
performance. In the following section, the classification,

0018-9340/84/0600-0529$01.00 (© 1984 IEEE

529

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:44:59 UTC from IEEE Xplore.  Restrictions apply. 



5EEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 6, JuNE 1984

A B A C

Error
F latency #Time

Duration A: A fault exists and active in the system

Duration B: The fault becomes inactive

Duration C: Errors exist in the system

Fig. 1. The error detection process.

properties, and associated recovery methods of error de-
tection mechanisms are discussed. Our model is developed in
Section III. Section IV presents the evaluation of the proba-
bility of having an unreliable result as well as that of the
average computation loss. Also, the design problem of error
detection is discussed and a feasible design space is outlined.

It is assumed throughout this paper that faults in hardware
components are a potential cause of transition to erroneous
states during normal operation. We also assume for the
present study that there are no design faults in the system. An
error is defined to be the erroneous information/data re-
sulting from fault(s).

II. CLASSIFICATION OF ERROR DETECTION MECHANISMS

There are various error detection mechanisms which can be
incorporated in a computer system. The basic principle of
these mechanisms is the use of redundancy in devices, infor-
mation, or time. Based on (i) where they are employed,
(ii) their respective recovery methods, and (iii) performance
measures, error detection mechanisms are divided into the
following three categories.

a) Signal level detection mechanisms: Usually, the
mechanisms in this category are implemented by built-in
self-checking circuits. Whenever an error is generated by a

predescribed fault, these circuits detect the malfunction im-
mediately, even if the erroneous signal does not have any
logical meaning. Typical methods in this category include
error detection codes, duplicated complementary circuits,
matchers, etc. The performance of these detection mecha-
nisms is measured by the coverage, denoted by c, which is
the probability of detecting an error induced by an arbitrary
fault. It is difficult to have a perfect coverage because (i) it
is prohibitively expensive to design detection mechanisms
which cover all types of faults, and (ii) physical dependence
between function units and detection mechanisms cannot be
completely elim'inated.

Since this class of detection mechanisms detects an error
immediately upon occurrence, there is no contamination
through error propagation. This makes the subsequent recov-
ery operations simple and effective. Two kinds of recovery
methods are suitable for this category; one is error masking,
in which redundant information is used to retain correctness,
the other is retry, in which the previous action is reexecuted.

b) Function level detection mechanisms: The de-

tection mechanisms in this category are intended to check
out unacceptable activities or information at a higher level
than the previous category. Unlike the signal level detection
mechanisms, they verify system operations by functional
assertions on response time, working area, provable
computation results, etc. These detection mechanisms
can be regarded as "barriers" or "guardians" around normal
operations. After an error is generated by a fault, the re-
sulting abnormality may grow very quickly -the "snowball
effect" [3], or "error rate phenomenon" [6]-until it hits the
barriers. Several software and hardware techniques such as
capability checking, acceptance testing, invalid op-code
checking, timeout, and the like can be applied.

The important issues for function level detection mecha-
nisms are error isolation and damage assessment. Both issues
depend upon system structure as well as on inherent proper-
ties of the executed programs or tasks. When there are clear
cleavages between subsystems or subtasks, the effective de-
tection assertions can be easily declared, thus permitting
greater error isolation and reducing contamination. Usually,
rollback and restart recovery methods are used to rescue
failed processes. Rollback requires state restoration such that
part of the process can be resumed. The restart method purges
the old computation and then reissues the same task to other
nonfaulty processors.

c) Periodic diagnostics: This method is usually re-
ferred to as off-line testing because the processing unit under
test cannot perform any useful task. It is composed of a
diagnostic program which supplies imitated inputs such that
all existing faults are activated and thus generate errors.
Several theoretical approaches have been proposed to deter-
mine the probability of finding an error after applying diag-
nostics for a certain duration (equivalent to the probability of
detecting fault as a function of test duration) [7], [8]. Simu-
lation has also been used to study the coverage of self-testing
programs [9]. All these results have indicated that the effective-
ness of the present category is a monotonically increasing
function of testing time. Since the time required for complete
testing (i.e., ensuring 100 percent coverage) is in general too
long, an appropriate policy of diagnostics is to perform an
imperfect test periodically during normal operation and per-
form a thorough diagnostics when the system is idle.

III. MODEL OF ERROR DETECTION PROCESS

For analytical convenience, occurrence of a fault is usually
modeled as a Poisson process. Let MTBF be the mean time
between two successive fault occurrences. Also, let F, and
pi i = 1, 2, 3 denote the event and the probability that the
fault is transient, intermittent, or permanent, respectively.
Naturally, Pi + P2 + p3 = 1. When the classification of
faults into these three types is independent of occurrence of
faults, occurrence of event Fi can be modeled as a Poisson
process with rate pi/MTBF. Then, the following model can be
used for a separate analysis of the effects of each type of
faults.
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a2(t ) I7/(t )

Note: The transitions between NF, F, FB, and E, EFB are
dependent on the type of fault.

Fig. 2. The model for error detection process.

A. Model Development included in the model. Several models of intermittent faults

Fig. 2 shows our model of the error detection process. The have been proposed and used for testing and reliability
model consists of three parts: the occurrence of a fault, the evaluation [101-f14] In our model, the transitions between
consequent generation of an error, and the detection of that NF, F, FR, and between E, EFB are used to describe the
error. Since the probability of having multiple faults at any behavior of intermittent faults. For transient and permanent
time is small, they are excluded from the model.1 There are faults, FR does not exist, implying that the transition rates
six states in the model as followvs: between F and FB, ,L and v, are zero. Similarly, for intermit-

1) NF (nonfaulty): In this state no fault exists in the tent and permanent faults the rate of transition from F to NF,
system. r, equals zero.
2) F (faulty): There is a fault which is active and capable Consider the process of generating errors by a given fault.

Of inducing errors, but there are no errors. With the assumption that the signal patterns of successive
3) FR (fault-benign): There is an inactive intermittent inputs are independent, Shedletsky treated the period of fault

fault. latency as a random variable with a composite geometric
4) E (error): There is at least one undetected error in the distribution for discrete inputs or cycles [8]. Using the

system and the fault which has caused that error is still conceptsofinformationtheoryAgrawalpresentedaformula
present. to estimate the probability of inducing error [15]. For trac-
5) EFB (error-fault-benign): At this state the intermittent tability we have assumed in our model an exponentially

fault has become inactive or the transient fault has disap- distribited fault latency with rate a when a task is executing.
peared after it induced an error. While the diagnostic program is running, the transition du-

6) D (detection): At this state, the detection mechanisms ration F to D2 is assumed to be exponentially distributed with
have identified the error in the system. To determine whether parameter t. If the diagnostic program is executed for period
the system has been contaminated or not, twvo substates, t following a normal operation period t, and a process swap-
called DI and D2, are included. The system will enter D1 when ping period tv as shown in Fig. 3, the coverage of a single
the detected error has contaminated at least part of the sys- diagnostic, denoted by 9, is equal to 1 - ewe, for h
tem. On the other hand, the system enters D2 when an error execution of diagnostics.
is detected before it begins to propagate through the system. Once the system enters E, the erroneous information starts
Signal level detection and diagnostics cause transitions from to spread until function level detection mechanisms identify
F to D2. In fact, these transitions can be divided into two any unacceptable result. There are two paths to D, and they
steps: an existing fault induces an error, and the error is represent transition rates of /(t) and y(t), respectively. At
detected immediately following its occurrence. state E, since the fault still exists, it is possible that the fault

Let A denote the rate of occurrence of F type faults, i.e., is captured by signal level detection mechanisms or diagnos-
A = pj/MTBF i = 1, 2, 3 when transient, intermittent, and tics prior to the function level error detection. We exclude
permanent faults are separately considered. Since intermit- this case from the model because the process has already
tent faults may become inactive, a benign state has to be become erroneous, and the subsequent signal level detection

has no effect on this error. (Namely, a direct transition from
E to D2 is not included.) It is also possible that there are

'See Section V for a brief comment on the modeling of multiple faults. multiple errors induced by the same fault or by an old un-
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normal process
operation swap diagnostic

F iA ceogi

k tn" 4,VFtp
Fig.- 3. A cycle of periodic diagnostics.

time

detected error when the system is in E or EFB. The function
level detection mechanisms will recognize that the system is
erroneous regardless of which error is captured. However,
the error latency must be measured from the moment that the
first error occurs.

B. Mathematical Description ofState Transitions

Let a computer system incorporate the three types of error
detection mechanisms discussed above. For notational con-
venience number the states NF, F, FB, E, EFB, Di, D2 with i
for i = 1, 2, , 7. Then one can obtain a transition proba-
bility matrix H7.7(t) by making use of the model in Fig. 2.

Hence, the state probabilities ir(t) = [rl(t), r2(t), * ,

ir7(t)] can be obtained by solving the following differential
equation:

d7r(t)=
dt '=V it) 9(0) = ITO (3)

where 7iri(t) is the probability that the system is in state i at
time t. Because of the absorbing property of Di and D2, one
can easily see that 1r6(oc) + 1v7(o) = 1.
Assume the initial state that the system begins. with is NF.

When a transient or a permanent fault occurs, the system will
enter the nonfaulty state again after either the fault disappears
or the system is reconfigured to eliminate the source of
the fault.

In case of an intermittent fault, it is possible for the system
to be in FB instead of NF even after some recovery proce-
dures are successfully applied. For example, when the fault
becomes benign during the retry recovery, the system enters
FB. Let SI (or S2) be the event that the system is in state NF

Av
,u + v

-(g + T + ai(t) + a2(t))
v

0

0

0

0

-V

0

al(t)

0

0 -(/J1 + r + ,8(t))

0

0

0

V

0

0

0

0

o 0

0 a2(t)
O O 0

,Ut+T (3(t) 0

-(v + y(t)) 7y(t) 0

o 0
o 0 0

Since the diagnostic is invoked periodically, transition rates
al(t), a2(t), (3(t), and y(t) are the following functions of time:

a1 (t) =

I( - c)a
0

if n(tn + tp +

otherwise

a2(t) =

ca) if n(t, + tp + tv)
wcc otherwise

tv) < t < n(tn + t, tj) + tn

(2a)

< t C n(tn + tp + tv) + tn

(3(t) =

.0
if n(t, + tp + tj) < t C n(t, + tp + tu) + tn

otherwise'

y(t) =

if n(tn + tp + t,) < t < n(tn + tp + tu) + tn

otherwise

where c is the coverage of the signal level detection; a is
the transition rate that a fault generates an error; (3 and y

represent the transition rates that the function level detection
captures errors in states' E and EFB, respectively; and n is a

positive integer.

(or FB) after recovery from an intermittent fault. This pro-

cess can be represented by a Markov chain shown in Fig. 4
and the transition probabilities between SI and S2, denoted by
81 and 62. These transition probabilities are computed using
(3) and the corresponding recovery performance will be dis-
cussed in the next section. Note that, under S2, the same

intermittent fault will be detected by the signal level de-
tection with probability one if it induces an error again.
A task may start execution when the system is in any

one of NF, F, FB, E, EFB (but certainly not in D1, D2,).
Using the Markov model in [16], we can calculate (i)
the mean number of visits to state i, i = 1, 2, ,5be-
fore the system is absorbed into DI or D2 for every Fj j
1, 2, 3, and (ii) the mean time interval, E[Xi Fj I j = 1, 2, 3,
during which the system stays in state i before transition
to DI or D2 takes place. Then, the probability that a task
begins execution when the system is in state i is formu-
lated as follows:

el

E[Xi Fj/]I E[Xk Fj]
(2d) mi (0 F) = 1-l

O

for i = 1,7.2 , 5

,for i = 69 7.
(4)

It may be possible that the active duration of an intermit-
tent fault increases every time it becomes active following its
first occurrence. This would imply that the transition

H7x7(t) =

-A

0

0

0

0

0

(1)
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1-6E

-z
Fig. 4. A Markov chain for the recovery from an intermittent fault.

rates between fault active and fault benign depend on the
duration for which an intermittent fault exists. In such a
case, the model suggested in' [17] can be used in the above
system equations.

It cannot be overemphasized that our modeling of the error
detection process is intended to evaluate the effects of various
detection mechanisms on task execu-tion. This fact is in sharp
contrast to most conventional methods in which models have
been developed and then used to estimate the system re-
liability or to determine the coverage of failure. For example,
in CARE III [ 14] the error propagation rate is defined by the
user and the model is applied to determine the coverage.2
Note that a transition to DI represents the detection of error
by function level detection mechanisms, whereas D2 is reach-
able directly from F by signal level detection mechanisms or
diagnostics. The impacts of detection mechanisms on task
execution will be reflected through (3) and the state distribu-
tion ir(t I Fj).
IV. ANALYSIS AND DESIGN OF ERROR DETECTION PROCESS

In case of imperfect coverage (i.e., c < 1.0) in the signal
level detection, and nonzero error latency in the function
level detection, the system will suffer from the following two
undesirable effects: one is the possibility of putting out
potentially erroneous results because the system is unaware
of the existence of error; the other is the additional recovery
overhead resulting from error propagation through the
system during error latency. With the model proposed in the
previous section and moderate assumptions regarding error
recovery, we will in this section analyze these two effects and
then use them to specify the requirements for design of
error detection.
We usedp1 = 0.5 P2 = 0.4, and p3 = 0.1 in simulating

the impacts, of error detection process on computer per-
formance. This selection is for a numerical purpose only, and
thus is arbitrary. The choice of these values does not alter the
validity of the method developed here.

A. Estimation of the Probability ofProducing an
Unreliable Result

The execution of a task consists of parallel and/or serial
execution of processes. We can always partition the task into
processes in such a way that every process receives all the
input data at the beginning of its execution and sends the

cotnputation result to its successors at the end of execution.
A serious situation, namely the propagation of erroneous
information through the system, appears if an error occurs
and cannot be discovered before the end of execution. For
convenience, let us define an unreliable result as follows.

Definition: If there exists at least one error at the moment
of proceSs completion and if the system is at that moment
still unaware of the presence of that error, the process is said
to end with an unreliable result.
An unreliable result may even include the cases of produc-

ing wrong and/or no outputs. On the other hand, it may yield
a correct output despite the presence of error if the com-
putation is not contaminated by the error. However, the result
cannot be trusted owing to the presence of an undetected error
at the moment of output. (No one would have much con-
fidence in the computation result under this circumstance!) It
is therefore important to estimate the probability of produc-
ing an unreliable result, denoted by Pe, as a measure of lack
of confidence in the computation result.

Let T denote the execution time of a prodess. If T is deter-
ministic, Pe is given byp = 7= pj{Tr4(T IFj) + r5(T IFj)},
which is the probability that the system is in E or EFB
at the moment of process completion. When T is a random
variable with density function fT(t), then Pe becomes
Pe-= fo{X 1pj[ r4(t Fj) + rs(tIF1)]}fT(t) dt.
When a diagnostic is scheduled periodically for the pro-

cess, the resulting Pe becomes a function of the time interval
between the output moment and the time the previous diag-
nostic has run. The shorter this time interval, the more
reliable the computation result. However, because of the
uncertainty of the process execution time, it is difficult to
schedule periodic diagnostics so that the system is tested just
before the process moves into the output phase. Here, using
the proposed model, we can compute the maximum value of
Pe, denoted by max(pe), which occurs when the time interval
between the process completion and the last diagnostic is
equal to tn. Observe that 1 - max(pe) represents the lower
bound of confidence (or sure confidence) in the computation
results and thus can be used for design specifications. Some
simulation results are graphed in Fig. 5 and 6. In Fig. 5,
max(pe) starts to decrease sharply only when each diagnostic
has a higher coverage (4 . 0.95). In Fig. 6, we compare
three different cases: (i) with periodic diagnostics and
c 0.6, (ii) with periodic diagnostics and c 0.8, and (iii)
with periodic diagnostics, c = 0.6, and doubled function
level detection rates. From the model, we can observe that
max(pe) is linearly related to the coverage of the signal level
detection and varies exponentially with respect to the func-
tion level detection capability. However, perfect coverage
and zero error latency are impossible to attain in practice.
Thus, the combination of both the signal level and the func-
tion level detection mechanisms have to be used to reduce Pe.

2Consequently, even though there are similarities between our model and
CARE III, their purposes are quite different.

533

61

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:44:59 UTC from IEEE Xplore.  Restrictions apply. 



4EEE TRANSACTIONS ON COMPUTSRS, VOL. c-33, NO. 6, JUNE 1984

I C

10f

4.'

L

-

0

S.
0

case 3

case 1: t, =5.0
case 2: t,=10.0
case 3: t, =20.O

-4# . ^ .4 -- .4 4
0.40 0.8C 0.80 1.00

Coverage of single dia.
Fig. 5. Max(p3) versus the coverage of a single diagnostic 5 (A = 10-6,

, = 0.2,v = 0.1,r = 0.2, a = 0.2,,B = 0.5, ) = 0.1,co = 20.0,c =
0.6,T= 100).

case 1: c =0.6
case 2: c =0.8
case 3: c =0.6 and ,B, y are doubled

endoflRocofrecover y

Fig. 7. The flowchart of recovery processes.case 1

A case 2

_ ' O'0Oc 3

/ ~~~~~~~~~~~case3

10.00 20.00 30USD 40.00 50.00

Period of DIl Cycle

Max(pj versus tn (A = 1O-6t 0.2, v = 0.1, r = 0.2, a = 0.2,
,l = O.5, y = 0. 1, w = 20.0, e = 0.8, T = 100).

impact of these detection mechanisms on computer per-

formance: computation, loss and execution cost. Computa-
tion loss-a system-oriented view -is represented by the
amount of time used for error handling, whereas execution
cost a task-oriented view-shows the effect of error de-
tection and recovery on a particular task in the event that an

error is detected during its execution. After the detection of
an error, one may use one of several recovery methods to
rescue the executing process. Recovery strategies usually

depend on the detection mechanisms and the fault/error
types.
The overhead and efficiency associated with these recov-

ery methods ate briefly discussed in the sequel.3
1) Recovery Strategies and Their Respective Overheads:

If an error is detecttd by a detection mechanism, rollback
or restart can always be applied to recover the process from
the error. It is, however, possible to use masking or retry if
the error is captured by signal level detection mechanisms.
Fig. 7 illustrates four recovery strategies, their applications,
and their application precedence when multiple strategies are
used to recover from a single error. In Fig. 8, a probabilistic
flow diagram between these recovery methods is presented.

Note that a transient fault may not induce any error before
its disappearance. The probability of having an error, given
the occurrence of fault, is P(E) = apl/(a + r) + P2 + P3.
Let Rz,j and pij represent, respectively, the mean overhead
and the probability that the ith recovery method is applied to
recover frotn an error which is generated by Fj, where
= 1, 2, 3, 4 for masking, retry, rollback, and restart, re-

spectively. We also define O j as the conditional probability
that the process is recovered, given that the ith recovery
method is used when Fj occurs. Let pJ' be the probability that
Fj has occurred, given that an error is detected. Expressions
of pJ' j = 1, 2, 3 are listed in the first row of Table I. We can
use Fig. 8 to represent the mean total overhead of recovery

3This discussion is not intended to present a complete detail of error recovery
since it is out of the scope of the present paper. Instead, it is geared toward the
analysis of the effects of the error detection process and its associated recovery
on computer performance.
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u: recovery delay
f (u): density function of u

nI=ns=l, and Prob(n2-n)=62(1-62)"
Fig. 8. Probabilistic flow diagram of recovery processes.

TABLE I
MATHEMATICAL EXPRESSIONS OF VARIOUS PARAMETERS RELATED TO THE THREE DIFFERENT TYPES OF FAULTS

F, F2 F3
(transient fault) (intermittent fault) (permanent fault)

PIPE, P2 P3

P(E) P(E) P(E)

P2,j (1 -P) PF (I -pi)7r7(oo lF2) (1 -p)Tr7(oo lF3)PE,
62,] 1 - e- Ttr 0 0

R2,j tr 82 tr

(13j ){ 6wF,) + ( 1 021)} (I - p,.) {T6(oo| F2) + P2,2( - 2,2)} (1I -p.) {T6(oo F3) + P2,3(l-3 2,3)}

PE,
03j PE, 'DI I -T6(oo IF2)D2 I1-r6(oo IF30D

tc tch 4,
R3,j tb + - tca+ -tb +

2 2 2

ftcht 1-p46,(t lFj) a
WhereD=D( dt and PE IJO 4atch+r

RT = j-'=1 P;(14=ipj1R j) for every error detection.
a) Error masking: Most error masking methods em-

ploy error-correcting codes in data transfer, memory, and
arithmetic units. Error masking is the most efficient recovery
method when it can be applied successfully. In fact, we can
regard in this case that the error has never occurred since the
system still provides correct results despite the occurrence of
error. Thus, one can assume R1,j = 0, i.e., zero recovery
overhead, and Ol,j = 1. The probability that error masking is
used, P1, 1 = p1jir7(O |IF1) (a/(a + r)) and p,]j = P,Tr7(mIFj)
for all j = 2, 3, depends on the conditional probability that
error occurs due to the faults in the units with error correcting

code and can be corrected by the error correcting code, given
that the error occurs. Here, P1 denotes the coverage by error
masking mechanisms.

b) Retry recovery: Retry can be attempted at various
levels, e.g., at the levels of microinstruction, instruction, or
I/O metaoperations. Retry is useful when the error has not
propagated yet at the time of detection. Reexecutions of the
same operation can produc, a correct result only if the related
fault is transient or intermittent and disappears during retry.
Ideally, the system should apply retry recovery until the fault
disappears if it is transient with a short active duration.
For intermittent or permanent faults, retry recovery is not
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helpful. However, after the detection of error by signal level
detection mechanisms, it is very difficult, if not impossible,
to tell the type of fault. Moreover, if it is transient, it is
impossible to predict when the fault will disappear.
Due to the above reasons, assume the system will retry

automatically for a fixed duration tr upon detection of an error
by the signal level detection. Then, we can obtain mathe-
matical expressions of P2.j, 02,j, and, R21j for j = 1, 2, 3 as
listed in Table I.

Recall that for an intermittent fault, when S2 occurs, the
same fault will be detected again by the signal level detection
and retry recovery will be followed. Thus, there are 1/82
retries on the average among which application of the last
retry will be unsuccessful. In case of intermittent faults the
transition probabilities, 81, 82, between SI and S2 are ex-
pressed as follows:

81 = T7(c F2) (I - pi) ( -etr) (5)

82 = e r.(6)

From (5) and (6), it is easy to see that although it is simple
and practical, the above retry method is not intelligent. It
may be more desirable to design a retry mechanism which
can recognize the intermittent nature of the fault following
several consecutive successful retries for the same fault. In
such a case, 82 gets larger, or would become unity if the retry
mechanism is perfect.

c) Rollback recovery: Rollback recovery can be re-
garded as a type of retry which needs to save process states
during normal operation. When an error is detected, the pro-
cess rolls back to one of the previously saved states. The
original idea of rollback'recovery is accommodated with ac-
ceptance tests for software reliability [ 18]. Here, for rollback
recovery we assume periodic insertion of checkpoints such
that the process can be resumed at any one of these check-
points [19], [20]. Let to, and tch be, respectively, the overhead
for saving states and the interval between two adjacent check-
points. Then, the percentage of the overhead for establishing
checkpoints is tol/(tov + tCh). Note that rollback recovery fails
if the states saved are destroyed by a fault, or if the states are
contaminated by error (e.g., due to the presence of error
during the state saving).
The time lost in rollback recovery is the sum of the com-

putation undone and the setup time4 for rollback tb. When we
consider the reoccurrence of error during recovery, it is ex-
tremely difficult to determine this time loss. However, when
the fault occurrence rate is very small (typically 10-6 per
second for the IC's manufactured today), we can assume no
error occurrence during rollback. We also assume that only
the most recently saved state is kept in order to minimize the
storage requirements for checkpoints. Then, the time loss in
computation simply becomes the interval between the mo-
ment of the last state saving and that of the error occurrence
which cannot be recovered by error masking or retry.

4The setup times for both rollback and restart recoveries are needed for
hardware reconfiguration and software initialization. The hardware recon-
figuration is to eliminate the source of error [i.e., fault(s)] for the resident
process in the faulty module.

Since the MTBF is in general much greater than the inter-
checkpoint interval tG, one can assume that the occurrence of
rollback recovery is uniformly distributed within the inter-
checkpoint interval, given that it is applied. Let ps, be the
probability that the saved state becomes inaccessible or
unusable and p46(t Fj) be the probability distribution
function of error latency for fault type Fj, i.e., the proba-
bility that the system is in DI at time t when the system
starts from E. p46(t Fj) is equal to n-6(t Fj) in (3) when

T(0) = [0, O, O, 1, O, 0, 0] .

Then, we obtain P3,j, 03,j and R3,j as listed in Table I.
d) Restart recovery: When restart recovery is applied,

the whole process is reexecuted from the beginning to recover
from an error. Since the system can be reconfigured to re-
place the faulty component, restart recovery will eventually
succeed as long as there are enough 'resources to replace
faulty components. Hence, we can represent that 04,j = 1 and
P4.j = 1- PiJ - P2,j 02,j - P3,j 03,j. The time wasted in each
restart is the sum of the setup time for reconfiguration and
reinitialization, and the time of error detection Td measured
from the beginning of process execution. For simplicity, we
assume that the moment of restart recovery is uniformly dis-
tributed within the task execution period. Thus, the density
function of the overhead involved in restart, fstm,j(t) is equal
to I/T for t, ' t ' T + t,, and R4,j = ts + T/2 where ts is
the setup time for restart. Details of the effects on task exe-
cution time by successive restarts can be found in [21], [22].

2) Calculation of Computation Loss and Execution Cost:
Now with the preceding overhead analyses, consider the
computer time that is used for actual computation instead of
error handling. The average computation loss due to a single
error detected, denoted by CL, has to include the overheads
due to periodic diagnostics, periodic insertion of check-
points, and recovery in the event of error. Define rj as the
percentage of the average computation loss' for each error
detection, which is expressed by

CL3 4

1 /(AP(E)) ]=1 _,_j Ri 7

where 1/(AP(E)) is an approximate mean time between two
successive error detections, and o- is the percentage loss due
to periodic diagnostics and insertion of checkpoints and is
given by

tp + ti + tov
tn + tp + tv tov+ tch

The above equation indicates that the time wasted for
executing periodic diagnostics and checkpointing is a domi-
nating factor in the total computation loss when the system is
highly'reliable (i.e., the system has a small A). In Fig. 9,
plotted are the simulation results for the percentage of the
total computation loss r-, and the mean loss in recovery RT.
The reduction in recovery loss by periodic diagnostics is
small because (i) the diagnostic is useful only if it can capture
faults before they induce errors, and (ii) the diagnostic is
incapable of detecting an intermittent fault when the fault is
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inactive; (iii) even if the diagnostic identifies a fault, the
system still has to reconfigure or retry to eliminate this fault.
Detecticon mechanisms other than on-line diagnostics are

more advantageous due to their favorable effects and over-

heads on the computer performance.
Observe that this time loss is related to the system, not to

tasks to be executed on the system. One can therefore regard
this as the system overhead. On the other hand, tasks exe-

cuting on the system may suffer from delays in execution due
to error detection and recovery overhead which are task
specific. When a task is time critical, the delay in its exe-

cution may cause a catastrophe (e.g., loss of human lives,
economic and social disaster, etc.) if the execution is not
completed within a specified time limit called hard deadline,
denoted by tdead. This was termed dynamic failure in [23],
[24]. Also, the running cost-the cost for use of com-

puter as well as controlling an actual system which uses the
computed results- will certainly go up with the increase of
the execution delay. In case of error, based on Fig. 8, we can

write the probability density function of the execution delay
due to the recovery from an Fj type fault, fr(t Fj, T), where T
is the needed time for task completion under a fault-free
condition. These density functions are listed in Appendix A.
Note that for intermittent faults the task may be completed
with successful retries. In the expression forfr(t F2, 7) given

in Appendix A, for simplicity we used the upper bound of
error handling delay; that is, whenever an error occurs, the
task completion is achieved with rollback or restart recovery.

Since the overhead associated with checkpointing and
diagnostics has to be included, the time needed for task
execution under the fault-free condition becomes T -

(1 + o-)T. For any computation process, the delay in exe-

cution may induce an extra cost. For example, in real-time
applications this cost may be the additional energy or fuel
used for the controlled system, the consequence of longer

* response time, etc. Given a cost function for the execution
time t, C(t), which is a monotonic nondecreasing function
(see [23), [24] for an example of its detailed derivation), we

8 can obtain the total execution cost COST and the probability
' of dynamic failure Pdyn as below.

J3 -0

COST = X pj C(t)fr(t IFj, t) dt
j=l T

3 00

Pdyn = E pj f,(t IFj dt.
jl tdead

C. Design Considerationsfor Detection Mechanisms

Consider the performance and reliability measures Peg Pdyn,
and COST. These measures quantitatively tepresent the
consequences of imnperfect detection mechanisms and then
reflect the effects of detection mechanisms on the system
performance. In this section, these measures are used to ad-
dress problems in the design of detection mechanisms.

Suppose that the specifications of performance require-
ments and application tasks are now given. To provide the
required fault tolerance in the design, we have to answer the
following two questions: (i) what kinds of detection mecha-
nisms should be incorporated in the computer system to be
designed, and (ii) what are their properties in meeting the
specifications? In other words, we need to know the coverage
by signal level mechanisms, the error latency in function-
level mechanisms, and the period of diagnostics. Suppose,
for instance, that the real-time operations and time-critical
processes are now our major design concern. The specifica-
tions must include the limit for the probability of failure as

well as the maximum allowable extra cost caused by short-
comings of detection mechanisms.

According to our simulation results in Fig. 9, the avoid-
ance of error by diagnostics appears useful only if the cycle
time of diagnostics is not much greater than the fault's active
period, which is usually small for transient and intermittent
faults. This implies that a frequent application of diagnostics
is needed. However, in such a case, the computation time
wasted for executing diagnostics as well as the total exe-

cution cost increases prohibitively, making the periodic use
of diagnostics during normal operation less useful. It also
indicates that the probability of capturing intermittent faults
and the improvement of loss in recovery by diagnostics are

small. Consequently, on-line diagnostics are not useful for
time-critical applications.
As a conservative measure, the probability of failure due

to imperfect detection mechanisnis, denoted by pf, can be
represented by the sum of Pe and Pdyn. From the model, one
can see thatpe is dependent exponentially on error latency but
linearly on coverage c. That is, the decreasing of error la-
tency has a greater impact on Pe than does the increasing of
the coverage. However, an improvement in the coverage will
decrease the probability of errorpropagation, and thus reduce
the recovery overhead. In Fig. 10, curves with constant pf
and constant COST are plotted, where C(t) is assumed to be
(t - T)2 for t T. Note that for simplicity we used a qua-
dratic incremental cost in the above plotting. It shows the

CC

C
C
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Fig. 10. Design space for coverage and mean error latenfc
.straints of pf and COST (with the same system parameters
tdead = 150, Ps = 0.2).

cnthination of the coverage and the mean errc
quired to attain pf and. COST, below the spec

The area under both the constant pf and constan
indicates the design space for selecting the cov4

mean error latency. It is clear that perfect sig
tection is within the design space, though it is im
contrast, the combination of small error later
signal level detection may not satisfy the specifi
can be seen easily from the fact that with a zen

detection, every recovery must require rollbac
starts. The use of rollbacks and/or restarts fo
more time consuming than error masking and re

available only to signal level detection mechani
signal level detection mechanisms must be in(

design. The curves with constant COST show thC
execution costis insensitive with respect to the
the signal level detection mechanism. This is d
that all errors induced by intermittent or perr
have to be recovered by rollback or restart irresj
nature of the error detection process, and that b
overheads imposed on saving states, recovery p
be placed relatively far apart. It is important to r

any sophisticated recovery method will cause a

in task execution.
The feasible design space indicated in Fig. l(

the requirements in detection mechanisms for cl
performance specifications. However, it is ver
objectively determine an optimal c'Wbination c

and function level detection meckiiisms. The
for this are that (i) the coverage has to be rela
hardware costs, (ii) error latency and perform.
tion level detection mechanisms are applicatio
and (iii) the cost of function level detection
especially software checking, is neither well s

well understood at present.

V. CONCLUDING REMARKS

In this paper, we have presented first axgeneral model for
the error detection process and then a method for estimating
two important performance-related parameters of fault-
tolerant computers. These two are not usually included in the
traditional reliability models. The first parameter, the proba-
bility of having an unreliable result, indicates the degree of

)ST== 0.0497 lack of confidence in computation results. Suspicion in the
computation results is wholly due to the imperfect nature of
error detection. Unfortunately, such imperfection cannot be
eliminated completely from any practical error detection

COST 0.0365 mechanism. For the second parameter, we take a more de-
tailed account of the computation loss and execution cost
resulting from the occurrence of error, its detection, and its
subsequent recovery. Since most reliable systems either in-
clude error recovery mechanisms with unknown overheads or
may suffer from an erroneous output, any reliability analysis
has to quantify the above overheads and uncertainty and also

y subject to con- has to provide a good method for estimating these quantities.
as in Fig. 9 and Though there are several assumptions to be justified by

experiment, the model developed in this paper is general
enough to include all aspects from fault occurrence to error

ir latency re- detection with various detection mechanisms. Note that in the
ified values. estimation of the above two parameters, the model provides
it COST lines solutions only when there is one or zero error detection at
erage and the a given time during task execution. The higher order ef-
,nal level de- fects -more than one error detected at a time during task
ipractical. By execution due to multiple faults -are negligible since the
acy and zero probability of such an event is quite small.
[cations. This Finally, we have outlined a feasible design space in which
D signal level a proper combination of different imperfect detection mecha-
ks and/or re- nisms needed to meet the specifications is indicated. Since
r recovery is the determination of a feasible design space of detection
try which are mechanisms must integrate the recovery methods used in the
isms. Hence, system, we also briefly presented the performance of various
eluded in the recovery methods. Unfortunately; we cannot determine an
at the average optimal tradeoff between various detection mechanisms be-
coverage of cause of the insufficient understanding of the function level

tue to the fact detection and the lack of relations between hardware costs
nanent faults and the signal level detection capability. Further research is
pective of the needed along these directions, especially experiments of pro-
)ecause of the gram behavior under erroneous conditions and the design of
)oints have to function level detection mechanisms.
*ecognize that Also of interest would be an analysis that allows the treat-
severe delay ment of simultaneously extant multiple faults. Since most

faults in the system are likely to be transient or intermittent,
will provide there is the possibility that the fault latency is large. Note that

ertain system the retry recovery is applied as a temporary remedy when an

ry difficult to intermittent fault becomes benign shortly after its occur-
f signal level rence. This intermittent fault may still exist but is inactive.
main reasons These would cause faults to accumulate in F and/or FB, thus
ited to actual making the entire system vulnerable to any environmental or

ance of func- other events that might activate them. The difficulty with any
in dependent, such model is likely to be a considerable expansion in the
mechanisms, number of states, thus increasing the model complexity. It is
tructured nor likely that in any realistic analysis, some means must be

sought to reduce the state-space size by approximating suit-
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ably. The approach used in CARE III [14], where states are
aggregated and the state transition rates are separately deter-
mined, may be an appropriate attempt although the model is
forced to be nonhomogeneous. The nature of such approxi-
mations is a matter for further research.

APPENDIX A
DENSITY FUNCTIONS OF TASK EXECUTION TIME

The density functions of task execution time with error
occurrence due to three different types of faults (i.e., tran-
sient, intermittent, and permanent) are expressed as follows:

fr(t Fl,T) = {1 - T6(T |F) - 17(TIFI)(1 - Pi)}T(t)
+ ir6(T F) frbs, 1(t, 0)
+ ir7(TIF,)(I - pl)[l - e-rtST(t - tr)

+ (eir)frbs, l(t, 1)]

fr(t F2, T) {1 - IT6(T I F2) - rT7(T F2) (1 -P)}T(t)
+ 7T6(T F2)frbs, 2(t 0) + 7J7(T F2) (1 - P1)

* [1 2) 2rs(t )
-n=lI

fr(t F3, T) = {1 - 7r6(T F3) - iT7(T IF3) (1 -PINT(t)
+ 1T6(T F3)frbs, 2(t, 0)
+ 7r7(T IF3) (1 - pl)frbs,2(t, 1)

where frbS,j(t, n) is the density function of the time loss in
recovery from an error induced by Fj after n unsuccessful
retries, which is given as follows:

frbs,j(t, n) = (1 -ps,) p46(t -ntr - tb Fj)Iu-(t-ntr)
tch

UT(t ntr tCh)} + (1 Psu)

I dt}] fstartj(t nt,)

where ST = 8(t - T), UT = u(t T - tb)fTtartj(t) = fstart,j

(t- 7), and 6(t) and u(t) are impulse and step functions,
respectively.

APPENDIX B
NOTATIONS

The following notations are defined and used in the paper

to represent various measures:

CL: Average computation loss due to diagnostics,
checkpoints, and error recovery for each
error detection.

COST: Average total execution cost for the exe-

cution'of a single task.
C(t): T.ask execution cost when it is completed at

time t.
Fj: Event that the fault is transient, intermittent, or

permanent for] = 1, 2, 3, respectively.

P(E): Probability of having an error given that a
fault occurs.

Ri j: Average time loss when error masking, retry,
rollback, or restart is applied to recover
from an error induced by Fj for i = 1, 2, 3, 4,
respectively.

RL: Average time loss used to recover from an
error.

SI(S2): Event that rollback or restart (retry) is used to
recover from an intermittent fault.

T: Time needed to complete the task execution
under a fault-free condition.

T: Time needed to complete the task execution
when periodic diagnostics and checkpointing
are inserted.

c: Coverage of signal level detection mecha-
nisms.

fr(t Fj, T): Density function of time delay in task exe-
cution given that the fault type is Fj and the
fault-free task execution time is T.

fStanj(t): Density function of time loss when restart is
used to recover the failed task.

P46(t Fj): Distribution function of error latancy for
the error induced by Fj, which is calculated
from (3) and with initial condition -r=
[0,0,0, 1,0,0,0].

Pdyn: Probability of dynamic failure in which the
execution of task has missed the specified
deadline.

pe: Probability of having an unreliable result at
the completion of task execution.

pf: Probability of system failure which is defined
as Pdyn + Pe.

pj: Probability of event Fj.
pa': Probability of event Fj given an error is

detected.
PSV: Probability that the saved state becomes

inaccessible after the occurrence of fault.
tb: Time needed to set up the task for rollback

recovery.
tch: Time interval between two successive check-

points.
tdead: Hard deadline associated with a task.

tn: Time interval between two successive diagnos-
tics.

tv: Time needed to establish a checkpoint.
tp: Time needed to swap the executing task for

diagnostics.
tr: Time used for a single retry recovery.
ts: Setup time for restarting a task.
a: Error generation rate by a fault.
,3: Error detection rate by the function level

when the system is in E.
'y: Error detection rate by the function level

when the system is in EFB.
A: Fault occurrence rate.
r: Transition rate that an existing transient fault

disappears.
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,u: Transition rate that an active intermittent
fault becomcs benign.

v:: Transition rate that a benign intermittent fault
becomes active.

Cl: Detection rate when the diagnostic program
is running.

6: Probability of detecting faults in a single
diagnostic given that faults exist.

81(82): Transition probability from event SI to S2
(S2 to SI).

pg,j: Probability that error masking, retry, roll-
back, or restart is applied to recover from an
error due to Fj for i = 1, 2, 3, 4, respectively.

Oi,j: Probability that the recovery succeeds
from an error due to Fj when error masking,
retry, rollback, or restart is applied for
i = 1, 2, 3, 4, respectively.

a: Percentage of time loss due to periodic diag-
nostics and insertions of checkpoints.

,q: Percentage of average computation loss for
each error detection.

Fi(tFJ): Probability that the system is in state i at time
t, given that the type of fault is F1.
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