
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 2, FEBRUARY 1984

Design and Evaluation of a Fault-Tolerant
Multiprocessor Using Hardware Recovery Blocks

YANN-HANG LEE, STUDENT MEMBER, IEEE, AND KANG G. SHIN, SENIOR MEMBER, IEEE

Abstract -In this paper we consider the design and evaluation
of a fault-tolerant multiprocessor with a rollback recovery
mechanism.
The rollback mechanism is based on the hardware recovery

block which is a hardware equivalent to the software recovery
block. The hardware recovery blocks are constructed by con-
secutive state-save operations and several state-save units in every
processor and memory module. Upon detection of failure, the
multiprocessor reconfigures itself to replace the faulty module and
then the process originally assigned to the faulty module retreats
to one of the previously saved states in order to resume fault-
free execution.
Due to random interactions among cooperating processes and

also due to asynchrony in the state-savings, the rollback of a
process may propagate to others and thus the need of multiple-
step rollbacks may arise. In the worst case, when all the available
saved states are exhausted, the processes have to restart from the
beginning as if they were executed in a system without any roll-
back recovery mechanism. A mathematical model is proposed to
calculate both the coverage of multistep rollback recovery and the
risk of restart. Also presented is the evaluation of mean and
variance of execution time of a given task with occurrence of
rollbacks and/or restarts.

Index Terms -Fault-tolerant multiprocessor, hardware/
software recovery blocks, performance of rollback recovery
mechanisms, rollback propagation.

I. INTRODUCTION

THERE are numerous benefits to be gained from a
multiprocessor. In addition to the decreasing of hard-

ware costs and the inherent reliability of LSI components, the
capacity of reconfiguration makes the multiprocessor even
more attractive when system reliability is important. It is
particularly essential to critical real-time applications that the
system be tolerant of failure with minimum time overhead
and that the task be completed prior to the imposed deadline.
Hence, one of the major issues of reliable multiprocessor
design is to provide the capability of error recovery without
having to restart the whole task in case of failure.

In general, the tolerance of failure during system operation
is achieved by three steps: detection of error, reconfiguration
of system components, and recovery from error. The purpose
of error detection is to recognize the erroneous state and to
prevent a consequent system failure. There are two basic

Manuscript received July 30, 1982; revised May 15, 1983. This work was
supported in part by NASA under Grant NAG 1-296. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the funding agency.
The authors are with the Department of Electrical and Computer Engineer-

ing, University of Michigan, Ann Arbor, MI 48109.

design approaches for error detection: 1) detect an error upon
its occurrence, and 2) isolate the erroneous information be-
fore it is propagated. For the first approach, the most widely
used techniques are error detection/correction coding, addi-
tion of built-in checking circuits (e.g., voting hardware), etc.
Error detection schemes such as consistency test, execution
of validation routines, or acceptance test are typical examples
for the second approach. Following the detection of error, the
faulty components, which are the source of error, are local-
ized and replaced so as to enable the system to be operational
again. In order to recover from an error, the rollback recovery
method or the reinitialization of a fault-free subsystem is
usually invoked in order to resume the failed computation.
Both methods consist of state restoration and recovery point
establishment. In JPL-STAR system [1] the recovery points
are defined by the application program which also takes the
respons'ibility of compensating for the information prior to
the recovery point. Hence, its error recovery capability is
constructed in the application software level. On the other
hand, the strategies used in PLURIBUS [2] are to organize
the hardware and software c'omponents into reliable sub-
systems and to mask errors'above the interface level of a
subsystem. When an error is detected, the subsystem per-
forms backward recovery by restarting the subsystem.
The conventional restart recovery technique could be

costly and inept since 1) the computation between the start of
task and the time when error is detected has to be undone, and
2) if the task is distributed over different processing units
in the multiprocessor, it is difficult to provide a consistent
task state and to isolate a subtask to prevent the propaga-
tion of erroneous information to others. (This may lead to
the restarting of the entire task and may result in high re-
initialization overhead.) The rollback recovery method at the
software level is devised to tolerate designfaults but may not
be effective for tightly coupled processes since 1) the soft-
ware recovery points by themselves in each process are not
sufficient to recover the task unless they belong to the same
recovery line [3], and 2) the program designers have to struc-
ture carefully the parallel processes so that the interacting
processes establish recovery points in a well-coordinated
manner. Several alternatives have been proposed; for ex-
ample, the conversation scheme [4], the interprocess com-
munication primitives in a producer-consumer system [5],
the programmer-transparent scheme [6], [7], the system de-
fined checkpoints [8], the decentralized recovery control
protocol [9], etc. These methods could lead to a loss of
efficiency in the absence of error, the accumulation of a

0018-9340/84/0200-0113$01.00 © 1984 IEEE

113

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

1EEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 2, FEBRUARY 1984

large amount of recorded states for heavy interprocess
communications, or some undesirable restrictions in csom-
munication schemes.

However, the concept of the recovery block, proposed by
Randell [3], [4] -and Horning [10], can still be useful for
tolerating hardwar'e faults in the multiprocessor. In this pa-

per, we employ this concept to construct a hardware recovery

block which enables the task to survive processor or memory

failures. In order to resume a failed process, an error-free
process state which includes the status of internal registers
of the assigned processor and the process variables stored in
memory should be restored. The hardware recovery block
is constructed in a quasi-synchronized manner and saves all
states of a process consecutively and automatically. This
happens in parallel with the execution of the process by using
a special state-save mechanism implemented in hardware.
The hardware recovery block is different from the software
recovery block which only saves nonlocal states when a

checkpoint is encountered. Moreover, instead of the asser-

tions in the acceptance test of the software recovery"block,
the hardware resources are tested by embedded checking
circuits and diagnostic routines. After an error is detected and
the faulty component is located, the system will be recon,-
figured to replace the failed hardware module. By loading the
program code and transferring the recorded states into the
replacement module, the original process can be resumed.
The multiprocessor with the hardware recovery block

scheme takes advantage of the fact that a large number of
processors and memory units can be made available at
inexpensive costs for fast recovery from hardware failures.
Furthermore, it only requires a minimal amount of time for
establishing recovery blocks, which in turn significantly im-
proves system performance.

For both hardware and software recovery blocks, the roll-
back of the failed process alone to the previous state is not
sufficient for concurrent processing. The rollback of one

process may propagate to other processes or to a further
recorded state. (This is called rollback propagation.) The
worst case is when an avalanche of rollback propagations,
namely the domino effect, occurs. The-domino effect is im-
possible to avoid if no limitation is placed on process inter-
actions [8]. Instead of placing any of such limitations, several
consecutive states are saved so that the processes are allowed
to roll back multiple step's in case of rollback propagation.
(This methiod is here termed the automatic rollback recov-

ery.) The coverage of a multistep rollback-the pTrobability
of having 'a successful rollback recovery when cooperating
processes roll back multiple steps should be examined to
decide the effectiveness of this method. Both the recovery

overhead and the computation loss resulted from this auto-
matic rollback recovery mechanism should also be studied
carefully. Furthermore, since the time interval between two
consecutive state savings is related to the final performahce
figure of this method, the optimal value of this interval has to
be determined.

This paper is divided into five sections. Since the cdhstpc-
tion of hardware recovery blocks in the multiprocessor plays
a basic role, we review it briefly in Section II. The detailed

description can be found in [1 1], [12]. In this section, we also
extend our previous design to a general multiprocessor on
which our hardware fault recovery can be implemented. Sec-
tion III presents an algorithm to detect rollback propagations
among cooperating processes and also proposes a model
to evaluate the coverage of multistep rollback recovery.
Section IV uses the results of Section III and deals with
the analysis and estimation of performance in terms of the
mean and variance of the task completion time. The paper
concludes with Section V.

II. AUTOMATIC ROLLBACK MECHANISM
FOR A MULTIPROCESSOR

The multiprocessor under consideration has a general
structure and consists of processor modules, interconnection
network, and/or common memory modules. To benefit from
the locality of reference, every processor module owns its
local memory which is accessible via a local bus. Every
processor module can also access the shared memory through
the interconnection network. The rollback recovery opera-
tions of a task can be applied to two types of multiprocessors:
in one, there is no common memory, but local memory of one
processor module is accessible by other processor modules
(e.g., Cm* system [13]); in the, other, the system is equipped
with separate common memory modules [14] and restricts
the access of local memory only to the resident processor.
Thes'e two types are representatives of contemporary general-
purpose multiprocessors.
A. Processor Module, Common Memory, and
State-Save Mechanism

A basic processor module (PM) in the multiprocessor com-
prises a processor, a local memory, a local switch, state-save
memory units (SSU's), and a monitor switch as shown in
Fig. 1. It is assumed that a given task is decomposed into
processes each of which is then assigned to a processor mod-
ule. The shared variables among these cooperating processes
are located in the shared memory which is either separate
common memory or local memories depending upon the
multiprocessor structure discussed above. Thus, each pro-
cess in a PM can communicate with oth'er processes (allo-
cated to other PM's) through the shared variables. Each PM
saves its states (i.e., process local variables and processor
status) in SSU's at various stages of execution; this operation
is called a state-save. Ideally, it would be preferable to save
states of all processes at the same instant during the execution
of task. Because of the indivisibility and asynchrony of in-
struction execution in PM's, it is difficult to achieve this ideal
case without forced synchronization and the consequent loss
of efficiency. In order to alleviate this problem, we employ
a quasi-synchronized method in which an external clock
sends all PM's a state-save invocation signal at a regular
interval, T,. This invocation signal will stimulate every PM
to save its states as soon as it completes the current in-
struction and then to execute a validation test. If the pro-
cessor survives the test, the saved state would be regarded as
the recovery poin-t for the next interval. If the processor fails
the validation test or an error is detected during execution of

114

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

LEE AND SHIN: FAULT-TOLERANT MULTIPROCESSOR DESIGN AND EVALUATION

1PMI

ISS

.I

IPMm

I ~ ~ ~ PI
MS S

2

L.~~~~~~~~-IIPM,

Time

CM

CM,

P - processor CM = common memory

S = switch AC = access controller

MS = monitor switch SSU = state-sove unit

LM = local memory

Fig. 1. The organization of a fault-tolerant multiprocessor
using a rollback recovery mechanism.

the resident process, the system will be reconfigured to re-
place the faulty component and the associated process will
roll back to one of the previously saved states. The detailed
operations of state saving and rollback recovery are shown
in Fig. 2.

Similarly to a processor module, each common memory
module (CM) also contains state-save memory units and a
monitor switch. These SSU's are used to record the updates
of CM only. The acce-ss requests of CM are managed by an
access queue on the basis of the first-come-first-serve disci-
pline. When a PM refers to a variable resident in a CM, an
access request is sent to the destination CM through the inter-
connection network and enters the access queue associated
with the CM. When all the preceding requests to this CM are
completed, the access request will be honored and a reply
will be sent back to the requesting PM. When a state-save
invocation is issued, a state-save request is placed at the tail
of every access queue. Thus, the state-save in CM is per-
formed when the requests made prior to the state-save in-
vocation have been completely serviced.

During a state-save interval, besides the normal memory
reference or instruction execution, certain operations are au-
tomatically executed; for example, an error correcting code
is used whenever a data is retrieved from memory. Some
redundant error detection units also accompany the processor
module [15], e.g., dual-redundancy comparison, address-in-
bound check, etc. These units are expected to detect mal-
functions whenever the corresponding function units are
used. An additional validation process which could be the
execution of a diagnostic routine is u-sed to guarantee that
the saved state be correct, and thus guards against the existing
fault extending to the next state-save interval.

Suppose there are (N + 1) state-save units for every PM
(and every CM), called SSUI, SSU2, ' * SSUN+1. These units
are used for saving states at (N + 1) consecutive state-save

<- -- - State-save invocation

- * Complete the current instruction
_ - -+ -- - Save internal state

< _ ___- Execute validation process

State switch betwen SSU's

Start normal process, SSU update,
SSU transfer, and error detection

__Fail
- - - - Retry the process
- - - - Fail again

- -Declara permanent fauJt, stop processes,
check propagation, and migrate
failed process to other PM

- - - - Resume process

Fig. 2. Sequence of a rollback recovery.

intervals. Thus, each PM or CM is able to keepN valid states
saved in N SSU's and record the currently changing state
in the remaining SSU. As shown in Fig. 3, the SSU1,
SSU2,.* * SSUN are so arranged to record the states for con-
secutive state-save intervals T(i + 1),* T(i + N) and the
SSUN+j is used to record the updates in the current state-save
interval, T(i + N + 1). To minimize the time overhead re-
quired for state-saving, the saving is done concurrently with
process execution. Every update of variables in the local
memory is also directed to the current SSU. When a PM or
CM moves to the next state-save interval, each used SSU will
age one step and the oldest SSU will be changed to the current
position if all SSU's are exhausted. The monitor switch is
used to route the updates to SSU's and to manage the aging
of SSU's. Therefore the state-save mechanism of each PM or
CM provides an N-step rollback capability. In Section III, we
will show that only a small number of SSU's are sufficient to
establish high coverage of rollback recovery for typical mul-
tiprocessor applications.

Since the update of dynamic elements is recorded in only
one SSU, the other SSU's are ignorant of it. This fact may
bring about a serious problem: the newly updated variables
may be lost. In order to avoid this, it is necessary to make the
contents of the currently updated SSU identical with that of
the memory or to copy the variables that have been changed
in the previous intervals into the current SSU. A solution to
this problem has been discussed in our previous paper [11].
At each state-switching instant, the current SSU contains not
only the currently updated variables, but also the previously
updated variables. -Consequently, the contents of the current
SSU always represents the newest state of the PM or CM.

115

-1

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 2, FEBRUARY 1984

i state-save invocotion

[state-saving

I-Tss 1--

process 0- I n _n _ _ I n time

begins u u

state - save
unit used

F- T(t)-T(2) +1-T(3)-- . kT(i+N)-T(i +N+I)+T(i+N+2)
SSut SSU2 SSu3 * SSUN SSUN+I SSU1

Fig. 3. State-save operations in one module.

B. Rollback Recovery Operations ofa Task

Suppose a task is partitioned and then allocated toM mod-
ules (i = 1,2,. ,M). These modules include PM's and
CM's and will be dedicated to this task until its completion.
The state saving of a task implies the state savings of these
modules. The rollback of a process is equivalent to the state
restoration of the associated modules. Since the process state
includes the internal hardware states, local variables, and
global variables, the resumption of a failed process may need
cooperation from common memory and/or other processes.

Moreover, due to arbitrary interactions between cooperating
processes and the asynchrony in state savings among them,
the rollback of one process may cause others to roll back and
it is therefore possible to require a multistep rollback (a detail
of this will be discussed in the next section). In order to make
a decision as to rollback propagation and also to perform
housekeeping jobs (e.g., task allocation, interconnection
network arbitration, reconfiguration, etc.), a system monitor
and a switch controller are included in the multiprocessor.
The switch controller handles the global variables references
and records these references for analyzing rollback propaga-
tion and multistep rollback. The system monitor receives the
task execution command and then allocates PM's and CM's
to perform the task. Both devices are defined in a logical
sense. They could be a host computer, or a special monitor
processor, or one of general processor modules in the system.
To deal with the error recovery, the system monitor re-

ceives reports from each module regarding the state-save
operations and its conditions. Once an error is detected,
the system monitor will signal "retry" to the module in ques-
tion. If the error recurs, a permanent fault is declared and
the following steps are taken by the system monitor and the
switch controller.

1) Stop all PM's that are executing processes of the task
in question.

2) Make a decision as to rollback propagation.
3) Resume execution of the processes that are not affected

by rollback propagation.
4) Find a free module to replace the failed one.

5) Transfer the process or data in the failed module to the
replacement module and reroute the path to map references
directed to the faulty module into its replacement.

6) Restore the previous states of the processes affected by
the rollback of the resident process in the faulty module.

7) Any interaction directed to a module to be restored
must wait for the resumption of the module. Old and un-

serviced interactions issued by the rolled-back PM's, which
are still queued in the access queues, are cancelled.

III. ROLLBACK PROPAGATION AND MULTISTEP ROLLBACK

In order to roll back a failed process, the consistent values
of the process variables and the internal states of the associ-
ated PM should be provided. The local variables and internal
states which are saved in the SSU's of a PM are easily obtain-
able. However, the shared variables- which may be located
in any arbitrary PM or CM and may be accessed by any
process -bring about a difficult problem: the rollback of a
failed process induces the rollback of other processes (i.e.,
rollback propagation occurs). The rollback propagation might
result in another inconsistent state for certain processes of
the task, thereby requiring a multistep rollback.

Furthermore, the hardware may have latent faults which
are undetectable until they induce some errors. In the follow-
ing discussion, we assume that an error will be detected
immediately as it occurs. So the rollback propagation is used
only to obtain a consistent state. However, it can be easily
extended to the case in which error latency exists and is
bounded by U [16] as follows.

1) First obtain a consistent state which may entail rollback
propagations, and calculate the total rollback distance D.

2) If D : the total computation done then restart
else if D 2 U then done

else go to step 1).

A. Rollback Propagation and Multistep Rollback

In general rollback propagation cannot be avoided if the
processes interact with each other arbitrarily. For the multi-
processor organization in the previous section, a process is
allocated to one PM and/or several CM's and each module
has its own rollback recovery mechanism. So each module
can be regarded as an object for rollback propagation. An
interaction between cooperating processes is implemented as
a memory reference to a shared variable, i.e., a memory
reference across the modules. To avoid the need of tracing
every reference to the shared variables and to simplify the
detection of rollback propagation, we assume that the failure
of a particular module leads to the automatic rollback of all
modules that have interacted with the module during its cur-
rent state-save interval. Let Pi -* Pj denote the rollback
propagation in which the rollback of process Pi induces the
state restoration in one or more modules containing Pj, that is,
the rollback of Pi causes Pj to roll back. Let the nth state-save
interval of Pi be Ti(n) and the beginning moment of Ti(n)
where Pi saved its state be at ti(n). An example is presented
in Fig. 4, where process PI fails at time tf and saves its state
at tl(n) during state-save interval T1(n). Since interactions
between PI and P2 exist during the time interval [tl(n), tf],
process P2 must roll back to revive the interactions when P1
is resumed. The rollback of P2 will propagate further to other
processes; in this example, P2 -* P4, PI -* P3, and P3 -* P2.
When Wood's definitions [9] are used, the state of process PI
saved at tl(n) can be regarded as a potential recovery initiator
of the saved states of P2, P3, and P4.

In the above example, we can find that the rollback of P3

116

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

LEE AND SHIN: FAULT-TOLERANT MULTIPROCESSOR DESIGN AND EVALUATION

S ta te -s av e State-save
Invocation

; t,(n)

(a)

O 1.-1 0

1 o 1 o
K G2

1 o -o o

o o o 0

KP2 =

O 0 1 0

110 0 101

0

KC1 =

KPi =

O

L
0

1 10

001

0 00

1 00

0 00

0 00

1 00

0 00

(b)

RB1 (n) {

1
RB3(n)= {

0

n'2

otherwise

n'2

otherwise

1 n -7
RB (n)= 1

otherwise

B 1 n= i
RB4(n)= l

O otherwi se

(c)

Fig. 4. An example of rollback propagation and multistep rollback.

and P2 to their most recently saved state still cannot provide
a consistent task state. The reason that a rollback of cooper-
ating processes cannot recover the process states is mainly
due to the occurrence of references between the asyn-
chronous state savings of interacting processes. For con-
venience, a restorable state for P, is defined as follows.

Definition: Suppose process Pi rolls back to the state saved
at ti(k). This state is restorable for Pi if either of the following
two conditions is satisfied:

Cl) Pi has no interaction with other processes during the
state-save interval Ti(k).

C2) The rollback of Pi to ti(ki) induces the rollback of Pj to
tj(kj) forj = 1, 2,... ,-M andj 0 i, but there is no interaction
needed to be reissued between Pi and Pj during the interval
[ti(ki), tj(kj)] if ti(ki) tj(kj) or [tj(kj), ti(ki)] otherwise.

Consider the cases in Fig. 5. Suppose Pi rolls back to ti(k)
because of failure or rollback propagation from another pro-

ti (k)

Pi r-T

tj (k-1) tj (k)

(b)

t3jkD
tj(k-1)

4i (k)

4(k)
(d)

State Saving

Interaction

Fig. 5. Interaction patterns related to rollback propagation.

cess. In case a), the state saved at ti(k) is restorable forPi only.
A single step rollback of Pi is sufficient to recover its state.
In cases b) and c), both Pi and Pj have to roll back and the
states saved at ti(k) and tj(k - 1) are restorable for Pi and Pj
respectively, while in case d), the states at ti(k - 1) and tj(k)
become restorable.
The necessary condition for recovering a task TK, where

TK = {Pi i = 1, 2, *. , M}, with rollback mechanisms can

be obtained from the above definition. The task TK is re-

coverable from a failure if for all i either Pi is not affected by
the rollbacks of other processes or Pi rolls back to its most
recently restorable state.

B. The Detection ofRollback Propagation

Since every external memory reference is managed by the
switch controller, the switch controller should take re-

sponsibility for detecting rollback propagation and deciding
on multistep rollbacks. Suppose there are (N + 1) SSU's in
each module, then the maximum possible number of rollback
steps is N. Let the current state-save interval of module i be
Ti(k), then an n-step rollback will restore the module i to
the beginning of interval Ti(k - n + 1) [i.e., the state at
ti(k - n + 1)]. For state-save interval Ti(k - n + 1),
(n = 1, 2, 3, ,N), we assign two matrices KC5(M x M)
and KP,(M x M) to represent the interactions during
Ti(k - n + 1). Every element in both matrices consists of a
single bit. KC5(i,j) is set to 1 if an interaction occurs between
module i and module j during the state-save intervals
Ti(k - n + 1) and Tj(k - n + 1). If an interaction exists
between the two during module j's previous state-save
interval, Tj(k - n), then KP5(i,j) = 1. We also define
RBi(k), k = 1, 2, * , N, to indicate the number of rollback
steps for module i. If module i rolls back n steps, then
RBi(k) = 1 for all k < n. So, if RBi(k) = 0 for all k, then

t4(k)

Pi M 0

n n .,

P1 fails

pi u
t3(k)

(a)

t1(k-1) ti (k)

Pi- T0n

-Hi U 1 1
ti(k)

(c)

117

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 2, FEBRUARY 1984

module i does not have to roll back. The steps for setting
these elements and checking the rollback propagation are
listed below.

S1) Reset both matrices to zero at the beginning of
the task.

S2) When an interaction is issued from module i and di-
rected to module j, then KC1(i,j) and KC,(, i) are set to 1.

S3) If module i saves its state and moves to the next state-
save interval, then for j = 1, 2, * * ,M

a) If Pj has already moved to its new state-save
interval, then

KPI(j, i) = KP1(j, i) + KC1(i,j)
where + is logical OR operation.

KC,(j,i) = 0

b) KC,(i,j) = KCn_10ij),
KPn(ij) = KPn_1(i,j)

for n = N, N-I , * * * , 2,

c) KCI(i,j) = 0, KPI(ij,) = 0.

S4) When an error is detected in module i, RBi (1) is set to
one and all other RB's are reset to zero.

S5) If RBi(n) = 1 (i.e., module i rolls back at least n

steps), the switch controller checks the corresponding rows

in matrices KCG and KPn, namely KCG(i,j), KCn(j,i), and
KPn(i, j) for j = 1, 2, , M. There are four possible roll-
back propagations.

i) If KPn(i,j) = 1 then module j has to roll back
(n + 1) steps. Set RBj(k) for all k (n + 1) to 1.

ii) If KPn(i,j) = 0, KCn(i,j) = 1,andKCQ(j,i) = 1,
then module j also has to roll back n steps. Set RBj(k) for
all k ' n to 1.

iii) IfKPn(i, j) = 0, KCn(i, j) = 1,andKCn(j, i) = 0,
then module j needs to roll back (n - 1) steps. Set RBj(k) for
all k ' (n - 1) to 1.

iv) If KPn(i, j) = 0 and KC(i, j) = 0, then there is no
direct rollback propagation from module i to module j.

S1), S2), and S3) are used to record interactions. S4)
initiates rollback in module i which may propagate to a far-
ther state in the same module and/or to cooperating modules.
S5) deals with the determination of rollback propagations.
In the condition i) of S5), there is an interaction which
occurred in both the Pi's (k - n + I)th and the Pj's (k - n)th
state saving intervals. Thus, Pj has to roll back (n + 1) steps
to recover this interaction. The conditions ii) and iii) indicate
that an interaction occurred in the Pj's (k - n + I)th and
(k - n + 2)th state saving intervals, respectively. The cor-

responding bits of RBj are set for these conditions. Since the
rollback of Pj decided in S5) can only provide a restorable
state for-Pi, recursive checking for every j with RBj(k) = 1 is
necessary. S5) can also be easily implemented by a recursive
procedure which will cease when no more setting of RB's is
needed. The final figure of RB's represents the number of
necessary rollback steps for each process.

An example is shown in Fig. 4, where Fig. 4(a) describes
memory references, Fig. 4(b) is the current contents of
KC and KP matrices, and Fig. 4(c) is the result of rollback
propagation.

C. The Evaluation ofMultistep Rollback

If module i fails at time tf during the kth state-save interval
Ti(k), then we consider a single step rollback of module i to
see if it is sufficient to recover from the failure. The result
may lead to rollback propagations, and thus to multistep
rollbacks as previously discussed. Since the number of state-
save units associated with each module is finite, the whole
task may have to restart when all the states recorded in SSU's
are exhausted. In this section a probability model is derived
to evaluate the coverage of the multistep rollback recovery
which indicates the effectiveness of the present fault-tolerant
mechanism. Recall that a module has (N + 1) SSU's and the
task is allocated toM modules including PM's and CM's. To
derive the coverage, the following assumptions are made and
notations used:
A: The access matrix whose element aij represents the

probability of making a reference from module i to module j.
For a memory module i, aij = 0, for all j. The sum of all
elements in one row must be equal to 1 for a processor
module i, i.e., 1!=Mj aij = 1.

biJn: The probability that KPn(i,j) = 0, which means no
interaction occurs during the disparity between module i's
and module j's (k - n + 1)th state saving instants. For sim-
plicity bijn is assumed to be a constant for all n, i.e.,
bij, = bij2 = * = biN = bu. The exact value of bij is diffi-
cult to obtain. Since the state-saving invocations are syn-
chronized, there is at most one instruction occurred during
this disparity. An approximate representation is used, i.e.,
bij = Prob[(Bifn Bjj) U (Bii n Bji)], where Bij is the event
that a memory reference from module i to module j occurs at
any arbitrary moment.

fijn: The average probability of having direct rollback
propagation from module i to module j due to an n-step
rollback of module i. We also assumefijn to be a constant, fj,
for all n.

rij: The probability that module j has to roll back because
of the direct or indirect propagations if module i fails and
then rolls back. Note rig= 1 for all i.
E: The matrix [eij], i,j = 1, 2, ,M, in which element

eij is the average execution time for memory references issued
from module i to module j.

Tef: The total execution time of a given task under an error
free condition and without the time overhead for generating
recovery blocks.

Ti(k): The duration of the kth state-save interval of module
i. Because of the asynchrony between state-save invocation
and actual state saving, Ti(k) is a random variable. If Ts. is
long enough such that there is always a state saving following
every state-save invocation, the mean of Ti(k) is equal to T.
To make the analysis simple, this duration is assumed to be
constant and equal to the duration of state-save invocation
interval, T,s

T,: The time overhead for generating a recovery block.
N,: The total number of state savings before task com-

pletion in error-free condition. N, = LTe/(Ts -Ts,)J.
Ujk: The average memory reference rate from module i to

module j during the kth state-save interval of module i.
Occurrence of these memory references is assumed to be a

118

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

LEE AND SHIN: FAULT-TOLERANT MULTIPROCESSOR DESIGN AND EVALUATION 1

Poisson process with a time-varying parameter during the
progress of task execution. In general, the memory refer-
ences by processes can be divided into different phases each
of which has a constant reference rate [17], [18]. Thus, if N,
is moderately large, uijk could be assumed to be a constant
during the kth state-save interval.
To derive the coverage of a multistep rollback, the proba-

bility of direct rollback propagation, i.e., fij, should be ob-
tained first. From the above definitions and assumptions,
fj is the average probability that there exists at least one
memory reference between module i and module j during one
state-save interval. It can be expressed as follows:

fij = fyi = gi + gi-gi gi (1)

where gij = (1/N,) k (1 - e-uiJkTs) represents the average

probability of having an interaction froni module i to module
j during a single state-save interval. Since the total number of
memory references between module i and module j is equal
to aij[Tef/(m=jlaimeim)] and IN, Uqik(Tss - Tv), we have the
following relationship:
Nt_M
E uijk = (Tef aij)/ (Tss - T) aimeim] (2)
k=1 m=l

Also, the maximum value of memory reference rate Uijk
must be less than or equal to the reciprocal of eij, that is,

(Uik)max Uijk> 0 (3)
eij

It is easy to observe that fij is a monotonically increasing

function of gij and gij is a bounded concave function of Uijk.
With the above two constraints we can get the extrema of fij
as follows:

1) The maximum value of fij, denoted as f,, occurs when
Uij I = Ui, 2 Uij,Nt.

2) The minimum value of fij, denoted as ft' occurs when

there are i) h intervals {h = eli7Iefaij/[(TS. - Ta,) Em-l a. eimI}
in which ui0, = lleij, ii) (N, - h - 1) intervals in which
Uijk = 0, and iii) one interval in which Uijk = {Tefaij/
[(TS - Tsv) mM=I aimeim]} - h/ei.
To solve for rij fromfij, a fully connected network is drawn

as Fig. 6 in which every node represents a module, and the
link (i,j) connecting node i and node j denotes the re-

lationship for direct rollback propagation between module i
and module j. Thenfij can be considered as the probability of
having a directly connected link between node i and nodej.
The theory of network reliability [19] can be used to solve
for r0j

rij= U (Dij,q) (4)
q

where Dij,q is the probability that the qth path from node i to
nodej is connected and U is the probability union operation.
With an additional assumption that the occurrence of failure
is equally distributed over the entire modules in a statistical
sense, the coverage of a single step rollback, denoted by
C(1), becomes

C(1) = (1/M) E [l 1 - rij(I .b) (5)

: Module i

Fig. 6. The rollback propagation network.

and the accumulated coverage frop a single step rollback to
an h-step rollback can be derived by the following recursive
equation:

C(h) = C(l)[I - C(h - 1)] + C(h - 1). (6)

The coverage of the multistep rollback recovery is calcu-
lated for an example with the following access matrix:

0.9 0.08 0.02 0.,

0.1 0.85 0.03 0.02

0.03 0.03 0.9 0.04

0. 0.02 0.0o 0.9 J

This example has the access localities 0.85 and 0.9 for
processes which correspond tp the experimental results ob-
tained from Cm* [20]. The numnbrital results are presented in
Table I and are also plotted in Fig. 7. These results include
three cases: the best coverage computed fromfiJ for different
values ofN1, and the worst coverage computed fromf,. These
results show that only a small number of SSU's is enough to
achieve a satisfactory cov,erage of rollback recovery. It
should be particularly noted that the requirement of a smail
number of SSU's is mandatory for actual implementation. On
the other hand, this conclusion mdst be interpreted in the
context of access localities; the nutnber of SSU's required
for a given coverage tbnds to increase with the decrease in
access localities (i.e., when there are heavy interactions).
This tendency, however, should be understood as an inher-
ent problem associated! with. multiprocessors rather than
with the present fault-tolerant mechanism (see [21] for
the dependence of multiprocessor performance on access

localities).

IV. THE PERFORMANCE OF ROLLBACK RECOVERY MECHANISM

Several methods for analyzing the rollback recovery sys-
tem have been proposed [22]-[27]. They in general deal with
a transaction-oriented database system and compute the

0

119

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 2, FEBRUARY 1984

TABLE I
A NUMERICAL EXAMPLE FOR THE COVERAGE OF MULTISTEP ROLLBACKS

XC(i)
case la case 2b case 3c

1 0.75067 0.68610 0.44713

2 0.93783 0.90147 0.69433

3 0.98449 0.96907 0.83100

4 0.99612 0.99029 0.90656

5 0.99902 0.99695 0.94834

acase 1: with minimum fij and Nt = 100

bcase 2: with minimum fij and Nt = 10

ccase 3: with maximum fij

J
(9

a:
LL)

0>)

cases

case

=10

--0--.0 2.0 4.0 6.0 8.0

NO. OF STEPS
Fig. 7. Rollback coverage versus number of rollback steps.

optimum value of the intercheckpoint interval. Castillo
and Siewiorek studied the expected execution time which
is required to complete a task with the restart recovery

method [28]. All of these approaches either assume the state
restoration is obtainable by a single checkpoint or do not
include the rollback propagation at all. In this section, we

explicitly take into account the problem of multistep rollback
and the risk of restart for the rollback recovery mechanism.

A. Notations and Assumptions

The following notations will be used in the sequel:
T1: The total execution time to complete the given task

with occurrence of errors. It includes the required execution
time under error-free condition, the time loss due to roll-
backs and restarts, and the time overhead for generating
recovery blocks.

Trea,: The total execution time to complete the task when all
failures are recovered by rollbacks instead of restarts.

TJot,m: The time lost due to the jth rollback in module m
which consists of the setup time for resumption, tsb, and the
computation undone by rollback.

Trsv The time lost due to the ith restart which includes the
setup time for restart, ts, and the time between the previous
start and the moment at which error is detected.

TEk: The accumulated effective computation before the
kth rollback when the task can be completed without restart.

XJ(XD): The duration between two consecutive rollbacks
(restarts).

C(i): The accumulated coverage of rollback recovery from
a single step to i steps. This value is calculated by (5) and (6)
presented in the previous section.

Pb(Ps): The probability of rollback (restart) when a failure
occurs.

Pjt(h): The probability of having an h-step rollback given
that the failure is recovered by the rollback.

Pr(m): The probability of having m rollbacks during the
time interval, Treat.

Zr(z), Zst(z): The probability generating functions of
P,(m), Pst(h), respectively.

(tP(S), FDreal(S): The characteristic functions of Tt, Treal,
respectively.
The goal of our analysis is to calculate the mean and vari-

ance of the total execution time of a given task, Tt. Recall that
the task is decomposed and then allocated to M modules.
During the normal operation, the small overhead is required
to generate consecutive recovery blocks in each module.
When the jth error occurs, module m spends T{o i,m to recover
from this error-if the error is recoverable by a rollback. Other-
wise, the whole task has to restart. T{oiim consists of the set-
up time which is composed of the decision delay required for
examining rollback propagation, the reconfiguration time,
and the time used to make up for the computation undone by
the rollback. We assume that the task completion be delayed
by max{Troll, m where m = 1, 2, M for the rollback recov-
ery of the jth error. The resultant completion time will be the
upper bound because of the following reasons. First, T{'o,m
can be interpreted as the time lost due to the rollback in
module m. So, the total time lost in all the concerned modules
is 2M=1 T{o t,m. Since the completion of a task is regarded as
the completions of all its processes, the time lost from the
task's point of view could be max{T{i, m} but not larger than
this maximal value. Secondly, the true delay effect on the
completion of task by a rollback will be shortened because of
the possible reduction in the waiting time of process syn-
chronization. To facilitate system reconfiguration, we also
assume the multiprocessor has a sufficient number of standby
modules so that the task may be executed continuously from
start to end without waiting for the availability of modules.
The time needed for error-free execution is regarded as con-
stant and is independent of reconfiguration.

In general, the occurrence of error can be modeled as a
Poisson process with parameter A(t) which equals the recip-
rocal of mean time between failures [29]. Since A(t) is slowly
time-varying (for example with a period of one day), it is

120

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

LEE AND SHIN: FAULT-TOLERANT MULTIPROCESSOR DESIGN AND EVALUATION

2
1 Trstr Tst rst Treal

rollback rollback rollback rollback
&(X X t~O Xt X X-kO

task begins] K 1K - K completion

Troll

restart

T roll TrolI
2

T roll

restart
Fig. 8. Task execution phases.

assumed to be constant over the duration of one task exe-
cution, i.e., A(t) = A. For simplicity an error is assumed to
be detected immediately as it occurs (see Section III for a
brief description on relaxing this assumption). From the defi-
nitions of P,, Pb, and Pj1(h), we have P, = 1 - C(N) when
each module has (N + 1) SSU's. Therefore, the proba-
bility of rollback, Pb, becomes C(N). Pjt(h) is equal to
(1/Pb) [C(h) - C(h - 1)] for h = 2, * , N, and
Pst(l) = C(l)/Pb. After the detection of error, the occurrence
of rollback and restart can be regarded as a Bernoulli pro-
cess, with probability Pb and P, respectively, and inde-
pendent of the error generation process. Thus they can be
modelled as Poisson processes with parameters Ab = APb and
As = APs, respectively.
B. The Performance Model

The total task execution time, Tt, can be divided into sev-
eral phases as shown in Fig. 8. The last phase is always ended
with the completion of task. Other phases are followed by a
restart. This implies that the amount of effective computation
at the beginning of each phase is zero. During each phase, the
effective computation between rollbacks is accumulated
toward the task completion. To derive the distribution of Tt,
we should determine the distribution of the duration of the
last phase (which is defined as Treai), the probability of having
R restarts prior to the last phase, and the distribution of the
durations of other phases which are defined as Ts,1 for
i= 1,2, R.

In the last phase, the task will be executed from the begin-
ning to the completion without any restart. It is assumed that
Tef is much larger than Ts, (Tef >> Ts,) so that the rollback
distance of an h-step rollback can be approximated by hTss.
The effective computation between two consecutive roll-
backs becomes (Xr - hTss)+ when a module rolls back h steps
where (X)+ = max{0, X} is a positive rectification function.
With the probability of an h-step rollback, P,,(h), two func-
tions are introduced

N

Z = E ebAbTssPst(h) (7)
h=1

kk
H(t, k) = E() (1 - Z)i(Z)k-iGk-i(t) (8)

i=0 I

where Gki(t) is the (k - i)th order gamma distribution
function with parameter Ab for (k - i) > 0, and Go = 1. In
Appendix A, we show that the distribution function of the
accumulated effective computation after k rollbacks is
Prob(TEk ' t) = H(t, k). Therefore, the probability of k

rollbacks during the time interval T,ral, Pr(k), is given by

Pr(k) = P(TEk+I > Tef) - P(TEk> Tef)

= H(Tef, k) -H(Tef, k + 1) . *(9)

Trea, is composed of Tef and the time lost due to rollbacks which
is a sum of identically distributed random variables, Tirol, m,
for j = 1, 2, k. Substituting the probability mass func-
tions of P,(k) and Pjt(h), we get the characteristic function of
Trea, which is given below:

(Freal(S) = esTefZr[estsbZst(e-sTSs)] (10)
From Fig. 8, the total time T, can be represented as the sum

of Treal and the random sum of T',. The characteristic function
of T, derived in Appendix B is given in the following:

so n

¢,D (s) = Ie -nstsu(A

n=O As + s

{E (3) (-1) iIreal[(i + 1) (As + s)I (11)

This equation presents a general expression of the total exe-
cution time. For the system without the rollback recovery
mechanism, we can use PS = 1, Pb = 0, and then IDreal(s) be-
comes esTef. The result obtained from the above equation is
the same as that in [28]. The mean and variance of the total
execution time can be obtained from - &P1(s)/&sjI=o and
akIt(s)/as2I-0. In Fig. 9, the mean execution time for the
example in Section III is plotted. It is obvious that the over-
head of generating recovery blocks has an important effect on
the rollback recovery method. Since the state savings are
performed in parallel with the normal process execution, the
overhead contains only the time required for the validation
test. When the embedded checking circuits are not very much
cost-effective and complex [30], the overhead of generating
recovery blocks can be reduced with a completely self-
checking mechanism. Fig. 10 expresses the variance of exeq
cution time for the previous example. It suggests that the
prediction of the total execution time becomes more accurate
when the rollback recovery mechanism is used. This result is
expected intuitively since the probability of restart is reduced
considerably. In a system with a higher probability of restart,
the system contains a larger and more uncertain recovery
overhead (i.e., larger mean and variance).

Another interesting parameter is the duration of state-save
invocation, Ta,. The interval has two mutually conflicting
effects. Fig. 7 indicates that the increasing of Ts. will induce
more rollback propagations and degrade the coverage (a

121

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 2, FEBRUARY 1984

2857lj

228.57 -

ci
to
- 17143

114.2S
-

L 57,14

3

ai)
V)

H-
I

T-

M
LAJI

LLU

0
z
ci:

with f/,

o0:0 200.0 400.0 600.0 800.0 (000.0

TIME-FAILURE FREE (sec.)

Fig. 9. Mean of time-overhead versus error-free execution time.

with f 'ii
47.43

40.291

33.141

20.0 30.0 40.0 50.0
357.

a)

U)

285

H- 214.

LLI

142.

without rollback
capability

ij

0.0 200.0 400.0 600.0 800.0 1000.0

TIME- FAILURE FREE (sec.)

Fig. 10. Variance of time-overhead versus error-free execution time.

larger value of N, means a shorter state-save interval). Since
the occurrence of error is distributed throughout the state-
save interval, the average computation loss due to rollbacks
is proportional to the state-save duration. Therefore the in-
crease of T,S which invokes longer state-save intervals, will
introduce more computation loss and higher probability of
restart. On the other hand, the percentage of the total time
overhead for generating recovery blocks is reduced by the
increase of TSS. The optimum value which minimizes the
expected execution time can be found in Fig. 11. Fig. 11
shows that there exists a linear relationship between T, and Ts,
when N4 is larger (i.e., T0, gets smaller)' whete the overhead
of generating recovery blocks dominates the 'final result.
When TS, is greater than the optimum value, the loss due to
recovery increases considerably because of the larger time
loss in each rollback.

V. CONCLUSION

We considered the design of a hardware recovery mecha-
nism for a fault-tolerant multiprocessor with emphasis placed
on, a fast state-save operation which tegftires little time
overhead. To permit processes to be general and to ensure

programmer transparency, recovery poi4ts are established

I)

60.0

f/I

NO. OF RECOVERY BLOCK
Fig. 11. Mean time-overhead versus total number

of recovery blocks for a given task.

automatically and regularly. We also derived analytically the
probability of multistep rollback, the coverage of rollback
recovery, and the risk of restart which are usually ignored in
most existing analyses. The results in this work indicate that
the performance of the rollback recovery mechanism is sig-
nificantly dependent upon the risk of restart which can be
minimized by a higher local hit ratio. So, the improvements
are related to the partitioning, cooperation, and allocation of
processes. This is a common, inherent issue in the design of
multiprocessors rather than in that of the present fault-
tolerant system [211.

Since the rollback mechanism used here only provides a
recovery capability to tolerate the hardware faults in pro-
cessor modules and common memory modules, further im-
provements are conceivable to achieve the overall system
reliability. In addition to memory assignments many program
operations may involve file access and input-output inter-
faces which also affect the system behavior. These operations
can not be simply recovered by a standard rollback proce-
dure. Thus, other special recovery actions, such as execution
of recoverable procedures [10], should be included (e.g.,
exception handling for input-output operations). That is,
additional recoverable procedures provided by the program
designer are needed to take special related recovery actions.
With the same concept our hardware recovery scheme can be
extended to provide such special recovery actions by, for
example-, associating separate save units and/or procedures
with each of I/O interfaces, file accesses, etc. In addition, the
reliability of the interconnection network can be obtained by
using redundant hardware to form additional paths (e.g.,
additiofial stages ih generalized cube network [31]) or by
using reliable switches (e.g., 2 x 2 fault-tolerant switching
element proposed in [32]). However, the faults which oc-
curred in the supplementary resources, like SSU's and
monitor- switches, do not cause damages to the computation
itself but will change the recovery capability. Althoughlthe

122

r r) r)

9

4

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

LEE AND SHIN: FAULT-TOLERANT MULTIPROCESSOR DESIGN AND EVALUATION

performability [33] of the system at a single state is not
affected by SSU's, etc., the overall lifetime performability is
changed because of the degradation of recovery capability. A
higher recovery capability can be gained by using hardware
redundancy. For instance, an additional standby monitor
switch can either test the active monitor switch or replace the
active one whenever it malfunctions.
To deal with the performance of a fault recoverable and

reconfigurable multiprocessor, the delay in the task com-
pletion time due to the errors is an important parameter. In
such a system one or more faults which cause the errors in the
computation and the loss of a portion of function capability
may have no serious consequence to the completion of a
given task, but the quality of the recovery procedure largely
determines the distribution of the task completion time.
Thus, the overhead required to treat the contamination of
error, and the effect on the task execution time, should be
included to represent the effectiveness of fault-tolerance. In
addition, for most real-time applications, such as aircraft or
industrial control, etc., one major concern is whether the
required task can be completed prior to a given deadline or
not. The rollback mechanism proposed in this paper not only
offers system modularity and simplicity, but also provides
fast recovery and accurate prediction of the task completion
time. Hence, the present fault-tolerant multiprocessor has a
high potential use for critical real-time applications.

APPENDIX A
CALCULATION OF THE PROBABILITY OF HAVING k

ROLLBACKS DURING THE DURATION TREAL

From the definition of Psjh), the task will roll back h steps
with probability P,,(h) following a failure detection within the
last phase of duration Treal. Let the rollback distance for thejth
rollback recovery be T4311 which is approximately equal to hTs,
with probability P51(h). Thus the accumulated effective com-
putation time before the kth rollback TEk, is given by

k

TEk = E (Xi - Troll).
j=l

(A.1)

Since the occurrence of rollback is a Poisson process with
parameter Ab, the density function of X{ is Aa&Abt. The proba-
bility of having (Xi - TB011) = 0 is 2h'1 P,,(h) (1 - ekbhTs)
The density function of (XI - TB11) becomes

N N

foy(t) = Z PP(h) (1 - e AbhTss) 8(t) + e Abt E pst(h)e-AbhTss
h=1 h=l

(A. 2)

where 8(t) is an impulse function. LetZ= h=1 Pst(h)eAbhfs.
Then f% is simplified by

f,(t) = (1 - Z) 8(t) + e-AbtZ (A.3)
The characteristic function of TE,k, which is equal to [cP0(s)]k
where tF0(s) is the characteristic function of (Xi - T' 11),
becomes

A kS kk-jI A k- i

'Fte,k(s) =
k
y) (I - Z)i(ZWk +A,k) (A.4)

Taking the inverse Laplace transform, the density function
of TEk [denoted asfte,k(t)] is obtained. Then the distribution
function of TEk becomes

P(TEk . t) = fte, k(T) dT

(A.5)

where Gk4i(t) is the (k - i)th order gamma distribution
function.

APPENDiX B
CALCULATION OF THE CHARACTERISTIC FUNCTION

OF TOTAL EXECUTION TIME 'D(S)

From Fig. 8, the total execution time T, is the sum of
Treal and Trs,, where T = 1 T s, when there are n restarts.
Given the conditional probability of Tt, we can write the
following equation:

E(Tt Treal) = Treal + E(Trst Treal) - (B. 1)

It is assumed that the time interval between the (i - 1)th and
the ith restarts, X', is exponentially distributed with mean
1/As. Thus, for a given T,,al, the time lost due to the ith restart,
T'r1, is randomly distributed between tsu to Treal + tsu with
density function, fXsdT, ai(t) given by

Afe-Ast
f rst,Treat(t + tsu) = 1 - e-k ea

for 0 S t ' Tr,,. (B.2)

The probability of having n restarts for a given Tral is

PrSIT -l(n) = (e6A3Treal) (1 - e-AslTran. (B.3)

Since T, = Tr,al + X7n=1 TX1, if there are n restarts before the
task completion, the characteristic function of T, for a given
Treal becomes

00

dtlTrea(5) -e E PrsIT,,e(l) [(rstITi(S)]n
n=O

(B.4)

where (DFr,11IT0(s) is the characteristic function of the time loss
due to a restart for a given T,,al, i.e., the Laplace trans-
formation off'l T.a(t). By substituting Pr,T,,l) and (Prsdheai(S)
into (B.4) and integrating with the density function of T,a1,
the characteristic function of T, is obtained as (11) in
Section IV.

REFERENCES

[1] J. A. Rohr, "Starex self-repair routines: Software recovery in the JPL-
STAR computer," in Proc. 3rd Int. Symp. Fault-Tolerant Comput., 1973,
pp. 11-16.

[2] F. E. Heart, S. M. Ornstein, W. R. Crowther, and W. B. Barker, "A new
minicomputer/multiprocessor for the ARPA network," in Proc. 1973
AFIPS Nat. Comput. Conf., 1973, vol. 42, pp. 529-537.

[3] B. Randell, P. A. Lee, and P. C. Treleaven, "Reliability issues in com-
puting system design," Comput. Surveys, pp. 123-165, June 1978.

[4] B. Randell, "System structure for software fault tolerance," IEEE Trans.
Software Eng., vol. SE-1, pp. 220-232, June 1975.

[5] D. L. Russell, "Process backup in producer-consumer systems," in Proc.
6th ACM Symp. Operating Syst. Principles, pp. 151-157, Nov. 1977.

123

k- 1 k
= E i

(I Z)i(Z)k-'Gk-i(t) + (I Z)'
i=O

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

IEBE TRANSACrIONS ON COMPUIERS, VOL. C-33, NO. 2, FEBRUARY 1984

[6] K. H. Kim, "An approach to programmer-transparent coordination of
recovering parallel processes and its efficient implementation rules," in
Proc. 1978 Int. Conf. Parallel Processing, Aug. 1978, pp. 58-68.

[7] , "An implementation of a programmer-transparent scheme for
coordinating concurrent processes in recovery," in Proc. COMPSAC 80,
pp. 615-621, Oct. 1980.

[8] K. Kant and A. Silberschatz, "Error recovery in concurrent processes,"
in Proc. COMPSAC 80, pp. 608-614, Oct. 1980.

[9] W. G. Wood, "A decentralized recovery control protocol," in Proc. IIth
Int. Symp. Fault-Tolerant Comput., 1981, pp. 159-164.

[10] J. J. Homing, H. C. Lauer, P. M. Melliar-Smith, and B. Randell, "A
program structure for error detection and recovery," in Lecture Notes in
Computer Science: Operating Systems. New York: Springer-Verlag,
1974, pp. 171-187.

[11] A. M. Feridun and K. G. Shin, "A fault-tolerant multiprocessor system
with rollback recovery capabilities," in Proc. 2nd Int. Conf. Distributed
Comput. Syst., pp. 283-298, Apr. 1981.

[12] Y. H. Lee, and K. G. Shin, "Rollback propagation detection and per-
formance evaluation ofFTMR2M- A Fault-Tolerant Multiprocessor," in
9th Annu. Symp. Comput. Arch., pp. 171-180, Apr. 1982.

[13] R. J. Swan, S. H. Fuller, and D. P. Siewiorek, "Cm*: a Modular Multi-
microprocessor," in Proc. 1977 AFIPS Nat. Comput. Conf., vol. 46,
1977, pp. 637-644.

[14] P. H. Enslow, "Multiprocessor organization-A survey," Comput.
Surveys, vol. 9, pp. 101-129, Mar. 1977.

[15] K. H. Kim, "Error detection, reconfiguration and recovery in distributed
processing systems," in Proc. lst Int. Conf. Distribut. Comput. Syst.,
pp. 284-295, Oct. 1979.

[16] J. J. Shedletsky, "A rollback interval for networks with an imperfect
self-checking property," IEEE Trans. Comput., vol. C-27, pp. 500-508,
June 1978.

[17] A. W. Madison and A. P. Batson, "Characteristics of Program Locali-
ties," Commun. Ass. Comput. Mach., vol. 19, pp. 285-294, May 1976.

[18] A. P. Batson, "Program behavior at the symbolic level," Computer,
pp. 21-26, Nov. 1976.

[19] S. Rai and K. K. Aggarwal, "An efficient method for reliability evalua-
tion of a general network," IEEE Trans. Reliability, vol. R-27,
Aug. 1978.

[201 S. H. Fuller et al., "Multimicroprocessors: An overview and working
example," Proc. IEEE, vol. 66, pp. 216-228, Feb. 1978.

[21] K. G. Shin, Y. -H. Lee, and J. Sasidhar, "Design of HM2p-A hier-
archical multimicroprocessor for general-purpose applications," IEEE
Trans. Comput., vol. C-31, pp. 1045-1053, Nov. 1982.

[22] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig, "Analytic
models for rollback and recovery strategies in data base systems," IEEE
Trans. Software Eng., vol. SE-I, pp. 100-110, Mar. 1975.

[23] K. M. Chandy and C. V. Ramamoorthy, "Rollback and recovery strate-
gies for computer programs," IEEE Trans. Comput., vol. C-21,
pp. 546-556, June 1972.

[24] E. Gelenbe and D. Derochette, "Performance of rollback recovery sys-
tems under intermittent failures," Commun. Ass. Comput. Mach.,
vol. 21, pp. 493-499, June 1978.

[25] J. W. Young, "A first order approximation to the optimum checkpoint
interval," Commun. Ass. Comput. Mach., vol. 17, pp. 530-531,
Sept. 1974.

[26] G. L. Brodetskiy, "Periodic dumping of intermediate results in systems
with storage-destructive failures," Cybernetics, vol. 15, pp. 685-689,
Sept.-Oct. 1979.

[27] , "Effectiveness of storage of intermediate results in systems with
failures that destroy information," Eng. Cybernetic, vol. 16, pp. 75-81,
Nov.-Dec. 1978.

[28] X. Castillo and D. P. Siewiorek, "A performance-reliability model for
computing systems," in Proc. 10th Int. Symp. Fault-Tolerant Comput.,
1980, pp. 187-192.

[29] , "Workload, performance, and reliability of digital computing
systems," in Proc. Ilth Int. Symp. Fault-Tolerant Comput., 1981,
pp. 84-89.

[30] W. C. Carter, et al., "Cost effectiveness of a self checking computer
design," in Proc. 7th Int. Symp. Fault.Tolerant Comput., 1977,
pp. 117-123.

[31] G. B. Adams and H. J. Siegel, "A fault-tolerant interconnection network
for supersystems," IEEE Trans. Comput., vol. C-31, pp. 443-454,
May 1982.

[32] W. Lin and C. L. Wu, "Design of a 2 x 2 fault-tolerant switching
element," in Proc. 9th Annu. Symp. Comput. Arch., Apr. 1982,
pp. 181-189.

[331 J. F. Meyer, "On evaluating the performability of degradable computing
systems," IEEE Trans. Comput., vol. C-29, pp. 720-731, Aug. 1980.

Yann-Hang Lee (S'81) received the B.S. degree in
engineering science and the M.S. degree in electrical
engineering from National Cheng Kung University,
Taiwan, China, in 1973 and 1978, respectively.

Currently, he is working towards the Ph.D. degree
in computer, information, and control engineering
at the University of Michigan, Ann Arbor, MI.
His research interests include multiprocessor and
distributed systems, performance evaluation, and
fault-tolerant computing.

Kang G. Shin (S'75-M'78-SM'83) was born in
Choongbuk Province, Korea, on October 20, 1946.
He received the B. S. degree in electronics engineer-
ing from Seoul National University, Seoul, Korea in
1970, and both the M.S. and Ph.D. degrees in
electrical engineering from Cornell University,
Ithaca, NY in 1976 and 1978, respectively.
From 1970 to 1972 he served in the Korean Army

as an ROTC officer and from 1972 to 1974 he was
on the research staff of the Korea Institute of Science
and Technology, Seoul, Korea, working on the de-

sign of VHF/UHF communication systems. From 1974 to 1978 he was a
Teaching/Research Assistant and then an Instructor in the School of Electrical
Engineering, Cornell University. From 1978 to 1982 he was an Assistant
Professor at Rensselaer Polytechnic Institute, Troy, NY. He was also a Visiting
Scientist at the U.S. Airforce Flight Dynamics Laboratory in Summer 1979,
and at Bell Laboratories, Holmdel, NJ in Summer 1980 where his work was
concerned with distributed airborne computing and cache memory architecture,
respectively. He also taught short courses for the IBM Computer Science Series
in the area of computer architecture. Since September 1982, he has been with
the Department of Electrical and Computer Engineering at The University of
Michigan, Ann Arbor, MI, where he is currently an Assistant Professor. His
current teaching and research interests are in the areas of distributed and
fault-tolerant computing, computer architecture, and robotics and automation.

Dr. Shin is a member of the Association for Computing Machinery, Sigma
Xi, and Phi Kappa Phi.

124

.. r

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:50:09 UTC from IEEE Xplore. Restrictions apply.

