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ABSTRACT 

This paper  describes  a  framework  for  the  intelligent 
control of industrial manipulators. The structure is  designed 
to allow a  robotic  system to  take  full  advantage  of  the 
improved  sensing capabilities and more powerful  languages 
that are now becoming  available. 

The framework  consists of  two  layers  of hierarchy for 
the  coordinated  control  of  multi-jointed  industrial manipula- 
tors. The low l e v e l  control mechanism, responsible for  ser- 
voing  each joint,  is  adaptive to  both manipulator  dynamics 
and payload  changes. The individual low-level  joint  controll- 
ers  are integrated and coordinated  by  the h i g h  l e v e l  control 
structure.  Together,  the  two  levels  provide  a  versatile 
basis for manipulator  control. This basis  forms a  complete 
structure, and is  suited  for  interfacing  with  yet higher level 
intelligent  systems  such as task planners, high level 
languages, and environment sensitive  path planners. 

1. INTRODUCTION 

An intelligent robot should be  capable  of performing a 
variety  of assigned tasks,  be  aware  of  its environment, and 
be able to  effectively respond to  unexpected  events. 
Therefore, it will be able to accommodate  for misalignment of 
parts in the workspace,  perform tasks  described in an 
abstract manner, and be  capable  of  fine  detail work. In 
order to  have the preceding  capabilities,  an  intelligent  robot 
will  require: visual  and/or  tactile sensing and interpretation, 
goal-seeking task  executors, collision  avoiding path 
planners, and a  versatile manipulator control  structure. 
Though last on the  list,  the  flexible  control  structure is that 
whic'h  will  enable the others  to  effectively  interface  with 
the manipulator. 

In this  paper we present  a  structured  framework  for 
this  flexible  control system. It is  felt  that such  control 
techniques  will enable robotic  systems  to  take  full  advan- 
tage of the improved  sensing capabilities  and more powerful 
task-oriented  languages  that are now beginning t o  emerge. 
These two components (Le. sensing  and  languages)  are 
placing an unprecedented demand on the control  subsystem, 
namely, that  tne  controller  be able to  react quickly to a 
series  of changing directives. 

These  developments  have made it necessary  to  re- 
examine the organization of  the  robot  control and computing 
structures. It has become  quite clear that  a  hierarchical 
organization is  needed, at  least  in  defining  the  logical  struc- 
ture of the  system [BAF79, ShM80,  GrS80,  McS821. In a 
hierarchical  system  the information available to, and used 
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by, a  particular  level is  unique to  the  function performed on 
that  level. For example,  in  a  high level  task-oriented 
language, objects are referred  to  with nouns that  represent 
the  object (e.g. bracket,  screw,  baseplate), are  manipulated 
by action  verbs (e.g. attach, procure, insert,  tighten)  with 
possible  modifiers  (e.g.  smoothly, quickly), and subject  to 
constraints (e.g. until  finger-tight). This contrasts sharply 
with  the  lower  level  language  where  objects are described 
by mathematical  frames, are manipulated via  transforma- 
tions, and constraints  must  be  carefully  defined and prop- 
erly  effected. And  on ye t  a lower logical  level, motion is 
carried out in an n-dimensional  mathematical  space  for  (an 
n-jointed  robot)  specified  by  joint  servo  rates, and subject 
to   the physical  forces of moving components. 

The control  of  a manipulator  has  long been  regarded 
difficult  because of nonlinearity and the  joint couplings  in 
its dynamics. To circumnavigate  this  difficulty,  the manipu- 
lator  control problem is  usually divided  into  off-line  path 
planning  and  on-line path control. Path planning is con- 
cerned  with  the  calculation of the timing of  joint  position 
and velocity from a geometric path  supplied  by  a  task 
planner; this  is done normally off-line  by minimizing total 
traveling time subject  to  certain  constraints (e.g. accelera- 
tions [Pau177],CLuL81],  or input  torques [KiS83]). 

The prime task  of  path  control is t o  generate  the  indivi- 
dual joint motions needed to move from  a  place to   the 
desired destination  following  a  path  specified  by  the  path 
planner. There  are  three  well-known  methods  of  path con- 
trol  that  are all kinematically  oriented.  These  are "Resolved 
Motion  Position  Control"[Paul77],  "Resolved  Motion  Rate 
Control"[Whi69],  and  "Resolved Motion  Acceleration 
Control"[LWP80]. See  [Luh83]  for an excellent  survey  of 
work done thus  far  in  the area of manipulator control. 

Note that most  conventional  works deal with only 
specific  subproblems  of the manipulator control  without con- 
sidering their  integration. Unlike the conventional works, this 
paper  considers a  structured  framework  for assemblying 
these  control submodules into  a  flexible,  powerful organic 
whole. Consequently,  complex  mathematics are  intentionally 
avoided in  the sequel. This paper is  organized  top-down. In 
Section 2 the manipulator control  system is  decomposed 
into  a  hierarchical  structure.  Section 3 deals with  the con- 
cepts  of  both high and low level motions. Sections 4 and 5 
discuss  the  controls of high and low level motions, respec- 
tively. The paper  concludes  with  Section 6. 

2. HIERARCHY  IN  THE MANIPULATOR CONTROL SYSTEM 

A flexible manipulator control  system  is organized  as a 
hierarchical  framework. The levels  of  the  hierarchy are 
cleanly divided:  information processed a t  a  particular  level 
is  not  directly  available to  other  levels of the structure.' 

2A concept  widely  upheld i n  structured  programming 
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There  are two  paths  of information  flow: u p u ~ a r d  and down-  
ward Downward moving data  represents  the  flow  of com- 
mand; a level may issue commands only to  the level immedi- 
ately below. Upward moving data comprises the  flow  of 
feedback  information;  the  feedback-based  control  of  a  level 
is  closed in the  level  immediately  above.  Information  is 
abstracted as it flows  upwards  through  the  hierarchy: more 
physically  specific  information is processed in the  lower  lev- 
els  of  the  hierarchy. Each level  filters and transforms the 
data  it  receives  producing  a more abstract  representation 
for  further  upward  flow.  Figure 1 schematically  depicts  the 
levels and  information  flows  of  the  hierarchy. 

The lowest  level  is  a force cnntro l ler  which  generates 
a  drive  current  for  the  corresponding  joint and receives 
feedback  regarding  the motor torque. Above this  is  the 
v e l o c i t y  c o n t r o l  level  which  is  responsible  for  specifying  a 
desired  servo  rate and employs tachometric  feedback  for 
velocity  stabilization.  Both  the  force (or acceleration)  and 
velocity  controllers  are  implemented  a  hardware  feedback 
system. Above this  is  a pos i t ion   contro l ley;  the  position 
controller  generates  velocity  requests and receives  position 
feedback  information from a shaft angle e n ~ o d e r . ~  

The  individual  joint  position  controllers  are  integrated 
into an overall structure  at  the  next higher level. It is  this 
level  that  the  concept  of a  manipulator emerges from the 
separate  individual  joints. The major task  executing  at  this 
level  is  called  the Chasing  Point S ' p h ~ r ~  of ~ J U E ~ C E  

M ~ t i o n  Model (CPSIMM). This model provides  the  capabili- 
ties  for  coordinated  joint  control. CPSIMM is  organized to  
control  the  position  and  orientation  of  the  end-effector in 
Cartesian  space. In addition to  this  control  function, 
visual/tactile  sensing  can  be  interfaced at  this level. 

Above this  level  the  hierarchy  is  flexible to  include 
other  high-level  systems  which  are  responsible for  intelli- 
gence  functions  of  the  entire  manufacturing cell, e.g. multi- 
ple  robots.  Note that CPSIMM supports  a  single environmen- 
tally  sensitive manipulator, whereas  the  next higher levels 
extend  this  awareness  to  the  full complement of  cell  dev- 
ices.  Path  planning  occurs at  the  lowest  level  of  the  struc- 
ture  above CPSIMM and the  next higher  level is usually  a 
goal-seeking task planner. 

3. MOTION CONTROL CONCEPTS 

3.1. High Level  Concepts 

The Chasing Point  Sphere of  Influence  Motion Model 
(CPSIMM) is the  process  which  allows  for all of  the high 
level  control  functions. CPSIMM  may be  regarded  as  a 
bridge  between  a higher level  path  generator and the  low 
level  joint motion controllers. It is  responsible  for  coocdinat- 
ing multiple axes  to provide  uniform end-effector motion and 
maps the multiple joint  space domains into  a  single  Carte- 
sian  reference frame. 

The capabilities CPSIMM must  provide  are  indicated by 
the needs of higher  level  task  systems;  the higher level 
structure  generates m a c r o  pm;mitives which  are the  base 
units or steps  of an assembly  procedure. As such  they  are 
primitives  with  respect  to  the higher  level, but  with  respect 
to  effecting  such  primitives  they  entail much coordinated 
maneuvering of  the lower level motion controllers, and are 
therefore pmm in scope. CPSIMM must accept  these macro 
primitives  and  produce  a  series of m i c r o  pm;miti,ves that 

3Tbe  position  encoder i s  considered to reside  (logicaliy) at the  posi- 
tion  controller  level, although physically i t  i s  a component of the  lowest  iev- 
el - the rnanlpulator itself. 

are  local in scope (i.e. joint  specific). The lower  levels  exe- 
cute  the micro primitives. 

CPSIMM performs motion in  a c o n t e x t  The context 
determines  how the motion is to  be  interpreted and exe- 
cuted. The particular  nature  of  the  various  contexts  are 
determined  by  the  needs of the higher level  functions. 
CPSIMM supports  three motion contexts: p - e p l ~ ~ ~ ~ ~ d  path 
c o n t e x t .  dynamic  chaskny   po in t  c o n t e x t ,  and d y n m r ~ i c  
p o i n t  i n J e c t i o n  c o n t e x t  (these will be  discussed  later In 
this  section). 

A. The Chasing Point 

The motion contexts all  share in  common the  concept 
of a chaszng po in t .  The  chasing  point  is  a  point in the R - 
dimensional joint  space; i t  also describes  a  desired  end- 
effector>position  (location and orientation). 

All of the motion contexts  operate  by  specifying  the 
chasing  point. The low level  controllers  will  drive  the  end- 
effector  to  be aligned with  the  chasing  point. High level 
control  of  the  end-effector  is  achieved  by  judicious move- 
ment of  the chasing  point; as the  end-effector approaches 
alignment with  the  chasing  point,  the  point  is moved accord- 
ing to  the rules  of  the  current  context. As the  point  is 
moved through  space, the  end-effector  is  always  seeking 
the most current  target  (chasing)  point. The result  of  this 
behavior is that  the  end-effector is tracing  out  a  path in 
space -- a path  that  is  influenced  by  the movement of  the 
chasing  point. 

B. The Sphere of fnflucnce 

The sphere -n fan f luznce  is  a  sphere whose origin  is 
the chasing  point, and is o f  a  radius  equal to  the  length of 
the  end-effector. As the motion context moves the chasing 
point  through  space, it must  insure that no known object in 
the  workspace  intersects  the volume of  the sphere. This 
technique  is employed as the  lowest  level  of  the  collision 
avoidance mechanism. 

I f  the curvilinear  lines  are  drawn between chasing  point 
positions  according to  the  anticipated  end-effector  path, 
the sphere may be moved along this  path  to  provide  the 
locus  of all points  passed through. The  solid volume so 
described  will  be  a curvilinear(i.e. sinuous) cylinder. A 
second order collision avoidance  is obtained  by  insuring  that 
this volume does not  contain  any known objects, in  whole or 
in  part. 

C. Preplanned Path Context 

This context is used when the  end-effector must be 
moved  through  the  workspace  according to  an a prinri 
determined path  at a  specified  speed.  Traditional  teach- 
based  playback  systems  operate in  a context similar to  this. 

Paths in this  context are composed of  a  finite  set of 
distinguishable  individual path segments. These segments 
are  contiguous and connected,  although  the  derivative  is, 
more often  than  not, discontinuous. The motion starts and 
stops  at e n d  p o i n t s .  The intersection  of  two  path  seg- 
ments is an i n t e r m e d i a t e   p o i n t .  The velocity along each 
path segment is  independently  specifiable. The ability to  
provide  constant  velocity  paths  in  the  Cartesian domain is 
made possible  by  the independence of segment velocities. 

The path  between  two  points  is  not  necessarily  a 
Cartesian  straight  line; it is  determined by  the  particular 
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physical  construction  of  the  manip~lator.~ However,  even 
this  curve  cannot  be assumed to  be  the  actual  path  that will 
be followed. A t  each  intermediate  point  the  joint  velocities 
must  change to  properly perform the  next segment,  thus 
requiring acceleration. If the motion is to  be smooth, the 
position, velocity, and acceleration must all be continuous 
functions of time. Thus, a  smooth  acceleration  must  be  per- 
formed at  each  intermediate point. 

We  define  a region of  space around each  intermediate 
point,  called an c-neighborhood. All path segment  transi- 
tions  will occur  inside o f  this neighborhood. When the end- 
effector  enters  the neighborhood, the  joints are 
accelerated  to  the  velocities  needed  for  the  next  path seg- 
ment. The size of  the neighborhood, E ,  is determined  by  the 
maximum  amount of time that may be  needed  to smoothly 
accelerate from one velocity  to  the  next. 

The complete  motion path is  accomplished by  targeting 
the  next  point in the  sequence.  The  current  target is used 
to  define  the  chasing  point. When the  end-effector  enters 
the chasing  point centered c-neighborhood, the  next  inter- 
mediate  point is  used to describe  the  new  position  of  the 
chasing  point,  and the  joint  controllers are instructed  to 
accelerate  to  the  velocity  required  for  the  new  path  seg- 
ment. 

D. Dynamic  Chasing  Point  Context 

This context allows a  path  to  be determined in real- 
time. The paths are  usually  determined with  the aid of 
environmental feedback  such  as vision, sonar, proximity or 
touch sensing. This can also be  used  for  teaching/creating 
a  preplanned  path;  a  joystick  control  can  be  used  to move 
the chasing  point.  The end-effector will always move 
towards the chasing point -- when the  end-effector 
reaches the point,  its motion is  stopped. 

When the  speed  of motion is high, the motion in this 
context  is  not as predictable as the motion produced  by  the 
preplanned path  context  because  the manipulator may pos- 
sibly  be undergoing continually  changing  acceleration. When 
the chasing point is moving slowly,  and the manipulator  is 
moving a t  a low speed,  fine  control of  the  path  is possible. 

E. Dynamic  Point   In ject ion  Context  

I f  a preplanned path  is being traversed and an unex- 
pected  object  is  detected  within  the  projected  sphere  of 
influence, then an additional  set  of  intermediate  points may 
be  injected  into  the  existing  path stream. This is  accom- 
plished  by temporarily  suspending the  preplanned  path  con- 
tex t  and entering  the dynamic point  injection  context. 
Injected  points are calculated  one  at  a time. This context 
must  circumnavigate  the  object and bring the  end-effector 
back  to  the  preplanned  path.  The mechanism associated 
with  this  context  then  instructs  the preplanned path con- 
tex t  t o  advance  its  index  into  the  path  segment  table so  
that  it may resume path  traversal  with  correct information 
about  the  next  segment  to  execute. 

3.2. Low Level Concepts 

The low level  control  of motion is performed  with 
respect  to  the  multiple  axes  of  the manipulator. A t  this low 
level  the  concept  of  a manipulator  does not  exist; low level 
control is responsible  for  servoing  a  single  axis in its  joint 
space.  The  axes are treated individually and are 

4For cylindric*  mmipulators, the segments are xcs of Archimedean 
spirals. 

independent  at  this level.  Dynamical ef fects impacting an 
axis  are  compensated  for by an adaptive  feedback  control 
algorithm  which  will be  briefly  discussed  later in Section 5 
(see  [ShMsl]  for  detail). A joint  (position)  controller 
employs the algorithm to  adaptively servo the  axis  accord- 
ing to  a  variety of contexts called m o d e s .  There  are  four 
major modes of motion details  of  which are described below. 
The  particular mode in ef fect  is  chosen by  either CPSIMM  or 
the  current mode. CPSfMlW selects modes in an effort  to 
coordinate the multiple axes. An active mode  may cause 
another mode to  take  control  when  either  unexpected or 
specific  anticipated  events occur. 

For i ts implementation on digital computers, joint  control 
is performed  in  discrete time intervals. A real-time  clock 
periodically  interrupts  the  joint  controller to invoke  execu- 
tion  of  the  low-level motion control  software. When the 
software  is  invoked it schedules  the  current motion mode 
controller  for  execution.  The mode controllers perform their 
particular  function  with  the aid of  several  fixed  function 
modules, some of which  are  described  in  Section 5. 

A. Mode 1 Motion 

Mode 1  (M1 ) motion  will servo  the  joint from i ts current 
position  in  joint  space  to  a desired target  coordinate ,  P d ,  
subject  to  the  constraint  that  the  target  coordinate  will  be 
achieved in a  specified amount of time, Tc,  called  the t ime 
t o  canverge. When the  axis  achieves  the  target  coordi- 
nate, it may have  a nonzero velocity  and/or  a nonzero 
acceleration. Mode 1  motion  is further  characterized  by an 
epsilon  multiplier(EPS). In this mode a neighborhood is 
defined  about P,. The minimum size  of  the neighborhood, E , ,  
is  the maximal distance  required  to  stop  the  axis (i.e. when 
moving at maximum speed). The size  of  the neighborhood, E ,  

is  actually  expanded  by E = E ,  * ZEPs. The  expansion 
allows a limited precision EPS to  select  a  large range of B- 
neighborhood  sizes. 

A Mode  1  motion  is  completely  specified by  supplying it 
with  the values of P,, T c ,  and  EPS.  Only  EPS need  not  be 
explicitly  defined; it has  a  default value of zero. 

When Mode  1  is  invoked  the  joint  controller  must  be 
informed of  the high level  intent:  stop  when  the  target  coor- 
dinate is achieved (i.e. CPSIMM is targeting  a terminus), or 
motion is  to  be  continued (i.e.  CPSIMM is  passing through an 
intermediate  point). 

€3. Mode 2 Motion 

Mode 2 is  used  to link one M l  motion to  another. When 
Mode 2 is  invoked  the  joint is driven from its  current  velo- 
ci ty t o  a  requested  velocity.  The time required to do  this 
can  be of two forms: (i) the  acceleration is performed  in 
minimum time, that is, the maximally  allowed joint  accelera- 
tion  will  be used,  or (ii)  the  joint  is  accelerated in a f ixed 
amount of time. The f ixed value  must be  greater  than or 
equal to  the smallest  time that any acceleration may 
require. 

The desired  acceleration  is determined by  generating  a 
polynomial description  of  velocity  curve  (see  Section 5.2 for 
detail). This curve, and its  derivative,  will  not  have any 
discontinuities (Le. both  the  velocity and the  acceleration 
are  smooth to  prevent any  jerky motion), and  the  derivative 
will  never exceed  the  rated  capacity  of  the  joint. 

Mode 2 does  not  monitor the  actual  behavior  of  the 
servo; it does  not  compensate  for  discrepancies  between 
requested  velocities  and  actual  joint  velocities. When the 
time  for the  transition  expires,  the Mode 2 controller  will 
issue  an  interrupt to signify completion, and will continue to 
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request  the  velocity  at  the  desired  target  velocity. 

C .  Mode 3 Motion 

The  Mode 3  controller  will  servo  the  joint t o  a  halt from 
its current  velocity. Mode 3  has two submodes designated 
by  M3a and M3b. The former is  used when  passing  near  an 
intermediate  point  of  a CPSIMM path segment, whereas  the 
latter  is used  when targeting  terminal  points;  M3a does not 
require the  end-effector  to  stop  exactly  at  the (intermedi- 
ate)  target  whereas  M3b does. 

In M3a  the controller  will  bring  the  axis to  a  stopped 
state  in  the  vicinity  of  the  target point. When the  axis  is 
stopped, an interrupt  is  generated  to  indicate  this, and  a 
modified  variant of  the Mode 4 controller  (called M4M) is 
invokod t o  maintain the  axis  at its current  resting  position. 

In M3b  the controller  will  terminate the mode when  a 
certain small velocity, v s ,  is  achieved. When this  occurs 
Mode 4 is initiated t o  maintain position at  the  final  target 
point. In the  event  that  the  current  axis  position  is  not  the 
target  point,  the smallness of 'us allows M4   to  bring the  axis 
to  the  target point  without  overshoot. The completion  inter- 
rupt is not  generated. 

D. Mode 4 Motion 

The Mode U controller  will  maintain  the  axis  at  a  partic- 
ular  position.  The mode operates  by comparing P, to  P,, 
generating an error  vector,  and maps this error vector  into  a 
velocity  request. 

Mode 4 may be invoked  in two ways. In the  first,  the 
controller  will  bring the  axis  to  the  target  point from wher- 
ever it currently is. Because M 4  makes no attempt  to insure 
the smoothness of  the acceleration, it should not  be  relied 
upon for gross  servoing  of an axis. The  modified  procedure, 
M4M, will set  the  target  point equal to  the value  of  the 
current  coordinate at  the time M4M is invoked. This pro- 
cedure,  used t o  keep the  axis  at its current position, should 
only be  used  when  the  velocity  is small. 

The Mode 4 controller can  be  instructed  to  generate  an 
interrupt when the  target  coordinate is first  achieved. For 
M4M the  first  instance  of this [when first invoked)  is not 
considered an achievement of  this requirement -- it will  gen- 
erate an interrupt at  the f i rst  occurrence  of Pa=Pd a f t e r  
the mode is  initiated. 

A special  variant  of Mode  4 called M4D (Dynamic) is 
available  for use when the high level processes  are dynami- 
cally moving the  end-effector  through  space. In M4D the 
convergence  of  the approach t o  the terminus can  be  speci- 
fied. MUD will  generate an interrupt when the  axis  first 
enters  the E-neighborhood, but it will not  interrupt when 
Pa =P,. 

4. HIGH LEVEL MOTION CONTROL 

The motion control  concepts  as  developed  in  the  previ- 
ous section  are  designed  to  support  each  other  in  such  a 
way  that  the  versatility and capabilities  of  the manipulator 
control  system  are maximized. The high degree of mutual 
interaction  presents some difficulties when attempting to  
separately  describe  the  functions  of  the high and low  level 
control  system. Some details  are  clearly  separable though. 

The details  that  are  specific  to  the high  level motion 
controller (CPSIMM) are those  that  relate t o  the appearance 
of  end-effector  paths. The details  that  concern  the low 
level  solely  are  those  that  involve a single  axis only. 

The constituent components of  CPSIMM are  those  that 
support  the motion control  contexts. These contexts 
schedule  the  individual  axis  controllers to  perform various 
low  level  control modes. The arrangement of low level 
modes in  a  time-sequenced  pattern allows a high level 
motion pattern  to appear. 

Similarly, the  low  level  controller organizes the  avail- 
able modules into  a  structure  which will actualize  the 
desired modal motion. This system  is  self-organizing,  that is, 
it is  capable  of  structuring  the  data  flow  paths  between  its 
constituent modules. 

The high level  concept  of motion is  divided  into  two 
styles: planned paths and dynamic paths. Although these 
two are  quite  different  in temperament, they are very similar 
in that  they  achieve motion control  with  the same repertoire 
of avaiiable low level  motion modes. 

Planned paths  are  defined  by a set  of points  which 
roughly  describe  the  path. These paths may be examined 
from two viewpoints: descr ip t ion  and actual i za t ion .  The 
description  will  require  the development  of the notion  of  a 
s imu l taneous ly   convergen t  path in joint  space. The actu- 
alization  viewpoint  centers on the development of descrip 
tor n o d e s ;  these nodes  are  information  packets  describing 
the  path segments. 

Dynamic paths  are  constructed  according to  environ- 
mental  and  other  external  dictates. Dynamic paths  are  far 
more subtle  than  planned  paths;  effective  execution of a 
dynamic path  is  predicated on the  availability  of s i d e  i n j u r -  
m a t i o n ,  information  which  is  deducible from the  nature  of 
the  task. This side  information  will imply an approach to 
configuring  the  low  level modes. 

4.1. Preplanned  Paths 

A. Path Descript ion 

A path begins a t  a s t a r t i n g   p o i n t .  moves through  a 
series  of i n t e r m e d i a t e   p o i n t s ,  and concludes at  a t e r -  
m i n u s .  The motion is  initiated  by  targeting  the  first  inter- 
mediate  point. The data concerning  a path segment is  con- 
tained  in  a  descriptor  node  associated  with  the  intermediate 
point.  When the  segment is completed, the  next segment's 
node is  accessed  to  provide  the  data  needed  to continue 
the motion. Motion does not  stop  at  each  intermediate 
point; motion halts only at  the terminus. 

A node contains  several  sets  of  data:  a  set  is  required 
for  each  axis  involved  with  the motion. Each set contains  a 
desired target coordinate, P,, and  epsilon multiplier (EPS), 
and  a  time to  converge, Tc. 

These  parameters  are  derived  from two  vectors asso- 
ciated  with  each  point. The first, P, identifies  the  position 
of the  robot's  wrist in Cartesian  (robot)  space. The, second 
vector, 0, describes  the  orientation  of  the  end-effector  at 
that point. In coordinating motion the  two  sets of degrees- 
of-freedom comprising P and 0 are  treated independently. 
Orientation may be  controlled along each  path segment (as 
is  required when the  orientation must be held  constant in 
Cartesian  space), it may be  controlled  independently  of,  but 
simultaneously with, the position  control  of  the  path so that 
the desired  orientation  is  achieved when the terminus is 
reached, or it may be brought  into alignment after  the  final 
position  is  achieved. 

Intransit  orientation  is  not  performed in the following 
treatise, its development is  a  logical  extension  of  the model 
described. 
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Assume that  the  current  position  of  the hand in robot 
space  is ( X i ,  &,&) corresponding to  some joint  coordinate 
([l,?98,<i), and the  position  of  the  current  target  point  is 
(X,, Y, ,Z,) corresponding t o  some joint  coordinate 
([, ,df ,<,). Each axis must  change its  joint  space  position 
by an  amount that is the  difference  between  the  target 
coordinate  value and the  current value: namely 

maximum allowed velocity for each axis is known (i.e. 
A[ = [f - ti, Air = bf - bi, A< = <, - <&. Since the 

% P , ,  zi,yax, vp:"), then  the minimum possible  time  for  each 
axls  is  to  reach  Its  destination is, in  degenerate form for  we 
are  neglecting  acceleration as a f irst order  approximation: 

In order t o  account  for  acceleration,  another  approxi- 
mation will be made. Because CPSIMM does not  know  the 
current  axis  velocities, a worst  case  approximation  will  be 
made to insure that  the  second order  time  approximations 
will  be  large enough to  always allow the segment motion to  
accommodate  any  required velocity changes. The  maximum 
allowed accelerations  are  also  predefined: 
atmax, u y ,  apex. Assume that  the current  velocity  is  the 
largest  negative  velocity  possible, and that  the.next  path 
segment  will  require the  largest  positive  velocity allowed. 
The total  velocity change is  twice  the allowed maximum 
~ e l o c i t y . ~  The acceleration  time  required t o  produce  such  a 
velocity  change is: 

tc = A [ / v Y ~ ' ,  t ,  = A19/vPax, t <  = A</IJ?. 

The second  order minimal time  approximation is  found by 
adding this  acceleration time to  the  f i rst order transit time 

The second  order  approximation is required  when the 
segment transit  times  are small compared to  the minimum 
acceleration  time of Eq. (1). When either (i) intermediate 
points  are  close  together or  (ii) the  velocity changes 
between segments is not large, then a third  order  approxi- 
mation can be used. 

The  third  order  approximation  determines the  accelera- 
tion  time  required  between  path segments.  The velocity  of 
the  path segments is approximated by using the  first order 
time  approximations. Let tJ(i- l)  be  the  f irst order  time 
approximation for  the  current  ,path segment i - l  of  axis j ,  
and t j ( i )  be  the  f irst order  approximation  for the upcoming 
path segment i. The average  velocity along path segment i 
for  axis j is found by dividing the  joint  path length, A j  ( i) ,  
by  the  f irst order  approximation 

Z J J ( ~ )  = A j ( i ) / t j ( i )  

The velocity  change  required  between  two  adjacent  path 
segments i - i  and i is 

and the minimum time  required  is 

Thus the optimal  time to  be  allotted for  traversing  segment i 
for  axis j is 

t f ( i )  = t j  t t 
ai 

Whether  first, second,  or third  order  transit times  are 
computed  depends  upon the  nature  of  the motion in the  con- 
text. The techniques  converge at  this point for  further 

5We  are  here assuming  that the  maximal  positive and negative  veioci- 
tles are of the same magnitude. 

calculation.  Let t,'be the time  value  calculated  for  the  axis 
j .  The minimum time  required for all axes  to  reach their 
respective  target coordinates  represents  the  time  required 
for a  simultaneously convergent motion, and  is  therefore 
used as the time  parameter of  the motion: 

Tc-max t i  (7) 

This T ,  parameter  must be common to  all axes  involved in a 
motion segment.  However, the freedom to  specify Tc 
independently  for  each  axis  allows  for  both dynamic path 
control and for  the independent  position and orientation 
control  in a  planned  path. To  perform  a path where the 
orientation  converges a t   the  terminus, the positional path  is 
first  calculated. These  segments  will  involve  only the body 
group axes6 ; Tc is common for  these  axes.  The  total time 
of  the motion is  the sum of  the segment  time-to-converge 
values. This value  can  then  be  used as the  time-to- 
converge  parameter  for the hand  group  motion (which  is a 
single  segment). 

Lastly, the epsilon  multiplier (EPS) must be  specified. 
This  multiplier  controls the  tolerance or accuracy  to which 
the  path  actually  passes  through  the  intermediate point. An 
EPS value  of  zero  requires the manipulator t o  pass  close  to 
the intermediate  point.  Larger  values of EPS lessen  the 
required  'closeness.' 

€3. Actualization 

j 

To execute  the  path,  the Pre-Planned Path  Context 
(PPP-C) controller first employs Mode 2 to  bring the  axis up 
t o  speed. Mode 2 interrupts to  indicate  that  the  axis is 
close to  the desired  speed. When all  the  axes  have so 
interrupted, PPP-C invokes  Mode 1. The P,, T,, and EPS 
parameters of  the  next  target node  are sent  to  the  axis 
controllers, and Mode 1 is  initiated. PPP-C then  prepares 
the  next parameter packet and  transmits  these to   t he  com- 
munication buffer area.  This is  one  of  the  advantages  if 
multiple  processors  are  used:  several  independent  but 
related  sets  of calculations  are  being  performed  simultane- 
ously.  The communications between  these  processes  are 
woven  between  the control  functions. 

Each low level  controller brings its  axis  towards  its  tar- 
get coordinate. When  an axis  enters  its &-neighborhood, it 
slows down as it completes its  targeting  of an  intermediate 
point. it also  informs CPSIMM that  the &-neighborhood  has 
been entered. PPP-C waits  for  all  of  the  axes  involved in 
the  path segment to  enter their e-neighborhood; when this 
condition  is met CPSIMM is  assured  of two  facts:  (i)  that 
the  end-effector is sufficiently  close to   t he  intermediate 
point, and (ii) that all axes  are resynchronized  in  space  for 
continued  coordinated  control. CPSIMM then  instructs  the 
controllers to  accelerate  the  axis  to  the  velocity required 
for  the  next  path segment  using  Mode 2 (the  data is 
already in the communication buffer area). When  up to 
speed,  Mode 1 is  reinvoked  using  this  data. 

The cycle  is  repeated  until  the  data  for  the terminus is 
loaded into  the communication buffer area. Normally the 
axes are  slowing  down to  target  the terminus  and the con- 
troller  is bringing the  velocity  to zero  using  M3b.  However, 
when  the terminus is the  current node, the controllers  are 
instructed  to  use  M3a instead. This will  automatically 
invoke M4 when the controller slows the  axis  sufficiently. 
When M4 brings the  axis  to a stop on the terminus, it inter- 
rupts CPSIMM. When all  the  interrupts  are  received, PPP-C 
has  completed  the pre-planned  path. 

6The body group  provides  position  freedom.  The hand group provides 
orientation  freedom. 
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4.2. Dynamic  Path  Modification 

The details  of  the  techniques  that  properly  execute 
the Dynamic Point Injection  Context (DPI-C) are not  con- 
tained  within  the  scope  of  this  paper;  but  insight  into  the 
need  for  this  capabitity  has  led to  i ts  inclusion  here. 

Two techniques  predominate for  the dynamic inclusion 
of  points  extraneous  to  a pre-planned path. In the  first,  the 
axis  is  servoed as quickly as is  possible  towards  a  target 
point; the  path is not determined.  In the second technique, 
the  injected  point determines a path. 

The first  technique is  used to avoid a collision with  an 
obstacle: an intermediate  target  point in space  is  deter- 
mined that is both  far from the  interfering  object and that 
does  not  significantly  deviate from the  current,  pre-planned 
path.  In  this  way the controller  need  not  fight  the  axis  iner- 
tia, it must only redirect  the  path. 

The second  technique  is  used  once  the  end-effector  is 
near the dynamically injected  point. A high level  dynamic 
path planner generates  a  new pre-planned path  that merges 
with  the old  path,  avoiding the  obstacle. This dynamic path 
can  be  calculated on the fly,  and is controlled  by  the  tenets 
of  the PPP-C context. 

4.3, Dynamically  Created  Paths 

The Dynamic Chasing Point Context (DCP-C) allows the 
manipulators to  be  servoed in real-time  according to  
environmentally  determined  information.  In this  context,  the 
axes  are  servoed using a  variant  of  the  low  level M4D con- 
troller. 

Although  dynamically  determined path  control  is 
extremely  difficult and is also beyond  the  scope  of  this 
work, the general  concept is as follows:  in M4D the con- 
troller brings the  axis  to  the  target  point  with  a moderate 
velocity. The diminution of employed velocity  is  specified  to 
M4D by  the  setting of a  parameter?  Unlike the normal M4 
operation, an &-neighborhood is employed. When the end- 
effector  enters  the E sphere  about the  current chasing 
point  target,  the  point is moved.  The low level  controllers, 
always  executing M4D, will  cause  the  end-effector  to 
always  chase  after  the  point. 

5. LOW LEVEL  CONTROL 

Low level  control  entails  servoing the  axis in the  joint 
domain.  From this  perspective  there  is  no  concept  of  a 
manipulator,  only a single highly nonlinear servo positioning 
system. The dynamical effects  manifest  at  this level, and 
must be handled appropriately. Motion control  is  performed 
by scheduling a  variety  of modular components into  confi- 
guration  suitable  for  effecting  the modal motion  called for  by 
CPSIMM. Each motion mode is  performed by configuring a 
number of fixed  function modules into  a  particular  arrange- 
ment.  These modules are now discussed. 

5.1. Discrete Time  Motion  Model (DTMM) 

The OTMM is an interrupt driven software  process  that 
generates  velocity  requests  for  a  single  joint.  The DTMM 
goal  is t o  bring the  joint  to  the  desired  target  coordinate in 
a specified amount of time -- the  time t o  converge, T,. 

wltl be discussed  in  Section 5. 
'This parameter, k, affects the damping of the  control  algorithm and 

Figure 2 shows  a trajectory  for an axis  at some posi- 
tion x. at time  zero,  terminating at  the  target  coordinate  at 
time Tc. The horizontal  time axis has been  subdivided  into n 
elements of  width 6 t ,  where 6 t  is the  iteration  period  of  the 
interrupting  real-time clock; namely, n = T c /  6 t .  The aver- 
age amount of motion required per iteration is: 

if the controller  can  cause  this movement t o  take place, 
then  the  axis  will  achieve  the  target  coordinate in exactly 
the required amount of time, Tc. However, due to  the non- 
linearities  of  the dynamical effects,  the  trajectory  of Figure 
2 is not realizable. 

If we  let  the DTMM calculate  anew  the  trajectory  of 
Figure 2 at  each  iteration period, it will  generate  a  sequence 
of  velocity  requests  AX^,^+, where i ranges from 0 to  n -1. 
That is, at  each  interrupt  a new velocity  request will be  cal- 
culated  based upon the remaining distance and time to 
travel. 

In Figure 3 we  illustrate  a plausible  response to  the ini- 
tial  velocity  request  calculated  by (8). A t  the  next  inter- 
rupt  a  new linear path is constructed,  the slope of  which  is 
the desired velocity. A t  time i the  distance remaining to  be 
transited  is z, = Pd - P,, and the time remaining is 
t ,  = ?t - i. The velocity  request  for  this  iteration is: 

n 

h i , i + l  = X r  1 t ,  (9) 

Combining the above  relationships  yields: 

h t . a + l  = ( P d  - Pa)/ (n-i) ( 1  0) 

Eq. ( I O )  can  be  used  at  each  interrupt  to  generate  the 
velocity  request. One effect  of  this  technique  is  a  velocity 
creep  that  accrues  until  the  axis  attains  its  average 
operating  velocity. The terminal velocity  that is reached  is: 

vt = lim  AX^,^+ ( 1   1 )  
i W - 1  

Because of  this  velocity creep, an axis should never  be 
requested  to move at   i ts  maximum allowed velocity  (doing 
so will  invalidate  the  guarantee  of  a simultaneously conver- 
gent motion path). 

5.2. Generation  of  Velocity  Profile 

The velocity  profile  used by the Mode 2 controller is 
determined by  a polynomial function describing  smooth tran- 
sitions from a given  initial state  to  a  specified desired 
state. Since the polynomial function  represents  a  velocity 
profile in the time domain, its  derivative  represents 
acceleration.  In general, a  third order  polynomial  is suffi- 
cient  for  smooth  transitions. The polynomial can  then  be 
specified  by  four  boundary conditions: the initial and final 
values of  both  the polynomial and its derivative. 

Since  we are concerned  with one complete move, the 
initial and final  acceleration  are  assumed to  be zero. A gen- 
eric  velocity  profile  generated is illustrated in  Figure 4. The 
general form of an equation describing  such  a  curve  is 

v = C,t3 + Czt2 f C,t + Co (1 2) 

where C, i=O,1 ,2 ,3  are  constants to  be determined. The 
derivative  of (12) is  the  acceleration curve,  and  is 
represented  by 

A = BC3t" + 2Czt + C, ( 1  3) 
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A t  the  start of  a  blend ( t  = O), the  velocity  is vl, and the 
acceleration is  assumed to  be zero. This provides two 
boundary  conditions VI t = O  = V , ,  A I ~ = o  = 0. A t  the end of 
the blend ( t  = I), the  velocity should be  the  specified velo- 
ci ty V, and the  acceleration should be zero. This yields two 

From these boundary  conditions one can  obtain  coefficients: 
additional  boundary conditions: V ] t = ,  = V,, A I t z l  = 0. 

The polynomial  must be mapped to  real time. To do this, 

co = V , ,  c, = 0, c, = 3(V, - X), c3 = 4 ( V f  - K). 
(1 2)  can  be  written as 

v = c343 + c& c C,[ + co (1 4) 

where .$ = t /  T and T represents  the  real time of  the motion. 
The value of T is found by insuring that  the maximum 
acceleration  is  not  required to  exceed  the  rated maximal 
acceleration  for  the  axis (e.g. AimaX for  the j -th joint). The 
acceleration  is 

A [3C3CZ + 2Cz4 + Cl] / 7 ( 1  5) 

The  maximum acceleration  occurs  when  the  derivate  of  this 
is zero. This occurs  when t =0 .5 ,  that is, t = ~ / 2 .  The 
maximum acceleration  is: 

Am,, = A Ic=L - - [3C3/  4 + Cz] /  T = 3( Vf - X)/ 27 ( 1  6) 
2 

To find  a  time T for  joint j such  that  the  profile  will  always 
require the maximally  allowed acceleration  (without  ever 
exceeding it), solve  for T when A,, = Ajmax 

7 = 3( v, - vl,)/ 2Ajmax (1  7) 

The largest time that will  ever  be required for  joint j occurs 
when the  initial  and  final  velocities are opposite in sign, and 
are the  largest permissible velocities magnitude-wise, that 
is, a  complete velocity  turnaround 

T,, = 3 Ajmax ( 1  8) 

For the Mode 3b controller  we  need  also  smooth  transi- 
tions from an initial velocity  to zero velocity  such  that  a 
specific  distance  is  traversed. This can be achieved simi- 
larly to  the above using a polynomial of  the same form  as 
(12). Because the desired  velocity (V,) is zero, the  coeffi- 
cients  of  (12) are: Co = 4, C, = 0, C, = - 3 4 ,  
C, = 2K. Substituting  these  into (12) yields  the polynomial 

v = 2qt3 - 3 5 t 2  + 3 (1 9) 

The  time  required  for the  transition  can  be foundg 

T = 3V, / ZA,, (23) 

Minimum time  occurs  when maximally  allowed acceleration  is 
used T,~,, = 3& / and the upper  bound is found 
when the  axis  is  at  the maximum velocity: 
-rminrnau = 35,'' / 2AjmaX. The minimum size c-neighborhood 
is found from this  by E, =0.5V, T~~~ max = 3[ i$jmaxjZ / 4Ajmax. 
Also one can  obtain  the  distance  required in stopping the 
axis: 

s = 3V,' / ZA,, (24) 

This implies that  for < the  distance  traversed in 
stopping  the  axis, s ,  is  always less than E,. 

5.3. Velocity  Estimation 

We need to  estimate  the  current  axis  velocity from a 
position  history.  The  position of  the  axis  is determined a t  
each  real-time  clock tick  interrupt. The current  and  last 1 
values are saved. The current  velocity  is determined as a 
function  of  these I f 1  values.  Because the  axis  velocity is 
always changing, it is  not  necessary  for 1 to  be large, in 
fact,  a  large I would  infuse the  velocity  estimate  with  inap- 
propriate  data;  the  velocity  estimator  is  a  short-term 
memory function. 

Figure 6 illustrates  a  position  history  with 1=2. Let x 
denote the  joint  coordinate and i be  the  current time (clock 
t ick number). The  change in position  between  two  consecu- 
t ive known  positions  is 

Axi-1.i = X< - ~ i - 1  (25) 

The  velocity at  time i -1 is approximated  by 

<I$-,> = ( Z i  - Xi-,)/ 2 (28) 

and is mapped into  real time  as 

v = K [ z ( t / T ) ' -  3(t /T) '  11 

where the angle brackets  indicate an estimate.  Substitut- 
ing (28)  into (27) 

(20) < q >  = 2(sa - 2i-1) - (Xi - Zi-,)/ 2 

The polynomial generates  a  curve  of  the form as  shown in which is simplified to 
Figure 5. Because of  the curves  symmetry, the  distance 
traversed is8 s = V,T/ 2. It is  desired  that  this  distance  be 
the size of the &-neighborhood, thus E = vl,~/ 2 from which 
the time of motion is found T = 2 ~ /  V,. The acceleration is 
given by  the  derivative of (20): 5.4. Discrete  Error  Corrector 

< V , > = ~ X ~ / Z - Z X ~ _ , - X ~ - Z / ~  (30) 

A = 6 [ 6 ( t / T ) ' -  6 ( t / T ) ] / ~  (21) 
The discrete  error  corrector moves the  axis  with  a 

velocity  that  is  proportional  to  the  the  distance remaining 
(Le. the error). The distance remaining a t  some interrupt- 

propensity  for  overshoot,  and to  provide  a mechanism for 

The  maximum acceleration  occurs  at t = T /  2, and is 

Amaz = -3K / 2 7  (22)  invoked  iteration  is xr = Pd -Pa. In  order  to  reduce  the 

87his may be  demonstrated by integrating (20). tlon. 
gRecali  thaf  time  is  positive for  either  positive or negativs  acceiera- 

615 

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore.  Restrictions apply. 



controlling the  rate  of convergence, the  velocity  selection is 
quantized. An integer valued  parameter, k, specifies  the 
quantization." All velocity  requests  in  the  range  of 1 to k 
are mapped to 1. All velocity  request in the range k + 1 to  
Zk are forced  to  be 2, etc. The ranging is  performed  by 

Az<, i+l  = (xr  + ( k - l ) S G N ( x r ) )  / k  J (31) 

where Ax,,%+l is  the  desired  velocity  for  the upcoming itera- 
tion period,  and SGN is  the  sign  function." This function 
produces  the ranging 

A ~ i , i + l  = 0 X? = 0 ( 3 2 4  

Axi,i+l = j x, f 0 

where j is  the  integer  that  satisfies 

k*Cj- l )  + 1 < z , < k * j  

The k parameter affects speed performance: an  increase in 
k slows  the  rate  of  convergence. This ef fect  is illustrated 
in Figure 7. 

5.5. Behavior  Matching 

This module attempts  to  ascertain  the  effects imposed 
on the  axis  by  the dynamical forces. It estimates  the 
disparity  between  the  drive signal S, at  iteration i and the 
resultant motion. The behavior  matching assumes this 
disparity is linear.' 

Si = a, mi f pi (34) 

where @, is  the  velocity  requested  at  iteration i, pi an 
of fset  and ai a  constant  of  proportionality. 

A first order  approximation for pi is obtained  by assum- 
ing the  offset  is  the  difference  between  the  last  request 

and the  achieved  velocity q 
pi = @ t - l  - q (35) 

The first order  approximation for ai is  gotten  by gen- 
erating  a  performance  index t~~ which  compares the change 
in requested  velocity  to  the  change in actual  velocity 

IC, = ( @ , - I  - ( iz" - p-1) (36) 

and  expanding ami t o  a, + ~ c ~ A @ ~ - ~ , ~  where 
A @ , - l , i  = Gi - @i-I. This procedure maps the change A@i-l , t  
according to  the measured  change  arising  from  previous 
response IC,-~ as  illustrated in  Figure 8. 

To improve this,  a  history of performance  indices IC, are 
kept. A second order  polynomial  is f itted  to  the  three most 
recent values: I C , - ~ ,  I C ~ - ~ ,  and I C ~ .  An estimate of the  future 
value is calcutated. 

A generic quadratic polynomial q = C2t2 + C,t + Co 
passes through points A , E , C  at times t = 0, 0.5, 1 respec- 
tively. This leads to  coefficient  values of 
C, = 2 A  - 48 + 2C, C1 = 6 4  - 3 8  - C, Co = A .  The 
next point D occurs  at t =3/ 2, and  is given by 
D = A - 3 8  + 3C. Using this information, the estimated 
performance  index at  iteration i is 

rok is related to  the  damping factor of the  algorithm 

f7 t t re turnsavalueof  +I,@ DT -1. 
12Alt(lough i t  Is  not, i t  i s  suitable as an approximatlon. 

Employing this in place  of k leads to second  order  behavior 
matching 

[ @ I  P ] i  = +, + < ~ i + l > A @ i - l , ,  (38) 

where [ 1, indicates  that  this is a  velocity  request condi- 
tioned on measured  velocity. The drive signal Si is  deter- 
mined by 

si = [ @ ;  P I ,  + $3, (39) 

6. CONCLUSIONS 

In  this  paper  the  free-space motion concept  has  been 
carefully  explained in a  structured fashion. The individual 
components of this  infrastructure  has  been  clearly  identi- 
fied and their  details  specified. 

A first order control  process,  consisting  of M1 and M4 
only,  has  been  implemented and i ts behavior examined. By 
first order it is  meant that  the  subtleties  of  a  quality solu- 
tion  have  been  treated  lightly. Therefore, there  exists 
ample  room for improving the performance of  this system. 

There  are two parameters in the  adaptive  feedback 
control algorithm that are  used  for tuning.  These are: 1) the 
period 6 t  between  iterations  of  the algorithm, and 2)  the 
convergence control, k ,  of M4.  Experiments  were  per- 
formed  in  which  these  parameters  were  changed; the  effect 
upon  system behavior  was  as expected. Tuning was  found 
to  be  a simple and straightforward  process. For experimen- 
tation  with  a  six-joint,  cylindrical manipulator called  the 
PACS arm (manufactured  by  Bendix Corp.), we  selected  a 
revolute  joint  with  a  rest  position perpendicular to   the plane 
of  the  base (i.e. the link hung vertically). This type  of  axis 
experiences nonlinear gravitational  effects as it rotates. In 
addition, a  stiff spring  was attached from the  end-effector 
to  the base to  exacerbate  the nonlinearities. Tests  were 
made with  a  variety of loads held  by  the grippers. With 
these  different loads the  joint  was  moved  with various 
speeds so that  the Coriolis ef fect  would  have  impact on the 
test  system as well (at  faster motion rates). 

In  the  tests  the  control algorithm brought the  axis  to 
the  desired  position  in  the  requested amount of time. Sys- 
tem  variables  were logged on a  display  device so that 
analysis could be performed. As Figure 9 shows, the  path 
quickly  converged to  linear form. Note that  the low-order 
bits  in  the  velocity  requests  become  significant  as t -f Tc 
because  they  are  inversely proportional to t ,  = Tc-t .  How- 
ever, this is about  the area of  the &-neighborhood, a more 
complete  system  would  enter  another mode before  these 
"nasty behaviors"  manifested. 

Accidentally  dropped loads, which might severely 
impact  a  traditional controller, were  quickly  recovered in the 
adaptive environment. This experiment  was done by 
snatching the load away from the robot  during the motion. 
Also, a  defined motion path was traversed  nearly  identically 
under different load  conditions. 

Although the  tests  we  performed are simple, the 
results, as indicated above,  are quite  favorable.  Further- 
more, the general and  flexible  nature  of our system  struc- 
ture should form a  foundation  for the  intelligent  control  of 
the growing number of various types  of  industrial manipula- 
tors. 
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Figure 2. An Idealized  Discrete-Time  Motion  Model 
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Figure 3. Actual  Functioning of the  Discrete-Time  Motion  Model 
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Figure 5. A  Generic  Velocity  Curve  Used for Mode 3 Control 
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Figure 4. A Generic  Velocity  Profile  Curve 
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Figurc 6. Position  History Used for Velocity  Estimation 
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I Conditioning  on  estimated  velocity  is  done for Mode I motion 
by the Dellavlor  Matching wit11 rz100 nlsee 

Uneanclitioncd  velocity rcquest is gcneratcd  by  DTMM 
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