
A HIERARCHICAL SYSTEM STRUCTURE FOR COORDINATED
CONTROL OF INDUSTRIAL IVIANIPULATORS'

Kana G. Shin and Stuart B. Malin
Department of Electrical and
Computer Engineering
The University of Michigan
Ann Arbor, Michigan 481 09

ABSTRACT

This paper describes a framework for the intelligent
control of industrial manipulators. The structure is designed
to allow a robotic system to take full advantage of the
improved sensing capabilities and more powerful languages
that are now becoming available.

The framework consists of two layers of hierarchy for
the coordinated control of multi-jointed industrial manipula-
tors. The low l e v e l control mechanism, responsible for ser-
voing each joint, is adaptive to both manipulator dynamics
and payload changes. The individual low-level joint controll-
ers are integrated and coordinated by the h i g h l e v e l control
structure. Together, the two levels provide a versatile
basis for manipulator control. This basis forms a complete
structure, and is suited for interfacing with yet higher level
intelligent systems such as task planners, high level
languages, and environment sensitive path planners.

1. INTRODUCTION

An intelligent robot should be capable of performing a
variety of assigned tasks, be aware of its environment, and
be able to effectively respond to unexpected events.
Therefore, it will be able to accommodate for misalignment of
parts in the workspace, perform tasks described in an
abstract manner, and be capable of fine detail work. In
order to have the preceding capabilities, an intelligent robot
will require: visual and/or tactile sensing and interpretation,
goal-seeking task executors, collision avoiding path
planners, and a versatile manipulator control structure.
Though last on the list, the flexible control structure is that
whic'h will enable the others to effectively interface with
the manipulator.

In this paper we present a structured framework for
this flexible control system. It is felt that such control
techniques will enable robotic systems to take full advan-
tage of the improved sensing capabilities and more powerful
task-oriented languages that are now beginning t o emerge.
These two components (Le. sensing and languages) are
placing an unprecedented demand on the control subsystem,
namely, that tne controller be able to react quickly to a
series of changing directives.

These developments have made it necessary to re-
examine the organization of the robot control and computing
structures. It has become quite clear that a hierarchical
organization is needed, at least in defining the logical struc-
ture of the system [BAF79, ShM80, GrS80, McS821. In a
hierarchical system the information available to, and used

' The work reported here was supported in part by the US AFOSR Con-
tract No. F49620-82-C-0089 and by the New YorK State Science and Tech-
nology Foundation Grant No. SSF 8 7-3.

Advanced Automation Division
IBM Corporation
Boca Raton, Florida 33432

by, a particular level is unique to the function performed on
that level. For example, in a high level task-oriented
language, objects are referred to with nouns that represent
the object (e.g. bracket, screw, baseplate), are manipulated
by action verbs (e.g. attach, procure, insert, tighten) with
possible modifiers (e.g. smoothly, quickly), and subject to
constraints (e.g. until finger-tight). This contrasts sharply
with the lower level language where objects are described
by mathematical frames, are manipulated via transforma-
tions, and constraints must be carefully defined and prop-
erly effected. And on ye t a lower logical level, motion is
carried out in an n-dimensional mathematical space for (an
n-jointed robot) specified by joint servo rates, and subject
to the physical forces of moving components.

The control of a manipulator has long been regarded
difficult because of nonlinearity and the joint couplings in
its dynamics. To circumnavigate this difficulty, the manipu-
lator control problem is usually divided into off-line path
planning and on-line path control. Path planning is con-
cerned with the calculation of the timing of joint position
and velocity from a geometric path supplied by a task
planner; this is done normally off-line by minimizing total
traveling time subject to certain constraints (e.g. accelera-
tions [Pau177],CLuL81], or input torques [KiS83]).

The prime task of path control is t o generate the indivi-
dual joint motions needed to move from a place to the
desired destination following a path specified by the path
planner. There are three well-known methods of path con-
trol that are all kinematically oriented. These are "Resolved
Motion Position Control"[Paul77], "Resolved Motion Rate
Control"[Whi69], and "Resolved Motion Acceleration
Control"[LWP80]. See [Luh83] for an excellent survey of
work done thus far in the area of manipulator control.

Note that most conventional works deal with only
specific subproblems of the manipulator control without con-
sidering their integration. Unlike the conventional works, this
paper considers a structured framework for assemblying
these control submodules into a flexible, powerful organic
whole. Consequently, complex mathematics are intentionally
avoided in the sequel. This paper is organized top-down. In
Section 2 the manipulator control system is decomposed
into a hierarchical structure. Section 3 deals with the con-
cepts of both high and low level motions. Sections 4 and 5
discuss the controls of high and low level motions, respec-
tively. The paper concludes with Section 6.

2. HIERARCHY IN THE MANIPULATOR CONTROL SYSTEM

A flexible manipulator control system is organized as a
hierarchical framework. The levels of the hierarchy are
cleanly divided: information processed a t a particular level
is not directly available to other levels of the structure.'

2A concept widely upheld i n structured programming

CH2008-1/84/0000/0609$01.0001984 IEEE
609

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

There are two paths of information flow: u p u ~ a r d and down-
ward Downward moving data represents the flow of com-
mand; a level may issue commands only to the level immedi-
ately below. Upward moving data comprises the flow of
feedback information; the feedback-based control of a level
is closed in the level immediately above. Information is
abstracted as it flows upwards through the hierarchy: more
physically specific information is processed in the lower lev-
els of the hierarchy. Each level filters and transforms the
data it receives producing a more abstract representation
for further upward flow. Figure 1 schematically depicts the
levels and information flows of the hierarchy.

The lowest level is a force cnntro l ler which generates
a drive current for the corresponding joint and receives
feedback regarding the motor torque. Above this is the
v e l o c i t y c o n t r o l level which is responsible for specifying a
desired servo rate and employs tachometric feedback for
velocity stabilization. Both the force (or acceleration) and
velocity controllers are implemented a hardware feedback
system. Above this is a pos i t ion contro l ley; the position
controller generates velocity requests and receives position
feedback information from a shaft angle e n ~ o d e r . ~

The individual joint position controllers are integrated
into an overall structure at the next higher level. It is this
level that the concept of a manipulator emerges from the
separate individual joints. The major task executing at this
level is called the Chasing Point S ' p h ~ r ~ of ~ J U E ~ C E

M ~ t i o n Model (CPSIMM). This model provides the capabili-
ties for coordinated joint control. CPSIMM is organized to
control the position and orientation of the end-effector in
Cartesian space. In addition to this control function,
visual/tactile sensing can be interfaced at this level.

Above this level the hierarchy is flexible to include
other high-level systems which are responsible for intelli-
gence functions of the entire manufacturing cell, e.g. multi-
ple robots. Note that CPSIMM supports a single environmen-
tally sensitive manipulator, whereas the next higher levels
extend this awareness to the full complement of cell dev-
ices. Path planning occurs at the lowest level of the struc-
ture above CPSIMM and the next higher level is usually a
goal-seeking task planner.

3. MOTION CONTROL CONCEPTS

3.1. High Level Concepts

The Chasing Point Sphere of Influence Motion Model
(CPSIMM) is the process which allows for all of the high
level control functions. CPSIMM may be regarded as a
bridge between a higher level path generator and the low
level joint motion controllers. It is responsible for coocdinat-
ing multiple axes to provide uniform end-effector motion and
maps the multiple joint space domains into a single Carte-
sian reference frame.

The capabilities CPSIMM must provide are indicated by
the needs of higher level task systems; the higher level
structure generates m a c r o pm;mitives which are the base
units or steps of an assembly procedure. As such they are
primitives with respect to the higher level, but with respect
to effecting such primitives they entail much coordinated
maneuvering of the lower level motion controllers, and are
therefore pmm in scope. CPSIMM must accept these macro
primitives and produce a series of m i c r o pm;miti,ves that

3Tbe position encoder i s considered to reside (logicaliy) at the posi-
tion controller level, although physically i t i s a component of the lowest iev-
el - the rnanlpulator itself.

are local in scope (i.e. joint specific). The lower levels exe-
cute the micro primitives.

CPSIMM performs motion in a c o n t e x t The context
determines how the motion is to be interpreted and exe-
cuted. The particular nature of the various contexts are
determined by the needs of the higher level functions.
CPSIMM supports three motion contexts: p - e p l ~ ~ ~ ~ ~ d path
c o n t e x t . dynamic chaskny po in t c o n t e x t , and d y n m r ~ i c
p o i n t i n J e c t i o n c o n t e x t (these will be discussed later In
this section).

A. The Chasing Point

The motion contexts all share in common the concept
of a chaszng po in t . The chasing point is a point in the R -
dimensional joint space; i t also describes a desired end-
effector>position (location and orientation).

All of the motion contexts operate by specifying the
chasing point. The low level controllers will drive the end-
effector to be aligned with the chasing point. High level
control of the end-effector is achieved by judicious move-
ment of the chasing point; as the end-effector approaches
alignment with the chasing point, the point is moved accord-
ing to the rules of the current context. As the point is
moved through space, the end-effector is always seeking
the most current target (chasing) point. The result of this
behavior is that the end-effector is tracing out a path in
space -- a path that is influenced by the movement of the
chasing point.

B. The Sphere of fnflucnce

The sphere -n fan f luznce is a sphere whose origin is
the chasing point, and is o f a radius equal to the length of
the end-effector. As the motion context moves the chasing
point through space, it must insure that no known object in
the workspace intersects the volume of the sphere. This
technique is employed as the lowest level of the collision
avoidance mechanism.

I f the curvilinear lines are drawn between chasing point
positions according to the anticipated end-effector path,
the sphere may be moved along this path to provide the
locus of all points passed through. The solid volume so
described will be a curvilinear(i.e. sinuous) cylinder. A
second order collision avoidance is obtained by insuring that
this volume does not contain any known objects, in whole or
in part.

C. Preplanned Path Context

This context is used when the end-effector must be
moved through the workspace according to an a prinri
determined path at a specified speed. Traditional teach-
based playback systems operate in a context similar to this.

Paths in this context are composed of a finite set of
distinguishable individual path segments. These segments
are contiguous and connected, although the derivative is,
more often than not, discontinuous. The motion starts and
stops at e n d p o i n t s . The intersection of two path seg-
ments is an i n t e r m e d i a t e p o i n t . The velocity along each
path segment is independently specifiable. The ability to
provide constant velocity paths in the Cartesian domain is
made possible by the independence of segment velocities.

The path between two points is not necessarily a
Cartesian straight line; it is determined by the particular

610

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

physical construction of the manip~lator.~ However, even
this curve cannot be assumed to be the actual path that will
be followed. A t each intermediate point the joint velocities
must change to properly perform the next segment, thus
requiring acceleration. If the motion is to be smooth, the
position, velocity, and acceleration must all be continuous
functions of time. Thus, a smooth acceleration must be per-
formed at each intermediate point.

We define a region of space around each intermediate
point, called an c-neighborhood. All path segment transi-
tions will occur inside o f this neighborhood. When the end-
effector enters the neighborhood, the joints are
accelerated to the velocities needed for the next path seg-
ment. The size of the neighborhood, E , is determined by the
maximum amount of time that may be needed to smoothly
accelerate from one velocity to the next.

The complete motion path is accomplished by targeting
the next point in the sequence. The current target is used
to define the chasing point. When the end-effector enters
the chasing point centered c-neighborhood, the next inter-
mediate point is used to describe the new position of the
chasing point, and the joint controllers are instructed to
accelerate to the velocity required for the new path seg-
ment.

D. Dynamic Chasing Point Context

This context allows a path to be determined in real-
time. The paths are usually determined with the aid of
environmental feedback such as vision, sonar, proximity or
touch sensing. This can also be used for teaching/creating
a preplanned path; a joystick control can be used to move
the chasing point. The end-effector will always move
towards the chasing point -- when the end-effector
reaches the point, its motion is stopped.

When the speed of motion is high, the motion in this
context is not as predictable as the motion produced by the
preplanned path context because the manipulator may pos-
sibly be undergoing continually changing acceleration. When
the chasing point is moving slowly, and the manipulator is
moving a t a low speed, fine control of the path is possible.

E. Dynamic Point In ject ion Context

I f a preplanned path is being traversed and an unex-
pected object is detected within the projected sphere of
influence, then an additional set of intermediate points may
be injected into the existing path stream. This is accom-
plished by temporarily suspending the preplanned path con-
tex t and entering the dynamic point injection context.
Injected points are calculated one at a time. This context
must circumnavigate the object and bring the end-effector
back to the preplanned path. The mechanism associated
with this context then instructs the preplanned path con-
tex t t o advance its index into the path segment table so
that it may resume path traversal with correct information
about the next segment to execute.

3.2. Low Level Concepts

The low level control of motion is performed with
respect to the multiple axes of the manipulator. A t this low
level the concept of a manipulator does not exist; low level
control is responsible for servoing a single axis in its joint
space. The axes are treated individually and are

4For cylindric* mmipulators, the segments are xcs of Archimedean
spirals.

independent at this level. Dynamical ef fects impacting an
axis are compensated for by an adaptive feedback control
algorithm which will be briefly discussed later in Section 5
(see [ShMsl] for detail). A joint (position) controller
employs the algorithm to adaptively servo the axis accord-
ing to a variety of contexts called m o d e s . There are four
major modes of motion details of which are described below.
The particular mode in ef fect is chosen by either CPSIMM or
the current mode. CPSfMlW selects modes in an effort to
coordinate the multiple axes. An active mode may cause
another mode to take control when either unexpected or
specific anticipated events occur.

For i ts implementation on digital computers, joint control
is performed in discrete time intervals. A real-time clock
periodically interrupts the joint controller to invoke execu-
tion of the low-level motion control software. When the
software is invoked it schedules the current motion mode
controller for execution. The mode controllers perform their
particular function with the aid of several fixed function
modules, some of which are described in Section 5.

A. Mode 1 Motion

Mode 1 (M1) motion will servo the joint from i ts current
position in joint space to a desired target coordinate , P d ,
subject to the constraint that the target coordinate will be
achieved in a specified amount of time, Tc, called the t ime
t o canverge. When the axis achieves the target coordi-
nate, it may have a nonzero velocity and/or a nonzero
acceleration. Mode 1 motion is further characterized by an
epsilon multiplier(EPS). In this mode a neighborhood is
defined about P,. The minimum size of the neighborhood, E , ,
is the maximal distance required to stop the axis (i.e. when
moving at maximum speed). The size of the neighborhood, E ,

is actually expanded by E = E , * ZEPs. The expansion
allows a limited precision EPS to select a large range of B-
neighborhood sizes.

A Mode 1 motion is completely specified by supplying it
with the values of P,, T c , and EPS. Only EPS need not be
explicitly defined; it has a default value of zero.

When Mode 1 is invoked the joint controller must be
informed of the high level intent: stop when the target coor-
dinate is achieved (i.e. CPSIMM is targeting a terminus), or
motion is to be continued (i.e. CPSIMM is passing through an
intermediate point).

€3. Mode 2 Motion

Mode 2 is used to link one M l motion to another. When
Mode 2 is invoked the joint is driven from its current velo-
ci ty t o a requested velocity. The time required to do this
can be of two forms: (i) the acceleration is performed in
minimum time, that is, the maximally allowed joint accelera-
tion will be used, or (ii) the joint is accelerated in a f ixed
amount of time. The f ixed value must be greater than or
equal to the smallest time that any acceleration may
require.

The desired acceleration is determined by generating a
polynomial description of velocity curve (see Section 5.2 for
detail). This curve, and its derivative, will not have any
discontinuities (Le. both the velocity and the acceleration
are smooth to prevent any jerky motion), and the derivative
will never exceed the rated capacity of the joint.

Mode 2 does not monitor the actual behavior of the
servo; it does not compensate for discrepancies between
requested velocities and actual joint velocities. When the
time for the transition expires, the Mode 2 controller will
issue an interrupt to signify completion, and will continue to

61 1

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

request the velocity at the desired target velocity.

C . Mode 3 Motion

The Mode 3 controller will servo the joint t o a halt from
its current velocity. Mode 3 has two submodes designated
by M3a and M3b. The former is used when passing near an
intermediate point of a CPSIMM path segment, whereas the
latter is used when targeting terminal points; M3a does not
require the end-effector to stop exactly at the (intermedi-
ate) target whereas M3b does.

In M3a the controller will bring the axis to a stopped
state in the vicinity of the target point. When the axis is
stopped, an interrupt is generated to indicate this, and a
modified variant of the Mode 4 controller (called M4M) is
invokod t o maintain the axis at its current resting position.

In M3b the controller will terminate the mode when a
certain small velocity, v s , is achieved. When this occurs
Mode 4 is initiated t o maintain position at the final target
point. In the event that the current axis position is not the
target point, the smallness of 'us allows M4 to bring the axis
to the target point without overshoot. The completion inter-
rupt is not generated.

D. Mode 4 Motion

The Mode U controller will maintain the axis at a partic-
ular position. The mode operates by comparing P, to P,,
generating an error vector, and maps this error vector into a
velocity request.

Mode 4 may be invoked in two ways. In the first, the
controller will bring the axis to the target point from wher-
ever it currently is. Because M 4 makes no attempt to insure
the smoothness of the acceleration, it should not be relied
upon for gross servoing of an axis. The modified procedure,
M4M, will set the target point equal to the value of the
current coordinate at the time M4M is invoked. This pro-
cedure, used t o keep the axis at its current position, should
only be used when the velocity is small.

The Mode 4 controller can be instructed to generate an
interrupt when the target coordinate is first achieved. For
M4M the first instance of this [when first invoked) is not
considered an achievement of this requirement -- it will gen-
erate an interrupt at the f i rst occurrence of Pa=Pd a f t e r
the mode is initiated.

A special variant of Mode 4 called M4D (Dynamic) is
available for use when the high level processes are dynami-
cally moving the end-effector through space. In M4D the
convergence of the approach t o the terminus can be speci-
fied. MUD will generate an interrupt when the axis first
enters the E-neighborhood, but it will not interrupt when
Pa =P,.

4. HIGH LEVEL MOTION CONTROL

The motion control concepts as developed in the previ-
ous section are designed to support each other in such a
way that the versatility and capabilities of the manipulator
control system are maximized. The high degree of mutual
interaction presents some difficulties when attempting to
separately describe the functions of the high and low level
control system. Some details are clearly separable though.

The details that are specific to the high level motion
controller (CPSIMM) are those that relate t o the appearance
of end-effector paths. The details that concern the low
level solely are those that involve a single axis only.

The constituent components of CPSIMM are those that
support the motion control contexts. These contexts
schedule the individual axis controllers to perform various
low level control modes. The arrangement of low level
modes in a time-sequenced pattern allows a high level
motion pattern to appear.

Similarly, the low level controller organizes the avail-
able modules into a structure which will actualize the
desired modal motion. This system is self-organizing, that is,
it is capable of structuring the data flow paths between its
constituent modules.

The high level concept of motion is divided into two
styles: planned paths and dynamic paths. Although these
two are quite different in temperament, they are very similar
in that they achieve motion control with the same repertoire
of avaiiable low level motion modes.

Planned paths are defined by a set of points which
roughly describe the path. These paths may be examined
from two viewpoints: descr ip t ion and actual i za t ion . The
description will require the development of the notion of a
s imu l taneous ly convergen t path in joint space. The actu-
alization viewpoint centers on the development of descrip
tor n o d e s ; these nodes are information packets describing
the path segments.

Dynamic paths are constructed according to environ-
mental and other external dictates. Dynamic paths are far
more subtle than planned paths; effective execution of a
dynamic path is predicated on the availability of s i d e i n j u r -
m a t i o n , information which is deducible from the nature of
the task. This side information will imply an approach to
configuring the low level modes.

4.1. Preplanned Paths

A. Path Descript ion

A path begins a t a s t a r t i n g p o i n t . moves through a
series of i n t e r m e d i a t e p o i n t s , and concludes at a t e r -
m i n u s . The motion is initiated by targeting the first inter-
mediate point. The data concerning a path segment is con-
tained in a descriptor node associated with the intermediate
point. When the segment is completed, the next segment's
node is accessed to provide the data needed to continue
the motion. Motion does not stop at each intermediate
point; motion halts only at the terminus.

A node contains several sets of data: a set is required
for each axis involved with the motion. Each set contains a
desired target coordinate, P,, and epsilon multiplier (EPS),
and a time to converge, Tc.

These parameters are derived from two vectors asso-
ciated with each point. The first, P, identifies the position
of the robot's wrist in Cartesian (robot) space. The, second
vector, 0, describes the orientation of the end-effector at
that point. In coordinating motion the two sets of degrees-
of-freedom comprising P and 0 are treated independently.
Orientation may be controlled along each path segment (as
is required when the orientation must be held constant in
Cartesian space), it may be controlled independently of, but
simultaneously with, the position control of the path so that
the desired orientation is achieved when the terminus is
reached, or it may be brought into alignment after the final
position is achieved.

Intransit orientation is not performed in the following
treatise, its development is a logical extension of the model
described.

612

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

Assume that the current position of the hand in robot
space is (X i , &,&) corresponding to some joint coordinate
([l,?98,<i), and the position of the current target point is
(X,, Y, ,Z,) corresponding t o some joint coordinate
([, ,df ,<,). Each axis must change its joint space position
by an amount that is the difference between the target
coordinate value and the current value: namely

maximum allowed velocity for each axis is known (i.e.
A[= [f - ti, Air = bf - bi, A< = <, - <&. Since the

% P , , zi,yax, vp:"), then the minimum possible time for each
axls is to reach Its destination is, in degenerate form for we
are neglecting acceleration as a f irst order approximation:

In order t o account for acceleration, another approxi-
mation will be made. Because CPSIMM does not know the
current axis velocities, a worst case approximation will be
made to insure that the second order time approximations
will be large enough to always allow the segment motion to
accommodate any required velocity changes. The maximum
allowed accelerations are also predefined:
atmax, u y , apex. Assume that the current velocity is the
largest negative velocity possible, and that the.next path
segment will require the largest positive velocity allowed.
The total velocity change is twice the allowed maximum
~ e l o c i t y . ~ The acceleration time required t o produce such a
velocity change is:

tc = A [/ v Y ~ ' , t , = A19/vPax, t < = A</IJ?.

The second order minimal time approximation is found by
adding this acceleration time to the f i rst order transit time

The second order approximation is required when the
segment transit times are small compared to the minimum
acceleration time of Eq. (1). When either (i) intermediate
points are close together or (ii) the velocity changes
between segments is not large, then a third order approxi-
mation can be used.

The third order approximation determines the accelera-
tion time required between path segments. The velocity of
the path segments is approximated by using the first order
time approximations. Let tJ(i- l) be the f irst order time
approximation for the current ,path segment i - l of axis j ,
and t j (i) be the f irst order approximation for the upcoming
path segment i. The average velocity along path segment i
for axis j is found by dividing the joint path length, A j (i) ,
by the f irst order approximation

Z J J (~) = A j (i) / t j (i)

The velocity change required between two adjacent path
segments i - i and i is

and the minimum time required is

Thus the optimal time to be allotted for traversing segment i
for axis j is

t f (i) = t j t t
ai

Whether first, second, or third order transit times are
computed depends upon the nature of the motion in the con-
text. The techniques converge at this point for further

5We are here assuming that the maximal positive and negative veioci-
tles are of the same magnitude.

calculation. Let t,'be the time value calculated for the axis
j . The minimum time required for all axes to reach their
respective target coordinates represents the time required
for a simultaneously convergent motion, and is therefore
used as the time parameter of the motion:

Tc-max t i (7)

This T , parameter must be common to all axes involved in a
motion segment. However, the freedom to specify Tc
independently for each axis allows for both dynamic path
control and for the independent position and orientation
control in a planned path. To perform a path where the
orientation converges a t the terminus, the positional path is
first calculated. These segments will involve only the body
group axes6 ; Tc is common for these axes. The total time
of the motion is the sum of the segment time-to-converge
values. This value can then be used as the time-to-
converge parameter for the hand group motion (which is a
single segment).

Lastly, the epsilon multiplier (EPS) must be specified.
This multiplier controls the tolerance or accuracy to which
the path actually passes through the intermediate point. An
EPS value of zero requires the manipulator t o pass close to
the intermediate point. Larger values of EPS lessen the
required 'closeness.'

€3. Actualization

j

To execute the path, the Pre-Planned Path Context
(PPP-C) controller first employs Mode 2 to bring the axis up
t o speed. Mode 2 interrupts to indicate that the axis is
close to the desired speed. When all the axes have so
interrupted, PPP-C invokes Mode 1. The P,, T,, and EPS
parameters of the next target node are sent to the axis
controllers, and Mode 1 is initiated. PPP-C then prepares
the next parameter packet and transmits these to t he com-
munication buffer area. This is one of the advantages if
multiple processors are used: several independent but
related sets of calculations are being performed simultane-
ously. The communications between these processes are
woven between the control functions.

Each low level controller brings its axis towards its tar-
get coordinate. When an axis enters its &-neighborhood, it
slows down as it completes its targeting of an intermediate
point. it also informs CPSIMM that the &-neighborhood has
been entered. PPP-C waits for all of the axes involved in
the path segment to enter their e-neighborhood; when this
condition is met CPSIMM is assured of two facts: (i) that
the end-effector is sufficiently close to t he intermediate
point, and (ii) that all axes are resynchronized in space for
continued coordinated control. CPSIMM then instructs the
controllers to accelerate the axis to the velocity required
for the next path segment using Mode 2 (the data is
already in the communication buffer area). When up to
speed, Mode 1 is reinvoked using this data.

The cycle is repeated until the data for the terminus is
loaded into the communication buffer area. Normally the
axes are slowing down to target the terminus and the con-
troller is bringing the velocity to zero using M3b. However,
when the terminus is the current node, the controllers are
instructed to use M3a instead. This will automatically
invoke M4 when the controller slows the axis sufficiently.
When M4 brings the axis to a stop on the terminus, it inter-
rupts CPSIMM. When all the interrupts are received, PPP-C
has completed the pre-planned path.

6The body group provides position freedom. The hand group provides
orientation freedom.

613

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

4.2. Dynamic Path Modification

The details of the techniques that properly execute
the Dynamic Point Injection Context (DPI-C) are not con-
tained within the scope of this paper; but insight into the
need for this capabitity has led to i ts inclusion here.

Two techniques predominate for the dynamic inclusion
of points extraneous to a pre-planned path. In the first, the
axis is servoed as quickly as is possible towards a target
point; the path is not determined. In the second technique,
the injected point determines a path.

The first technique is used to avoid a collision with an
obstacle: an intermediate target point in space is deter-
mined that is both far from the interfering object and that
does not significantly deviate from the current, pre-planned
path. In this way the controller need not fight the axis iner-
tia, it must only redirect the path.

The second technique is used once the end-effector is
near the dynamically injected point. A high level dynamic
path planner generates a new pre-planned path that merges
with the old path, avoiding the obstacle. This dynamic path
can be calculated on the fly, and is controlled by the tenets
of the PPP-C context.

4.3, Dynamically Created Paths

The Dynamic Chasing Point Context (DCP-C) allows the
manipulators to be servoed in real-time according to
environmentally determined information. In this context, the
axes are servoed using a variant of the low level M4D con-
troller.

Although dynamically determined path control is
extremely difficult and is also beyond the scope of this
work, the general concept is as follows: in M4D the con-
troller brings the axis to the target point with a moderate
velocity. The diminution of employed velocity is specified to
M4D by the setting of a parameter? Unlike the normal M4
operation, an &-neighborhood is employed. When the end-
effector enters the E sphere about the current chasing
point target, the point is moved. The low level controllers,
always executing M4D, will cause the end-effector to
always chase after the point.

5. LOW LEVEL CONTROL

Low level control entails servoing the axis in the joint
domain. From this perspective there is no concept of a
manipulator, only a single highly nonlinear servo positioning
system. The dynamical effects manifest at this level, and
must be handled appropriately. Motion control is performed
by scheduling a variety of modular components into confi-
guration suitable for effecting the modal motion called for by
CPSIMM. Each motion mode is performed by configuring a
number of fixed function modules into a particular arrange-
ment. These modules are now discussed.

5.1. Discrete Time Motion Model (DTMM)

The OTMM is an interrupt driven software process that
generates velocity requests for a single joint. The DTMM
goal is t o bring the joint to the desired target coordinate in
a specified amount of time -- the time t o converge, T,.

wltl be discussed in Section 5.
'This parameter, k, affects the damping of the control algorithm and

Figure 2 shows a trajectory for an axis at some posi-
tion x. at time zero, terminating at the target coordinate at
time Tc. The horizontal time axis has been subdivided into n
elements of width 6 t , where 6 t is the iteration period of the
interrupting real-time clock; namely, n = T c / 6 t . The aver-
age amount of motion required per iteration is:

if the controller can cause this movement t o take place,
then the axis will achieve the target coordinate in exactly
the required amount of time, Tc. However, due to the non-
linearities of the dynamical effects, the trajectory of Figure
2 is not realizable.

If we let the DTMM calculate anew the trajectory of
Figure 2 at each iteration period, it will generate a sequence
of velocity requests AX^,^+, where i ranges from 0 to n -1.
That is, at each interrupt a new velocity request will be cal-
culated based upon the remaining distance and time to
travel.

In Figure 3 we illustrate a plausible response to the ini-
tial velocity request calculated by (8). A t the next inter-
rupt a new linear path is constructed, the slope of which is
the desired velocity. A t time i the distance remaining to be
transited is z, = Pd - P,, and the time remaining is
t , = ?t - i. The velocity request for this iteration is:

n

h i , i + l = X r 1 t , (9)

Combining the above relationships yields:

h t . a + l = (P d - Pa)/ (n-i) (1 0)

Eq. (I O) can be used at each interrupt to generate the
velocity request. One effect of this technique is a velocity
creep that accrues until the axis attains its average
operating velocity. The terminal velocity that is reached is:

vt = lim AX^,^+ (1 1)
i W - 1

Because of this velocity creep, an axis should never be
requested to move at i ts maximum allowed velocity (doing
so will invalidate the guarantee of a simultaneously conver-
gent motion path).

5.2. Generation of Velocity Profile

The velocity profile used by the Mode 2 controller is
determined by a polynomial function describing smooth tran-
sitions from a given initial state to a specified desired
state. Since the polynomial function represents a velocity
profile in the time domain, its derivative represents
acceleration. In general, a third order polynomial is suffi-
cient for smooth transitions. The polynomial can then be
specified by four boundary conditions: the initial and final
values of both the polynomial and its derivative.

Since we are concerned with one complete move, the
initial and final acceleration are assumed to be zero. A gen-
eric velocity profile generated is illustrated in Figure 4. The
general form of an equation describing such a curve is

v = C,t3 + Czt2 f C,t + Co (1 2)

where C, i=O,1 ,2 ,3 are constants to be determined. The
derivative of (12) is the acceleration curve, and is
represented by

A = BC3t" + 2Czt + C, (1 3)

614

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

A t the start of a blend (t = O), the velocity is vl, and the
acceleration is assumed to be zero. This provides two
boundary conditions VI t = O = V , , A I ~ = o = 0. A t the end of
the blend (t = I), the velocity should be the specified velo-
ci ty V, and the acceleration should be zero. This yields two

From these boundary conditions one can obtain coefficients:
additional boundary conditions: V] t = , = V,, A I t z l = 0.

The polynomial must be mapped to real time. To do this,

co = V , , c, = 0, c, = 3(V, - X), c3 = 4 (V f - K).
(1 2) can be written as

v = c343 + c& c C,[+ co (1 4)

where .$ = t / T and T represents the real time of the motion.
The value of T is found by insuring that the maximum
acceleration is not required to exceed the rated maximal
acceleration for the axis (e.g. AimaX for the j -th joint). The
acceleration is

A [3C3CZ + 2Cz4 + Cl] / 7 (1 5)

The maximum acceleration occurs when the derivate of this
is zero. This occurs when t =0 .5 , that is, t = ~ / 2 . The
maximum acceleration is:

Am,, = A Ic=L - - [3C3/ 4 + Cz] / T = 3(Vf - X)/ 27 (1 6)
2

To find a time T for joint j such that the profile will always
require the maximally allowed acceleration (without ever
exceeding it), solve for T when A,, = Ajmax

7 = 3(v, - vl,)/ 2Ajmax (1 7)

The largest time that will ever be required for joint j occurs
when the initial and final velocities are opposite in sign, and
are the largest permissible velocities magnitude-wise, that
is, a complete velocity turnaround

T,, = 3 Ajmax (1 8)

For the Mode 3b controller we need also smooth transi-
tions from an initial velocity to zero velocity such that a
specific distance is traversed. This can be achieved simi-
larly to the above using a polynomial of the same form as
(12). Because the desired velocity (V,) is zero, the coeffi-
cients of (12) are: Co = 4, C, = 0, C, = - 3 4 ,
C, = 2K. Substituting these into (12) yields the polynomial

v = 2qt3 - 3 5 t 2 + 3 (1 9)

The time required for the transition can be foundg

T = 3V, / ZA,, (23)

Minimum time occurs when maximally allowed acceleration is
used T,~,, = 3& / and the upper bound is found
when the axis is at the maximum velocity:
-rminrnau = 35,'' / 2AjmaX. The minimum size c-neighborhood
is found from this by E, =0.5V, T~~~ max = 3[i$jmaxjZ / 4Ajmax.
Also one can obtain the distance required in stopping the
axis:

s = 3V,' / ZA,, (24)

This implies that for < the distance traversed in
stopping the axis, s , is always less than E,.

5.3. Velocity Estimation

We need to estimate the current axis velocity from a
position history. The position of the axis is determined a t
each real-time clock tick interrupt. The current and last 1
values are saved. The current velocity is determined as a
function of these I f 1 values. Because the axis velocity is
always changing, it is not necessary for 1 to be large, in
fact, a large I would infuse the velocity estimate with inap-
propriate data; the velocity estimator is a short-term
memory function.

Figure 6 illustrates a position history with 1=2. Let x
denote the joint coordinate and i be the current time (clock
t ick number). The change in position between two consecu-
t ive known positions is

Axi-1.i = X< - ~ i - 1 (25)

The velocity at time i -1 is approximated by

<I$-,> = (Z i - Xi-,)/ 2 (28)

and is mapped into real time as

v = K [z (t / T) ' - 3(t /T) ' 11

where the angle brackets indicate an estimate. Substitut-
ing (28) into (27)

(20) < q > = 2(sa - 2i-1) - (Xi - Zi-,)/ 2

The polynomial generates a curve of the form as shown in which is simplified to
Figure 5. Because of the curves symmetry, the distance
traversed is8 s = V,T/ 2. It is desired that this distance be
the size of the &-neighborhood, thus E = vl,~/ 2 from which
the time of motion is found T = 2 ~ / V,. The acceleration is
given by the derivative of (20): 5.4. Discrete Error Corrector

< V , > = ~ X ~ / Z - Z X ~ _ , - X ~ - Z / ~ (30)

A = 6 [6 (t / T) ' - 6 (t / T)] / ~ (21)
The discrete error corrector moves the axis with a

velocity that is proportional to the the distance remaining
(Le. the error). The distance remaining a t some interrupt-

propensity for overshoot, and to provide a mechanism for

The maximum acceleration occurs at t = T / 2, and is

Amaz = -3K / 2 7 (22) invoked iteration is xr = Pd -Pa. In order to reduce the

87his may be demonstrated by integrating (20). tlon.
gRecali thaf time is positive for either positive or negativs acceiera-

615

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

controlling the rate of convergence, the velocity selection is
quantized. An integer valued parameter, k, specifies the
quantization." All velocity requests in the range of 1 to k
are mapped to 1. All velocity request in the range k + 1 to
Zk are forced to be 2, etc. The ranging is performed by

Az<, i+l = (xr + (k - l) S G N (x r)) / k J (31)

where Ax,,%+l is the desired velocity for the upcoming itera-
tion period, and SGN is the sign function." This function
produces the ranging

A ~ i , i + l = 0 X? = 0 (3 2 4

Axi,i+l = j x, f 0

where j is the integer that satisfies

k*Cj- l) + 1 < z , < k * j

The k parameter affects speed performance: an increase in
k slows the rate of convergence. This ef fect is illustrated
in Figure 7.

5.5. Behavior Matching

This module attempts to ascertain the effects imposed
on the axis by the dynamical forces. It estimates the
disparity between the drive signal S, at iteration i and the
resultant motion. The behavior matching assumes this
disparity is linear.'

Si = a, mi f pi (34)

where @, is the velocity requested at iteration i, pi an
of fset and ai a constant of proportionality.

A first order approximation for pi is obtained by assum-
ing the offset is the difference between the last request

and the achieved velocity q
pi = @ t - l - q (35)

The first order approximation for ai is gotten by gen-
erating a performance index t~~ which compares the change
in requested velocity to the change in actual velocity

IC, = (@ , - I - (iz" - p-1) (36)

and expanding ami t o a, + ~ c ~ A @ ~ - ~ , ~ where
A @ , - l , i = Gi - @i-I. This procedure maps the change A@i-l , t
according to the measured change arising from previous
response IC,-~ as illustrated in Figure 8.

To improve this, a history of performance indices IC, are
kept. A second order polynomial is f itted to the three most
recent values: I C , - ~ , I C ~ - ~ , and I C ~ . An estimate of the future
value is calcutated.

A generic quadratic polynomial q = C2t2 + C,t + Co
passes through points A , E , C at times t = 0, 0.5, 1 respec-
tively. This leads to coefficient values of
C, = 2 A - 48 + 2C, C1 = 6 4 - 3 8 - C, Co = A . The
next point D occurs at t =3/ 2, and is given by
D = A - 3 8 + 3C. Using this information, the estimated
performance index at iteration i is

rok is related to the damping factor of the algorithm

f7 t t re turnsavalueof +I,@ DT -1.
12Alt(lough i t Is not, i t i s suitable as an approximatlon.

Employing this in place of k leads to second order behavior
matching

[@ I P] i = +, + < ~ i + l > A @ i - l , , (38)

where [1, indicates that this is a velocity request condi-
tioned on measured velocity. The drive signal Si is deter-
mined by

si = [@ ; P I , + $3, (39)

6. CONCLUSIONS

In this paper the free-space motion concept has been
carefully explained in a structured fashion. The individual
components of this infrastructure has been clearly identi-
fied and their details specified.

A first order control process, consisting of M1 and M4
only, has been implemented and i ts behavior examined. By
first order it is meant that the subtleties of a quality solu-
tion have been treated lightly. Therefore, there exists
ample room for improving the performance of this system.

There are two parameters in the adaptive feedback
control algorithm that are used for tuning. These are: 1) the
period 6 t between iterations of the algorithm, and 2) the
convergence control, k , of M4. Experiments were per-
formed in which these parameters were changed; the effect
upon system behavior was as expected. Tuning was found
to be a simple and straightforward process. For experimen-
tation with a six-joint, cylindrical manipulator called the
PACS arm (manufactured by Bendix Corp.), we selected a
revolute joint with a rest position perpendicular to the plane
of the base (i.e. the link hung vertically). This type of axis
experiences nonlinear gravitational effects as it rotates. In
addition, a stiff spring was attached from the end-effector
to the base to exacerbate the nonlinearities. Tests were
made with a variety of loads held by the grippers. With
these different loads the joint was moved with various
speeds so that the Coriolis ef fect would have impact on the
test system as well (at faster motion rates).

In the tests the control algorithm brought the axis to
the desired position in the requested amount of time. Sys-
tem variables were logged on a display device so that
analysis could be performed. As Figure 9 shows, the path
quickly converged to linear form. Note that the low-order
bits in the velocity requests become significant as t -f Tc
because they are inversely proportional to t , = Tc-t . How-
ever, this is about the area of the &-neighborhood, a more
complete system would enter another mode before these
"nasty behaviors" manifested.

Accidentally dropped loads, which might severely
impact a traditional controller, were quickly recovered in the
adaptive environment. This experiment was done by
snatching the load away from the robot during the motion.
Also, a defined motion path was traversed nearly identically
under different load conditions.

Although the tests we performed are simple, the
results, as indicated above, are quite favorable. Further-
more, the general and flexible nature of our system struc-
ture should form a foundation for the intelligent control of
the growing number of various types of industrial manipula-
tors.

616

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[BAF79] A. J. Barbera, J. S. Albus, and M. L. Fitzgerald,

"Hierarchical control of robots using minicomput-
ers", Proc . 9th I n t ' l . S y m p . o n Indus tr ia l
R o b o t s , Washington, D. C., pp. 449-461, March
1979.

[GrS80] D. Graupe and G. N. Saridis, "Principles of intelli-
gent controls for robotics, prosthetics and orthot-
ics", R o c . N S F Workshop o n t h e R e s e a r c h
N e e d e d t o A d v a n c e t h e S t a t e of Knowledge in
Robotics, Newport, RI , April 1980.

[LWP80] J. Y. S. Luh, M. W. Walker, and R. Paul, "Resolved-
acceleration control of mechanical manipulators",
IEEE Trans. Automati .c Control , vol. AC-25, no.
3, pp. 468-474, June 1980.

[LuL81] J. Y. S . Luh and C. S. Lin, "Optimum path planning
for mechanical manipulators", Trans . ASME J .
m n a m i c S y s t . , M e a s . , C o n t r . , vol. 102, pp.
142-1 51, June 1981.

[Luh83] J. Y. S . Luh, "An anatomy of industrial robots and
their controls", I E E E Trans. Automatic Control ,
vol. AC-28, no. 2, pp. 133-1 53, February 1983.

[Paul771 R. Paul, "The mathematics of computer controlled
manipulator", h o c . Joint Automatic Control
Conference , vol. 1, pp. 124-1 31, 1977.

[Whi69] D. E. Whitney, "Resolved motion rate control of
manipulators and human prosthesis", IEEE Trans
.Man-.Machine S y s t e m s , vol. MMS-IO, no. 2, pp.
47-53, June 1969.

[ShM80] K. G. Shin and S. 6. Malin, "A hierarchically distri-
buted robot control system", R o c . COMPSAC'80,
pp. 81 4-820, October 1980.

[ShM81] K. G. Shin and S. 6. Malin, "Dynamic adaptation of
robot control to its actual behavior", R o c . 1981
IEEE Con f . a n Cybernet ics and Society, Atlanta,
GA, October 198 1.

[McS82] N. D. McKay and I<. G. Shin, "A microprocessor-
based robot control system with a two-level
hierarchy", Proc. 20th l n t l Symp. o n Mini a n d
Micro Computers and The ir Appl ica t ions , Cam-
bridge, MA, July 1982.

[KiS83] €3. K. Kim and K. G. Shin, "Minimum-time path plan-
ning for robot arms with their dynamics included",
submitted for publication.

Language

Vision Planning
Action

other sensors Control

I I

\ 0

Figurc i . nicrorchical Structure of a Robot Control System

z
0 E
i; a

T

DISCRETE TIME i

Figure 2. An Idealized Discrete-Time Motion Model

617

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

DISCRETE TIME i

Figure 3. Actual Functioning of the Discrete-Time Motion Model

TIME

Figure 5. A Generic Velocity Curve Used for Mode 3 Control

0 0.5 1

TIME (t / r)

Figure 4. A Generic Velocity Profile Curve

DISCRETE TIME

Figurc 6. Position History Used for Velocity Estimation

618

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

T
I Desired Tntgct Coordinate P,

I Conditioning on estimated velocity is done for Mode I motion
by the Dellavlor Matching wit11 rz100 nlsee

Uneanclitioncd velocity rcquest is gcneratcd by DTMM

619

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:19:30 UTC from IEEE Xplore. Restrictions apply.

