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ABSTRACT

In this paper, we have developed a method for
minimum-time path planning in joint space subject to realistic
constraints. This method differs from others in that: 0i) an

absolute path deviation at each corner point of the path
can be specified, (ii) local upper bounds on jint accelera-
tions are derived from the arm dynamics so as to nearly
fully utilize robot's capabilities, and (iii) a set of Local optim-
ization problems--one at every local corner point--are
employed to replace the global minimum-time problem, thus
making the minimum-time path planning problem simpler.

As a demonstrative example, we have applied the
method to the path planning of the first three joints of the
Unimation PUMA 600 series manipulator. The example has
indeed shown significant improvements in the total traveling
time in addition to the computational simplicity obtained from
the decomposition of the global problem into a set of local
problems.

INTRODUCTION
Industrial robots, more specifically industrial manipula-

tors, have been regarded as one of the primary devices to be
used for automated manufacturing due to their potential
capabilities of material handling and assembly with speed,
precision, and flexibility. The optimal control of manipulators
is thus a key to the success of automated manufacturing.
Htwever, the optimal control of manipulators is known to be a
very difficutt problem due to (i) theirOnonlinear and coupled
dynamics, (ii) physical constraints such as limits on the
angular velocity and on the torque/force for each joint
actuator[1]3 and (iMi) possible collision with other objects in

the workspace. The development of the optimal control of
manipulators has been significantly hampered by these diffi-
culties, and, therefore, there are only a few known attempts
made, leading to suboptimal control solutions with perfor-
mance indices of linear quadratic functional[2], minimum-
time[3], and weighted time-fuel[4].

An alternative approach to the manipulator control prob-
lem is using a two-stage optimization, namely off-line path
planninag followed by on-Line path tracking. Depending
upon the system objective, both the path-planning and the
path-tracking problems have to be solved by optimizing suit-
able criteria subject to the associated manipulator dynamics.
In general, path tracking takes manipulator dynamics into
consideration [5,6], whereas path planning does not, even
though it calculates the timing of joint positions and veloci-
ties which are closely related to manipulator dynamics. Thjs

fact may be justified in view of the difficulty in obtaining
path solutions, but the resulting timing of positions and velo-
cities may force the robot to be under-utilized, e.g. the robot
may be driven slower than necessary (see [14] for a
detailed discussion on this).

Usually, the desired path is specified by a set of
straight line segments connecting the comer points in Carte-
sian space, where each comer point represents position and
orientation of the end-effector,2 and the constraints are
given on the torque/force and angular velocity of each joint.
Note that these corner points are determined by a task
planner, considering both the application task at hand and
the avoidance of collision with other objects in the
workspace. Thus, one must either convert the Cartesian
path to joint paths and then solve the path planning problem
in joint space, or convert the joint force/torque bounds to
the Cartesian ones and then solve the Cartesian path plan-
ning problem[1 2].

An on-line Cartesian path tracking scheme was pro-
posed by Paul[7] but requires too much computation to
implement in real-time. The minimum-time path planning prob-
lem was investigated by Luh and Linj[8], where they derived
a method for obtaining a time history of positions2 and velo-
cities along the path with a minimum traveling time under the
constraints of Cartesian limits on velocities and accelera-
tions. In the Cartesian space path planning, the motion on
the trajectory segment is well defined in the context of
application, but its computational demand is high due to the
required transformation of Cartesian coordinate points to
joint coordinate points, and also becomes difficult to handle
the case when the manipulator is at degenerate positions.

Due to its direct implementability, the path planning in
jint space is also attractive. Paul[9] suggested a simple
approach eliminating stopping at ea-h transition from one
path segment to another. The time for transition is fixed and
is determined to allow velocity changes from maximum to
minimum and vice versa. Un et al.[1 0] usec an approximation
with cubic spline functions and developed a time scheduling
algorithm by minimizing the total traveling time subject to
constant limits on speed, acceleration, and jerk for each
jint. Tayior[11] proposed an iterative algorithm to compute
sufficient number of intermediate. points in joint space so
that the transformation error -- difference between the origi-
nal Cartesian path and the Cartesian path generated by

2Hfenceforth, the terrn 'position' Is used to mnean both position and
ornation.

I The work reported here Is supported In pat by the US AFOSA Contract No. F49520-82-C-O08G and Robot Systems Division, Center for Robotics and in-
tegratd Manufacturlrg(CRIM), The University of Michigan, Ann Arbor, Michigan.
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transforming the interpolated joint paths back to the Carte-
sian space -- may become smaller than the prescribed value.
The path planning In joint space is simple and fast, since it is
bmtted only by mazxiwm joint torques and velocities, and
since degeneracies of the manipulator do not present any
difficulty. It is particularly useful for specifying gross motion
of the manipulator when (i) It operates In a colision-free
space and (11) the minimum-time traveling is important. Also,
the path planning in joint space is easily achievable since
one can get close approximatins in joint space to the
straight Une paths in Cartesian space by (a) including suffi-
cient number of intermediate knot points in the Cartesian
paths (in addiion to corne points), and (b) employing a
mnear Interpolation In joint space so as not to exceed the
specified maximum allowable tolerance in the transformation
error.

Conventional path-planning in joint space uses a con-
stant bound on the acceleration. This bound must represent
the global least upper bound of all operating accelerations so
as to enable the manipulator to follow the prespecifled path
under any operating condition (e.g. configuration and pay-
load). It impHes that the ful capability of the manipulator
cannot be utilized if the conventional approach is taken.
Furthermore, the path deviations allowed at corner points are
not considered explicitly. This is for the sake of simplicity of
the solution rather than for the appication reality.

In this paper, we propose a path-planning method in
joint space by minimizing the total travelng time, given a set
of corner points in jint space and realistic constraints, that
Is, those on the generated torques and angular velocity, and
on the deviation at each corner point in the joint paths. Note
that (i) limits on the generated torques/forces in place of
accelerations introduce manipulator dynamcs into path plan-
ning and (H) absolute deviation bounds at comer points
express the manufacturing reality more accurately and
clearly than the case with Implicit bounds (e.g. a fraction- of
the corresponding segment). Moreover, the path planning to
be developed here can be decomposed into a set of local
optimizations under a certain conditon.

This paper is organized as folflws. In Section 2, the
minimum time path planning problem is defined. Torque to
acceleration conversion of constraints is discussed in Sec-
tion 3, and a- solution to the path planning problem is derived
in Section 4. The proposed path planning Is simulated for the
first three joints of the PUMA 800 series manipulator in Sec-
tion 5, showing the improvements in the total traveling time
and the computational simplicity. The paper concludes with
Section 6.

PROBLEM STATEMENT
Considering the task to be performed and interactions

with the working environment[1 3], the task planner gen-
erates a desired (geometric) path for the manipulator in
Cartesian space. The geometric path does not contain any
timng Information but includes only spatial positions and
orientations. The set of the desired comer points
p(ii), = o,1...,M, in jnt space can be obtained by
transforming the Cartesian comer points (i.e. output of the
geonetric path planner) and possibly intermediate knot
points into joint space. The Intermediate knot points in the
Cartesian path are added to ensure that the transformation
error must be smaller than the prescribed accuracy. The
prespecffled accuracy is supplied by the task planner.

A path segment in joint space is formed by connecting
two adjacent corner points with a straight line,3 and typically

3At a firM gin it may look strange to cfwsdr a "straight line sag-
mi pfh In joint space. Howme, a moment of refIsction and References
[9(pc] will clrlfyftis.

consists of three stages: acceleration, cruise at a constant
velocity, and daceleration. When transition from one path
segment to another Is to be made, it should be accomplished
as fast as possible while meeting the tolerance requirement
in the path deviation. When the manipulator moves along a
first segment at its cruise speed, there are two possibilities
for switching to the next segment, depending upon the toler-
ance of the path deviation. If the tolerance is tight, then the
manipulator must first slow down before actual transition
takes place. Otherwise, the manipulator can initiate the tran-
sition directly from Its crulse speed along the first segment.
Considering these two possibilities, we define the following
two terms, namely, transition and change-segment, Transi-
tion TR(i) represents the stage of departing fromn the con-
stant velocity cruise along the segment S(i) and arriving at
the constant velocity cruise along the next segment 5(i + 1).
Transition is desired to be made smoothly, without stopping,
and within the specified path deviation. Change-segment
CS(i) represents the stage of departing from S(i) and arriv-
ing at S(i+i). See Fig. 1 for an illustration of Tfl() and
CS(i). In general change.segment x(i) is a part of transi-
tion TR(i); TR(i) and M(i) would be the same if no
acceleration or deceleration along the corresponding path
segments is needed to satisfy the constraint on the path
deviation at the corner point p(i), but they would be dif-
ferent otherwise. If we allow large bounds for the path devi-
ations at corner points, the total traveling time will be
reduced due to the widened spatial freedom in manipulator
motion. However, there will be an increase in the probability
that the manipulator. collides with obstacles. Hence, the path
deviation bounds at comer points must be set by the task
planner as a design variable, weighing between the total
traveling time and the workspace requirement or collision
avoidance.

It is well known that manipulator dynamics are highly
nonlinear, coupled functions of position, payload, mass, etc.
Also due to the joint actuator characteristics, there exist
bounds on joint angular velocities and torques/forces[1].

Considering all the factors mentioned above, the global
minimum-time path planning(GMTPP) problem in joint space
can be stated as folows.
Problem GMTPP: Given a path composed of M segments
S(i), i = 1,2..,M, formed by connecting (M+i) corner
points p(i) i = 0,1,. fIM in joint space, find a minimum-time
traveling path that the manipulator follows within the
prescribed path deviation bounds at comer points,
e (i) i = 1.2,..., M-1 with initial position and velocity,
q(O) = p(0), q(O) = 0, and the final position and velocity,
q(t1) = p(M), q(tf) = 0 subject to the Hmits on joint angular
velocities, Iv' vc , and bounds on joint torques/forces,
|Si c ut4s, j = 1.2,...,n where n is the number of the
manipulator joints.

Problem GMTPP naturally leads to a noninear program-
ming problem with high dimensionality. If a traditional tra-
pezoical velocity prof lie (i.e. acceleration - cruise -
deceleration) is assumed for each segment, there will be 3M
urknowns for the entire path planning. As evidenced in [8],
this problem becomes very difficult to solve even when mani-
pulator dynamics and the absolute path deviation are not
considered. We have sought simple and, to some extent,
heuristic solutions to the Problem under the following
assumption.
Al. Each segment S(i) i = 1,...,M is assumed to be large

enough for the manipulator to accelerate, cruise with
maximum allowable velocity, and decelerate for transi-
tionfrom ti) to S(i+1) i = 1,...,M-1.
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Assumption Al is realistic for many robot applicatons,
particularly for gross motion and mininum-time contros.
On the other hand, the assumption may not be realistic when
the manipulator undergoes many short moves. However, when
we are concemed with such short, fine moves, there are
many more important requirements to be met than the
minimum time motion. This implies that Al Is reasonable in the
context of the minimum-time path planning, although it is not
in general. Note that the same assumption Is applicable to
Cartesian paths and hence was used in [8]. Furthermore,
under Al the GMTPP problem can be decomposed into a set
of local minimum-time path planning(LMTPP) problems.
Without loss of generality, for each LMTPP problem we can
choose initial and final points ad (i) and qf (i) from S(i) and
Si+l), respectively, at which the manipulator is to attain
the maximuim allowable velocities, wma(i) and wmn(i+ 1),
respectively (i.e. points located at their respective cruising
portions of the path). The method for setting q (i) and
qf (i) wiH be discussed later in detail. wma(i), the maximum
allowable velocity along S(i), can be represented by

wm^.(i ) = t(i) r(i) (1 )

where r(i) represents a unit vector alonp S(i), i.e.,
r(i) = S(i)/ S(i) = :[r (i), r2(i),. , rn (i) ], and t(i)
denotes the magnitude of the maximum allowable velocity in
the direction of r(i). Using the limits on joint angular velocity
Vme=(4I .2*, vn )T, C(i) can be actually com-
puted by

= a(rj(i)) vt + a(-r1(i)) (-vij) (2)

where a(z) is defined by

11f Z > 0
a(z) = lo if z oO

Then, the Problem GMTPP is converted to a set of LMTPP(i)
for i = 1, 2..,M -1 as follows.
Problem LMITPP(i): Given a path composed of two segments
S(i) and S(i+1), formed by qu (i), p(i), and q, (i) in joint
space, find a iniknum-time traveling path that the manipula-
tor can follow within the prescribed deviation bound e (i) at
corner point p(i), subject to the limits on joint angular veloci-
ties, vi.l vv x, and bounds on joint torques/forces,
Jul su =l.j n.

To obtain an analytical solution to the Problem LMTPP,
one may attempt to apply Pontryagin's maximum principle
with manipulator dynamics (to be defined as Eq.(3) later) and
constraints on the state variables (i.e. on the angular veloci-
ties and position deviations at corner points) as well as on
control inputs (i.e. bounds on joint torques/forces). Then,
one may obtain necessary conditions for optinal solutions,
resulting in a bang-bang solution in the nonsingular region.
However, due to the coordination requirement amonj the
joints of a single manipulator in following segments
S3i) i = 1-...,M, control inputs for all but one joint(i.e. the
slowest jont) are not -to be bang-bang, meaning that there
exit singular regions for all but one joint. Moreover,
because of the complex nonlinear, coupled dynamics of mani-
pulators, it is almost impossible to obtain any analytlc or
numerical solution to the LMTPP Problem from the maximum
principle. However, without appealing to direct use of the
maximum principle, we can explore some intrinsic properties
of this problem and find a suboptimal solution with an addi-
tonal assumption.

A2. A constant acceleration, a, (i), is assumed during each
change egment CS(i), i = 1,2, .., M.

Assumption A2 is employed to simplify the analysis of
the path deviations at comer points by utilizing the local
acceleration bounds around corner points
p(i) i = 12,...,M-1. Note, however, that this assumption
does not impose any unrealistic demand on the path-
planning; if A2 is deemed unrealstic, one can divide CS(i)
into a finite number of subregions within each of which a
constant acceleration is then assumed.

TORQUE-TO-ACCELERATION CONVERSION OF CONSTRAINTS

Since both the GMTPP and LMTPP problems are naturally
related to accelerations rather than to torques/forces, ft is
necessary to convert the constraints on torques/forces to
those on accelerations. For this convers,ion, consider the
nonlinear, coupled manipulator dynamics. Using the Lagran-
gian formulation, the dynamics of the manipulator can be
described by

D(q)q+ h(qq4)+ g(q)= u (3)

where u is- an nxl generalized force/torque vector, q, q
are vectors of generalized coordinates, velocities, and
accelerations, respectively. D(q) is an nxn inertial matrix,
h(q4) is an nxl viscous friction, Corolis and centrifugal
force vector, g(q) is an n xl gravitational loading vector, and
n is the number of joints of the manipulator. The inertia, the
gravity loading, and the Coriolis and centrifugal terms
depend on the position of each joint as well as on the mass,
first moment, and inertia, of each link. Also note that these
terms are functions of manipulator's payload (i.e. tool and
parts).

The constraints on torques/forces are related to
acceleration by:

-Ufnax! D(q)q + h(q, aJ + g(q) u (4)

where u = (u U1a)T. If both qand qare
known, then bounds on q can be determined from the above
inequality. However, these are unknown at the time of path
planning and hence some sort of approximations are needed.
Since the constraints conversion is required only in the vicin-
ity of the corner points, 4 such approximations can be made
rather easily and realistically.

We have adopted an approximation algorithm for con-
verting the bounds on joint torques/forces to those on joint
accelerations around the corner points. The algorithm can be
described as follows: At every corner point
p(i), i = 1,2_.,M-1, we compute the parameters of mani-
pulator dynamics for three distinct cases with velocities (i.e.
4) Wmax(t), wm(i+1), and an average velocity w,(i), but
with the same position, q (i) = p(i) + e(i),5 where e(i) is
defined as a path deviation vector around p(i) with magni-
tude e (i), and with the same direction as the vector
-r(i) + r(i+1). wa(i) is the cruise velocity approaching
liR(i), wma(i+ 1) is the cruise velocity departing from TR(i),
and the average velocity, w., (i) = (wma(i)+wmnx(it + 1))/,2,
is used for approximating the velocity in the middle of
change-segment CS(i). If it is desired to set a uniform
acceleration bound around each corner point p(i), one can
select bounds ci (i) and ci (i) during transition TR(i).
That is,

4 We only need the local acceert/on bounds In the transition stages
TR(i), i = 1.2.M-1, since mar/mum cruising velocity is applied
outside trans/ti/on stages.

6Approximate values d q and q can be calcuated for as many points
round corne point p(i) as ncessr . rhose vatu,s must be approxlmated
on thebasis of WMt), Wm.(i+) p(i), and (i). For simpil city, we
hav used here only three different values of q and q
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c4 (i) C ID(q(i)) a(i) L.5c (i), j = 1.2,.. nt (5)

where a(i) denotes the acceleration during TR(i), and

C3i (i) = min uj -hi(q0(i), w,,(i)) -g1(o6(i)),
2 h-i (o. (i), wmn(i))-g i )), (6a)

azuj - hi(gt (i), wma(i +1))-gj(q' (i))

cij (i ) =max ?suj .,n hij ( q (i) w,,,sag (i )) -9g (q, (i ))
ul z-h i(9. (iw) w..(i)) - g1(9K (i)), (6b)
uj -- hi (°% (i ), wmax(i +1 )) -g i ( qr (i ) )

This results in a,feasible region with a polyhedron boundary
for valid accelerations during TR(i).

THE MINIMUM-TIME PATH PLANNING
The functional relationship of the proposed minimum-time

path planner to others in the system is described in Fig. 2.
With the preceding assumptions and discussions, the
LMTPP(i) problem can be solved by the following steps for
i = 1, .,M-1 (see Fig. 3 for an illustration of these steps).6
SI. Cruise with maximum velocity w0(i) = wsa(i) along

segment 5(i) from '6(i) to g3(i), where ck(i) is the
point on S(i) at which TR(i) begins.

S2. Apply constant deceleration ak (i) aiong segment S(i)
from q,(i) to q (i) at which CS(i) begins.

S3. Change segments (from S(i) to S(ii1)) with constant
acceleration a (i) from o%(i) to qc(i) passing through
gi), where qr(i) = p(i) + e(i). q4(i) is the point at
which CS(i) terminates.

S4. Apply constant acceleration af (i) along segment
S(i+1) from qd(i) to (i), attaining the cruise velo-
City, w1(i) = wm(i+1), on 5(i+1). Note that TR(i)
terminates at qj (i).

Steps S2 and S4 guarantee the solution even if e (i) is so
small or tight that the direct transition from w. (i) to w'f (i)
with a constant acceleration a0 (i) cannot be achieved.
Hence, three constant accelerations are used here, namely,
decelerating with a. (i) along S(i), changing segments with
0(i) from S(i) to S(i+1), and accelerating with af (i) along

S(i+1). These three accelerations are to be deternined by
the present path planner.

Define the unit vectors along S(i) and S(i+l), respec-
tively, as

r0(i) = r(i); r,(i) = r(i+l) (7)

Then every vector can be uniquely decomposed into r, (i)
and rf (i) components as follows (see Fig. 3).

e(i) = -e, (i) rO (i) + ef (i) rf (i)

ao(i) = -a (i) rO (i)

ar(i) = af(i) rf(i)
(8)

6BotV start ad turnulnF on oft ,ntino are rAt included here but can be
fowd in the entire psath planwng algorithm ror th end o this section.

wf (i) = w0(i) r0(i)

w,kit) = wt3() r (i)

p(i) - ol(i) = 0(i) r0 (i)

qo (i) - p(i) = (i) r (i)

where scalar quantities with subscripts o and f represent
their r0 and rf components, respectively. , (i) and tC (i)
denote the magnitudes of vectors p(i)-, (i) and
q,4 (i)-p(i), respectively. One can plot each transition com-
ponent in state space as depicted in Fig. 4. In S4, the final
condition qf (i) is set as a position when the velocity
reaches wmax(i+l) with constant acceleration ar(i). This
value of qo (i) is used as the initial position in the next seg-
ment, i.e., 6 (i + 1i) = qf (i). Depending upon whether Steps
S2 and S4 are required or not, we can consider four cases in
the following analysis. Using the state space trajectory in
Fig. 4, we can compute traveling time T(i) and positions
qz (i), q (i), and qd (i), as functions of
a((i), ac0 (i) ac (i), af (i), w0(i), and wf (i) (the depen-
dence on segment i is omitted for notational simplicity in the
sequel). For convenience, let

/ 2e / 2et and

c - + + -+
= 2a0 2ac W0 wf

i) When a.0 r < w0, as, rT<w, i.e. Cruise - Deceleration -

Change-segment - Acceleration - Cruise;

iv() p[
1 O(1 a__) T+ W2°
2 a.~ 2a0

gl () p -2 co r2r,,2

d (i P+ 2 af1r2rf

q(i) = p+ [ 2a - ) + Wf ]rf2 af 2
T(i) = c0 +-r(1 - - a5 )

ac0 ( za a)]
2w0 a0 2wf a,

ii) When a0T .w0, £l.fT ( WI, i.e. Cruise
Change-segment - Acceleration - Cruise;

i>q(i>p- °r2aco

C(id) = P+ - a.( ° )2r,
a, a 2a

a. a, a a1 2w
q, i)=p 2 J(1 a _)( a). + 2 r

T (i) =co,c _ ( ,J) (1 -C2cr

(9a)

(9b)

iii) When a0cow0< wo, a0nr. wf1, i.e. Cruise - Deceleration
- Change-segment - Cruise;

22
g(i) = p - )( ) - ]r2 a,, a0, 2ma

q P(i)= - I = (wf )2r.
qdi =fq(i) = p - wfl/ 2a¢Jfr.
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T(i) = c -- aL (J(WI - af)) 2J
asf,.; a,1 ;o 2w0

iv) When ar,T> w0, a,fr>wf,
Change-segment - Cruise;

2

q.(i) = o%(i) = p r

2a,,0
q,d(it>=qf4i>=p+ WI--r

T(i) = -. + If
WC Wf

(9c)

i.e. Cruise

(9d)

Now, consider the calculation of a., (i) and a1 (i). We
can easilyshow that M < 0 i = 1, Al-i-0a0(i)
for the cases i) and iN). This property implies that aQ(i)
should take as large a value as possible. Likewise, af (i)
should take as large- a value as possible. Hence, we can set
the values of a, (i) and ar (i) so as to attain maximum mag-
nitudes in the directions of -ro (i) and r- (i), respectively.

To determine ac(i), which is a function of a,,0(i) and
a,(ti), i.e., a, (i) = ar (i)r,(i) + ar.f (i)rf(i), we have to
use the polyhedron boundary of the accelerations given by
Eq. (5). Then, the problem becomes a two-dimensional non-
Unear optimization minimizing Eq. (9) with respect to a,,, (i)
nd acr (i) subject to linear constraints (5). For solution to
this problem, we can get the following useful property.

Property: T(i) attains its minimum when the components of
ac (i) are maximized within the feasible region.

It is easy to show OT ? and .0< o.
ca.,0(i) dacr (i)

With these inequalities, proof of the above property is
straightforward. The inequalities imply that for the minimum
of T(i) the components of the acceleration ac (i) should be
maximized. But the values of a,,0 (i) and x,4(i) are inter-
related with the linear constraints (5). Hence, the minimum
of T(i) occurs at the boundary of inequalities (5), resulting
in a one-dimensional optimnization problem.

Acceleration during change-segment CS(i), a, (i), can
be obtained with a suitable bisection algorithm searching
along the boundary of Eq. (5). Let x5 be the angle between
a (i) and af (i). The following iterations are performed for
k = 1,2.. . Choose a set of accelerations a4 having angles
[ (21 - i)/ 2k ]3 Il = 1, 2,..., 2k -1, and the correspond ing trav-
eling times, Tt1s. Compare T;z's and choose the minimum
and set it to Tk. If the bisecting angle 2-kt gets smaller and
improvement in Tk from Tk-l becomes insignificant, then the
algorithm terminates.

For (the first) segment S(0), we need a maximum
acceleration until the velocity reaches wma(l). No iteration
is necessary in this segment. We can simplyl compute -the
maximum acceleration, and set q(0) =ad(1) for the next
segment. For (the last) segment S(M), we need cruise with
tnax(M) folowed by the maximum deceleration to the final
position p(M) and zero velocity. This segment can-be con-
sidered as a reverse procedure of the first segment. The
maximum deceleration time is computed backwards in time.

The minimum-time path planning algorithm discussed thus
far can be summarized as follows.

1. Set i = 0.
1.1. Compute the maximum acceleration a (0)
1.2. Compute traveling time T(0)

1.3. Compute the Initial position for S(1), qg (1).

2. Set i = i + 1, then
2.1. Compute unit vectors r0 (i) and rf (i).
2.2. Compute a position, cj (i), with the maximum path
deviation

during transition.
2.3. Compute velocity bounds for w0 (i) and w1 (i).
2.4. Compute maximum deceleration at (i) along 3(i),
and maximum

acceleration af (i) along S(i + 1).
2.5. Compute acceleration a. (i) during
change-segment C3(i), and

traveling time T(i) by using the bisecting algo-
rithm.

2.6. Compute the initial position for the next segment
q61i .

2.7. If ic<M, then go to Step 2.

3. For the last segment (i.e. i = M )
3.1. Compute the maximum deceleration a, (MA) toward
(p(M),0)
3.2. Compute the traveling time T(M).

4. Compute the total traveling time T1.1. = E T(i)
i =0

As can be seen in the above, the present path planning
algorithm requires only rudimentary calculations and simple
one dimensional optimizations; this is in a sharp contrast to
the method developed in [8] where a mathematical program-
ming problem was solved by a complex, approximate optimi-
zation technique.

A PATH PLANNING EXAMPLE
Using a simulator of the PUMA 600 manipulator on DEC

VAX 11/780, we have conducted a simulation of the pro-
posed minimum time path planning algorithm. The PUMA arm is
manufactured by Unimation, Inc. and consists of six rota-
tional joints, each of which is driven by a DC servomotor.

We employed the Lagrangian formulation to derive the
PUMA arm dynamics as in Eq.(10) with the coordinate system-
using the Denavit and Hartenberg representation in Table 1,
which is then used to simulate the behavior of the first three
joints of the arm. (The remaining three joints are not con-
sidered here for simplicity.) For i =1, 2, n

n n it

E dj(- q+ S Ehj (q)qjq + gi(q) = u

j=l j=lk=1

Typical terms have the following form:

dl(q = Jlll + J133 + J23S + 2 J234 d2 + J24d2
+ J2 + F333 + J34d2

(1t0)

+ (J211,+2J214a2 + 4a+J2 a )U2 + J222 2

+ ( J311 - J3s3 ) C03 + 2J334z2C2S23

h2 = (211 -J222 + 21214a2 + J144SL + J3*4ag ) S2C2
+ ( JS - J3 ) C23S-23 -J33a2 (C2C23-S2Sa)

.92 - ( a2M3 + a2m2.;+m2a,,) C.2 - m3i3S23gS

where J., is the (j ,k )-th element of the 4x4 inertia tensor,
4, for the- -th joint; d2 a2 are lengths related to the arm
coordinate frame; and for i,j = -,2.3
Q =- Cos (qi), S = sin(qi) CU = cos(qj+qj)
S-= vSir(q +q,)
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For the PUMA simulator the above dynamic equations are
computed with the numerical values of the mass, center of
mass, and inertia for each joint (see Table 2). These are
approximate figures acquired from the manufacturer's
specification.

As shown in Table 3, for simulation we selected a set of
corner points p(i), i = 0 1,. .M, and path deviation bounds
at these comer points e(i), i = 1, ..,M-1. The bounds on
the control input torques are assumed to be:
Iu1 .l00 Nm,Iu2 c 150 ANm, and u31 c 50Nlm, and
the maximum angular velocity is set to 90 f/second for each
joint. Observe that the choice of these simulation values is
arbitrary for the sake of numerical demonstration and any of
such choices does not change the basic performance of our
path planning method. The path planner computes the
desired path (i.e. q and q) which requires the minimum total
traveling time, using the algorithm developed in the previous
sections. In order to examine the performance of the
minimum-time path planner, we compared it with a path plan-
ning method with global bounds on the acceleration with the
same simulation data. The corresponding simulation results
are given in Table 4. It shows that the minimum-time path
planner developed in this paper exhibits excellent transition
characteristics when compared with the one with global
acceleration bounds. For this particular example, the transi-
tion time, Ttr,,s, is reduced to about one-third of that with
the global acceleration bound. The cruise time with local
acceleration bounds is somewhat longer than the case with a
global acceleration bound, because the fast transition needs
shorter transition distance, and hence longer cruising dis-
tance. Including both the transition and cruise characteris-
tics for the example, the present path planning method
showed a significant improvement in the total traveling time,
Tgt01w (a 23% reduction).

The effects of the path deviation bound at each corner
point is simulated and presented in Table 5. Here, all e (i)'s
are set to an equal value for i = 1,..., M-1. As expected,
the larger the deviation bound, the less the total traveling
time because of the spatial freedom in motion. Particularly,
one can see a drastic improvement in Ttra at the beginning
and then a slow improvement or a near saturation as the
deviation tolerances increase. Note, however, that T07t,,,, is
relatively insensitive to the magnitudes of e(i), i= 1,2 ,., M.

As a whole, for the example considered here our
minimum-time path planning has indeed shown a significant
improvement in the total traveling time. Consequently, the
path planning method has high potential for enabling the con-
troller to efficiently operate the manipulator to its maximum
capabilities.

CONCLUDING- REMARKS
We have developed a minimum-time path planning

method in joint space with manipulator dynamics included. An
absolute path deviation bound for each corner point can be
specified as a design variable. Local "pper bounds on joint
accelerations are derived from manipulator dynamics so as to
nearly fully utilize robot's capabilities, and a set of local
ore-dimensional optimization problems can replace the global
minimum-time problem. The local optimization problem is com-
putationally simple with a small number of variables for each
pair of segments, whereas the global optimization problem is
computationally demanding since (i) a large number of vari-
ables should be considered simultaneously, and (ii) special
optimization techniques are required to get approximate
solutbns. Furthermore, for the GMTPP problem the number of
variables in the optimization process varies with the number
of segments that form the entire path, whereas it does not
for tb LMTPP problem. The simulation results for the present
method show that the transitior times are considerably

improved, leading to a significant reduction in the total trav-
eling time.

The torque-to-acceleration conversion of constraints
was made on the basis of a heuristic approximation rather
than an exact solution to the dynamic equations for the
acceleration. It is impossible to obtain the exact solution,
yet the approximation can be controlled to provide realistic
conversion accuracy (by calculating acceleraton bounds for
as many sub-regions around a corner point as necessary).
One important assumption in this conversion is that the exact
dynamic equations are known. Generally this assumption is
not valid. It is, however, a realistic assumption in view of the
fact that the manipulator is to execute the same task
repetitively many times and, therefore, its dynamics can be
learned prior to the actual execution (and also prior to path
planning).

Path planning has not received much attention despite
its importance. Particulariy, there are numerous publications
in the area of manipulator control or path control or path
tracking where a perfect or-at least a good path planner is
always assumed to exist. Contrary to this assumption, there
have been only a few published results in path planning. The
imbalance between the two has to be resolved for the
optimal or near-optimal utilization of robots' capabilities.
Consequently, a balanced combination of path planning and
manipulator control is essential for future automation with
robots. The minimum-time path planning presented here has
aimed at this objective.
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Link

mass

(Kg)

Center of Mass

(in) (m)

inertia

Kg m ) (Kg rn2) (Kg In2)
1 2.27 0.0 0.0 0.075 0.00376 090.00376 0 0;7

2 16-b.91 -0.216 0.0 0.0 0.9837 0.1237 01237

3 11-36 °:°0.0 L O.21 0.0074 020.0074 0670

Table 2. Mass, first moments, and inertias of the first three tints

for the PUMA 600 maniPulator.

Table 3. Coner points and tolerances in path deviation Used for simulation.

Table 1. Link coordnlate sytem tor a PUMA 800 robot.

Table 4. Travoeng time.

_ ---- ----- Segment (i-S m Fd Segment S( i+l) -r

Cruise i Deceleration Change Segment
CS(i

- Transition TR(i)

Flgure 1. TransIton lR) and Change-Segment Cm(i).
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Path deviation bounds at corner points

Bounds on joint angular velocities.

Bounds on joint torques/forces-

TO
PATH

TRACKER

Figure 2. Description of input and output of the minimum-time path planner
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FIgure 4. Transition components in state space.
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