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Mul t iprocessors  are beginning to be regarded increas ing ly  f avo rab l y  as cand i -  
dates for  contro l lers in cr i t i ca l  rea l - t ime contro l  app l ica t ions such as a i rcraf t .  Their  
considerable t o l e r a n c e  of  component  fa i lures t oge the r  w i th  the i r  g reat  potent ia l  for  
high th roughput  are con t r i bu to ry  fac to rs .  

In th is  paper, we  p resen t  f i r s t  a logical c lass i f i ca t ion  of  mul t iprocessor  s t r uc -  
tures wi th contro l  app l ica t ions in mind. We point  out  t ha t  one important  subc lass  has 
hi therto been neg lec ted  by the  ana lys ts .  This is a c lass of  sys tems  w i th  a common 
memory, minimal in te rp rocessor  communicat ion and pe r fec t  p rocessor  symmetry.  

The per formance cha rac te r i s t i c  of  the  g rea tes t  impor tance in real - t ime appl ica-  
t ions is the response t ime d is t r ibut ion.  Indeed, we  have  shown in a separa te  paper 
[ 2 ]  how i t  is possib le to  charac te r i ze  r igorously and ob jec t i ve l y  the  per formance of a 
real-t ime mul t iprocessor  g iven the  appl icat ion and the  mul t iprocessor  response time 
distr ibut ion and component fa i lu re  charac te r i s t i cs .  We the re fo re  p resen t  here a com- 
putat ion of  the  response time d is t r ibut ion for  a canonical  model of  rea l - t ime mult ipro- 
c e s s o r .  

To do so, we  approx imate  the  mul t iprocessor  by a b locking model and present  a 
means for e f f i c i en t  analys is .  Two sepa ra te  models are der ived:  one c rea ted  from the  
sys tem's  point  of v iew,  and the  o ther  from t h e  point  o f  v i ew  of  an incoming task.  The 
former model is analyzed along largely convent iona l  l ines. For t he  la t te r  model, an 
a r t i f i c ~ z l  serueT- is used, and the  sys tem is t ransformed into a queueing network.  

I This work was supported tn part by NASA Grant No. NAG 1-296. Any opinions, f ind ings,  and conclu- 
sions or recommendations expressed here are those of the authors and do not necessarily re f lect  the views 
of NASA. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or  specific permission. 

© 1983 ACM 0-89791-112-1/83/008/0175 $00.75 

175 



1. In t roduct ion  

With semiconductor  component c o s t s  fa l l ing and m i c r o p r o c e s s o r s  becoming ever  
more rel iable and powerful ,  mul t iprocessors are beginning to be a t t r a c t i v e  for  a 
va r i e t y  of  appl icat ions.  One of  the major hurdles encoun te red  in genera l -purpose 
appl icat ions is the  task  of  optimal (or sub-opt imal )  program par t i t ion ing. .Para l le l iz ing 
compilers t ha t  t rans la te  code wr i t t en  in von-Neumann languages to exp lo i t  any poss i -  
ble parallel ism are f requen t l y  ine f f i c ien t  in the sense  t ha t  t he  compiler overhead is 
usual ly  considerable and tha t  i t  is d i f f icu l t ,  if not  impossible, to  f ind eve ry  possib le 
parallelism. 

However,  the re  are appl icat ions where program par t i t ion ing ar ises qui te natura l ly  
and no paral lel iz ing compiler is necessary .  One such appl icat ion is real - t ime control ,  
where  the global control  func t ion  d iv ides natura l ly  into weak l y  in te rac t ing  taslcs or 
¢ t o m  j ~ n c t i o ~ s  [ 1 ] .  Indeed, i t  is proper to regard the  contro l  func t ion  as a we l l -  
def ined se t  of  taslcs, each re la t i ve ly  independent  of  the  o thers .  The t asks  can be 
t r iggered by a va r i e t y  of sources:  envi ronmental  st imuli,  t imers, or operators ,  and 
correspond to some spec i f i c  so f twa re  packages  being run. In most cases,  the  
t r igger ing by st imuli is random 2 and can be charac te r i zed  by probabi l i ty  d is t r ibut ions.  
The major c h a r a c t e r i s t i c s  of  a mul t iprocessor  contro l  sys tem are the re fo re  tha t  (a) 
the  contro l  func t ion  c o n s i s t s  of a number of  weak l y - i n te rac t i ng  and we l l -de f ined  
tasks ,  and (b) the  load can be charac ter ized  s t o c h a s t i c a l l y  with reasonable a c c u -  
racy.  The second charac te r i s t i c  enables us to obtain p e r f o r m a n c e  eva luat ions  more 
accu ra te l y  than would o therw ise  be the  case;  whi le the  f i r s t  in f luences the  a rch i tec -  
t u re  of  the in terconnect ion  s t ruc tu re .  

How well  a mul t iprocessor  contro l ler  performs c lear ly  depends on the  requi re-  
ments of the  appl icat ion.  We showed in [ 2 ]  how contro l ler  per formance could be 
r igorously and ob jec t i ve l y  eva luated,  given the  cont ro t  a p p l i c a t i o n  and mul t iprocessor  
response t ime dist r ibut ion.  Keeping th is  foundat ion in mind, we  eva lua te  in th is  paper  
the  per formance of  a canonical  model of m u l t i p r o c e s s o r s  for  real - t ime control .  

Because the  ent i re se t  of programs tha t  the contro l  sys tem wil l  ever  e x e c u t e  is 
we l l -de f ined,  t he  designer has an opt ion:  the sys tem can e i ther  have  a common, or 
mass, memory t ha t  conta ins all t he  a p p l i c a t i o n s  so f twa re  - -  thus  requir ing the  

t rans fe r  of  the  re levan t  so f tware  upon a t ask  t r igger  3 - -  or eve ry  p rocessor  can hold 
in i ts  p r i va te  memory all the  appl icat ions so f twa re  i t  wil l  ever  need. The la t te r  a l te r -  
na t i ve  el iminates the  need to t rans fe r  so f tware ,  thus  reducing overal l  response time. 
Choosing th is  a l te rna t i ve  p resen ts  the  designer  w i th  two  sub -a l t e rna t i ves :  e i ther  
provide each processor  w i th  a p r i va te  memory so large tha t  the  s e t  of contro l  pro- 
grams required in the  control  of  the  process can be held in i t  in i ts  en t i re ty ,  or preal -  
locate tasks  to spec i f i c  processors.  

Based on the  above observat ion,  the fo l lowing can be cons idered to be canoni -  
cal logical models of mu l t i p rocesso rs  used in rea l - t ime control .  

T~jpe 1: A Type 1 mul t iprocessor contro l ler  is one in which the  processors  do not spe -  
cial ize; in o ther  words,  tasks  are not reserved  for  spec i f i c  p rocessor  s , and each pro- 
cessor  in the sys tem may be a l located any task.  The p rocess  of t ask  al locat ion is 
t yp i ca l l y  dynamic. This t ype  is d iv ided into two subc lasses  depending on the  size of 
p rocessors '  p r i va te  memory. In a Type ] a  system,  the  p r i va te  memory of the  proces-  
sors is large enough to hold both the  appl icat ions and e x e c u t i v e  so f tware  in i ts 

2 In the case of timer-generated triggers, the triggering is determinlatic, but this can be regarded as 
a special case of random triggering. 

3 The operating environment is modelled as the source of a stream of tcs/c tTiggeT"s, I.e. stimuli that 
c a u s e  a particular set of tasks to be performed by the multiprocessor. 
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ent i re ty .  4 This sys tem is ideal for  appl icat ions in which a small number of  re la t ive ly  
independent  and small t asks  form the job mix. One example o f  the  Type l a  sys tem is 
the CM2FCS [ 8 ]  sys tem of the  United S ta tes  Air Force. 

In a Type lb sys tem on the other  hand, the  p r i va te  memory is too small to hold 
all the  appl icat ions so f tware  and requires the t rans fe r  of so f twa re  wi th  each task  
tr igger.  This t rans fe r  can be e i ther  single, or invo lve paging. 

The t radeo f f  be tween  requirements of memory s ize and task  execu t i on  time in 
th is  subc lass i f i ca t ion  is clear. As a general  rule, the  processors  a l located a task  e x e -  
cute  it in i ts  en t i re ty  w i thou t  in ter rupt ion unless some of the  processors  fai l .  There is 
thus l i t t le  or no in terac t ion  be tween the individual processors  in th is  t ype  of  system. 

The bes t  known implementat ion of  the Type l b s t ruc tu re  is the  Draper 
Laboratory 's  Faul t -To lerant  Mul t ip rocessor  (FTMP) [ 5 ] .  

Type 2: In a Type 2 system,  the  processors are prea l located spec i f i c  t asks  (or sub-  
t asks )  and the  so f tware  re la ted to these  is loaded in the i r  p r i va te  memory. With the  
ident i f icat ion o f  spec i f i c  tasks  wi th  par t icu lar  processors  comes the  problem of real -  
locat ion of  t asks  on processor  fai lure. Thus, the sys tem of th is  t ype  is too in f lex ib le  
to easi ly  reconf igure i tse l f  upon fai lure but i ts re l iabi l i ty  is obta ined in general  through 
physical  redundancy  in sys tem components.  In general, Type 2 is used when the  
individual t asks  have s ign i f i can t l y  d i f fe ren t  t i m e / s a f e t y  c r i t i ca l i t y  (e.g. f l ight  contro l  
and navigat ion tasks  in a i rc ra f t  appl icat ions) .  Processor in teract ion can be cons ider-  
able. 

Type 3: A Type 3 sys tem is a composi te of  a Type 1 and a Type 2 system.  

Figure 1 shows graphica l ly  the  above c lass i f i ca t ion  of mul t iprocessors.  Notice 
tha t  the c lass i f i ca t ion  is logical and is d i f fe ren t  from most convent iona l  ones tha t  
are usual ly  based on phys ica l  in terconnect ion s t ruc tu res .  

A considerable body of  l i te ra ture has developed around the problem of analyzing 
mult iprocessors.  Almost invar iably,  the procedure is to use a Markov model of the s y s -  
tem to so lve for  such performance measures as throughput ,  re l iabi l i ty , ,  avai labi l i ty ,  
etc.  Type l a  sys tems have been the focus of  a great  deal of a t ten t ion .  The t e n -  
dency of  almost all authors is to assume ident ical  p rocessors  and an ident ical  
exponent ia l  se rv ice  t ime d is t r ibut ion for all job c lasses,  upon which the  sys tem 
degenera tes  into an M / M / m  queue. This analys is  is then embedded in a determina-  
t ion of the  mul t iprocessor  performance. One good example is the  work on c losed- form 
est imat ions of per formabi l i ty  by Meyer [ 3 ] .  

Type 2 sys tems can be modelled as queueing networks ,  and there  is a large 
body of l i te ra ture  on th is  topic.  

Type l b, however ,  has been almost to ta l l y  neglected.  This is odd, consider ing 
tha t  one of the  few mul t iprocessors ac tua l l y  to be cons t ruc ted  (i.e. FTMP[5])  is an 
example of th is  t ype  of  sys tem.  Also, i t  is l ikely t ha t  Type l b  sys tems wil l grow in 
importance as time progresses s ince i t  is ideal when the  job mix is composed of a 
large number of tasks ,  each cal led re la t i ve ly  infrequently. Again, the  analys is  of 
Type 3 sys tems requires, as a prerequis i te,  the analys is  of  Type 1 sys tems.  In this 
paper, we shal l  analyze an important subc lass  of  the Type 1 b sys tem.  

This paper is organized as fol lows. In Sect ion 2, we analyze an important sub-  
c lass of mul t iprocessors,  obta in ing an. approx imate express ion  for i ts  response time. 
We conclude in Sect ion 3 by descr ib ing br ie f ly  some ex tens ions  of  th is work 

4 Wi th memory  dens i t ies  r i s i n g  and costs fa l l i ng ,  th is  may be no l o n g e r  as expens ive  as i t  once 
seemed. 
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present l y  being under taken,  and the i r  impl icat ions for  rea l - t ime mul t iprocessor  design. 

2. Response-T ime Ana lys is  o f  Type  l b  System Without Paging 

2.1.  Description of the Real -T ime M u l t i p r o c e s s o r  

The mul t iprocessor  we  analyze is shown in Figure 2. I t  has a d ispa tcher  a l loca t -  
ing tasks  to c ident ical  processors.  5 Serv ice at  the  d ispa tcher  is FCFS, and all t he  
t asks  p lace an ident ica l  ( s t a t i s t i ca l l y  speak ing)  demand upon the computat iona l  
resources of  the  system. 

When a processor  is ass igned a task,  i t  f i r s t  sends to the  common mass memory 
for  the  re levan t  appl icat ions so f tware .  This is the  only re fe rence  the  processor  
makes to the  common memory during a single execu t ion .  Task arr ival  is modelled as a 
Poisson process wi th  rate ;~, and all se rv ice  time d is t r ibut ions are exponen t ia l  ( in t he  
sequel  we also consider  non -exponen t ia l  se rv i ce  t imes):  a t t h e  processors  the mean 
se rv i ce  ra te  is /4 and at  the memory the  mean so f twa re  t rans fe r  ra te (per  task )  is 
/z m. Note t h a t / z  represents  the  ac tua l  execu t i on  ra te for  an indiv idual  t a s k  on a s in -  
gle processor ;  i t  does not take  into accoun t  so f twa re  t r ans fe r  time. 

A point  t ;~ci t ly made in almost all work in th is  area is t ha t  the  input  process is 
Poisson, and t h a t  all se rv ice  t imes are exponent ia l .  The pr incipal  reasons for such an 
assumpt ion are tha t  ( i )  whi le  both input  and serv ice  d is t r ibu t ions  are non -exponen t i a l  
in p rac t ice ,  t h e y  can sometimes be approx imated wel l  by Poisson and exponen t ia l  
assumpt ions,  and (i i) tha t  analys is  of  a sys tem wi th  general  arr ival  and serv ice  d is t r i -  
but ions is almost impossibly d i f f icu l t .  

The f i r s t  po int  ensures t ha t  the  exponen t ia l  assumpt ion leads to at  least '  an 
approx imate  model of real i ty .  I t  is important ,  however ,  to  check  th is  f a c t  for  each 
par t icu lar  model by  employing a l te rna t i ve  approaches,  eg., s imulat ion. In th is  paper,  
we  car ry  ou t  th is  task  by means of  a simulat ion program tha t  assumes Weibull  se rv ice  
d is t r ibut ions.  The exponent ia l  d is t r ibu t ion  is a spec ia l  case of  the  Weibull .  By vary ing 
the s tandard  dev iat ion of  the  serv ice dis t r ibut ion whi le keeping the  mean cons tan t ,  
we obtain an indicat ion of  the  range of input in tens i t ies  for  which the  exponen t ia l  
assumption is a good approximat ion.  

In th is  model, there  is the  problem of s imul taneous possess ion of  resources  by 
the  tasks .  That  is, there is a per iod when, immediately a f te r  being a l located a p roces -  
sor by the  d ispatcher ,  the  processor  queues up for  se rv i ce  a t  the  common memory for  
the app l ica t ions so f tware .  During th is  period, the  processor  is fo rced to remain idle. 
The p resen t  sys tem does not invo lve multiprogramming. 

Since there  is a period when a t ask  is in possess ion of both a p rocessor  and the  
common memory, th is  mul t iprocessor  does not  f i t  into any of the  we l l -behaved  queue-  
ing models (such as M /M/m,  G /M/m,  etc . ) .  There are two approaches  to obta in ing a 
solut ion for  the response t ime d is t r ibut ion.  The f i rs t  is i teTat ive  and employs the  
method of  sur rogate  servers  as in [ 4 ] .  The second,  which we present  here, also 
Involves sur rogate  or ar t i f ic ia l  se rve rs  but  is non-~terat ive in nature.  I t  cons is ts  of  
approx imat ing the  mul t iprocessor by a model in which s imul taneous possess ion of  
resources does not  occur, but  where  block ing t akes  place. We have thus  t rans la ted  
our problem into the c o n t e x t  of a blocking model. An impor tant  consequence of th is  
is t ha t  the  analys is  of  the  case where  paging is al lowed for  can be handled by an 
immediate ex tens ion  of th is  approach. To so lve th is  problem, we employ artificial 
se~uevs. Art i f ic ia l  or f i c t i t i ous  se rve rs  have been used in a-number of  models. In [ 6 ] ,  
t h e y  are employed in the  ana lys is  of  an open queue ing  ne twork  with" blocking. Our 
analysis,  a l though super f ic ia l ly  similar, is non- i te ra t i ve  and t rea ts  a sys tem wi th  
paral lel se rvers  w i th  blocking. In such a se t t ing ,  the  i t e ra t i ve  techn ique  p resen ted  in 

5. Since processors may fa l l  du r ing  a miss ion l i f e t ime,  c Is a random varlab/e. 

178 



[ f l ]  is not  appl icable (w i thou t  ana ly t i ca l  exp ress ions  for  the response t imes for the  
M /COX2 /n  sys tem for  n > l )  and the ar t i f ic ia l  se rver  approach must be combined wi th  
some means of  determining the s t a t e  o f  the  system. 

We begin by not ing t ha t  the  sys tem as shown in Figure 2 can be approx imated 
by tha t  in Figure 3. The approx imat ion is jus t i f ied  s ince the time spen t  by a t ask  
receiv ing serv ice  (as d is t inc t  from wai t ing in the queue) at  the  d ispa tcher  is negl ig i -  
ble compared to the memory se rv i ce  time. According to our approx imate model, an 
incoming task  wa i ts  in the  Memory-D ispatcher  (M.D.) queue, and, provided i t  is admit-  
ted  s rece ives serv ice  f i r s t  from the  memory and then is ass igned a processor  for  
execut ion .  Tasks are processed by the  M.D. only when the  number of  tasks  al ready 
admit ted is less than the  number of  processors.  The M.D. wa i ts  for  a processor  to 
become free, then begins to t r ans fe r  the  re levant  so f twa re  to the  ta rge t  processor.  

To analyze th is  model, we por t ray  i t  from two complementary points of  v iew. The 
f i rst ,  which is the  system.-orient~cl model is as in Figure 3. On the  other  hand, Figure 
4 dep ic ts  the sys tem as seen by an incoming task,  i.e., i t  is a tusk-orient~ed model. 
We consider  each of the models in turn. The sys tem-o r i en ted  model will f i r s t  be 
analyzed to provide quant i t ies  t ha t  wil l  then be used in the task -o r ien ted  model to 
obtain task  response time d is t r ibut ions.  

2 . 2 .  S y s t e m - O r i e n t e d  M o d e l  

Denote by pi. j ( t)  the  probabi l i ty  a t  t ime t t h a t  there  are i t asks  in the M.D. queue 
( including the  one receiv ing se rv i ce  at  memory if no blocking is tak ing place),  and 
tha t  j processors are execu t i ng  (i.e. the  appl icat ions so f tware  has been t rans fer red  
to these  j processors and ac tua l  execu t i on  is tak ing place).  In this sect ion,  we 
determine the s t e a d y - s t a t e  va lues  pt . j=t impi . j ( t ) .  7 

t-,o= - -  

Blocking of  incoming tasks  begins to  occur  when i+j=c and a new task  arr ives 
before any admit ted task  has been completed. 

Unless o therw ise  s ta ted ,  a var iab le in the sequel  is assumed to be zero if one or 
more of  i ts subscr ip t  indices become negat ive.  The s ta te - t r ans i t i on  diagram appears 
as Figure 5 and assuming s t e a d y - s t a t e  is achieved,  the fol lowing global ba lance 
equat ions can be wr i t ten  down: 

~P0.0 =/zp0,1 ( 1 ) 

(k+j/~)po.j = (j+l)/zPo.jtz +/~rnPIj-* for O<j<c (2) 

(~+c#)Po,¢ = /ZmPl.c-1 (3) 

(~+/~m)Pi,O = ~kPi-1,0+~Pi. I for  i>O (4 )  

(k+j/z+/Zm)Pi,j = hpi_l.j+/ZraPi+l,j-l+(j+l)/zpi.j÷l for O<j<c, i>O (s) 

6 A task Is said to be admi t ted  when i t  Is e i t he r  In  the p rocess  o f  access ing the common  memory  or  
execut ing  at a p rocessor .  

7 i t  Is assumed to b e g i n  w i t h  that these l im i t s  ex is t .  3ee Remark 2 be low.  
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(k+C/z)pi. c = ~kPi_l.c+~mPi+1.c_ I for i>O (6) 

The boundary condi t ion is: 

~Pi,i = I  (7 )  
i=O j=O 

TO so lve  for  Pi.j, we use the  method of generat ing func t ions .  
Def ine 

gj(z) = ~p~.jz' (s) 
i=O 

Using generat ing func t ions  and manipulat ing, we obta in the  fo l lowing recurs ion for  
0>1: 

g t ( z ) -  X(1-z)+um ~m u go(z) - -~- po.o (o) 

gj+1(z) = k(l-z)+j/~+/~m , ,  ,U,m 
gj~z; gi- ,(z) z~(j + i) 

/~m /am 
- /z(j+l)  Poj + z/z(j+l) Poj-I for O<j<c (10) 

~m 
go(z) = z [X(1-z )+cu]  go_~(z) - 

From (0 )  and (10 ) ,  we  have 
°--I 

gj(z) = Aj(z)go(z) + ~jBj,i(Z)Po.i 
i=0 

where the coe f f i c i en ts  are 
t < j - l :  

Ao(z) = I 

x(1-z)+t~ 
A,(z) = 

x(1-z)+j~+m. 
Aj+,(z) = /z(j+ i) 

x(1-z)+j~+~ 

k(1--Z) + j/z+/J, m 
Bj+~.j_~(z) = ~ ( j  + 1) 

B j + l j ( z )  - / ~  ~(j+l) 

/Zm 
z [X(1 -z )+cu]  P°'°-' 

def ined by the fol lowing 

zu(j + 1) Aj_~(z) 

ei.~(z) ~ z/~(j+ 1) sj_~.,(z) 

/Zm 
s j . j _ , ( z )  + z~(j + 1) 

for O~j<-c 

recurs ion for  

(11) 

(1 2) 

1 - - j < c  and 

, (18)  

In part icular ,  
¢--1 

go(z) = Ao(z)go(z) + E Bc.iPoa 
j=o 

Equat ing the  r igh t -hand sides of (1 1 ) and (1 4), we have:  

(1 4)  
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D --1 c--2 } 

(1 5) 

/Zm (1 6) D(z) = 

The only remaining unknowns are the P0.J for O_<i_<c-1. The equations required to 
solve for these are derived as follows. 

The boundary condition (7) yields the relation. 
C 
~gj(1) = I (1 7) 
j=0 

Also, the generating funct ions gj(z) must converge in the unit disc I zl___l. All poles of 
the generating funct ions lying in the unit disc must therefore be cancelled out by 
corresponding zeros. The use of this condition yields fur ther equations in the P0.i for 
O_<i_<c-1 by (1,5) since the zeros of the generating funct ion are funct ions of the 
values taken by the Po.i. Note that  no additional equations can be obtained from a 
further invocation of (10)  since the apparent additional pole at the origin in (10)  is 
cancelled out by a zero. 

I t  can be shown that  the above equations are suf f ic ient  to permit the computa- 
tion of the P0.i values. The generating funct ions g~(z) are therefore completely deter-  
mined. By invert ing them (numerically, in most instances),  the s teady  s ta te  probabili- 
t ies ~ Pi.j I can be obtained. 

Recall tha t  the above analysis is for c>1.  For the case when c=1 ( this is also a 
special case of the blocking problem considered in [ 6 ] ) ,  we have" 

z/~ma(z) -/~/zm 
P0,0 ZCX.(Z)am(Z)-/Z~m 

go(z) = 

and 

_ ~ m  g,(z) - am(z____/)/z g°(z) ~-'-Po.o 

where 

. ( z )  = x ( : - z )  + 

a n d  

am(Z ) = ~(1--Z) + JJ'm 

Po,o = 1 - + /J~ 

Rern.ark 1: The dispatcher queue in physical implementations is clearly f inite. How- 
ever, by making it su f f ic ient ly  large, say N, it may be considered pract ical ly inf inite as 

N c 
long as theprobab i l i t y  ~ ~pi , j . , is  acceptab ly  low. 

i=O j=O 
Rem.cLrk 2: In the above t reatment of the system-or iented model, the ex is tence  of a 
s teady -s ta te  has been implicitly assumed. That is, i t  is assumed tha t  l im p i j ( t  ) 
ex is ts .  From a theorem in s tochast ic  processes (see, for example, [ g ] ) ,  i t  ?bllows 
that  since the underlying Markov chain is irreducible and aperiodic, any solution of 
the balance equations tha t  also sa t is f ies  the boundary condition is unique and 
represents limp i j(t). 
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2 . 3 .  T a s k - O r i e n t e d  Model 

In this model, we employ an artificial s e r v e r  to account for blocking delay. This 
yields an approximate solution for the response time distribution. 

An incoming task  views the system as expressed in Figure 4. With a probability 
a, it is blocked. The blocking is expressed in terms of an art i f icial server, to which 
the incoming task branches if it f inds the system blocked, i.e., the service rate distr i -  
bution of the artif icial server is the same as the departure rate distribution for the 
tasks execut ing on the processors. When the service time at the processors is 
exponent ial ly distr ibuted, the artif icial server also has an exponent ial  service time 
distribution. 

Implicit in this analysis is the assumption that  the t ransients have died down and 
a condition representat ive of s t eady -s ta te  ex is ts  at all times. This is patent ly  not 
true. In most cases - -  considering that  controllers of this t ype  are generally lightly 
loaded - -  the probabil ity of blocking is very small. However, once a blocking cycle 
begins, the probabil i ty of its continuing is greater than a for obvious reasons. Even 
so, it is likely that  the transients in both the blocking or nonblocking mode will play a 
not inconsiderable role in determining the queue behaviour. This is especial ly the case 
when the input intensi ty is neither very  low nor near to driving the system into 
saturation. When in this intermediate range, one would expec t  the system to switch 
from the blocked to the unblocked s ta te  and vice versa with a fair ly high frequency. 
Hence, any model that  is based on the assumption of no transients would be 
expec ted  to provide less accurate results in the intermediate range of input intensity 
than in the extreme ranges. (Indeed, the relat ive accuracy between analytical 
results at two di f ferent intensit ies might be used to obtain some indication of the 
f requency with which the system swi tches from the blocked to the unblocked s ta te  
and vice versa). 

If we assume that  non-transient behaviour is exhib i ted at all times, the problem 
lends i tsel f  to a particularly simple solution and we obtain an approximation to the 
true solution. It will be shown by simulation that  this approximation yields reasonable 
results. 

Under the assumption of s teady -s ta te ,  the system may be regarded as the 
queueing network shown in Figure 4. The artif icial server  represents the blocking 
delay. Under the queueing rules for this model, there is no queueing for the proces- 
sors once memory access is completed; a task  is admitted into the memory only when 
there is a free processor ready and waiting for it. 

It only remains to compute the value of a and the artif icial service rate,/~as- 

It is easy to see that  

= : - E P~.J ( 1 8 )  

i+j~c 
and 

E j /~  Pij i+~c (1 9) 

/'/'as = ~,, Pij 
i+j~c 

If Rc(s) is the Laplace transform of the response time distribution for the tasks 
when the system has c processors functioning, we have= 

/~a +l--al- ~mq • ~ (201  
R~(s) = 0¢ s + / ~  ] s+/~mq s + ~  

where 
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/A a = /j.as-C~X 

and 

/Zmq = /Zm-k 

The response time dens i ty  func t ion  for  c>O is obta ined by inver t ing Re(s). 

(21~ 

2,4 .  Val idation 

In an a t tempt  to va l ida te  the  analy t ica l  resu l ts  obta ined above,  a mul t iprocessor  
wi th three processors was considered.  

As a reference,  a GPSS simulat ion model was deve loped for  the system.  The 
input in tens i t y  was var ied over  a wide range and resu l ts  obta ined through simulation 
compared wi th those obta ined from analysis.  In Table 1, we p resen t  the  mean 
response times from the  simulat ion and the analysis.  

Throughout the range of  in tens i t ies  s tudied,  the ana ly t ica l  and simulat ion resul ts  
were accep tab ly  close ( to wi th in 10% in most cases) .  

2.5 .  Non-exponent ia l  Serv ice  Rates 

While the  ex t reme comp lex i t y  of analyzing sys tems w i th  blocking and general  
serv ice d is t r ibut ions forces the  ana lys t  to assume exponen t ia l  se rv ice  d is t r ibut ions,  
it is common knowledge tha t  programs on many occas ions  have non-exponen t ia l  ser -  
v ice requirements. This can be modelled by equat ing the mean of the  actua l  se rv ice  
time to a f ic t i t ious  exponent ia l  quant i ty .  In such ins tances,  the sens i t i v i t y  of the  
model to th is  inaccuracy  is crucial,  s 

We t e s t  the robus tness  of  our model to non -exponen t ia l  se rv ice  time d is t r ibu-  
t ions by assuming those to be Weibull, which is a more general  d is t r ibut ion than the 
exponent ia l .  This d is t r ibut ion has the  d is t r ibut ion funct ion  Fwe( t )= l -e - (¢On.  The mean 
is 

l ~ e  = 7 ( ( ~ 7 + 1 ) 1 ~ ) 1  ¢ 

and the  var iance is 

o &  = [~ ( ( , ;+  2 ) t  ~ ) - r ~ ( ( ~ +  1 ) / U ) } / < - 2  

where F(-) is the gamma funct ion.  

The exponent ia l  and the Rayleigh d is t r ibut ions are spec ia l  cases  of the  Weibull, 
obtained by se t t ing  ~7=1, and U=2, respec t i ve ly .  When ~7<1, the  var iance is greater  
than the mean, when U= I ,  the  var iance equals the mean, and when 7 > 1 ,  the  var iance 
is less than the mean. 

Our t es t  for  model robustness takes  the form of p lot t ing the rat io of  the mean 
response t ime when fi is 0 .5  and 0.7 respec t i ve l y  to when ~7=1 (i.e., the exponent ia l  
d ist r ibut ion).  The mean response time s t a y s  close to the exponen t ia l  va lue for a rela- 
t i ve ly  large value of nominal input  in tens i ty .  As e x p e c t e d ,  at high in tens i t ies ,  there  is 
a marked d ivergence from the  value predic ted by the  exponen t ia l  d ist r ibut ion.  How- 
ever, in cr i t ical  control  appl icat ions,  the ut i l izat ion is almost a lways  very  low to allow 
su f f i c ien t l y  broad margins of sa fe ty .  Note that  the  ac tua l  input  i n tens i t y  is greater  
than the nominal value as def ined in Figure 6, obta ined b y c o m p u t e r  simulation. 

a Indeed, the success of  such models as the central server Is due In a large measure to a re lat ive in-  
sensi t iv i ty  to this inaccuracy. 
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8. Discussion 

In this paper, we have presented a logical taxonomy for multiprocessor systems 
used in control applications, and analyzed one important class. It is clear from the 
model developed here that  what is 'obtained is an upper bound for the actual 
response times. There are two queues in this system: one in front of the artif icial 
server and the other in front of the Memory-Dispatcher. The model incorporates both 
queues since when blocking occurs the task at the head-of- the- l ine (H.O.L.) position 
is waiting for the f i rst  of the tasks admitted to the system to leave so that  it can be 
unblocked and begin to access the M.D. Tasks that have entered the queue af ter  the 
H.O.L. task have this lat ter task as an additional impediment to entry into the system. 
The system represented in Figure 4 follows immediately from the above argument. 

Implicit to this model is the assumption of independence between the M.D. and 
the processors. This is clearly a simplification, the blocking ensures that  no such 
independence ex is ts .  Due to the correlation between the ac t iv i ty  of the M.D. and the 
processors, the model tends to overest imate the response times. A more accurate 
model should attempt to deal with this by subtract ing a correction term to account for 
the correlation. 

Extension to Type l b  systems with I / 0  represented by paging and admitting of 
multiprogramming, although nontrivial, is not diff icult. One would have here three 
classes of jobs: one in front of, or being served by, the memory-dispatcher, one 
undergoing service, and the third class consisting of jobs either being served by the 
memory af ter  receiving a portion of their service at the processor or waiting to reac- 
cess the processor. It is also not di f f icult  to think of a number of d i f ferent systems 
based on variations of the above basic theme. For instance, one might obtain new 
models based on assigning priorities to the tasks, in a l l  these cases, the artif icial 
server approach can be used to advantage. 

Taking account of multiple job classes with FCFS service and no priority dist inc- 
tion between the classes is, however, very di f f icul t  to do exac t l y  since an 
unmanageably large number of s ta tes  results. Suitable approximations must there-  
fore be sought. These are likely to be only moderately accurate. One approach might 
be to use clustering techniques to ident i fy "metaclasses" (groups of classes) and 
then to employ some averaging techniques. 9 This method should be reasonably accu- 
rate at low intensit ies. At high intensit i tes, an approach based on the diffusion 
approximation should be explored. 

Also, the reader should bear in mind that  we have analyzed a logical  family of 
computer systems. This analysis is therefore valid for a wide range of phys ica l  imple- 
mentations. 

The model presented provides not only the mean response times, but is also a 
means to obtain the response time distribution. This response time distribution, once 
obtained, can be used in a number of ways. As already mentioned, we showed in [ 2 ]  
how response time distributions together  with a probabilistic model of the computer 
and a full mathematical description of the control application can be processed to 
provide rigorous and ob ject ive means for evaluating the performance of a real-time 
multiprocessor system i n  the con tex t  of  i t s  appl icat ion.  

Tradeoffs can also be studied and the multiprocessor system refined thereby. 
For example, one might consider trading off  processor nuTrLber against processor 

[ 7]. 

@ For  an example  of  a ra ther  s imp le  averag ing  techn ique  used in  a s l i gh t l y  d i f f e r e n t  context ,  s e e  

[707 
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Table l. Compar i son  of Analyt ical  and S imula t ion  Mean Response  Time 

Analytical (x I0 -s] 

72. i 

Simulation (x 1 O-S),.. 
2.0 71.7 

4.0 76.6 72.3 

6.0 79.4 73.3 

8.0 82.0 74.4 

i0.0 84.9 75.6 

12.0 88.0 77.9 
14.0 91.3 80.8 
16.0 95,2 83.6 

18.0 99.8 86,5 

20.0 105.3 92.9 

28.0 
24.0 

112.1 98.4 

120.6 108.2 

131.9 ~6.0 121.4 

,U, = 20.0, ~m =50.0, c =3 

189 


