
Q U E U E I N G A N A L Y S I S OF A C A N O N I C A L M O D E L OF R E A L - T I M E

M U L T I P R O C E S S O R S

C. M. Krishna and K. G. Shin

Computing Research Labora tory
Depar tment of Electr ical and Computer Engineer ing

The Un ivers i ty of Michigan
Ann Arbor, Michigan 4 8 1 0 9

. ~ S ' t S ~ C T

Mul t iprocessors are beginning to be regarded increas ing ly f avo rab l y as cand i -
dates for contro l lers in cr i t i ca l rea l - t ime contro l app l ica t ions such as a i rcraf t . Their
considerable t o l e r a n c e of component fa i lures t oge the r w i th the i r g reat potent ia l for
high th roughput are con t r i bu to ry fac to rs .

In th is paper, we p resen t f i r s t a logical c lass i f i ca t ion of mul t iprocessor s t r uc -
tures wi th contro l app l ica t ions in mind. We point out t ha t one important subc lass has
hi therto been neg lec ted by the ana lys ts . This is a c lass of sys tems w i th a common
memory, minimal in te rp rocessor communicat ion and pe r fec t p rocessor symmetry.

The per formance cha rac te r i s t i c of the g rea tes t impor tance in real - t ime appl ica-
t ions is the response t ime d is t r ibut ion. Indeed, we have shown in a separa te paper
[2] how i t is possib le to charac te r i ze r igorously and ob jec t i ve l y the per formance of a
real-t ime mul t iprocessor g iven the appl icat ion and the mul t iprocessor response time
distr ibut ion and component fa i lu re charac te r i s t i cs . We the re fo re p resen t here a com-
putat ion of the response time d is t r ibut ion for a canonical model of rea l - t ime mult ipro-
c e s s o r .

To do so, we approx imate the mul t iprocessor by a b locking model and present a
means for e f f i c i en t analys is . Two sepa ra te models are der ived: one c rea ted from the
sys tem's point of v iew, and the o ther from t h e point o f v i ew of an incoming task. The
former model is analyzed along largely convent iona l l ines. For t he la t te r model, an
a r t i f i c ~ z l serueT- is used, and the sys tem is t ransformed into a queueing network.

I This work was supported tn part by NASA Grant No. NAG 1-296. Any opinions, f ind ings, and conclu-
sions or recommendations expressed here are those of the authors and do not necessarily re f lect the views
of NASA.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-112-1/83/008/0175 $00.75

175

1. In t roduct ion

With semiconductor component c o s t s fa l l ing and m i c r o p r o c e s s o r s becoming ever
more rel iable and powerful , mul t iprocessors are beginning to be a t t r a c t i v e for a
va r i e t y of appl icat ions. One of the major hurdles encoun te red in genera l -purpose
appl icat ions is the task of optimal (or sub-opt imal) program par t i t ion ing. .Para l le l iz ing
compilers t ha t t rans la te code wr i t t en in von-Neumann languages to exp lo i t any poss i -
ble parallel ism are f requen t l y ine f f i c ien t in the sense t ha t t he compiler overhead is
usual ly considerable and tha t i t is d i f f icu l t , if not impossible, to f ind eve ry possib le
parallelism.

However, the re are appl icat ions where program par t i t ion ing ar ises qui te natura l ly
and no paral lel iz ing compiler is necessary . One such appl icat ion is real - t ime control ,
where the global control func t ion d iv ides natura l ly into weak l y in te rac t ing taslcs or
¢ t o m j ~ n c t i o ~ s [1] . Indeed, i t is proper to regard the contro l func t ion as a we l l -
def ined se t of taslcs, each re la t i ve ly independent of the o thers . The t asks can be
t r iggered by a va r i e t y of sources: envi ronmental st imuli, t imers, or operators , and
correspond to some spec i f i c so f twa re packages being run. In most cases, the
t r igger ing by st imuli is random 2 and can be charac te r i zed by probabi l i ty d is t r ibut ions.
The major c h a r a c t e r i s t i c s of a mul t iprocessor contro l sys tem are the re fo re tha t (a)
the contro l func t ion c o n s i s t s of a number of weak l y - i n te rac t i ng and we l l -de f ined
tasks , and (b) the load can be charac ter ized s t o c h a s t i c a l l y with reasonable a c c u -
racy. The second charac te r i s t i c enables us to obtain p e r f o r m a n c e eva luat ions more
accu ra te l y than would o therw ise be the case; whi le the f i r s t in f luences the a rch i tec -
t u re of the in terconnect ion s t ruc tu re .

How well a mul t iprocessor contro l ler performs c lear ly depends on the requi re-
ments of the appl icat ion. We showed in [2] how contro l ler per formance could be
r igorously and ob jec t i ve l y eva luated, given the cont ro t a p p l i c a t i o n and mul t iprocessor
response t ime dist r ibut ion. Keeping th is foundat ion in mind, we eva lua te in th is paper
the per formance of a canonical model of m u l t i p r o c e s s o r s for real - t ime control .

Because the ent i re se t of programs tha t the contro l sys tem wil l ever e x e c u t e is
we l l -de f ined, t he designer has an opt ion: the sys tem can e i ther have a common, or
mass, memory t ha t conta ins all t he a p p l i c a t i o n s so f twa re - - thus requir ing the

t rans fe r of the re levan t so f tware upon a t ask t r igger 3 - - or eve ry p rocessor can hold
in i ts p r i va te memory all the appl icat ions so f twa re i t wil l ever need. The la t te r a l te r -
na t i ve el iminates the need to t rans fe r so f tware , thus reducing overal l response time.
Choosing th is a l te rna t i ve p resen ts the designer w i th two sub -a l t e rna t i ves : e i ther
provide each processor w i th a p r i va te memory so large tha t the s e t of contro l pro-
grams required in the control of the process can be held in i t in i ts en t i re ty , or preal -
locate tasks to spec i f i c processors.

Based on the above observat ion, the fo l lowing can be cons idered to be canoni -
cal logical models of mu l t i p rocesso rs used in rea l - t ime control .

T~jpe 1: A Type 1 mul t iprocessor contro l ler is one in which the processors do not spe -
cial ize; in o ther words, tasks are not reserved for spec i f i c p rocessor s , and each pro-
cessor in the sys tem may be a l located any task. The p rocess of t ask al locat ion is
t yp i ca l l y dynamic. This t ype is d iv ided into two subc lasses depending on the size of
p rocessors ' p r i va te memory. In a Type] a system, the p r i va te memory of the proces-
sors is large enough to hold both the appl icat ions and e x e c u t i v e so f tware in i ts

2 In the case of timer-generated triggers, the triggering is determinlatic, but this can be regarded as
a special case of random triggering.

3 The operating environment is modelled as the source of a stream of tcs/c tTiggeT"s, I.e. stimuli that
c a u s e a particular set of tasks to be performed by the multiprocessor.

176

ent i re ty . 4 This sys tem is ideal for appl icat ions in which a small number of re la t ive ly
independent and small t asks form the job mix. One example o f the Type l a sys tem is
the CM2FCS [8] sys tem of the United S ta tes Air Force.

In a Type lb sys tem on the other hand, the p r i va te memory is too small to hold
all the appl icat ions so f tware and requires the t rans fe r of so f twa re wi th each task
tr igger. This t rans fe r can be e i ther single, or invo lve paging.

The t radeo f f be tween requirements of memory s ize and task execu t i on time in
th is subc lass i f i ca t ion is clear. As a general rule, the processors a l located a task e x e -
cute it in i ts en t i re ty w i thou t in ter rupt ion unless some of the processors fai l . There is
thus l i t t le or no in terac t ion be tween the individual processors in th is t ype of system.

The bes t known implementat ion of the Type l b s t ruc tu re is the Draper
Laboratory 's Faul t -To lerant Mul t ip rocessor (FTMP) [5] .

Type 2: In a Type 2 system, the processors are prea l located spec i f i c t asks (or sub-
t asks) and the so f tware re la ted to these is loaded in the i r p r i va te memory. With the
ident i f icat ion o f spec i f i c tasks wi th par t icu lar processors comes the problem of real -
locat ion of t asks on processor fai lure. Thus, the sys tem of th is t ype is too in f lex ib le
to easi ly reconf igure i tse l f upon fai lure but i ts re l iabi l i ty is obta ined in general through
physical redundancy in sys tem components. In general, Type 2 is used when the
individual t asks have s ign i f i can t l y d i f fe ren t t i m e / s a f e t y c r i t i ca l i t y (e.g. f l ight contro l
and navigat ion tasks in a i rc ra f t appl icat ions) . Processor in teract ion can be cons ider-
able.

Type 3: A Type 3 sys tem is a composi te of a Type 1 and a Type 2 system.

Figure 1 shows graphica l ly the above c lass i f i ca t ion of mul t iprocessors. Notice
tha t the c lass i f i ca t ion is logical and is d i f fe ren t from most convent iona l ones tha t
are usual ly based on phys ica l in terconnect ion s t ruc tu res .

A considerable body of l i te ra ture has developed around the problem of analyzing
mult iprocessors. Almost invar iably, the procedure is to use a Markov model of the s y s -
tem to so lve for such performance measures as throughput , re l iabi l i ty , , avai labi l i ty ,
etc. Type l a sys tems have been the focus of a great deal of a t ten t ion . The t e n -
dency of almost all authors is to assume ident ical p rocessors and an ident ical
exponent ia l se rv ice t ime d is t r ibut ion for all job c lasses, upon which the sys tem
degenera tes into an M / M / m queue. This analys is is then embedded in a determina-
t ion of the mul t iprocessor performance. One good example is the work on c losed- form
est imat ions of per formabi l i ty by Meyer [3] .

Type 2 sys tems can be modelled as queueing networks , and there is a large
body of l i te ra ture on th is topic.

Type l b, however , has been almost to ta l l y neglected. This is odd, consider ing
tha t one of the few mul t iprocessors ac tua l l y to be cons t ruc ted (i.e. FTMP[5]) is an
example of th is t ype of sys tem. Also, i t is l ikely t ha t Type l b sys tems wil l grow in
importance as time progresses s ince i t is ideal when the job mix is composed of a
large number of tasks , each cal led re la t i ve ly infrequently. Again, the analys is of
Type 3 sys tems requires, as a prerequis i te, the analys is of Type 1 sys tems. In this
paper, we shal l analyze an important subc lass of the Type 1 b sys tem.

This paper is organized as fol lows. In Sect ion 2, we analyze an important sub-
c lass of mul t iprocessors, obta in ing an. approx imate express ion for i ts response time.
We conclude in Sect ion 3 by descr ib ing br ie f ly some ex tens ions of th is work

4 Wi th memory dens i t ies r i s i n g and costs fa l l i ng , th is may be no l o n g e r as expens ive as i t once
seemed.

177

present l y being under taken, and the i r impl icat ions for rea l - t ime mul t iprocessor design.

2. Response-T ime Ana lys is o f Type l b System Without Paging

2.1. Description of the Real -T ime M u l t i p r o c e s s o r

The mul t iprocessor we analyze is shown in Figure 2. I t has a d ispa tcher a l loca t -
ing tasks to c ident ical processors. 5 Serv ice at the d ispa tcher is FCFS, and all t he
t asks p lace an ident ica l (s t a t i s t i ca l l y speak ing) demand upon the computat iona l
resources of the system.

When a processor is ass igned a task, i t f i r s t sends to the common mass memory
for the re levan t appl icat ions so f tware . This is the only re fe rence the processor
makes to the common memory during a single execu t ion . Task arr ival is modelled as a
Poisson process wi th rate ;~, and all se rv ice time d is t r ibut ions are exponen t ia l (in t he
sequel we also consider non -exponen t ia l se rv i ce t imes): a t t h e processors the mean
se rv i ce ra te is /4 and at the memory the mean so f twa re t rans fe r ra te (per task) is
/z m. Note t h a t / z represents the ac tua l execu t i on ra te for an indiv idual t a s k on a s in -
gle processor ; i t does not take into accoun t so f twa re t r ans fe r time.

A point t ;~ci t ly made in almost all work in th is area is t ha t the input process is
Poisson, and t h a t all se rv ice t imes are exponent ia l . The pr incipal reasons for such an
assumpt ion are tha t (i) whi le both input and serv ice d is t r ibu t ions are non -exponen t i a l
in p rac t ice , t h e y can sometimes be approx imated wel l by Poisson and exponen t ia l
assumpt ions, and (i i) tha t analys is of a sys tem wi th general arr ival and serv ice d is t r i -
but ions is almost impossibly d i f f icu l t .

The f i r s t po int ensures t ha t the exponen t ia l assumpt ion leads to at least ' an
approx imate model of real i ty . I t is important , however , to check th is f a c t for each
par t icu lar model by employing a l te rna t i ve approaches, eg., s imulat ion. In th is paper,
we car ry ou t th is task by means of a simulat ion program tha t assumes Weibull se rv ice
d is t r ibut ions. The exponent ia l d is t r ibu t ion is a spec ia l case of the Weibull . By vary ing
the s tandard dev iat ion of the serv ice dis t r ibut ion whi le keeping the mean cons tan t ,
we obtain an indicat ion of the range of input in tens i t ies for which the exponen t ia l
assumption is a good approximat ion.

In th is model, there is the problem of s imul taneous possess ion of resources by
the tasks . That is, there is a per iod when, immediately a f te r being a l located a p roces -
sor by the d ispatcher , the processor queues up for se rv i ce a t the common memory for
the app l ica t ions so f tware . During th is period, the processor is fo rced to remain idle.
The p resen t sys tem does not invo lve multiprogramming.

Since there is a period when a t ask is in possess ion of both a p rocessor and the
common memory, th is mul t iprocessor does not f i t into any of the we l l -behaved queue-
ing models (such as M /M/m, G /M/m, etc .) . There are two approaches to obta in ing a
solut ion for the response t ime d is t r ibut ion. The f i rs t is i teTat ive and employs the
method of sur rogate servers as in [4] . The second, which we present here, also
Involves sur rogate or ar t i f ic ia l se rve rs but is non-~terat ive in nature. I t cons is ts of
approx imat ing the mul t iprocessor by a model in which s imul taneous possess ion of
resources does not occur, but where block ing t akes place. We have thus t rans la ted
our problem into the c o n t e x t of a blocking model. An impor tant consequence of th is
is t ha t the analys is of the case where paging is al lowed for can be handled by an
immediate ex tens ion of th is approach. To so lve th is problem, we employ artificial
se~uevs. Art i f ic ia l or f i c t i t i ous se rve rs have been used in a-number of models. In [6] ,
t h e y are employed in the ana lys is of an open queue ing ne twork with" blocking. Our
analysis, a l though super f ic ia l ly similar, is non- i te ra t i ve and t rea ts a sys tem wi th
paral lel se rvers w i th blocking. In such a se t t ing , the i t e ra t i ve techn ique p resen ted in

5. Since processors may fa l l du r ing a miss ion l i f e t ime, c Is a random varlab/e.

178

[f l] is not appl icable (w i thou t ana ly t i ca l exp ress ions for the response t imes for the
M /COX2 /n sys tem for n > l) and the ar t i f ic ia l se rver approach must be combined wi th
some means of determining the s t a t e o f the system.

We begin by not ing t ha t the sys tem as shown in Figure 2 can be approx imated
by tha t in Figure 3. The approx imat ion is jus t i f ied s ince the time spen t by a t ask
receiv ing serv ice (as d is t inc t from wai t ing in the queue) at the d ispa tcher is negl ig i -
ble compared to the memory se rv i ce time. According to our approx imate model, an
incoming task wa i ts in the Memory-D ispatcher (M.D.) queue, and, provided i t is admit-
ted s rece ives serv ice f i r s t from the memory and then is ass igned a processor for
execut ion . Tasks are processed by the M.D. only when the number of tasks al ready
admit ted is less than the number of processors. The M.D. wa i ts for a processor to
become free, then begins to t r ans fe r the re levant so f twa re to the ta rge t processor.

To analyze th is model, we por t ray i t from two complementary points of v iew. The
f i rst , which is the system.-orient~cl model is as in Figure 3. On the other hand, Figure
4 dep ic ts the sys tem as seen by an incoming task, i.e., i t is a tusk-orient~ed model.
We consider each of the models in turn. The sys tem-o r i en ted model will f i r s t be
analyzed to provide quant i t ies t ha t wil l then be used in the task -o r ien ted model to
obtain task response time d is t r ibut ions.

2 . 2 . S y s t e m - O r i e n t e d M o d e l

Denote by pi. j (t) the probabi l i ty a t t ime t t h a t there are i t asks in the M.D. queue
(including the one receiv ing se rv i ce at memory if no blocking is tak ing place), and
tha t j processors are execu t i ng (i.e. the appl icat ions so f tware has been t rans fer red
to these j processors and ac tua l execu t i on is tak ing place). In this sect ion, we
determine the s t e a d y - s t a t e va lues pt . j=t impi . j (t) . 7

t-,o= - -

Blocking of incoming tasks begins to occur when i+j=c and a new task arr ives
before any admit ted task has been completed.

Unless o therw ise s ta ted , a var iab le in the sequel is assumed to be zero if one or
more of i ts subscr ip t indices become negat ive. The s ta te - t r ans i t i on diagram appears
as Figure 5 and assuming s t e a d y - s t a t e is achieved, the fol lowing global ba lance
equat ions can be wr i t ten down:

~P0.0 =/zp0,1 (1)

(k+j/~)po.j = (j+l)/zPo.jtz +/~rnPIj-* for O<j<c (2)

(~+c#)Po,¢ = /ZmPl.c-1 (3)

(~+/~m)Pi,O = ~kPi-1,0+~Pi. I for i>O (4)

(k+j/z+/Zm)Pi,j = hpi_l.j+/ZraPi+l,j-l+(j+l)/zpi.j÷l for O<j<c, i>O (s)

6 A task Is said to be admi t ted when i t Is e i t he r In the p rocess o f access ing the common memory or
execut ing at a p rocessor .

7 i t Is assumed to b e g i n w i t h that these l im i t s ex is t . 3ee Remark 2 be low.

179

',i

(k+C/z)pi. c = ~kPi_l.c+~mPi+1.c_ I for i>O (6)

The boundary condi t ion is:

~Pi,i = I (7)
i=O j=O

TO so lve for Pi.j, we use the method of generat ing func t ions .
Def ine

gj(z) = ~p~.jz' (s)
i=O

Using generat ing func t ions and manipulat ing, we obta in the fo l lowing recurs ion for
0>1:

g t (z) - X(1-z)+um ~m u go(z) - -~- po.o (o)

gj+1(z) = k(l-z)+j/~+/~m , , ,U,m
gj~z; gi- ,(z) z~(j + i)

/~m /am
- /z(j+l) Poj + z/z(j+l) Poj-I for O<j<c (10)

~m
go(z) = z [X(1-z)+cu] go_~(z) -

From (0) and (10) , we have
°--I

gj(z) = Aj(z)go(z) + ~jBj,i(Z)Po.i
i=0

where the coe f f i c i en ts are
t < j - l :

Ao(z) = I

x(1-z)+t~
A,(z) =

x(1-z)+j~+m.
Aj+,(z) = /z(j+ i)

x(1-z)+j~+~

k(1--Z) + j/z+/J, m
Bj+~.j_~(z) = ~ (j + 1)

B j + l j (z) - / ~ ~(j+l)

/Zm
z [X(1 -z)+cu] P°'°-'

def ined by the fol lowing

zu(j + 1) Aj_~(z)

ei.~(z) ~ z/~(j+ 1) sj_~.,(z)

/Zm
s j . j _ , (z) + z~(j + 1)

for O~j<-c

recurs ion for

(11)

(1 2)

1 - - j < c and

, (18)

In part icular ,
¢--1

go(z) = Ao(z)go(z) + E Bc.iPoa
j=o

Equat ing the r igh t -hand sides of (1 1) and (1 4), we have:

(1 4)

180

D --1 c--2 }

(1 5)

/Zm (1 6) D(z) =

The only remaining unknowns are the P0.J for O_<i_<c-1. The equations required to
solve for these are derived as follows.

The boundary condition (7) yields the relation.
C
~gj(1) = I (1 7)
j=0

Also, the generating funct ions gj(z) must converge in the unit disc I zl___l. All poles of
the generating funct ions lying in the unit disc must therefore be cancelled out by
corresponding zeros. The use of this condition yields fur ther equations in the P0.i for
O_<i_<c-1 by (1,5) since the zeros of the generating funct ion are funct ions of the
values taken by the Po.i. Note that no additional equations can be obtained from a
further invocation of (10) since the apparent additional pole at the origin in (10) is
cancelled out by a zero.

I t can be shown that the above equations are suf f ic ient to permit the computa-
tion of the P0.i values. The generating funct ions g~(z) are therefore completely deter-
mined. By invert ing them (numerically, in most instances), the s teady s ta te probabili-
t ies ~ Pi.j I can be obtained.

Recall tha t the above analysis is for c>1. For the case when c=1 (this is also a
special case of the blocking problem considered in [6]) , we have"

z/~ma(z) -/~/zm
P0,0 ZCX.(Z)am(Z)-/Z~m

go(z) =

and

_ ~ m g,(z) - am(z____/)/z g°(z) ~-'-Po.o

where

. (z) = x (: - z) +

a n d

am(Z) = ~(1--Z) + JJ'm

Po,o = 1 - + /J~

Rern.ark 1: The dispatcher queue in physical implementations is clearly f inite. How-
ever, by making it su f f ic ient ly large, say N, it may be considered pract ical ly inf inite as

N c
long as theprobab i l i t y ~ ~pi , j . , is acceptab ly low.

i=O j=O
Rem.cLrk 2: In the above t reatment of the system-or iented model, the ex is tence of a
s teady -s ta te has been implicitly assumed. That is, i t is assumed tha t l im p i j (t)
ex is ts . From a theorem in s tochast ic processes (see, for example, [g]) , i t ?bllows
that since the underlying Markov chain is irreducible and aperiodic, any solution of
the balance equations tha t also sa t is f ies the boundary condition is unique and
represents limp i j(t).

181

2 . 3 . T a s k - O r i e n t e d Model

In this model, we employ an artificial s e r v e r to account for blocking delay. This
yields an approximate solution for the response time distribution.

An incoming task views the system as expressed in Figure 4. With a probability
a, it is blocked. The blocking is expressed in terms of an art i f icial server, to which
the incoming task branches if it f inds the system blocked, i.e., the service rate distr i -
bution of the artif icial server is the same as the departure rate distribution for the
tasks execut ing on the processors. When the service time at the processors is
exponent ial ly distr ibuted, the artif icial server also has an exponent ial service time
distribution.

Implicit in this analysis is the assumption that the t ransients have died down and
a condition representat ive of s t eady -s ta te ex is ts at all times. This is patent ly not
true. In most cases - - considering that controllers of this t ype are generally lightly
loaded - - the probabil ity of blocking is very small. However, once a blocking cycle
begins, the probabil i ty of its continuing is greater than a for obvious reasons. Even
so, it is likely that the transients in both the blocking or nonblocking mode will play a
not inconsiderable role in determining the queue behaviour. This is especial ly the case
when the input intensi ty is neither very low nor near to driving the system into
saturation. When in this intermediate range, one would expec t the system to switch
from the blocked to the unblocked s ta te and vice versa with a fair ly high frequency.
Hence, any model that is based on the assumption of no transients would be
expec ted to provide less accurate results in the intermediate range of input intensity
than in the extreme ranges. (Indeed, the relat ive accuracy between analytical
results at two di f ferent intensit ies might be used to obtain some indication of the
f requency with which the system swi tches from the blocked to the unblocked s ta te
and vice versa).

If we assume that non-transient behaviour is exhib i ted at all times, the problem
lends i tsel f to a particularly simple solution and we obtain an approximation to the
true solution. It will be shown by simulation that this approximation yields reasonable
results.

Under the assumption of s teady -s ta te , the system may be regarded as the
queueing network shown in Figure 4. The artif icial server represents the blocking
delay. Under the queueing rules for this model, there is no queueing for the proces-
sors once memory access is completed; a task is admitted into the memory only when
there is a free processor ready and waiting for it.

It only remains to compute the value of a and the artif icial service rate,/~as-

It is easy to see that

= : - E P~.J (1 8)

i+j~c
and

E j /~ Pij i+~c (1 9)

/'/'as = ~,, Pij
i+j~c

If Rc(s) is the Laplace transform of the response time distribution for the tasks
when the system has c processors functioning, we have=

/~a +l--al- ~mq • ~ (201
R~(s) = 0¢ s + / ~] s+/~mq s + ~

where

182

/A a = /j.as-C~X

and

/Zmq = /Zm-k

The response time dens i ty func t ion for c>O is obta ined by inver t ing Re(s).

(21~

2,4 . Val idation

In an a t tempt to va l ida te the analy t ica l resu l ts obta ined above, a mul t iprocessor
wi th three processors was considered.

As a reference, a GPSS simulat ion model was deve loped for the system. The
input in tens i t y was var ied over a wide range and resu l ts obta ined through simulation
compared wi th those obta ined from analysis. In Table 1, we p resen t the mean
response times from the simulat ion and the analysis.

Throughout the range of in tens i t ies s tudied, the ana ly t ica l and simulat ion resul ts
were accep tab ly close (to wi th in 10% in most cases) .

2.5 . Non-exponent ia l Serv ice Rates

While the ex t reme comp lex i t y of analyzing sys tems w i th blocking and general
serv ice d is t r ibut ions forces the ana lys t to assume exponen t ia l se rv ice d is t r ibut ions,
it is common knowledge tha t programs on many occas ions have non-exponen t ia l ser -
v ice requirements. This can be modelled by equat ing the mean of the actua l se rv ice
time to a f ic t i t ious exponent ia l quant i ty . In such ins tances, the sens i t i v i t y of the
model to th is inaccuracy is crucial, s

We t e s t the robus tness of our model to non -exponen t ia l se rv ice time d is t r ibu-
t ions by assuming those to be Weibull, which is a more general d is t r ibut ion than the
exponent ia l . This d is t r ibut ion has the d is t r ibut ion funct ion Fwe(t)= l -e - (¢On. The mean
is

l ~ e = 7 ((~ 7 + 1) 1 ~) 1 ¢

and the var iance is

o & = [~ ((, ;+ 2) t ~) - r ~ ((~ + 1) / U) } / < - 2

where F(-) is the gamma funct ion.

The exponent ia l and the Rayleigh d is t r ibut ions are spec ia l cases of the Weibull,
obtained by se t t ing ~7=1, and U=2, respec t i ve ly . When ~7<1, the var iance is greater
than the mean, when U= I , the var iance equals the mean, and when 7 > 1 , the var iance
is less than the mean.

Our t es t for model robustness takes the form of p lot t ing the rat io of the mean
response t ime when fi is 0 .5 and 0.7 respec t i ve l y to when ~7=1 (i.e., the exponent ia l
d ist r ibut ion). The mean response time s t a y s close to the exponen t ia l va lue for a rela-
t i ve ly large value of nominal input in tens i ty . As e x p e c t e d , at high in tens i t ies , there is
a marked d ivergence from the value predic ted by the exponen t ia l d ist r ibut ion. How-
ever, in cr i t ical control appl icat ions, the ut i l izat ion is almost a lways very low to allow
su f f i c ien t l y broad margins of sa fe ty . Note that the ac tua l input i n tens i t y is greater
than the nominal value as def ined in Figure 6, obta ined b y c o m p u t e r simulation.

a Indeed, the success of such models as the central server Is due In a large measure to a re lat ive in-
sensi t iv i ty to this inaccuracy.

183

8. Discussion

In this paper, we have presented a logical taxonomy for multiprocessor systems
used in control applications, and analyzed one important class. It is clear from the
model developed here that what is 'obtained is an upper bound for the actual
response times. There are two queues in this system: one in front of the artif icial
server and the other in front of the Memory-Dispatcher. The model incorporates both
queues since when blocking occurs the task at the head-of- the- l ine (H.O.L.) position
is waiting for the f i rst of the tasks admitted to the system to leave so that it can be
unblocked and begin to access the M.D. Tasks that have entered the queue af ter the
H.O.L. task have this lat ter task as an additional impediment to entry into the system.
The system represented in Figure 4 follows immediately from the above argument.

Implicit to this model is the assumption of independence between the M.D. and
the processors. This is clearly a simplification, the blocking ensures that no such
independence ex is ts . Due to the correlation between the ac t iv i ty of the M.D. and the
processors, the model tends to overest imate the response times. A more accurate
model should attempt to deal with this by subtract ing a correction term to account for
the correlation.

Extension to Type l b systems with I / 0 represented by paging and admitting of
multiprogramming, although nontrivial, is not diff icult. One would have here three
classes of jobs: one in front of, or being served by, the memory-dispatcher, one
undergoing service, and the third class consisting of jobs either being served by the
memory af ter receiving a portion of their service at the processor or waiting to reac-
cess the processor. It is also not di f f icult to think of a number of d i f ferent systems
based on variations of the above basic theme. For instance, one might obtain new
models based on assigning priorities to the tasks, in a l l these cases, the artif icial
server approach can be used to advantage.

Taking account of multiple job classes with FCFS service and no priority dist inc-
tion between the classes is, however, very di f f icul t to do exac t l y since an
unmanageably large number of s ta tes results. Suitable approximations must there-
fore be sought. These are likely to be only moderately accurate. One approach might
be to use clustering techniques to ident i fy "metaclasses" (groups of classes) and
then to employ some averaging techniques. 9 This method should be reasonably accu-
rate at low intensit ies. At high intensit i tes, an approach based on the diffusion
approximation should be explored.

Also, the reader should bear in mind that we have analyzed a logical family of
computer systems. This analysis is therefore valid for a wide range of phys ica l imple-
mentations.

The model presented provides not only the mean response times, but is also a
means to obtain the response time distribution. This response time distribution, once
obtained, can be used in a number of ways. As already mentioned, we showed in [2]
how response time distributions together with a probabilistic model of the computer
and a full mathematical description of the control application can be processed to
provide rigorous and ob ject ive means for evaluating the performance of a real-time
multiprocessor system i n the con tex t of i t s appl icat ion.

Tradeoffs can also be studied and the multiprocessor system refined thereby.
For example, one might consider trading off processor nuTrLber against processor

[7].

@ For an example of a ra ther s imp le averag ing techn ique used in a s l i gh t l y d i f f e r e n t context , s e e

[707

184

Acknowledgements
The authors are indebted to Rick Butler and Milton Holt at the NASA Langley

Research Center for thei r f inancial and technical assistance, to Y.-H. Lee at The
Universi ty of Michigan for numerous technical discussions, and to the four referees
for their careful reading of the draf t manuscript.

References
[1] K.G. Shin and C. M. Krishna, "A Distr ibuted Microprocessor System for Controlling

and Managing Fighter Aircraf t" , Proc. Dist~buted Data Acquisition, Comput-
ing, and Control Symposium, Miami Beach, FL., December 1 980, pp. 1 56 -166 .

[2] C. M. Krishna and K. G. Shin, "Performance Measures for Mult iprocessor Controll-
ers," P e r f o r m a n c e '83: N i n t h In t 'l Syrnp. on C o m p u t e r Perf . , M e a s u r e m e n t
and Evaluation, pp. 2 2 9 - 2 5 0 , May 1983.

[8] J. F. Meyer, "On Evaluating the Performability of Degrading Computer Systems,"
IEEE Trans. Comput., Vol. C-29, No. 6, pp. 501 -509 , June 1980.

[4] P. Jacobson and E. D. Lazowska, "The Method of Surrogate Delays: Simultaneous
Possession in Analyt ic Models of Computer Systems," ACM Sigrnetrics Perfor-
mance Evaluation J?evie~v, Vol. 1 O, No. 3, pp. 165-1 74, September 1 981.

[5] A.L. Hopkins , et. al, "FTMP - - A Highly Reliable Fault-Tolerant Mult iprocessor for
Aircraft," Proc. IEEE, Vol. 66, No. 10, pp. 1 2 2 1 - 1 2 3 0 , October 1078.

[6] A. A. Nilsson and T. Altiok, "Open Queueing Networks wi th Finite Capaci ty
Queues," Prec. 7987 In t ' l Conf. Parallel Processing, pp. 87 -91 , August 25 -
28, 1981.

[7] P. J. B. King and h Mitrani, "The Ef fec t of Breakdown on the Performance of Mul-
t iprocessor Systems", Performance'87: Proc. 8th In t ' l Syrup. Comp. Perfor-
mance Model., Meas. and Eval., November 1981, pp. 201 -211.

[8] S. J. Latimer and S.K. Maher, "The Continuously Reconfiguring Mult iprocessor,"
NATO-AGARD Meeting on Tactical Airborne Computing, Roros, Norway, 1981.

[9] E. Cinlar, Introduct ion to Stochastic Processes, Prentice Hall, Englewood Cliffs,
NJ, 1 975.

[1 0] P. Markenscoff , "A Multiple Processor System for Real Time Control Tasks,"
Ninth Annu. Syrup. Coup. Arch., pp. 2 7 4 - 2 8 2 , August 1982.

185

Real-Time Multiprocessor

Dynamic
Task Allocation

/ \
No Common Common
Memory Memory

Static
Task Allocation

Partly Dynamic
& Partly Static
Task Allocation

Type la Type ib Type 2 Type 3

Figure 1 Logical Classification of Multiprocessor

Controllers

Tasks Triggered by Environmental Stimuli
Arrival Rate 1

~ Dispatcher Queue

I. Task Dispatcher I

° o o

\ 7
v

TO Output Devices.

Application Software

c~ I C°mm°n Massi
Memory

~ ~ ~ ~Memory Queue

Figure 2 A Real-Time Multiprocessor Controller

186

Tasks Triggered by Environmental Stimuli

Arrival Rate 1

~ Memory-Dispatcher
Queue with Blocking

I Combined
Memory-Dispatcher I

Processors
i

v
To Output Devices

Fiqure 3 Approximate Model of the Real-Time Multiprocessor

Controller

Tasks Triggered by Environmental Stimuli

Arrival Rate 1

Artificial
Server), Single Path

~ Multiple Paths /

I "em°ry-Dispatcher I

I Processorq

To Output Devices

Figure 4 Task-O~iented Model

(j-l)~

X

(j-l)u

x

(j-l)u

1

(9+l)ul (j+l)ui

l

~m

~~i+l, j

(j+l)~

k

~m

(j+2)p (J+2)U I
fj+2)~

Figure 5 State Transition Diagram

L~

i,
0

0

rr

o o

%.oo

~ ~ = 0.5

0.7

l -- ~ I
0.20 0.40 b60

NOMINAL INTENSITY

~m = 5~

Ratio of Means =

Mean Response Time when
Weibull Parameter = n

Mean Response Time when
Weibull Parameter = 1

Mean Arrival Rate
Nominal Intensity = No. of Processors x U

jr1= 1

I ;
0.80 1.00

Figure 6 System Response with Weibull

Service Distributions

188

Table l. Compar i son of Analyt ical and S imula t ion Mean Response Time

Analytical (x I0 -s]

72. i

Simulation (x 1 O-S),..
2.0 71.7

4.0 76.6 72.3

6.0 79.4 73.3

8.0 82.0 74.4

i0.0 84.9 75.6

12.0 88.0 77.9
14.0 91.3 80.8
16.0 95,2 83.6

18.0 99.8 86,5

20.0 105.3 92.9

28.0
24.0

112.1 98.4

120.6 108.2

131.9 ~6.0 121.4

,U, = 20.0, ~m =50.0, c =3

189

