IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 11, NOVEMBER 1982

1045

Design of HM?2p—A Hierarchical
Multimicroprocessor for General-Purpose
Applications

KANG G. SHIN, MEMBER, IEEE, YANN-HANG LEE, STUDENT MEMBER, IEEE, AND J. SASIDHAR,
MEMBER, 1IEEE

Abstract—This paper presents a tree-structured multiprocessor
called the hierarchical multimicroprocessor (HM2p), each node of
which is composed of a cluster of processor modules (PM’s), common
memory, DMA interface, switches, communication lines, and a data
processor associated with it. The HM?2p consists of two different
hierarchies, one for data processing and the other for data distribution,
which provide clean, structured separation between processing com-
ponents and user interface components.

There are two levels of interprocessor communications in the HM?2p,
an implementation of which is developed with the monitor concept. By
examining the access pattern of shared hardware resources, we have
modeled the performance of the HM2p as a multichain closed queueing
network. Using this queueing model, the performance falloffs due to
shared hardware (e.g., processors, memory, and I/O devices) are also
analyzed, and the optimum number of processors in each cluster is then
determined. »

Index Terms—Hierarchical multiprocessor, monitor, performance
falloff, processing/data distribution hierarchy, queueing model, syn-
chronization.

I. INTRODUCTION

ONTINUING advances in VLSI technology have made

it attractive to interconnect many inexpensive micro-
processors and memories to build a powerful, cost-effective
computer, namely, a multimicroprocessor (M2p). Potential
benefits to be gained from an M2p include improved cost
performance resulting from the exploitation of parallelism in
“most algorithms and many inexpensive but powerful micro-
processors and memories, enhanced fault tolerance by using
many available processors in the M2p as redundant spares, and
a high degree of modularity which permits the M2p to grow
or shrink by addition or removal of modular components.
However, the main question that still remains to be answered
satisfactorily is whether the microprocessor can be utilized as
a building block for large general-purpose computer systems,
thereby achieving a higher performance/cost ratio as com-
pared to traditional uniprocessors. Excellent surveys of existing
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multiprocessors can be found in [1] and [2]. The unsolved
issues associated with multiprocessors are well discussed in
[31. |

Computational tasks in many applications such as engi-
neering, socioeconomics, biology, medicine, etc., can be par-
titioned into smaller cooperating tasks (which we shall call
processes). The cooperating processes are then clustered into
a number of tightly coupled process groups that are hierar-
chically related to each other. Also, typical applications of
computer systems—especially those related to information
retrieval (such as information handling related to medical, law
enforcement, social services, etc.)—impose a time-varying load
that calls for a robust system. Tree-structured multiprocessors
appear to have the potential to exploit the hierarchical nature
of most computations [4]-[6] and are structurally flexible.
This paper deals with one such tree-structured multiprocessor
called the hierarchical multimicroprocessor (HM?2p). The
HM?p forms a tree, each node of which consists of a cluster
of processor modules (PM’s), shared memory, switches, DMA
interface, and serial communication links. The HM?2p has two
distinct hierarchies; one is for data processing (called the P-
hierarchy) and the other is for data distribution (called the
D-hierarchy). The necessity of including these two hierarchies
becomes apparent when we review the Cm* architecture de-
veloped at Carnegie-Mellon University and the Hierarchical
Multicomputer Organization at the State University of New
York, Stony Brook.

The Cm* consists of a two-level hierarchy, its lower level
is composed of computer modules (Cm’s) which are grouped
into a cluster via a time-shared bus (map bus), and its upper
level comprises homogeneous clusters which are interconnected
via intercluster buses [6]-[8]. The central idea for the Cm*
operating system is the concept of task forces, i.e., large col-
lections of executing processes that cooperate to accomplish
a single purpose [8], [9]. The main drawback in Cm*, however,
is the integration of the I/O units into the system. The I/O
units are made dependent on individual computer modules,
and this results in an unstructured operating system and gives
rise to reliability and utilization problems. This, to some extent,
has been solved by the Hierarchical Multicomputer Organi-
zation [10], [11] where the idea of separating the control and
data moving functions has been proposed. In the HM?2p, this
idea has been extended to include clean, structured data pro-
cessing as well as /O interface to the system.
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The clustering of processor modules in the HM?2p primarily
is intended to provide hardware facility to execute a group of
tightly coupled cooperating processes. This facility allows us
to utilize the high degree of access locality [3] within the group.
Saturation can, however, occur very quickly as the cluster
expands. Indeed, it is a well-known fact that after a point,
contentions for shared resources cause the performance of a
cluster actually to decline with the addition of extra processors
[12], [13]. It is therefore important to estimate the perfor-
mance falloffs due to these contentions and then determine the
optimum number of processor modules in each cluster. In this
paper, we have studied this problem for the HM2p using
queueing network models.

For structural flexibility, the HM2p has been designed to
simplify the interconnection structure as far as possible. It uses
only a few types of functional units as building blocks for the
system. The aim of the design has been to create a general-
purpose multiprocessor with no restriction on the types of al-
gorithms which it can exploit.

This paper is organized as follows. Section II introduces the
HM?2p architecture in some detail. Section III describes the
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structure of the kernels necessary to implement monitor
primitives [14], [15] for synchronization purposes. Finally,
Section 1V analyzes the performance falloffs due to shared
hardware resources, and the conclusion then follows in Section
V.

II. ORGANIZATION OF HM?2p

The HM?p is structured to accommodate the hierarchical
nature of most computations, to exploit the parallelism existing
within an algorithm, and to provide a systematic I/O interface
to the system. The HM?2p consists of two distinct hierarchies:
one for data processing (P-hierarchy) and the other for data
distribution (D-hierarchy). The former is responsible for ex-
ecuting cooperating processes, and the latter is to distribute
data necessary for the P-hierarchy. Both hierarchies consist
of tree-structured clusters which are formed by a number of
processors. To differentiate the processors in the P-hierarchy
from those in the D-hierarchy, the former are referred to as
the P-processors and the latter as the D-processors. The two
hierarchies of the HM2p are merged at the top by a root cluster
(see Fig. 1 for an overall system organization). ’

A. Processing Hierarchy

The extent of exploitable parallelism with a multiprocessor
depends on the overhead involved in communicating across
process boundaries. The hardware interconnection scheme
which has the lowest associated communication overhead is
the shared memory method. The main drawback in using
shared memory is that the communication overhead tends to
increase rapidly with the number of processors in the multip-
rocessor. To alleviate this problem, the P-hierarchy is designed
to include two levels of communication. At the first level, the
communication time is kept to a minimum and is independent
of the total number of processors in the HM?p. Note that at
this level, a restriction is imposed on the number of intercon-
nected processors which are grouped into a cluster via a
time-shared common bus and a shared common memory. At
the second level, the communication speed is sacrificed for
expansibility and hardware interconnection costs. At this level, -
the clusters are connectéd in a tree-structured fashion via serial
links.

The significance of this approach becomes clearer when we
consider process locality; interaction within a defined group
of processes is generally frequent, and interaction between
different groups is infrequent. If processes are assigned to
processors such that the processes of the same task reside in
a single cluster, then the communication overhead would
correspond to that of a closely coupled system. This relates to
the well-known task-assignment problem [16] in multipro-
Cessors.

A cluster consists of processing modules (PM’s) which have
a sibling relationship to each other, and these PM’s share a
common memory by means of time-shared common bus (Fig.
2). Conflicts of access to the common bus are resolved by the
bus arbiter. The handshaking required for gaining control of
the bus is handled by the switch, which is a component of each
PM. Each PM consists of a microprocessor, local memory, a
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switch, a DMA interface, and serial links to its child and parent
PM’s.

When the microprocessor issues a memory access, the switch
in the concerned PM routes this access to its local memory or
to the common memory. The common memory is used to store
the system monitor parameters and the user-declared common
segments that are shared by interacting processes (system
synchronization will be discussed in Section III). As in the
Cm#*, processor-generated common memory addresses are
translated by a window register [6] in the switch such that the
user process is transparent to the physical allocation of shared
segments. To perform a common memory access, the switch
has to gain control of the common bus by handshaking with
the arbiter. The switch has been given the capability of buf-
fering a single data word which has to be read from or written
into the common memory.

The arbiter has to be moderately complex since it must be
able to grant control of the common bus at two separate levels
(one for synchronization primitives and the other for common
memory access), and there are certain rules to follow in order
to preserve the integrity of the interprocess synchronization
primitives (on this, more will be discussed later). The arbiter
provides a round-robin service to requesting processors to en-
sure that all requests will be honored in due time. The switch
in a PM has two request lines to the arbiter for requesting
control of bus at the two levels, and correspondingly there are
two grant lines to each switch. The switch includes a status to
indicate whether its request is for synchronization or for access
to the common memory. This status is explicitly set by the
processor and is alterable only by the processor. Thus, the bus
arbiter functions as either a coordinator or a global lock within
a single cluster, depending on the nature of the currently
honored request.

The DMA interface transfers a block of code/data to or
from the local memory of the D-processor associated with the
cluster and the local memories of the PM’s. When the D-
processor receives the block transfer order from the parent
P-processor of the cluster, the D-processor then sets the ad-
dress register and the word count register of the DMA inter-
face appropriately and then initiates the transfer. Upon com-
pleting the transfer, the DMA interface notifies the P-pro-
cessor which, in turn, notifies the parent P-processor of the
cluster.

Besides the lateral interconnection paths, each P-processor
has several serial links to its parent P-processor and its child
cluster. With these serial links, clusters form a tree-structured
hierarchy in which the number of branches at each node is
equal to the number of P-processors in a single cluster. These
links are used to transfer the control and status information
between adjacent levels of the tree. They are also used to ex-
change messages between interacting processes that are lo-
cated in different clusters. At both ends of the link, we need
additional processing for buffering a message, generating in-
terrupts, and setting up flags at the completion of a message
transfer. A parent processor can interrupt its child processor
through the serial link at two levels: one level is maskable and
the other is nonmaskable. An interrupt at either of the two
levels will cause the child to execute a message-receiving
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routine which is a part of the kernel software. In normal op-
eration, a parent interrupts its child at the maskable level. This
implies that if the child is inside the kernel, the interrupt will
remain pending until the child exits from the kernel. But if the
parent has reason to believe that a malfunction has occurred,
it interrupts at the nonmaskable level. The child, on the other
hand, can interrupt its parent through the serial control link
only at the maskable level. This ensures that the parent can still
function with a faulty child processor.

B. Data Distinction Hierarchy

For each cluster in the processing hierarchy, there is an
associated D-processor which handles the transfer of code/
data into or out of the cluster via the DMA channel. An ad-
ditional link between the D-processor and the parent P-pro-
cessor is provided to handle DMA commands and requests for
process creation. The D-processors are interconnected to form
the data distribution hierarchy as in Fig. 1. The secondary
storage units as well as I/O devices are attached to the D-
hierarchy. Since most of the processing is done at the bottom
level of the P-hierarchy, most of the file transfers in the system
will be handled by the associated leaf D-processors. Thus, we
need high capacity data links between the secondary storage
units and the bottom level D-processors of the D-hierarchy.
To perform the file management functions of the system, the
D-processors need to exchange short control messages among
themselves. The D-processors are interconnected hierarchically
by means of serial links, and since at times there will be file
transfers on these links, a packet switching communication
system has to be implemented.

All the user interfaces to the system are connected to the
D-processors, and so it acts as the source of all tasks which need
processing power from the processing hierarchy. New pro-
cesses enter the P-hierarchy via the serial control links inter-
connecting the two hierarchies, and the computation results
enter the D-hierarchy through the DMA channel. The D-
processors act-as command message interpreters in the same
sense as the “shell” of the UNIX system [17] (called the
shell-like process) and create processes which execute the
command message in the processing hierarchy. Using the
D-hierarchy and the links among D-processors, a new process
can enter the P-hierarchy at any level. Although the cost of
communication with I/O units may depend on their locations
in the D-hierarchy, processor modules in the P-hierarchy are
made logically independent so as to enhance the reliability of
the overall system and to balance the work load in the P-hi-
erarchy.

III. SYNCHRONIZATION AND COMMUNICATION

The objective of the operating system in the HM?2p is to
allow maximum concurrency and transparency. Since the
P-hierarchy includes the two-level structure—the closely
coupled clusters and the tree network of clusters—we adopt
two monitor systems associated with them. The processes are
distributed in the system and communicate with each other
via monitors and proper addressing mechanisms. Interprocess
communication is based on the monitors and the kernels for
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the processes residing in a cluster and the monitor procedures
in the tree network.

A. Kernels of the HM?p Operating System

From a software point of view, monitors [8] are an ideal
mechanism with which one can implement synchronization
and interprocess communication. Monitors consist of shared
data and procedures to operate on the shared data. A process
can operate on the shared data only through the monitor pro-
cedure. The operations on the shared data are kept mutually
exclusive. There are four primitives needed to support moni-
tors, namely, entering a monitor, exiting a monitor, signaling
a condition, and waiting for a condition. Since there are two
levels of interprocess communication in the HM?2p, the kernels
are designed to provide the execution environment at each
level.

1) Kernels at the Cluster Level: For each P-processor, we
define the processor kernel (called the P-kernel) which works
as the supervisor of a processor to manage the process residing
in that processor. The P-kernel has certain procedures to
handle the execution of the user task. The task running in the
P-processor of the cluster is in the user mode, and is trapped
to the P-kernel when one of the following cases occurs: the
invocation of a synchronization primitive, an addressing fault
during a global access, an interrupt from the parent P-pro-
cessor, or an exception. Through the P-kernel, the process can
enter a monitor at the cluster level or the network level to
perform synchronization and interprocess communication or
request to declare a new space in the common memory. When
the process enters the P-kernel, the interrupt is disabled to
avoid a race condition.

The cluster kernel (called the C-kernel) handles the monitor
of all processes residing in that cluster and is located in the
common memory of that cluster. The mutual exclusion of the
C-kernel is secured by the bus arbiter by means of the following
steps.

a) If the process wants to enter the C-kernel, it sets a status
bit in the switch. The switch then asserts the C-request line.

b) The bus arbiter asserts the C-grant line if the C-kernel
is not in use. The switch then sets a flag indicating to the pro-
cessor that it can now proceed to use the C-kernel.

¢) Once the processor exits from the C-kernel, it resets the
status bit in the switch which causes the switch to deassert the
C-kernel request line.

The C-kernel provides mutual exclusion of the monitors by
associating with each monitor a flag which records whether
or not the monitor is busy. Thus, the C-kernel provides a means
of having more than one monitor busy at the same time. The
C-kernel maintains the queues for processes waiting to enter
monitors and queues for each condition. There are four mon-
itor primitives in the C-kernel as discussed above. When a
process awaits a condition or a monitor, the P-processor exe-
cuting this process becomes idle. When the process releases
a monitor or signals a condition, it sends the identification of

‘the waiting process to the parent P-processor. The parent P-
processor then interrupts the processor which has that process
in the wait queue. Thus, we have a “positive wakeup of a pro-
cess” [18]. The C-kernel contains both the identification of
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the process and the physical processor in which it is residing,
whereas the P-kernel keeps the full status of the process nec-
essary to restart the process.

2) Kernel at the System Level: To implement the syn-
chronization primitives at the system level, the monitor concept
can still be used. This approach provides transparency and
makes it easier for the system programmer to implement the
system software. Since the clusters are arranged as a tree, we
can always find a common ancestor cluster to interacting
processes that are located in different clusters. The monitor
procedure is allocated in the common ancestor cluster. The
execution of a monitor procedure can be implemented via
messages. The mutual exclusion is easily maintained since only
one process is allowed to be in the monitor procedure of that
ancestor cluster at one time.

B. Capability-Based Addressing

The objects of the system consist of resources and processes.
The resources are passive elements which include files, 1/O
interfaces, processors, and memories. Resources are used for
the execution of a process. In the HM?2p, each object is asso-
ciated with its capability list which describes the environment
of the execution and the relationship with other objects. A
capability consists of a description of the concerned object, the
associated operation, and the access right. Thus, the access of
an object can be handled through this capability list in the
execution space. The important advantages of the capability
are to decentralize the overhead of address mapping [19] and
object protection [20], and to treat the objects uniformly from
the user’s standpoint [17].

In the HM2p, the addressing of the common memory in a
cluster is translated by the switch. The parent P-processor
partitions the common memory into several segments and
provides the physical address to the concerned child P-pro-
cessor. In order to address the 1/O devices and the file system,
the P-kernel maps the logical names to the physical locations,
and also checks the access right on the basis of the capability
of the object. At the destination, the condition of the object is
checked to ensure the read/write consistency. Most passive
objects reside in the data distribution hierarchy, and the D-
processor has several I/0 routines to provide the operations
to access these objects.

When an I/O device is active, the shell-like process gener-
ates a local space (defined by the capability list), depending
on the characteristics of the device and the user identity. All
requests or commands are handled in the basic local space and
its extension. When a process is invoked, a new space is gen-
erated including the capabilities associated with the process
itself and the arguments. The legality of the process invocation
is checked first in the basic space; then this invocation and the
capability list are sent to the parent P-processor (the invoker
may be the shell-like process in the D-processor or the process
residing in the cluster). Either the loading of the process to an
available processor or just migrating of the argument into an
existing process would take place. If there is no available
processor in the cluster, this invocation would be sent up to the
grandparent P-processor, and a free processor would then be
acquired from a neighboring cluster.
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IV. PERFORMANCE ANALYSIS

The performance falloffs in a multiprocessor are generally
introduced due to contention for use of shared hardware and
software resources. Since the HM2p consists of two levels (i.e.,
clusters and tree-structured entire system), and since most of
the data processing and file management are carried out at the
leaf levels of the data processing and distribution hierarchies,
we first determine the performance of a single cluster, treating
it as a stand-alone unit. Then we calculate the performance
of the entire system by multiplying the number of leaf clusters
by the performance of a cluster that is obtained from the single
cluster analysis.

In the present work, the performance refers only to the
throughput of the system, and is analyzed on the basis of the
following two assumptions.

Assumption 1: Each cluster consists of a finite number of
processors whose mechanisms of accessing the shared resources
are statistically identical. All the clusters at the same level of
the hierarchy thus have the same statistical property.

Assumption 2: No single processor in a cluster has the
multiprogramming capability, while the cluster does have this
capability. Thus, a new process would be assigned to a pro-
cessor when the processor completes the previous assignment
and becomes idle. The processor has to be suspended every time
it awaits the availability of a shared resource.

A. Performance of a Single Cluster

A cluster in the HM?2p has a number of processors which are
interconnected via the time-shared bus and communicate with
each other via the common bus and common memory. This
interconnection structure is very simple and flexible for ex-
pansion and reduction, but the system performance saturates
quickly as the number of processors in a cluster increases
mainly due to interprocessor communications. It is therefore
important to analyze the performance of a single cluster which
enables us to determine the optimum number of processors in
a cluster and to calculate the performance falloffs due entirely
to the shared hardware resources. In this paper, we do not
consider the performance falloffs due to software precedence
relationships which determine the final figure of perfor-
mance.

The hardware resources shared by the P-processors of a
cluster are the time-shared common bus-common memory
pair, the parent P-processor, and the D-processor. Interference
in sharing these resources results in a decrease in the perfor-
mance of each processor. Taking this interference into con-
sideration, we have developed a two-part queueing model for
evaluating the performance of a single cluster. The first part
expresses the performance falloffs due to common memory
interference, and the second part models those due to the
parent processor and D-processor of the cluster.

1) Common Memory Interference: Let the common
memory access time (,,,) be the time taken to read or write
a single word into the common memory once the switch has
mastership of the time-shared common bus in a cluster. Let
the access request interval (z,,) denote the time interval be-
tween two consecutive access requests to memory by a pro-
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cessor. The access requests can be either for code or data, and
may also be made to either processor’s local memory or the
common memory of the cluster. As will be explained later; a
processor may have to access the common memory at several
consecutive times, for example, when it is granted to execute
the C-kernel code. This fact eliminates the need of distin-
guishing the access request interval for the common memory
from that for processor’s local memory. Although there is a
variation in the access request interval times, it is assumed for
simplicity to be a constant as in [21].

Let us further denote the integer value | ¢,,/2,,, | by m where
| x ] is the largest integer not exceeding x. Then one can observe
that the greater the value of m, the less the interference due
to the shared resource, and thus the greater is the performance
of the processors in the cluster. With the current technologies
of microprocessor and memory, the value of m is usually in the
range 3-10 [22], and this can bt used as a design param-
eter.

To analyze the interference in accessing the common
memory, we should have an understanding of the nature of the
stochastic process which describes the accesses to common
memory by each processor. Reviewing the use of common
memory we find that the common memory is used only for
monitor procedures and their associated data and -control
mechanisms. When a processor starts executing a monitor
procedure, all memory accesses will be to the common memory
since both code and data reside in the common memory. Thus,
successive accesses to common memory by the same processor
cannot be modeled as independent random variables.

If a process executes any of the monitor primitives, it begins
executing the code of the C-kernel, and then, depending upon
the type of monitor primitives desired and the state of the de-
sired monitor, one of the following actions takes place.

a) The processor starts to execute the monitor proce-
dure.

b) It wakes up a process residing in another processor to
execute the monitor procedure. .

c) It waits for another process to signal it, and at that time
it continues to execute the monitor procedure.

d) It does not execute the monitor procedure nor does it
wake up another process to execute the monitor procedure.

In the first two cases, the monitor procedure is executed
either by the same processor or by another immediately fol-
lowing the execution of the C-kernel. In the last two cases, the
monitor procedures are not executed, and the next time the
processor accesses the common memory, it would execute the
C-kernel. Once a monitor procedure is being executed, the
processor has to execute one of the monitor primitives to exit
from the monitor. The above four cases can be condensed to
the following case: the processor first executes the C-kernel,
and then a monitor procedure, and then the C-kernel again.
Finally, it returns to the local process, as shown in Fig. 3.

We can model the memory contention problem as a closed
queueing network with appropriate service times and sched-
uling policies. The service time it provides can be measured in
terms of the number of common memory accesses. The number
of common memory accesses needed to execute a portion of
a monitor procedure sandwiched between two consecutive
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Fig. 3. Common memory reference pattern.
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Fig. 4. Queueing model for common memory interference.

monitor primitives can be treated as a random variable with
an exponential distribution. The number of local memory ac-
cesses between two monitor calls can also be treated as a ran-
dom variable with an exponential distribution. The number
of common memory accesses needed to execute the monitor
primitive by means of the C-kernel is assumed to have an ex-
ponential distribution.

The queueing network consists of three nodes as shown in
Fig. 4. The first node consists of n servers where n is the
number of child P-processors in the cluster. The service time
for these servers corresponds to the distribution of the number
of local memory accesses between two consecutive monitor
calls. Node 1 is of type-D [23] since the customers are delayed
independently of other customers at this service station.

The common memory can be treated as m virtual parallel
servers since effectively there can be m common memory ac-
cesses in time period ,,. Also note that we cannot give more
than one common memory access to a processor in a given time
period ¢, (Fig. 5). Of the m virtual servers of the common
memory, one server serves the C-kernel queue which is node
2 of the queueing network. The rest of the m-1 virtual servers
serve the monitor queue and form node 3 of the queueing
network.

In the actual system, however, the server serving the C-
kernel queue would serve customers in the monitor queue if
there is no customer in the C-kernel queue. Therefore, the
performance characteristics obtained by this queueing network
model gives a lower bound of the actual performance. The
upper bound of the performance can be easily obtained by
having an additional parallel server at node 3.

The scheduling policy used for nodes 2 and 3 of the queueing
network is first-come—first-served (FCFS). In the actual sys-
tem, the type of scheduling used to service the monitor queue
is round robin. As we are only interested in the mean values
of the waiting time and the mean queue lengths, we can assume
an FCFS service mechanism. As long as the scheduling is in-
dependent of the service requirements of a customer, the mean
values do not change [24].

The analytical solution of the queueing network was carried
out by the recursive algorithm in [23]. The results shown in
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Fig. 6. The performance with common memory interference.

Fig. 6 correspond to mean service times indicated below (values
normalized by the mean number of local memory accesses
needed to execute a block of local code sandwiched between
two consecutive monitor calls).

1) Mean percentage of common memory accesses needed
for executing the C-kernel: case 1: 2.5 percent; case 2: 5 per-
cent.

2) Mean percentage of common memory accesses needed
for executing monitor code sandwiched between two monitor
primitives: case 1: 10 percent; case 2: 20 percent.

These cases represent the access localities 89 and 80 percent
respectively, which correspond to the experimental result ob-
tained from Cm* [3]. The results give the lower and upper
bounds of the performance of the cluster with common
memory interference for m=3 and m=4.

2) Parent P-Processor and D-Processor Interference: To
evaluate the interference in the parent P-processor and D-
processor, the functions in both processors should be consid-
ered. When the process residing in a child P-processor requests
the service from global resources (e.g., parent P-processor and
data hierarchy), the process sends a message to the parent
P-processor and waits for the reply. In the parent P-processor,
the message handler accepts the request and puts the request
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on a ready queue for service. Those services requested by the
child P-processors are classified as one class with three types
which are described as follows.

The first type is the synchronization request between pro-
cesses residing in the same cluster. Since the processing time
of this service is short and any delay will seriously affect the
performance of the cluster, this request is given higher priority
and relayed to the child P-processor immediately.

The second type of request is for execution of monitor pro-
cedures residing in the parent P-processor or communication
with a processor in a different cluster. After recognizing this
request, a new process is created and inserted into the ready
queue of the parent P-processor. The processing time is longer,
but the frequency of occurrence of this request is small.

The last type of request in this service class is the data
transfer between the child P-processor and 1/O devices or file
system. The parent P-processor relays the request to the D-
processor and then to the file system or I/O device. Upon the
completion of data transfer, the D-processor informs the
concerned parent P-processor, and then the blocked child
P-processor resumes execution.

There are three other classes of services issued, respectively,
by the grandparent P-processor, the 1/O devices, and other
D-processors in the data distribution hierarchy. The job as-
signed by the grandparent P-processor to the parent P-pro-
cessor may be a user task that needs to be allocated to one of
its offsprings, or a system supervisor task, or a communication
message. In the D-processor, besides the data transfer, it
provides the shell-like process for each I/O device and com-
munication with other D-processors.

Considering interference at the shared resources, a multi-
chain closed queueing network is developed to model the per-
formance of an HM?2p cluster (Fig. 7). There are four chains
with four different types of customers corresponding to the four
service classes discussed above.

In the first chain, the requests issued by the child P-pro-
cessor travel around the queueing network. Note that the
model of common memory interference is also included in this
network. Let p;;- denote the branch probability from node i to
node j following the service at node i in chain r. The process
in the child P-processor (node 1) may request the use of either
common memory with probability p;,; or parent processor
(node 4) with probability p,4;. In the former case, the request
goes to node 2 (C-kernel) and node 3 (monitor) and then re-
turns to node 1. In the latter case, the parent P-processor ser-
vices the request, which then follows one of the three paths to
the next node. The path that directly returns to the child P-
processor represents the synchronization service. The request
is sometimes fed back to the parent P-processor in the second
path in order to acquire further service, for example, the exe-
cution of the procedure or the communication with other
clusters. The third path routes the request to the D-processor
(node 5) or file system (node 6) because this request involves
the data transfer via the DMA path to or from the I/O devices
or file system. Corresponding to these paths, we define the
three branch probabilities p411, p4ai, and pys;. Furthermore,
after receiving the service from the D-processor, the request
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Queueing model for performance of the HM2p with interference
in entire hardware resource.

Fig. 7.

may branch to the file system (node 6) or to the I/O devices
for the data transfer between a child P-processor and an I/O
device, (two branch probabilities psa;, pse; represent these two
paths, respectively).

In the second chain, the parent P-processor accpets the re-
quest from the grandparent P-processor, and then returns the
reply to the originator when the service is completed. The
grandparent does not send another request until the previous
service is completed. The third chain represents the shell-like
process in the D-processor. The shell-like process would be-
come active if an I/O device (node 8) issues a request. The
fourth chain describes another function of the D-processor,
namely, the communication in the data distribution hierarchy
(in which the parent D-processor is represented as node 9).
This implies that the interference due to the congestion in the
D-hierarchy is also included in this model.

To solve this queueing problem, let us assume that node i
(i=1,2,---,9) has an exponentially distributed service or
request time with mean 1/u;, for a customer in chain r (r =
1, 2, 3, 4). This service/request time may be a “think” time to
make requests, an execution time, etc. For example, in node
1, the service/request time is the time interval between two
external accesses; in node 4 it becomes the process execution
time in the parent P-processor. From the branch probabilities
pij- and the mean service/request rate u;,, the relative traffic
density p;, can be obtained where u;, is normalized such that
u11=1. By assuming the service time in each node and the
branch probabilities following each service, we can evaluate
the total processing power for various cases. For instance, a
small “think” time in the parent D-processor (node 9) repre-
sents a higher demand for file access from the D-hierarchy.
A higher branch probability p;4; and p44; will indicate heavier
intercluster communications. Using the mean value algorithm
in [23], the throughput of each chain is calculated (denoted
as 1/\,). The number of equivalent processors is then equal

3
to (3 pi1)/A1. The number of equivalent processors is
i=1

calculated and then plotted in Fig. 8 for the following two
cases:

case 1: ¢ = [1 .0,0.025,0.1,0.017, 0.027, 0.027]
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case 2: ¢; = [1.0,0.05, 0.2, 0.033, 0.053, 0.053].
For both cases
¢> =[0.05,0.5, 0.1, 5.0, 0.5, 0.6, 5.0]
and m = 4 where
é1 = [p11, P21, P31, P41, P51, Poil
é2 = [pa2, P72, P53, P83, P34, Poss Po4].

The process localities used in cases 1 and 2 are the same as
those in Fig. 6. Both cases are assumed to have the same in-
terferences from the parent P-processor and D-processor, but
the service times by shared resources are different (case 2 has
service times twice those of case 1). The normalized perfor-
mances of the child P-processor for both cases are plotted in
Fig. 9.

B. The System Performance

From the above analysis, we have to arrive at the figure for
the optimum number of processors in each cluster. Since m,
the figure of merit of the common memory, can be varied
within a reasonable range, one can design the HM?2p such that
the parent P-processor and D-processor become the critical
shared resources of a cluster.
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Assuming that we desire at least 90 percent of the ideal
performance (i.e., when there is no interference) and the value
of m is equal to 4, we come up with the figure of 14 processors
from the performance curves in Fig. 8 (case 1), which is the
optimum number of P-processors for a single cluster. In this
case, the net cluster performance is equivalent to that of 12.6
processors.

Most of the actual processing is assumed to take place in the
leaf clusters, and the P-processors in the higher levels are thus
busy synchronizing and performing other communication
tasks. The total number of the leaf P-processors in the system
is n*=1 where n is the number of P-processors in a cluster and
k is the number of levels in the entire tree-structured system.
Note that the total number of the P-processors in the system
is (n* — 1) /(n — 1). If the number of child P-processors in a
cluster is 13, then the equivalent number of the P-processors
that are busy with the computation task only is 90 per-
cent*(13)*; this is almost 83 percent of the entire P-processors
when k is large. On the other hand, the system provides
(n*=' = 1)/(n — 1) P-processors to perform the communi-
cation task, task allocation, and system management. These
constitute about 17 percent of the entire P-hierarchy.

V. CONCLUSION AND DISCUSSION

We have here presented the architecture of the HM?2p, the
synchronization and communication primitives, and finally
the performance of the system based on these primitives. The
HM?2p is developed and analyzed based on a common feature
of most computational tasks; namely, the tasks can be de-
composed into cooperating processes which are then classified
into closely coupled clusters, and these clusters hold a hierar-

_ chical relationship with each other. However, our simulation

results for the performance analysis have indicated that the
effectiveness of a multiprocessor heavily depends on the access
locality. Thus, a key issue to any successful design of multip-
rocessors remains to be the development of an automatic
method of decomposing a given task into interacting processes,
and then assigning them to processor modules so that a high
degree of access locality may be achieved.

As pointed out by one of the referees, it should be noted that
the size of the local memory and the common memory will also
affect both the access locality and the process allocation. (So
does the size of cluster!) The access locality is therefore an
important design parameter which is a function of the size of
cluster, local memory, and common memory.

The processing power calculation for the HM2p is useful not
only for the leaf P-processors and their associated D-proces-
sors, but for the P-processors in the upper levels of the HM2p.
Since the P-processors in the upper levels are used for the
communication and system supervision, the service times and
the branch probabilities for these P-processors are different
from those used for the leaf level. These processor modules in
the upper levels may be regarded as a tree network used to
exchange messages among cooperating processes. The com-
munication overhead is implicitly included in the queueing
model with the branch probability p44;, but needs further study
for a more refined analysis. However, the branching factor for
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the upper levels may differ from that for the leaf level. The
optimal values should be decided by examining the amount of
communication (which is task-dependent). The higher level
processors may become a bottleneck in the system if the
amount of communication is heavy. It is also related to the
number of the intercluster messages, which further depends
on the structure of the operating system.

The effects of software precedence have to be introduced
into our queueing models for determining the actual perfor-
mance falloffs. This will be useful in determining the effects
of both software and hardware constraints in the system. We
know by intuition that the figure for the optimum number of
processors in each cluster will increase when these effects are
taken into account.
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