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ABSTRACT 

A continuous bilinear model in state space is used to describe the cell kinetics of a 

tumor-cell population under the effects of chemotherapy. Firstly, the time-course behavior 

of a Chinese-hamster-ovary (CHO) cell population is simulated to demonstrate the utility of 

the model. Then. an optimal strategy for cancer treatment is derived, based on the need to 

balance the effects on both cancerous and normal tissues. The performance index mini- 

mized is the sum of the weighted tumor population and the weighted total drug dosage. The 
optimization problem has resulted in a two-point boundary-value problem (TPBVP) with a 
bang-bang control policy, which is solved by the switching-time variation method (STVM). 

Computer simulation of CHO cells is also carried out as a numerical example of determin- 

ing optimal cancer chemotherapy. 

I. INTRODUCTION 

Most of existing chemotherapeutic agents are known to damage both 

cancerous and normal tissues somewhat indiscriminately. For this reason, 

chemotherapy and radiotherapy have particularly harsh effects on renewing 

tissues such as hair, bone marrow, and the gastrointestinal lining. It is thus 
necessary to establish strategies which do maximal damage to cancerous 
tissues with only moderate damage to normal tissues. Consequently, the idea 
of an optimal control strategy is particularly relevant. 

Differences in the susceptibility of tumor cells to antitumor agents have 
been shown most clearly as a function of their positions in the cell cycle. 
Thus the study of cell kinetics, the quantitative description of actively 
growing cell populations, can vastly improve the efficacy of chemotherapy. 

A number of mathematical models have been proposed to describe the 
progression of proliferating cells through the cell cycle (for a review, see [l]), 
particularly for cell cultures and untreated cell populations. Based on these 
models, the effects of drugs have also been described quantitatively [2-31. All 
of these models either have been unrealistically simple or have not been fully 
developed due to the lack of quantitative data, which are now beginning to 
be generated abundantly by the wide use of flow-microfluorometry (FMF) 
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devices [4-61. It is now appropriate to further develop theoretical cell-kinetic 
models and to derive the best treatment strategies. 

Kim et al. [7] have developed cell-kinetic models by modifying the 
discrete-time, state-vector approach of Hahn [8] to include output equations 
for the cell size and DNA distributions, which are the standard measure- 
ments. These models contain multiple compartments, thus describing cell 
movements through the cell cycle more accurately than others dealing with 
only total populations or small numbers of subpopulations. They have also 
added control functions for the cancer treatment, and have described how to 
estimate the cell-kinetic parameters [9- 1 I]. 

The above mathematical models can be used in predicting the response of 
a cell population to treatment and in determining the optimal dosage levels 
and intervals of the treatment. Swan and Vincent [12] derived a solution 
minimizing the total amount of cytotoxic drug in the host subject to an 
exponential equation relating total population and time; cell phases were not 
considered. Almquist and Banks [ 131 minimized cancer-cell kill versus nor- 
mal-tissue survival, where both tissues were modeled by exponentional equa- 
tions. Using the discrete-time state models, Kim et al. [3, 141 obtained a 
solution minimizing both the size of the tumor-cell population at the treat- 
ment’s end and the excessive use of the drug; this method took into account 
the cell-cycle phase specificity of a drug, which was omitted by the others. 

Although the discrete-time models may be convenient and easy to handle, 
they describe cell kinetics less accurately than the continuous-time state 

models, since cell cycling itself is a continuous process. The method of 
obtaining a solution to the continuous-time problem is quite different from 
that for the discrete-time problem. Using the continuous-time state models, 
this paper considers a method of (i) predicting the response of a cell 
population to treatment, and (ii) determining an optimal strategy in adminis- 
tering antitumor drugs. 

This paper is organized as follows: Section II describes the continuous-time 
cell cycling model and the discrete-time measurement model; Section III 
shows computer simulations of the time-course behavior of a CHO cell 
population; and Section IV describes the optimization procedure and a 
numerical experiment on a CHO cell population for determining optimal 
dosage intervals. This numerical experiment should provide insights into the 
problem of generating good solutions to the cancer treatment scheduling 
problem. 

II. CONTINUOUS-DISCRETE CELL-KINETIC MODELS 

A cell population is appropriately modeled by a continuous state equation 
for the cell cycling process and by a discrete-time equation for cell popula- 
tion measurements. 
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2.1. CONTINUOUS STATE MODEL OF CELL CYCLING PROCESS 

The cell cycling process of a tumor population under the effect of 
antitumor drug(s) can be modeled by a bilinear ordinary differential equa- 
tion: 

~(t)=Fx(t)+Gx(t)u(t), X(f,) =x(). (1) 

For convenience, a brief description of basic ideas underlying this equa- 
tion is given as follows (see [7], [ 151 for further details). The cell cycle consists 
of four distinct phases (G,, S, GZ, and M) and is divided into N equal 
intervals called age compartments. The physiological cell age distribution of a 
cell population is thus represented by an N-dimensional vector called the age 
state vector, the i th component of which represents the number of cells in the 
i th age compartment. Generally the state vector x E R” has additional 
components to include nonproliferating cells such as resting cells and dead 
cells. In this paper, the cell age state vector is partitioned as follows: the first 
N states describe the proliferating group, the next N states describe the 
resting cells, and the last state represents the dead cells (i.e. n = 2 N + 1). 

The variable u(t) represents the external control function, namely the 
therapeutic function. Since the allowable dosage is always bounded (i.e., 
0 4 u(t) < Urn.& one can assume u(t) E [0, I] for all t without loss of 
generality. This implies that u(t) = 0 represents absence of the therapeutic 
agent, whereas 0 -=c u(t) < I represents its presence. The expressions for the 
system matrices F and G are derived in two steps: first without therapy, to 
determine F, and then with therapy, to determine G. 

The cell kinetics without chemotherapeutic effects, described by the 
matrix F, are formulated by applying the cell-conservation principle along 
with a study of the normal inflow and outflow mechanisms pertaining to 
each cell age state. This leads to the Poisson-type differential equations 
describing F as follows: 

i,(t) =wvX,v(f)-(~I +d, +flb,(~)+Y,xN+,(~)~ 
i*(t) = ~,x,(t)-_(~* + d2 +f2h(t)+ Y*xN+*(t)r 

i*N(t) =fNxN(f)-(YN +~*N)x*,(~)~ 

);.,(t> = *i d,x,(t)- &,(t), 
1=i 
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where a,(t) represents the instantaneous rate of change of cells in state i due 
to normal-cell cycling and cell transitions between proliferating and nonpro- 
liferating groups; 6,) the probabilistic percentage of cells leaving the i th cell 
age compartment and entering the (i + 1 mod N)th compartment, i.e. the cell 
aging rate; d,, the probabilistic death rate in state i; f,, the rate at which cells 
in state i of the proliferating group leave and become resting cells in the i th 
state, i.e. xN+,(t), of the nonproliferating group: y,, the rate at which cells 
from the i th nonproliferating state return to the i th proliferating-cell age 
compartment: and k, the dead-cell clearance rate. Experimental evidence has 
shown that resting cells are arrested at three cell-cycle stages: the early G, 
phase, the late G, phase, and the late G2 + M phase [ 161. Therefore only three 
resting-cell compartments are used in the model, one for each cell cycle stage 
where this phenomenon occurs. This implies x~+,( f) = 0 for all i except 
i-values corresponding to early G,, late G,, and late GZ + M. 

Similarly, the drug- or chemotherapeutic-dependent cell kinetics-namely, 
cell killing and cell blocking-represented by the matrix G are as follows: 

-6(t) = {WI - Cl>xl(~>-2P,~,x,(~)}u(t), 
G(t)= {(Pz~z-C*)x,(~)-Pl~lxl(~)}u(~)~ 

hv(~) = -CZNxZN(~)U(~)~ 

%7(t) = 2$ cx,(t)u(f), 
r=l 

where i,(l) represents the instantaneous rate of change in state i due to the 
presence of antitumor agents; C,, the drug’s killing rate per unit time in state 
i; and p,, the fraction of cells blocked per unit time in state i which would 
normally age and migrate to state (i + 1 mod N) due to the drug effects. This 
cell blocking is called progression delay and occurs at certain specific 
cell-cycle stages, depending on the type of drugs applied. In agreement of 
experimental evidence, progression delay is assumed to occur at the G, /S 

and G,‘/M boundaries. 

2.2. CELL MEASUREMENT MODEL 

The cell age state previously defined cannot be measured directly but can 
be monitored indirectly by observing the cell size and the cell DNA content. 



DESIGN OF OPTIMAL CANCER CHEMOTHERAPY 229 

Presently, the flow-microfluorometry (FMF) technique offers large quantities 
of cell DNA-content data in a relatively short time with adequate statistical 
precisions [4-61. The DNA-content distribution of a cell population can be 
related to the cell age distribution as follows. Cells in the G, phase will have a 
DNA content of one unit, whereas cells in both the G, and M phases will 
have a DNA content of two units. Cells in the S phase will have a DNA 
content between one and two units. Bearing this in mind, a new vector z( tk), 
called the true DNA vector, was introduced by Kim et al. [7]. The i th 
component of z(tk) represents the number of cells at time instant t, with a 
DNA content (i -0.5)/(M+ 1) units, where A4 is the dimension of z. The 
true DNA vector is related to the cell age vector by 

where S is the transformation matrix that reorganizes the cell age state vector 
into the true DNA vector in terms of its DNA content instead of age. Let the 
experimental data acquired by FMF techniques be represented by y( tk). The 
true DNA vector is related to the experimental DNA data as follows: 

Y(f!f) = Dz(t,), (5) 

where D is the matrix describing the dispersion in the FMF data due to 
errors in staining and device. Two methods are known for determining the 
form of the dispersion matrix: one approach fits a Gaussian curve to each of 
the two peaks in the distribution and a polynomial in between [ 17- 181, and 
another fits a series of Gaussian curves, one for each discrete subinterval of 
DNA content, over the whole DNA distribution [ 15, 191. 

III. COMPUTER SIMULATION 

The model described in Section II was simulated and its time-course 
behavior was observed. The parameters used in this paper were inferred from 
those that were recursively estimated [ 1 l] using a discrete-time model. The 
FMF data used were taken on a Chinese-hamster-ovary (CHO) cell popula- 
tion. The original data’ were reduced so that they would contain only 30 
channels, the dimension of the FMF DNA vector. The mean generation time 
of the CHO cell population is known to be approximately 13 hours, and the 
ratio between the phase durations is 4 : 7 : 2. To keep the system order at a 
reasonable size, the number N of proliferating cell age states was taken to be 
13. Hence the number of states in the G, phase is 4, the S phase 7, and the 

‘These data were obtained from Dr. Fried at the Sloan Kettering Cancer Institute, New 

York. New York. 
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TIME: 7 hrs 

DRUG-FREE 

4.72 7.34 

T-0 fy=o.5 

lilA!L 
w-s + +.S+ 

CELL AGE 

2.59 

h_ 
m.S-- 

CELL AGE 

13.7 

.i 
WS+i 

FIG. 3. (a) Cell age distribution following drug application at time 6 hours 

G2 + M phase 2. Here we have lumped the G2 and M phases into one phase, 
the G, + M phase. Since both phases contain the same amount of DNA 
content, the two phases are indistinguishable with the FMF data being used. 
The resulting cell age vector consists of 13 proliferating states, 3 resting states 
as discussed in [ 161, and the dead-cell age compartment. With this dimension 
for the system and dimension of 11 for z( tk), Figure 1 illustrates the matrices 
S and D. The last column of S contains all zeros, since the effects of dead 
cells on the DNA data are generally assumed negligible. Note that using 
typical values of the cell-kinetic parameters, the system matrices F and G can 
be easily obtained from Equations (2) and (3). 

The model was simulated for 14 hours with no control (drug-free environ- 
ment). The plotted results for the cell age, true DNA, and computed FMF 
data are shown in Figure 2. Initially, most of the cells were congregated in 
the last S-phase compartment. As time passes, one can trace the progress of 
the cell population through the different cell phases. The experimental DNA 
(FMF) data points are superimposed on the simulated FMF distributions; 
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7.34 

L L 

TIME: 7hr.s 

16.8 

DRI JG-FREE 

i.; 

TIME: I I hrs 

I 2 

16.8 

q=0 

i_ 

; 

DNA CONTENT (NORMALIZED) 

6.49 

L 1 
17.6 

I 

I 2 I 2 

DNA CONTENT (NORMALIZED) 

FIG. 3. (b) Cell DNA distribution following drug application at 6 hours. 

these simulated distributions demonstrate consistency with the experimental 

ones. 
The chemotherapeutic effects on the cell population are simulated next. 

Using the same parameter values and initial state, the time-course behavior 
of the cell population is simulated, but this time the drug is applied at time 6 
hours. Another run with the cell blocking rate at the G,/S boundary set to 
0.5 shows the effect of progression delay at the G, /S boundary. The cell age, 
true DNA, and computed DNA for these two cases are compared in Figure 3 
for times of 7 and 11 hours. 

IV. APPLICATION OF OPTIMAL-CONTROL THEORY FOR 
DERIVING CHEMOTHERAPY SCHEDULES 

4. I. OPTIMA L-CONTROL PROBLEM 

Optimal therapy is defined to be treatment which maximizes the probabil- 
ity of cure or, failing to achieve a cure, maximizes average survival times. To 
achieve either of these goals, any proposed treatment must maximize killing 
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TIME: 7hr.s 
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FIG. 3. (c) Cell FMF distribution following drug application at time 6 hours 

of cancer cells and simultaneously minimize toxicity to the host. Toxicity 
here implies damages to the critical normal cell populations such as bone- 
marrow cells and gastrointestinal tract cells. Any treatment must not reduce 
the size of such cell populations beyond the level necessary to maintain their 
important biological functions. Of course, this level must be determined by 
clinical and physical considerations. 

Antitumor agents evoke two types of responses from both treated tumor 
and normal cell populations: lethality and delay in the normal transit 
through the mitotic cycle. These effects were modeled by a simple function in 
Section II. On the basis of this drug model, the optimal-control technique is 
used as a systematic tool for the best possible design of drug scheduling. 

First, a performance index is chosen so the goodness of the treatment can 
be measured. The performance index used has the form 

J=a~x(rl)+bl”~u(M?)(iW, (6) 
frJ 

where a and h are the weightings on the final cell age states and the control 
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respectively. This performance penalizes the final or remaining number of 
cancer cells at the end of the therapy period, but also penalizes excessive use 
of the drug. Since the allowable dosage is limited, the normalized control is 
bounded as follows: 

OSu(t)Sl for all-t (7) 

The problem is now to minimize the performance index (6) subject to the 
state equation (1) and the constraint (7). The Hamiltonian for this minimiza- 
tion is 

where p is the costate vector satisfying 

p(t)= -2. 

Application of the maximum principle [20] immediately shows that the form 
of the optimal control is a bang-bang type: 

~(l)=sgn{h+p~(t)Gx(t)} (10) 

where sgn represents the sign of the quantity in braces. This quantity is called 
the switching function and denoted by s(t). When s(t) crosses zero, the 
control switches state: from full on to full off or vice versa. The final 
condition on the costate is computed from the transversality conditions, 

P(Q = 
~Jb(t,)) 

M,> . 
(11) 

The state and costate differential equations, (1) and (9), along with the 
final condition on the costate and the initial condition on the state, com- 
pletely describe a two-point boundary-value problem (TPBVP). Analytical 
solutions to TPBVPs are usually impossible to obtain in all but very simple 
situations, and thus numerical techniques are sought. This optimal-control 
problem, with its bilinear form, meets the requirements of one algorithm 
available: the switching-time variational method (STVM) [21]. This method 
incorporates a modified gradient scheme to successively compute an ap- 
proximate solution to the optimal-bilinear-control problem. 
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4.2. COMPUTER-SIMULATION RESULTS FOR OPTIMAL TREATMENTS 

To demonstrate the utility of the optimal-control method, we simulated 
the results of applying the STVM algorithm to the optimal-control problem 
with a therapy period of 6 hours. The system parameters were varied and 
their effects on the optimal control noted. For convenience, only phase- 
specific drugs that affect only cells in the S phase are considered in this 
simulation. 

Compurison of Optimal and S&optimal Treatments. The optimal solution 
to the TPBVP was found to contain two switching times. This optimal 
therapy was compared with several suboptimal dosage schedules listed in 
Table 1, the optimal schedule being listed first. The duration of the control 
was kept constant in each case, though that was not necessary. In the second 
case, the number of cells increased because the drug was not administered 
long enough initially. Therefore more cells would survive and reproduce. The 
fact that the drug was present for a longer time near the end of the treatment 
schedule had little effect on the cancer-cell population, since the majority of 
the cells had not aged enough to reach the S phase. The cell age, true DNA, 
and computed DNA distributions for the first two entries of Table 1, an 
optimal and a suboptimal solution, are shown in Figures 4 and 5. If the 
control is initially on for its maximum duration of 2.81 hours, the number of 
CHO cells remaining at the end of the treatment schedule is more than the 
optimal number, even though it is less at time 2.81 hours. This can be 
explained as follows. The first 1 to 2 hours of the drug application kills the 
cells in the late S phase. But the last hour or so is wasted because there are 
essentially no cells remaining in the S phase. It would be more beneficial to 
postpone the application of the remaining dose until the cells had reached the 
S phase. The fourth case can be explained in a similar manner. In the last 

TABLE I 

A Comparison between Optimal and S&optimal 

Cancer Treatment Schedules” 

Initial control Final switching Performance 

m 
+1 

vector T, 

1.7.4.89 

index J, 

15.202 

+I I.O,4.19 16.120 

+I 2.81 17,185 

+I 0.5, 3.0, 4.0. 4.69 18.573 

-1 2.9, 4.9, 5.19 24,108 

-1 3.19 24.377 

“The first row is the optimal cancer-treatment schedule. The 

subscript f represents the final time. 
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two cases the control was initially off, so most of the cells were able to divide, 
thereby increasing the CHO cell population significantly. The drug applied at 
later times had little effect upon the cell population, since most of the cells 
had not reached the S phase for this treatment period. 

Performance-Index Weighting Measurements. The weighting factors a 
and b of the performance index in (6) were changed and their effect noted. It 
was found that the magnitude of the weightings had little effect on the 
control. The main contributor to the final result is the ratio between a and h. 
If the weighting on the control was increased, the duration of the control or 
drug was reduced, causing an increase in the number of CHO cells remaining 
at the end of the therapy period. The opposite was true if the weighting on 
the control was decreased. Similiar results were obtained if the weighting on 
the CHO cell’s final state was varied. The results of changing the weighting 
on the control while keeping the other variables constant is tabulated in 
Table 2. It can been seen that as the weighting on the control is reduced, its 
duration increases and the number of CHO cells remaining diminishes. 

Effects of Different Initiul Conditions. The initial state of the cell popula- 
tion plays an important role in the determination of the treatment schedule, 
as we have already seen. To show this the initial state of the cell population is 
varied and the resulting optimal sequence analyzed. A listing of the different 
initial conditions are found in Table 3, and the corresponding treatment 
period is illustrated in Table 4. For initial condition I, the majority of the 
cells are in the second compartment of the G, phase. These cells will migrate 
to the S phase in approximately 3 hours. The optimal control indicates that 

TABLE 2 

The Effects of Different Weightings on the Control” 

N*b 

cost of 

control 

Cells 

remaining 

Wt. on 

control T/‘ 

1 3198 10,463 6000 5.47 

I 3925 X.226 4000 5.02 

1 3428 6,085 2000 4.29 

1 2402 5,08 1 1000 3.60 

I I.518 4,620 500 2.96 

1 762 4.364 200 2.19 

2 446 4.274 100 0.087.1.62 

“The weighting a on the final cell age states is held constant at 1 .O. 

hOptimal number of switchings 

‘Final switching time vector 
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TABLE 3 

Different Initial Conditions Used in the Simulation 

Init. 

cond. XII XI? x13 Xl4 x,1 x,2 x,3 X54 xss X,6 x \7 X71 X2? 

I 20 15k 0 0 0 167 60 0 41 14 57 0 0 
II 20 IO 0 0 15k 167 60 0 41 14 57 0 0 

III 20 IO 0 0 0 167 60 15k 41 14 57 0 0 
IV 20 IO 0 0 0 167 60 0 41 15k 57 0 0 
V 20 IO 0 0 0 167 60 0 41 14 15k 0 0 

VI 20 IO 0 0 0 167 60 0 41 14 57 15k 0 

VII 20 IO 0 0 0 167 60 0 41 14 57 0 15k 
VIII 15k IO 0 0 0 167 60 0 41 14 57 0 0 

the drug should be applied at time 3.59 hours and left on for the remainder 
of the treatment period, while the cell population is distributed mainly in the 
S phase. For the next three cases, namely II, III, and IV, the bulk 
of these cell populations is somewhere in the S phase. The drug is applied 
immediately, since the cancer cells are maximally susceptible to the drug. As 
expected, when the majority of the cells at the initial time occur later in the S 
phase, the duration of the drug application is reduced and the final cancer-cell 
population increases. For cases VI and VII, the number of remaining cells is 
large, since most of the cells are able to divide. The resulting drug schedules 
are acceptable; as the time that it takes the bulk of the cell population to 
reach the S phase decreases, the time of the drug application also decreases. 
The final case examined, case VIII, is similar to case I. 

TABLE 4 

The Effects of Different Initial Conditions on the System 

Init. Cells cost of 

cond. /V*” J'h T/' 0) remaining control 

I I 7,483 3.59 -I 5.073 2410 

II I 4,437 3.06 t-1 I .377 3060 

III I 5,409 2.96 +I 2.449 2960 

IV 2 9.667 2.4,5.X6 + I 7,127 2540 

VI I 23,659 4.44 -I 22.099 1560 

VII I 20,6X 1 3.97 -I IX.651 2030 

VIII I 9.403 4.04 -I 7,443 1960 

“Optimal number of switch+ 

hOptimal final cost. 

‘Final switching time vector. 
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It has been shown that the initial state of the CHO-cell population 
drastically effects the optimal treatment schedule. It must be remembered 
that the therapy period used here is 6 hours. This does not provide enough 
time for the cell population to complete even one cycle. It does provide, 
though, some insight into the effects of the initial state upon the drug 
administration period. From these results, it would be ideal to accumulate all 
cancer cells in the late G, phase, release the block, and then apply the drug 
soon after so that its effects are maximally felt in the shortest time frame 

possible. 

Effects of the System Matrices Parameters. The continuous-time model’s 
parameters were altered in a number of ways, tabulated in Table 5, from the 
original parameters i.e., the first entry of the table. The resulting optimal 
therapy schedules are shown in Table 6. The first parameter varied was the 
progression delay at the G,/S transition boundary. With P, set 0.5, cells will 
accumulate in the last G,-phase-cell age state while the drug is present. 
Therefore the drug should not be applied until more of the cells are actually 

TABLE 5 

Parameter Values Used for Stimulationa 

Case C, 6, 6, 8, PI 

I .8 .8 .8 .8 .O 

II .8 .8 .8 .8 .5 

III .8 .9 .9 .9 .O 

IV .8 .6 .6 .6 .O 

V .8 .4 .4 .4 .O 

VI .8 .8 .4 .8 .O 

VII .5 .8 .8 .8 .O 

VIII .3 .8 .8 .8 .O 

IX .9 .8 .8 .8 .O 

Pmmerers heldconsmt 

d, = 0.01 y, = 0.02 

d, = 0.01 

d, = 0.01 

d,, = 0.0 

c, = 0.0 

cz = 0.0 

C”, = 0.0 

k = 0.0 

y2 = 0.02 

y, = 0.0 

J, = 0.02 

fz = 0.0 

fj = 0.0 

p2 = 0.0 

‘Subscripts indicate phases; e.g. C, = cell-killing rate 

by drug(s) in phase S. 
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TABLE 6 

The Effects of Different Parameter Values on the Cell System 

Case N*= J*b T,’ 

II 
III 
IV 
V 

VI 
VII 

VIII 
IX 

1.482 3.60 
8,27 I 4.05 
6.85 I 3.41 
9,458 3.98 

12,176 4.53 
7.305 3.66 
9.347 3.32 

11,473 3.31 
7.064 3.70 

“Optimum number of switchings 
‘Optimal final cost 
‘Final switching-time vector. 

in the S phase, since once it is administered, the inflow of cells into the S 
phase will be diminished severely. In order to study the full effect of this 
parameter, the treatment period will have to be lengthened. 

The variable 6 is successively reduced in cases III, IV, and V. The result is 
to apply the drug at later times, because less cells will have reached the S 
phase. Case VI is similar to I except that the aging-rate variable 6 was less 
during the S phase and produced little effect. The last three cases deal with 
the toxicity of the drug to the cancer population in the S phase. It was 
determined that the drug with the highest toxicity to the CHO-cell popula- 
tion should be administered for the shortest time. 

V. CONCLUSION 

The growth of a tumor population under the effects of antitumor drugs 
has been represented by a continuous-time, bilinear state model. Using this 
model, the time-course behavior of a CHO-cell population was simulated for 
a period of 14 hours with favorable results. The model was also used to 
Cetermine an optimal cancer treatment strategy for various initial conditions 
and cell-kinetic parameter values. The results of this study indicate that such 
a model is highly valuable; there is great potential in using it to predict 
systematically high cancer kill rates with lower toxicity to the patients. 

There are, however, several ways the present work can be improved. One 
is to improve the drug model; in particular, drug kill rates are only partly 
linear and often mostly exponential. The change of the drug model will in 
turn require reformulation of the optimal-control problem and will change 
the nature of the solution space, as the dosage level at any instant will be 
allowed to vary (i.e., we no longer have a bang-bang control policy). Another 
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way is to extend the treatment period of in computer simulation beyond 6 
hours, the maximum time the STVM program was able to produce accept- 
able results. For times greater than this, the overall performance index was 
reduced but the solution did not converge to the form predicted by the 
STVM. This convergence problem for longer treatment periods is caused by 
the propagation of numerical roundoff errors through the age states and the 
costates when they are integrated forward and backward, respectively. This 
numerical problem should be solved by special techniques or by using 
superaccurate computer (e.g. precision > 64 bits) to handle longer periods 
than 6 hours. 
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