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ABSTRACT 

In this paper we consider the rollback 
propagation and the performance of a 
fau l t - to lerant  multiprocessor with a rollback 
recovery mechanism (FTMR2M) [1 ] ,  which was 
designed to be tolerant of hardware fa i lure with 
minimum time overhead. Rollback propagation 
between cooperating processes is usually required 
to ensure correct recovery from fai lure.  To 
minimize the waste of processor time and storage 
overhead required for handling sophisticated 
rollback propagations, the FTMR2M always keeps 
one recoverable state. Approaches for evaluating 
the recovery overhead and analyzing the 
performance of FTMR2M are presented. Two 
methods for detecting rollback propagations and 
mult i-step rollbacks between cooperating 
processes are also propo'sed. 

1. INTRODUCTION 

Due to the increasing demand for re l iabi l i ty  
and surv ivab i l i t y  in the modern computing arena, 
it is highly desirable to have a recovery scheme 
which enables the computing system to 
automatically recover from various faults. The 
requirements of faul t  recovery speed as well as 
storage size are known to be the most d i f f icu l t  
problems faced by the system designer, 
especially in real-time applications. To meet these 
requirements, an approach based on a 
mult i-microprocessor system, which has inherent ly  
reliable LSI components and system 
reconfigu rabi l i ty ,  has been considered as a 
solution. The Faul t -Tolerant Mult iprocessor with 
a Rollback Recovery Mechanism (FTMR2M) [1] 
was designed to be tolerant of hardware faults 
with minimum time overhead. In this paper we 
investigate the performance of FTMR2M and the 
treatment of mult i-step rollbacks. 

All correspondence should be directed to Prof. 
Kang G. Shin, ECSE Department, Rensselaer 
Polytechnical Inst i tute, Troy,  NY 12181. 

The organization of FTMR=M is based on 
the backward recovery method and the recovery 
block. The recovery block, proposed by Randell 
[2] ,  is a program structure that  is composed of 
recovery points, acceptance tests, and 
al ternat ive processes for a given task. The 
al ternat ive processes may be d i f fe rent  algorithms 
started from the same state. If a process fai ls 
the acceptance test or if an er ror  is detected 
dur ing execution, the system will roll back to 
the previously recorded state and t r y  one of the 
other al ternat ives. Several aspects in this area 
have been studied; for  example, the technique 
for evaluating and minimizing overhead developed 
by Chandy and Ramamoorthy [3] ,  the strategies 
for  insert ing recovery points by O'Brien [4] ,  
the conditions for  avoiding the domino effect and 
purging the old recovery block by Kant and 
Silberschatz in [5] ,  and other designs, with 
emphasis on programmer t ransparency,  have been 
proposed by Meraud and Browaeys [6] ,  and Kim 
[7, 8].  

The concept of the recovery block is also 
useful for  to lerat ing hardware faults in a 
reconfigurable system. In general, process states 
are defined by the internal registers and the 
variables in memory at the end of each 
instruct ion execution. To generate the recovery 
block, we attempt to record these states 
consecutively and concurrent ly  dur ing the 
execution of the process with a special 
state-save mechanism. Af ter  a fault  is detected 
and isolated, the system will be reconfigured to 
replace the failed processor module (PM). By 
loading the program code and migrat ing the 
recorded states into the replacement PM, the 
original process can be resumed. Thus every 
interval between two consecutive state-savings 
can be regarded as a recovery block. 

To resume the execution of a task 
comprised of cooperating processes from a 
fau l t - f ree and consistent state, the rollback of 
the failed processor may have to propagate to 
other processors or to a fu r the r  recorded state. 
The worst case is when an avalanche of rollback 
propagations, namely the domino effect, occurs. 
We may be able to eliminate the domino effect by 
restr ict ing interactions and by making an a 
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p r i o r i  analys is  of  i n te rac t i ons ,  which b r i n g  about  
h i ghe r  overhead in s torage and execut ion  t ime.  
I f  the  p r o b a b i l i t y  of  the  domino e f fec t  is small ,  
i t  seems b e t t e r  to r e s t a r t  the whole task  when 
the  domino e f fec t  occurs than to p r e v e n t  the  
domino e f fec t .  This seems t rue  even fo r  the  case 
when ro l lback  p ropaga tes  more than one step 
(note tha t  the  domino e f fec t  is a special  case of 
t h i s ) .  Consequen t l y  we adopted  a method cal led 
automat ic  ro l lback  recove ry  which cons t ruc ts  the  
recovery  b locks au tomat ica l l y  and al lows the  task  
to rol l  back on ly  a s ing le  s tep;  i f  a 
mu l t i p l e - s t ep  ro l l back  is r e q u i r e d ,  then the  task  
has to be r es ta r t ed .  In th is  method an add i t iona l  
measure to de tec t  the  domino e f fec t  o r  
mu l t i p l e - s t ep  ro l l back  must  be taken p r i o r  to 
recove ry .  

Th is  pape r  is o rgan i zed  as fo l lows.  Sect ion 
2 b r i e f l y  rev iews the  a r c h i t e c t u r e  of FTMR2M, 
and Section 3 d iscusses the  de tec t ion  of  ro l l back  
p ropaga t ion  and domino e f fec t .  Section 4 deals 
w i th  the  est imat ion and analys is  of pe r fo rmance  
in terms of the  expec ted  execut ion  t ime. A 
conclus ion is p resen ted  in Section 5. 

2.REVIEW OF FTMR2M ARCHITECTURE 

The FTMR2M a r c h i t e c t u r e  has been 
i n t r oduced  in our  ea r l i e r  w o r k  [ 1 ] ,  bu t  f o r  
convenience the  basic o rgan iza t i on  of th is  
mu l t i p rocesso r  is p resen ted  in Fig.  1. I t  is 
s imi la r  to the  Cm* system [9, 11].  The major  
aspects are b r i e f l y  desc r ibed  below.  

2.1 Processor Module and State Saving 

A basic p rocessor  module in the  
mu l t i p rocesso r  system under  cons idera t ion  
consists of a p rocessor ,  a local memory•  a local 
sw i t ch ,  s ta te -save  memory uni ts  and a swi tch 
mon i to r .  Each PM can execu te  a process of the  
g iven task  and can communicate w i th  o the r  
processes a l located in o t h e r  PMs. The p rocessor  
module saves i ts states ( i . e .  va r iab les  and 
s ta tus)  at var ious  stages of execu t ion ,  cal led a 
s ta te -save .  A t  r e g u l a r  i n te rva l s  of d u r a t i o n ,  Tss 

an ex te rna l  c lock s t imula tes e v e r y  p rocessor  
module to save its states as soon as i t  completes 
the  c u r r e n t  i n s t r u c t i o n .  Then the  p rocesso r  
executes a va l ida t ion  tes t .  I f  the  p rocesso r  
su rv i ves  the  tes t ,  the  saved state wou ld  be 
rega'rded as the  recove ry  po in t  f o r  the  nex t  
i n t e r va l .  I f  the  p rocessor  fa i ls  the  va l ida t ion  
tes t ,  i t  w i l l  rol l  back to the  p r e v i o u s l y  saved 
state.  The deta i led opera t ions  in the  ro l l back  
recove ry  are shown in Fig. 2. 

Du r i ng  a s ta te -save  i n t e r v a l ,  besides the  
normal execut ion of i n s t r u c t i o n s ,  cer ta in  
opera t ions  are au tomat ica l l y  execu ted ;  f o r  
example,  a p a r i t y  check is done wheneve r  the  
buses are used. Some r e d u n d a n t  e r r o r  de tec t ion  
uni ts  are accompanied w i th  the  p rocessor  module 

[10 ] ,  e . g .  d u a l - r e d u n d a n c y  compar ison•  
a d d r e s s - i n - b o u n d  check,  etc.  These uni ts  are 
expec ted  to de tec t  a mal funct ion as soon as the  
co r respond ing  func t ion  un i t  is used. An 
add i t iona l  va l ida t ion  process re f reshes the  
she l ters  to gua ran tee  the  sav ing of a f a u l t - f r e e  
state and thus  ensures sa fegua rd ing  aga ins t  f au l t  
p ropaga t ion .  

To minimize the  t ime overhead requ i r ed  fo r  
s ta te -save ,  the  sav ing is done c o n c u r r e n t l y  w i th  
process execu t ion .  Every  update  of  va r iab les  in 
the  local memory is recorded  in the  s ta te -save  
memory un i t  s imul taneous ly .  Two such s ta te -save  
memory un i ts ,  cal led SSU 1 and SSU 2,  are used 
f o r  sav ing states at two consecu t i ve  i n te r va l s .  
Thus each PM always keeps one va l id  s tate 
saved in one un i t  and stores the  c u r r e n t l y  
chang ing  state in the  o the r .  The two  SSU's t ha t  
save the  old and c u r r e n t  states respec t i ve l y  wi l l  
be swi tched fo l low ing  the  complet ion of e v e r y  
s ta te -save .  The mon i to r  swi tch is used to rou te  
the  c u r r e n t  state to one SSU and to manage the  
s ta te -sw i t ches .  

Since the  update  of dynamic  elements is 
copied in on ly  one SSU, the  o the r  SSU is 
i gno ran t  of i t .  Th is  fact  may b r i n g  about  a 
ser ious prob lem:  the  newly  upda ted  va r iab le  may 
be lost .  In o r d e r  to avoid t h i s ,  i t  is necessary  
to make the contents  of two SSU's ident ica l  at 
each s t a t e - s w i t c h i n g  ins tan t  o r  to copy the  
var iab les  tha t  have been changed in the  p rev ious  
i n te rva l  in to the  c u r r e n t  s ta te -save  un i t .  A 
solut ion to th is  p rob lem has been proposed in 
the  p rev ious  paper  [ 1 ] .  A t  each s ta te - sw i t ch  
ins tan t ,  the c u r r e n t  SSU conta ins not on ly  the  
c u r r e n t l y  upda ted  va r iab les  b u t  also the  
p r e v i o u s l y  updated  va r iab les .  So, the  contents  of  
the  c u r r e n t  SSU always rep resen t  the  newest  
state of  the  PM. 

2.2 System Organ iza t ion  

The s ta te -save  of a task  tha t  is 
d i s t r i b u t e d  ove r  p rocessor  modules PM i 
(i=I . . . . . . .  N) impl ies the s ta te -save of each PM. 
The  resumpt ion of a fa i led process may need 
cooperat ion f rom o the r  processes due to the  
c o n c u r r e n t  execut ion  of processes and 
interprocessor communicat ion.  Fault  r ecove ry  in 
the  task  level could invo lve  the  ro l lback  of the  
fa i led process and o the r  re la ted processes.  Since 
(1) coopera t ing  PMs can have a r b i t r a r y  
in te rac t ions  and (2) each PM saves i ts s tates 
asynch ronous l y  w i th  o the rs ,  i t  is poss ib le  to 
r e q u i r e  mu l t i - s t ep  ro l l back .  I f  the p r o b a b i l i t y  of 
a mu l t i - s t ep  ro l lback  is small,  i t  may be p ra t i ca l  
to s imply  r e s t a r t  the  whole task  when a 
mu l t i - s t ep  ro l lback  occurs ,  instead of 
c o n s t r u c t i n g  more complex mechanism to a l low 
mu l t i - s t ep  ro l lbacks  fo r  ques t ionab le  r e t u r n .  To 
make the fau l t  r ecove ry  successful  in th is  case, 
the  system should check the ro l lback  p ropaga t i on  
and mu l t i - s t ep  ro l l back ,  as wel l  as the  m ig ra t i on  
of fa i led process to the  rep lacement  PM. 
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The system contains th ree  data paths tha t  
connect PMs at two- leve l  h ie ra rchy .  The 
i n t r a - c l us te r  bus, a t ime-shared paral le l  bus, 
groups PMs into a c luster .  The i n te r - c lus te r  l ink 
forms a modular  computer  network  which permits 
expansion.  Ano the r  data path,  formed by the 
DMA cont ro l le r  and DMA channel ,  is used to 
t r ans fe r  the program code and process states 
such that  the loading and migrat ion of a process 
can be handled w i thou t  i n te r fe r i ng  wi th the 
i n t ra -c lus te r  bus. 

The c lus ter  node is composed of a switch 
and a moni tor .  This switch element, called the 
c lus te r  swi tch,  handles the externa l  references 
and records these references to analyze ro l lback 
propagat ions.  The c lus ter  moni tor  manages the 
PM pool in the c luster .  I t  receives the request  
f rom the host and loads a process via the DMA 
data path to a PM. I t  also receives repor ts  from 
PMs in the c lus ter  as to the s tate-save 
operat ions and PMs' condi t ions.  Once a fa i l u re  is 
detected,  the c lus ter  moni tor  wi l l  signal " r e t r y "  
to the PM in quest ion.  If  the same fa i l u re  is 
detected again,  a permanant  fau l t  is dec lared 
and the fo l lowing steps are taken by the c lus te r  
moni tor  and c lus ter  switch:  

1. Stop all o ther  PMs tha t  are execut ing  
processes of the same task.  

2. Make a decision on the ro l lback 
propagat ion .  

3. Resume the execut ion of processes that  are 
not af fected by ro l lback propagat ion .  

4. Find a f ree  PM to replace the fa i led PM. 

5. Migrate the process in the fa i led PM to the 
replacement PM. 

6. Roll back the processes af fected by the 
ro l lback of the fa i led PM. 

7. Any  in teract ion d i rec ted to the fa i led PM 
must wai t  fo r  the resumption of the 
process in the new PM. Old and 
unserv iced in teract ions issued by these 
ro l led-back  PMs, which are st i l l  queued in 
the c lus ter  node, are cancel led. 

There  are several  tables that  wi l l  be 
invo lved in the ro l lback recovery .  F i rs t ,  the 
processor- task tab le  (PTT)  is used fo r  
associat ing the processes being executed in the 
PMs with a task and i den t i f y i ng  the PMs' 
condi t ions.  Second, the task-processor  tab le 
(TPT)  groups all PMs execut ing  processes of a 
task.  Both tables can p rov ide  the informat ion of 
the relat ions between physical  PMs and a logical 
task.  The t h i r d  tab le is the address mapping 
tab le for  ex te rna l  references.  To avoid updat ing  
the whole mapping tab le a f ter  the 
reconf igu ra t ion,  an associated re rou t ing  tab le 
(RT) is used to map addresses d i rec ted to f au l t y  
PMs into the i r  replacements. 

3. PROPAGATION AND DETECTION OF ROLLBACK 

In FTMR2M, each in teract ion between 
cooperat ing processes is regarded as a re ference 
to shared var iab les .  These shared var iab les ,  a 
por t ion of dynamic data,  can be located in an 
a r b i t r a r y  PM. The state of process Pi  should 
inc lude the shared var iab les that  are accessed 
by process P..  To rol l  back a fa i led process, i t  
is necessary I t o  p rov ide  the consistent  contents 
of the shared var iab les as well as those of the 
process's local var iab les and in terna l  states. 
Since the shared var iab les may reside outs ide 
the associated PM, two related aspects, namely 
the ro l lback propagat ion and the mul t i -s tep 
ro l lback,  must be considered.  

3.1 Rol lback Propagation and Mul t i -s tep  Rol lback 

Suppose a shared var iab le  X resides in PMj 
which executes process P j ,  and process P has 
accessed X in its curren-t s ta te-save in terva  . 
One can consider  the fo l lowing th ree  ways in 
which the ro l lback may af fect  o ther  processes. 

1. I f  P i  rol ls back and if Pi has a l ready 
changed X, the reexecut ion of P.j requi res 
X to contain the old va lue p r i o r  to the 
change by Pi " Hence P i should also rol l  
back. 

2. If  process Pi rol ls back a f te r  i t  has 
wr i t ten  to var iab le  X, th is new value of X 
should be d iscarded since the wr i te  
operat ion may be fau l t y  and is cancelled 
by the ro l lback of P i "  The process Pj,has 
to rol l  back so as to recover  the prev ious 
va lue of X. 

3. I f  P i reads X du r ing  a state-save in terva l  
when Pj fa i ls ,  we can not ensure the 
correctness of the value read by process 
P i" To avoid a possible fau l t  p ropagat ion ,  
process Pi has to rol l  back. 

Even i f  the ro l lback does not propagate in 
the case tha t  process Pi. has read var iab le  X and 
then fa i ls ,  th is case Is t reated the same as 
above to s impl i fy  the detect ion of ro l lback 
propagat ion .  We assume tha t  the cooperat ing 
processes must rol l  back if  there  exists an 
in teract ion du r ing  the cu r ren t  s tate-save in terva l  
of one of the invo lved processes. This  
propagat ion is denoted as P i - - - > P  j i f  ro l lback of 
Pi induces ro l lback of Pi • An example is 
presented in Fig. 3, where" process P1 fai ls at 
t ime t [ f ) .  Since there  is an in teract ion between 
P1 and P2 du r i ng  the time in terva l  ( t (n  1 ) ,  t ( f ) ) ,  
process P2 must rol l  back to enable the 
in teract ion in the reexecut ion of P I '  denoted by 
P 1 - - - > P 2  • The ro l lback of process P2 wi l l  
p ropagate f u r t h e r  to o ther  processes, in this 
example, P2--->P4, PI - - ->P3 , and P3--->P2. 

Because of asynchronous state-save nature ,  
the ro l lback may propagate f u r t h e r  to the state 
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beyond the prev ious state. I n the above 
example, P2 must rol l  back to the state at t (n~  
-1) because of the propagat ion P3-- ->P2;  namelC~ 
this fa i l u re  requi res a mul t i -s tep ro l lback.  In the 
worst  case, this fact  may in t roduce unbounded 
ro l lback propagat ions (even tua l l y  to the 
beg inn ing  of the processes).  In the automatic 
ro l lback recovery mechanism, we on ly  
accommodate one saved state in each PM to 
minimize the storage overhead.  Hence the whole 
task has to be restar ted i f  a mul t i -s tep ro l lback 
is requ i red .  

3.2 The Detect ion of Rol lback Propagat ion 

Since every  in teract ion is managed by the 
c lus ter  node, the c lus ter  node should take 
respons ib i l i t y  for  detect ing ro l lback propagat ion 
and dec id ing i f  a mul t i -s tep  ro l lback is needed. 
Let a g iven task be decomposed into N 
cooperat ing processes that  are assigned to N PMs 
and executed s imutaneously.  Two detect ion 
methods are proposed as fol lows: 

A. Method 1 

Let the a r ray  element K ( i , j )  represent  the 
number of in teract ions between P and Pi du r i ng  
the cu r ren t  s ta te-save in te rva  of Pi- Be6ause of 
the time d i spa r i t y  in saving states fo r  Pi and P i  

the values of K ( i , j )  and K ( j , i )  may b~ t 

d i f f e ren t .  The c lus ter  node counts the number of 
in teract ions and checks the a r ray  when fa i lu re  
occurs as fol lows. 

1. When process Pi saves its state and moves 
to the next  s tate-save in te rva l ,  reset 
K ( i , j )=0  fo r  j = I , 2 . . . N .  

2. When the c lus ter  d i rects  a re ference issued 
by process Pi to Pj,  K ( i , j )  and K ( j , i )  
are incremented by 1. 

3. When Pi fa i ls  or  is af fected by another  
ro l lback,  the c lus ter  node examines K ( i , j )  
f o r  j = I , 2 . . . N .  If  and on ly  i f  K ( i , j )=0 ,  
the re  is no d i rec t  propagat ion from Pi to 
~ I f  K ( i , j )#0  and K ( i , j ) = K ( j , i ) ,  then aPn j 

to rol l  back one step. If  K { i , j ) f 0  d 
K ( i , j ) # K ( j , i ) ,  the ro l lback wi l l  p ropagate  
more than one step. 

The condi t ion under  which ro l lback 
propagates more than one step occurs when (1) 
there  is an in teract ion across the d i f f e r e n t  
s tate-save in terva ls  of Pi and Pj (see an example 
in Fig. 3, where P3 in teracts  wi th  P2 in the 
in terva l  ( t ( n 3 ) , t ( n ? ) ) )  , and (23 Pi and P j  both 
need to rol l  b a c k . -  

From steps 1 and 2, K ( i , j )  represents  the 
number of in teract ions between Pi and Pi in the 
cu r ren t  s ta te-save in terva l  of P . To p rove  the 
correctness of this method, all possib e cases are 
considered in Fig. 4. For cases (a) and (b ) ,  i t  
is obv ious tha t  Pi does not have to rol l  back. 
For case (c) ,  P j ~us t  rol l  back, leading to the 
fact tha t  the in teract ions du r i ng  the present  

state in te rva l  of P i and Pj are reproduced.  For 
the cases in (d ) ,  (e) and ( f ) ,  the re  are 
in teract ions between the s tate-save instants of 
P'I and P-j. The s ing le-s tep ro l lback of Pi o r  Pi is 
not su f f i c ien t  to cover  the all in terac t ions  needed 
in the reexecut ion .  In the above example of Fig. 
3, the a r ray  of K4x 4 at t ime t ( f )  is 

2 0 0  1 
1 1 0 0 
0 1 0 0 

If the processor  execut in  9 P fai ls at t ( f ) ,  the 
examinat ion of a r ray  K4x4Concludes tha t  P2, P3 
and P4 have to rol l  back. Since K (3 ,2 )#K (2 ,3 )  
and K(3 ,2)#0 ,  a mul t i -s tep  ro l lback is requ i red .  

The time requ i red  fo r  dec id ing i f  the 
processes have to rol l  back o r  not, cal led 
decision de lay ,  depends on the number  of 
comparisons in Step 3. The number of 
comparisons is determined by the in teract ion 
pat terns among processes. Since the checkin 9 of 
K ( j , i )  is not  necessary i f  P i - - - > P j ,  the maximum 
number of comparisons would be N ( N - 1 ) / 2  fo r  N 
cooperat ing processes. The memory space fo r  
s to r ing  the K a r ray  increases p r o p o r t i o n a l l y  to 
N 2. If  N is large,  the storage overhead and the 
decision delay may become a burden to system 
per formance.  

B. Method 2 

Two condi t ion a r ray  elements KC( i , j )  and 
KP( i , j )  are used to represent  the in teract ions 
between processes Pi and Pj . Both ar rays  are 
composed of N*N b i ts ,  each a r ray  element 
consist ing of a s ingle b i t .  I f  an in teract ion 
occurs from P i t o  P: du r i ng  the cu r ren t  
s ta te-save in te rva l  o f  ~oth Pi  and PJi then 
K C ( i , j ) = I .  I f  th is in teract ion occur red n P j ' s  
prev ious s tate-save in te rva l ,  then K P ( i , j ) = I .  The 
steps fo r  set t ing these a r ray  elements and 
checking the ro l lback propagat ion  are as fo l lows: 

1. When an in teract ion is issued by P i and 
d i rec ted to P j ,  then KC( i , j )  and KC( j , i )  
are set to 1. 

2. I f  process P i saves its states and moves to 
the nex t  s tate-save in te rva l  , then fo r  
j = 1 , 2 . . . N  

(a) .  K P ( j , i ) : = K P ( j , i )  ÷ KC( i , j )  
KC( j , i )  :=0 

(b ) .  K C ( i , j ) : = 0  
KP( i , j )  :=0 

where + is logical OR operat ion and step 
(a) is clone before step (b). 

3. When P i rolls back, the cluster node 
checks two rows in each array, namely 
KC(i,j) and KP(i,j) for j=I ,2. . .N. There 
are three possibilities: l ) .  If KP(i,j)=I, 
then a multi-step rollback occurs. 23. If 
KP(i,j)=0 and KC(i,j)=I, process P: has to 
roll back a single step. 3). If JKP(i,j)= 
KC(i,j)=0, then there is no direct rollback 
propagat ion  from P i to Pj.  
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The proof  of Method 2 can be done 
s imi lar ly  to the f i r s t  one. A l though the va lue of 
KC( i , j )  is always equal to K C ( j , i ) ,  we added 
this redundancy  to speed up the detect ion 
process and make the hardware implementat ion 
easy. Two ar rays  are a r ranged as Fig. 5 such 
that  the checking of a row can be per formed at 
one t ime. Hence the maximum number of row 
checkings would be N fo r  N cooperat ing 
processes. 

4. ESTIMATION AND ANALYSIS OF 
PERFORMANCE 

4.1 Performance Estimation 

To evaluate the per formance of the 
automatic ro l lback recovery  mechanism, the 
expected execut ion time of a g iven task has to 
be determined.  Since cer ta in addi t ional  processes 
are inser ted into the normal processes, and since 
mul t i -s tep rol lbacks are in ten t iona l l y  avo ided,  the 
time overhead and the r isk of res tar t  should be 
s tud ied.  Suppose a task is par t i t i oned  into N 
processes which are al located to N PMs and 
executed s imul taneously.  Let Tnd  represent  the 
time spent to complete th is task under  a 
f au l t - f r ee  condi t ion.  The real execut ion t ime, T t ,  
includes Tnd,  as well as the time overhead fo r  
genera t ing  recovery  blocksp Toy I and the time 
requ i red  to recover  f rom fa i lu res ,  T r e c .  An 
expression of expected execut ion t ime, E(T t ITnd 
),  is der ived  under  the fo l lowing assumptions: 

1. The time in te rva l  between two consect ive 
fa i lu res  can be descr ibed by an 
exponen t ia l l y  d i s t r i bu ted  random var iab le  
wi th  a mean of I/~.. For s impl ic i ty  an e r r o r  
is assumed to be d iscovered immediately 
whenever  i t  occurs.  The re fo re  the 
occurrence of recovery  can be modelled as 
Poisson process wi th a mean time between 
recovery  or  res tar t  that  equals 1/~,. 

2. The system has a su f f i c ien t  number of 
processor modules so tha t  the task may be 
executed con t inuous ly  f rom s tar t  to 
complet ion. The t ime needed fo r  f a u l t - f r e e  
task execut ion,  T n d ,  is assumed to be 
independent  of system recon f igu ra t ion .  This  
is t r ue  if  the fa i led process is migrated to 
the replacement PM in the same c lus ter  as 
the  fa i led PM. 

3. In addi t ion to the set -up t ime fo r  the 
newly con f igured  system, a f u r t h e r  fa i l u re  
may occur when the task is reexecuted 
fo l lowing the recovery  from a fa i l u re .  

For purpose of comparison, the model 
proposed by Cast i l lo  and Siewiorek [12] is 
in t roduced fo r  a system w i thou t  a ro l lback 
mechanism. In this model the processes must be 
restar ted whenever  fa i l u re  occurs.  A typ ica l  
sequence of processing is shown in Fig. 6b. The 

expected recovery  t ime, E ( T r e c ) ,  fo r  a g iven 
f au l t - f r ee  execut ion time Tnd is expressed by 

E (Trec)  = ( t su* I / ) , )  ( exp (kTnd )  - I  ) - T n d  - - - ( I )  

where tsu is  the time requ i red  to set up the 
res tar t  opera t ion .  Since there  is no time 
overhead fo r  genera t ing  recovery  b locks ( i . e .  Toy 
=0), the expected execut ion time can now be 
expressed by 

E ( T t l T n d ) = E ( T n d  )+E(T rec )=Tnd+E(Trec  ) 

= ( t su+ l /~ )  ( e x p ( k T n d ) - l )  - - - ( 2 )  

For a system wi th a ro l lback recovery  
mechanism, an addi t ional  overhead is in t roduced 
into the normal process due to the va l idat ion 
process and state-save operat ion.  Since the 
s tate-save operat ion is done in a " n e a r l y "  
concur ren t  manner,  and some e r r o r  detect ions 
are embedded in the execut ion of processes, the 
s ign i f i can t  fac tor  should be the execut ion of 
va l idat ion process. I f  there  is an erroneous state 
that  is not uncovered by the embedded e r r o r  
detect ion mechanism, the ro l lback mechanism may 
not work  fo r  t ime-cr i t i ca l  appl icat ions.  The 
va l idat ion process is used to ensure the 
correctness of saved state and thus p reven t  
e r r o r  propagat ion to subsequent  recovery  blocks. 
The va l idat ion process can be simple and shor t  
i f  the embedded e r r o r  detect ion mechanism covers 
most sources of e r ro r .  

Assuming tha t  a total  t ime T t is requ i red  
to complete a g iven task and Tss is the dura t ion  
between two consecut ive state-save invocat ions,  
we can represent  the t ime overhead as fo l lows: 

Tov_<(Tt/Tss) ( tv+ t  s) - - -  (3) 

where T o y  is the t ime overhead fo r  the 
const ruc t ion of recovery  blocks, t v is the t ime 
requ i red  to execute the va l idat ion process, and 
t s i s  the t ime used fo r  s tate-save.  Both sides are 
equal when there  is a s ta te-sav ing immediately 
fo l lowing each state-save invocat ion,  t s can be 
expressed as the sum of the time needed to save 
the in terna l  state of a p rocessor ( t i s  ) and the 
t ime needed fo r  the t r ans fe r  or  update of 
s ta te-save , uni ts  ( t s s u ) .  With the scheme 
descr ibed in Section 2, the t r ans fe r  of updated 
elements is executed in paral le l  wi th 
non-memory -upda te  operat ions.  Note that  the 
number  of non-memory-updates is genera l l y  
g rea te r  than the number of m e m o r y - u p d a t e s .  
There fo re ,  tssuCan be assumed neg l ig ib le .  Then 
the t ime overhead becomes 

TovSTt  ( T s v / T s s )  - - -  (4) 

where T =t ÷t . 
SV V S 

In FTMR2M, processes may rol l  back to the 
p rev ious ly  saved state or  res tar t  the whole task 
a f ter  a fa i l u re .  Fig. 6a shows the sequence of 
processing in which the processes may have to 
res tar t  or  rol l  back a f te r  a fa i l u re .  Let the 
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probab i l i t ies  of ro l lback and res tar t  be Pb and Ps 
• respect ive ly  where Pb+Ps= l .  Let the set up 
time of a process a f te r  each fa i l u re  be constant  
and equal to t sb  fo r  ro l lback ( tsu fo r  res ta r t ) .  
The amount of computat ion loss in ro l lback 
recovery  is equal to the operat ion that  has been 
done between the prev ious s tate-save ins tant  and 
the time ins tant  of fa i lu re .  This dura t ion•  called 
ro l lback distance• is a random var iab le  
d i s t r i bu ted  from 0 to Tss*Tsv  . To s impl i fy  the 
der i va t ion  of the expected execut ion t ime, the 
ro l lback d istance fo r  each fa i l u re  is assumed to 
be constant•  denoted as r,  and the completion of 
the task wi l l  be delayed by r as a resul t  of 
each ro l lback recovery  (accord ing to our  
s imulat ion,  th is assumption has l i t t le  ef fect  on 
per formance i f  Tnd >> T s s ) .  The time Tss i s  
assumed to be so large tha t  there  is always a 
s ta te-sav ing fo r  each s tate-save invocat ion.  I f  r 
is set to T s s + T s v ,  the resu l t  should be the 
upper  bound of the tota l  execut ion t ime. The 
results der i ved  in the Append i x  are g iven in the 
fo l lowing : 

E ( T t l T n d ) = ( t s u + l / ( k P s ) )  (m'~ Pr(m) 
exp ( XP s (Tnd*m ( r+ tsb)  ) / ( 1 -v) ) - t ) - - -  (5) 

P r (m)=(1 /m! )  (XPbTnd)m(l*mr/Tnd)m-1 
exp(-XPbTnd) ---(6) 

where v=Tsv/Tss• and Pr(m) is the p robab i l i t y  of 
occurrence of hav ing m rol lbacks before 
completion of the task.  

4.2 Discussion of Performance Models. 

From the above est imat ion• several 
dependent  relat ions are s tud ied.  In Fig. 7• the 
p robab i l i t y  dens i t y  func t ion  of Pr(m) is shown. 
These curves are simi lar to those of a Poisson 
process except  fo r  the s l igh t  d i f fe rence  due to 
the recurs ive  occurrences of fa i l u re  fo l lowing the 
recovery  from a fa i l u re .  Figures 8 and 9 express 
the relat ion between the expected time wasted 
fo r  the recovery  from faul ts  and the time needed 
fo r  f a u l t - f r e e  execut ion.  The major ef fect  of the 
ro l lback recovery  mechanism seems to be that  the 
the mean t ime between fa i l u re  is en larged from 
1/X to 1/(XPs).  

In Eq. (5) the length of the s tate-save 
invocat ion in te rva l ,  Tss , has two mutua l ly  
conf l i c t ing  ef fects.  F i rs t ,  an increase of Tss wi l l  
decrease the percentage of t ime overhead.  On 
the o ther  hand, the average computat ion loss by 
ro l lback is p ropor t iona l  to the state-save 
dura t ion  because the occurrence of fa i l u re  is 
d i s t r i bu ted  t h r o u g h o u t  the s tate-save in te rva l .  
Futhermore,  the amount of in teract ion w i th in  one 
state-save in te rva l  increases wi th the length of 
th is i n te rva l .  This  increase implies a high 
poss ib i l i t y  of ro l lback propagat ions in case of 
fa i l u re .  The re fo re  the increase of Tss ,  which 
invokes longer  s tate-save in terva ls•  wi l l  

in t roduce more computat ion loss and h igher  
p robab i l i t y  of res tar t .  The optimal va lue of T ss 
can be found in Fig. 10, where the percentage 
of the time lost fo r  fau l t  recovery  vs. the 
percentage of t ime overhead fo r  genera t ing  
recovery  blocks is p lo t ted.  The curves seem to 
be a s t ra igh t  l ine i f  Tss is small (namely Tsv /  
Tss is large)  unt i l  t hey  reach a minimum which 
shi f ts to the r i gh t  wi th increasing fa i l u re  rate. 
A f t e r  th is minimal po in t ,  an increase of ro l lback 
distance makes the recovery  t ime increase 
cons iderab ly .  

The per formance of the ro l lback recovery  
mechanism is s ign i f i can t l y  dependent  upon the 
p robab i l i t y  of res tar t .  The p robab i l i t y  of res tar t  
a f te r  a fa i l u re ,  Ps, is a random var iab le .  The 
d i s t r i bu t i on  of Ps depends on th ree  factors:  

1. the h i t  rat io w i th in  each process, 
2. the length of the s tate-save invocat ion 

in te rva l  (Tss)• and 
3. t ime d ispar i t ies  in the actual state-saves 

among cooperat ing processes fo l lowing each 
state-save invocat ion.  

Apar t  from the assignment of optimal Tss,  
the p robab i l i t y  of res tar t  can be improved in 
th ree  ways: 

1. Al locate a shared var iab le  to a PM in 
which the res ident  process refers to th is 
shared va r iab le  most f r e q u e n t l y .  Since the 
re ference to a shared var iab le  tha t  resides 
in the same PM can not be across d i f f e ren t  
s ta te-save in te rva ls ,  the p robab i l i t y  of 
hav ing a mul t i -s tep ro l lback should 
decrease. 

2. Decompose the task into coopera t ing  
processes such that  the amount of 
in teract ion is minimized. This  aspect is one 
of the major unsolved issues in any 
mul t ip rocessor  system. A su i tab le  
decomposit ion wi l l  ce r ta in ly  enhance the h i t  
rat io and decrease Ps. 

3. Accommodate a t h i r d  s tate-save un i t  to 
p rov ide  two saved states fo r  ro l lback.  In 
th is a r rangement  a process is al lowed to 
rol l  back more than one step. If  the 
p robab i l i t y  of res tar t  in the s ing le -s tep  
ro l lback env i roment  is P s • then the 
p robab i l i t y  of res tar t  wi th  th ree  s ta te-save 
uni ts would be c lear ly  less than Ps" To 
detect  a two-s tep  ro l lback,  add i t iona l  
a r rays  are needed to i den t i f y  the 
in teract ions d u r i n g  the prev ious s ta te-save 
in te rva l .  When a ro l lback propagates 
beyond the c u r r e n t  s tate-save i n te rva l ,  
these addi t iona l  a r rays  wi l l  be examined by 
the same methods in Section 3 to decide 
whe the r  the ro l lback propagates f u r t h e r  or  
not. 
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5. CONCLUSION 

Emphasis in the design of FTMR2M has 
been placed on the fast state-save scheme that 
allows rollback recovery with l i t t le time 
overhead. To permit processes to be general and 
to ensur.e programmer-transparency, recovery 
points are established automatically and 
regular ly.  This approach does not require 
high-level insert ion strategies or l imitations in 
the setting of recovery points [4, 6, 7], and 
also does not require synchronization of 
state-save operations of d i f ferent  PMs as does 
the COPRA system [5]. But due to the lack of 
synchronization among state-savings of processes, 
the task may be required to restart  af ter a 
fai lure. This r isk would result in a substantial 
influence on the performance (par t icu lar ly  in 
case of heavy interact ions).  

Because of the reconfigu rabi l i ty  of a 
multiprocessor system, the fa i lure rate of a 
processor can not represent the re l iabl i ty  of the 
system. Besides the soft- fai l  capabi l i ty,  the 
system should be characterized by its 
performance when a fa i lure occurs. The expected 
execution time is useful to indicate performance 
in this case. In the above analysis, an upper 
bound of expected execution time is provided. 
Precise analysis is d i f f icu l t  because: (1) The 
rollback distance is a random variable that 
depends on the occurrence of er ror  and the 
error  detection processes. Some errors can not 
be discovered immediately fol lowing thei r  
occurrence, in which case the rollback can not 
be modelled as the Poisson process with the same 
parameter, X, as the occurrence of fa i lure.  (2) 
Since certain processes of a given task are not 
affected by the rollback of a failed process, the 
increase of execution time by each rollback is 
not equal to the rollback distance. 

One major concern in the implementation of 
an automatic rollback recovery mechanism is 
modulari ty and simplicity. The individual rollback 
mechanism associated with each processor module 
offers system modular i ty and simplicity. 
Hence the present fau l t - to lerant  multiprocessor 
has a high potential use for  crit ical real-time 
applications such as a i rcraf t  or industr ial  
control, among others. 

REFERENCE 

1. A. M. Feridun and K. G. Shin, "A 
Fault-Tolerant Multiprocessor System with 
Rollback Recovery Capabi l i t ies",  Proc. 2nd 
Int ' l  Conf. on Distr ibuted Computing 
System, Apr i l  1981. 

2. B. Randell, "System Structure for  Software 
Fault Tolerance", IEEE Trans. on Software 
Eng., Jun. 1975, pp. 220-232. 

3. K. M. Chandy and C. V. Ramamoorthy, 
"Rollback and Recovery Strategies for  
Computer Program", IEEE Trans. on Comp., 
June 1972, pp. 546-5556. 

4. F. T. O'Brien, "Rollback Point Insertion 
Strategies", Proc. of the 6th Int ' l  Symp. on 
Faul t -Tolerant  Computing, Pit tsburg, 1976, 
pp. 138-142 

5. K. Kant and A. Silberschatz, " E r r o r  
Recovery in Concurrent Processes", Proc. 
COMPSAC 80,, Fall 1980, pp. 608-614. 

6. C. Meraud and F. Browaeys, "Automatic 
Rollback Techniques of the COPRA 
Computer", Proc. of 6th Int ' l  Conf. on 
Faul t -Tolerant  Computing, 1976, pp. 23-29. 

7. K. H. Kim, "An Approach to 
Prog rammer-Transpa rent Coordination of 
Recovering Parallel Processes and its 
Eff icient Implementation Rules", Proc. 1978 
lnt ' l  Conf. on Parallel Processing, Aug. 
1978, pp. 58-68. 

8. K. H. Kim, "An Implementation of a 
Programmer-Transparent Scheme for 
Coordinating Concurrent Processes in 
Recovery", Proc. COMPSAC 80, Fal l  1980, 
pp. 615-621. 

9. R. J. Swan, S. H. Fuller, and D. P. 
Siewiorek,. "Cm*: a Modular 
Mult i-Microprocessor", AFIPS Conf. Proc., 
Vol. 46, 1977, pp. 637-644. 

10. K. H. Kim, "Er ror  Detection, 
Reconfiguration and Recovery in Distr ibuted 
Processing System", Proc. Int ' l  Conf. on 
Distr ibuted Computing Systems, Oct. 1979, 
pp. 284-295. 

11. S. H. Fuller, J. K. Ornstein, L. Raskin, 
P. I. Rubinfeld, P. J'. Swan, 
"Mult i-Microprocessors: An Overview and 
Working Example", Proceedings of the IEEE, 
Vol. 66, No. 2, pp. 216-228, Feb. 1978. 

12. X. Castil lo, D. P. Siewiorek, "A 
Performance-Reliabi l i ty Model for  Computing 
Systems", 10th Int ' l  Conf. on Faul t -Tolerant  
Computing, 1980, pp. 187-192. 

APPENDIX 

1. The Derivation of Probabi l i ty of m Rollbacks, 
Pr(m) 

Suppose the rollback distances are the 
same for every rollback, denoted by r. The time 
between two successive rollbacks is assumed to 
be a random variable with the exponential 
distribution. The parameter of the distribution 
would be XP b , the average rate of rollback 
recovery. For a small t ime interval h, the 
probability of having no rollback would be I-),P b, 
h. The probability of having m rollbacks from 
time 0 to t is governed by the following 
difference equation. 
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Pr(m,t+h)=Pr(m,t)  (1-XPbh)+Pr(m-l , t )XPbhPr(0, r) + 

. . . . . . .  +Pr(0, t) kPbhPr(m-1, r) 

d pr (m,t))=),PbPr (m,t) +>,PbPr (m_ 1, t) Pr(O, r ) then ~,~ ( 

÷, . . . . . .  ÷XPbPr(O, r )P r (m- l ,  r) 

From Pr(0, t )=exp(-) ,Pbt) ,  we can get 

Pr(1, t )=(XPbt)exp(-kPb(t+r) )  

Pr(2,t)=2(kPbt) (1 +2r/ t )exp(-XPb(t÷2r))  

Pr(m,t )=(1/m!)  (kPbt)m(l+mr/ t )  m-1 

exp(-XPb(t+mr)) 

Tnd" the time spent for the rollback recovery, 
and the time overhead for a state save. 

Then E(Tt)=E(Treal+E(TreslTreal ) ) .  From 14, 

E(Tres|Treal)= ( tsu+ l /Xs) (exp(xsTrea l ) - l ) -T rea l  

Where 1/~ s is the mean time between restarts and 
),s =XPs- For the case of having m rollbacks 
before completion, 

Treal,m=Tna.+m(r+tsb)+((Treal,m/Tss)Tsv ) 

where r represents the rollback distance. 
Let Tsv/Tss=V, then 

T =(T .+m(r+t  . ) ) / ( I - v )  rea ,m ne SD 

Then E(Tt l  Tnd)=(tsu+l /Xs) (E(exp(XsTrea l ) ) - l )  
oo 

= (tsu+l/~'s) ( E l  Pr (m) exp ()'sT real, m ) -1 ) 

2. The Derivation of the Expected Execution 
Time 

Let Tt=Treal+Tres,  where Tre s is the time 
spent for the restart and Treal is the sum of 

P = Processor 
M = Local Memory 

S = Local Switch 

MS ffi Monitor Switch 

SSU = State-save Memory Unit 
CS = Cluster Switch 
CM = Cluster Monitor 
DMAC = DMA Controller 

CH < 

C l u s t e r  1 Cluster 2 

T .... 

Host Computer 

,.IQ 

IPH , E] --I, 

: D  1 
, 

DI~t~C 

I 
Cluster 3 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Fig. i. Rollback Recovery Multiprocessor Structure 
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Fig. 3. Example of Rollback Propagation 

P1 P2 P3 . . . . . . . .  PN 

P1 KC(1 , j ) :  0 1 1 . . . . . . . .  1 

KP(1 , j )  : 0 0 1 . . . . . . . .  0 
P2 KC(2 , j ) :  t 0 1 . . . . . . . .  1 

KP(2, j )  : 0 0 0 . . . . . . . .  0 

PN K C ( N , j ) :  1 0 0 . . . . . . . .  0 

K P ( N , j )  : 0 0 1 . . . . . . . .  0 

Fig. 5. The Ar rangement  of A r ray  KCNx N 
and KPNx N 
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