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ABSTRACT 

This paper considers the estimation method for unknown parameters as well as 
cell-age state vectors used in the discrete-time model [ 121 previously described characteriz- 
ing the dynamics of cell cycle and proliferating kinetics for a cancer-cell population. An 
iterative algorithm for determining optimal values of the parameters and age state vectors 
in the least-squares sense is derived on the basis of a set of sequential cell-DNA 
distributions. Once the parameters and initial cell-age distribution are determined, the 
time-course behavior of the cell-age and cell-DNA distributions for the given population 
are computed. A Chinese-hamster cell system is chosen for illustrating the quantitative 
technique developed. A computer simulation of the CHO cell population is shown. 

INTRODUCTION 

In recent years, cell-cycle kinetics of perturbed cell populations have 
been investigated by the use of cell-DNA distributions with increasing 
frequency. Recently pulse cytophotometry or flow microfluorometry (FMF) 
[8, 23,251 has permitted rapid measurement of the DNA content per cell, so 
that the cell-DNA distribution for a large population may be obtained 
within a short period with satisfactory precision. Hence the FMF technique 
has been used increasingly in analyzing the effect of chemical agents on 
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cell-cycle kinetics [6, 11, 14, 24, 271, and quantitative methods have been 
employed for analyzing FMF data have been proposed [2, 51. However, in 
general, the experimental data obtained from FMF techniques have not 
been analyzed by rigorous quantitative methods, e.g., mathematical model- 
ing. The following procedures are employed in mathematical modeling for a 
given biological system: 

(i) determination of model structure by quantifying all necessary biologi- 
cal phenomena and establishing the mathematical relationships among 
them, 

(ii) identification of all parameters employed in (i) on the basis of the 
observation of the system, 

(iii) validation test. 

Kim et al. [ 121 extended the discrete model [lo] to include a quantitative 
expression of FMF DNA data for the state representation. With this model 
Kim and Perry [ 131 computed the mean DNA synthesis rate and thus the 
transformation matrix relating cell-DNA distributions to FMF DNA data 
under the assumption that the system parameters were known. Gray [9] 
extended the maturity-state concept [lo] to obtain differential equations, 
and computed DNA distributions from the assumed initial cell-age distribu- 
tion and the system parameters determined by trial and error. 

However, these methods would fail if (a) the system parameters are not 
known, or (b) either the initial cell-age distribution is not known or the 
system parameters are not easily adjustable by eye. In this paper it is shown 
that under the above circumstances the cell-age distribution and system 
parameters must be determined concurrently. This paper presents a rigorous 
mathematical method for (1) determining the cell-age distribution and 
system parameters simultaneously from FMF data, and (2) computing 
cell-DNA and cell-age distributions. Finally the derived method is applied 
to a population of Chinese-hamster (CHO) cells. 

IDENTIFICATION OF CELL-AGE DISTRIBUTION AND 
UNKNOWN SYSTEM PARAMETERS 

Since the cell-age distribution describes the cell-cycle kinetic state, it is 
useful to know it for a cell population at any given time. However, the 
cell-age distribution cannot be observed directly. Furthermore, the mathe- 
matical representation of the cell-cycle kinetics usually includes unknown 
dispersion parameters to describe the cell progression in the cell cycle. The 
problem is to compute the dispersion parameters and cell-age distribution 
from experimentally observed cell-DNA distributions. 
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First consider the quantification (121 of the cell-age and cell-DNA 
distributions as follows: 

(i) the cell-age vectors x,,(k) for proliferating cells and x,(k) for nonpro- 
liferating cells are defined: 

X,(k) ’ [Xl(k),...,xi(k),..‘,x,(k)]T, 

X,(k) g [X,+l(k),...,x,+j(k),"',x,(k)]T, (1) 

where x,(k) is the number of cells in the ith age compartment at time k. 

Observe that 

x(k) 2 [x;(k) ; x;(k) 1’ 

=[x,(k),...,xr(k)]? 

(ii) The cell-DNA distribution vector z(k) is defined: 

(2) 

z(k) g [z,(k),...,zi(k),...,z~(k)]‘, (3) 

where zi(k) is the number of cells in the ith DNA-content state at time k. 

Secondly consider a multivariable linear discrete model [12] describing 
the dynamics of the cell-cycle kinetics: 

x(k+ l)=@(e)x(k), (4) 

wherex& [x:: ,,,I xT ’ is the r-dimensional cell-age distribution vector, 8 is 
an I-dimensional dispersion-parameter vector (i.e., 0 = [B,, . . . , O,, . . . , OrIT, and 
all Bi’s are dispersion parameters) assumed to be time-invariant, and Cp is the 
local state-transition matrix relating the cell-age vector at tune k to its 
corresponding cell-age distribution at time k + 1. 

Finally the measurement equation [12] is defined to be the deterministic 
relationship between the cell-age and cell-DNA distributions, 

z(k) = Qx(k), (5) 

where z is the q-dimensional cell-DNA distribution vector, and Q is a linear 
transformation of cell-age distribution into cell-DNA distribution. 

Now the problem is to estimate the parameter vector 8 and cell-age 
vector x(k) by using Eqs. 4 and 5, and the proper number of sequential 
FMF DNA distributions. The observability concept in system theory is 
employed to describe how to determine x(k,),x(k,+ l), . . . , from a sequence 
of measurements z( k,), z(k, + l), . . . , z(k,+ k* - 1). Observe that once x(k,,) 
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and 8 are known, x(k, + 1), x(k, + 2), . . . can be computed by Eq. 4. Hence 
the problem is reduced to the computation of x(k,) and 8 based on a 
sequence of FMF DNA data. 

It is convenient to define a qk* or matrix and a qk*X 1 vector as 
follows: 

e 

e@(e) --_____.____ 
&o(O)= . 9 (6) 

Z(k*, k,) = 

Then it is easy to see that 

z(ko) ---_--- 
z(ko + ‘1 ------- 

z(k,+ k* - 1) 

(7) 

Ak.(0)x(ko)=Z(k*,ko). (8) 

In addition to the mathematical relationship (8) one must consider the 
following physical aspects which put constraints on the vectors x(k,) and 8: 

(i) Since every component of x represents the number of cells in the 
corresponding age compartment, it must be nonnegative, i.e., 

Xi(ko) > 0 for i=l,2 ,..., r. (9) 

(ii) The cell-age distribution at any given time is considered a reassign- 
ment of its corresponding cell-DNA distribution, so the total population at 
time k, must be equal to the summation of components of x(ko) as well as 
that of z(k,), i.e., 

where 

Tpop= E zi(ko). 
i=l 

(‘1) 
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(iii) Since the dispersion parameters represent the probabilities for the 
cell progression in the cell cycle, 0 must satisfy 

o<e,< 1 for i=l,2 ,..., 1. (12) 

Rim and Perry [13] computed X(/C,,) under the assumptions: 

(a) the parameter vector 8 is known, 
(b) there are no constraints on x(k,) like (9) and (10). 

However, if either assumption (a) or (b) is not valid, this computational 
algorithm will fail. 

In this paper assumptions (a) and (b) will be removed, and thus x(k,) 
and 8 will be obtained simultaneously by a successive-approximation 
method. The cell-age and cell-DNA distributions at any time can be 
computed by using Eqs. (4) and (5) following the computation of x(k,J and 
8. However, the determination of X(/C,,) and 8 may be difficult due to the 
constraints (9), (lo), and (12) on them resulting from the physical aspects of 
the system. This problem is therefore converted to a constrained least- 
squares problem as follows: 

PROBLEM (P) 

Find an r-dimensional vector x*(k,) and an l-dimensional vector 8* 
minimizing 

J=:IIA~~(8)x(k3-Z(k*,k~>~~* (‘3) 

subject to Eqs. (9), (IO), and (12) where II.II denotes the Euclidean norm. 

Let’s turn to the problem of finding the value of k*. x(k,J must be 
determined uniquely, since the cell-age distribution at time k, must be 
unique. To get a unique solution x(k,,) for Problem (P), the rank of the 
matrix &(0) must be r [15] [the rank of a matrix is defined to be the 
number of independent rows (or columns) of the matrix]. The smallest 
integer value of k* for which the rank of &(0) is r is the minimum number 
of z’s, i.e., observations, required to determine x(k,,) uniquely. This value of 
k* is called the observability index. The existence of k* is guaranteed by the 
observability condition. The procedure for finding the observability index 
k* is shown in Fig. 1. 

Problem (P) is a nonlinear least-squares problem with linear inequality 
constraints. This problem is generally difficult to solve from both analytical 
and computational viewpoints. However, it has a special property, i.e., it is 
linear in x(k,) though nonlinear in 8. It has been found that the computa- 
tional difficulties can be circumvented by separating the linear part from 
the nonlinear one as illustrated in Fig. 2. 
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Yes 

Exit 

FIG. 1. Procedure for finding the observability index k*. The observability condition 

prevents infinite looping. 

With the aid of the Kuhn-Tucker conditions for optimality [ 1, 71, a linear 
least-squares problem with linear inequality constraints (LSI problem) can 
be solved. Lawson and Hanson [ 151 developed a program for solving the 
least-distance programming (LDP) problem by using QR decomposition 
and the nonnegative least-squares (NNLS) algorithm. Shin [22] extended 
this method to solve the LSI problem. Hence the LSI problem is at present 
solvable. 

The derived algorithm in this study, at each iteration, solves the LSI 
problem twice to compute 

(i) x(k,) with 8 known, and 
(ii) an optimal change in 8, which generates an improved estimation of 8. 

In order to perform (ii) one must compute the Jacobian matrix G of 
residual vector ‘(x(&),0) with respect to 0, i.e., 

G=[ggl, (14) 

where 

(‘5) 
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1 Guess an initial value of @ 1 

Solve the problem (p) for r (ko) with e known, 

Compute the norm of residual vector 

&A-Exit 

1 No 

1 Yes 

E;it 

FIG. 2. Flow diagram for solving Problem (P) by making use of its special structure, 
i.e., linear in x(/Q but nonlinear in 8. 

and 

ari(x(kd? 0) 
g,y = ae, for i=1,2 ,..., kq, j=1,2 ,..., 1. (‘6) 

Generally, this computation is known to be costly if r is a complicated 
function. This difficulty can be eased by replacing the G with an approxi- 
mation to G. Such an approximation is usually obtained by either the 
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forward or the central difference method. In choosing an approximation to 
G, caution must be exercised so as not to disturb the convergence property 
of the algorithm. 

APPLICATION OF THE ALGORITHM TO A 
CHO CELL POPULATION 

Flow microfluorometric DNA distributions for CHO cells are selected to 
show the validity of the derived method in the previous discussion. The 
CHO cell population grows exponentially, and thus we assume it consists of 
only proliferating cells. Note that this fact yields simple forms for the 

matrices @‘, Q and the vectors 8, x. However, the method is equally 
applicable to cell populations which also include nonproliferating cells. 

Puck et al. [20] reported the cell generation time of CHO cells to be 12.4 
hours, while Kramer et al. [14] proved the cell generation time for the 
unperturbed CHO cell population to be 16.5 hours and also showed that the 
phase durations of the G, and S phases are functions of cell concentrations 
and culture conditions for FMF experiments. Gray [9] reported that the 
mean generation time for the perturbed CHO cell population is 12.1 hours, 
and the average phase transit times of G,, S, and G, + M phases are 4.5, 4.8, 
and 2.8 hours respectively. Hence the integral ratio of the phase durations, 

T,, : Ts : TG~+ M, is chosen to be 4 : 4 : 2. Observe that this specifies the ratio 
of the numbers of cell-age compartments in the Gi, S, and G,+ M phases. 
The mean duration of one age compartment was defined to be the (biologi- 
cal) unit time, i.e., (unit time)= AT,= To/r, where To is the mean cell 
generation time and r is the total number of age compartments for the 
proliferating cells [ 121. 

The cell-DNA distribution of exponentially growing CHO cells was 
recorded at various times (2.5, 3.5, 7.5, 8.5, 12.0, 13 hours) after release from 
a thymidine block which is known to reduce the rate of DNA synthesis 
drastically [14]. To obtain a cell-DNA distribution from a FMF measure- 
ment, dispersion in the measured values of DNA content must be taken 
into account. Dispersive effects are assumed to be distributed normally, and 
a dispersion-free DNA distribution is computed from a measure DNA 
distribution. 

It can be seen that it becomes more difficult to obtain consecutive 
experimental cell-DNA distributions as the measurement interval ( = A To) 
diminishes. In addition, when the dimension of x becomes larger, the 
computation time increases very rapidly. However, we may obtain more 
accurate curves for the cell-age distributions at the expense of the aforemen- 
tioned difficulties. It is therefore desirable to choose an optimal unit time so 
that an optimal measurement can be made. In this application the total 
number of age compartments is chosen to be 10 and the total number of the 
DNA content compartments 12. 
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The local state transition matrix @ in Eq. (4) for the exponentially 
growing CHO cells can be shown to be 

where cy,, (Y,, and az are the probabilities that a cell in an age compartment 
of the G,, S, and Gz + M, respectively, advances two age compartments 
during a unit time A7’,,; p,, /?,, and p2 are the probabilities that a cell in an 
age compartment of the Gr, S, and G,+ M phases, respectively, does not 
advance to the next compartment during AT,; Si = 1 - (r, - j3, for i = 1,2; and 
S, = 1 - cr, - /I,. For convenience define a vector 

Kim and Perry [ 131 computed the mean cell-DNA synthesis rate and the 
transformation matrix Q for the cell-age and cell-DNA distributions. This 
method is adopted to obtain the transformation matrix Q, and the rank of 
Q is shown to be less than 10 (= the dimension of x). This implies that we 
cannot determine a unique x(k,) from z(k,) alone and that additional z’s at 
time k > k0 are required. Since no a priori information about 0 is available, 
various values of 0, from 0.005 to 0.95 are used. For these values, the rank 
of the matrix A,.(O) in Eq. (6) is found to be 10 when k*=2. Thus the 
equation 

&(~)x(ko)=Z(2,k,) (17) 

can be solved for x(k,) and 8. Therefore, for this system only z(k,) and 
z(k,+ 1) are required to solve for x(k,) and 0. 

By the method derived in the previous discussion, optimal values for 
x(k,) and 8 in the least-squares sense are computed to be 

x( k,) = [0, O,O, 826,7860,15000,7420,974,0,0] = 

8=[0.147003,0.160495,0.206595,0.193405,0.127539,0.172461]T 
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NORMALIZED DNA CONTENT 
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I 2 I 2 I 2 

NORMALIZED DNA CONTENT 

FIG. 3. Computed cell-DNA distributions of CHO cells at times 2.5, 3.7, 7.3, 8.5, 
12.1, and 13.3 hours after release from thymidine block. The experimental DNA data 
points (from Ref. [l4j) are superimposed on the distributions at times 2.5 and 8.5 hours 
after release from thymidine block. These computed distributions show consistency with 
the experimental ones. 

The computed cell-DNA and cell-age distributions at times 2.5, 3.7, 7.3, 8.5, 
12.1, and 13.3 hours after release from thymidine block are shown in Fig. 3 
and Fig. 4 respectively. They have proven to be fairly consistent with 
experimental DNA distributions in Ref. [ 141. 

DISCUSSION 

In the first half of this paper an algorithm for determining the cell-age 
distributions and system parameters of a cancer-cell population from ex- 
perimental cell-DNA distributions is derived. The algorithm uses a succes- 
sive-approximation method, which improves iteratively the estimation of the 
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FIG. 4. Computed cell-age distributions of CHO cells at times 2.5, 3.7, 7.3, 8.5, 12.1, 
and 13.3 hours after release from thymidine block. 

cell-age state vector and system parameters. At each iteration we solved an 
inequality-constrained least-squares problem to obtain an optimal change of 
x(k,,) and 0. 

The second half of this paper is an application of the developed method 
to the CHO cell population. In this application the transformation matrix Q 
from the cell-age distribution to its corresponding cell-DNA distribution is 
assumed to be time-invariant, which implies that the mean DNA synthesis 
rate remains unchanged. This assumption can be corrected by building an 
on-line system in which the transformation matrix Q is updated according 
to the change of the DNA synthesis rate. 

In the algorithm the cell-DNA and cell-age distributions are represented 
by the cell-DNA content and age vectors, which are discrete-time models. 
Accuracy can be improved by increasing the number of compartments 
representing the discrete DNA contents and cell age, at the expense of 
computation time and some possible measurement difficulties. These possi- 
ble measurement difficulties can be excluded by taking an experimentally 
realizable measurement time interval I that is an integral multiple of the 
unit time, i.e., Z= iTo/r for some positive integer i. In such a case Eq. (6) 
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and Eq. (7) must be modified as follows: 

e 

Q@ Ak*((j)= ----:----- ) 

__________ 
Q,,k*-W 

(6’) 

Z( k*, k,) = 

z(ko) ---__---__ 
z(Z+ko) 

--________ 1. 
----_----- 
z[ (k* - W+ko)] I 

(7’) 

When the observation period of the given system is long, discrepancies 
may exist between the actual and simulated distributions due to the nonlin- 
earity of the system and the time variation of the system parameters. This 
can be corrected by building a semi-on-line system in which the discrete- 
time model and the method developed are updated at fixed time intervals 
during which the linearity of the model and the time invariance of the 
parameters provide a good approximation to the system behavior. 

In the CHO cell population simulated, both the state transition matrix @ 
and initial cell-age distribution x(k,) were unknown but determined simul- 
taneously. 

Recently, the FMF technique has been used increasingly in studying the 
effect of chemical agents on cell-cycle kinetics [6, 11, 14, 24, 271. The 
method developed here can be extended to examine this effect by a simple 
modification. Hence the knowledge of the system parameters and cell-age 
distribution computed by the method developed can potentially be useful in 
the analysis of the effects of cytotoxic chemotherapy. 
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