
Bringing Practical Security to Vehicles

by

Mert Dieter Pesé

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2022

Doctoral Committee:

Professor Kang Geun Shin, Chair
Professor Margit Burmeister
Professor J. Alex Halderman
Assistant Professor Manos Kapritsos

Mert Dieter Pesé

mpese@umich.edu

ORCID iD: 0000-0001-9192-5823

© Mert Dieter Pesé 2022

Science is the most reliable guide for civilization, for life, for success in the world.

Searching a guide other than the science is meaning carelessness, ignorance and

heresy. - Mustafa Kemal Atatürk

ii

ACKNOWLEDGEMENTS

As my time at Michigan is coming to an end, there are several people who impacted

my life during the past five years. First and foremost, I would like to express my words

of gratitude to my family members. My PhD journey was impacted by the loss of

both my grandparents, my grandfather Adem Bulut (1928-2019) and my grandmother

Seher Bulut (1931-2021). My grandpa holds a very unique place in my life, being the

one who pushed me towards engineering at an early age with his background in

electrical engineering. Both losses significantly shook up my time here at Michigan

and thus I would like to dedicate my thesis to both of them. May you both rest in

peace and be proud of my achievements from heaven where you continue to watch and

protect me. I made it, dede and anneanne. I am going to continue making you proud

by joining the School of Computing at Clemson University as Assistant Professor.

I would like to continue with my mother, Mualla Pesé, who has raised me as single

mother since I was a baby and without whom I would not be here right now. She has

always been one of the constants during my time here, especially during the difficult

times. She has always wanted me to pursue my studies in the United States, I am

happy that I could fulfil your dream. Thank you, anne. Furthermore, my uncle,

Mustafa Bulut, played a great role of me pursuing engineering studies due to his

technical background. Despite him facing several medical challenges during the past

couple years, he always had an open ear and motivated me during all times, even

responding to calls at night when he was sleeping. Thank you, dayi.

Continuing on an academic note, this journey would have never been possible

iii

without my advisor, Kang G. Shin. He fought for my admission to the PhD program

and helped me in establishing the mindset of a top-tier researcher. He has been

extremely patient with me during all these years and gave me the freedom to pursue

my research interests independently. I cannot think of a better PhD advisor than

him. His perseverance in pushing me to my limits has made me a better researcher.

I am convinced that becoming a tenure-track faculty would have not been possible

without his guidance. Thank you, Professor Shin.

During the past four years, I had the unique opportunity to work with 16 un-

dergraduate and 2 Master’s students. Some of them ended up as my co-authors on

papers. It was an extremely important step in my education, as mentoring these

students made me realize that I wanted to go to academia. As a result, words cannot

express my gratitude to my students Batuhan Akcay, Eric Andrecheck, Kurt Ayalp,

Bryan Brauchler, Andrés Campos, Junru Du, Alejandro Fischer, Cassandra Joseph,

Junhui Li, Jiaxiang Ma, Murali Mohan, Ashwin Prakash, Osama Saeed, Jay Schauer,

Erich Shan, Troy Stacer, Tim Stoldt, Arman Tabaddor, and Alice Ying.

Furthermore, I want to dedicate a paragraph to my other collaborators during my

PhD. At Michigan, I had an extremely fruitful collaboration experience with Xiaoy-

ing Pu, Arun Ganesan, Dongyao Chen, Eric Newberry and Noah Curran. During

my summer internships at General Motors R&D, I worked with Evripidis Paraskevas,

Fan Bai, Massimo Osella, Soheil Samii, Prachi Joshi and Kemal Tepe. They helped

me with understanding industrial requirements for automotive security, which sig-

nificantly shaped this dissertation. Next, I would like to thank my collaborators at

Harman International, Josiah Bruner and Amy Chu, who supervised me during my

summer internship with them. Finally, a big thanks to Sven Bugiel and Nils Ole

Tippenhauer who were my supervisors at CISPA during my last summer internship

in Germany. You cemented my aspirations to go to academia.

Additionally, thank you to all other RTCL members who overlapped with me

iv

during my time at Michigan, especially, Kassem Fawaz, Eugene Kim, Yu-Chih Tung,

Kyong Tak Cho, Youngmoon Lee, Hamed Yousefi, Chun-Yu Chen, Taeju Park, Mert

Pese, Duc Bui, Juncheng Gu, Jinkyu Lee, Haichuan Ding, Youssef Tobah, Hsun-Wei

Cho, Wei-Lun Huang, Brian Tang, and Mingke Wang. I became close friends with

several of you and value this amazing network going forward in the next steps of our

careers.

The work reported in this thesis was supported in part by the Army Research

Office under Grant No. W911NF-21-1-0057, the Office of Naval Research under Grant

No. N00014-22-2-2622, the National Science Foundation under Grant No. CNS-1646130

as well as a Ford–UM Alliance contract.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . x

LIST OF TABLES . xii

LIST OF APPENDICES . xiv

ABSTRACT . xv

CHAPTER

I. Introduction . 1

1.1 Evolution of Automotive Security 3
1.2 Background on CAN Bus . 5

1.2.1 CAN Primer . 5
1.2.2 DBC Files . 9
1.2.3 In-Vehicle Network Architecture 10

1.3 Background on Vehicle-to-Everything (V2X) Communication 13
1.4 State-of-the-Art Defenses . 13
1.5 Challenges . 16
1.6 Thesis Contributions . 18

1.6.1 Thesis Statement 18
1.6.2 Thesis Components 20
1.6.3 LibreCAN [141]: . 20
1.6.4 S2-CAN [139]: . 21
1.6.5 MichiCAN . 22
1.6.6 CARdea . 22

1.7 Organization of Thesis Proposal 23

II. LibreCAN: Automated CAN Message Translator 24

vi

2.1 Introduction . 24
2.2 Background . 26

2.2.1 Information Sent on the CAN Bus 27
2.3 System Design . 28

2.3.1 Phase 0: Signal Extraction 29
2.3.2 Phase 1: Kinematic-related Data 33
2.3.3 Phase 2: Body-related Data 37

2.4 Evaluation . 40
2.4.1 Data Collection . 40
2.4.2 Accuracy and Coverage 41
2.4.3 Manual Effort . 48
2.4.4 Computation Time 51
2.4.5 Testing on Generic Parameters 53

2.5 Discussion . 54
2.5.1 Limitations and Improvements 54
2.5.2 Other Use-Cases of LibreCAN 55
2.5.3 Countermeasures 57

2.6 Related Work . 58
2.6.1 Manual CAN Reverse Engineering 58
2.6.2 Automating CAN Reverse-Engineering 58

2.7 Conclusion . 59

III. S2-CAN: Sufficiently Secure Controller Area Network 61

3.1 Introduction . 61
3.2 Background . 66
3.3 Threat Model . 66
3.4 Related Work . 69

3.4.1 Authenticity and Integrity 69
3.4.2 Confidentiality . 70
3.4.3 Key Management 71

3.5 System Design . 72
3.5.1 Phase 0: Key Management 72
3.5.2 Phase 1: Handshake 73
3.5.3 Phase 2: Operation 78

3.6 Finding Free Space . 80
3.7 Evaluation . 83

3.7.1 Experimental Setup 83
3.7.2 Handshake Latency 84
3.7.3 Operation Latency 85
3.7.4 Other Metrics . 87

3.8 Security Analysis . 88
3.8.1 Experimental Setup 89
3.8.2 Stage 0: Generating S2-CAN Traces 90
3.8.3 Stage 1: Cracking the Encoding 90

vii

3.8.4 Stage 2: Authenticating Correctly 91
3.8.5 Difficulty of Successful Cracking 92
3.8.6 Determining Session Cycle T 94

3.9 Discussion and Conclusion . 96

IV. MichiCAN: Practical Spoofing and DoS Protection for the
Controller Area Network . 99

4.1 Introduction . 99
4.2 Background . 104

4.2.1 CAN Error Handling 104
4.2.2 CAN Hardware . 106

4.3 Threat Model . 107
4.4 System Design . 110

4.4.1 Initial Configuration 111
4.4.2 Pin Multiplexing . 117
4.4.3 Synchronization . 119
4.4.4 Detection . 121
4.4.5 Prevention . 121

4.5 Evaluation . 125
4.5.1 Experimental Setup 125
4.5.2 Detection Rate . 127
4.5.3 Detection Complexity 128
4.5.4 Detection Latency 129
4.5.5 Bus-off Time . 131
4.5.6 CPU Utilization . 135
4.5.7 Bus Load . 137
4.5.8 Memory . 138

4.6 Discussion . 139
4.6.1 Prevalence of integrated CAN controllers 139
4.6.2 Replicability on other MCUs 140
4.6.3 Limitations and Future Work 141

4.7 Conclusion . 142

V. CARdea: Practical Anomaly Detection for Connected and
Automated Vehicles . 143

5.1 Introduction . 143
5.2 Background and Threat Model 148

5.2.1 Primer on V2X . 148
5.2.2 Threat Model . 149

5.3 Related Work . 151
5.3.1 Statistical Approaches 151
5.3.2 ML-Based Approaches 152
5.3.3 Differences of CARdea from Previous Work 152

viii

5.4 System Design . 154
5.4.1 Overview . 154
5.4.2 Anomalies under Consideration 156

5.5 Phase 1: Local Anomaly Detection 159
5.5.1 Overview . 159
5.5.2 Calibration . 161
5.5.3 Validation . 162

5.6 Phase 2: Remote Anomaly Detection 163
5.6.1 Overview . 163
5.6.2 Feature Extraction 164
5.6.3 Training and Validation 164

5.7 Evaluation . 165
5.7.1 Experimental Setup 165
5.7.2 Anomaly Generation 166
5.7.3 Data Preparation 166
5.7.4 Evaluation Metrics 167
5.7.5 Phase 1 . 168
5.7.6 Phase 2 . 171
5.7.7 Interactions between Phase 1 and 2 174
5.7.8 Bandwidth . 174

5.8 Discussion and Conclusion . 176

VI. Conclusion and Future Directions 179

6.1 Conclusion . 179
6.1.1 IC1: Semantics can be automatically reverse-engineered,

accelerating CAN injection attacks 179
6.1.2 IC2: Solve CAN security problems by satisfying the

functional and cost constraints of OEMs 180
6.1.3 IC3: Solve V2V security problems by hybrid ap-

proach combining in-vehicle and off-vehicle anomaly
detection . 181

6.2 Future Directions . 181
6.2.1 Connected Vehicle Ecosystem 181
6.2.2 Adversarial Attacks on Autonomous Vehicles 183

APPENDICES . 184
A.1 LibreCAN: Vehicular Signals 185
A.2 LibreCAN: Phase 1 . 188
A.3 LibreCAN: Phase 2 . 188
B.1 S2-CAN . 194
C.1 MichiCAN . 197
D.1 CARdea . 202

BIBLIOGRAPHY . 209

ix

LIST OF FIGURES

Figure

1.1 Evolution of Cars . 2
1.2 Generations of automotive security 3
1.3 CAN data frame structure . 6
1.4 Example of CAN signals . 9
1.5 Common automotive E/E architecture (adapted from [195]) 11
1.6 Components in this Thesis Proposal 21
2.1 System design overview . 28
2.2 Flowchart of Phase 0 algorithm . 30
2.3 Alignment of phone’s coordinate system (right) with vehicular coor-

dinate system (left) . 33
2.4 Phase 2 Filtering Example . 38
2.5 Precision-Recall Curve for Phase 1 44
2.6 Filtering out CAN IDs in each stage 47
2.7 Precision of Phase 1 with varying trace lengths 49
2.8 Results in user-study experiment 50
3.1 Handshake communication diagram 74
3.2 CDF of used bits . 80
3.3 Re-balancing Vehicle A HS1 . 82
3.4 Relationship between Free Space and Message Priority 83
3.5 E2E latency for different "encryption" algorithms 86
4.1 State diagram for CAN error handling 105
4.2 Evolution of CAN hardware in ECUs 108
4.3 Different types of DoS attacks [133] 110
4.4 Attack Variants . 111
4.5 Example binary tree . 115
4.6 Pin multiplexing. Straight lines depict connections to SIO pins, but

can be multiplexed to GPIO pins (dashed lines). 119
4.7 CAN bit timing . 120
4.8 MichiCAN prevention routine . 123
4.9 Experimental setup with two ECUs 126
4.10 Maximum number of if-statements in each FSM 129
4.11 Bit position at which CAN ID is malicious 130

x

4.12 CPU usage for full and light scenarios 131
5.1 CARdea deployment options in V2X infrastructure 144
5.2 CARdea interactions of Phases 1 and 2 156
5.3 Phase 1 system design (A: Anomalous, NA: Non-anomalous) 160
5.4 Phase 2 system overview . 164
5.5 Phase 1 combined ROC curves for θis 168
5.6 Phase 1 AT1 – AT4 per-frame performance with frame size 10 . . . 169
5.7 Phase 2 AT1 – AT4 per-sample performance 172
A.1 Number of Unique CAN IDs Remaining After Each Stage for all 53

Events for Vehicle A . 190
A.2 Number of Unique CAN IDs Remaining After Each Stage for all 53

Events for Vehicle B . 191
A.3 Number of Unique CAN IDs Remaining After Each Stage for all 53

Events for Vehicle C . 192
A.4 Number of Unique CAN IDs Remaining After Each Stage for all 53

Events for Vehicle D . 193
C.1 Testing Time for Varying |E| . 199
D.1 Phase 1 per-frame performance based on frame size 202
D.2 Phase 2 AT5 and AT6 per-sample performance 203
D.3 SVM and DNN AT1 – AT4 per-sample performance 207
D.4 Phase 2 AT7 per-sample performance 208

xi

LIST OF TABLES

Table

1.1 Format of Basic Safety Messages . 14
2.1 Confusion Matrix for Phases 1 and 2 36
2.2 Phase 0 Evaluation Metrics . 42
2.3 Optimal Parameters in LibreCAN 43
2.4 Phases 1 and 2 Evaluation Metrics 45
2.5 Summary of computation time in each phase and stage (units are in

seconds) . 52
2.6 Phases 1 and 2 Evaluation Metrics for Generic Parameters 53
2.7 Comparison to Related Work . 56
3.1 Comparison with related approaches 63
3.2 Free space in DBCs . 81
3.3 Benchmark of other metrics . 87
3.4 Cracking Success based on Trace Length (in %) 93
3.5 Brute-Forcing Success for Top X Candidates 94
3.6 Timing analysis for full traces (minutes:seconds) 95
4.1 Comparison of countermeasures against CAN DoS 101
4.2 Example IVN Configuration . 114
4.3 Bus-off time for one attacker . 132
4.4 Memory Usage of MichiCAN . 138
5.1 Comparison with related work . 146
5.2 AT1–AT4 attack type parameters 166
5.3 Detection latency and RAM usage for Phase 1 171
5.4 Phase 2 results on frames from Phase 1 174
5.5 Bandwidth averages across attack types per G 176
A.1 Overview of common ECUs with respective signals 186
A.2 Complete List of 24 Signals in Set S (Italic Signals are from Set P ⊂ S)188
A.3 Complete List of 53 Events . 189
B.1 Top 2 Cracking Success based on Trace Length (in %) 194
B.2 Top 3 Cracking Success based on Trace Length (in %) 195
B.3 Top 5 Cracking Success based on Trace Length (in %) 195
B.4 Top 10 Cracking Success based on Trace Length (in %) 196
D.1 G1 Phase 2 results on frames from Phase 1 203

xii

D.2 G2 Phase 2 results on frames from Phase 1 204
D.3 G3 Phase 2 results on frames from Phase 1 204
D.4 Phase 2 latency (in ms) and RAM usage (in MB) 205
D.5 Bandwidth considerations . 206

xiii

LIST OF APPENDICES

Appendix

A. LibreCAN: Automated CAN Message Translator 185

B. S2-CAN: Sufficiently Secure Controller Area Network 194

C. MichiCAN: Practical Spoofing and DoS Protection for the Controller
Area Network . 197

D. CARdea: Practical Anomaly Detection for Connected and Automated
Vehicles . 202

xiv

ABSTRACT

Modern vehicles are getting increasingly connected. Together with more auto-

motive electronics and wireless interfaces, the number of possible attack surfaces

increases, raising security concerns. Attacks on cars can have multiple implications,

ranging from financial incentives or damage to the compromise of human safety. Al-

though attacks vary, all of them have one component in common, namely CAN bus

injection. The CAN bus is the de-facto technology used inside the in-vehicle network

to interconnect automotive controllers. An attacker who compromises the CAN bus

can inject arbitrary CAN messages to it, making the vehicle misbehave. As a result,

countermeasures against the CAN bus attacks need to be implemented by carmakers.

Unfortunately, the carmakers have been reluctant to adopt any approach proposed

thus far to secure CAN. The main reasons for this reluctance are that (i) CAN in-

jection requires the knowledge of semantics which differs from vehicle to vehicle and

is proprietary to the car-makers, as well as (ii) industry-specific functional and cost

constraints which have not been reflected in the existing solutions. Any solution

that accounts for these constraints has to incur minimal overhead on computational

resources and message latency.

I address these two points by first showing that proprietary semantics can be

automatically reverse-engineered, effectively removing the barrier for CAN injection

attacks. I demonstrated this by developing LibreCAN which can quickly and accu-

rately reverse engineer both automotive powertrain- and body-related information in

an automated fashion. Adversaries can significantly accelerate their preparation time

for a CAN injection attack by obtaining the semantics which car-makers were trying

xv

to keep secret by not disclosing it publicly. Second, to meet the industry-specific

constraints, I propose S2-CAN and MichiCAN. The former adds confidentiality,

authenticity and integrity to the CAN bus without the overhead of cryptography, but

by leveraging protocol-specific properties. The latter protects the CAN bus against

attacks on its availability, e.g., Denial of Service, by leveraging novel hardware fea-

tures of automotive controllers. Its main difference from existing work is practicality.

Instead of adapting well-known cryptographic techniques from the realm of computer

networks which do not satisfy the aforementioned cost and functional constraints, I

propose out-of-the-box solutions that leverage protocol- and hardware-based features

of automotive networks and controllers. Furthermore, both S2-CAN and MichiCAN

are fully backward-compatible with existing hardware and specifications, as well as

incur minimal computation and network overheads. CAN injection attacks can also

be conducted remotely by accepting malicious data from other cars in vehicle-to-

vehicle (V2V) communication scenarios. I propose CARdea, a two-phase anomaly

detection system that sanitizes incoming data from surrounding vehicles. Compared

to computationally-intensive prior work, CARdea combines an in-vehicle light-weight

anomaly detection phase with a more resource-heavy machine-learning phase that can

be executed on the vehicle, edge or cloud based on available computational resources

and manufacturer constraints. Overall, this dissertation demonstrates the omnipres-

ence of CAN injection attacks and develops novel, practical security solutions for CAN

and V2X by analyzing the inherent trade-off between security and performance.

xvi

CHAPTER I

Introduction

The invention of the car dates back to 1886 when German inventor Karl Benz

patented his Benz Patent-Motorwagen. The next decade was accompanied with sig-

nificant advancements in the field of powertrain engineering and vehicles were mass-

produced. Cars began to have electronic features starting in the 1950s with the

semiconductor revolution. While automotive electronics consisted of merely 1% of a

car’s value in 1950, it rose to 30% in 2010 [24].

In recent years, the number of Electronic Control Units (ECUs) inside cars has

increased significantly. ECUs are systems embedded in cars and connected to sensors

and actuators. Electronic components become increasingly important as the number

of functionalities — especially in the domain of advanced driver assistance systems

— rises. Modern vehicles can contain up to 150 ECUs [20]. These ECUs have to

be interconnected with wires. Nearly all mechanical functions inside modern vehicles

are supported by electrical control, even traditional domains such as powertrain. As

a result of this development, automotive bus systems were necessary to avoid point-

to-point connections between ECUs, and thus to reduce the cable harness.

In 1983, Bosch started developing the Controller Area Network (CAN) which was

released in 1986. CAN has since been the most widely in-vehicle network (IVN)

protocol, despite many alternatives being developed and adapted in the following

1

decades, such as FlexRay or Automotive Ethernet. (A detailed introduction of CAN

will be provided in Sec. 1.2.)

2000

1995

1990

1900

1885

2005

2010

20151985

2020

2025

Internet in Cars
2009

“Chip Tuning“ (Reflashable
ECUs)
2000

First Cars
1886 Otto Engine

1893 Diesel Engine

In-Vehicle Navigation
1994

CAN

1987

Car2Car
Communication

2007

Autonomous
Driving

2025

First Successful
Electric Vehicle

2012

Android
Auto/Apple

CarPlay
2014/15

Figure 1.1: Evolution of Cars

Since the introduction of CAN, several elementary automotive features have been

developed as depicted in Fig. 1.1, e.g., built-in navigation systems, possibilities of

software updates by reflashable ECUs or Internet connection. Newer developments

are (a) vehicle-to-everything (V2X) communication and (b) autonomous driving. V2X

communication allows vehicles to talk to each other (e.g., cooperative driving in a

platoon), as well as infrastructure (e.g., roadside units) and can be seen as a necessary

precursor of autonomous driving.

Cars used to be closed entities, with no exposed interfaces to the outside. Some of

the aforementioned developments require vehicles to communicate with external enti-

ties, which can be a substantial benefit to drivers, especially in terms of safety (V2X)

and convenience (Internet connectivity). According to a United Nations Economic

Commission for Europe (UNECE) analysis, modern cars contain 100 million lines of

code, which will increase to 300 million by 2030 to account for autonomous driving,

Internet connections, and other advanced capabilities [20]. However, this increasing

connectivity comes with the risk of security.

2

1.1 Evolution of Automotive Security

Although concerns about automotive security had already been raised in the

2000s [56, 130, 186], it was not until 2010 when these concerns started to get in-

creasing attention [58, 109], especially in academic circles. The compromise of the

CAN bus can have grave consequences on the functioning of the car since an attacker

can take control of it (e.g., by braking or steering it) [124]. This is done by so-called

CAN injection attacks, i.e., the attacker who has compromised the CAN bus will in-

ject a well-formed CAN message to the bus and every ECU listening to this message

will operate with the data in the malicious CAN message.

The field of automotive security has changed since its inception, due mainly to

rising connectivity and more exposed external interfaces. Attacks on the CAN bus

(or interchangeably any in-vehicle network) can be grouped into three generations.

Fig. 1.2 shows my proposed taxonomy.

Using physical interfaces

First-Generation Attacks
(~2010-2015)

Second-Generation Attacks
(~2015-2020)

Third-Generation Attacks
(~2020-?)

Using wireless interfaces
(e.g., IVI and TCU)

Using app eco-system on
IVIs

Connectivity

Risk / Damage Potential

Figure 1.2: Generations of automotive security

First-generation attacks that started with the rise of automotive security literature

in the early 2010s were mostly targeting physical interfaces, i.e., the attacker needed

to have physical access to their victim vehicle. Once the attacker was inside the

vehicle, they could simply access the in-vehicle network (IVN) through a physical

connector called OBD-II port. This interface is mandated in all US gasoline vehicles

manufactured after 1996.

Second-generation attacks went further and tried to gain IVN access without being

3

physically inside a vehicle. For this purpose, attackers would exploit vulnerabilities

in the wireless interfaces of ECUs, e.g., the WiFi or cellular connectivity of Telematic

Control Units (TCUs). The most comprehensive and impressive attack of this gen-

eration was the famous Jeep hack that happened in 2015 [127], with the white-hat

hackers exploring these remote interfaces already a year earlier [125]. These hackers

were able to obtain CAN bus access through several vulnerabilities in the TCU’s

software and hardware and could kill a running Jeep Cherokee on the highway (or

steer it into a ditch). As a result of this hack, 1.4 million vehicles had to be recalled

and a lawsuit that had been filed against the OEM and Tier-1 [85] was just dismissed

in 2020 [187]. This sophisticated attack also highlighted one issue with automotive

security, namely the dependence of OEMs on Tier-1s which supply various ECUs.

Compared to the first-generation of attacks, this generation is more feasible to be

conducted since no physical access is required. As a result, the risk and damage

potential increases. Furthermore, these attacks are also more scalable as the high

number of recalls proved.

Finally, third-generation attacks take the scalability and damage potential even

further. As of the time of this writing, there are no known attacks yet, although the

technology required for it is slowly maturing. A new in-vehicle infotainment (IVI)

operating system called Android Automotive (AAOS) was announced by Google in

2017. A custom flavor of the popular Android mobile operating system, its most

distinct feature is its ability to connect to the IVN and read, as well as write data to it.

Third-party apps will be gradually supported in a custom Play Store, but are limited

to media, messaging, navigation, parking, and charging apps at the moment [27].

With an increasing number of third-party apps, as well as OEMs heavily customizing

AAOS, I predict serious security risk coming from this platform. Now, malicious

entities will be able to access the vehicle and its IVN from anywhere, opening the

doors for significant damage potential. In fact, I was the first to conduct a first high-

4

level security analysis of AAOS in 2020 [137] and showed possible attacks on driver

safety, privacy and financial incentives.

All three generations have one thing in common: The end goal is to access the

IVN, e.g., the CAN bus, although they differ in the approach they take to compromise

it. Once the CAN bus is accessible by an attacker, they can conduct CAN injection

attacks and thus ultimately compromise the operation of the vehicle. This is the

reason why CAN injection attacks pose a serious threat that needs to be prevented.

1.2 Background on CAN Bus

Since most of this thesis proposal deals with CAN bus security, all relevant con-

cepts need to be introduced. Several chapters rely on this background knowledge and

its repetition in each respective chapter will thus be avoided. Only concepts that are

specific to a chapter will be presented in the background section of that chapter.

1.2.1 CAN Primer

Vehicular sensor data is collected from ECUs located within a vehicle. These

ECUs are typically interconnected via an on-board communication bus, or in-vehicle

network (IVN), with the CAN bus being the most widely-deployed technology in

current vehicles. Fig. 1.3 depicts the structure of a CAN 2.0A data frame — the

most common data-frame type used on the CAN bus. The fields in each CAN frame

are depicted in Fig. 1.3.

• SOF: The start-of-frame (SOF) bit indicates the beginning of a new CAN

frame/message and is always set to 0.

• CAN ID: CAN is a multi-master, message-based broadcast bus. Unlike better-

known socket-based communication protocols like Ethernet, CAN is message-

oriented, i.e., CAN message frames do not contain any information concerning

5

1
bit

11
bits

1
bit

4
bits

0-64
bits

16
bits

2
bits

7
bits

SOF
Start of
Frame

CAN ID
Message
Identifier

RTR
Remote
Trans-

mission
Request

Reserved

1
bit

DLC
Data

Length
Code

Data CRC-15
Cyclic

Redundancy
Check

EOF
End of
Frame

ACK
Acknow-

ledge-
ment

1
bit

IDE
Identifier
Extension

Figure 1.3: CAN data frame structure

their source or destination ECUs, but instead each frame carries a unique mes-

sage identifier (ID) that represents its meaning and priority. Only one CAN

message can be broadcast on the bus at a time. If multiple messages want to

transmit, the CAN message with a higher priority will ”win” the distributed

arbitration process and be allowed to transmit on the bus. Lower CAN IDs

have higher priority. The reason behind this is the wired-AND logic of CAN.

If two ECUs would like to transmit at the same time, the dominant "0" bit

of one sender will always overwrite the recessive "1" bit of the other sender.

As a result, the sender which transmits the dominant bit will win arbitration

and allowed to continue transmitting their CAN message on the bus, while the

other sender needs to abort and retry later. It is possible for the same ECU to

send and/or receive messages with different CAN IDs. The basic CAN ID in

the CAN 2.0A specification is 11 bits long, (compared to 29 bits in CAN 2.0B,

a.k.a. the extended format) and thus allows for up to 2048 different CAN IDs.

• RTR & IDE & Reserved: The remote transmission request (RTR) bit is

always set to 0 for data frames. The identifier extension (IDE) bit is set to 0

for 11-bit CAN IDs. Finally, the reserved (r0) bit is always set to 0.

• DLC: This field specifies the number of bytes in the payload (data) field of the

message. The DLC field is 4 bits long and can specify a payload length from 0

6

to 8 bytes.

• Data: This is the payload field of a CAN message containing the actual message

data and can contain 0–8 bytes of data depending on the value of the DLC field.

• CRC-15: To detect transmission errors, a cyclic redundancy check (CRC) is

calculated over all previous fields.

• ACK & EOF: The first bit of the acknowledgment (ACK) field is called ACK

slot and the second bit ACK delimiter. The ACK slot is always set to 1 for the

transmitting ECU. If the receivers do not observe any errors in the frame, they

send a 0 during this slot. Due to the wired-AND logic, at least one receiver needs

to transmit a 0 and thus acknowledge the correct receipt of the CAN frame. If

the transmitter (which reads back this slot) detects that nobody acknowledged

this frame by sending a 0, it will retransmit this frame. The ACK delimiter, as

well as the end-of-frame (EOF) is always 1. After the transmission of a complete

CAN frame, the next CAN frame has to wait another 3 bits (not depicted in

Fig. 1.3) which is called inter-frame spacing (IFS). As a result, the next CAN

message can only be transmitted after at least 11 recessive bits.

Next, we will describe the structure of the data payload field, which consists of

one or more “signals.” A “signal” is a piece of information transmitted by an ECU,

such as vehicle speed. Messages transmitted with the same CAN ID usually contain

related signals (within the same domain) so that the destination ECU needs to receive

and process fewer messages. For instance, a message destined for the Transmission

Control Module (TCM) might contain both the vehicle speed (m/s) and engine speed

(RPM) signals in one CAN message. The length and number of signals vary with

CAN ID and are defined in the aforementioned DBC file for the corresponding vehicle.

This translation file specifies the start position and length of a signal, allowing it to

be easily retrieved from the payload using a bitmask if the DBC file is available.

7

Moreover, signals can not only contain physical information, but also other types

of information [120, 122], such as:

• Constants: Values that do not change over time.

• Multi-Values: Values with a domain consisting of only a few constant values.

[122] reported 2–3 changing values within these types of signals. An example

of a 2-value field could be the status of a specific door (e.g., open or closed).

• Counters: Signals that behave as cyclic counters within a specific range. These

signals could serve as additional syntax checks or be intended to order longer

signal data at the destination ECU(s).

• Checkcodes: Besides the CRC-15 field at the tail of every CAN frame, the

payload can also contain additional checkcodes, typically as the last signal in

the payload.

A contrived example is given in Fig. 1.4 showing multiple signals of different

types (physical signals, multi-values, counters, CRCs, etc.) embedded in the 8-byte

payload of a CAN message. For instance, the orange-colored entity represents a 2-

byte physical signal and the yellow one depicts a 12-bit counter, whereas the blue

region is another 1-byte long physical signal. Several CAN IDs also contain 1-bit

signals that are multi-values, i.e., booleans that describe a body-related event (e.g.,

door is open/closed). Three status flags are depicted in byte 7 of this example. The

remaining green signal is a 4-bit checksum. White regions are unused, i.e., no signals

are defined in the DBC file. CAN signals are defined by the OEM and can thus have

arbitrary lengths. Some OEMs also decide not to include specific signal types. For

instance, none of our evaluation vehicles (all from the same OEM) contain checksums.

8

Bit Positions

B
yt

e
N

u
m

b
er

0 1 2 3 4 5 6 7

7

6

5

4

 3

2

1

0

Figure 1.4: Example of CAN signals

1.2.2 DBC Files

All recorded CAN data can only be interpreted if one possesses the translation

tables for that particular vehicle. These tables can come in different formats, as there

is no single standard. Examples are KCF (Kayak [98]) and ARXML (AUTOSAR

[1]) files. However, the most common format used for this purpose is DBC [76], a

standard created by German automotive supplier company Vector Informatik.

DBC files contain a myriad of information. However, to understand this thesis,

one must be aware of the following information stored in these files:

• Message structure by type: CAN ID, Name, DLC, Sender;

• Signals located within messages, containing Name, Start Bit, Length, Byte

Order, Scale, Offset, Minimum/Maximum Value, Unit, Receiver

The representation of translation data in DBC files can be confusing [74]. CAN

data can be represented in either big endian (Motorola) or little endian (Intel) byte-

9

order. The bits can also be numbered using either MSB0 (most significant bit first) or

LSB0 (least significant bit first). However, most DBC files use the Intel format with

LSB0 numbering. Therefore, the start bit included in the signal information does not

describe the actual start bit. Since we need to know the actual signal boundaries, we

need to calculate the true start bit s so that we can, combined with the signal length

l, obtain the signal end bit e:

s = bs
8
c+ 7− (s % 8),

e = s+ l − 1.

(1.1)

Note that DBC files are kept secret by OEMs and are not disclosed to the public.

1.2.3 In-Vehicle Network Architecture

There are four major bus systems used in cars: CAN, FlexRay, LIN, and MOST.

MOST is used for multimedia transmission, whereas the other bus types are mostly

used for control tasks, e.g., in the powertrain domain. The most widely used In-

Vehicle Network (IVN) architecture is the central gateway architecture. An overview

of the buses and their interconnection within a vehicle is shown in Fig. 1.5.

The major point of entry into a vehicle for data collection (and diagnostics) is the

on-board diagnostics (OBD-II) interface. This connector is mandatory for all vehicles

sold in the US after 1996.

Emission-related sensors such as vehicle speed, engine speed, intake temperature,

mass airflow, etc., are universally available in all vehicles (after 1996) via the stan-

dardized OBD-II protocol [9]. Apart from the standardized OBD-II protocol (called

SAE J/1979), this port can also be used to both read and write raw CAN data.

Note that the OBD-II protocol and OBD-II interface are different and should not be

confused.

Electric vehicles (EVs) are not mandated to either have an OBD-II connector

10

Central
Gateway

ECU ECU ECU

ECU ECU ECU

ECU ECU ECU
ECU ECU ECU

ECU ECU ECU

ECU

ECU

ECU

OBD-II

Powertrain-CAN

Chassis-FlexRay

Body
CAN 2

Body-CAN 1
Sub-Bus LIN 1 Sub-Bus LIN 2

Infotainment
MOST

Figure 1.5: Common automotive E/E architecture (adapted from [195])

nor support the OBD-II protocol. The latter would not contain a lot of information

anyway due to the lack of mechanical powertrain components (the OBD-II protocol

provides emission-related information [9]). Since there is no standard for EV diag-

nostics, EV OEMs can use any interface they desire. For instance, older Tesla Model

S and X still carry a traditional OBD-II port, whereas the newer Model 3 has its

proprietary hardware interface [44]. Furthermore, proprietary diagnostic protocols

are used in EVs (instead of SAE J/1979).

OBD-II data can be accessed by anyone through aftermarket dongles [77]. The

OBD-II protocol uses the CAN bus at the physical layer in all newer vehicles. It is

a request-response protocol that sends requests on CAN ID 0x7E0 and obtains re-

sponses on 0x7E8. For instance, to obtain the vehicle speed, a dongle connected to the

OBD-II port sends a CAN message with ID 0x7E0 and payload 0x02010D5555555555.

The first byte (0x02) indicates that 2 more bytes will follow, the second byte (0x01)

corresponds to the OBD mode of getting live data, and 0x0D indicates vehicle speed.

Unused bytes are set to 0x55 (“dummy load”) and ignored. A complete specification

is available in Wikipedia [9].

11

Note that the OBD-II protocol is public and does not make any use of DBC files

at all. As stated in [9], only certain emission-related sensors can be read. Body-

related signals are not part of the OBD-II specification. Nevertheless, signals in the

aforementioned specification are still available in the raw CAN protocol. However, we

would still like to locate the CAN IDs and signal positions of emission-related signals

on the CAN bus. For CAN injection attacks, we need to know this information

because the OBD-II protocol does not allow writing arbitrary values to these sensors.

Since any node can tap into the unencrypted CAN bus and start broadcasting

data without prior authentication, a malicious entity can gain access to the in-vehicle

network by using an OBD-II dongle as a CAN node and send messages (e.g., through

a mobile app). Note that it is also possible to physically tap into any CAN bus

domain (after removing plastic compartments) by using an Arduino with a CAN

bus shield [197]. If the message semantics (i.e., the DBC file(s) or portions thereof)

are known to the attacker because they reverse-engineered the CAN bus, they can

cause the vehicle to misbehave by affecting the operation of receiver ECUs. This can

range from displaying false information on the instrument cluster [109] to erroneously

steering the vehicle [124]. The latter impacts vehicle safety and, therefore, poses

greater risk. Furthermore, it is also possible to cause certain ECUs to fail, possibly

incurring operational/financial damage to the vehicle.

Theoretically, it is possible to monitor the traffic on all in-vehicle buses through the

OBD-II interface. In practice, however, not all buses are mirrored out by the central

gateway, which is responsible for routing CAN messages between buses or domains.

This can be explained by access control [140] that OEMs implement. Nevertheless,

previous literature [124] has shown that CAN injection through the OBD-II port is

possible in numerous cars. Furthermore, the OBD-II connector has only 16 pins,

with some pins already assigned [10], and thus only up to three CAN buses can be

monitored through the OBD-II port.

12

1.3 Background on Vehicle-to-Everything (V2X) Communica-

tion

Cars are becoming increasingly connected to support an increasing number of con-

venience and safety functions. The future of intelligent transportation systems (ITS)

will be spearheaded by V2X (vehicle-to-everything) communication which can com-

plement and enhance Advanced Driver-Assistance Systems (ADAS) and autonomous

vehicles (AVs). Among others, V2X allows connected vehicles to talk to other vehicles

(V2V), smart infrastructure (V2I) and pedestrians (V2P). V2X can be expected to not

only help AVs (e.g., cooperative adaptive cruise control), but also benefit traditional

(i.e., human-driven) cars by avoiding traffic congestion and preventing collisions.

Vehicles exchange Basic Safety Messages (BSMs) in the US which are defined in

the SAE J2735 standard [149]. BSMs contain state information about a vehicle, such

as its location, speed or acceleration. An overview of all these sensors is provided

in Fig. 1.1. Note that other territories have different formats, such as Cooperative

Awareness Messages (CAMs) in the European Union which share a similar format to

BSMs [107].

1.4 State-of-the-Art Defenses

As mentioned before, the Controller Area Network (CAN) bus is the de-facto

standard in contemporary vehicles and has been around for more than three decades.

Since CAN has not been designed with security in mind, most of my thesis deals

with enhancing it by the key cyber-security properties of confidentiality, authenticity,

integrity and availability. The main threat and key part of every cyber-attack against

vehicles to date are CAN injection attacks, which can lead to serious malfunctioning of

the vehicle [58, 109, 127]. CAN injection can also result in attacks on the availability

of the CAN bus, e.g., by Denial-of-Service (DoS) attacks [133].

13

Table 1.1: Format of Basic Safety Messages

Message Content

BSM Part I

Message Count
Temporary ID
Time
Position (latitude, longitude, elevation)
Position accuracy
Transmission state
Speed
Heading
Steering wheel angle
Acceleration
Yaw rate
Brake system status
Vehicle size (width, length)

BSM Part II

Event flags
Path history
Path prediction
RTCM package

There is no one-size-fits-all approach to prevent CAN injection attacks and pro-

vide all aforementioned security properties. A holistic security concept consisting of

multiple layers has to be developed to address CAN injection attacks. The following

three-layer approach can be considered [194]:

• Access control to network

• Secure on-board communication

• Anomaly detection and defense

The first layer restricts non-authorized access to the in-vehicle network (IVN) by

the deployment of firewalls. Given the IVN architecture from Fig. 1.5, access control

can be implemented in the central gateway. This leads to separation of domains,

i.e., if one bus is compromised, malicious messages cannot reach other — potentially

more safety-critical — domains. This is a very simple countermeasure, especially

considering that the infotainment bus (which is less safety-critical) with its wireless

14

interfaces has been compromised in previous attacks [127]. Safety-critical busses

such as the powertrain CAN usually lack connectivity and the gateway would block

any malicious CAN injection attempts from the infotainment CAN that could affect

powertrain-related functions.

The second layer suggests ways for message authentication and ensuring data

integrity. Since CAN is a broadcast protocol, CAN messages do not contain any

information about their sender ECU. This is a serious problem, since any compromised

ECU or attacker node that taps into the CAN bus can transmit messages with an

existing CAN ID. As a result, receiver ECUs have no provisions about knowing if

CAN messages were sent by a genuine or malicious transmitter. Besides CAN ID

spoofing, the attacker can also spoof the payload as part of their CAN injection

attack. The CAN protocol also does not suggest the use of Message Authentication

Codes (MACs) to be included anywhere in a CAN message to check the integrity of

the transmitted message. To sum up, authenticity cannot be guaranteed by CAN.

Furthermore, a proper CAN injection attack needs to know the semantics of the

communication matrix, i.e., the DBC file, to inject a well-formed CAN message. For

instance, if the attacker wants to steer the vehicle into a ditch, it needs to know in

which CAN ID (and what position within the payload) the steering wheel angle signal

is located. Since CAN messages are exchanged in plaintext, an attacker can reverse

engineer the desired signal manually by listening sufficiently to the bus. If the CAN

payload was encrypted — providing confidentiality — it would be impossible for an

attacker to reverse engineer the semantics.

Finally, the third layer consists of anomaly/intrusion detection and prevention

systems (ADPS/IDPS). These solutions are constantly monitoring several properties

of network traffic and reacting to deviations. Literature for ADPS/IDPS is growing

and several survey papers have been recently published to provide a taxonomy of

the different approaches taken to respond to anomalies or intrusions [115, 188, 193].

15

Broadly speaking, countermeasures include fingerprint-based, parameter monitoring-

based, information theory-based and machine learning-based solutions. Each category

extracts CAN features on a different layer of the OSI stack. For instance, fingerprint-

based approaches monitor the physical bus level, whereas machine learning-based

solutions are data-driven and operate on the CAN payload. IDPSes can be used to

satisfy the last security property of availability on the CAN bus by detecting DoS

attacks [133].

Defenses for V2X communication are manifold as well. Similar to IVN security,

a holistic multi-layer approach is required to address different adversaries. For in-

stance, BSMs from external attackers (e.g., roadside attackers with V2X radio) will

be discarded immediately due to lack of valid credentials to join the BSM broadcast.

In contrast, internal attackers (e.g., compromised ECUs) are “real” vehicles that are

authenticated to exchange BSMs with their surrounding vehicles and other entities.

Just like the different kinds of CAN injection attacks, V2X injection comprises false

data injection/spoofing and DoS attacks. Another unique attack type for V2X are

Sybil attacks [152].

1.5 Challenges

As laid out in the previous subsection, both CAN and V2X security comprise

similar defenses against similar attack types. Despite the importance of automotive

security and several proposed solutions from academia, their adoption in real-world

commercial vehicles by OEMs is rare. This lack of adoption can be attributed to the

following three challenges:

• (C1) Cost: This is usually the dominant driver behind the lack of adop-

tion. OEMs operate within extremely tight cost constraints and aim to avoid

any increase in their production cost. One dimension how added security can

16

contribute to overall cost is resource constraints. ECUs in current vehicles

only require simple operations, and thus most ECUs are not built with high-

performance hardware. For instance, current Engine Control Modules can have

80MHz clock frequency, 1.5MB Flash memory and 72kB of RAM (Bosch [16]).

Adding cryptographic security operations for encryption and authentication on

the CAN bus, or machine-learning-based techniques for ADPS/IDPS (both for

CAN and V2X) would require significantly more performant hardware which

would, in turn, increase the costs to acquire more powerful ECUs. Furthermore,

OEMs rely heavily on the economy-of-scale of their supply chain. They source

several ECUs directly from different suppliers and Tier-1s. By reusing legacy

ECUs for many generations of their vehicles, OEMs can avoid development

costs and keep their purchasing costs low. Satisfying new security requirements

would lead to new ECU developments which would increase the OEMs’ cost of

manufacturing a vehicle [175].

• (C2) Latency: This functional parameter is extremely important in vehicles

which come with stringent hard real-time requirements to satisfy automotive

safety certifications such as ISO 26262 [12]. For instance, in the case of CAN se-

curity, ensuring confidentiality and authenticity requires encryption and adding

MACs. The maximum permissible end-to-end (E2E) latency on CAN is in

the sub-second range [71]. Both encryption and MAC calculation add a non-

negligible delay, especially considering the low power and cost hardware. This

can lead to deadline misses which can compromise driver safety and is thus

unacceptable. In terms of V2X security, detection latency is an important met-

ric since anomalies/intrusions need to be responded to as quick as possible.

Numerous existing works ignore this requirement while proposing performant

ADPS/IDPS solutions and also do not consider how slowly their heavy solutions

would run on resource-constrained automotive hardware.

17

• (C3) Mindset: This challenge specifically applies to CAN security. OEMs

never disclose DBC files to the general public. They keep them as proprietary

secrets within their organization. DBCs are even only partially shared with

Tier-1s. By doing so, OEMs believe that they can both prevent eavesdroppers

from logging interpretable data on the CAN bus, as well as deter attackers from

launching CAN injection attacks. In fact, keeping DBCs secret acts as a barrier

to CAN injection since attackers need to tediously reverse-engineer the signal

information they want to target first. Since DBCs differ between vehicle models,

they need to repeat this step for each model they want to attack. As a result,

OEMs believe that their security-by-obscurity mindset will help them improve

the security of the CAN bus by deterring attackers.

1.6 Thesis Contributions

1.6.1 Thesis Statement

Following up on the challenges C1-C3 outlined in the previous subsection, I iden-

tify three major intellectual contributions (ICs) that will eventually lead to my thesis

statement.

IC1: Semantics can be automatically reverse engineered, accelerating CAN

injection attacks. OEMs believe that they can prevent attackers from launching

CAN injection attacks through their security-by-obscurity mindset, as attackers will

not have access to the necessary semantics. Previous attacks have already shown that

this is not necessarily a deterrent [124, 125, 127], since semantics can be manually

reverse engineered. Since this a tedious process that can take up days depending on

the number of targeted signals, I demonstrate that the reverse-engineering process

can be accelerated by an automated tool, practically eliminating the barrier to CAN

injection attacks.

18

IC2: Solve CAN security problems by satisfying functional and cost con-

straints of OEMs. Given the constraints that OEMs impose on their vehicles, the

main objective of this intellectual contribution is to develop security solutions that are

feasible and practical to be deployed on the CAN bus. This stands in stark contrast

to previous extensive work in this domain. As depicted in the previous subsection,

security comes at the expense of performance. As a result, a trade-off has to be

made to add security to vehicles (and thus prevent CAN injection attacks) without

compromising its commercial adoption.

IC3: Solve V2V security problems by hybrid approach combining in-

vehicle and off-vehicle anomaly detection. A connected vehicle (i.e., V2X-

equipped) needs to detect rogue vehicles broadcasting malicious sensor data and pre-

vent it from going to its actuators. Numerous anomaly detection systems have been

proposed to solve this problem, but similarly to IC2, none of them focused on the

actual deployability on real vehicles. Purely machine learning-based solutions are too

heavy for the vast majority of contemporary cars, especially considering that a fast

detection time (or short latency) is required, whereas purely statistical techniques

might not cover the entire threat model of an attacker. A trade-off between good

detection performance (i.e., security level) and reasonable resource consumption has

to be found.

My thesis statement can be summarized as follows:

Thesis Statement: Demonstrate the omnipresence of CAN injection attacks and

develop novel, feasible security solutions for CAN and V2X by analyzing the trade-off

between security and performance.

19

1.6.2 Thesis Components

My thesis work was motivated by LibreCAN [CCS’19]. We demonstrated that

the barrier for CAN injection attacks to cause vehicle malfunction can be significantly

reduced by automated CAN bus reverse engineering. This chapter covers IC1. To mit-

igate this attack, I proposed S2-CAN [ACSAC’21] to bring confidentiality, integrity

and authenticity to the CAN bus without the use of cryptography. It offers negligible

overhead to latency and other computational resources, although it requires compro-

mises in the security level. To further mitigate attacks on the availability of the CAN

bus, I designed MichiCAN that makes use of novel automotive hardware features

to detect and prevent Denial-of-Service (DoS) attacks in a backward-compatible and

light-weight way, i.e., without adding significant overhead to CAN communications.

These two works address IC2. Finally, I applied the security-performance trade-off to

V2V-enabled connected vehicles by proposing CARdea which is a hybrid anomaly

detection system consisting of in-vehicle and off-vehicle detection components. The

final chapter solves IC3. Fig. 1.6 depicts these four components/chapters of my the-

sis, together with the order of appearance in this thesis, as well as the corresponding

intellectual contribution.

1.6.3 LibreCAN [141]:

CAN messages are unencrypted and any adversary with access to the CAN bus

can sniff the plaintext data. Nevertheless, each make and model encodes the data

differently, typically requiring an attacker to interpret data using a translation table

(called DBC). Carmakers keep DBCs private in the hopes of hiding them from attack-

ers. This has failed to prevent attackers from conducting manual reverse engineering

of the CAN bus, though this is a tedious and long process. I showed that by ex-

ploiting the security-by-obscurity principle of automotive carmakers in an automated

fashion, an attacker can quickly and easily launch a CAN injection attack and cause

20

• LibreCAN: Automated CAN Message
Translator

• S2-CAN: Sufficiently Secure Controller
Area Network

• CARdea: Practical Anomaly Detection
for Connected and Automated Vehicles

• MichiCAN: Practical Spoofing and DoS
Protection for the Controller Area Network

Practical CAN Spoofing PreventionAutomated CAN Reverse Engineering

Practical CAN DoS Prevention Practical V2V Anomaly Detection

S-IC11 2

3 4

IC2

IC2 IC3

Figure 1.6: Components in this Thesis Proposal

the vehicle to malfunction. For this purpose, I designed an automated CAN message

reverse engineering tool called LibreCAN that can reverse engineer most of the DBC

in under two minutes with 82.6-95.1% accuracy, much higher than existing works.

1.6.4 S2-CAN [139]:

As my work demonstrated, automated CAN reverse engineering accelerates CAN

injection attacks on unknown vehicles. Spoofing can be prevented by adding a Mes-

sage Authentication Code using cryptographic means. However, this comes at the

expense of latency and the need for more powerful ECUs. Since hard real-time dead-

lines and cost requirements make this form of authenticity and integrity protection

infeasible, I developed a novel security solution called S2-CAN. It presents a trade-off

between security and performance on the CAN bus. S2-CAN adds the security prop-

erties of confidentiality, authenticity, and freshness to CAN messages without using

21

cryptography. By modifying LibreCAN to attack S2-CAN, I showed that a secure

CAN is possible with minimal overhead on ECU resources and latency, as long as its

design parameters are correctly chosen.

1.6.5 MichiCAN

CAN is also susceptible to DoS attacks which have traditionally been a focus of

CAN-based intrusion detection systems (IDSes), both in academia and industry [133,

168]. Licensing costs or the need for a dedicated ECU have held carmakers back

from adopting it in their vehicles. Furthermore, IDSes do not prevent attacks and

thus lack practicality. Hence, DoS attacks need to be detected and prevented with

existing ECUs as fast as possible. Since DoS attacks cannot be prevented by using

cryptography (or alternatives) on the application layer, the only viable option is to

leverage the error handling mechanism of CAN and confine the attacking ECU into

bus-off mode. Some recent work proposed solutions to bus-off the attacking ECU

according to CAN protocol specifications with the drawback of severely increasing

the bus load and bus-off time [67]. To mitigate these drawbacks, I proposed a new

backward-compatible and real-time approach called MichiCAN to defend against DoS

(and spoofing) attacks by using novel integrated/on-chip CAN controllers which are

gaining traction in real-world ECUs. Integrated CAN controllers allow the ECU to

bypass the CAN controller, enabling bit banging, which is used for real-time detection

and prevention of DoS attacks without adding any significant overhead to the CAN

bus.

1.6.6 CARdea

Vehicle-to-vehicle (V2V) communication as a complementary source to in-vehicle

cameras, radars, and lidars can help connected vehicles improve traffic management,

provide driver assistance and prevent possible crashes [23]. On the other hand, com-

22

promised vehicles can broadcast malicious information to trick vehicles into collisions

or cause traffic congestion. Existing solutions to sanitize incoming V2V data either

focus on certain attacks (e.g., GPS spoofing) or rely on computationally-heavy algo-

rithms that are impractical on the restricted resources of existing ECUs. To address

this, I designed and implemented a novel intrusion detection system for V2V which

detects anomalous broadcasts from malicious or faulty vehicles. My system called

CARdea uses a two-phase approach with a statistics-based, light-weight Phase 1 de-

ployed on the vehicle and a machine learning-based, resource-heavy Phase 2 that can

be executed on the vehicle, edge, or cloud. The first phase detects anomalous BSMs

from vehicles with up to 98% sensitivity in only 0.04ms, whereas the second phase

handles certain cases that the first phase cannot detect. The experimental evaluation

consists of 132 hours of simulated BSM data in realistic traffic scenarios and multiple

attack types. I showed that using a two-stage approach, practicability does not need

to be compromised at the expense of detection performance.

1.7 Organization of Thesis Proposal

This dissertation is organized as follows. Chapter II presents the automated CAN

bus reverse engineering tool LibreCAN. Chapters III and IV propose the defensive

solutions S2-CAN and MichiCAN, respectively. Furthermore, practical security is ex-

tended to connected vehicles in Chapter V with CARdea. Finally, I conclude the

dissertation in Chapter VI where I also discuss future research directions.

23

CHAPTER II

LibreCAN: Automated CAN Message Translator

2.1 Introduction

Nearly all functions inside a modern vehicle, even in more traditionally mechanical

domains like the powertrain, are controlled electronically. Moreover, purely electronic

systems have become more prevalent as the number of sensors present in a vehicle has

increased, particularly given the rise of Advanced Driver Assistance (ADAS) systems.

All of these systems are controlled by Electronic Control Units (ECUs), embedded

microprocessors that interface between a given system and the rest of the vehicle.

Over the last few years, the number of ECUs inside a vehicle has increased signifi-

cantly. Compared to the early 1990s, when few ECUs were present in a given vehicle,

a modern vehicle features more than 40 ECUs (as of 2015 in Europe) [123]. Mean-

while, premium cars can be equipped with up to approximately 100 ECUs. These

ECUs need to communicate over a unified communications network that is sophisti-

cated and robust enough to handle all network traffic inside a vehicle, particularly for

time-critical information. To meet this need, Bosch introduced the Controller Area

Network (CAN) technology in 1987, which has since become the de facto standard

in-vehicle network.

According to Frost & Sullivan [142], data security and privacy are among the most

critical drivers and inhibitors of next-generation mobility services. Automotive cyber-

24

security is a relatively young field, with the first major publications appearing in 2010

[58, 109]. In 2015, several attacks were reported, including three major wireless at-

tacks: an attack on BMW Connected Drive [166], an attack on GM OnStar [55], and

the Tesla Door Attack [134]. Although the first two attacks received some attention,

it was not until Miller and Valasek’s Jeep attack [127] that automotive cybersecurity

was perceived as a mainstream research and engineering issue. This attack exploited

vulnerabilities in the wireless Telematic Control Unit (TCU) and In-Vehicle Infotain-

ment (IVI) system to allow for remote control of a vehicle. In the first-generation

of automotive security research, attacks were mounted through vehicles’ physical in-

terfaces, e.g., through the OBD-II port or wired interfaces on the IVI. Meanwhile,

remote or “wireless” attacks exploit wireless interfaces, such as the Bluetooth, Wi-Fi,

or cellular connections of the TCU, as in the aforementioned Jeep attack.

A commonality between wired and wireless attacks is the need to eventually inject

messages onto the CAN bus in order to make the vehicle act in an undesired or unex-

pected way. Even in the sophisticated Jeep attack, the researchers had to manually

reverse-engineer portions of the CAN bus protocol in order to gain remote control

over the vehicle, e.g., over its steering control. This is very tedious and unscalable.

Additionally, these attacks can usually only target a specific model or make of ve-

hicle since message semantics are OEM-proprietary and can even differ from model

to model of the same vehicle make. Academic offensive automotive cybersecurity

research suffers greatly from this lack of scalability. Although most defensive solu-

tions, such as Intrusion Detection Systems (IDSs) [61, 84, 102, 183], do not require

knowledge of the message semantics of a vehicle, a straightforward and automated

mechanism to reverse-engineer CAN bus data could greatly accelerate vulnerability

research and allow software patches to be distributed before malicious entities become

aware of vulnerabilities.

The current security through obscurity paradigm pursued by OEMs attempts to

25

prevent wide-scale automotive attacks by keeping CAN message translation tables,

called DBC files, secret (and therefore placing an additional barrier to vehicle hacking)

is outdated and infeasible. Vehicles should be secure by design and not by choice,

following Kerckhoffs’s principle [105]. Therefore, automotive Electrics/Electronics

(E/E) architectures and networks should be resilient against CAN injection attacks

originating from external sources, e.g., by firewalling messages from the OBD-II port,

and without making assumptions about the knowledge of an attacker.

In this thesis chapter, we propose LibreCAN, a tool to automatically translate

most CAN messages with minimal effort. Unlike prior limited research on automated

CAN reverse-engineering, LibreCAN not only focuses on powertrain-related data avail-

able through the public OBD-II protocol, but also leverages data from smartphone

sensors, and furthermore reverse-engineers body-related CAN data. To the best of

our knowledge, LibreCAN is the first system that can reverse-engineer a relatively

complete CAN communication matrix for any given vehicle, as well as the full-scale

experimental evaluation of such a system.

This chapter is organized as follows. Sec. 2.2 gives a primer on the CAN bus,

its typical messages and signals, and the interpretability of CAN data, as well as in-

vehicle network architecture. Sec. 2.3 details the design of LibreCAN, while Sec. 2.4

evaluates the accuracy, coverage, and required manual and computation time for

reverse-engineering CAN messages. Sec. 2.5 discusses the limitations and potential

other use-cases of LibreCAN, as well as possible countermeasures. Sec. 2.6 discusses

related efforts in manual and automated CAN reverse-engineering, while Sec. 2.7

concludes the chapter.

2.2 Background

Please refer to Sec. 1.2 for a primer on the CAN bus, DBC files and in-vehicle

network architectures.

26

2.2.1 Information Sent on the CAN Bus

In order to know which data to reverse-engineer, we must first determine the

information commonly available in vehicles. This depends greatly upon the age and

price of the vehicle, and can drastically differ even among comparable vehicles from

different OEMs. As a result, we must first establish a basic knowledge of the most

frequently deployed ECUs in vehicles and the signals that they transmit on the CAN

bus.

It is difficult to arrive at a deterministic answer to this question since this infor-

mation is only located in DBC files, which are proprietary to the OEMs. As a result,

reverse-engineering all signals present in a vehicle is nearly impossible. Thus, our

goal is to reverse-engineer the most common subset of vehicular signals that are of

interest to both security researchers and third-party app developers. [62] provides

an overview of the automotive electronic systems present in a typical vehicle. After

analyzing multiple sources [124, 125, 127], we derived a list of ECUs (Table A.1 in

Appendix A.1) typically present in a vehicle (each of which usually transmits data us-

ing one or more CAN message IDs), along with the signals present in their respective

CAN messages.

Raw CAN data is not encoded in a human-readable format and does not reflect

the actual sensor values. In order to obtain the actual sensor values, raw CAN data

must first be decoded [65]. Letting rs, ms, ts, and ds be the raw value, scale, offset,

and decoded value of sensor s, respectively, the actual value can be found with the

following equation:

ds = ms · rs + ts. (2.1)

27

2.3 System Design

Fig. 2.1 provides an overview of LibreCAN’s system design, which consists of three

phases discussed below. Our system relies upon the following three sets of signals as

input:

• P : The set of IMU sensor data (called “motion sensors” in Android), i.e., 3-

dimensional accelerometer and 3-dimensional gyroscope data collected from the

smartphone (via the Torque Pro app) while recording OBD-II data (V).

• V : The set of OBD-II data. It consists of all OBD-II PIDs that the vehicle

supports. The sampling rate depends on the used data collection dongle and

vehicle. As a result, we resample the data to 1 Hz. A full list of OBD-II PIDs

can be found in [9].

• R: The set of raw CAN data that we recorded with the OpenXC dongle. It

includes the entire trace of driving data broadcasted on the CAN bus and is

accessible through the OBD-II port.

Phase 0 Phase 2Phase 1

Signal

Extraction

Alignment

Raw CAN

Data R

IMU Data P

OBD-II

Data V Matching

(xcorr)

𝒓𝒔

𝒅𝒔

𝒅𝒔

𝒊𝒅𝒔 , 𝒔𝒕𝒂𝒓𝒕𝒔, 𝒆𝒏𝒅𝒔, 𝒎𝒔, 𝒕𝒔

𝑺 = 𝑽 ∪ 𝑷

Event

Snippets
Reference

Snippet

Events E

Diff

Filter out powertrain messages

𝑹𝟎 𝑹𝒆

𝑪𝒆 = {𝒊𝒅𝒆 }

Linear

Regression

Top Scores

Filter out

periodic

messages
Event-triggered messages

Filter out

constant

messages

Reference

State

CAN IDs

Figure 2.1: System design overview

28

Data from sets P and V are only used in Phase 1. As shown in Table A.2, we

have 9 IMU sensors ∈ P and 15 OBD-II PIDs ∈ V that we are analyzing. As we will

see later, OBD-II PIDs only cover less than 2% of the possible signals that can be

reverse-engineered on each of our evaluation vehicles.

2.3.1 Phase 0: Signal Extraction

As described in Sec. 1.2.2, CAN messages can contain multiple signals, and hence

we need to extract the signals associated with each CAN ID. We built the signal

extraction mechanism in this phase on top of the READ algorithm in [120].

Using the rate at which the value of each bit changes, READ determines signal

boundaries under the assumption that lower-order bits in a signal will more likely

change more frequently than higher-order bits. READ then labels each extracted

signal as either a counter, a cyclic redundancy check (CRC), or a physical value based

upon other characteristics of the bit-change rate of the particular signal. Counters are

characterized by a decreasing bit-flip rate, with the latter approximately doubling as

the significance of the bit rises. Meanwhile, CRCs are characterized by a bit-change

magnitude of approximately 0. Physical signals (PHYS) are those that do not fit into

any of the above two categories.

We further defined three special types of physical signals: UNUSED (all bits set to

0), CONST (all bits constantly set to the same value across messages, but with at least

one bit set to 1), and MULTI (the value of the signal is from a set of n possible values).

We also modified the mechanism the READ algorithm uses to determine signal

boundaries. The original READ algorithm marks a signal boundary when the value

of dlog10 Bitflipe for a bit decreases as compared to the previous bit. However, our

implementation of READ instead checks whether the bit-flip rate decreased by a spe-

cific percentage from the previous bit – this value was set via an input parameter to

our algorithm, as discussed below. In this original implementation, pairs of consecu-

29

tive bits whose bit-flip rates change from (>.1 to <.1), (>.01 to <.01), or (>.001 to

<.001) would indicate a signal boundary. However, with our modification, a change

in bit-flip rate from 0.9 to 0.2 would only indicate a boundary with any percentage

threshold less than 77%. We found that using a percentage decrease allowed us to

extract more signals correctly than the original READ.

Pre-Process

Stage 0

Stage 1

Stage 2

Stage 3

Each CAN trace by
CAN ID

Tp0,0

Tp0,2

Tp0,3

Bit flip rate per bit

Bounds – Changing
or Not Changing

Labels – UNUSED,
CONST, or POSS

Bounds – Divide up
POSS by Tp0,2

Labels – Add CRC
and COUNTER

Labels – Add MULTI

Split TraceFull CAN Trace

Tp0,1

Labels – Divide up
POSS by Tp0,2

Figure 2.2: Flowchart of Phase 0 algorithm

A flowchart of the algorithm for this phase is provided in Fig. 2.2. The remainder

of this subsection provides the details of the different stages of this algorithm. Stages

30

0 and 2 are our own enhancements to the READ algorithm [120].

Pre-Processing Stage: In this stage, we parse a CAN trace in order to obtain the

bit-flip rate of each payload bit. To achieve this, we count the number of times the

value of each bit changes in the payload of a given CAN ID and then divide this by

the number of messages in the trace with this CAN ID.

Stage 0: This stage separates bits into three bins: UNUSED, CONST, and POSS (possibly

a COUNTER, MULTI, CRC, or physical signal PHYS). This stage generates the preliminary

signal boundaries and labels for each signal from the above three categories.

To achieve this, we first separate the bits from the previous stage into two sets:

those that change and those that do not. These bits are then grouped together

into signals with preliminary boundaries, assigning the boundaries based upon where

regions of bits that change transition regions of bits that do not, and vice versa. The

regions of bits that change are assigned the preliminary label of POSS and are left to

be processed later. Meanwhile, the bits that do not change are processed using Alg. 1.

We define two configurable parameters for the algorithm, namely Tp0,0 and Tp0,1. The

former is the length that a signal must have to be considered an unused signal. If a

signal is shorter than this length, we attempt to append it to the next signal. This is

because we assume that, if there is a short unused field, it actually contains the MSBs

of the adjacent signal for which we never observed a change in value. For example,

if 8 bits are used to express the speed in MPH, the most significant bit would not

change unless the trace included driving over 128 mph). We use Tp0,1 to determine

how long the next signal must be in order to have bits appended to it in this manner.

This is necessary since it does not make sense to always re-append unchanging bits

as the MSBs of the next signal.

Stage 1: This stage is similar to READ and evaluates all possible signal boundaries

and their bit-flip rates. We iterate from the LSB of a signal to the MSB of the next

adjacent signal, searching for a decrease in bit-flip rate. However, unlike the READ

31

Algorithm 1 Stage 0
procedure stage0(trace_file, Tp0,0, Tp0,1)

bits_that_dont_change_label← []
for l, r ∈ bits_that_dont_change do

if True ∈ changes[l : r] then
bits_that_dont_change_label.append(CONST)
break

else if r − l < Tp0,0 then
reinserted← false
for l_c, r_c ∈ bits_that_change do

if l_c == r + 1and r_c− l_c > Tp0,1 then
l_c← l
reinserted← false
delete l, c
break

if reinserted == false then
bits_that_dont_change_label.append(UNUSED)

algorithm, we are looking for a certain percentage decrease, denoted as Tp0,2. For

example, if Tp0,2 = 10%, we would mark a signal boundary when the bit-flip rate

decreases by greater than 10%. The output of this phase is an array of boundaries

that contains all partitions within the boundaries of the previously marked POSS

signals. This output contains the final signal boundaries that are used in the rest of

our evaluations.

Stage 2: This stage evaluates all signal boundaries marked POSS and determines

the number of unique values they contain throughout the trace. To achieve this, we

parse through the trace to determine the number of unique values that each extracted

signals from Stage 1 is set to — if this number is less than a pre-determined threshold

(Tp0,3), the signal is not considered in future stages. Any remaining POSS signals at

the end of this stage are marked as MULTI values. The output of this phase is a new

signal labeling set, now additionally containing signals labeled as MULTI.

Stage 3: This stage is also similar to the READ algorithm and evaluates any values

still labeled as POSS to determine if their bit-flip rates resemble a counter. If this is

not the case, we label the signal as a PHYS value.

32

+y

+x

-y

-x

+z+z

-z

-y

+y
+x

-x

-z

Figure 2.3: Alignment of phone’s coordinate system (right) with vehicular coordinate
system (left)

Alignment: Phase 0 also encompasses phone alignment. As Fig. 2.3 shows, the

vehicular coordinate system is not necessarily consistent with the phone’s coordinate

system, particularly if the user moves their phone during the data-collection process.

Therefore, it may be necessary to align these coordinate systems using rotation ma-

trices, as discussed in [59]. In order to avoid this additional step, we suggest that

users pre-align their phone with the vehicular coordinate system by mounting the

phone inside their vehicle, e.g., in a phone/cup holder. Using the coordinate systems

from Fig. 2.3, the phone should be located on the center console, with the short edge

parallel to the direction of the vehicle’s motion.

2.3.2 Phase 1: Kinematic-related Data

The goal of this phase is to match the extracted signals from Phase 0 to openly

available OBD-II PIDs (V), as well as mobile sensor data (P). The latter data can

easily be collected using a smartphone.

The OBD-II PIDs (V) and IMU sensors (P) that we consider from our data

collection with Torque Pro — making up the set S (see Fig. 2.1) — are depicted in

Table A.2. The commonality between these signals (i.e., V , P , and S) is that they are

kinematic- or powertrain-related, i.e., they are captured while the vehicle is in motion.

The OBD-II protocol was standardized for the purpose of capturing and diagnosing

33

emissions data, which is powertrain-related. The IMU sensors capture the movement

of the smartphone in the vehicle and therefore the movement of the vehicle, if the

phone is fixed within the vehicle and properly aligned. These signals are also present

on the CAN bus since this data is generated by and exchanged between ECUs, with

a copy mirrored out to the OBD-II connector.

As mentioned in Eq. (2.1), CAN signals usually do not encode an absolute value,

but instead a value with a linear relationship to the latter. As a result, comparing

the temporal sequence of a raw CAN signal from set R and a signal from set S should

yield a high cross-correlation value. Hence, for each signal d ∈ S, we run normalized

cross-correlation (xcorr) with all extracted signals r ∈ R, which yields a list of cross-

correlation values. We then arrange them in a descending order with respect to the

cross-correlation value. Since multiple CAN signals r can match a signal d (e.g., the

four wheel speeds match the OBD speed), we need to define an intelligent cut-off

point that keeps those relevant signals d with a high correlation value, but deletes

those starting with a correlation score that deviates significantly from the last signal d

that we wish to remain. For this purpose, we define a threshold Tp1. Alg. 2 describes

how to set the cut-off point. We will experiment with Tp1 in Sec. 2.4.2 to achieve the

best precision and recall for Phase 1.

Algorithm 2 Defining the Cut-Off Point
function Top_X(corr_result, Tp1)

running_sum, running_avg, cutoff ← corr_result[0]
count← 1
for val ∈ corr_result[1 :] do

if val < (1− Tp1) · running_avg then
break

cutoff.append(val)
running_sum← running_sum+ val
count← count+ 1
running_avg ← running_sum

count

return cutoff

It is essential to re-sample the two input sets R and S before running xcorr so

34

that both signals are temporally aligned.

Some of these signals are highly correlated with each other so that they can be

matched to the same CAN signal extracted in Phase 0. For instance, engine load

is a scaled version of the engine output torque. As a result, while generating our

ground truth for each vehicle, we need to consider these physical relationships and

confirm that they indeed hold during the evaluation of Phase 1. The reason behind

this lies in the xcorr function that we use in the aforementioned phase. It cannot

distinguish between different physical signals as long as their temporal sequences are

similar. This is a limitation of Phase 1 and is left as part of our future work. See

Appendix A.1 for a complete summary of relationships between certain elements in

set S.

The goal of Phase 1 (apart from finding the correct CAN signal positions) is to

output the scale (ms) and offset (ts) of each sensor (s). We can use linear regression

on the matched CAN signals R and signals from S to obtain these values. The latter

can also be validated against the ground truth DBC file, but this is omitted from our

evaluation.

To a greater extent, we are interested in comparing the matched signal positions

from before against the ground truth in order to determine the accuracy of our algo-

rithm in Phase 1. For this classification task, we define a confusion matrix as shown

in Table 2.1.

35

Ta
bl
e
2.
1:

C
on

fu
si
on

M
at
ri
x
fo
r
P
ha

se
s
1
an

d
2

G
ro
u
n
d
T
ru
th

P
os
it
iv
e

N
eg
at
iv
e

T
P

F
P

R
es
u
lt
s
fr
om

P
h
as
es

1
&

2
P
os
it
iv
e

P
ha

se
1:

Si
gn

al
s
th
at

ar
e
co
rr
ec
tl
y
id
en
ti
fie
d

as
pa

rt
of

th
e
gr
ou

nd
tr
ut
h

P
ha

se
2:

C
an

di
da

te
C
A
N

ID
s
th
at

w
er
e

co
rr
ec
tl
y
id
en
ti
fie
d
as

be
in
g
re
la
te
d
to

an
ev
en
t

P
ha

se
1:

Si
gn

al
s
th
at

ar
e
in
co
rr
ec
tl
y
id
en
ti
fie
d

an
d
ar
e
no

t
pa

rt
of

th
e
gr
ou

nd
tr
ut
h

P
ha

se
2:

C
an

di
da

te
C
A
N

ID
s
th
at

w
er
e
in
co
rr
ec
tl
y

id
en
ti
fie
d
as

be
in
g
re
la
te
d
to

an
ev
en
t

F
N

T
N

N
eg
at
iv
e

P
ha

se
1:

Si
gn

al
s
th
at

ar
e
no

t
id
en
ti
fie
d,

bu
t
ar
e
pa

rt
of

gr
ou

nd
tr
ut
h

P
ha

se
2:

C
A
N

ID
s
th
at

w
er
e
in
co
rr
ec
tl
y

re
je
ct
ed

du
ri
ng

th
e
fil
te
ri
ng

pr
oc
es
s

P
ha

se
1:

Si
gn

al
s
th
at

ar
e
no

t
id
en
ti
fie
d,

bu
t
ar
e
al
so

no
t
pa

rt
of

gr
ou

nd
tr
ut
h

P
ha

se
2:

C
A
N

ID
s
th
at

w
er
e
co
rr
ec
tl
y

id
en
ti
fie
d
as

no
t
be

in
g
re
la
te
d
to

an
ev
en
t

36

2.3.3 Phase 2: Body-related Data

Phase 2 consists of a three-stage filtering process performed on snippets of CAN

data recorded while performing body-related events. These events Re, e ∈ E are

listed in Table A.3.

A reference snippet R0 was recorded while the vehicle’s engine/ignition was off,

but with accessory power on. A reference state, used later in the filtering process,

was generated using this snippet. In this section, we will describe how to generate

the reference state from R0.

In Eq. (2.2), we first count the number of bit-flips (BFCj) in consecutive messages

mn,i,j ∈ idn for that particular CAN ID (idn) in each of its 64 bit-positions j ∈ [0, 63]:

BFCn,j =

|idn|−1∑
i=0

1,∀j ∈ [0, 63] and if mn,i,j 6= mn,i−1,j. (2.2)

Then, we define the bit-flip array (BFAn,j) for a particular CAN ID (idn) in each

of its bit positions:

BFAn,j =
BFCn,j

|idn|
. (2.3)

Finally, we define the bit-flip rate (BFRn) of a CAN ID (idn) as:

BFRn =

∑63
j=0BFAn,j

64
. (2.4)

Note that the above bit-flip rate BFRn is different from the one defined in Phase 0.

The reference state contains a mapping of CAN IDs idn to message payloads that have

a bit-flip rate lower than, or equal to a threshold Tp2,0 (BFRn ≤ Tp2,0), since messages

that change less frequently are more likely to be constant or alternating between a

few constant states. Messages that change more frequently, as evidenced by BFRn >

Tp2,0, are less likely to be associated with a single body-related event, especially

because the reference snippet R0 was recorded without any human interaction in the

37

vehicle that could have triggered body events.

Figure 2.4: Phase 2 Filtering Example

Fig. 2.4 depicts an example of the filtering process in Phase 2. The event snippet

is shown in the TRACE section and the generated reference state is shown in the

REFERENCE section.

After generating the reference state, each event snippet Re was filtered through

three separate stages, each designed to independently identify potential candidate

CAN IDs. The order of these filtering stages was set based upon extensive evaluation

38

to achieve the highest accuracy. Stages 1, 2, and 3 operate under the assumption that

body-related events should trigger visible and immediate changes in the messages

broadcast on the CAN bus.

Stage 1: Filtering messages with constant payloads. We assume that body-

related events should trigger changes in message payloads for at least one CAN ID,

so we removed all CAN IDs whose payloads did not change throughout the snippet.

As an example, in Fig. 2.4, messages with a CAN ID of 300 were filtered out at this

stage because all payloads sent in the event snippet were the same.

Stage 2: Filtering messages present in the reference state. We removed

candidate messages if their CAN IDs and payloads matched a (CAN ID, payload)

pair found in the reference state. If a candidate’s payload from the event snippet was

identical to the reference state, when no body-related events occurred, it is highly

unlikely this message was sent due to a change in the state of the vehicle’s body. This

stage can be considered a diff between the reference state and each event Re. In

Fig. 2.4, messages with the (CAN ID, payload) pairs (400, 056089000A00A000) and

(600, 000000024CB016EA) were filtered out because they were present in the reference

state. Furthermore, we found better results obtained by rejecting candidates whose

CAN IDs were not present in the reference state.

Stage 3: Filtering messages which were likely powertrain-related. To reduce

the quantity of remaining candidates, we removed those CAN IDs that were identified

as potential candidates for powertrain-related events in Phase 1. This was possible

since there was little overlap between the events being identified in both phases. To

minimize the removal of candidates that were mistakenly classified as powertrain-

related in Phase 1, we only removed CAN IDs if their correlation scores from Phase

1 were higher than a threshold (Tp2,3). The correlation scores for each CAN ID in the

example in Fig. 2.4 can be observed in the section POWERTRAIN. In such a situation,

messages were filtered out at this stage if their correlation scores were greater than

39

0.80.

Finally, those messages that were not filtered out are considered the candidates

for that particular event snippet. In Fig. 2.4, the (CAN ID, payload) pairs that

were not filtered out are labeled CANDIDATE in the TRACE section. Eventually, we

need to compare the results obtained from our intelligent filtering algorithm against

the ground truth. As in Phase 1, a ground truth needs to be created from manual

inspection of the DBC files for each test vehicle — a confusion matrix is defined for

this classification task in Table 2.1.

2.4 Evaluation

2.4.1 Data Collection

Four vehicles are used for our evaluation, all from the same OEM: Vehicle A is a

2017 luxury mid-size sedan, Vehicle B is a 2018 compact crossover SUV, Vehicle C is

a full-size crossover SUV while Vehicle D is a full-size pickup truck. We have acquired

DBC files for all four vehicles and used them as the ground truths against which to

compare the results of LibreCAN. Vehicles A, C and D have at least two HS-CAN

buses, both of which are routed out to the OBD-II connector, whereas Vehicle B has

at least one HS-CAN and one MS-CAN, with only the former being accessible via

OBD-II.

We collected two types of data: Free driving data for an hour with each vehicle (for

Phase 1) as well as event data for reverse-engineering body-related events (for Phase

2). For the former, data was collected through the OBD-II port with two devices: an

ELM327 dongle and an OpenXC dongle. A Y-cable was used to allow both devices

to connect to the port at the same time, allowing us to gather raw CAN data via the

OpenXC dongle, while simultaneously gathering OBD-II data and smartphone data

via the ELM327 dongle. The recorded CAN dump consists of raw JSON data with

40

CAN message metadata such as the CAN ID and timestamp, along with the payload

data. We used the Torque Pro Android app to interface with the ELM327 dongle via

Bluetooth. This produced a CSV file with around 22 signals d ∈ S, containing both

OBD-II PIDs V as well as mobile sensor data P (see Table A.2). For Phase 2, we

solely used the OpenXC dongle to record raw CAN data.

2.4.2 Accuracy and Coverage

In the previous subsection, we introduced several parameters for each phase x

that are denoted as Tpx,y, where y is an incremental number. Besides tuning these

parameters to achieve the highest accuracy, another design goal is to find a set of

parameters for each vehicle — henceforth called parameter configuration — that does

not significantly differ from the configuration of other vehicles. In a real-world use-

case of LibreCAN, DBC files are not available, and thus the parameters cannot be

tuned to achieve optimal performance. So, we would like to show the existence of

a universal configuration that can achieve good performance on any vehicle without

any prior knowledge of its architecture or DBC structure.

Phase 0: Signal Bounds Accuracy and Reverse-Engineering Coverage. To

evaluate how well our implementation and enhancements to the READ algorithm’s

extracted signal boundaries, we compared the boundaries produced by Phase 0 with

the ground truth boundaries extracted from the DBC files for both vehicles. To find

the optimal values of the four parameters defined in Section 2.3.1, we performed a

brute-force search through all possible combinations as depicted in Table 2.3. For

Phase 0, we defined optimal as the total number of correctly extracted signals (CE).

We sorted all parameter configurations in a descending list by this metric. For the

maximum number of CE, we manually inspected these configurations among all four

vehicles for similarity and selected the configurations with the smallest distance to

41

each other. As shown in the first four columns of Table 2.3, the numbers of each

4-tuple configuration are very close to each other.

The results of the run with the optimal parameters for Phase 0 are summarized in

Table 2.2. It shows the number of correctly extracted signals (CE) that we optimized

our parameter configurations for, the number of total extracted signals (TE) and the

total number of signals in the DBC files (TDBC). Note that Vehicle B has a lower

number of TDBC since we can only reverse-engineer one CAN bus (the second one is

not available through the OBD-II port). We define two ratios: CE/TE and TE/TDBC.

The latter can be defined as reverse-engineering coverage. LibreCAN can always

extract more than half of the available signals, with varying success for the number

of correctly extracted signals. There are multiple reasons for these less than desirable

numbers.

Table 2.2: Phase 0 Evaluation Metrics

Veh.
Correctly
Extracted
(CE)

Total
Extracted
(TE)

Total
in DBC
(TDBC)

CE /
TE

TE /
TDBC

Veh A 308 846 1640 36.4% 51.6%

Veh B 95 453 829 21.0% 54.6%

Veh C 208 698 1236 29.8% 56.5%

Veh D 251 828 1327 30.3% 62.4%

First, not all signals can be triggered in the recordings. Although we use both free

driving and event data for signal extraction in Phase 0, it is impossible to capture

everything, e.g., deployed airbags or emergency call signals. Since all our evaluation

vehicles were newer with several features and also not the highest trim level for that

particular model, the number of functionalities and thus signals is relatively higher

than an older vehicle. This explains the TE/TDBC ratio. Second, it is not always

possible to match the exact signal boundaries to the ground truth DBC file. For

instance, the engine speed (RPM) range can go up to 8000 RPM in most vehicles.

42

Under normal driving conditions with an automatic transmission, the vehicle will

shift to the next gear in the range of 2000–3000 RPM. As a result, we will miss the

most significant bits of that particular signals. The same applies to another physical

signals, such as vehicle speed or engine coolant temperature. This will intrinsically

result in a low CE/TE ratio.

As a result, the aforementioned ratio in Table 2.2 should not be used to draw

conclusions about the performance of LibreCAN since the signals inspected in Phases

1 and 2 yield high accuracy numbers.

Table 2.3: Optimal Parameters in LibreCAN

Tp0,0 Tp0,1 Tp0,2 Tp0,3 Tp1 Tp2,0 Tp2,3

[0,64] [0,64] [0,1] [0,64] [0,1] [0,.1] [.2,1]

Veh. A 0 3 0.02 2 0.05 0.03 0.70

Veh. B 2 3 0.01 2 0.07 0.03 0.70

Veh. C 0 4 0.01 2 0.05 0.03 0.55

Veh. D 2 3 0.01 2 0.06 0.02 0.60

Phase 1: Correlation Accuracy. We analyzed the accuracy of Phase 1 both

independently from Phase 0 (using correct signal boundaries from the DBC files)

in order to avoid possible error propagation, as well as with the extracted signal

boundaries from Phase 0.

Using the terminology from the confusion matrix in Table 2.1, we defined the

following metrics to assess for Phase 1:

• Accuracy = TP + TN
TP + TN + FP + FN

• Precision = TP
TP + FP

• Recall = TP
TP + FN

43

In Phase 1, we introduced one parameter that can be tuned to achieve the best

performance. This parameter is the threshold Tp1 to define the cut-off point, defined

previously in Sec. 2.3.2. One mechanism to define the optimal value for Tp1 is via the

Receiver Operating Characteristic (ROC) curve. Since we have an unbalanced ground

truth (e.g., the speed contains more CAN signals r than altitude), a Precision-Recall

(PR) curve is a better option. Fig. 2.5 shows the PR curve for both vehicles. Each

data point depicts a value of Tp1 ∈ [0, 1].

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Vehicle A
Vehicle B
Vehicle C
Vehicle D

Figure 2.5: Precision-Recall Curve for Phase 1

The closest data point to the upper right corner delivers the optimal threshold

Tp1 for the best performance. The PR curve depicted in Fig. 2.5 does not have an

ideal shape for Vehicles A, B and C because the recall value never exceeds 0.55.

According to the above definition of recall, this means that the True Positives (TP)

are always smaller than the number of False Negatives (FN), i.e., the ground truth

44

contains CAN signals that can never be found by our algorithm. Since the ground

truth is a subjective interpretation which we generated by manual inspection of the

DBC files, we assume that some CAN signals r are unrelated to the analyzed signal

d. This is a limitation of our work since we could not receive the OEM’s help in

interpreting the DBC files. Some examples where we encountered this phenomenon

are the z-component of accelerometer, altitude and bearing (all from phone). The

former two can be explained by the fact that all our driving took place in a relatively

flat area without many hills. The latter could be caused by GPS issues since bearing

is collected from the phone’s GPS module.

The first part of Table 2.4 sums up the precision and recall values using the

optimal threshold Tp1 (see Table 2.3) obtained from the PR curve analysis. entering

The precision and recall values reflect the evaluation of Phase 1 with correct bounds

Table 2.4: Phases 1 and 2 Evaluation Metrics

Phase 1 Phase2

Prec. Recall Acc. Prec. Recall

Vehicle A 82.6%/
77.2%

44.1%/
41.8% 88.0% 8.9% 58.2%

Vehicle B 66.7%/
61.1%

26.4%/
25.6% 90.1% 8.5% 46.2%

Vehicle C 74.4%/
78.1%

45.7%/
44.9% 91.5% 11.7% 51.6%

Vehicle D 79.7%/
70.8%

61.8%/
57.3% 95.1% 15.0% 47.2%

in the first line and with the signal bounds from Phase 0 in the second. The latter

values are shown to be slightly lower for all vehicles, with the exception of Vehicle C.

High precision values mean that most of the identified signals are part of the ground

truth, whereas relatively low recall values mean that we cannot match the majority

of signals defined in our subjective ground truth due to the high number of FNs, as

mentioned previously.

45

The anomaly for Vehicle C can be explained as follows: With more signals available

for the run with correct boundaries, Phase 1 over-identifies signals and causes a higher

number of false positives for that specific vehicle. This is certainly possible.

Phase 2: Candidate Accuracy. The goal of this phase was to identify CAN

IDs that were likely associated with a body-related event defined in Table A.3. To

evaluate the results of our algorithm, we used metrics such as accuracy, precision,

and recall. To evaluate these metrics, we need to revisit the terms from the confusion

matrix in Table 2.1. Note that this is a coarser-grained analysis than Phase 1. We

assessed how well Phase 2 identified the corresponding CAN IDs of events, not the

signal position within a CAN message.

Our three-stage filtering process uses two input parameters that were defined in

Sec. 2.3.3: 1. the bit-flip threshold (Tp2,0), used to generate the reference state and

2. the powertrain minimum correlation score (Tp2,3), used in the powertrain filtering

stage.

We ran the collected event traces through Phase 2 for each parameter configura-

tion, calculating the accuracy, precision, and recall metrics for each event. Since our

goal was to facilitate the identification of potential candidate CAN IDs, we preferred

those parameters that resulted in a high FP rate instead of a high FN rate — we

wanted to avoid excluding a potential candidate from consideration. The optimal

parameter values discovered for each vehicle are shown in the last two columns of

Table 2.3.

The second part of Table 2.4 summarizes the mean values of our metrics for all

53 events while Fig. 2.6 shows the median number of CAN IDs remaining after each

filtering stage (per event), as well as the total number of ground truth CAN IDs lost

over all events at each filtering stage. As predicted, our accuracy is high since we

filter out most unrelated CAN IDs for each event, whereas our precision is relatively

low. The latter metric indicates the ratio of correct CAN IDs in the candidate set to

46

the total number of candidates. However, we do not consider low precision to be an

issue. As Fig. 2.6 shows, we can reduce the number of CAN IDs after three filtering

stages by more than 10x, despite losing some correct CAN IDs at each stage.

Raw Constant Reference Powertrain
Stage

0

20

40

60

80

100

Nu
m

be
r o

f C
AN

 ID
s

Median Number of Unique CAN IDs Per Event (Veh. A)
Total Number of Ground Truth CAN IDs Lost (Veh. A)
Median Number of Unique CAN IDs Per Event (Veh. B)
Total Number of Ground Truth CAN IDs Lost (Veh. B)
Median Number of Unique CAN IDs Per Event (Veh. C)
Total Number of Ground Truth CAN IDs Lost (Veh. C)
Median Number of Unique CAN IDs Per Event (Veh. D)
Total Number of Ground Truth CAN IDs Lost (Veh. D)

Figure 2.6: Filtering out CAN IDs in each stage

Additionally, some signals for body-related events were not available on the CAN

buses we used for our evaluations. For instance, the signal for the horn was not

available on the CAN bus of any vehicle we evaluated. We were unable to record

data for 7 events for Vehicle A, 15 events for Vehicle B, 7 events for Vehicle C, and

10 events for Vehicle D. However, 10 of the events we were not able to record for

Vehicle B were on the MS-CAN that was not accessible through the OBD-II port.

We opted to not remove those events from our evaluation since it is likely that CAN

data recorded on another vehicle would yield similar results.

47

2.4.3 Manual Effort

An important metric for demonstrating the feasibility of LibreCAN is the level

of automation available, compared with the amount of manual effort required on

the part of the user. Although all three phases in the system can run and generate

results without human intervention, there is still manual effort required to collect

input traces. The goal of LibreCAN is to enable every user to reverse-engineer the

CAN message format of their vehicle with as little effort as possible. Hence, we want

to assess how much data has to be collected for Phase 1 to yield a reasonable precision

and how long it takes to record all 53 of the events used in Phase 2.

Phase 1. The recorded traces of all evaluation vehicles were around 60 minutes long.

The precision reported in Sec. 2.4.2 reflects the entire re-sampled trace. We wanted to

see how a shorter recording would affect this metric. We re-ran Phase 1 with signals

obtained in Phase 0, with 25%, 50% and 75% of the trace length. In order to avoid a

bias towards more city or highway driving, we calculated the precision for overlapping

segments of this trace. For instance, to analyze recordings of only half the length of

the original trace, we would use evaluate the following segments of the trace: 1. the

first half of the trace, 2. the slice of the trace between the first and last quarters of

its length, and 3. the last half The mean results of these evaluations are plotted in

Fig. 2.7.

A reduction in trace length results in a slight precision drop for all vehicles except

Vehicle B. The latter exhibits different behavior because a significantly higher number

of signals were extracted with its 100% trace compared to the one in other vehicles

— since a greater number of signals were extracted in Phase 0, a greater number

signals were processed in Phase 1. Both the 75% and 100% traces for this vehicle

yielded the same number of correct signals (our design goal in Phase 0), but the

100% trace resulted in more signals being processed (due to a higher number of total

extracted signals), which increased the number of false positives and thus decreased

48

30 40 50 60 70 80 90 100
Trace Length (in %)

55

60

65

70

75

Pr
ec

isi
on

 (i
n

%
)

Vehicle A
Vehicle B
Vehicle C
Vehicle D

Figure 2.7: Precision of Phase 1 with varying trace lengths

the precision. In order to achieve at least 65% precision, we recommend using a trace

covering 30 minutes or more.

Phase 2. In order to assess the time required to record all 53 events listed in Ta-

ble A.3, we conducted a human-study experiment, for which we obtained an IRB

approval (Registration No. IRB00000245). For this purpose, we developed an An-

droid app that ran on top of CarLab [138]. The participant was required to interact

with this app, which loops through all 53 events, displaying them one at a time on the

screen. A timer begins with the start of recording for the first event and the partici-

pant, seated in the driver’s seat, is instructed to perform each event and then click the

Next Event button. The timer stops after the last event has been performed. During

the experiment, a member of the study team sat in the passenger seat and evaluated

participant’s performance of the events, namely if one was performed incorrectly or

skipped.

49

1 2 3 4 5
Experience

6

8

10

12

14

16
M

in
ut

es

Mistakes Skips
Metrics

0

2

4

6

8

10

12

N
um

be
r o

f o
cc

ur
re

nc
es

(a) Experience-time correlation

1 2 3 4 5
Experience

6

8

10

12

14

16

M
in

ut
es

Mistakes Skips
Metrics

0

2

4

6

8

10

12

N
um

be
r o

f o
cc

ur
re

nc
es

(b) Key metrics

Figure 2.8: Results in user-study experiment

A total of ten people participated in this experiment. They were instructed on how

to operate the app and were not allowed to ask questions once the experiment began.

After completing all events, the team member recorded how long the participants took

and asked them how familiar they were with the test vehicle (Vehicle A) on a scale

from 1 to 5, with 5 being the most familiar. Fig. 2.8 (a) summarizes the correlation

between the level of experience with the time span. Note that the completion time was

not affected much by the experience level, except for one totally inexperienced (1/5)

and one very experienced (5/5) participant. Specifically, for users with experience

levels ranging from 2 to 4, the median of their completion time varies between 9.0 to

10.4 minutes. Fig. 2.8 (b) shows the key behavioral metrics (i.e., number of mistakes

and skips) of all participants. The median numbers of mistakes and skips are 3.5

and 1, respectively. As a result, drivers of different experience levels are capable of

performing all 53 events with the median rates of error and skip at 6.6% (=3.5/53)

and 1.9%, respectively.

50

In conclusion, we estimate that a 30 minute drive for Phase 1 and a 10 minute

experiment session for Phase 2 are sufficient to produce good results. These num-

bers are feasible for an otherwise completely automated CAN reverse-engineering

framework, especially given the time that manual reverse-engineering would likely

take. The latter can take from days to weeks, given the detail and precision of

the reverse-engineering needed. Although no explicit times are reported for man-

ual reverse-engineering, tutorials [161] imply significant effort is required. However,

researchers from the well-known Jeep hack [127] provide a reference in their paper:

"(...) we spent an entire year figuring out which messages to send for the Ford and

Toyota (...)". Although they very likely did not spend that entire time frame for

reverse engineering of CAN messages, it shows that is not a trivial process and takes

a lot of experimenting to find the correct payload for their CAN injection attack.

2.4.4 Computation Time

Having discussed the manual effort required to use LibreCAN, we analyze the

computation time of all three phases individually.

All experiments were conducted using Python 3 on a computer running 64-bit

Ubuntu 16.04. This computer featured 128 GB of registered ECC DDR4 RAM and

two Intel Xeon E5-2683 V4 CPUs (2.1 GHz with 16 cores/32 threads each). Phase 0

utilizes all available computational resources (64 threads), whereas Phase 1 uses one

thread per signal d plus one main thread (23 threads). Meanwhile, the computation-

ally inexpensive Phase 2 runs in a single thread.

Table 2.5 reports the time required for all computation steps. Note that these

values have been generated for a run with the optimal parameter configuration. The

total runtimes include operations that finished in less than one second, which are

listed as completing in 0 seconds in Table 2.5.

The entire three phase automated process takes 79 seconds for Vehicle A, 74

51

Table 2.5: Summary of computation time in each phase and stage (units are in
seconds)

Phases Stages Veh A Veh B Veh C Veh D

Phase
0

Parse Raw
CAN File 11 12 9 9

Split Trace 2 2 2 2

Remove Un-
used Columns 0 0 0 0

Extract Signals 4 9 5 5

Move Small
Files 0 0 0 0

Total 17 23 16 16

Phase
1

Run Correlate 40 30 36 40

Calculate Scale
and Offset 17 18 16 13

Total 57 48 52 53

Phase
2

Create Ref.
State 0 0 0 0

Filter Constant
Messages 4 2 2 3

Compare to
Ref. State 0 0 0 0

Filter Power-
train Related
Messages

0 0 0 0

Total 5 3 2 3

Libre
CAN

Total 79 74 70 72

52

seconds for Vehicle B, 70 seconds for Vehicle C and 72 seconds for Vehicle D. All

vehicles have a similar computation time, indicating that LibreCANis highly efficient

in reverse-engineering a vehicle’s CAN bus (slightly more than 1 minute) with only a

small amount of manual effort (around 40 minutes).

2.4.5 Testing on Generic Parameters

As mentioned before, LibreCAN was designed to achieve a good performance with

a universal set of parameters in all three phases. In order to show that anyone can

achieve a comparable performance as reported in the previous subsections without a

priori knowledge of the parameters, we would like to introduce an accuracy analysis

similar to the one in Sec. 2.4.2. Since one of our design goals was to select similar

parameters among the four evaluation vehicles, we can now pick any configuration of

these four vehicles for testing. We evaluated all four vehicles on parameters Tp0,0 = 2,

Tp0,1 = 3, Tp0,2 = 0.01, Tp0,3 = 2, Tp1,0 = 0.05, Tp2,0 = 0.03, and Tp2,4 = 0.70. The

results are summarized in Table 2.6. A comparison with the optimal results for each

vehicle in Table 2.4 shows that they are relatively similar. Through our design goals as

well as exhaustive evaluation on four vehicles, we found a parameter configuration that

can produce favorable results for any testing vehicle. This corroborate the scalability

of LibreCAN.

Table 2.6: Phases 1 and 2 Evaluation Metrics for Generic Parameters

Phase 1 Phase2

Prec. Recall Acc. Prec. Recall

Vehicle A 77.2% 41.8% 88.0% 8.9% 58.2%

Vehicle B 65.9% 22.5% 90.1% 8.5% 46.2%

Vehicle C 78.1% 44.9% 91.5% 11.7% 51.6%

Vehicle D 72.5% 56.2% 94.6% 13.7% 47.2%

53

2.5 Discussion

2.5.1 Limitations and Improvements

During the evaluation phase, we discovered some limitations of LibreCAN. First,

not all possible values of a kinematic-related signal will be "exercised" with normal

driving behavior. For instance, RPM values over 3000 are unlikely due to the nature

of automatic transmissions, except in cases of aggressive acceleration. We tried to

compensate for this in Phase 0 by classifying signals as correct even if we missed 20%

of the Most Significant Bits (MSBs).

Second, for Phase 2, not all vehicles may have the 53 events defined in Table A.3.

We conducted experiments on newer vehicles, but cannot guarantee that older vehicles

will have the same functionalities. These events are present on the IVN, but cannot

be accessed via the OBD-II port. A possible solution to this problem would be to

physically tap into the CAN bus by opening compartments. However, this voids the

vehicle’s warranty, and hence is not feasible for average drivers.

Third, our accuracy evaluations are somewhat subjective (as discussed earlier)

despite their reflection of inputs from multiple other researchers. The only way to

address this subjectivity would be to involve the vehicle OEMs.

One can also make some improvements to LibreCAN. For instance, a fine-grained

analysis could be performed in Phase 2 to identify the correct regions of the events

within a CAN ID. Signal extraction in Phase 0 could also be enhanced by leveraging

the Data Length Code (DLC) field in the CAN header (see Fig. 1.3). Finally, we could

construct additional d signals that are not directly available on SAE J/1979 or mobile

phones. For example, steering wheel angle (SWA) is a popular signal (especially in

AVs) that we could reconstruct using the gyroscope readings from a phone [114].

54

2.5.2 Other Use-Cases of LibreCAN

The main use-case of LibreCAN is as a tool for security researchers or (white-hat)

hackers. It can help them lower the car-hacking barrier and allow vulnerabilities to

be exploited faster. Another potential use-case we envision for LibreCANis as a utility

to enable the development of apps for vehicles, both in industry and academia.

Big data generation and sharing will lead to the monetization of driving data

and create an additional source of revenue for OEMs and services. According to

PwC, by 2022 the connected car space could grow to $155.9 billion, up from an

estimated $52.5 billion in 2017 [174]. OEM-independent, universal access to data by

third-party service providers can make the latter a major player in automotive data

monetization. Third-parties already offer OBD-II dongles that can access the in-

vehicular network and obtain publicly available data (OBD-II PIDs [9]). In particular,

usage-based insurance (UBI) companies [4, 31, 33, 46] are known to distribute dongles

to track driving behavior, allowing them to adjust insurance premiums. As mentioned

previously, CAN data contains richer information than OBD-II PIDs and can be

leveraged to build more powerful third-party apps. This also encompasses academic

research, which usually has limited knowledge about vehicular data collection.

55

Ta
bl
e
2.
7:

C
om

pa
ri
so
n
to

R
el
at
ed

W
or
k

Li
br

eC
AN

RE
AD

[1
20

]
AC

TT
[1
79

]

P
ha

se
0

P
ha

se
1

P
ha

se
2

P
ha

se
0

P
ha

se
1

P
ha

se
2

P
ha

se
0

P
ha

se
1

P
ha

se
2

P
re
ci
si
on

(P
ha

se
0
&

1)
A
cc
ur
ac
y
(P

ha
se

2)
36

.4
%

82
.6
%

95
.1
%

97
.1
%

-
-

16
.8
%

47
.7
%

-

56

2.5.3 Countermeasures

Our point of entry to vehicles was the OBD-II port. Although we only read data

from this port (OBD-II and raw CAN data), it is possible to inject CAN data into

the vehicle via this port, as shown by [109, 124, 127]. A very simple and intuitive,

but also powerful, solution to this attack would be to implement access control into

the vehicular gateway that the OBD-II port attaches to (see Fig. 1.5).

Recently, there have been efforts to secure IVNs from outside attacks. For in-

stance, the Society of Automotive Engineers (SAE) is planning to harden the OBD-II

port [6]. In the corresponding SAE standard [151], data access via OBD-II (SAE

J/1979) and Unified Diagnostic Services (ISO 14229-1) is categorized as intrusive

and non-intrusive, respectively. Nevertheless, this standard does not classify how

intrusive the actions of reading data via OBD-II (Service 0x01 of J1979) or reading

raw CAN data are.

In any case, these changes are only possible with an improved vehicular gateway.

This topic has been discussed since 2015 [78], when coverage of car hacking by news

outlets increased significantly [3]. [7] also suggests enhancing existing gateway designs

by adding additional security measures, such as a firewall. The aforementioned SAE

standard [151] even hints that some OEMs might want to continue without a gateway

at all, primarily due to cost.

Finally, we want to point out existing academic work in this area. Automotive

gateways have many advantages for vehicle cybersecurity as summarized in [118,

155]. In addition to traditional functions such as routing, gateways can also be

used for secure CAN or Automotive Ethernet communications through the use of

authenticated ECUs [89, 118] or via access control/firewalls [117, 140].

57

2.6 Related Work

2.6.1 Manual CAN Reverse Engineering

[66] extracted CAN messages using the OBD-II port, interpreted those messages

by examining how different bytes changed over time given different actions being

performed on/by the vehicle, and then replayed these messages to manipulate their

corresponding functions. However, the experiment they performed is limited because

it requires prior knowledge of the implementation details of the vehicle — the paper

mentions in several places that it is important to have an understanding the specific

car being hacked. They also discuss the proprietary nature of the CAN bus and in-

vehicle E/E architecture, meaning that there could be differing numbers or locations

of CAN buses across different vehicle models, and thus the functions of each bus could

be split up differently. In order to gain knowledge about the car they evaluated, they

purchased a subscription to an online data service that provided this information.

Other automotive attacks, such as [124, 127], require that the E/E architecture be

analyzed and that the CAN message format be manually reverse-engineered before

data can be injected. This is a tedious process that can require days to weeks to

reverse-engineer a targeted portion of CAN data and is not scalable to other vehicles.

Additionally, several tools exist that can help manually reverse-engineer CAN

data. For instance, [75] demonstrates how Wireshark can be leveraged to capture

CAN traffic and visualize changing bits in real time when an event is executed, as in

our Phase 2.

2.6.2 Automating CAN Reverse-Engineering

[122] built an anomaly detection system to split CAN messages into different field-

s/signals without prior knowledge of the message format. Their classifier identified

the boundaries and types of the fields (Constant, Multi-Value, or Counter/Sensor).

58

READ [120] proposed an algorithm to split synthetic and recorded CAN messages

into signals, comparable to Stages 1 and 3 of our Phase 0. They present methods to

isolate counters and CRCs, with all other values marked as physical signals, the type

of signal we seek to evaluate in Phase 1 of LibreCAN. Although they reported high

precision values (see Table 2.7), it is important to note that their experiments were

conducted on an older vehicle (confirmed by e-mail to the authors), with less signals

available in its DBC. Along with LibreCAN, we report the best results of READ in the

aforementioned table.

ACTT [179] proposes a simple algorithm to extract signals from CAN messages

and label them using OBD-II PIDs. Their signal extraction only considers signals

that do not consist of contiguous sets of constant bits. Furthermore, they do not

distinguish between signal types as we did. The authors find that roughly 70% of the

CAN traffic consists of constant bits (comparable to constant signals in LibreCAN),

matching only 16.8% of the present bits to OBD-II PIDs. The paper also lacks an

extensive evaluation, only showing some examples of matched signals. Furthermore,

they evaluated their framework on an older vehicle from 2008 such as READ.

2.7 Conclusion

In this chapter, we propose LibreCAN, an automated CAN bus reverse engineer-

ing framework. To the best of our knowledge, this is the first complete tool to

reverse-engineer both kinematic- and body-related data. LibreCAN has been tested

extensively on four real vehicles, showing similarly good results on all of them. It con-

sists of three phases: extracting signals from raw CAN recordings, finding kinematic

signals, and reducing body events to a minimal candidate set by 10x. Besides the

very high accuracy of the novel Phase 2, we demonstrated that Phase 1 can achieve

better precision than prior related work.

In addition to achieving considerably good accuracy, LibreCAN reduces the tedious

59

manual effort required to reverse-engineer CAN bus messages to around 40 minutes

on average. Since CAN reverse-engineering is a crucial step in numerous automotive

attacks, we pride ourselves in overcoming the car hacking barrier and highlighting

the importance of automotive security. The security by obscurity paradigm that

automotive OEMs follow by keeping CAN translation tables proprietary needs to

be overcome and replaced by more advanced security paradigms. Finally, we also

proposed some countermeasures to mitigate attacks on vehicles if the aforementioned

CAN translation tables are made public through frameworks such as LibreCAN.

60

CHAPTER III

S2-CAN: Sufficiently Secure Controller Area

Network

3.1 Introduction

Since the advent of the first comprehensive automotive security analysis in 2010 [58,

109], this field has attracted significant attention. While the first generation of vehicle

security (c. 2010-2015) focused on exploiting physical interfaces, such as the OBD-

II port [126], or reverse-engineering Electronic Control Unit (ECU) firmware [124],

the second generation (c. 2015-now) has been focusing on scaling attacks to multiple

vehicles by analyzing remote attack surfaces [125]. The most prominent and com-

prehensive attack of this generation that led automotive cyber security to become a

mainstream research and engineering subject was the Jeep Hack [127] that allowed

the attacker to remotely compromise and steer the affected vehicles. With further

scaling in each generation, the risk of automotive vulnerabilities towards driver/-

passenger safety and privacy, as well as financial and operational damage potential

increases [94]. All attacks in each generation have (CAN) injection/spoofing as the

necessary (final) component of causing havoc in common. This enables the compro-

mise of the vehicle which can, in the worst case, have a serious impact on driver

safety, for instance, by electronically disabling the brakes or accelerating the vehicle.

61

Unfortunately, CAN injection is the easiest part of the aforementioned attacks.

This can be explained by vulnerabilities in the CAN design which dates back to 1987.

Despite allowing a fast, robust, and reliable communication, CAN was not designed

with security in mind, and vehicles can no longer be regarded as closed systems due

to an increased number of external interfaces with unpredictable input. CAN is a

broadcast bus without encryption and authentication. Messages are sent in plain

text and everyone who has access to the CAN bus can inject arbitrary messages

or spoof existing ones. Encryption and authentication in a vehicle should usually

go hand in hand. In order for spoofed messages to cause a visible impact on the

compromised vehicle, the attacker needs to (a) know the syntax and semantics of the

crafted CAN payload, and (b) be allowed to inject the targeted CAN message. In case

of (a), this is only possible by reverse-engineering unencrypted CAN data traces since

OEMs keep the aforementioned semantics secret instead of disclosing them publicly

(security by obscurity). Recently, automated CAN reverse-engineering is shown to be

achievable in a few minutes [141], enforcing existing attack vectors and necessitating

an encrypted CAN. Finally, for case (b), authentication will prevent unauthorized

entities to perform the CAN injection.

To defend against vehicular attacks, we need a holistic, multi-layer security ap-

proach. The authors of [194] propose 4 layers of countermeasures which build on

one another: access control, secure on-board communication, data-usage policies and

anomaly detection/prevention (see Sec. 3.3). Here we assume OEMs follow basic

security practices such as access control and focus on the challenges of secure on-

board communication. As we discuss in Sec. 3.4, many researchers have attempted

to apply the security properties of confidentiality, authenticity, integrity, freshness,

and availability on the CAN bus. Almost all of them provide authentication and

replay protection — but no encryption — by deploying well-studied cryptographic

algorithms. A comparison of existing approaches is provided in Table 3.1.

62

Ta
bl
e
3.
1:

C
om

pa
ri
so
n
w
it
h
re
la
te
d
ap

pr
oa

ch
es

P
ro

te
ct

io
n

A
lg

or
it

h
m

H
W

/S
W

B
u
s

L
oa

d
L
at

en
cy

M
A

C
L
en

gt
h

S
ec

u
ri

ty
L
ev

el

C
aC

A
N

[1
11

]
A
ut
he

nt
ic
it
y
+

Fr
es
hn

es
s

SH
A
25

6-
H
M
A
C

H
W

+
SW

+
10

0%
+
2.
2-
3.
2µ

s
1
B
yt
e

2
7

IA
-C

A
N

[9
0]

A
ut
he

nt
ic
it
y

R
an

do
m
iz
ed

C
A
N

ID
+

C
M
A
C

SW
+
0%

8b
it
:
+
72

m
s

32
bi
t:

+
15

0µ
s

1-
4
B
yt
es

2
7
-2

3
1

va
ti

C
A

N
[1

32
]

A
ut
he

nt
ic
it
y
+

Fr
es
hn

es
s

SH
A
3-
H
M
A
C

SW
+
16

.2
%

+
3.
3m

s
8
B
yt
es

2
6
3

T
E
S
L
A

[1
36

]
A
ut
he

nt
ic
it
y
+

Fr
es
hn

es
s

P
R
F
+
H
M
A
C

SW
+
0%

+
50

0m
s

10
B
yt
es

2
7
9

L
ei

A
[1

45
]

A
ut
he

nt
ic
it
y
+

Fr
es
hn

es
s

M
A
C

SW
+
10

0%
N
/A

8
B
yt
es

2
6
3

C
A

N
A

u
th

[1
77

]
A
ut
he

nt
ic
it
y
+

Fr
es
hn

es
s

H
M
A
C

H
W

+
SW

+
0%

N
/A

10
B
yt
es

2
7
9

S2
-C

AN
C
on

fid
en
ti
al
it
y
+

A
ut
he

nt
ic
it
y
+

Fr
es
hn

es
s

C
ir
cu

la
r
Sh

ift
+

In
te
rn
al

ID
M
at
ch

SW
+
0%

+
75
µ
s

N
/A

∼
24

9

63

Although mechanisms such as encryption and authentication are widely used and

accepted in traditional computer communication networks, their adoption in the au-

tomotive domain comes with three major problems related to performance that cur-

rently limit their deployment in commercial vehicles:

(1) Cost: For cost reasons, ECUs in an in-vehicle network (IVN) are resource-

constrained. Since most safety-critical functionalities require simple computations

and do not need high-performance hardware, these legacy ECUs are very simple and

highly optimized for repetitive control operations. For instance, current Engine Con-

trol Modules can have 80MHz clock frequency, 1.5MB Flash memory and 72kB of

RAM (Bosch [16]). Using cryptographic algorithms for encryption and/or authenti-

cation would require more performant hardware which drive up the cost for OEMs.

Besides unit costs, adding security protocols to certain legacy ECUs (especially in

the powertrain domain) that have been in use in cars for multiple years or even

decades due to lack of necessary software improvements would increase the develop-

ment cost [175].

(2) Latency: In order to guarantee functional safety in a vehicle, there are stringent

hard real-time requirements for certain safety-critical control data. The maximum

permitted end-to-end (E2E) latency for cyclic control data transmitted on the CAN

bus can range from a few milliseconds to a second [71]. Since secure encryption and

authentication algorithms add a non-negligible delay (see Sec. 3.7), as well as block

CAN messages to be sent until fully encrypted (due to block size), message deadlines

can be missed which can endanger driver safety (imagine the car braking too late!).

(3) Bus Load: CAN messages contain only 8 bytes of payload. Message Authenti-

cation Codes (MACs) to protect data integrity have to be appended to the data, but

due to lack of space, several existing solutions [111, 132, 145, 180] send the MAC in

a separate CAN message. This increases the bus load which is an indicator for the

utilization of the network. A high bus load can lead to certain CAN messages missing

64

their (hard) deadlines, harming safety. To avoid this, the average bus load must be

kept under 80% at all times [15].

For the above reasons, encryption and authentication on the CAN bus have not yet

been adopted in commercial vehicles. Traditional cryptography-based solutions — we

will summarize these under the generic term Secure CAN (S-CAN) — offer a medium

to high level of security (see the number of combinations to brute-force MAC, labeled

as Security Level, in Table 3.1) at the expense of performance (i.e., CPU, latency,

bus load). As the authors of [132] have shown, brute-forcing a MAC would take too

long for in-vehicle ECUs, especially if keys are dynamically refreshed. As a result, we

would like to break away from traditional cryptography-based solutions to address

the aforementioned three problems while providing reasonable, albeit relaxed security

guarantees. We propose S2-CAN (Sufficiently Secure CAN) to enable a tradeoff

between performance and security to offer a feasible and secure real-world solution

for the automotive industry.

S2-CAN tries to protect the confidentiality, authenticity and freshness of CAN data

during operation of the vehicle without using cryptography. In particular, S2-CAN

consists of two phases in its core: a handshake and operation phase. In the former,

it establishes unique sessions of specific length and distributes necessary session pa-

rameters to all participating ECUs. This phase resembles the key management phase

in traditional S-CAN approaches where session keys are shared among the ECUs to

both encrypt and authenticate CAN messages in their respective operation phase.

Since S2-CAN avoids using cryptography in its operation phase, it uses the session

parameters from the handshake to (a) first include a randomly generated internal

ID and counter for authenticity and freshness into the CAN payload before (b) each

byte of the payload is shifted cyclically by a random integer (encoding parameter)

in fixed time intervals. These two steps can be compared to (a) appending a MAC

to provide authenticity and (b) encrypting the plain-text CAN message to provide

65

confidentiality in S-CAN. Compared to breaking traditional CAN authentication solu-

tions that only require brute-forcing the MAC, the cyclic shift encoding further masks

the plain-text by making it more difficult to decode and thus provides confidentiality

protection as well. Due to the encoding, CAN reverse-engineering — which is the

first essential step of a CAN injection attack — has to be performed in real time

for the current encoding parameter and cannot be computed a priori to be used for

the lifetime of the vehicle. Despite intentional weaker security of S2-CAN, a frequent

update of sessions with new encoding parameters will render reverse-engineering very

tedious, if not impossible. Hence, session cycle is the crucial parameter to provide se-

curity in S2-CAN. Furthermore, even after guessing the encoding correctly, an attacker

would still need to calculate the internal ID and counter to bypass authentication.

All in all, brute-forcing S2-CAN would require ∼ 249 combinations for an ECU (see

Sec. 3.8 and 3.9) while it does not increase the bus load in the operation phase, out-

performs the E2E latency of the best comparable S-CAN approach by 44x, as well as

incurs less than 0.1% CPU overhead as evaluated with our experimental setup (see

Sec. 3.7). Finally, we conduct a security evaluation in Sec. 3.8 to demonstrate that

even an intelligent attacker who leverages protocol-specific knowledge to circumvent

brute-forcing can be thwarted to show that S2-CAN can be sufficiently secure.

3.2 Background

Please refer to Sec. 1.2 for a primer on the CAN bus, DBC files and in-vehicle

network architectures.

3.3 Threat Model

As briefly mentioned in Sec. 3.1, the common and final part of every automotive

attack — which is the main threat to protect against — is to gain access to the

66

CAN bus for a CAN injection attack which can lead to various forms of vehicle

misbehavior, including (safety-critical) sudden acceleration. In general, there are two

ways an attacker can achieve CAN bus access: (a) by connecting a physical CAN

device/ECU to the IVN, e.g., an OBD-II dongle or by tapping into the CAN bus,

or (b) compromising an existing ECU remotely. The former is relatively easy to

accomplish as long as the attacker has physical access to the target vehicle, while the

latter is more complicated and multi-layered (and thus less likely) as the attacker has

to usually leverage vulnerabilities in wireless interfaces of an ECU to gain access to

the device. We refer to the attacker in case of (a) as an external attacker, whereas an

internal attacker is capable of (b). Furthermore, the aforementioned separation of

domains by a central gateway complicates a compromised ECU — which is usually on

a less safety-critical bus (e.g., infotainment) — to affect more safety-critical domains

such as powertrain which has no remote attack surfaces. Finally, even if a proper

S-CAN approach is implemented, an internal compromise of an ECU (as in case (b))

will lead to exposure of secret keys which the attacker can use to forge the desired

message’s Message Authentication Code (MAC) and/or encrypt the CAN payload.

Although remote attacks on vehicles have skyrocketed over the last decade [48], a

breakdown of attack vectors shows that most of these remote attacks are targeting key

fobs, OEM servers and mobile companion apps. Remote attacks to compromise an

ECU usually exploit the In-Vehicle Infotainment (IVI) and require significant effort

(usually multiple months) as shown in the Jeep Cherokee hack [127] to achieve CAN

bus access and cannot be thwarted even by a properly secured CAN bus (S-CAN). In

contrast, OBD-II attacks are the fourth most common attack vector and account up

to over 10% of all attacks. Nevertheless, recent research [185] has shown that remote

attacks can also be launched by an external adversary by exploiting vulnerabilities

in wireless OBD-II dongles. Many commercial OBD-II dongles feature Wi-Fi or

Bluetooth capabilities which open a new over-the-air attack surface. The researchers’

67

findings show that CAN injection can also be performed by remote, external attackers.

As a result, external attackers in scenario (a) form the most crucial threat. In what

follows, we will focus on protection from this type of adversaries and describe their

attack capabilities.

Once CAN bus access has been achieved, the attacker will continue a CAN injec-

tion attack. The authors of [61] introduce three possible CAN injection attacks as

discussed next. Fabrication attacks allow the adversary to fabricate and inject mes-

sages with a forged CAN header and payload at a higher frequency to override cyclic

CAN messages sent by legitimate ECUs that can render safety-critical receiver ECUs

inoperable [109]. Suspension attacks on the compromised ECU prevent its broadcast

of legitimate, potentially safety-critical CAN messages to the intended recipient(s).

Finally, Masquerade attacks combine both of the above attacks by suspending the

CAN broadcast of one ECU and deploying another ECU to fabricate malicious CAN

messages. Only fabrication attacks can be mounted by our adversary from scenario

(a), since the others require an internally compromised ECU. We would like to em-

phasize that fabrication attacks can not only be mounted by attackers having physical

access to the car, but also by remote attackers [185] which makes external attacks

from scenario (a) an highy likely and scalable threat.

As a result, we assume the (external) adversary to only be able to perform fabri-

cation attacks in our threat model. Even then, the attacker can cause havoc for both

vehicle and driver, as shown in the Toyota Prius hack [124]. To prevent fabrication

attacks, a solution for secure CAN must have the following two security properties:

Authenticity. As outlined before, any CAN node can join the IVN. There is no

provision of verifying the authenticity of an added malicious device to the CAN bus

by default. So, device authentication is important, i.e., only pre-authorized ECUs

will be allowed to communicate. Furthermore, an attacker should not be able to

spoof legitimate CAN messages during a fabrication attack. This can be prevented

68

by adding a MAC to each message to ensure integrity. The latter also includes

protection against replay attacks by adding a counter to each message. The major

drawback of protecting against fabrication or replay attacks is the required additional

space for MACs and freshness values. This is challenging because CAN only has an

8-byte payload field, with most of the space already occupied by control data (see

Sec. 3.5.2).

Confidentiality. CAN message data is not encrypted, and therefore, messages be-

tween ECUs can be eavesdropped and analyzed by anyone accessing the IVN. To

prevent this type of attack, mechanisms to guarantee confidentiality are required. As

mentioned before, plaintext data can be recorded and used for reverse-engineering the

proprietary CAN message format (i.e., signal location, scale and offset) which can be

ultimately used to craft well-formed CAN messages in a fabrication attack to cause

visible damage. Encryption with symmetric session keys between participating ECUs

is a solution, although it will incur additional latency overhead.

In this thesis chapter, we want to protect against fabrication attacks by leveraging

a combination of confidentiality and authenticity protection. Since we focus on the

tension between security and performance as previously discussed, S2-CAN uses a non-

traditional approach instead of cryptographic encryption and authentication in order

to optimize performance.

3.4 Related Work

3.4.1 Authenticity and Integrity

Most existing work on Secure CAN (see Table 3.1) focuses on the authentication

of sender ECUs, protecting the integrity of the payload, as well as against replay

attacks.

vatiCAN [132] offers backward-compatible sender and message authentication, as

69

well as protection against replay attacks for safety-critical CAN messages via HMACs

computed from preinstalled keys. The HMAC is sent in a separate message with a

different CAN ID. vatiCAN adds 3.3ms latency per CAN message, a 16.2% increase

in bus utilization and 400 bytes of memory overhead.

IA-CAN [90] provides sender authentication via randomization of CAN IDs on

a per frame basis and payload data authentication using two different session keys.

The receiver only accepts a message if the MAC is correct and the CAN frame has

the expected CAN ID that changes with each frame using a function. The receiver’s

filter is updated accordingly when the next frame is accepted.

CaCAN [111] uses a hardware-modified central monitoring node to perform the

entire authentication on the CAN bus. As with the general case of centralized au-

thorities, if the monitor node is compromised or removed, the entire network is com-

promised. Furthermore, no encryption is used and the bus load is doubled.

TESLA [136] protocol is a lightweight authentication protocol, relying on delayed

key disclosure to guarantee message authenticity. It provides authenticated broadcast

capabilities, albeit with additional latency during authentication.

CANAuth [177] uses out-of-band transmission of integrity and freshness values to

avoid bus load overhead. Its major drawback is the lack of backward compatibility

with regular CAN controllers.

LeiA [145] is a counter-based authentication protocol that uses extended (29-bit)

CAN IDs to include freshness values and a generic MAC algorithm for authentication.

The MAC is 8 bytes long and transmitted in a separate CAN message, doubling the

bus load. No latency numbers are reported.

3.4.2 Confidentiality

The space-limited payload field of 8 bytes in CAN messages is a major problem

for encryption algorithms such as AES-128 that depend on a 16-byte block size. As a

70

result, multiple messages have to be sent, increasing the bus load. Latency is another

issue due to the limited computational power on ECUs if implemented in software

to guarantee backward compatibility. [53] surveyed different encryption methods for

the CAN bus in terms of bus load, latency and security. Existing approaches use

AES-128 [73], AES-256 [160], XOR [81, 92], Tiny Encryption Algorithm (TEA) [97]

and Triple DES (3DES) [91].

3.4.3 Key Management

Secret keys are necessary to generate and verify MACs, and to encrypt and decrypt

data. Instead of using a single long-term key for the entire lifespan of a car — which

is 12 years on average [57] — session keys can be generated periodically that are only

valid for a certain period to limit their exposure.

In Secure CAN (S-CAN) solutions, there are two general approaches to in-vehicle

key management. The first approach is to deploy an OEM backend and request

new keys periodically via Over-the-Air (OTA) using the authenticated key exchange

protocol 2 (AKEP2) [189]. Keys can be stored in the central gateway (acting as the

in-vehicle key master) in a Trusted Platform Module (TPM) or Hardware Security

Module (HSM). The second approach tries to do the key management completely on-

board without the need for an OEM-provided backend which can reduce complexity,

bandwidth and cost [170]. The key distribution inside the vehicle can be done in two

ways. First, the key master generates and distributes new session keys based on the

Secure Hardware Extensions (SHE) Key Update Protocol. Second, the key master

triggers the ECUs to derive session keys from a nonce and long-term keys installed at

manufacturing time. The first approach is superior if security is the most important

and waiting on startup time is acceptable. The second approach can be used when

speed is the most important and no wait time for key distribution is acceptable.

71

3.5 System Design

We now present the system design of S2-CAN, which consists of three phases: Key

Management, Handshake, and Operation. Although no cryptography will be

used in the operation phase (Sec. 3.5.3), establishing a session Si during the handshake

(Sec. 3.5.2) needs the distribution of keys which will be briefly discussed in Sec. 3.5.1.

In our prototype, we use N = 2 slave ECUs and one master ECU which is the

central gateway. The master ECU will be responsible for establishing new sessions

during the handshake phase. There is no real value of expanding the testbed to

more than 2 slave ECUs since the benchmark in Sec. 3.7 shows that S2-CAN does

not add any communication overhead and is thus independent of traffic/bus load

during the operation phase, i.e., when operation-related CAN messages are exchanged

between ECUs. S2-CAN is applied to each CAN sub-bus independently. As a result,

the OEM can choose which CAN buses to protect. We will use the syntax m =

(CAN_ID, Payload) for a CAN message m exchanged on the bus. Furthermore, we

require a logical ordering of the slave ECUs for error handling and timeout purposes

during the handshake (Sec. 3.5.2), i.e., that ECUA transmits before ECUB. The

ordering can be assigned randomly (as in our case) or according to criticality/relevance

of the ECU, with the more safety-critical slave ECU being assigned as ECUA. This

knowledge of ordering can be stored as an additional one-byte unsigned integer in

each ECU’s non-volatile memory.

3.5.1 Phase 0: Key Management

S2-CAN refrains from using Message Authentication Codes (MACs) and encryption

based on cryptographic keys during the vehicle’s operation mode (Sec. 3.5.3). During

the handshake phase (Sec. 3.5.2), we will distribute S2-CAN-specific session parameters

from the master ECU (gateway ECUGW) to the two slaves ECUA and ECUB on a

safety-critical CAN domain named CAN1. These session parameters establish a new

72

S2-CAN session Si that is valid for a Session Cycle T . To distribute these parameters

securely in each session, we CANNOT avoid cryptography in the handshake phase

and need to ensure that the CAN payload is both authenticated and encrypted to

defend against spoofing and eavesdropping attacks on the handshake. This requires

the existence of pre-shared secret keys that are provided by the key management

system in a vehicle. Since a detailed discussion of key management is not in the

scope of this chapter, we use pre-installed symmetric keys on each ECU and refer

to the aforementioned best practices of in-vehicle key management (see Sec. 3.4.3).

Note that it is transparent to the design of S2-CAN of how these symmetric keys are

obtained, i.e., if a backend periodically provides them via OTA or they are derived

from a long-term key installed at manufacturing time. Nevertheless, the use of short-

lived session keys is recommended to limit exposure of the long-term key which would

allow eavesdropping attacks on the handshake and thus fully compromise S2-CAN.

3.5.2 Phase 1: Handshake

Overview: Upon initialization, ECUGW , ECUA and ECUB on CAN1 will per-

form a 3-way handshake in order to exchange the information about the aforemen-

tioned session parameters and agree on "talking" in S2-CAN syntax. The session

parameters consist of a global (a) encoding parameter f , (b) a slave ECU-specific

integrity parameter int_IDj, (c) a slave ECU-specific integrity parameter posint,j,

and (d) a slave ECU-specific counter value cntj, with j denoting the respective slave

ECU. Parameter (a) will be distributed in Stage 1, whereas the other three parame-

ters (b)-(d) will be exchanged between ECUs in Stage 2. The handshake comprises

three stages and repeats for each new session Si in periodic fixed-intervals T which

represents the session cycle. In what follows, we will describe the handshake process

for an arbitrary session Si. The communication diagram for Phase 1 is depicted in

Fig. 3.1 and separated into the three stages. The CAN IDs used for messages during

73

EC
U

GW
EC

U A
m

GW
,in

it,
i,0

=(
0x

01
0,

 e
nc

AE
S-

12
8(

k,
 p

1|
|p

2)
[M

SB
0-

63
])

EC
U

B

EC
U A

EC
U

GW
EC

U
B

m
A,

AC
K,

i,0
=(

0x
01

1,
 e

nc
AE

S-
12

8(
k,

 p
1|

|p
2)

[M
SB

0-
63

])

EC
U

B
EC

U
GW

EC
U A

m
B,

AC
K,

i,0
=(

0x
01

2,
 e

nc
AE

S-
12

8(
k,

 p
1|

|p
2)

[M
SB

0-
63

])
in

t_
ID

B=
Ra

nd
(0

,N
-1

)/
in

t_
ID

A
po

s in
t,B

=F
S(
𝕐𝕐 B

)

EC
U

GW
EC

U A
m

GW
,fi

n,
i,0

=(
0x

02
0,

 e
nc

AE
S-

12
8(

k,
 p

1|
|p

2)
[M

SB
0-

63
])

EC
U

B

f i
cn

t i

HM
AC

SH
A-

25
6(

k,
 f i||

cn
t i)[

M
SB

0-
23

]

p 1

HM
AC

SH
A-

25
6(

k,
 f i||

cn
t i)[

M
SB

24
-8

7]

p 2
EC

U
GW

EC
U A

EC
U

B
m

GW
,in

it,
i,1

=(
0x

01
0,

 e
nc

AE
S-

12
8(

k,
 p

1|
|p

2)
[M

SB
64

-1
27

])

in
t_

ID
A

cn
t i

HM
AC

SH
A-

25
6(

k,
 P

AC
K

||
in

t_
ID

A
||

po
s in

t,A
||

cn
t A

||
cn

t i)[
M

SB
0-

7]

p 1 p 2

cn
t A

PA
CK

po
s in

t,A

HM
AC

SH
A-

25
6(

k,
 P

AC
K

||
in

t_
ID

A
||

po
s in

t,A
||

cn
t A

||
cn

t i)[
M

SB
8-

71
]

Sy
m

. K
ey

 k

EC
U A

EC
U

GW
EC

U
B

m
A,

AC
K,

i,1
=(

0x
01

1,
 e

nc
AE

S-
12

8(
k,

 p
1|

|p
2)

[M
SB

64
-1

27
])

in
t_

ID
A=

Ra
nd

(0
,N

-1
)

po
s in

t,A
=F

S(
𝕐𝕐 A

)

in
t_

ID
B

cn
t i

HM
AC

SH
A-

25
6(

k,
 P

AC
K

||
in

t_
ID

B
||

po
s in

t,B
||

cn
t B

||
cn

t i)[
M

SB
0-

7]

p 1 p 2

cn
t B

PA
CK

po
s in

t,B

HM
AC

SH
A-

25
6(

k,
 P

AC
K

||
in

t_
ID

B
||

po
s in

t,B
||

cn
t B

||
cn

t i)[
M

SB
8-

71
]

EC
U

B
EC

U
GW

EC
U A

m
B,

AC
K,

i,1
=(

0x
01

2,
 e

nc
AE

S-
12

8(
k,

 p
1|

|p
2)

[M
SB

64
-1

27
])

EC
U

GW
EC

U A
m

GW
,fi

n,
i,1

=(
0x

02
0,

 e
nc

AE
S-

12
8(

k,
 p

1|
|p

2)
[M

SB
64

-1
27

])
EC

U
B

p 1,
p 2
∈

{0
,1

}64
 ^

 p
1,

p 2
∉

064

Sy
m

. K
ey

 k
Sy

m
. K

ey
 k

1 2 3

F
ig
ur
e
3.
1:

H
an

ds
ha

ke
co
m
m
un

ic
at
io
n
di
ag

ra
m

74

the handshake are merely examples, but should have a low ID or high priority.

Stage 1 (Initialization): The master ECU (ECUGW) indicates that it wants

to start a new session Si. It randomly generates an 8-byte encoding parameter f0 =

(r0, r1, r2, r3, r4, r5, r6, r7), rl ∈ [0, 7]. rl corresponds to the bit rotation number for the

lth byte in the 8-byte CAN payload. Each rl can be expressed with 3 bits for a total

of 3 bytes to include in the payload p of the gateway initialization message mGW,init

= (0x010, p). As discussed before, due to the sensitivity of handshake messages, each

CAN message during the handshake has to be both authenticated and encrypted to

prevent spoofing and eavesdropping, but also replay attacks. To achieve the latter,

we first add a 2-byte counter cnt0 (not to be confused with the ECU-specific session

parameter cntX) to defend against replay attacks. In order to prevent spoofing attacks

on this message, we calculate the SHA256-HMAC of the previous 5 bytes (i.e., fi and

cnti) to obtain a 32-byte output with the symmetric key k from Phase 0. Since the

payload of mGW,init,i only has another 3 bytes of free space to fit the MAC which

would be too small to defend against brute-force attacks, we have to truncate the

HMAC (taking the MSBs per definition). The truncation can be done safely since

the increased advantage of the attacker would be offset by the limited availability of a

CAN message due to the cyclic message nature of CAN and the invalidation through

the counter value cnti. Nevertheless, we believe that 3 bytes for a truncated HMAC

is too small. As a result, we split mGW,init,i into two consecutive CAN messages

mGW,init,i,0 and mGW,init,i,1 with respective payloads p1 and p2 to (a) utilize another

8 bytes for the truncated HMAC, resulting to a total of 11 bytes, and (b) allow

encryption with a secure block cipher such as AES-128 which has a block size of 16

bytes.

In summary, two CAN messages with the following syntax are broadcast sequen-

75

tially on CAN1:

mGW,init,i,0 = (0x010, encAES128(k, p1||p2)[MSB0− 63])

mGW,init,i,1 = (0x010, encAES128(k, p1||p2)[MSB64− 127])

Stage 2 (Acknowledgment): Upon receiving both initialization messages from

ECUGW , ECUA and ECUB first decrypt the ciphertexts p?1 and p?2 using the sym-

metric key k and extract the encoding parameter fi into local memory. Eeach slave

ECU will then broadcast an acknowledgment (ACK) message mj,ACK,i (which will be

split into two messages again due to AES-128 encryption), where j ∈ [0, . . . , N − 1],

consisting of a 1-byte positive acknowledgment code (PACK) and the three slave

ECU-specific parameters (b)-(d) in the CAN payload. Parameter (b) is a randomly

generated unique internal ID int_IDj ∈ [0, N −1] representing ECUj on CAN1 dur-

ing the current session Si. This parameter can be encoded with 1 byte since a CAN

domain (or even vehicle in general) never has more than 256 ECUs.

Next, parameter (c) specifies the random position posint,j of where the internal

ID (parameter (a)) will be located within the CAN payload. Since space within the

payload is limited and specific positions are occupied by CAN signal data that cannot

be overwritten, the internal ID has to be included in available free space. The set

of available free spaces for a CAN ID in a given vehicle is defined as Yj. Sec. 3.6

discusses the distribution of free spaces among CAN IDs by analyzing the DBCs of

4 different vehicles. For instance, Yj = 12, 13, 14, 25, 26, 54, 55, 63 states that the

CAN ID belonging to ECUj possesses only 8 bits of free space over 4 non-consecutive

"regions". This set of bits is then used by the Free Space (FS) function to randomly

determine the first bit posint,j where int_IDj will be placed:

posint,j = FS(Yj) (3.1)

76

In our example, if posint,j = 54, the MSB of the one-byte internal ID will be stored

at bit position 54 and the LSB at bit position 26.

The last parameter (d) is the initial value of an ECU-specific counter cntj for

replay protection and is also randomly generated. This parameter consists of 2 bytes

and is also included in available free space together with int_IDj by Eq. 3.1.

Besides including these functional handshake parameters, the ACK messages will

also include a 2-byte handshake counter cnti and truncated HMAC for integrity and

freshness protection, just like in Stage 1. We obtain 2 consecutive CAN messages

broadcast by ECUj that are both authenticated and encrypted with the following

syntax:

mA,ACK,i,0 = (IDj, encAES128(k, p1||p2)[MSB0− 63])

mA,ACK,i,1 = (IDj, encAES128(k, p1||p2)[MSB64− 127])

Due to the aforementioned pre-determined order for all slave ECUs, ECUA will

first transmit with CAN ID 0x011 and ECUB needs to wait until it has received

both mA,ACK,i,0 and mA,ACK,i,1 from ECUA before it can broadcast mB,ACK,i,0 and

mB,ACK,i,1. For the latter two messages, the CAN ID can simply be incremented by

one as depicted in Fig. 3.1, as each ECU will use a distinct CAN ID. Once ECUB

receives the aforementioned ACK message, it first extracts the received integrity pa-

rameters into its memory and then repeats the ACK process for itself. To avoid

collisions in internal ID assignment, it needs to exclude int_IDA during the random

ID generation.

Stage 3 (Finalization): ECUGW finalizes the handshake after receiving ACKs

from all slave ECUs. It sends mGW,fin,i with a random non-zero payload to signal

that it has received well-formed ACK messages from all slave ECUs and monitored a

successful handshake. The finalization message is again split into two CAN messages

and broadcast with CAN ID 0x020.

77

Security and Reliability Analysis: Due to authentication, an adversary cannot

spoof the contents of a handshake message. An attacker cannot replay handshake

messages due to the freshness counter, and eavesdropping attacks can be mitigated

by encryption.

If any ACK message takes too long due to bus or ECU errors, the handshake times

out and ECUGW restarts the handshake with Stage 1. If the handshake is still unsuc-

cessful even after repeating it r times, all ECUs on CAN1 can revert to regular CAN

communication until the next start of the vehicle. Although this countermeasure has

been designed for non-adversarial reliability issues, an adversary still cannot exploit

it. An attacker could launch a Denial-of-Service (DoS) attack through the OBD-II

device by injecting high-priority CAN IDs (e.g., 0x0) with the goal to circumvent

successful handshakes and downgrade to regular CAN communication. Since vehicles

have a holistic security concept in place (as discussed in Sec. 3.1), the gateway (which

is directly connected to the OBD-II port) can defend against this availability attack

by discarding injected CAN messages under a certain CAN ID threshold, i.e., the

lowest handshake CAN ID.

3.5.3 Phase 2: Operation

After the handshake for a session Si has been completed, slave ECUs can start

the Operation Mode exchanging regular data on CAN1. To save space in the CAN

payload field, we perform the following operation on the 1-byte int_IDj and 2-byte

cntj that ECUj stored during the handshake to calculate the 2-byte parameter qj:

qj = LEFTZEROPAD(int_IDj, 8)⊕ cntj. (3.2)

First, the payload of a CAN message is being logically ORed with qj which includes

the integrity parameters into the free space of a CAN message. Second, a Circular

78

Shift (CS) operation is performed on the new payload using the stored encoding

parameter fi which does a byte-wise bit rotation to the lth byte according to the

value of the lth element of fi. Finally, the message is broadcast on CAN1. For the

next CAN message sent by ECUj, its local counter will be incremented.

On the receiver side, the respective slave ECU(s) need(s) to execute the above

process reversely, i.e., rotate each byte of the encrypted payload in the opposite

direction according to rl, extract the position information from posint,j, determine

the internal ID and finally the counter/freshness value by XORing it with int_IDj

of the sender.

Based on these extracted values, the receiver can then perform an integrity and

freshness check: 1. The extracted counter cntj is compared with the expected counter

for the respective sender. If the two values match, the local counter for sender ECUj

on the receiver is incremented, and 2. the internal ID of the sender int_IDj is com-

pared with the stored internal ID for the respective sender on the receiver ECU. Only

if these two checks do not fail, the receiver can assume that the message came from

a legitimate sender ECUj and start processing the data in the payload. Otherwise,

it may either suspect a replay attack or a message with fabricated information from

a malicious ECU and drop the CAN message.

The operation mode with the respective encoding and integrity parameters ends

once a new handshake has been completed. A new session Si+1 begins. The oper-

ation mode does not get interrupted by the start of a new handshake to guarantee

functionality and safety.

Finally, we discuss what happens in the case of packet drops that can happen

naturally on the CAN bus. Since each CAN message has a counter to prevent replay

attacks and the receiver expects the next message with an incremented counter value,

a packet drop can lead to inconsistencies with the local state counter on the receiver

side. In order to account for packet drops, the receiver ECU will still accept CAN

79

messages with counter values higher than the previous message within a specific

threshold. The latter depends on the packet loss rate on the CAN bus which is

usually very robust. The authors of [196] suggested to setting this threshold to 1.

3.6 Finding Free Space

To gain a better understanding of how many signals are used in a CAN ID and thus

how much of free space (FS) is available to include our integrity parameters int_IDj

and cntj, we analyzed the DBC files of four passenger vehicles from a North American

OEM under NDA (see Sec. 3.8.1). Since we include a 2-byte parameter qj into the

CAN payload, only a maximum of 6 bytes may be used for data. Among all CAN IDs

in each DBC, we identified certain low-priority non-operation-related CAN IDs that

do not occur during regular operation of the vehicle. Hence, we manually removed

these irrelevant CAN IDs for our purposes and analyzed the remaining operation-

related CAN IDs for available unused space.

0 10 20 30 40 50 60
Used Bits

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vehicle A HS1
Vehicle A HS2
Vehicle B HS
Vehicle B MS
Vehicle C HS1
Vehicle C HS2
Vehicle D HS1
Vehicle D HS2

Figure 3.2: CDF of used bits

80

A Cumulative Distribution Function (CDF) for each vehicle is plotted in Fig. 3.2.

The vertical marker indicates that all vehicles — with the exception of Vehicle B —

contain between 60% and 80% CAN IDs that have at least 16 bits of free space. As a

result, we can apply S2-CAN for the majority of CAN IDs, but would like to analyze

how to further improve this metric to maximize the number of usable CAN IDs. Note

that we are referring to the free space in the CAN payload/data field and not the

CAN ID field (see Fig. 1.3).

Table 3.2: Free space in DBCs

Veh. Bus #IDs #Rebalan-
cable IDs

#IDs
with FS

Usable
CAN IDs (%)

Veh.A HS1 102 31 63 92.2
HS2 53 2 35 69.8

Veh.B HS 81 5 26 38.3
MS 62 3 16 30.6

Veh.C HS1 57 7 38 78.9
HS2 42 1 26 64.3

Veh.D HS1 58 7 43 86.2
HS2 51 4 38 82.4

OEMs could re-balance the disparity of available space in a CAN message with a

more careful design of the CAN communication matrix while still considering func-

tional requirements. In what follows, we present a possible re-balancing approach.

CAN messages are differentiated by four types: fixed-periodic, event-periodic, event-

on-change and network management. First, we grouped CAN IDs based on the sender

ECU. As mentioned before, a sender can transmit multiple CAN IDs with different

cycle times if the CAN ID is fixed-periodic or event-periodic. The latter message type

is similar to fixed-periodic except a CAN message is not necessarily transmitted at

every cycle time. Both message types cannot be grouped together.

As an example, Fig. 3.3 depicts the number of used bits of fixed-periodic CAN

messages with exactly the same cycle time that a sender ECU transmits on HS1-CAN

81

(high-speed CAN 1) of Vehicle A. Points above the red threshold line of 48 bits depict

CAN IDs that do not have sufficient free space for S2-CAN. Since all vertical dots are

grouped by sender ECU and cycle time, they can be re-balanced by packing signals

of their mean value per CAN ID (depicted with marker x). For Veh. A HS1, there

are a total of 101 fixed-periodic CAN IDs. A mean value below 48 bits indicates that

the CAN IDs in the group can be re-balanced. 27 CAN IDs can be re-balanced this

way, besides those already under this threshold. We repeated this experiment for

all other vehicles and buses for both fixed-periodic and event-periodic messages and

summarized the number of re-balancable and existing CAN IDs with free space in

Table 3.2. The sum of these two yields the number of usable CAN IDs for S2-CAN.

With the exception of Veh. B, around 79–92% of all CAN IDs can be used with

S2-CAN for the more safety-critical HS1-CAN. The remaining non-periodic CAN IDs

can be re-balanced further by OEMs based on functionality — something that we

cannot interpret.

0 5 10 15 20 25
Sender ECUs with Fixed Periodic CAN IDs

0

10

20

30

40

50

60

Us

ed
 B

its

Figure 3.3: Re-balancing Vehicle A HS1

82

Finally, no relationship between message priority and free space can be derived.

This analysis is depicted in Fig. 3.4.

10 20 30 40 50 60 70 80 90 100
Chunks (in %)

30

35

40

45

50

55

60

65
M

ea
n

of

 U
se

d
Bi

ts

Vehicle A HS1
Vehicle A HS2
Vehicle B HS
Vehicle B MS
Vehicle C HS1
Vehicle C HS2
Vehicle D HS1
Vehicle D HS2

Figure 3.4: Relationship between Free Space and Message Priority

3.7 Evaluation

3.7.1 Experimental Setup

We have built a prototype with three CAN nodes, each of which consists of an

Arduino Mega 2560 board and a SeeedStudio CAN shield [197]. This prototype was

set up to operate at a 500 kBit/s baud rate as in a typical high-speed safety-critical

CAN bus. Note that the entire evaluation is based on a simple scenario with the

sender ECU transmitting only one CAN message. In reality, multiple CAN messages

will be broadcast on the CAN bus in a relatively short time and CAN scheduling

will pick the highest-priority CAN message to be broadcast first. This will inherently

lead to blocking time tb for lower-priority messages which depends on the number

83

of higher-priority messages that have to be transmitted first. Nevertheless, using

a simpler setup does not affect our evaluation metrics except the operation latency

which is discussed in Sec. 3.7.3.

Since we want to compare the performance of S2-CAN with prior work, we imple-

mented existing CAN bus encryption methods from Sec. 3.4.2 with vatiCAN [132] for

authentication. We chose vatiCAN among various existing SW-only CAN authenti-

cation approaches due to its decent performance for both latency and bus load, as

well as existing and well-documented Arduino implementation.

3.7.2 Handshake Latency

We measured the time it took to complete a handshake while varying the number

of slave ECUs in a CAN domain. As outlined in Sec. 3.5.2, the handshake process is

repeated every T . The old session still continues with the existing parameters until

the handshake is completed. As a result, no critical message exchange during the

operation mode of the previous session is interrupted. The handshake of the new

session will be executed in parallel with the operation of the previous session. The

only critical time when the handshake latency can affect operations of the car is

during the initial start-up of the car since a session S0 of S2-CAN cannot start until

the initial handshake has been completed. We simulated a varying number of slave

ECUs by having our two prototype ECUs take turns to send ACK of the handshake,

in a ping-pong manner. We surveyed the DBCs of four vehicles (see Sec. 3.8.1) to

find that each CAN bus has 9–23 different ECUs. So, we consider a maximum of 25

slave ECUs in our simulation. For two slave ECUs, the average total handshake time

stands at 303ms, for five at 529ms, for ten at 907ms and for the maximum number

of 25 slave ECUs, we achieve around 2 seconds of handshake latency ths, i.e., the

car starts talking S2-CAN after 2s when it is powered on. Our calculations also show

that each additional slave ECU on the bus will add an average of 75.5ms towards the

84

latency. Furthermore, the handshake process will be started at P · T − ths − Q · tb

before the current session expires to provide a smooth transition to the next session.

P denotes the session number and Q the average number of higher-priority CAN

messages that can be expected to cause the blocking of handshake messages.

3.7.3 Operation Latency

CAN messages have stringent deadlines, i.e., when they must arrive at the receiver.

Although the authors of [71] suggest deadlines of cyclic safety-critical CAN messages

standing at 2.5–10ms, this is outdated. Modern HS-CAN buses have minimum cycle

times (and thus deadlines) of 10ms, as our manual inspection of the four DBCs also

confirmed. Latency measurements are averaged from a sample of 1000 messages sent

over 100 seconds, or one message every 100ms. We were interested in calculating the

E2E latency tE2E for

1. Regular CAN with vatiCAN authentication ("NONE"),

2. 3DES, TEA, XOR, AES-128 and AES-256 encrypted CAN with vatiCAN au-

thentication,

3. and finally S2-CAN.

In the first case, E2E latency consists of processing delays of the sender and receiver,

the time to calculate the MAC on the sender and check the MAC on the receiver,

as well as the CAN bus network latency. In the second case, encryption/decryption

latencies are added on the respective sides. S2-CAN uses the latter calculation method-

ology as well, while the MAC and encryption/decryption latencies are replaced by

the delay to calculate/check the internal ID and counter, and encode/decode through

Circular Shift (CS).

Fig. 3.5 depicts the breakdown of the E2E latency for all three aforementioned

cases. Furthermore, the dotted horizontal line indicates the aforementioned deadline

85

107.5

108.0

108.5
Encryption Latency
Sender Latency
Network Latency
Calculating MAC Latency
Checking MAC Latency
Decryption Latency
Receiver Latency

53

54

55

La
te

nc
y

(m
s)

NONE 3DES TEA XOR S2 AES128 AES256
Encryption Algorithm

0

5

10

Figure 3.5: E2E latency for different "encryption" algorithms

of 10ms. It can be easily seen that the encryption/decryption of 3DES takes much

longer on Arduinos than other encryption algorithms that can still satisfy the 10ms

deadline. Tiny Encryption Algorithm (TEA) and XOR seem to satisfy it although

they are not considered secure [18, 104] and are thus not recommended to be used

in production. Furthermore, in all experiments, we did not include any additional

traffic, so that the reported E2E latencies assume no blocking time due to higher-

priority CAN messages and can be considered a lower bound. Hence, even AES-128

and AES-256 are likely to miss the 10ms deadline if they lose the CAN arbitration

to a message with lower ID. S2-CAN with tE2E = 414µs satisfies both deadlines and

only adds an overhead of 75µs to the E2E latency of a regular CAN message (i.e., no

encryption or authentication).

Latency numbers for MAC operations by vatiCAN are lower in Fig. 3.5 than

the reported 3.3ms from Table 3.1. We used a sponge capacity of c = 8 instead of

86

the original, more secure c = 128 to provide a lower bound for vatiCAN’s latency

overhead.

3.7.4 Other Metrics

Table 3.3: Benchmark of other metrics

Encr. Auth. BL
(%)

CPUo (%)
S / R

RAM(kB)
S / R

Flash(kB)
S / R

None None 0.25 0/0 1.24/1.29 10.1/11.96

VatiCAN 0.5 86.7/82.3 1.57/1.66 17.25/17.07

AES128 None 0.5 0.8/2.0 1.25/1.30 10.30/12.02

VatiCAN 1 87.0/82.8 1.60/1.67 17.35/17.13

AES256 None 0.5 1.0/2.5 1.27/1.31 10.31/12.04

VatiCAN 1 87.0/82.9 1.61/1.69 17.37/17.15

3DES None 0.25 52.8/53.5 1.26/1.31 12.27/14.22

VatiCAN 0.5 93.8/90.8 1.60/1.69 19.38/19.33

TEA None 0.25 0.5/0.5 1.27/1.32 10.55/12.50

VatiCAN 0.5 86.8/82.4 1.60/1.69 17.78/17.61

XOR None 0.25 0.01/0.01 1.25/1.30 10.16/12.05

VatiCAN 0.5 86.7/82.3 1.57/1.67 17.31/17.17
S2 S2 Auth 0.25 0.04/0.03 1.25/1.30 10.24/12.10

Besides the E2E latency, we measured bus load, CPU overhead, and memory usage

of each encryption method with and without vatiCAN authentication. The results are

summarized in Table 3.3. The metrics are calculated for messages exchanged during

Operation Mode, unless noted otherwise.

Bus Load. The bus load (BL) b is calculated as follows [14]:

b =
sframe

fbaud

∑
m∈M

1

pm
, (3.3)

where we used fbaud = 500 kBit/s as baud rate on the CAN bus, and pm is the

period/cycle time of messagem, and assuming each CAN frame uses 125 bits, sframe =

125. With regular CAN (no encryption and authentication), we send one message

87

every pm. AES has a block size of 16 bytes and the maximum size of the payload is

8 bytes. Thus, we send two consecutive messages, each with a period of pm. With

vatiCAN authentication, an additional MAC is sent after each message, effectively

doubling the bus load. Table 3.3 shows that only S2-CAN does not add any overhead

to the bus load of regular CAN during operation mode, but provides protections

against both confidentiality and integrity. Note that the bus load does increase during

each handshake due to additional 2(N + 2) exchanged messages. Nevertheless, the

handshake adds an overhead of merely 2.5% to the bus load.

CPU Usage. CPU overhead (CPUo) cy of ECUy is calculated by measuring how

many idle cycles pass per message. We establish regular CAN to be the baseline, then

calculate overhead cy for y ∈ {Sender,Receiver} as follows:

cy = 1− cyclesidle
cyclesbaseline

. (3.4)

We see in Table 3.3 that vatiCAN authentication accounts for the largest CPU over-

head. (with the exception of 3DES). The CPU utilization on each ECU almost

doubles. With S2-CAN, we have a negligible CPU overhead that demonstrates the

lightness of our approach on computational resources.

Memory Consumption. Finally, Flash and RAM usage are reported when our

code compiles to the Arduinos. No dynamic memory is used. All approaches except

S2-CAN add up to 30% more RAM and 70–90% of Flash usage compared to the

memory consumption for regular CAN. The memory consumption (both RAM and

Flash) for S2-CAN is minimal.

3.8 Security Analysis

To measure the security level of S2-CAN, we need to determine the time an at-

tacker requires to correctly spoof a specific CAN message. To be more concrete, we

88

assume the adversary will try to accelerate the vehicle by CAN injection through

the OBD-II port. Furthermore, we assume that the gateway blocks CAN messages

with IDs under a certain threshold to secure the handshake (see Sec. 3.5.2) and no

intrusion detection system is installed in the target vehicle. Given the current state

of commercial passenger vehicle security, this is a very likely scenario. In order to

affect the acceleration behavior by CAN message injection, the adversary needs to

know the message format (i.e., CAN ID, signal position, scale and offset) of the signal

they want to spoof. For regular CAN, this is possible by existing automated CAN

bus reverse-engineering tools such as LibreCAN [141]. In the following security anal-

ysis, we will deploy Phases 0 and 1 of LibreCAN with some modifications to adapt to

S2-CAN and try to measure the time an attacker would need to determine the correct

payload to inject into the CAN bus. The modified attack tool is called LibreCAN+,

consisting of three stages that are discussed below.

3.8.1 Experimental Setup

All experiments were conducted using Python 3 on a computer running 64-bit

Ubuntu 18.04.4 LTS with 128 GB of registered ECC DDR4 RAM and two Intel Xeon

E5-2683 V4 CPUs (2.1 GHz with 16 cores/32 threads each). We evaluate the security

of S2-CAN by using one-hour real-world traces collected from four recent (2016-2019)

vehicles: Veh. A is a luxury mid-size sedan, Veh. B a compact crossover SUV, Veh.

C a full-size crossover SUV and Veh. D a full-size pickup truck. Veh. A, C and

D have at least two HS-CAN buses, both of which are routed out to the OBD-II

connector, whereas Veh. B has at least one HS-CAN and one MS-CAN, with only

the former being accessible via OBD-II. All raw CAN data was collected with the

OpenXC VI [2].

89

3.8.2 Stage 0: Generating S2-CAN Traces

The recorded traces from our four evaluation vehicles are in regular CAN-syntax.

To enable S2-CAN-compliant communication, we have to process the one-hour traces

according to simulated handshake parameters and convert them into S2-CAN-syntax.

First, we analyze the DBC file of the vehicle to determine the ECU nodes that are

present in the network, free space of each CAN ID payload, and group CAN IDs based

on the node that emits them since the handshake assigns the parameters on a per-

node basis. Then, we randomly assign each node a unique internal ID ∈ [0, NECU−1].

The counter of each node is also initialized to a random number in range [0, 216 − 1].

Third, we assign incrementing counter values for each CAN message. After specifying

values for the internal ID and counter of each CAN message, we XOR the two values

to obtain qj, assign it to a free space in each CAN message (if possible) and finally OR

it with the original payload. In order to be compliant with S2-CAN, the payload needs

to have at least 2 bytes of free space, but these do not have to be contiguous. We

removed CAN IDs from the trace that do not have the necessary free space. Finally,

we perform the byte-wise circular shift (CS) on each remaining message according to

the randomly generated encoding parameter f .

3.8.3 Stage 1: Cracking the Encoding

First, the adversary can assume that the targeted CAN signal is two bytes or

less in size since this applies to most powertrain-related signals. In all four vehicles

the target signal is 13 bits long. Next, the attacker can brute-force the CAN trace

with each possible encoding for each of the 7 pairs of contiguous bytes in the CAN

message. Our encoding scheme has 8 possibilities for each byte, so without accounting

for duplicates, there are 8 · 8 · 7 = 448 combinations an attacker must try. However,

because encodings for unconsidered bytes are set to zero, we can reduce this to 400

combinations by eliminating duplicates: One combination of all zeros, 7 · 8 = 56

90

combinations where all but one byte are zero, and 7·7·7 = 343 combinations where all

but two contiguous bytes are zero. For each potential encoding, the attacker decodes

the trace and runs it through Phases 0 and 1 of the original LibreCAN, resulting

in a list of three-tuples (candidate CAN ID, encoding, normalized cross-correlation

score). The pairs with the highest X correlation scores (X is a design parameter in

Sec. 3.8.5) can then be used in Stage 2. Note that we used multi-threading in this

stage to calculate up to 50 combinations simultaneously.

3.8.4 Stage 2: Authenticating Correctly

For the adversary to successfully spoof a message, they must be able to increment

the message counter to the correct value. This requires the knowledge of the position

of the counter bits within the message, the value of the counter, and the internal

ID. After determining the top X CAN IDs by correlation score from Stage 1, the

adversary can extract a subtrace consisting of only the messages for that candidate

CAN ID. With the subtrace in hand, the adversary calculates the frequency of bit

flips for each bit in the subtrace’s messages, and matches these flip frequencies to

what frequency the bits of a counter should be. This is done using Algorithm 3. Note

that only the lowest blog2(trace length)c) bits of the counter can be determined, since

these are the only bits that are guaranteed to flip at least once.

Algorithm 3 Determine Counter Position
procedure match-frequency(flip_freqs, trace_len)

counter_length← min(16, blog2 trace_lenc)
counter_positions← []
for i← counter_length to 1 do

match← argmin({|f − 2−(i−1)| : f ∈ flip_freqs})
append(counter_positions,match)

return counter_positions

After determining the position of the counter bits, the internal ID can be extracted.

To do this, the adversary compares consecutive messages in the subtrace, and sees

if one of the counter bits flips in the second message. If this occurs, the adversary

91

knows the next lowest bit of the counter must have been a 1 in the first message.

Then, to extract the internal ID, the adversary XORs the counter bit with 1. This is

repeated until all bits of the internal ID are known. This procedure is summarized in

Algorithm 4.

Algorithm 4 Determine Internal ID
procedure calculate-int-id(counter_pos, subtrace)

c_length← length(counter_pos)
id_length← min(8, c_length− 1)
int_id← []
offset← c_length− id_length
c_pos← counter_pos[offset : c_length]
prev_m← get(subtrace, 0)
for i← 0 to id_length− 1 do

for m ∈ subtrace do
if m[c_pos[i]] 6= prev_m[c_pos[i]] then

int_id[i]← prev_m[c_pos[i+ 1]]⊕ 1
break

return bits-to-integer(int_id)

Now, after obtaining the position of the counter and the internal ID, the attacker

can spoof a message. First, they use the encoding determined in Stage 1 to decode

the latest message from the desired CAN ID. Next, the attacker replaces the value of

the signal they are spoofing with their own fabricated value in that message. Before

re-encoding the message with f , the attacker extracts the counter value from the

latest real-time message on the CAN bus, increments it by 1, and inserts it into their

new message. This spoofed message will then be injected through the adversary’s

rogue node into the CAN bus and accepted by the respective receiver ECUs.

3.8.5 Difficulty of Successful Cracking

The recorded traces of all evaluation vehicles were around 60 minutes long. We

integrated the above procedure into LibreCAN — creating a new version of LibreCAN,

named LibreCAN+ — and evaluated its success on those four traces using the ground

truth DBC files of each vehicle. The outcome is shown in the last column of Table 3.4.

92

The cracking success is dependent on finding the correct CAN ID and encoding in

Stage 1 (abbreviated at ST1 in the table) by picking the top candidate in the sorted

correlation list, as well as determining the correct internal ID (ID) and counter (cnt).

For Vehicles A, B and C, cracking S2-CAN with LibreCAN+ works. Vehicle D already

failed in Stage 1 to determine the correct CAN ID for spoofing the desired signal.

Furthermore, we wanted to analyze how a shorter recording would affect this met-

ric. We re-ran all three stages with 5%, 10%, 25%, 50% and 75% of full trace length.

To avoid bias towards more city or highway driving, we calculated the precision for

all non-overlapping segments of this trace. As can be seen in Table 3.4, traces of 5%

and 10% length fail in most cases. We color-coded the table to indicate the number of

split traces cracked correctly. If all split traces can be cracked, we highlighted them

in green color. Otherwise, if under 2/3 of split traces are unsuccessful, we highlighted

these in red, with the remaining portion colored in orange.

Table 3.4: Cracking Success based on Trace Length (in %)
Trace Length 5 10 25 50 75 100

ST1 11/20 6/10 4/4 3/3 2/2 1/1
ID 10/20 6/10 4/4 3/3 2/2 1/1Veh. A
cnt 11/20 6/10 4/4 3/3 2/2 1/1
ST1 12/20 4/10 3/4 2/3 1/2 1/1
ID 11/20 3/10 3/4 1/3 1/2 1/1Veh. B
cnt 12/20 4/10 3/4 2/3 1/2 1/1
ST1 8/20 5/10 3/4 3/3 2/2 1/1
ID 8/20 5/10 3/4 3/3 2/2 1/1Veh. C
cnt 8/20 5/10 3/4 3/3 2/2 1/1
ST1 6/20 3/10 0/4 0/3 0/2 0/1
ID 6/20 3/10 0/4 0/3 0/2 0/1Veh. D
cnt 6/20 3/10 0/4 0/3 0/2 0/1

Table 3.4 only considers those candidates in Stage 1 with the highest correlation

score (X = 1) that match the correct encoding and CAN ID as successful. In many

cases, we observed that the second-best candidate was ideal. As a result, we also

wanted to see if considering the top X = {2, 3, 5, 10} candidates from Stage 1 would

93

lead to success in cracking S2-CAN . If any of the candidates in the top X were correct,

we would mark ST1 for the respective vehicle and split trace as correct. Similar tables

for the aforementioned values of X are presented in Appendix B.1. Based on these,

we summarize the cracking performance for varying X in Table 3.5. The values are

reported as average numbers over all four vehicles. Note that the color coding is

different from Table 3.4. Green cells indicate that the adjacent X value to its right

is identical and thus does not provide a performance improvement. We suggest using

at least a trace of 25% length (15 minutes) and consider the Top 3 candidates for

optimal brute-forcing success.

Table 3.5: Brute-Forcing Success for Top X Candidates
TL (%) Top 1 Top 2 Top 3 Top 5 Top 10

ST1 46% 58% 58% 61% 65%
ID 44% 54% 54% 58% 61%5
cnt 46% 58% 58% 61% 65%
ST1 45% 68% 68% 73% 78%
ID 43% 58% 58% 63% 68%10
cnt 45% 68% 68% 73% 78%
ST1 63% 81% 88% 88% 88%
ID 63% 81% 88% 88% 88%25
cnt 63% 81% 88% 88% 88%
ST1 67% 92% 92% 92% 92%
ID 58% 83% 83% 83% 83%50
cnt 67% 92% 92% 92% 92%
ST1 63% 88% 88% 88% 88%
ID 63% 88% 88% 88% 88%75
cnt 63% 88% 88% 88% 88%
ST1 75% 100% 100% 100% 100%
ID 75% 100% 100% 100% 100%100
cnt 75% 100% 100% 100% 100%

3.8.6 Determining Session Cycle T

So far, we observed that brute-forcing S2-CAN successfully is possible. The total

time ta required by an attacker to crack S2-CAN is the sum of the passive recording

time tr, time tst1 to crack the encoding in Stage 1, time tst2 to determine the integrity

94

parameters in Stage 2 and time ti to inject a well-formed CAN message on the CAN

bus:

ta = tr + tst1 + tst2 + ti ≈ tr + tst1. (3.5)

Our timing analysis shows that the time to determine the two integrity parameters

int_ID and cnt on the full trace (60 minutes) takes less than one second. The time

to inject the correct CAN message can also occur instantly with minimal network

delay from the workstation to the adversary’s CAN node (e.g., an Arduino). Hence,

tst2 and ti are negligible and the main contributing factors are tr and tst1.

Table 3.6: Timing analysis for full traces (minutes:seconds)
CAN (LibreCAN) S2-CAN (LibreCAN+)

Veh. A 0:27 10:33
Veh. B 0:36 18:32
Veh. C 0:26 10:42
Veh. D 0:26 10:52

As shown in Table 3.6, the total time stands at around ta = 70 min for full traces

(i.e., tr = 60 min). Since our threat model stipulates that the attacker can also

physically tap into one specific CAN bus (and thus only has access to one bus), we

run LibreCAN+ with messages from Bus 1 only. Unfortunately, due to architecture

specifics of Vehicle B, all messages are logged on Bus 1, which makes the trace longer

and thus affects cracking time. The attacker can only perform a CAN injection attack

on a bus equipped with S2-CAN if the session cycle T is larger than ta since with each

new handshake, new parameters will be generated and the attacker has to re-do the

entire attack. As a result, we can deem S2-CAN secure if the following condition is

met:

ta ≈ tr + tst1 > T. (3.6)

In Sec. 3.8.5 an attacker was shown to succeed cracking S2-CAN with less passive

recording time tr. Since less messages have to be processed, tst1 will also be pro-

95

portionally smaller. With the minimum recording time tr,min to have a successful

outcome, we can now set the maximum session cycle Tmax. We already determined

that a trace length of tr = 15 minutes is sufficient to succeed. The Top X consid-

eration does not affect the timing since Stage 2’s contribution is negligible. If the

attacker doesn’t achieve the desired outcome (i.e., vehicle malfunction), they can re-

peat the process with the second and third candidates immediately. For Vehicles A,

C and D, tst1 stands at less than 3 minutes and for Vehicle B at less than 5 minutes.

Hence, the maximum session cycle Tmax will stand at 18-20 minutes.

3.9 Discussion and Conclusion

Based on the results from the previous section, we can guarantee that S2-CAN

is secure if the cycle time T does not exceed 18-20 minutes. The experiments were

conducted on a machine with relatively good specs (see Sec. 3.8.1). Nevertheless,

a determined attacker can use an even more powerful setup to brute-force S2-CAN

faster. The feasibility of such an attack depends on the attacker’s incentive, i.e.,

tradeoff between monetary cost and dedication towards the outcome.

To be flexible, an attacker could rent computational resources online. Both Ama-

zon and Google provide cloud computing resources called AWS EC2 [11] and Google

Cloud [35]. The main bottleneck of brute-forcing is the time required in Stage 1. Due

to multi-threading the combinations, these can be linearly scaled with multiple in-

stances. We obtained the cost of running a comparable instance to our experimental

setup on AWS. Their pricing calculator [13] suggested an on-demand hourly cost of

US$1.088 for an EC2 instance with 32 vCPUs and 64 GB RAM. In our experiments

from Sec. 3.8, the peak RAM usage stood at 16 GB, but with the configured number

of cores, EC2 did not provide any smaller instance. To brute-force S2-CAN with a

passive recording time tr = 15 minutes in less than 20 seconds, 10 EC2 instances have

to be rented. This sums up to a monthly cost of $7,972.40 for the attacker. Given

96

that the attacker only spends ta ≈ 15 minutes per attempt (if T > ta), they could

conduct 2880 attempts per month at an average cost of $2.77 and still fail, if T is set

smaller than the minimum recording time tr,min. Although the actual cracking (i.e.,

tst1) can be sped up, tr,min acts as a lower bound to the total attack time ta and thus

the attacker will have no chance of cracking S2-CAN.

Finally, we would like to briefly compare S2-CAN’s security with S-CAN approaches.

For instance, vatiCAN [132] discusses how long it would take to forge the SHA3-

HMAC which depends on the length of the MAC tag. On average, it requires

2MAC_Length−1 combinations to brute-force the MAC which is depicted in the last

column of Table 3.1. The authors mentioned that it would still take a day to brute-

force all combinations on a powerful in-vehicle ECU, but due to their nonce update

interval of 50ms (comparable to our session cycle T), it would be impossible for the

attacker to calculate a correct HMAC. Although the same calculation cannot be di-

rectly applied to S2-CAN due to lack of MAC and changing position for each CAN

message, an online attacker (i.e., on an in-vehicle ECU) would require
(
64
16

)
≈ 249

combinations to spoof the valid 2-byte integrity parameters which allows a fair com-

parison with the other numbers in Table 3.1. Given modern GPUs’ capabilities [68]

(also considering advances since this paper’s publication), an attacker with similar

cost assumptions from above could brute-force S2-CAN in multiple hours due to its

49-bit entropy. Such an attacker would still fail if Tmax ≈ 15 minutes.

In this thesis chapter, we have developed S2-CAN by making a trade-off between

performance and security, and verified its performance on Arduinos mimicking real

ECUs on a CAN bus. with regards to multiple metrics. It performs better for all

metrics than each surveyed S-CAN approach, especially reducing E2E latency. Then,

we have tried to brute-force S2-CAN by using a modified version of the existing CAN

reverse-engineering tool LibreCAN. Although the total attack time can be minimized

to roughly 15 minutes, by setting the session cycle properly, our approach is deemed

97

secure. Due to both favorable performance and practically acceptable security guar-

antees, we envision S2-CAN to finally be a compelling and practical security solution

for OEMs to be deployed in their vehicles in the near future.

98

CHAPTER IV

MichiCAN: Practical Spoofing and DoS Protection

for the Controller Area Network

4.1 Introduction

The Controller Area Network (CAN) has been the de facto in-vehicle network

(IVN) protocol for over three decades. It connects various in-car computers — called

Electronic Control Units (ECUs) — and allows them to exchange information with

each other. CAN was designed in the 1980s without security in mind and its vulner-

abilities have started to get exploited in the past decade [58, 86, 109]. Researchers

soon started to develop countermeasures to provide the security properties of confi-

dentiality, authenticity, integrity and availability. All traffic in the standard CAN is

in plain text, there are no provisions of sender or message authentication, and CAN

is highly susceptible to availability attacks, such as Denial-of-Service (DoS).

Most CAN security research has focused on authentication. There are a myriad

of publications on the prevention of CAN spoofing attacks [88, 111, 132, 177]. They

all use Message Authentication Codes (MACs) to provide message integrity. Further-

more, Bozdal et al. [53] show how an encrypted CAN payload can prevent sniffing

attacks. All these schemes use cryptography which imposes very heavy computation

loads on resource-constrained ECUs and incurs a significant computation delay. Fur-

99

thermore, some standardization for secure on-board communication is provided by

the AUTomotive Open System ARchitecture (AUTOSAR) consortium [30], although

it mainly deals with integrity, authenticity and confidentiality protection.

The easiest and thus riskiest CAN availability attack is Denial-of-Service (DoS).

DoS attacks target the CAN message identifier (CAN ID) by injecting CAN messages

with low CAN IDs. Since CAN is a multi-master broadcast protocol and lower CAN

IDs indicate higher priority, they will always win arbitration and be allowed to trans-

mit before higher ID messages on the CAN bus. By “continuously” sending CAN

messages with a low ID, higher ID messages will always lose arbitration and thus

become unavailable on the CAN bus. Attackers can choose to make the transmission

of all ECUs unavailable (traditional DoS) or selectively choose which ECUs to silence

(targeted DoS). In the most powerful DoS attack — the traditional DoS — an attacker

continuously injects CAN messages with ID 0x0 and blocks other ECUs’ communica-

tions on CAN. The major impact of a DoS attack could be safety-critical, especially

when the vehicle can no longer perform certain powertrain control functions. How-

ever, vehicles implement a limp mode which still allows certain safety-critical ECUs

to work with limited functionality in the event of losing CAN communication [121].

Another impact of a DoS attack could be ransomware which is financially motivated.

A targeted DoS attack can shut down ECUs with a high CAN ID (and thus lower

priority). This would mostly affect convenience features such as remote keyless entry

(RKE) or advanced driver assistance systems (ADAS). In modern vehicles, the loss

of RKE could also prevent anti-theft systems from being disengaged and the car from

being started. The victim would either need to pay ransom to the attacker or take

their car to the dealership to reset/reflash the affected ECU(s), which will cost time

and money.

As mentioned earlier, there have been a very few DoS countermeasures proposed

thus far to detect and possibly prevent DoS attacks (see Table 4.1). But all of them

100

Table 4.1: Comparison of countermeasures against CAN DoS

IDS [133],
[95, 99]

Parrot+
[67]

CANSentry
[96] MichiCAN

Backward
Compatibility 3 3 7 3

Real-Time
Capability 7 7 7 3

Overhead on
Network None Very High Negligible Negligible

Prevention
Capability 7 3 3 3

come with their own limitations, such as lack of backward compatibility and real-time

capability, as well as heavy CAN traffic overhead.

No backward compatibility. Ideally, the countermeasure against DoS attacks

should be based on software. Any additional hardware or modifications of existing

hardware are not backward compatible to existing cars. OEMs and the entire supply

chain would have to produce or modify their products to add this countermeasure

which is not viable for cost reasons. For instance, CANSentry [96] is a hardware-based

message firewall that can defend against various spoofing and DoS attacks. However,

CANSentry introduces a stand-alone device deployed between a high-risk ECU (i.e.,

ECU with the highest risk to be compromised) and the CAN bus which limits its

backward compatibility.

No real-time capability. Since DoS attacks may impact people’s safety, they

have to be detected and prevented as quickly as possible, preferably in real time. Our

surveyed Intrusion Detection System (IDS) mechanisms [95, 99, 133] are incapable

of real-time detection of attacks. CANSentry [96] incurs an additional propagation

time because the intermediate hardware must both decode and re-encode the message

before passing it to the main bus. Parrot [67] is a distributed spoofing detection and

prevention framework where each ECU is responsible for monitoring the bus to detect

frames with its own CAN ID. If a CAN message with the same CAN ID that is not

101

sent by the ECU itself is detected on the CAN bus, Parrot will launch a counterattack

to shut down the attacking ECU in a CAN protocol-compliant way, called bus-off.

However, it incurs an additional delay in launching a counterattack (i.e., bus-off time)

because it only starts destroying an attacker message after its second instance, with

the first instance required for detection. Note that Parrot was not designed as a DoS

prevention tool, but can effectively be used as such. In this case, ECUs will not only

mark their own CAN ID as malicious, but also CAN IDs which are lower than their

own.

Traffic overhead on network. The bus load of CAN represents how busy the

bus is at any given time. To avoid the difficulty/problem of scheduling messages (with

safety-critical implications), the bus load must be kept as low as possible, with 30%

being a recommended upper bound [15]. When Parrot launches the counterattack, it

needs to start at the exact same time as the second instance of the attacker’s CAN

message. As a result, Parrot floods the CAN bus with counterattack messages to

collide with the attacker’s CAN messages in a brute-force fashion. The bus load can

reach up to 100% during those times, limiting/prohibiting the adoption of Parrot in

real production vehicles.

Eradication. Just detecting a DoS attack is not helpful as all subsequent com-

munications will be halted. It is imperative to counter/neutralize the DoS attack.

This is especially important due to possibly safety-critical consequences of a DoS

attack. IDSes usually detect DoS attacks, but do not have any means to eradicate

them. Furthermore, even their detection capabilities can be questionable since most

IDSes are, in general, centralized and susceptible to a single point of failure.

To overcome/remedy all these limitations, we propose MichiCAN, a distributed

software solution that can run on every modern ECU. It does not only detect DoS

attacks, but can also be used for spoofing prevention, such as the original Parrot [67].

Each ECU equipped with MichiCAN stores a list of legitimate CAN IDs from the set

102

E of all participating ECUs in the IVN. A CAN node ECUi ∈ E can detect a spoofing

attack if their own CAN ID is transmitted by another node. ECUi can also mark

a message with a CAN ID lower than its own as a DoS attack on ECUs generating

lower-priority messages than itself, i.e., other lower legitimate CAN IDs originating

from other ECUs stored in the list are not affected. After marking the incoming CAN

message as malicious, ECUi will start a counterattack. Using weaknesses in the CAN

error handling mechanism, it will eventually force the attacking ECU into bus-off, thus

stopping the ECU from transmitting or receiving any CAN messages. Forcing ECUs

into bus-off state is not new as previous work [60] has shown. In fact, there is a growing

literature on bus-off attacks to silence legitimate ECUs [128, 135] which leverage the

aforementioned vulnerabilities in CAN’s error handling. The main challenge in busing

off an attacker is the timing of counterattack. Since the application software can only

send and receive complete CAN frames, the protecting ECU needs to know precisely

when to start the counterattack so its message can exactly overlap with the attacker’s

CAN message. This was a major limitation of Parrot [67], as well as others, such as

the one proposed by Cho et al. [60]. In contrast, MichiCAN is leveraging the integrated

CAN controller of modern ECUs which allows the application software to gain direct

read/write access to each individual bit of a CAN frame. This technique is called

bit banging. As a result, MichiCAN will always be correctly synchronized to the bus

and can start the counterattack at any given time, without having to flood the bus to

acquire the correct start time. As a result, we will not have to flood the bus like Parrot

without increasing the bus load. Furthermore, by sampling the CAN ID bit-by-bit,

we will also be able to detect a spoofing or DoS attack before the end of the 11-

bit CAN ID field in most cases. This will allow us to launch the counterattack much

faster, thus reducing the required bus-off time for the attacking ECU. By reducing the

overhead on the CAN bus in regards to the aforementioned metrics, MichiCAN is the

first DoS prevention solution that is practical and usable by OEMs. Unfortunately,

103

the added software logic comes at the expense of additional CPU cycles on the ECUs.

We will show through our extensive evaluations how this overhead can be minimized

and why this trade-off is still favorable to OEMs.

4.2 Background

Please refer to Sec. 1.2 for a primer on the CAN bus.

4.2.1 CAN Error Handling

CAN communication follows specific error-handling rules. There are 5 CAN error

types: (i) bit monitoring, (ii) bit stuffing, (iii) frame check, (iv) acknowledgment

check, and (v) cyclic redundancy check. For our purposes, we focus on the first two.

A bit monitoring error occurs if the bit read on the CAN bus by an ECU is different

from the bit level that it has written. Obviously, no bit errors are raised during the

arbitration process. A bit stuffing error is caused by 6 consecutive bits of the same

level. According to the CAN protocol specification, when 5 consecutive bits of the

same level have been transmitted by a node, it will pad a sixth bit of the opposite

level to the outgoing bit stream. The receiving ECUs will remove this sixth bit before

passing it to the application.

Each ECU on the CAN bus has a transmit error counter (TEC) and a receive

error counter (REC). In this thesis chapter, we focus mainly on transmission errors.

A transmission error occurs when a transmitting ECU observes an error frame sent

by a different ECU during its transmission of a CAN message on the bus. In such

a case, a CAN-compliant node will do one of two things depending on the current

value of its TEC. Each ECU starts in the error-active state. When the counter is

between 0 and 127 (in the error-active state), the node that detects the error will

transmit an active error flag consisting of 6 dominant (logical 0) bits followed by

8 recessive (logical 1) bits as an indication to all other nodes that the transmitted

104

frame had an error and should be ignored. If the node’s TEC is in the error-passive

state (when the TEC exceeds 127), it will transmit a passive error flag consisting of

14 recessive bits. Note that the passive error does not destroy other bus traffic, and

hence the other nodes will not hear “complaint” about bus errors. In both cases, the

node will increment its TEC by 8 and then retransmit the message. The minimum

separation between the original transmission and retransmission are 11 recessive bits

(8 bits from error flag + 3 bits from IFS) in the error-active state and 25 recessive

bits (14 bits from error flag + 3 bits from IFS + 8 bits from additional transmission

suspension) in the error-passive state. When the TEC reaches 256, the node enters

bus-off mode and will no longer participate in CAN traffic activities. According to

the CAN protocol, a device in bus-off mode is allowed to recover into the error-active

state after observing at least 128 instances of 11 recessive bits on the bus. The state

diagram is depicted in Fig. 4.1.

Error
Active

Error
Passive

Bus Off
Reset TEC > 255

TEC > 127 || REC > 127

TEC ≤ 127 && REC ≤ 127

Figure 4.1: State diagram for CAN error handling

105

4.2.2 CAN Hardware

We will henceforth refer to ECUs connected to CAN simply as CAN nodes. A CAN

node is usually composed of three main components: Microcontroller Unit (MCU),

CAN controller, and CAN transceiver. MCU executes the application whereas the lat-

ter two are integral components of CAN bus communication. However, the controller

and the transceiver have different responsibilities as they are located in different layers

of the OSI stack.

CAN Controllers operate on the data link layer and take certain information

about a CAN message (i.e., CAN ID, DLC, Data) from the application in the MCU

and build a complete CAN frame (effectively a digital bitstream) as described in

Sec. 1.2.1. Each CAN controller has two interfaces to the lower physical layer, namely

CAN_TX and CAN_RX. Outbound data that will be sent on the CAN bus will be

written to CAN_TX and inbound data that is read from the CAN bus will be on

CAN_RX. Furthermore, the CAN controller implements the core logic of the CAN

protocol such as error handling. It is also responsible for adding and removing stuff

bits.

CAN Transceivers, also known as CAN PHYs, operate on the physical layer.

They are responsible for translating digital bitstreams from CAN_TX to an analog

voltage (in the 0-5V range) and generating a bitstream from the analog voltage for

CAN_RX. CAN uses differential voltage signaling using two levels CAN_H and

CAN_L. For instance, a high-speed CAN transceiver (which we use in this chapter)

interprets a differential voltage (i.e., |CAN_H−CAN_L|) of up to 0.5V as a recessive

bit, while a differential voltage that exceeds 0.9V is considered as a dominant bit.

In the last decade, the internal design of CAN nodes had been gradually chang-

ing (apart from better specifications, such as CPU and memory). An overview of

this evolution is depicted in Fig. 4.2. In early CAN nodes (A), the MCU, CAN con-

troller and transceiver were separate chips, such as Microchip’s MCP2515 [36] and

106

MCP2551 [37]. The MCU/application would send and receive CAN frames from the

controller via SPI. Such a CAN node could be recreated by an Arduino Uno with a

CAN bus shield [197] that includes both the transceiver and the controller. In recent

years (CAN Node B), the CAN controller and the transceiver are found combined in

a single chip. One example for this is the popular MCP25625 [38]. The main driver

behind this integration is the reduction of cost and physical space. The MCU inter-

acts with the combined/integrated chip via SPI, just like in CAN Node A. The main

novelty lies in CAN Node C which represents novel ECUs. It consists of an MCU

with an integrated/on-chip CAN controller. The latter are embedded in MCUs and

allow memory-mapped access to CAN bus functions. In many MCUs, this involves

access to interpreted CAN data, configuration of filters, and access to interrupts on

arrival of new messages. Further, MCUs tend to allow the user to multiplex the pins

within the hardware at run-time, e.g., allowing the application software to directly

read and write each bit of the CAN_RX and CAN_TX lines. In Nodes A and B,

the application could only pass certain CAN message fields such as CAN ID, DLC

and data to the CAN controller which would be responsible for generating a complete

CAN frame. The application could also only process the data from an incoming CAN

message after successful receipt of the entire frame. MichiCAN exploits the MCUs

with integrated CAN controllers to detect and prevent DoS attacks as fast as possi-

ble (see Sec. 4.4). On-chip CAN controllers are already widely used by major ECU

manufacturers such as NXP, ST or Renesas [17, 19, 41]. One example of an MCU

with integrated CAN controller is the Renesas V850ES/FJ3 MCU [41] which was

even used in the infamous Jeep hack [86] in 2015.

4.3 Threat Model

Due to the CAN’s lack of security support, its attack landscape is wide and ex-

tensive [53]. As briefly discussed in the Introduction, an adversary can have different

107

MCU

CAN Controller

CAN PHY

SPI

TX/RX

CAN H/L

MCU w/
Integrated/On-

Chip CAN
Controller

CAN PHY

TX/RX

CAN H/L

MCU

CAN
Controller w/

Integrated
PHY

SPI

CAN H/L

CAN Bus

CAN Node A CAN Node B CAN Node C

Figure 4.2: Evolution of CAN hardware in ECUs

(e.g., safety-critical or monetary) incentives for attacking the CAN bus of a vehi-

cle. These incentives can be fulfilled by a CAN injection attack which has always

been the final step of any attack seen/reported during the last decade, irrespective

of its sophistication level. The attacker can either have physical access to the CAN

bus [58, 109] (through the OBD-II port inside the vehicle) or remotely compromise an

ECU [86] (e.g., the infotainment ECU which has wireless connections to the outside).

Although physical access to the vehicle might sound like an infeasible attack vector,

recent research [185] has shown that remote attacks can also be caused by exploiting

vulnerabilities in wireless OBD-II dongles. Many commercial OBD-II dongles feature

Wi-Fi or cellular capabilities which open a new over-the-air attack surface. A one-

time physical access to the vehicle would be sufficient to gain remote connection to

the CAN bus. For instance, passenger vehicles are left unattended for valet parking.

A malicious valet can install such a wireless dongle in the vehicle which will very likely

go undetected by the victim or the vehicle owner due to its small size and difficult-

to-find location, usually under the steering wheel column. In any case, the attacker

needs to inject a well-formed CAN message to the in-vehicle network to achieve a

visible/perceivable outcome, e.g., accelerating the car without any legitimate driver’s

108

input. Cho et al. [61] described the following three possible CAN injection attacks:

fabrication, suspension, and masquerading.

Fabrication attacks allow the adversary to fabricate and inject CAN messages

with a legitimate CAN ID, but with arbitrary data. Since there is not any means of

authentication on CAN, other ECUs on the CAN bus will not know if the source of

this message is legitimate or malicious. This is the weakest form of CAN injection

attack and can be considered a basic spoofing attack. In case the attacker attaches

their attacking node to the CAN bus (instead of having remotely compromised a legit-

imate ECU), the legitimate ECUs will keep transmitting, and the adversary needs to

transmit fabricated CAN messages at a higher frequency to override the data of CAN

messages from legitimate ECUs. We refer to this adversary as an external attacker. In

case an ECU has been compromised remotely (such as in the Jeep hack), the attacker

has full control over that ECU and can transmit a CAN message with the original/-

genuine CAN ID, but with malicious payload. This adversary is called an internal

attacker. Although shown to work, remote ECU compromises require significant ef-

fort to achieve CAN bus access and cannot be thwarted by current state-of-the-art

defenses [139]. Technically, there is no possible way to distinguish a compromised

ECU from a legitimate one by purely monitoring the CAN bus. Good security prac-

tices, such as ECU hardening and network segmentation on the gateway [140], should

be followed to make remote compromises more difficult.

Suspension attacks on the victim ECU prevent its transmission of legitimate

CAN messages by "silencing" it and are effectively DoS attacks. According to [133],

there are three types of DoS attacks on CAN bus: traditional, random, and targeted.

Traditional attacks use the lowest possible priority CAN IDs (0x0) to always win

arbitration and silence all ECUs on the CAN bus. Random attacks send messages

with a random CAN ID ranging from 0x0 to the highest legitimate CAN ID in the

IVN. Targeted DoS attacks only send messages with a constant, targeted CAN ID.

109

Random and targeted DoS attacks are very similar by silencing only a subset of ECUs

since CAN messages with lower message IDs will still be able to win arbitration. In

what follows, we will focus on targeted and traditional DoS attacks. Fig. 4.3 illustrates

these two types of DoS attacks. In contrast to fabrication attacks, DoS attacks can

be detected on the network even if the adversary is an internal attacker due to its use

of different CAN IDs.

Alice
CAN ID
0x100

CAN Bus

Message
CAN ID
0x000

Bob
CAN ID
0x200

Eve

(a) Traditional DoS

Alice
CAN ID
0x100

CAN Bus

Message
CAN ID
0x199

Bob
CAN ID
0x200

Eve

(b) Targeted DoS

Figure 4.3: Different types of DoS attacks [133]

Masquerade attacks combine both of the above attacks by first suspending a

legitimate ECU’s CAN broadcast and then fabricating its data field. It shows why

preventing DoS attacks is of utmost importance for a secure CAN bus.

As discussed in the Introduction, MichiCAN can both detect and prevent spoofing

(in the case of an external attacker) as well as DoS attacks (for both internal and

external attackers). As a result, MichiCAN provides protection against all types of

CAN injection attacks that are feasible at the time of this writing. We assume that

the adversary is operating within the CAN protocol which is a necessary pre-requisite

for any countermeasure to work. For instance, an attacker that does not adhere to

the CAN error-handling mechanism can never be confined to the bus-off state.

4.4 System Design

MichiCAN operates in five phases: Initial Configuration is done offline and only

once by the OEM at the time of vehicle manufacturing, Synchronization and Detec-

110

tion are performed for each received CAN message, whereas Pin Multiplexing and

Prevention phases get engaged only if an incoming CAN message is malicious, i.e., a

spoofing or DoS attack. Below we detail these five phases.

Alice
CAN ID
0x101

Bob
CAN ID
0x099 Eve

CAN Bus

Message
CAN ID 0x101

(a) Spoofing

Alice
CAN ID
0x101

Bob
CAN ID
0x099 Eve

CAN Bus

Message
CAN ID 0x098

(b) Denial-of-Service

Alice
CAN ID
0x101

Bob
CAN ID
0x099 Eve

CAN Bus

Message
CAN ID 0x102

(c) Miscellaneous

Figure 4.4: Attack Variants

4.4.1 Initial Configuration

As briefly discussed in the Introduction, MichiCAN is a distributed solution and

needs to be implemented on every ECU on the IVN. Suppose there are N ECUs on

the IVN, all of which are equipped with integrated CAN controllers as described in

Sec. 4.2. We define an ordered list of all ECUs as E = {ECU1, . . . , ECUN}. Without

loss of generality, assuming that each ECU transmits one unique CAN ID, ECUi ∈ E

is equal to its CAN ID. As restrictive as this may sound, MichiCAN also generalizes

to ECUs transmitting more than one CAN ID, as long as the same CAN IDs are not

transmitted by any other node — which has been followed in all production vehicles.

For an easier understanding, we will henceforth stick to the above assumption and

nomenclature. In this ordered list of ECUs, ECU1 would have the lowest CAN ID

and thus the highest priority, whereas ECUN has the highest CAN ID and the lowest

priority.

Similar to Parrot, ECUi ∈ E detects a spoofing attack (see Fig. 4.4a) if it observes

a CAN message with CAN ID ECUA (injected by the adversary) that is equal to

ECUi’s:

Definition IV.1 (Spoofing Attack). ECUi = ECUA.

111

ECUi detects a DoS attack (see Fig. 4.4b) if it observes a message with a lower

CAN ID ECUA than its own ID that does not originate from any other legitimate

ECU:

Definition IV.2 (DoS Attack). ECUA < ECUi, ECUA ∈ E \ ECUj ∀j ∈ [1, N]∧i 6=

j.

For instance, if there are N = 2 ECUs in the IVN with E = {0x005, 0x00F},

the ECU transmitting CAN ID 0x00F will detect all CAN IDs between 0x000 to

0x004 and 0x006 to 0x00F (including its own which would be a spoofing attack) as

malicious. It cannot make a detection decision for CAN ID 0x005 since it can be a

legitimate transmission from the other ECU. Only the ECU transmitting CAN ID

0x005 can decide whether a message on the CAN bus with its own ID is legitimate

or not.

Last but not least, an attacker can inject a message with CAN ID ECUA higher

than ECUN which is equal to the highest CAN ID in the IVN (see Fig. 4.4c). This

is called a miscellaneous attack:

Definition IV.3 (Miscellaneous Attack). ECUA > ECUN .

If the attacker injects this message at the same time as another CAN message,

it will lose arbitration. If the message is injected during bus idle, i.e., when there

are no other CAN messages transmitted on the bus, the attacker will naturally win

arbitration and broadcast its message. Since no other ECUs know (or listen to)

this CAN ID, there will be no perceivable impact on the vehicle’s operation. The

only drawback is that a higher-priority CAN message (with a lower CAN ID) will

need to wait until the attacker’s message has completed transmission. Given that an

average CAN frame consists of 125bits, the blocking time at a 500kBit/s bus speed is

250µs. The higher-priority message which has been buffered by the legitimate ECU

will then start transmitting its message after 11 recessive bits on the bus. Even if the

112

attacker repeats its attack and finds a suitable bus-idle time, the maximum blocking

delay for the legitimate ECU is much smaller than the deadline for safety-critical

CAN messages which stands around 10ms [71]. As a result, miscellaneous attacks

can never shut down legitimate CAN communications and thus do not pose a serious

threat to the CAN bus. Thus, we will focus on spoofing and DoS attacks from the

previous definitions. Each MichiCAN-equipped ECUi ∈ E needs to store the detection

ranges D of CAN IDs that it needs to mark as malicious:

Definition IV.4 (Detection Range D). D = {j | 0 ≤ j ≤ ECUi ∧ j 6= ECUk ∧ 0 ≤

k < i}.

Since integrated CAN controllers allow direct read access to every bit of the in-

coming CAN frame C during its transmission, the detection ranges D can be encoded

as a finite state machine (FSM). In effect, the FSM is a binary tree since each bit

transition can be either 0 or 1. The root of the tree is the start-of-frame (SOF) bit

since the 11-bit CAN ID C = c0||...||c10 will immediately follow that bit. The FSM is

run for each bit individually and needs to traverse all 11 bits only in the worst case.

If a decision can be made after 11-th bit or earlier, it will terminate since C ∈ D

and set the malicious flag to true. Alternatively, if C /∈ D, the FSM will set the

aforementioned flag to false.

This initial configuration phase is done offline only once by the OEM or Tier-1 sup-

pliers during the development of the vehicle. The FSMs are generated in four stages as

detailed below. Each generated FSM is unique for one particular ECUi and will then

be added to the corresponding ECU’s source code. To better illustrate and explain the

respective stages, let us consider an example with E = {0x100, 0x101, 0x110, 0x150}.

Table 4.2 provides the CAN IDs’ binary and decimal representations as well. Below

we will use all ECUi ∈ E as a binary 11-bit string. We further define ECUi,j with

i ∈ [1, N] and j ∈ [0, 10] to address each respective bit of the CAN ID, while j = 0

indicates the most significant bit (MSB).

113

Table 4.2: Example IVN Configuration

ECUi Hex Binary Decimal

ECU1 0x100 001 0000 0000 256
ECU2 0x101 001 0000 0001 257
ECU3 0x110 001 0001 0000 272
ECU4 0x150 001 0101 0000 336

Stage 1: Find Globally Malicious Bits. Theoretically, up to 2,048 CAN IDs

can be encoded with an 11-bit message identifier. A typical size of E — i.e., used

CAN IDs in an IVN — usually does not exceed 200 (see Sec. 4.5). Over 1,800 CAN

IDs — or 90% of E — remain unassigned. As a result, certain bits j in CAN IDs

ECUi,j ∈ E may stay constant. We call this bit j globally malicious (GM) since the

opposite value at that specific bit position of an incoming CAN ID C (i.e., cj) would

immediately indicate that C ∈ D. For each bit j, we define a variable GMj and set

it to true only if the bit j is globally malicious:

GMj = ¬ ⊕N
i=1 ECUi,j. (4.1)

Looking at the example from Table 4.2, GM0 = GM1 = GM2 = GM3 = GM5 =

GM7 = GM8 = GM9 = 1. Fig. 4.5 shows the binary tree for our example (globally

malicious bits labeled as GM). The depth of the tree for 11-bit CAN IDs is 11. Due

to the small size of this example, there are several GM bits. In reality, with a growing

|E|, the number of GM bits will drop, often to zero. Nevertheless, this stage is very

efficient in terminating the FSM as early as possible in the presence of GM bits. This

will reduce detection latency and CPU overhead on the ECU since it need not run the

FSM for the less significant bits. In Fig. 4.5, all branches below a GM bit get pruned.

The algorithm for marking GM bits is described in Algorithm 7 (see Appendix C.1).

Stage 2: Identify Malicious Outliers. All 8 unpruned leaf nodes L ∈ L are

potentially non-malicious CAN IDs. Since our example only has 4 legitimate CAN IDs

114

Start

0 1 - GM

0 1 - GM

0 - GM 1

0 1 - GM

0 1

0 1 - GM 0 1 - GM

0 1 0 1

0

0

0

1 - GM

1 - GM

1 - GM

0

0

0

1 - GM

1 - GM

1 - GM

0

0

0

1 - GM

1 - GM

1 - GM

0

0

0

1 - GM

1 - GM

1 - GM

0 1 0 1 0 1 0 1

Figure 4.5: Example binary tree

ECUi ∈ E ⊂ L, the other 4 outliers O ∈ L\E need to be removed in the next stage.

In the example of Fig. 4.5, these outliers are highlighted in yellow. As mentioned

before, four leaf nodes, namely 0x111, 0x140, 0x141 and 0x151, are outliers. In the

next stage, we will generate local prefixes to remove these outliers. The algorithm for

identifying malicious outliers is described in Algorithm 8 (see Appendix C.1).

Stage 3: Generate Local Prefixes. A straightforward and intuitive way to

remove outliers is to parse all 11 bits of the CAN ID and set the malicious flag to

true for them. In the above example, we only have 4 outliers which can be much

larger in an IVN with more ECUs. Hence, the FSM would become very large and

computationally heavy. It would also increase the detection latency since the entire

CAN ID has to be parsed. If we can guarantee an outlier after p bits, we can terminate

the FSM at that bit position and set the malicious flag to true. The bit sequence

of the outlier’s CAN ID up to that bit position p is called local prefix, denoted as

115

Op = o0||...||op. It is the minimum bit sequence that needs to be parsed to distinguish

the outlier O from a truly non-malicious CAN ID ECUi ∈ E. The bit position p for

an outlier O can be calculated by logically XORing the bit sequence of O with ECU1.

Bits that match will generate a 0 as the result of the XOR operation and the first bit

that is different will yield a 1. At the first occurrence of 1, we can finally distinguish

O from ECU1. To account for the worst case, we need to repeat with every ECUi ∈ E

and choose the latest occurrence as the minimum bit position p:

p = 11− log2(min(oj ⊕ ECUi,j)),∀ ECUi ∈ E. (4.2)

In our example, 0x111, 0x140, 0x141 and 0x151 were the outliers. Logically XORing

the first outlier, 0x111 with every ECUi ∈ E shows that the largest bit sequence until

a logic 1 appears is with CAN ID 0x110. As a result, the local prefix for outlier 0x111

will be O11 = 00100010001 and all p = 11 bits need to be checked for setting the

malicious flag to true. The same applies to outlier 0x151. For the other two outliers,

both local prefixes evaluate to O7 = 0010100 and a decision can be made early at

p = 7. The procedure for generating local prefixes is described in Algorithm 9 (in

Appendix C.1).

Stage 4: Generate FSM Code. In the last step, we take the GM bits and

local prefixes from previous stages and generate the FSM. The C++ code for the

example from Table 4.2 is provided in Listing C.1 (in Appendix C.1). The code is

specifically generated to be uploaded to ECU4 with CAN ID 0x150 from our example.

As discussed before, miscellaneous attacks will be ignored (lines 7-9) and spoofing

attacks detected (lines 10-13). Next, the logic from the previous stages is used to

generate the if-statements for DoS attack detection. The first comparisons are made

for GM bits (lines 14-45) since they can cover a wide range of CAN IDs in the detection

range. The last three if-statements cover local prefixes (lines 46-57). The generated

116

FSM code for another ECUi ∈ E only differs between lines 7-13. The state value needs

to be changed to the decimal representation of each respective ECUi. The procedure

for generating the FSM code is described in Algorithm 10 (see Appendix C.1).

Alternative FSM Generation. The generated FSM gets larger with the num-

ber of GM bits or local prefixes as more if-statements will be added to its code and

thus increase its complexity. We analyzed the complexity of FSMs with different IVN

sizes |E| in Sec. 4.5.2. Since the complexity of the FSM will have an effect on the re-

quired CPU cycles, we want to minimize the number of if-statements in the generated

code. Currently, each ECUi ∈ E will detect both spoofing and DoS attacks. This

enhances reliability and robustness since each ECUi will detect a malicious trans-

mission simultaneously. This is very beneficial in case legitimate ECUs fail. Even if

|E| − 1 ECUs fail (which is highly unlikely), one ECU can still detect the attack.

Alternatively, if the IVN is composed of a large number of ECUs, we can split E

equally into two subsets E1 and E2 of size |E|2 each, with the former subset containing

the lower half of CAN IDs and the latter the upper half. E2 will run the above-

described procedure. In contrast, E1 will only detect spoofing attacks (on their own

respective CAN IDs). The FSM code can be truncated to lines 1-13 in this case.

The advantage of this approach is that the lower half of CAN IDs (which are higher-

priority and usually more safety-critical) will execute the FSM very fast which incurs

lower computational overhead to those ECUs. Nevertheless, the network will still be

protected from DoS attacks since all ECUs in E2 will still run the DoS protection

routine. We define this as a light scenario, whereas every ECU running the original

FSM (including spoofing and DoS protection) is called full scenario.

4.4.2 Pin Multiplexing

As mentioned before, modern ECUs/MCUs are equipped with an integrated CAN

controller. The CAN transceiver (also called CAN PHY) is a standalone chip that

117

converts the analog CAN_H and CAN_L differential voltage to a digital bitstream

(CAN_TX/CAN_RX), and vice versa. MCUs interface outside/peripheral compo-

nents using their peripheral I/O (PIO) controller. Broadly speaking, there are two

categories of PIO pins: System I/O (SIO) and general-purpose I/O (GPIO). For in-

stance, an ECU features SIO pins to connect to the CAN PHY. By default, these

pins are usually only read by the CAN controller (a system component of the MCU

package) since the application software does not need access to this low-level bit-

stream. The application can interact with peripheral I/O using its GPIO pins. Nev-

ertheless, the PIO controllers of modern MCUs have multiplexing capabilities which

allow a GPIO pin to be multiplexed to a SIO pin. As a result, the PIO controller

can be configured such that the ECU’s application software has direct access to the

CAN_TX/CAN_RX lines, which, in turn, allows the ECU to directly read and write

every single bit on the CAN bus. Pin multiplexing is depicted in Fig. 4.6.

Pin multiplexing can be configured dynamically in software, i.e., can be done once

at boot time or anytime while the MCU is running. MichiCAN requires read access to

the CAN_RX line once booted up, but write access to CAN_TX only when it starts a

counterattack. After the counterattack has been completed, MichiCAN will deactivate

the multiplexing. Pulling the CAN bus low after the counterattack would destroy all

traffic on the CAN bus and pulling it high would cause issues with non-malicious CAN

messages, as each CAN controller has to acknowledge the receipt of a well-formed

CAN message by writing a dominant bit to the ACK bit in the CAN trailer. If the

CAN_TX pin multiplexing is still active, the MCU would have to continue sampling

until the trailer (at the end of the CAN frame!) and correctly insert a dominant bit

at the correct bit time, unnecessarily increasing the computational cost.

118

MCU w/ Integrated CAN Controller

CAN PHY

CAN_TX / CAN_RX

CAN_H / CAN_L

MCU CAN
Controller

CAN Bus

Pin Multiplexing

Figure 4.6: Pin multiplexing. Straight lines depict connections to SIO pins, but can
be multiplexed to GPIO pins (dashed lines).

4.4.3 Synchronization

All ECUs on the CAN bus have their own clock and need to be synchronized

to sample the bus reliably and correctly. This is especially important during the

arbitration phase when each ECU competes for transmission. A discrepancy between

ECUs’ clocks would result in errors which need to be avoided if possible. Since all

ECUs operate on the same bus speed (e.g., 500 kBit/s), their nominal bit time is

fixed (e.g., 2µs). During that bit time, either a logical 0 or 1 will be observed by all

ECUs on their CAN_RX pin. Due to bit transitions (e.g., from 1 to 0) and hardware

imperfections, sampling the bit right at the beginning of the bit time might result

in sampling a wrong logical value. To avoid this problem, CAN controllers usually

sample the bit at 70% within the nominal bit time. Fig. 4.7 depicts how a nominal

bit time is split into 10 time quantas (TQ) and indicated the desired sampling point.

CAN controllers continuously re-synchronize due to oscillator/clock drifts. A hard

synchronization is done at each start-of-frame (SOF) bit, i.e., when a transition from

119

1 to 0 occurs after at least 11 recessive bits during the idle bus.

Sync Prop Phase 1 Phase 2prev. bit next bit

Nominal Bit Time

Sample Point
TQ

Figure 4.7: CAN bit timing

MichiCAN has to replicate the synchronization process in software since we are

circumventing the CAN controller. One simple way is to trigger timer interrupts

every bit time (e.g., 2µs) and then read in the value from CAN_RX. However, there

are two issues with this straightforward approach: (i) we cannot guarantee where each

bit is sampled and (ii) due to oscillator drift of the clock that the timer interrupts

use, the interrupts will not be triggered at the same location within each bit time. To

overcome this, we introduce an additional external interrupt that will be triggered at

each SOF, indicated by a bit transition from 1 to 0 after at least 11 recessive bits. At

this point, we can restart the main timer interrupt to trigger at 70% of the nominal

bit time. For a 500kBit/s CAN bus, the timer interrupt would first activate after

1.4µs. Since we also reset the FSM and some other counter variables at the beginning

of each CAN frame (which takes a constant number of clock cycles), we need to

account for this when we restart the timer interrupts. As a result, we will first trigger

the interrupt at a constant delta (called fudge factor) less than 1.4µs. This can be

determined empirically since the required clock cycles (and thus execution time) for

the fudge factor will always be constant. Since we already know that the current bit

is the SOF, we can just skip this bit and restart the timer interrupts for the first bit

of the CAN ID. When we execute the main interrupt handler for the first time (i.e.,

during the first bit of the CAN ID), we will disable the interrupt timer and restart

it to trigger every 2µs since there will be no additional operations (such as resetting

120

the FSM).

4.4.4 Detection

Since the CAN_RX can be read directly and we are properly synchronized to the

CAN bus, MichiCAN can start with the detection routine. The latter is described in

the first half of Algorithm 5. The main interrupt handler will trigger for the first time

at the first bit of the CAN ID. At the very beginning of the interrupt handler, we

read the bit from CAN_RX. Since we are using a PIO controller for pin multiplexing,

we can directly read the value of CAN_RX from the MCU’s registers (line 2). This

avoids using an external read function from the MCU’s libraries which would add

unnecessary computational overhead. Then, we increment a counter to keep track at

which bit position within a CAN frame MichiCAN is located. Since the interrupt is

triggered every bit time, each execution of the interrupt handler will correspond to a

new bit in the frame. As mentioned in Sec. 4.2, CAN_RX will contain stuff bits which

are automatically inserted by the CAN controller if there are more than 5 bits of the

same polarity. As a result, we need to detect and identify these stuff bits (lines 6-

18). While we are reading the 11-bit CAN ID, MichiCAN needs to remove those before

appending them to a frame array. For each bit (that is not a stuff bit), MichiCAN runs

the FSM that is outlined in Sec. 4.4.1. Once the FSM determines that the CAN ID

indicates a spoofing or DoS attack, the malicious flag start_counterattack will be

set to true. To reduce computational overhead, MichiCAN will then stop running the

FSM for the remaining bits of the CAN ID (lines 11-12 and 16-17) and just continue

monitoring stuff bits.

4.4.5 Prevention

Once MichiCAN sees that the start_counterattack flag has been raised, it will

execute its prevention routine. The basic idea behind attack prevention is to launch

121

Algorithm 5 Main interrupt handler
1: function interrupt_handler()
2: value← Read CAN_RX register with PIO controller
3: if sof == True then
4: cnt← cnt+ 1
5: if cnt < 25 then
6: if frame[cnt-2] != value && stuff==5 then
7: stuff ← 0
8: cnt← cnt - 1
9: if frame[cnt-2]==value && stuff < 5 then
10: frame[cnt-1]← value
11: if !start_counterattack then
12: state_machine_run(value)

13: stuff ← stuff + 1
14: if frame[cnt-2] != value && stuff < 5 then
15: frame[cnt− 1]← value
16: if !start_counterattack then
17: state_machine_run(value)

18: stuff ← 0
19: if cnt == 20 then
20: Disable CAN_TX Multiplexing
21: sof ← False
22: cnt← 0
23: else if cnt == 13 then
24: start_counterattack ← False
25: Enable CAN_TX Multiplexing
26: Pull CAN_TX Low
27: else
28: if value == 1 then
29: cnt_sof ← cnt_sof + 1
30: else if value == 0 && cnt_sof < 11 then
31: cnt_sof ← 0
32: if value == 0 && cnt_sof ≤ 11 then
33: sof ← true
34: cnt_sof, frame[0]← 0
35: stuff, cnt← 1
36: reset_state_machine()

122

a counterattack and bus off the attacker node according to CAN error-handling rules

(see Sec. 4.2.1). This can be accomplished by causing an error in the adversary’s

transmission. The two error types we are exploiting are bit and stuff errors which

can be achieved by transmitting a sequence of dominant bus levels. Note that we are

not sending a complete CAN message, but merely pulling the bus low for a period

of time. Since dominant bus levels always overwrite recessive ones, a recessive bit

transmission by the adversary will result in a bit error. Alternatively, if the attacker

ECU transmitted 5 consecutive dominant bits, it will be followed by a recessive stuff

bit. Since we are pulling the bus low by transmitting dominant bus levels, the stuff

bit will be overwritten by another dominant bit which results in a stuff error. Fig. 4.8

depicts the prevention routine. Two major questions to address are (i) when to start

injecting a dominant sequence of bits, and (ii) how many dominant bits to inject.

Attacker

MichiCAN

CAN Bus

Stuff bit

SOF CAN ID RTR IDE r0 DLC

Enable TX
multiplexing

Disable TX
multiplexing

0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 …

Error frame

…

…

0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Figure 4.8: MichiCAN prevention routine

Although the detection routine of MichiCAN can terminate before the end of the

CAN ID field, we cannot start injecting dominant bits during arbitration. This would

lead to the attacker losing arbitration, but not generating an error frame. Since our

goal is to bus off the attacker, MichiCAN needs to inject the first dominant bit right

after the CAN ID field, i.e., during the RTR bit (see Fig. 1.3). Since this bit (and the

following IDE and r0 bits) is already dominant, no bit error will be generated. The

following DLC field is usually encoded as "1000" (since CAN messages mostly consist

of 8 data bytes), so the earliest bit error can be caused at the fourth bit. Hence, the

minimum duration that MichiCAN needs to pull the bus low to cause a bit error is four

123

bits. However, if the least-significant bits (LSB) of the CAN ID consist of consecutive

dominant levels, a stuff error can be caused as early as in the RTR bit. For this to

happen, the five LSBs of the CAN ID need to be dominant. It will be sufficient for

MichiCAN to just transmit one dominant bit during the RTR slot to raise an error

frame. In the worst case, if the CAN data field consists of only one byte (indicated

by DLC bit string "0001"), causing a stuff error will require to inject 6 dominant bits

if the LSB of the CAN ID is recessive. To sum up, an error frame can be caused

by MichiCAN injecting 1–6 dominant bits. Since this will depend on several factors

(such as the DLC length) that are unpredictable during sampling the CAN frame,

MichiCAN needs to make sure to inject 6 dominant bits. The worst-case scenario is

depicted in Fig. 4.8. As described in Sec. 4.4.2, the CAN_TX pin is disabled by

default. At frame position 13 (1 SOF + 11 CAN ID + 1 RTR), MichiCAN will enable

CAN_TX multiplexing, pull the pin low and set the start_counterattack flag to false

(lines 23-26 in Algorithm 5). At frame position 20, it will then disable CAN_TX

multiplexing which will automatically stop pulling the bus low, set the start-of-frame

flag to false and the frame counter to 0 since MichiCAN is done processing the frame

(lines 19-22).

The attacker (which has to comply with the CAN protocol) will immediately raise

an active error frame consisting of six dominant bits followed by eight recessive bits.

Even if MichiCAN would have succeeded in only transmitting one dominant bit (in the

best-case scenario as outlined above), five additional dominant bits will not do any

harm due to the six-bit dominant error flag. The transmission error counter (TEC) of

the attacking ECU will be increased by 8 and it will attempt a retransmission after a

total of 11 recessive bits (lines 27-36). At the SOF bit, several variables, as well as the

FSM will be reset. MichiCAN will repeat the detection procedure and start another

counterattack. After a total of 15 retranmissions, the attacking ECU will transition

into its error-passive region and start transmitting passive error frames. After another

124

16 retransmissions (summing up to a total of 32 attempts), the attacking ECU will

be confined into bus-off state.

So far, we assumed that the retransmissions will not be disturbed by any other

CAN messages on the bus. Since any ECU can transmit after an idle period of 11 re-

cessive bits (which is the minimum between retransmissions as well), a CAN message

with lower CAN ID would win arbitration and thus interrupt the repeated transmis-

sions. This will come at the expense of increasing the bus-off time, an important

metric we will evaluate in Sec. 4.5.5. However, since MichiCAN compares the CAN ID

of a frame even for a retransmission, it will still work as expected. Even in the pres-

ence of multiple attackers, MichiCAN is capable of busing off all attackers according

to CAN specifications.

4.5 Evaluation

4.5.1 Experimental Setup

To evaluate MichiCAN, we can choose from different evaluation boards that come

with integrated CAN controllers and either meet/resemble the specifications of auto-

motive ECUs or are specifically built for it. One prominent and affordable platform

is the Arduino Due which features an Atmel SAM3X8E ARM Cortex-M3 CPU [28]

clocked at 84MHz, 512kB of Flash memory, 96kB of SRAM and most importantly, an

on-chip CAN controller. Since the Arduino only provides CAN_TX and CAN_RX

lines and comes without a CAN transceiver, we can use separate CAN PHY breakout

boards [43] in conjunction with that to build a CAN bus.

Our experimental setup is depicted in Fig. 4.9 and uses two Arduino Dues, one

running MichiCAN and the other acting as the attacker ECU. Sec. 4.6 will discuss

how MichiCAN operates around multiple attackers and how this affects our evalua-

tion metrics. To evaluate certain metrics, we need to measure the execution time of

125

Figure 4.9: Experimental setup with two ECUs

MichiCAN. To minimize the overhead on the Arduino Due and report accurate num-

bers, we use an external timer. For this purpose, we chose the ESP8266 [32] which

can sample pins at up to 160MHz. Furthermore, we have also connected a logic an-

alyzer to the breadboard so that we can monitor the CAN traffic and obtain other

time measurements for other evaluation metrics.

We evaluate MichiCAN using CAN messages from real production vehicles of the

same OEM manufactured between 2016 and 2019:1 Vehicle A is a luxury mid-size

sedan, Vehicle B a compact crossover SUV, Vehicle C a full-size crossover SUV and

Vehicle D a fullsize pickup truck. All vehicles have two CAN buses and each bus

is analyzed separately. Vehicle A has 208 and 127 CAN IDs, respectively. These

numbers stand at 161 and 153 for Vehicle B, 123 and 103 for Vehicle C, and 122 for

both buses on Vehicle D.
1Due to NDA, we cannot disclose the name of the automotive OEM.

126

The next three subsections evaluate the detection rate, complexity and latency

using a computer running 64-bit Ubuntu 18.04.4 LTS with 128GB of registered ECC

DDR4 RAM and two Intel Xeon E5-2683 V4 CPUs (2.1 GHz with 16 cores/32 threads

each). The remaining subsections elaborate on online metrics such as bus-off time,

CPU utilization, bus load and memory which are all evaluated on the CAN bus pro-

totype depicted in Fig. 4.9. In our setup, each CAN controller can be configured

to transmit messages at speeds up to 1 Mbit/s, although all ECUs on a CAN bus

need to share the same bus speed. This is fixed by the OEM at production time

and cannot be altered afterwards. The most common bus speeds are 125, 250 and

500kbit/s. Our online evaluation will be based on 50 and 125kbit/s bus speeds. Al-

though MichiCAN can run at 250kbit/s, we observed several issues with both detection

and prevention routines. This can be explained by the interrupt handler which has

less time to execute before the next bit arrives. Although we acknowledge this draw-

back of MichiCAN, it can be explained by the overhead in the detection routine. The

two aforementioned bus speeds guarantee reliable functionality of MichiCAN. Never-

theless, we show in Sec. 4.6.2 that MichiCAN can indeed run at higher bus speeds on

different hardware.

Furthermore, we make direct comparisons of two crucial metrics, namely bus-off

time and bus load, of MichiCAN with the closest related work Parrot [67].

4.5.2 Detection Rate

Sec. 4.4.1 illustrates the generation of finite state machines (FSMs) for spoofing

and DoS detection with an example CAN bus consisting of 4 CAN IDs, i.e., |E| =

4. Real vehicles contain 100–200 CAN IDs per CAN bus as depicted in Sec. 4.5.1.

However, the maximum number of CAN IDs is 211 = 2, 048. With a growing number

of CAN IDs |E|, the FSM is expected to contain more if-statements (see Listing C.1).

As a result, the execution time of the interrupt handler and thus the CPU usage will

127

increase. In what follows, we will analyze the number of if-statements in the FSM for

varying |E|.

Let E|E| denote an IVN consisting of |E| CAN IDs. To empirically verify that

MichiCAN works for all combinations, we can exhaustively generate FSMs using the

algorithms from Sec. 4.4.1 for each ECUi in Ej with i ≤ j and j ∈ {1, 2047}. This

would lead to
∑2047

k=1

(
2047
k

)
≈ 1.6 × 10616 different FSMs. Generating and testing

each FSM on all possible CAN IDs (from 0x000 to 0x7FF) takes roughly 1.5 seconds.

Given the extremely large number of combinations, it is impossible to run exhaustive

testing on any platform. To overcome this difficulty, we randomly sampled 160,000

combinations. The tests passed on all random combinations, yielding a 100% detec-

tion rate.

4.5.3 Detection Complexity

Fig. 4.10 depicts the number of if-statements in each of the 160,000 generated

FSMs. Each dot in the figure represents one combination. Since an incoming CAN

ID does not have to run through all if-statements, the figure shows the worst-case

scenario. Even with 160,000 random combinations, a specific pattern emerges. As

expected, the number of if-statements increases with a larger |E| since more and more

local prefixes are added. After roughly 500 CAN IDs, the number of if-statements

starts to decrease because at that point, there are enough outliers that do not require

new local prefixes, but can eventually start sharing them. Furthermore, as |E| con-

tinues to grow, there are fewer malicious CAN IDs and thus less outliers and local

prefixes. It is worth noting that the testing time for varying |E| follows a similar,

but more dampened pattern, as Fig. 4.10. The mean testing time stands at 0.5–0.6

second on our desktop setup, while the 99-th percentile stands at 0.7 second. Fig. C.1

in Appendix C.1 depicts this relationship.

In addition to testing over 160,000 random combinations, we also used the eight

128

Figure 4.10: Maximum number of if-statements in each FSM

CAN buses |E| used on four real vehicles from Sec. 4.5.1. We found that the FSM

will require less if-statements than our randomly-generated networks (see orange dots

in Fig. 4.10), since the CAN IDs are assigned with more structure. The main reason

behind that is that many CAN IDs are close in range, with big gaps between clusters.

The algorithms to generate these FSMs need to be run only once offline during the

vehicle’s production phase. This means that, while their complexity is O(n2), they

can run offline in as much time as needed. However, for the IVNs of a real production

vehicle, roughly 400 FSMs need to be generated which take less than 10 minutes on

a similar setup like ours. The FSMs generated from this offline algorithm are then a

finite number of if-statements which never exceed 1000.

4.5.4 Detection Latency

Another important metric for our detection routine is the detection latency, i.e.,

at what bit position within the CAN ID MichiCAN will know to stop executing its

129

FSM and set the counterattack flag to true. We will henceforth refer to this as the

detection bit position. Although the earliest the counterattack can start is after the

arbitration field (as discussed in Sec. 4.4.5), stopping the FSM early can be beneficial

to avoid using additional CPU cycles. CPU utilization is an important online metric

and will be evaluated in Sec. 4.5.6.

Figure 4.11: Bit position at which CAN ID is malicious

For our 160,000 random combinations, Fig. 4.11 depicts the best-case, worst-

case, and average-case scenarios of the detection bit position. As the size of IVN E

grows, the detection bit position rises for the best-case and average-case scenarios

as expected. It is interesting to note that for the average case, the detection bit

position already reaches 10 bits at around 200 ECUs/CAN IDs which is a common

size for real production vehicles. The CAN communication matrices of vehicles are

optimized so that the number of if-statements is less, but the detection bit position

has a relatively insignificant change for |E| = 200 (standing at 9 bits on average).

Vehicle manufacturers could select CAN IDs in an engineered manner in order to

130

Vehicle A HS1 Vehicle A HS2 Vehicle B HS Vehicle B MS Vehicle C HS1 Vehicle C HS2 Vehicle D HS1 Vehicle D HS2

Evaluation Vehicles

5

10

15

20

25

30

35

40

CP
U

Lo
ad

 (i
n

%
)

Full Scenario

50 kbits idle
50 kbits active
50 kbits combined
125 kbits idle
125 kbits active
125 kbits combined

(a) CPU full scenario

Vehicle A HS1 Vehicle A HS2 Vehicle B HS Vehicle B MS Vehicle C HS1 Vehicle C HS2 Vehicle D HS1 Vehicle D HS2

Evaluation Vehicles

5

10

15

20

25

30

CP
U

Lo
ad

 (i
n

%
)

Light Scenario

50 kbits idle
50 kbits active
50 kbits combined
125 kbits idle
125 kbits active
125 kbits combined

(b) CPU light scenario

Figure 4.12: CPU usage for full and light scenarios

better optimize this detection bit position. Finally, the detection latency is calculated

as the detection bit position multiplied by the nominal bit time.

4.5.5 Bus-off Time

MichiCAN starts to bus off the attacker by generating error frames as soon as

possible, i.e., right after the CAN ID field. In total, 31 retransmissions are required

after the initial transmission of a malicious CAN ID. Note that no complete CAN

frames are sent since the attacker will retransmit its CAN message after the 14-

bit error frame and 3-bit inter-frame space (IFS) in its error-active region and an

additional 8-bit suspend period in its error-passive region. The total time from the

first bit of a malicious CAN message to the last bit of the passive error frame in the

31st retransmission is called bus-off time. It depends on the attacker’s CAN ID since

in the best case, MichiCAN has to inject one dominant bit, whereas in the worst case,

it has to inject 6 dominant bits to trigger an error frame (see Sec. 4.4.5).

Best-Case Scenario MichiCAN injects the dominant bit during the RTR bit. As a

result, the error frame starts at the 14th bit position within the CAN frame (1 SOF

+ 11 CAN ID + 1 RTR). The error flag itself consists of 14 bits, in addition to the 3

131

bit IFS, so the (re-)transmission of an error-active attacker takes 30 bits. Note that

this calculation excludes stuff bits which depends on the most-significant bits of the

CAN ID. For the error-passive attacker, this number stands at 38 bits including the

additional suspend period.

Worst-Case Scenario MichiCAN injects six dominant bits (depicted in Fig. 4.8).

The error frame starts at the 19th bit within the CAN frame. The bus-off time stands

at 35 bits and 43 bits for the error-active and error-passive attacker, respectively.

Table 4.3 shows the error-active and error-passive transmission times, as well as the

entire bus-off time for the best-case (BC) and worst-case (WC) scenarios, respectively.

As with the detection latency, the number of bits has to be multiplied by the nominal

bit time which is the inverse of the bus speed. Our evaluation results show a WC bus-

off time of 10ms for a 125kbit/s bus. Using a higher-speed bus running at 500kbit/s,

the WC time will decrease to 2.5ms. After analyzing the communication matrices

of production vehicles (see Sec. 4.5.1), we found that minimum deadlines of periodic

CAN messages stand at 10ms. The added overhead of less than 2.5ms is thus feasible

and will not affect bus communications.

Table 4.3: Bus-off time for one attacker

Bus Speed
(in kbit/s) Scenario Error-Active

Time (in µs)
Error-Passive
Time (in µs)

Bus-off Time
(in ms)

50 B.C. 600 760 21.8
W.C. 700 860 25.0

125 B.C. 240 304 8.7
W.C. 280 344 10.0

In case of a busy CAN bus, the CAN ID of the attacker’s retransmissions can

get interrupted by higher-priority CAN messages. If the message is not malicious,

the bus-off time will be extended only by one CAN frame (125 bits including stuff

bits). However, if the higher-priority message is malicious, it will prolong the bus-

132

off time by an entire bus-off attempt (see Table 4.3). Furthermore, bused-off ECUs

will wake up after observing 128 instances of 11 recessive bits and might have an

effect on future message transmissions (if they are high-priority). To avoid this, we

suggest implementing a persistent bus-off as described by Serag et al. [156]. However,

this feature is not in the scope of MichiCAN and hence not implemented, although

MichiCAN is fully transparent to this addition.

As mentioned in the Introduction, Parrot [67] will launch a counterattack to bus

off the attacking ECU in case of a spoofing attack. Parrot uses MCUs with external

CAN controllers and can thus only inject entire CAN frames to the bus. In contrast,

MichiCAN uses integrated controller which can read and write each individual bit on

the CAN bus, so it knows exactly when to drive the CAN_TX low to generate an error

frame in the attacker. Parrot’s defensive message contains the same CAN ID and DLC

as the attacker’s message, but consists of a payload of only dominant bits which would

overwrite any recessive bit in the attacking ECU’s data to cause a bit error. Since

Parrot can only send complete CAN frames, it cannot start the counterattack until

the second occurrence of the malicious CAN message. During the first transmission,

Parrot detects by observing its own CAN ID that an attacker is present. Since it

needs to inject a complete CAN frame, it cannot launch a counterattack on that first

instance. This is particularly problematic as even one spoofed CAN message can

have safety-critical impact on the victim ECU, i.e., disabling the brakes [86]. Since

the bus-off time is defined from the first bit of a malicious CAN message, there will

be a delay of one entire CAN message (i.e., 125 bits). Furthermore, due to Parrot’s

limitation of only being able to send complete CAN frames, each defensive message

needs to be injected at the exact same time as the attacker. To force a collision, Parrot

needs to send defensive messages at a very high speed to overlap with the attacking

message. Since this is not deterministic and also depends on the separation of the

attacker’s message, we will assume that both the malicious and defensive messages

133

start immediately after an IFS of 3 bits. This is considered the best-case scenario for

the bus-off time.

The earliest first collision will occur after 19 bits, i.e., during the first bit of

the data if the attacker’s message contains a recessive bit. This bit error will lead

to the attacker generating an active error flag which, in turn, causes a stuff error

in the victim ECU after 6 bits. Both ECUs will increase their transmission error

counters (TECs) by 8 and re-transmit after the error flag and IFS. In total, one

(re-transmission) attempt in the error-active region accumulates to 41 bits. After 16

occurrences, both attacker and victim ECU will enter the error-passive region. The

attacker will detect another collision after 19 bits, but raise a passive error flag this

time which consists of recessive bits and does not cause a stuff error in the victim. As

a result, the victim can finish their re-transmission and start decreasing their TEC.

However, the attacker will continue increasing their TEC by 8 for each collision. After

16 instances of successful re-transmissions by the victim (each attempt consisting of

125 CAN frame + 3 IFS + 8 suspend transmission bits), the attacker will finally be

confined into the bus-off state. In total, it takes a minimum of 2,960 bits to bus off

the attacker. This equals the best-case bus-off time of 23.7ms for a 125kbit/s bus

which is more than twice as long as the worst-case bus-off time using MichiCAN.

Besides the long bus-off time, another shortcoming of Parrot is its inability to

cancel messages that have a data field with all zeros. To cause a bit error in the

spoofed message, Parrot injects a CAN message with a data payload consisting of

zeros. If the payload of the attacker’s message contains only zeros, Parrot will not be

able to create any CAN errors since its external CAN controller will inject recessive

stuff bits. Since MichiCAN is only sending a pulse of 6 dominant bits instead of (any

part of) a CAN frame and does not use the CAN controller, it will not face this

problem. Last but not least, by generating error frames in the attacker, Parrot will

not only raise the attacker’s TEC, but also its own. The reason behind this is that

134

Parrot itself sends a complete CAN frame with the same CAN ID, but different data.

Although the authors propose a way to reduce the defending ECU’s TEC again, any

non-malicious bus error during that time might bus off the legitimate ECU as well.

4.5.6 CPU Utilization

Since MichiCAN incurs computational overhead to the MCU, it is important to

measure its impact on CPU utilization. We envision MichiCAN as a software patch

to existing application software running on MCUs, and hence a minimal overhead is

desired. Since there is no advanced operating system on our evaluation board, the

Arduino Due, the CPU usage cannot be directly acquired from a system monitor

application. MichiCAN uses interrupts that are triggered every nominal bit-time. We

can measure the overhead induced by MichiCAN by measuring the execution time of

the interrupt handler and dividing it by the nominal bit-time. Although there is an

external interrupt for re-synchronization at the start of the frame, the CPU cycles

consumed by this step are negligible compared to the main interrupt.

The execution time of MichiCAN’s main interrupt handler is recorded via an exter-

nal timer, namely the ESP8266, as mentioned in Sec. 4.5.1. With a clock frequency

of 160MHz, ESP8266 has a time resolution of 6.25ns which is sufficiently fine-grained

for our purposes. At the very beginning of the interrupt handler, we toggle digital

pins on the Arduino which are captured by the ESP’s external interrupts. The ESP

then proceeds to start and increment a counter for each clock cycle. At the end of

MichiCAN’s interrupt handler, we toggle the pins again and the ESP stops its counters,

yielding the total number of clock cycles in between these two external interrupts.

The clock cycles multiplied by the aforementioned resolution gives us the execution

time of MichiCAN.

CPU utilization is evaluated for both full and light scenarios of the FSM that

have been introduced in Sec. 4.4.1. For either scenario, there are two distinct periods

135

while reading CAN_RX in which the CPU utilization significantly varies. The first

period is the bus-idle state, i.e., when no CAN messages are on the bus. The interrupt

handler in Alg. 5 will only execute lines 28-29. This results in a very low execution

time which is constant during this entire period. The CPU utilization during this

period is called idle load. The second distinct period is whenever a CAN frame is

processed (lines 3-26). Since the FSM is only run during the arbitration field, the

execution time during this time will be higher than during the rest of the frame. We

analyze the CPU usage while MichiCAN processes it and refer to it as active load.

Finally, the combined load covers both periods and thus describes the average CPU

utilization overhead on the Arduino.

Fig. 4.12 depicts the mean idle, active and combined CPU loads for both the full

and light scenario, respectively. The evaluation was conducted using the eight CAN

buses E of the four production vehicles from Sec. 4.5.1. For each E, we deployed

the FSM for ECUN on the Arduino for maximum testing coverage (and worst-case

scenario) and then calculated MichiCAN’s CPU utilization overhead by measuring the

execution time of the interrupt handler. We make the following observations from

Fig. 4.12.

CPU load depends on bus speed Since the external time measurement is divided

by the nominal bit-time, the higher bus speed the CAN bus operates on, the higher

the CPU utilization will be. By looking at the active load of MichiCAN on a 125kbit/s

bus, the mean is shown to hover around 40%. The next-fast CAN bus of 250kbit/s

would accordingly use 80% of the CPU which does not include jitter. This explains

why MichiCAN does not always reliably work on higher bus speeds than 125kbit/s.

CPU load depends on FSM complexity As expected, a larger (and thus more

complex) FSM requires the MCU to spend more clock cycles on its if-statements.

While the active load for 125kbit/s in the full scenario hovers around 40%, the light

136

scenario that only consists of spoofing detection consumes less computation power

at 30% utilization. This amounts to a 25% reduction in CPU cycles for the light

scenario.

4.5.7 Bus Load

The bus load (BL) b is calculated as [14]:

b =
sframe

fbaud

∑
m∈M

1

pm
, (4.3)

where fbaud is the bus speed, and pm is the period/cycle time of a CAN message m.

Each CAN frame consists of 125 bits on average (including stuff bits), i.e., sframe=125.

Since we do not use real CAN traffic on our experimental setup, there is no point

of measuring the absolute bus load. Our sender ECUs can transmit periodic messages

at intervals we can configure, so we can arbitrarily adjust the absolute bus load. More

interesting is the bus load overhead, i.e., how MichiCAN’s prevention routine affects

the overall bus load. One CAN message at 125kbit/s is transmitted within 1ms.

Table 4.3 shows that if this message is counterattacked by MichiCAN, it will be on

the bus for 10ms in the worst case including retransmissions and in the absence of

higher-priority CAN messages. Theoretically, we increase the bus load by a factor of

10. However, using a persistent bus-off attack [156], the attacker will be bused off

once and the remaining CAN communications will continue normally. As a result,

there will only be a short spike in the bus load during the counterattack for around

10ms. As discussed in Sec. 4.5.5, the bus-off time during which the bus load will

peak is much smaller than typical message deadlines. Despite the non-zero bus load

overhead, the scheduling of higher-priority messages will not be affected due to CAN

arbitration. Lower-priority messages that have even longer deadlines will experience

a negligible blocking delay during the bus-off attempt. For instance, the bus-off time

137

for a CAN bus operating at 500kbit/s stands at 2.5ms. Low-priority messages have

deadlines standing at 50 or 100ms as observed in the eight vehicles from Sec. 4.5.1. As

a result, the bus-off attempt will incur a bus load overhead of 2.5–5% for low-priority

ECUs. Given that the bus load will never exceed 80% [15] and a real observed bus

load of 40% in real vehicles [67], the overhead can be considered negligible.

As mentioned before, Parrot [67] transmits defensive messages at a very high

frequency to cause collision with the start of the attacker’s message. Our experimental

results show that the gap between two defensive messages need to be 3 bits which

is also equal to the IFS. As a result, the bus load overhead during the time until a

collision is forced stands at 125
128
≈ 97.7%. Note that MichiCAN does not incur this

overhead at all. During the bus-off attempt, Parrot’s bus load overhead will be at

least 2x higher than MichiCAN’s, according to the bus-off time reported in Sec.4.5.5.

4.5.8 Memory

Finally, Flash and RAM usage are reported when our code compiles into the

Arduinos. Memory usage is evaluated (i) without MichiCAN (regular CAN communi-

cation), (ii) using a light scenario, and (iii) using a full scenario of MichiCAN. Table 4.4

reports all numbers in bytes. As expected, the majority of program storage in Flash

comes from the interrupt handler, effectively doubling the amount of required Flash

memory. However, static RAM allocation barely changed due to the low number of

variables introduced by MichiCAN. All in all, only a small fraction of the 512kB of

Flash and 96kB of RAM are used.

Table 4.4: Memory Usage of MichiCAN

Without MichiCAN MichiCAN Light MichiCAN Full

Flash 12776 25744 28032
RAM 5036 5140 5140

138

4.6 Discussion

4.6.1 Prevalence of integrated CAN controllers

MCUs with on-chip CAN controllers have been used in production vehicles for

several years. For instance, the Renesas V850ES/FJ3 infotainment MCU used in the

2015 Jeep hack [86] had an integrated CAN controller. To the best of our knowledge,

MichiCAN is the first to use this integrated MCU–CAN controller for attack detection

and prevention. However, researchers have already leveraged the idea of bypassing the

CAN controller for launching bus-off attacks as early as 2017. For instance, Palanca

et al. [135] use an Arduino Uno with a MCP2551 CAN PHY to read and write bits

directly. However, this setup lacks a CAN controller completely (since the Arduino

Uno does not come with a CAN controller in contrast to the Arduino Due), so they

had to re-implement the majority of the CAN protocol on the Arduino (without any

guarantee of correct implementation) whereas MichiCAN still uses the built-in CAN

controller to correctly receive CAN messages. Another work by Murvay et al. [128]

builds on the previous work with a more sophisticated attacker model, but still uses

an MCU (NXP S12XD512) without an integrated CAN controller.

As described in the previous subsection, an ECU enters bus-off mode when ei-

ther its TEC or REC reaches 256. Although this has been originally designed as a

fault-confinement mechanism, researchers found that this feature can be exploited to

disconnect benign ECUs by an attacker [52, 60]. At the moment, it is unclear how

to effectively defend against bus-off attacks effectively since the only possible way is

to detect this attack and try to bus off the attacker first (if the CAN specification is

not modified) [165, 173]. Novel research even shows that the bus-off attack can be

made persistent [156], i.e., the ECU will not recover after bus-off. Since bus-off at-

tacks generate error frames, a defense against them could track errors based on their

frequency and CAN ID to determine a pattern. Longari et al. [116] attempts to find

139

the source of the bus-off attack, but it (i) cannot determine if the error frames were

caused maliciously or by legitimate bus faults, and (ii) has no prevention capabilities

since it is an intrusion detection system in its core. However, a straightforward, but

expensive approach to mitigate bus-off attacks using integrated CAN controllers can

be achieved by secure boot [153]. The goal of secure boot is to only execute authen-

ticated software when the ECU is booted up. For the aforementioned bus-off attack,

the adversary needs to change the firmware. Using secure boot, the ECU will discard

the changes and boot from the authentic firmware. The secure boot usually requires

a Hardware Security Module (HSM) which is expensive, but already used by Tier-1

suppliers such as NXP [83] or Renesas [112].

The most sophisticated work that actually mentions integrated CAN controllers

and uses them to launch a stealthy bus-off attack was proposed by Kulandaivel et

al. [110]. Their attack framework, called CANnon, can inject single bits and force

the victim to generate error frames until it is bused off. Instead of pin-multiplexing

which MichiCAN is using, they deploy a technique, called peripheral clock gating,

to arbitrarily pause and resume the clock of the CAN controller. Although they

have shown that their method is even harder to detect by existing techniques, they

manipulate the functioning of the CAN controller. MichiCAN does not modify any

part of the CAN controller, but adds redundancy to re-implement certain functions of

the CAN protocol/controller in application software which guarantees full backwards-

compatibility.

4.6.2 Replicability on other MCUs

Our evaluation is done on the Arduino Due which uses an AT91SAM3X8EA 32-bit

MCU. This MCU features an integrated CAN controller and allows pin multiplexing.

We wanted to see if we could replicate MichiCAN on other MCUs as well. Kulandaivel

et al. [110] present an overview of MCUs with integrated CAN controllers which

140

are used in the automotive domain, including the Microchip SAM V71 Xplained

Ultra board, which uses an ATSAMV71Q21 32-bit MCU operating at 150MHz and

the STMicro SPC58EC Discovery board, which uses an SPC58EC80E5 32-bit MCU

operating at 180MHz.

Although we expect MichiCAN to work without further modifications on any of

these, we implemented part of MichiCAN (only spoofing detection) on the S32K144 [42]

which is a low-cost evaluation and development board for general-purpose industrial

and automotive applications. It uses a 32-bit ARM Cortex-M4F S32K14 MCU op-

erating at 112 MHz and also features integrated CAN controllers. We were able to

confirm that MichiCAN works as intended on this MCU as well, and even exceeds

the Arduino by fully working on a 500kbit/s CAN bus. This can be explained by

only implementing spoofing detection on one hand, and a more optimized interrupt

handling on the other hand.

4.6.3 Limitations and Future Work

The main limitation of MichiCAN is the added complexity to read and write each

bit directly. The FSMs for DoS detection also consume a considerable amount of

CPU resource as evaluated in Sec. 4.5.6. As mentioned before, the interrupt handler’s

execution time needs to stay below the inverse of the interrupt frequency which is

tied to the bus speed. Our experimentation on the Arduino Due achieved correct

performance on bus speeds up to 125kbit/s, with even 250kbit/s working for most

CAN messages. Due to the high overhead (i.e., additional CPU cycles) to enter

and exit the interrupt handler on the Arduino Due compared to other comparable

MCUs [119], a more optimized code together with a more powerful MCU will run

MichiCAN on bus speeds up to 1Mbit/s. In fact, our partial MichiCAN implementation

on the S32K144 demonstrated that MichiCAN’s main limitation can be addressed.

Although we provide an extensive evaluation using multiple metrics in Sec. 4.5, we

141

used a minimal working example of a bench prototype consisting of Arduinos. One

way to stress-test MichiCAN is by adding real CAN traffic to the testbed. This can

be done by recording CAN traffic from a production vehicle and replaying it to the

testbed which includes the MichiCAN-equipped MCU (i.e., Arduino Due). This tech-

nique is called rest-bus simulation [26] (since the remaining parts of E are simulated)

and can be performed by USB-CAN interfaces such as the popular PCAN [39].

4.7 Conclusion

In this thesis chapter, we have developed MichiCAN which is a practical spoofing

and Denial-of-Service detection and prevention framework for the CAN bus. By us-

ing integrated CAN controllers deployed in many modern ECUs, we can solve various

issues of prior work, such as the lack of real-time detection and prevention, as well as

significant network overhead. MichiCAN also guarantees backward compatibility with-

out requiring any additional hardware or modifying the CAN protocol. Our extensive

evaluation demonstrated the efficacy of MichiCAN using multiple metrics. Since DoS

attacks are an overlooked but important threat vector in automotive security stan-

dards such as AUTOSAR SecOC [30], we envision MichiCAN to be a compelling and

practical security enhancement for OEMs that can be easily implemented in their

production vehicles.

142

CHAPTER V

CARdea: Practical Anomaly Detection for

Connected and Automated Vehicles

5.1 Introduction

The future of intelligent transportation systems (ITS) will be spearheaded by

vehicle-to-everything (V2X) communication. V2X is one of the complementary tech-

nologies to enhance and support Advanced Driver-Assistance Systems (ADAS) and

autonomous vehicles (AVs). Primarily, the V2X communication range is greater than

the sensing ranges of current ADAS and AV sensors, such as radar, LiDAR and

cameras. At the same time, V2X allows non-line-of-sight (NLOS) detection and com-

munication which is not possible with ADAS/AV sensors. Among others, V2X allows

connected vehicles to talk to other vehicles (V2V), smart infrastructure (V2I) and

pedestrians (V2P). V2X can also be used with cars that have a lower level of automa-

tion [29], such as traditional cars, and help them avoid traffic congestion and prevent

collisions. For these purposes, vehicles exchange Basic Safety Messages (BSMs) in

the US which are defined in the SAE J2735 standard [149]. BSMs contain state in-

formation about a vehicle, such as its location, speed, acceleration, heading and yaw

rate. Vehicles listen to BSM broadcasts and can plan their future actions accord-

ingly, e.g., by slowing down or speeding up. This can enhance road safety as long as

143

there is no malicious interference. Note that CAVs do not exclusively rely on BSMs,

but received sensory data is considered advisory information, as CAVs use different

sources of data to make informed decisions. Unfortunately, with the deployment of

OBU

GW
TCU ECU ECU

ECU

ECU ECU

ECU

SECU
ECU ECU

CARdea

OBU

CARdea

P1

V2V

V2I

Cellular

RSU
(“edge”)

Ego
Vehicle

Other
Vehicle

Backend
(“cloud”) CARdea

P2

CARdea

P2

P2

1 2

3

Figure 5.1: CARdea deployment options in V2X infrastructure

complex connected computing platforms, the risk of cyber attacks grows. As a result,

the field of V2X security has received increasing scrutiny over the last decade [93],

with various standardization bodies in the US and Europe working to add security

to the respective V2X protocols [150, 157]. The field of V2X security is broad with

several challenges in responding to different types of threats as described in Sec. 5.2.

Depending on the attackers’ capabilities and attack types, a holistic multi-layered

security concept is required. For instance, BSMs from external attackers (e.g., road-

side attackers with V2X radio) will be discarded immediately due to lack of valid

credentials to join the BSM broadcast. In contrast, internal attackers (e.g., compro-

mised ECUs) are “real" vehicles that are authenticated to exchange BSMs with their

surrounding vehicles and other entities. They can launch a variety of attacks, such

144

as Denial-of-Service (DoS), Sybil, replay, or false data injection [152]. Compared to

these three attack types which are all of adversarial nature, false data broadcast can

also be caused by faulty sensors in non-malicious vehicles [148]. This can be achieved

through a compromised in-vehicle network [58, 124, 127] or a malicious On-Board

Unit (OBU) — the vehicle’s external interface responsible for V2X communication.

Nevertheless, false data injection is considered to be a serious security threat due to

its low deployment complexity [113].

Although there are several distinct existing defenses against false data injection

and Sybil attacks as depicted in Table 5.1 (see Sec. 5.3 for more details), most of

them are a) requiring sensor fusion with other data (e.g., Angle of Arrival (AoA),

Radar) that might not be available on any car, b) having a large detection latency,

and/or c) using machine learning (ML) models that are computationally heavy for

the vehicle’s constrained computing resources. Ideally, all attacks need to be detected

instantaneously at the vehicle for immediate mitigation of the potentially evolving

safety risk, as well as offer high detection rate (TPR) and low false alarm rate (FPR).

Specifically, prior work paid little attention to the detection latency due to a vehicle’s

limited computation power for cost reasons. Since most safety-critical functionalities

require simple computations and do not need high-performance hardware (i.e., CPU

and memory), these legacy ECUs are very simple and highly optimized for repetitive

control operations. Despite the lack of publicly available ECU specifications, existing

literature demonstrates that even the highest-end ECUs in current in-vehicle archi-

tectures are not as fast as the slowest workstations that prior work tested on. For

instance, a 32-bit ARM 1GHz Infotainment ECU is considered high-end [132] and a

tear-down of the technologically-advanced Tesla Model S [45] revealed that the most

powerful ECUs (e.g., NVIDIA Tegra) can only be comparable to smartphone CPUs

from over five years ago.

145

Ta
bl
e
5.
1:

C
om

pa
ri
so
n
w
it
h
re
la
te
d
w
or
k

W
or

k
So

19
[1
62
]

Ya
o1

7
[1
90
]

Ya
v1

7
[1
92
]

Bi
12

[5
1]

Su
17

[1
72
]

Va
19

[1
78
]1

CA
Rd

ea

B
S
M

D
at

a
p

N
/A

p,
v,

a
p,

h,
v

p,
a

p,
v,

a
p,

v,
a

O
th

er
D

at
a

R
SS

I
R
SS

I
M
ap

R
ad

ar
A
oA

,D
S

N
on

e
N
on

e

A
n
om

al
ie

s
C
on

st
an

t
(+

O
ffs
et
)

R
an

do
m

(+
O
ffs
et
)

E
ve
nt
ua

lS
to
p

Sy
bi
l

R
an

do
m

E
rr
or

Sy
bi
l

C
on

st
an

t
O
ffs
et

In
st
an

t
C
on

st
an

t
G
ra
du

al
D
ri
ft

B
ia
s

C
on

st
an

t
(+

O
ffs
et
)

R
an

do
m

(+
O
ffs
et
)

Sy
bi
l

R
ep
la
y

A
p
p
ro

ac
h

P
hy

si
ca
lL

ay
er

C
on

si
st
en
cy

C
he

ck
D
yn

am
ic

T
im

e
W
ar
pi
ng

(D
T
W

)
V
eh
ic
le

P
hy

si
cs

(V
P
)

P
ar
ti
cl
e

F
ilt
er

(P
F
)

E
xt
en
de
d

K
al
m
an

F
ilt
er

(E
K
F
)

C
N
N
+
K
F

V
P
+
(R

F
,S
V
M
,D

N
N
)

P
er

fo
rm

an
ce

(%
)

T
P
R
:8

3.
7

T
P
R
:>

9
0

F
P
R
:<

1
0

T
P
R
:9

0
F
P
R
:2

.7
N
/A

T
P
R
:1

00
F
P
R
:5

T
P
R
:5

1.
5-
99
.2

P
ha

se
1

T
P
R
:9

8,
F
P
R
:0

.0
2

P
ha

se
2

T
P
R
:9

9,
F
P
R
:0

.1
6

D
et

ec
ti

on
T

im
e

(m
s)

N
/A

63
0

N
/A

5-
25

3.
2

K
F
:5

.1
P
ha

se
1:

0.
09
-0
.1
1

P
ha

se
2:

5.
1-
15
.5

146

CARdea attempts to bridge this disconnect between feasible in-vehicle resource us-

age and good performance of anomaly detection geared towards attacks and anomalies

in BSMs. We assume that any ML-based anomaly detection would increase the de-

tection latency significantly if implemented on existing in-vehicle ECUs. Despite this

disadvantage, existing work (see Table 5.1) demonstrates that detection performance

is generally favorable. On the other hand, light-weight statistical approaches can be

deployed inside an existing in-vehicle ECU (i.e., on-board) without incurring too much

overhead on latency and computational resources. To achieve the best of both worlds,

CARdea uses a hybrid of statistical and ML-based schemes which are incorporated in

two sequential phases.

Phase 1 runs a data-centric plausibility check inside the vehicle, leveraging the

correlation of three sensors included in BSMs (GPS, speed, acceleration) according to

a vehicle’s physical dynamics model. Its goal is to detect an anomaly in a BSM (i.e.,

sensor fault or adversarial attack). This phase acts as the first layer of defense and

needs to detect broadcasts from anomalous vehicles as fast as possible. To minimize

both false negatives and false alarms, Phase 1 will only come to a decision if the

current data can be marked as anomalous or non-anomalous with a high likelihood.

If Phase 1 is uncertain about the condition of BSMs, it will delegate these to Phase

2, which will determine if that piece of data was anomalous or not.

While Phase 1 runs locally inside the vehicle (e.g., on a dedicated ECU), Phase

2 will be executed on a node with more computational resources, such as the edge,

OEM’s backend or a “super-ECU" in future in-vehicle zonal architectures [108] that

are equipped with high computational resources and network bandwidth. Although

the latter may initially seem counter-intuitive, some vehicles with ADAS or self-

driving capabilities might already have the necessary hardware, whereas many others

are unlikely to have these capabilities in the years to come. We envision CARdea to

work on any V2V-equipped car, so that the entity that will run Phase 2 is a de-

147

sign choice for OEMs. For instance, lower-end vehicles will likely run Phase 2 in

the cloud, whereas more advanced AVs can run it locally. The latter will save net-

work bandwidth, but will require more expensive hardware. Furthermore, even if

the computational resources are available in AVs, they are tailored towards the spe-

cific computer vision applications. Any additional software module that runs along

the aforementioned ADAS apps will require additional processing resources (espe-

cially memory) since OEMs tailor even their advanced hardware to use the minimal

amount of resources. The primary driver behind this trend is cost. An overview of

Phase 2 deployment options is depicted in Fig. 5.1.

This thesis chapter makes the following main contributions:

• Development of a novel and hybrid two-phase approach, CARdea, that combines

statistical- and ML-based anomaly detection to protect against anomalous or

malicious BSMs;

• Use of only sensor information in BSMs to build a robust anomaly detection

scheme without relying on other (wireless) measurements;

• Low detection latency and memory usage on in-vehicle components which en-

hances the practical/low-cost deployability;

• Support for the detection of various types of anomaly;

• Extensive evaluation with 108 hours of simulated data in Veins [164].

5.2 Background and Threat Model

5.2.1 Primer on V2X

Vehicular sensor data is generated by in-vehicle Electronic Control Units (ECUs)

which are distributed embedded systems usually specialized for simple repetitive au-
1Re-implemented on same evaluation setup as CARdea for comparison.

148

tomotive control tasks. ECUs are interconnected via an in-vehicle network (IVN)

such as the CAN bus.

The central gateway (see Fig. 5.1) is connected to the On-Board Unit (OBU)

which is the radio for V2X communication. A V2X frame can contain the payloads of

several application layer protocols which vary with geographic region [64]. In the US,

SAE standardized Basic Safety Message (BSM) [149] as the application protocol for

road safety, whereas in Europe the pendant is called Cooperative Awareness Message

(CAM) by ETSI [80]. The data format of both protocols is very similar for our

purposes, i.e., both BSM and CAM contain information about the vehicle’s position,

speed and acceleration. Despite this chapter’s focus on BSM, CARdea can also be

used with CAM. Note that both are periodically broadcasting messages at 10Hz.

5.2.2 Threat Model

Security threats against V2X are diverse and have been briefly introduced in

Sec. 5.1. In order to establish a threat model, we need to further classify threats.

Based on the adversary’s incentives to attack V2X systems [169] (e.g., physical dam-

age, financial, etc.), it is possible to derive the following taxonomy of attack vari-

ants [93]: An active attacker presumes that it can interact with the system, whereas

a passive attacker comprises eavesdropping on wireless data. An internal attacker

has system-level access and acts according to the underlying protocol, whereas an

external attacker does not have valid credentials for system access. Most attacks

in V2X systems assume an active, internal attacker and comprise Denial-of-Service

(DoS), Sybil, replay and false data injection [152]. DoS attacks attempt to exhaust

the available resources in the system to shut down potentially safety-critical commu-

nication. In Sybil attacks, a malicious vehicle pretends to have multiple identities

and thus introduces ghost vehicles on the road. Attackers can resend old, stale BSMs

in replay attacks. In false data-injection attacks, a rogue vehicle generates false data,

149

e.g., spoofed sensor information in BSMs, and broadcasts the data to surrounding

vehicles.

CARdea will focus on the detection of Sybil, replay and false data-injection attacks.

DoS attacks are not part of our threat model since CARdea’s design cannot detect

them. To address them, we refer to best practices [146, 176] that should complement

CARdea. False data can be caused by faulty sensors, or maliciously spoofed by an

attacker using a) a compromised OBU, or b) a compromised IVN. For instance, faulty

sensors can broadcast the sensor value with a constant offset or not update at all.

[124] showed that the CAN bus is susceptible to both physical [58] and remote [127]

tampering. As a result, anomalies caused by faulty sensors or deliberate attacks must

be detected before relevant sensor data is packaged into BSMs and broadcast, or

when the receiving vehicle passes the BSM data on towards its actuator ECUs for

control tasks (e.g., braking). The former can be achieved with local (CAN) intrusion

detection systems that have been extensively covered in literature [188] in case the

IVN has been compromised. If the data generated by ECUs on the IVN is correct,

but the OBU tampers with the data, these solutions will not work. Hence, it is

most effective to detect false data-injection attacks at the time of their entry into the

receiving vehicle. The vehicle’s OBU will extract the data and pass it on to the central

gateway which eventually distributes it to the relevant ECUs. Since we would like

to focus on adversarial attacks in contrast to faulty or noisy sensors, we assume that

a vehicle has been compromised and is broadcasting contiguous segments of spoofed

sensor data to our ego vehicle. We also assume the attacker may control all values

in a BSM. On the other hand, noisy sensors might cause discrepancies in just a few

BSM frames, but usually not during the entire broadcast. As a result, we propose

CARdea to detect the aforementioned attacks and prevent them from causing havoc in

the vehicle’s actuators, to run as a module within the central gateway. If anomalies

within the received BSM are detected, the extracted sensor data can be discarded,

150

as well as the entire communication with the potentially malicious vehicle suspended

if anomalies are detected continuously over a certain period of time. In summary,

CARdea can be regarded as data-centric, plausibility-based Vehicle-to-Vehicle (V2V)

anomaly detection.

5.3 Related Work

5.3.1 Statistical Approaches

Several approaches have been proposed to leverage inherent vehicle physics, road

dynamics and other statistical/heuristic techniques. Yavvari et al. [192] propose

anomaly detection using both road geometry and vehicle dynamics (VD) for V2V

communication. Yao et al. [191] propose a Sybil attack detection framework based

on RSSI that is fully distributed and does not rely on any centralized infrastructure.

Müter et al. [129] and Schäfer et al. [154] propose an entropy-based anomaly detection

method for in-vehicle networks and a motion verification system using Doppler shift

measurements, respectively. Bissmeyer et al. [51] propose a framework for checking

the plausibility of vehicle location data utilizing particle filters (PFs). Leveraging

multi-modal sensor fusion, Sun et al. [172] use side-channel measurements, such as

Angle-of-Arrival (AoA) and Doppler Shift (DS), as an input to an Extended Kalman

Filter (EKF) for detection of false data. Kim et al. [106] propose a BSM plausibility

check based on leveraging low-power beaconing messages in a communication-based

checking scheme to verify the contents of received messages. One major problem

with the previous data-centric approaches is that plausibility checks conducted at the

application layer sometimes fail to detect certain GPS spoofing attacks that mimic

the movements of a real vehicle. To overcome this limitation, So et al. [162] proposed

a physical-layer-based plausibility check using the received signal strength indicator

(RSSI) which can complement data-centric approaches.

151

5.3.2 ML-Based Approaches

Van et al. [178] proposed an anomaly detection and identification approach com-

bining Convolutional Neural Networks (CNN) and a Kalman Filter (KF). The KF

with a χ2-detector for further anomaly detection, and fusion of non-anomalous read-

ings. Similarly, Wang et al. [182] proposed an EKF that feeds a One Class Support

Vector Machine (OCSVM) the measured discrepancy of predicted and actual sensor

measurements (coined the innovation) based on vehicle trajectory and onboard sen-

sors. [181] used an unsupervised deep autoencoder (DAE) with vehicle locations and

RSSI to detect anomalies in self-reported vehicle locations. Other studies, such as

Fenzl et al. [82], explored deep learning use-cases for in-vehicle anomaly detection

using continuous fields classification to compute the alignment of CAN bus payloads

to detect intrusions.

5.3.3 Differences of CARdea from Previous Work

Despite the promising results of the prior work mentioned above, few of them

dealt with the feasibility and practicality of actual deployment in the vehicles. As

shown in color-coded Table 5.1, they suffer from multiple drawbacks which can be

summarized as follows.

Data Required: Prior work requires side-channel data, e.g., wireless measurements

(RSSI, AoA) and/or radars to perform sensor fusion. This inherently increases cost

for car-makers. For instance, AoA requires multiple antennas [22], and thus more

expensive OBUs. Not all vehicles are currently equipped with radars, although this

will change with the rise of AVs in the future. First-generation connected vehicles

would still require a mandatory radar for some of the existing solutions, driving

up cost. Nevertheless, some of the more sophisticated attacks introduced recently

[47, 159] can only be detected with external measurement data, such as AoA.

152

Approaches Employed: As summarized in Sec. 5.3, the two main, common ap-

proaches taken for plausibility verification in V2X systems are either statistical or

ML-based. Although there is no correlation between performance and the choice of

approach, ML-based approaches require more computational resources (such as CPU,

memory and network bandwidth) and incur longer detection latencies. Since in-

vehicle ECUs are computationally “light” for cost reasons (as mentioned in Sec. 5.1),

testing an ML model will take longer than statistical approaches, as shown in Ta-

ble 5.1.

Detection Latency: Besides the advantage of statistical approaches in detection

latency, prior work employed workstations for experimental evaluation. Although

detection latency is crucial to assess their feasibility in a real-world scenario (e.g.,

inside the car), it has not been properly evaluated. In fact, the assessment of this

metric is either completely ignored [72, 181, 192] or coarsely estimated [51]. Since

all latency measurements in Table 5.1 have been evaluated on different platforms,

a direct comparison of latency with CARdea is not possible. Thus, we selected the

most comparable approach [178] and implemented its source code (partially) on the

same evaluation setup as CARdea. We could only obtain the source code for the

Kalman Filter (KF)-based anomaly detector which is used in combination with a

Convolutional Neural Network (CNN). Our latency benchmark on the Raspberry

Pi (compared to Phase 1 of CARdea) demonstrates a detection time of 5.1ms per

analyzed data point which is still at least 46x greater than CARdea. Note that the

CNN detector (which we could not evaluate due to the unavailability of source code)

will constitute the dominant part of the overall latency compared to the KF alone

and greatly increase their detection time.

Anomaly Detectabilities: The type of attacks that can be detected by the pro-

posed solution is crucial to assess the overall capability of anomaly detection. Most of

153

the surveyed solutions only provide limited evaluation of certain types of anomalies.

Despite the lack of comprehensive anomaly datasets for V2X, generating multiple dis-

tinct anomaly categories and evaluating each proposed scheme is necessary to avoid

a specially tailored and limited evaluation.

5.4 System Design

5.4.1 Overview

Considering the limitations of related work discussed in Sec. 5.3, we propose

CARdea to provide a real-time, performant, and light-weight detection of BSM anoma-

lies. It uses a novel, hybrid of statistical (Phase 1, Sec. 5.5) and ML-based (Phase 2,

Sec. 5.6) anomaly detection. Phase 1 runs locally inside the vehicle to provide very

low detection latency (i.e., in real time) that only statistical approaches can provide.

Another benefit of CARdea is the low memory consumption which is important, given

most automotive ECUs feature only a few KBs to MBs of RAM for cost reasons

[16, 41]. In contrast, Phase 2 can run outside the vehicle, e.g., on the car-maker’s

backend or the roadside edge or even cloud, and can rely on more computing resources.

Splitting the anomaly detection into these two phases can be reasoned about as fol-

lows. Phase 1 performs real-time detection of both highly-likely anomalous frames

and highly-likely non-anomalous frames. We define a frame f as a sequence of con-

tiguous sensor readings/samples from a transmitter vehicle. A frame is classified as

highly-likely anomalous if the mean of the predicted conditions for each (anomalous

or non-anomalous) sample in the frame is above a certain per-frame threshold θf,a.

Similarly, a frame is said to be highly-likely non-anomalous if the mean of the pre-

dicted conditions for each sample in the frame is smaller than θf,na. Frame predictions

between these two thresholds will be sent to Phase 2 for fine-grained classification.

This is depicted in Fig. 5.2. Phase 1 will temporarily deem such frames potentially

154

anomalous if the frame prediction is greater than 0.5, and potentially non-anomalous

otherwise, until a classification result from Phase 2 becomes available. Thus, the goal

in Phase 1 is to maximize the True Positive Rate (TPR) since this metric is very

important for safety, as well as minimize the False Positive Rate (FPR). However,

Phase 1 is optimized for frames that consist of mainly anomalous samples (i.e., from

an attacker vehicle) or mainly non-anomalous samples (i.e., from a benign vehicle).

Frames that consist of a mixture of anomalous and non-anomalous samples (i.e., a

50/50 split) are sent to Phase 2 for per-sample detection, as this does not occur often

to reduce network bandwidth. Our ego vehicle can temporarily suspend its commu-

nication with vehicles that are marked anomalous as a result of anomalies found in

several consecutive BSMs.

The rationale behind introducing Phase 2 is not to detect anomalies in mis-

classified frames from Phase 1, but rather, to leverage a computationally-powerful,

tested ML approach for per-sample detection on frames that Phase 1 cannot make

a highly-likely decision on. This differs from traditional two-phase systems. For ex-

ample, in the program analysis domain two-phase approaches involve a first stage

focusing on soundness (i.e., maximizing TPR at the expense of FPR) for a second

phase to verify these results. However, in V2V communication, a first phase with high

FPR favors safety at the expense of V2X usability. CARdea’s two-phase design allows

for V2X usability by avoiding constant temporary suspension of communication with

other vehicles, while still keeping safety a priority. Thus, with Phase 2, our ego vehicle

can reinstate its communication with the vehicles that had been previously flagged

as potentially anomalous or non-anomalous and leverage the advantages of BSMs.

These improvements overcome limitations (2) and (3).

Furthermore, both phases leverage the correlation between these three sensors

– while Phase 1 describes the correlation through vehicle dynamics (VD) equations

and Phase 2 trains ML models to capture the correlation through extracted sensor

155

information. CARdea does not use any other measurement data than the existing

sensor samples in BSMs or RSSI. This eliminates the challenges of sensor fusion,

as well as renders CARdea viable for the first-generation connected vehicles without

requiring installation of any additional sensors. This overcomes limitation (1). In

the next subsection, the detectable anomalies in CARdea are introduced, which also

mitigate limitation (4).

Frames
0.0

Θf,a

0.5

1.0

Θf,na

P1

P1

P2

Pr
ed

ic
tio

n

Figure 5.2: CARdea interactions of Phases 1 and 2

5.4.2 Anomalies under Consideration

It is challenging to evaluate anomaly detection schemes for CAVs due to the lack of

anomaly datasets for BSMs. Thus, we evaluate CARdea using the Vehicular in Network

Simulation (Veins) which is based on the OMNET++ Discrete Event Simulator

and Simulation of Urban Mobility (SUMO) [164]. By using a simulation instead

of generating anomalies on top of a static dataset, we ensure that false data may

propagate to the control system over time and affect the behavior of the ego vehicle

and neighboring vehicles. A simulation can thus account for vehicle dynamics.

156

We execute and evaluate CARdea on 7 distinct attack types. The first 4 attack

types (AT1–AT4) are falsifications of latitudinal and longitudinal position, speed

and longitudinal acceleration sensors, extended from [100, 101] and consistent with

literature [50, 158]. In addition to these attacks, which may occur as a result of

either faulty sensors or malicious attacks, we also evaluate CARdea on real-world,

stealthier attacks. Specifically, we conduct Sybil (AT5), Data Replay (AT6), and

Stealthy attacks (AT7). Sybil and Data Replay were also extended from [100], but our

Stealthy attack implementations were motivated by stealthy physical attacks against

robotic vehicles [69, 70, 144]. When a framework or system for vehicle security is

proposed, it is crucial to evaluate its performance against a sophisticated adversary,

so as to validate its robustness and resilience in the worst case. Thus, we devised a

false data-injection attack with the intent to maximize “damage" while not raising any

alerts. In other words, an adversary successfully spoofs sensor data while attempting

to remain largely undetected. We expect these attack types to cover a range of

attacker behavior consistent with the threat model outlined in Sec. 5.2. Note that

the superscript i denotes the sensor in the following attacks.

1. Constant (AT1): Each attacker vehicle broadcasts a unique constant mea-

surement xc at time t:

xit = xc. (5.1)

2. Constant Offset (AT2): Each attacker vehicle broadcasts a unique constant

measurement offset to the vehicle’s true measurement ∆xc at time t:

xit = xit + ∆xc. (5.2)

3. Random (AT3): Each attacker vehicle broadcasts a uniformly random mea-

surement at time t. The min. and max. values xmin and xmax are determined

157

by the size of the simulation space:

xit = U([xmin, xmax]). (5.3)

4. Random Offset (AT4): Each attacker vehicle broadcasts a unique, uniformly

random measurement offset to the vehicle’s true measurement at each time t:

xit = xit + U([−xc, xc]). (5.4)

5. Sybil (AT5): Each attacker vehicle generates a set of ghost vehicles within

a defined grid in the simulation map, relative to the true data of the attack

vehicle at time t. Each square grid is defined by length Sx. xl denotes the local

relative measurement and xr denotes a random local measurement:

xit = Sx · (xil + xir). (5.5)

6. Data Replay (AT6): Each attacker vehicle chooses a target BSM and replays

its data with a certain delay at time t:

xit = xit ∈R [xi0, x
i
t−1]. (5.6)

7. Stealthy (AT7): Each attacker vehicle injects the maximum relative amount

of false sensor data using the optimal per-sample threshold θis and parameter bi

such that bi > 0 at time t:

xit = xit + (1− θis · bi). (5.7)

Furthermore, any particular scenario we simulate may spawn Vn normal vehicles,

158

and Va attacker vehicles with probability α, referred to as the anomaly rate (AR),

which may transmit malicious messages based on the attacker type. Each of these

attacker vehicles may broadcast sequences of anomalous and/or non-anomalous mes-

sages of varying length, with probability β, referred to as the in-vehicle anomaly rate

(IVAR). After conducting various simulations, with specific parameters and scenarios

detailed in 5.7.2, we process the simulation output to generate simulated datasets for

CARdea.

5.5 Phase 1: Local Anomaly Detection

5.5.1 Overview

Phase 1 is concerned with real-time detection of anomalies inside the vehicle by

leveraging statistical models of inherent sensor correlations. Among the sensor data

included in BSMs [149], we select three fundamental sensors for expressing vehicle

dynamics: (GPS) Position ~p, velocity ~v, and longitudinal acceleration a. BSMs are

broadcast by vehicles every 100ms, denoted by dt. As a result, our ego vehicle will

receive BSMs from M surrounding vehicles (which vary with traffic and driving be-

havior of the other cars) every 100ms. The objective of Phase 1 is to perform the

plausibility verification of each BSM upon its reception by the On-Board Unit (OBU)

and determine if the analyzed BSM is anomalous.

Let t be the absolute timestamp, then the correlated sensor groups can be ex-

pressed by the following fundamental physics equations:

~pt+dt = f(pt, ~vt) = ~pt +

t+dt∫
t

~vtdt, (5.8)

vt = f(~pt, ~pt+dt) =
|~pt+dt − ~pt|

dt
, (5.9)

159

at = f(vt, vt+dt) =
vt+dt − vt

dt
, (5.10)

As shown in Fig. 5.3, Phase 1 is decomposed into threshold calibration and valida-

tion modules. The correlation groups G1–G3 characterize the correlation between the

three sensors as expressed by Eqs. (5.8)–(5.10), respectively. Namely, G1 describes

the relationship between position ~p and velocity vector ~v; G2 the relationship between

speed v and position ~p; and G3 the relationship between longitudinal acceleration a

and speed v. Note that speed v is defined as the magnitude of two-dimensional veloc-

ity ~v = (vx, vy)
T . Below we will elaborate on the threshold calibration and validation

modules of Phase 1.

Calibration

Predict all
Sensors

Predict all
Sensors

Input Data [NA]

∀ t ∈ Ti , i ∈ {1, …, N}

BSMN = [p,v,a]N

BSM1 = [p,v,a]e

Input Data [A +
NA]

BSMN = [p,v,a]N

BSM1 = [p,v,a]e

Validation

∀ t ∈ Ti , i ∈ {1, …, N}

Θs
{p,v,a}

Minimize
MAE

Wmed
{p,v,a}

Classify
Samples

Predict all
Sensors

Classify
Samples

Correlation
Groups

G1

…

…

Θfa
{p,v,a}

Calculate
Frames

Calculate
Frames

Compare

Anomalous Not Anomalous

PHASE 2
> Θfa

{p,v,a} < Θfna
{p,v,a}

else

Θfna
{p,v,a}

G2 G3

Figure 5.3: Phase 1 system design (A: Anomalous, NA: Non-anomalous)

160

5.5.2 Calibration

The calibration module is configured to operate offline, presumably at the time

of vehicle manufacturing. The objective of calibration is to compute four thresholds

for each sensor i ∈ {p, v, a}: the median window size W i
med, per-sample threshold θis,

per-frame anomaly threshold θif,a, and per-frame non-anomaly threshold θif,na.

The first main idea behind Phase 1 is that a single anomalous sensor reading in

a BSM can be detected by leveraging the aforementioned correlation groups. For

instance, if only the vehicle’s speed v is anomalous (due to intentional spoofing or

faults), Eq. (5.9) can be used to calculate the correct speed from the GPS readings.

If v is not anomalous, G2 should yield a similar value to the speed in the received

BSM. Since GPS readings can be noisy/erroneous (like any other sensor readings),

the difference between calculated and received values will have a small error. The

mean of all these errors over the entire non-anomalous datasets is characterized by

the per-sample threshold θis for each correlation group. This threshold is determined

by computing theMean Absolute Error (MAE) for each sample t between the received

signal xt and estimated signal x̂t:

MAEt = |xt − x̂t|. (5.11)

Ideally, the estimated and received signals should almost be identical for non-

anomalous data. Nevertheless, one problem with the estimation process via Eqs. (5.8)–

(5.10) is its proneness to noise. Using a rolling mean filter of length W , the raw esti-

mation can be smoothed and the error between received and estimated signal mini-

mized. The window length W is a design parameter which is used to find the window

W i
med for a sensor i to minimize the MAE. This process is repeated for all trips in

the non-anomalous dataset and the minimized MAEs are then averaged, yielding θis.

The filter uses the previous W i
med samples up to the current, guaranteeing real-time

161

detection.

These two calibrated parameters W i
med and θis may be sufficient for detecting

the anomaly in a BSM. Nevertheless, we introduce further statistical techniques and

design choices to reduce the false alarm rate of Phase 1. Similar to a cumulative

sum, we compute an average θif,a for all anomalous frames, for each sensor group.

A frame prediction is the mean of predicted conditions (1 for anomalous or 0 for

non-anomalous) based on θis for samples in a frame f . This same calculation is

computed for non-anomalous frames, θif,na. The per-frame threshold computation

can be generalized in Eq. (5.12), where N is the number of samples and |f | the frame

size:

θif,∗ =
1

N

N∑
j=1

1

|f |

j·|f |+|f |∑
k=j·|f |

xik. (5.12)

The introduction of the above thresholds helps ensure truly anomalous or truly non-

anomalous frames are detected immediately by Phase 1. Therefore, Phase 1 considers

frames, and the computed frame value is compared to the respective θif,∗ for anomalous

and non-anomalous vehicles to make a decision. Note that all trained thresholds at

manufacturing time can be updated by the OEM since modern vehicles have over-

the-air update capabilities.

5.5.3 Validation

Anomaly detection of Phase 1 operates online and extracts the relevant signal

data from each BSM. Using Eqs. (5.8)–(5.10) and the four calibration parameters

W i
med, θis, θif,a, and θif,na, it first calculates the MAE for all three correlation groups

and compares it with the threshold θis computed during the training. If the com-

puted MAE is larger than the threshold, the predicted condition for the respective

sample is marked as anomalous. Likewise, if the computed MAE is smaller than the

threshold, the predicted condition for the sample is marked as non-anomalous. After

collectingW i
med samples, the samples are smoothed by a rolling mean filter of window

162

size W i
med, and the MAE is re-calculated and compared again with the threshold to

update the appropriate markings. Although this might seem like a disconnect to the

real-time nature of Phase 1, the prediction is only updated to achieve better detection

performance. For small window sizes, this is, in fact, a favorable enhancement. Sub-

sequently, we compute the mean of all predicted conditions for samples in a frame,

such that if this computed frame prediction is greater than, or equal to θif,a, we mark

this frame (and all samples within the frame) as highly-likely anomalous, and if this

computed frame prediction is less than, or equal to θif,na, we mark this frame as

highly-likely non-anomalous. If the computed frame prediction lies between these two

thresholds, the affected frames are sent to Phase 2 for further investigation.

5.6 Phase 2: Remote Anomaly Detection

5.6.1 Overview

Phase 2 is concerned with ML-based anomaly detection to be used for the most

opportunistic deployment (see Figure 5.1). However, a key distinction lies with the

fact that Phase 2 is done remotely, i.e., neither in real time (due to unpredictable

network latency and lack of wide-scale edge deployment) nor necessarily aboard a

vehicle. The goal of Phase 2 is to detect anomalies in BSMs in frames sent from

Phase 1, marked as potentially anomalous/non-anomalous (i.e., between θif,a and

θif,na). Thus, Phase 2 receives a given frame of sensor readings f = [f1, f2, . . . , fN]

of length N , where ft and ft+1 are vectors of features corresponding to samples with

consecutive timestamps. This allows Phase 2 to accurately detect samples that Phase

1 fails to make a definite decision. As shown in Fig. 5.4, each sensor group has an

associated model which is executed in parallel (followed by a logical-OR similar to

Phase 1). To demonstrate anomaly detection performance in Phase 2, we employ three

models: Random Forest (RF), Support Vector Machine (SVM), and Deep Neural

163

Network (DNN).

Feature
Extraction

BSM Samples
from Phase 1

Per-Sample Anomaly
Detection

G1 Model

G2 Model

G3 Model

Anomaly Detected

No Anomaly Detected

Samples classified
between the interval:

(𝜃𝜃𝑓𝑓𝑎𝑎
𝑖𝑖 ,𝜃𝜃𝑓𝑓𝑛𝑛𝑛𝑛

𝑖𝑖)

Figure 5.4: Phase 2 system overview

5.6.2 Feature Extraction

To provide reasonable performance benchmarks for Phase 2 evaluation, we care-

fully extract features for the candidate models. Despite the potential increase of

computation time, feature extraction generally improves ML model performance [87].

Motivated by [163], for each correlation group, we extract the rolling mean, rolling

mean displacement, e stimated displacement and plausibility check, respectively. A

detailed account of these features is provided in Sec. D.1.

5.6.3 Training and Validation

Random Forest For RF models, we use K-fold cross-validation for training and

validation of our models, where K = 5. In particular, the RF models were tuned to

have 100 estimators in its ensemble [54]. Furthermore, prior to training and evalua-

tion, for each correlation group, we extract the relevant features detailed in Sec. 5.6.2.

Support Vector Machine For SVM models, we perform similar training and val-

idation as RFs. To prevent skewed decision boundaries, we standardize all features.

Performance generally improves as C (penalty for misclassification) increases, al-

though the training time may also increase. As a result, we select C = 10 and the

Radial Basis Kernel Function as our key hyperparameters [131].

164

Deep Neural Network For DNN models, we use a 60/20/20 training, validation,

and testing split each for 25–50 epochs (early stopping) with a batch size of 32.

Similarly, DNNs use the same feature extraction as RFs and SVMs. Furthermore,

we adopt an architecture consisting of 6 hidden layers with 32, 64, 128, 64, 32 hidden

nodes, respectively, each with Rectified Linear Unit (ReLU) activation function. To

reduce overfitting, our layers are followed by a dropout of 0.2 [167]. Likewise, the

output layer is a Sigmoid activation function of its input.

5.7 Evaluation

5.7.1 Experimental Setup

For the experimental evaluation of CARdea, we use Veins based on OMNET++

and SUMO to conduct simulations with various attack types. More precisely, we use

the Luxembourg SUMO Traffic Scenario (LuST) which contains a topology resembling

European cities with real traffic demands and mobility patterns [63]. For our dataset,

we use a subsection of the LuST network with a size of 6.63km2. We ran 108 hours

of simulations featuring upwards of 49K vehicles where α = 0.05, the probability an

attacker vehicle was spawned. Furthermore, β = 0.01, the IVAR, equivalently the

probability an attacker vehicle may broadcast a sequence of anomalous messages with

sequence length varying from 30 to 70 (i.e., 3 seconds to 7 seconds) [171]. From this,

we collect the BSM data under these simulated conditions for vehicles equipped with

V2X communication capabilities.

All experiments in both phases were conducted using Python 3. In order to mimic

an in-vehicle ECU in Phase 1, we used a Raspberry Pi 3 Model B clocked at 1.2GHz

with 1GB of RAM. For Phase 2, a computer running 64-bit Ubuntu 18.04 LTS with

128GB of registered RAM and 64 Intel Xeon E5-2683 V4 CPUs was deployed.

165

5.7.2 Anomaly Generation

As discussed in Sec. 5.4.2, we simulate various scenarios containing normal and at-

tacker vehicles. Each attacker vehicle executes one of the seven assumed attack types

by broadcasting anomalous or non-anomalous messages to all other vehicles within

range. From each scenario, we generate several simulated datasets for an ego vehicle

containing at least one malicious message received from an attacker vehicle in range

throughout the entire simulation. We execute all attack types on position, speed,

and longitudinal acceleration as described in Eq. (5.1)–(5.7). More precisely, specific

values that are assigned or added to each variable (based on the attack type) are

provided in Table 5.2 for AT1–AT4. Sybil (AT5), Data Replay (AT6), and Stealthy

(AT7) attacks do not rely on similar parametrization, but rather the nature of the

attack. AT7 is conducted by configuring an attacker parameter bi and a priori knowl-

edge of each correlation group’s computed θis.

Table 5.2: AT1–AT4 attack type parameters

AT* AT1 AT2 AT3 AT4
p (m) [0,3900] [31.5,108.5] [0,3900] [-70,70]
v (m/s) [0,40] [3.15,10.85] [0,40] [-0.7,0.7]
a (m/s2) [0,2] [0.9,3.1] [0,2] [-0.4,0.4]

5.7.3 Data Preparation

We first run simulations in Veins as detailed in Sec. 5.4.2 with parameters spec-

ified in Sec. 5.7.2. The simulator outputs JSON traces of received BSMs for each

ego vehicle. Upon completion of a simulation run, we convert each JSON trace to

an appropriate CSV file for numerous ego vehicles. Then, we label each sample,

a single measurement at a point in time, as anomalous (1) or non-anomalous (0)

and set aside specific datasets for training and testing to prevent temporal inversion.

Note that our simulation includes several attacker vehicles, and messages transmit-

ted by the attacker vehicles may consist of a probabilistic mix of anomalous and

166

non-anomalous sequences of messages (based on IVAR). Again, we define the three

correlation groups as G1–G3, and assume one ML model per group for Phase 2. We

perform feature extraction for each ego vehicle by grouping BSMs by transmitting

vehicles and extracting relevant features pertaining to the data of that vehicle, as

detailed in Sec. 5.6.2.

5.7.4 Evaluation Metrics

Performance For the performance of both phases, we evaluate the True Positive

Rate (TPR), False Positive Rate (FPR), and F-1 score.

Computation Time In Phase 1, we refer to the computation time as detection

latency, since it is the crucial real-time metric to first detect a potential anomaly.

It is defined as the time it takes to compute all three correlation groups defined in

Eqs. (5.8)–(5.10) consecutively.

In Phase 2, we discuss the more generic term computation time since the initial

detection occurs in Phase 1. This metric is defined as the elapsed time during the

prediction of all samples in a frame on an ML model. Note that the network latency

is not considered in CARdea since it depends on factors that are outside our scope.

Memory Consumption For both phases, we evaluate memory consumption in

terms of RAM which was measured using Unix process status feature. We focus

on RAM instead of non-volatile memory because Phase 1 only has to save Eqs. (5.8)–

(5.10) and some training parameters, and Phase 2 will have abundant resources to

store the trained ML models. Assessing the RAM consumption is particularly im-

portant for the in-vehicle Phase 1 since resources there are limited. Measuring RAM

usage for Phase 2 on the Raspberry Pi also indicates the infeasibility of its deployment

inside a vehicle.

167

5.7.5 Phase 1

5.7.5.1 Performance

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

G1 AUC = 1.00
G2 AUC = 0.94
G3 AUC = 0.87

Figure 5.5: Phase 1 combined ROC curves for θis

We first calculated the Receiver Operating Characteristic (ROC) curve (see Fig. 5.5)

using our training data for each correlation group to determine a satisfactory θis. To

select an optimal θis, we elected the first threshold with at least 90% TPR, in ac-

cordance with the ROC curve. Then, we used θis to determine θif,∗ values for each

correlation group. We calculated the means over all different configurations of the

anomalous datasets (see Sec. 5.7.2). For G1, θ1f,a and θ1f,na are 0.95 and 0.015, respec-

tively. For G2, the parameters are set at 0.83 and 0.021, and for G3, 0.90 and 0.04,

respectively. Additionally, when computing the θif,a and θif,na values, we evaluated

them on frames of size 3, 5, 7, and 10. As the frame size increases, the performance

generally improves, as shown in Fig. D.1 see Appendix D.1). G3 FPR, for example,

decreases from ≈ 9% for a frame size of 3 to ≈ 5.5% for a frame size of 7, and then

plateaus. As a result, we selected a frame size of 10 for detection performance, latency

168

and resource metrics.

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR

(a) AT1

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR

(b) AT2

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR

(c) AT3

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR

(d) AT4

Figure 5.6: Phase 1 AT1 – AT4 per-frame performance with frame size 10

Note that we want to detect anomalous frames with high TPR, and non-anomalous

frames with low FPR, both in real time. Our performance evaluation in Fig. 5.6

reflects this goal for Phase 1. As shown in the figures, with high confidence, if

Phase 1 classifies a frame as anomalous or non-anomalous, any mitigating actions

can be taken without engaging Phase 2. However, G1 AT1 and AT2 performances

are not comparable to the other attack types. This is a limitation of Phase 1, and

these position spoofing attacks can be detected with signal strength (i.e., RSSI) as

pointed out in [162]. Upon further analysis of estimated and received traces for

G1 AT1 and AT2, we find that in the transition from non-anomalous to anomalous

segments (or vice versa) in the data, the MAEs exhibit a sharp jump. As a result,

169

because G1 is the only correlation group that uses its previous value (which may

have been spoofed) to calculate the estimated value, the MAEs are not likely to

fall below the determined threshold θis consistently. Thus, complementing Phase 1

with an RSSI-based plausibility check (and taking a logical-OR after Phase 1 groups

are run in parallel) can increase TPR for these attack types by up to 40% [162].

The authors utilize the difference between the sender and receiver’s position and the

RSSI to construct confidence intervals for normal RSSI behavior which can be stored

at manufacturing time as well. For the more sophisticated attacks, namely AT5

and AT6, Phase 1 reports upwards of 99% TPR and 0.005% FPR. Stealthy attacks,

however, were designed to evade Phase 1 detection. As a result, CARdea is particularly

vulnerable to this group of attacks which need to be detected in Phase 1 to avoid

sending all frames to Phase 2 and voiding the benefits of our hybrid system design.

We provide discussion on detecting Stealthy attacks in Phase 1 in Sec. 5.8, but do

not implement or evaluate them at this point.

5.7.5.2 Detection Latency

The mean latency has been calculated by averaging all data points in a particular

anomalous dataset. The experiments were conducted on the less powerful Raspberry

Pi 3 Model B that has similar specifications to the most powerful in-vehicle ECUs.

As the top row of Table 5.3 shows, the mean latency for processing one frame by all

4 attack types stands at around 0.09–0.11ms with a standard deviation of 0.03ms,

which is generally consistent among all 3 correlation groups. These numbers also

hold up for AT5–7. Given that a BSM arrives every 100 ms, the latency overhead

by our detection module running on the vehicular gateway is almost negligible. The

estimated network latency stands at an additional 0.5ms if the transmission of BSM

data to the anomaly detection module is prioritized. Considering an AV platooning

scenario, Phase 1 detection is at least ≈2000x smaller than the total delay required to

170

return to full autonomy in a compromised platoon for platoon sizes of 2 (total delay

= 247 ms) to 8 (total delay = 1457 ms) [79].

5.7.5.3 Memory Consumption

The bottom row of Table 5.3 shows that the average RAM usage among all

four attack types stands around 39MB. Given the low RAM found on in-vehicle

ECUs [16, 41] (few MBs), the assessed numbers might look too high. Nevertheless,

note that the anomaly detection module is written in Python with multiple libraries

(such as pandas) to process the data. An implementation on a more embedded

system-friendly language such as C would drastically lower the required RAM usage,

especially considering the few parameters and equations that have to be stored.

Table 5.3: Detection latency and RAM usage for Phase 1

Attack Type AT1 AT2 AT3 AT4

Latency (ms) 0.09 (0.03) 0.09 (0.03) 0.11 (0.03) 0.1 (0.03)
RAM Usage (MB) 38.8 38.9 38.8 38.9

5.7.6 Phase 2

We evaluate the TPR, FPR, and F-1 score of Phase 2, both independently and

jointly with Phase 1. We first evaluate Phase 2 in a scenario where all frames from

Phase 1 are sent to it.

5.7.6.1 Performance

Fig. 5.7 shows performance for RF models for AT1 – AT4. Compared to Phase

1’s per-frame performance evaluation, Phase 2 focuses on per-sample classification

which explains certain lower TPR values, despite its generally favorable performance.

The authors of [178] also evaluate their system on a constant attacker. However, they

inject anomalies on a static dataset, as opposed to conducting a simulation which

171

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(a) RF AT1

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(b) RF AT2

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(c) RF AT3

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(d) RF AT4

Figure 5.7: Phase 2 AT1 – AT4 per-sample performance

makes their evaluation less realistic, yet report comparable performance to our mod-

els. Additionally, prior work such as [172] implemented the constant offset attacker,

yet relied on AoA and Doppler shift to achieve comparable results. One limitation

of Phase 1 (as discussed in Sec. 5.7.5.1) was the need to incorporate RSSI to detect

such attacks, which might also be required for Phase 2, as AT2 performance sug-

gests. However, AT1 performance is significantly better than Phase 1, even without

considering RSSI.

Fig. D.2 (in Appendix D.1) shows the performance for all three ML models for

Sybil (AT5) and Data Replay (AT6) attacks. The general trend is 90%+ average TPR

and < 1−2% FPR across all models and attack types. RFs specifically report less than

1% FPR and 95%+ TPR. The performance evaluation of the Stealthy attack (AT7) is

172

depicted in Fig. D.4 (see Appendix D.1). Note that these Stealthy attacks are a subtle

extension of the Constant Offset attacker. As a result, Phase 2 is better at detecting

some stealthy attacks, while others may go undetected. For example, some groups

(G2) may achieve comparable performance to the previous attack types, upwards

of 80–90% TPR. However, other groups (G3) may suffer, although there was no

observed correlation in detection performance and the attacker’s bi selection. Overall,

RFs consistently achieve the best performance of SVMs and DNNs (see Fig. D.3 in

Appendix D.1).

5.7.6.2 Computation Time

Table D.4 (in Appendix D.1) provides the average testing time for RFs, SVMs, and

DNNs. Consistent with Phase 1’s evaluation, the computation time was benchmarked

for frames of size 3, 5, 7, and 10 on the same RPi used in Phase 1 latency evaluation,

as well as an Ubuntu server. As shown in Table D.4, the computation time of our

models on the RPi significantly exceeds the computation time on the Ubuntu server.

For example, RFs require only 16.0ms on the Ubuntu server for a frame size of 10,

whereas requires upwards of 101.9ms on the RPi (longer than the BSM period of

100ms!). In comparison to 0.09–0.11ms (Phase 1 detection latency on the RPi), the

heavier computation power required for ML models is clearly not ideal under the

tighter runtime constraints for in-vehicle ECUs.

5.7.6.3 Memory Consumption

Table D.4 also presents the average RAM consumption of our ML models bench-

marked on the Ubuntu server and Raspberry Pi. For in-vehicle ECUs, a high RAM

consumption, caused by storing the trained ML model in dynamic memory, exceeds

the vehicle’s already constrained memory resource, and is thus not preferred due to

cost. As observed, RFs and SVMs still require more than 100 MB, while deep-learning

173

based models may require as much as 3x more RAM. Despite the different target ar-

chitectures in Phases 1 and 2, we observe the average RAM usage to be around 5x

higher for ML-based techniques than statistical methods in Phase 1 (see Table 5.3).

In contrast, memory usage levels are of less concern on the manufacturer’s backend

where Phase 2 can be deployed.

5.7.7 Interactions between Phase 1 and 2

In what follows, we perform a combined evaluation of Phases 1 and 2 jointly to

evaluate Phase 2 on the frames sent from Phase 1. We can express this real-time

interaction between the two phases in Algorithm 6, where the input X are Phase

1’s estimated sensor readings of frame size N . We selected three different scenarios

pertaining to three ego vehicles for AT1, AT3, and AT4 for Acceleration, Speed, and

Position Spoofing, respectively. Phase 2 implements an RF model, and we select

a frame size of 10, consistent with our preceding evaluation. For completeness, all

combinations are reported in Appendix D.1. In all three selected scenarios, Phase 2

reports around 99% TPR and less than 1% FPR as shown in Table 5.4, in line with

the results in Fig. 5.7.

Table 5.4: Phase 2 results on frames from Phase 1

G* AT* G1 AT4 G2 AT3 G3 AT1

TPR (%) 99.51 (4.5) 99.06 (6.2) 98.64 (9.4)
FPR (%) 0.0 (0.0) 0.16 (2.2) 0.09 (0.99)

5.7.8 Bandwidth

Finally, we would like to discuss how many of the potentially anomalous-flagged

frames from Phase 1 have to be sent to Phase 2. This will have an impact on band-

width which is another important metric for an OEM since it drives up cost. The car

will very likely use the built-in cellular connection. Each BSM has a default size of

174

Algorithm 6 Phase 1 and 2 Real-time Interaction
1: procedure predict(X,N)
2: pc, framepc = ∅
3: for xit ∈ X do
4: if xit ≥ θis then pc[t] = 1
5: elsepc[t] = 0

6: framepc = (pc)
7: if framepc ≥ θif,a then Mark as anomalous
8: else if framepc ≤ θif,na then Mark as non-anomalous
9: else . Offload frame to Phase 2
10: if f(X) = 1 then Mark as anomalous
11: else Mark as non-anomalous

254 bytes [49] and will be sent using the Transmission Control Protocol (TCP). This

is necessary since we cannot assume that the network connection during a trip will

always be reliable (e.g., driving through tunnels). Together with the TCP/IP header

overhead, each packet including the BSM will have a total size of 318 bytes. Table D.5

(in Appendix D.1) summarizes the mean percentage of frames in each experiment to

be sent to Phase 2 (a mean number of frames to be sent to Phase 2 dp2 over total

number of frames dtotal for given vehicle), as well as the required bandwidth b. The

latter is calculated (in bytes/s) as:

b =
dp2 · 318bytes

dtotal · 0.1s
(5.13)

The required bandwidth is always 0.56 kB/s or lower only if every flagged frame

is transmitted. On average, a maximum of 1.8 MB would be transmitted every hour

which is comparable to less than 1 minute of streaming music through the popular

Spotify app in very high quality (320kbps) [5]. In Table D.5, we considered the frame

size f to be 10. For smaller frame sizes, the required bandwidth is lower since less

frames are sent to Phase 2. As a result, the reported numbers represent an upper

bound for the bandwidth consumption. Better performance with larger frame sizes

(see Fig. D.1) comes at the expense of more bandwidth consumption. Choosing an

175

optimal frame size can thus be making a trade-off between performance and cost.

Table 5.5 presents a condensed version of Table D.5.
Table 5.5: Bandwidth averages across attack types per G

Sensor Group Gi G1 G2 G3
Mean Percentage (%) 6.2 3.8 18.3
Bandwidth (kB/s) 0.20 0.12 0.50

5.8 Discussion and Conclusion

One drawback of CARdea’s current system design is that it only comprises single-

sensor spoofing in AT1–4, where one consistent sensor is anomalous per BSM. Another

case is multi -sensor spoofing, where more than one sensor may be anomalous. We

can enumerate multi-sensor spoofing scenarios as follows (note the same subsequent

logic dcapplies when more than three sensors are utilized):

1. p is anomalous, v is anomalous, a is not anomalous

2. p is anomalous, v is not anomalous, a is anomalous

3. p is not anomalous, v is anomalous, a is anomalous

4. p is anomalous, v is anomalous, a is anomalous.

In the first three scenarios, Phase 1 should detect an inconsistency in at least one

sensor because it leverages the correlation between these sensor groups. In the last

scenario, all sensor values, albeit being spoofed, may be consistent with the vehicle

dynamics. This is an inherent limitation of physics-based anomaly detection which

is also pointed out in [162]. By complementing Phase 1 with RSSI (and optionally

AoA) this risk may be mediated.

Thus far, we have shown and evaluated how splitting anomaly detection into two

phases to reflect and satisfy the OEMs’ constraints is the key advantage of CARdea.

As discussed in Sec. 5.1, Phase 2 of CARdea can be deployed in the cloud, edge or

176

even on the vehicle itself, given it has sufficient computational resources. OEMs can

choose where to deploy Phase 2 based on their priorities. Using “super-ECUs" inside

the vehicle will reduce bandwidth and the cost associated with it, but also require

more expensive ECUs, and vice versa. It is also possible to run Phase 2 selectively

on whatever resource is the most optimal at a given time. For example, while driving

through an area without good cellular coverage, existing ECUs that are normally

used for ADAS tasks can be leveraged for a brief period of time.

Furthermore, we showed how a sophisticated adversary can conduct stealthy at-

tacks that may evade CARdea’s detection. In future, we would like to improve CARdea’s

resilience against such attacks. It is possible to extend CARdea to detect stealthy pat-

terns in received data. For example, if Phase 1 continuously monitors the MAE, it

can determine whether they follow a Gaussian distribution which is likely due to mea-

surement noise for truly non-anomalous vehicles. On the other hand, non-Gaussian

patterns may be a result of a stealthy attacker attempting to evade detection by

staying a constant delta below the learned threshold, and CARdea can flag such a

transmitting vehicle as anomalous without invoking Phase 2. Similarly, Phase 2 may

incorporate further contexts, such as nonlinear physics equations (5.8)– (5.10) for

physics-informed neural networks [147], weather, geolocation, etc., which is also part

of our future inquiry.

We have proposed a practical real-time V2V anomaly detection scheme, called

CARdea, to fill the disconnect between the detection performance focused by prior

work and the practical deployment on resource-constrained vehicles. CARdea has

shown that the trade-off between important metrics such as detection latency and

favorable detection performance does not have to be a compromise if a carefully

engineered two-phase system like CARdea is leveraged. Our experimental evaluation

has shown that combining the advantages of a light-weight, in-vehicle, statistical-

based anomaly detection technique with a powerful ML-based approach can fill the

177

aforementioned disconnect and offer a performant, yet practical solution for V2V

anomaly detection.

178

CHAPTER VI

Conclusion and Future Directions

6.1 Conclusion

This dissertation has demonstrated that bringing security to ground vehicles does

not have to come at the expense of practicality. OEMs impose several constraints on

adding security solutions to their products as discussed in Sec. 1.5, with cost being

the major driver behind their lack of adoption. The four main chapters of this thesis

met these challenges with three intellectual contributions (ICs) outlined in Sec. 1.6.

Summarized below is how each chapter covers the ICs.

6.1.1 IC1: Semantics can be automatically reverse-engineered, accelerat-

ing CAN injection attacks

LibreCAN. Chapter II demonstrated the relevance of CAN injection attacks as a fi-

nal component of most automotive attacks so far. The reverse-engineering framework

LibreCAN can greatly reduce the time spent on preparing a CAN injection attack from

multiple days (spent for manual reverse engineering) to less than an hour. Besides

covering most of a vehicle’s CAN signals, LibreCAN is also accurate as demonstrated

by our evaluation results.

179

6.1.2 IC2: Solve CAN security problems by satisfying the functional and

cost constraints of OEMs

CAN injection attacks can be conducted as a result of several missing security

properties on the CAN bus, such as confidentiality, integrity, authenticity and avail-

ability. Despite the existence of certain standards [30], they neither cover all of these

properties nor meet the functional and cost constraints imposed by OEMs.

S2-CAN. Chapter III adds confidentiality, integrity and authenticity to the CAN

bus by proposing S2-CAN. Taking a rather unconventional approach by avoiding use

of cryptography, it significantly outperforms other relevant approaches with respect

to latency, bus load, CPU utilization and memory consumption. Despite its weaker

security level than existing solutions, S2-CAN is sufficiently secure under real-world

assumptions. LibreCAN from IC1 was used further to assess S2-CAN’s security level

which can both thwart CAN injection attacks that result from the lack of aforemen-

tioned security properties, as well as satisfy all the functional and cost constraints of

OEMs.

MichiCAN. Chapter IV adds availability to the CAN bus by proposing MichiCAN.

Denial-of-Service (DoS) attacks can be detected by monitoring the CAN ID of mes-

sages on the bus. Compared to existing work, MichiCAN can both detect the attack in

real time during its first appearance on the bus, as well as prevent it immediately by

confining the attacker ECU into its bus-off state. MichiCAN makes use of new MCUs

with integrated CAN controllers that allow bit-level read and write access to the CAN

bus. Furthermore, it is deployable by OEMs since it is fully backward-compatible and

incurs minimal overhead to the network traffic — the limitations of prior work.

Finally, both S2-CAN and MichiCAN can be used together for a secure and practical

CAN bus as they protect different security properties and thus thwart different types

180

of CAN injection attacks.

6.1.3 IC3: Solve V2V security problems by hybrid approach combining

in-vehicle and off-vehicle anomaly detection

Chapter V demonstrates that practical security is needed not only in the in-vehicle

network, but also in vehicle-to-vehicle (V2V) communications. The anomaly detection

system CARdea is composed of two phases which analyze the incoming data from other

vehicles before making a decision to maintain safety. Compared to existing work which

deploys resource-heavy ML-based techniques for anomaly detection, most malicious

or faulty broadcasts can be detected by the first phase of CARdea locally inside the

vehicle without the use of machine learning. CARdea can pass on the sanitized input to

the vehicle with minimal detection latency and computational overhead which satisfy

OEM-imposed constraints. To enhance accuracy, the second phase that uses machine

learning will only be applied to the data which the first phase marks as ambiguous.

As a result, CARdea provides good detection performance without sacrificing practical

deployment in future connected vehicles.

6.2 Future Directions

Threats to vehicles and its ecosystem will continue to pose unique challenges in

the future, since the new technologies in this area are still in their infancy. In future,

I plan to shift my focus from the well-researched area of defensive CAN security to

connected and autonomous vehicles (CAVs).

6.2.1 Connected Vehicle Ecosystem

New wireless interfaces are emerging in contemporary vehicle ecosystems. One

example is novel infotainment operating systems, such as Android Automotive (a

car-specific version of the popular mobile operating system Android) [21]. It can

181

collect sensor data directly from the vehicle and share it with the carmaker and

interested third parties. I have already conducted the first high-level security analysis

of Android Automotive in 2020 [137]. Due to the integration of Android Automotive

with the in-vehicle network, it must have a secure system architecture to prevent

any potential attacks that might compromise the security and privacy of vehicles

and drivers. In particular, malicious third-party apps could remotely compromise a

vehicle’s functionalities to impact vehicle safety, e.g., by launching a CAN injection

attack remotely. This vulnerable interface will open the door to a new generation

of increasingly scalable cyber-attacks against vehicles, eliminating the need to be

physically near the target vehicle.

Another promising research area will be privacy. Privacy trackers are included by

Google Automotive Services (GAS) and/or pre-installed third-party apps on produc-

tion builds. Since Google, OEMs and third-party entities are interested in monetizing

user data from vehicles, it will be necessary to analyze what data is shared for what

purpose. Once more production vehicles are shipped with Android Automotive and

the number of third-party apps that can access various vehicle data increases, I plan

to conduct an in-depth analysis of Play Store apps that violate drivers’ privacy by

collecting sensitive user data.

Another example of novel interfaces for the connected vehicle ecosystem is widely

available mobile companion apps (e.g., BMW ConnectedDrive [34]) that can remotely

start or even park the vehicle [25], further increasing the interconnection of carmakers’

infrastructure with their cars. Vulnerabilities in this ecosystem can seriously impact

safety. So far, research has been very sparse in this field. I would like to study

carmakers’ connected infrastructure to understand this new threat. This will help me

analyze existing commercial solutions and design countermeasures against attacks in

the future.

182

6.2.2 Adversarial Attacks on Autonomous Vehicles

In recent years, many deep learning models have been adopted in autonomous

perception systems. Security vulnerabilities are an ever-present concern to drivers’

safety and manufacturers’ liability. Recently, it has been shown that the underlying

perception systems exhibit severe vulnerabilities when exposed to adversarial con-

ditions [143]. Among others, attacks can be classified by the vehicular sensor they

target (i.e., cameras, LiDARs) to the type of adversarial knowledge (i.e., white-box

vs. black-box). While some attacks have been demonstrated in research settings, the

extent to which deployed autonomous vehicles (AVs) are susceptible to physical world

attacks is still not fully understood. To address this challenge, I plan to investigate

the vulnerability of deployed AV perception systems under new physical world attacks

and propose defenses for these trending and pressing security issues.

183

APPENDICES

184

APPENDIX A

LibreCAN: Automated CAN Message Translator

A.1 LibreCAN: Vehicular Signals

Table A.1 depicts an overview of frequently installed ECUs in newer vehicles. It

also includes physical signals that each ECU might generate.

In the following, we present a full list of physical relationships between certain

elements in set S:

• Torque (τ) and engine speed (rpm) share a linear relationship for engine speeds

lower than 2000-3000 RPM, as can be extracted from torque curves [40]. Since

the engine speed is lower than the aforementioned threshold during almost the

entire drive, we can assume that τ and rpm are proportional to each other:

τ ∝∼ rpm. (A.1)

• Engine load (loadengine) can be calculated as the fraction of actual engine output

torque (τ) to the maximum engine output torque (τengine,max):

loadengine ∝ τ. (A.2)

185

Table A.1: Overview of common ECUs with respective signals

ECU Signals

Powertrain Control Module (PCM)
— usually combination of Engine
Control Module (ECM) and
Transmission Control Module
(TCM)

Pedal Position
Throttle Position
Engine Oil Temperature
Fuel Level
Oil Pressure
Wheel Speeds
Engine Speed
Torque
Coolant Temperature
Engine Load

Body Control Module (BCM)

HVAC
Turn Signals
Lights
Wipers
Trunk
Doors
Windows
Mirrors
Remote Keyless Entry

Telematic Control Unit (TCU) Radio
GPS

Advanced Driver Assistant
Systems (ADAS)

Cameras (e.g. rear-view)
Radar
LiDAR

Instrument Cluster (IC)

Vehicle Speed
Engine Speed
Current Gear
MIL Light
TPMS Light
Odometer
Fuel Level
Engine Temperature
Turn Signals

Supplemental Restraint
Systems (SRS)

Airbag Status
Seatbelt Status

Electronic Power Steering (EPS)
Steering Wheel Torque
Steering Wheel Position
Wheel Speed

186

• For engine speed values up to approximately 2000 RPM, torque (τ) and pressure

boost (pboost) are linearly related [184]. Furthermore, for boosted engines, such

as in vehicles with turbochargers (all of our evaluation vehicles except Vehicle

C), the intake manifold pressure (pmap) is proportional to pboost:

τ ∝∼ pboost ∝∼ pmap. (A.3)

• The electrical circuitry in the Accelerator Pedal Position (APP) and Throt-

tle Position (TPS) sensors is identical [103]. Both sensors are fixed to the

throttle body and convert the position of the throttle pedal to a voltage read-

ing. As a result, accelerator pedal position (ACC_PED) and throttle position

(THR_POS) are highly related:

ACC_PED ∝∼ THR_POS. (A.4)

• The centripetal acceleration (ay) is proportional to the product of yaw rate and

vehicle speed:

ay ∝ ωzv. (A.5)

• The barometric pressure reading (p) obtained from phone sensors does not only

change with the weather, but is also a function of the altitude (h) [8]. Via the

barometric formula:

p ∝∼ e−k·h·M . (A.6)

In this equation, k is a constant andM the molar mass of dry air. Despite having

an exponential curve, for small altitude changes, the relationship between p and

h is approximately constant. Furthermore, considering the fact that weather

does not change significantly during data collection, changes in p can be directly

187

linked to h.

A.2 LibreCAN: Phase 1

Table A.2 depicts a complete list of all signals in set S that we are considering for

correlation in Phase 1. Table A.3 shows all 53 events that were analyzed for Phase 2.

Table A.2: Complete List of 24 Signals in Set S (Italic Signals are from Set P ⊂ S)

• Intake
Manifold
Pressure

• Ambient
Air Tem-
perature

• Speed

• Voltage
(Control
Module)

• Turbo
Boost &
Vacuum
Gauge

• Fuel Rail
Pressure

• Engine
Coolant
Temper-
ature

• Torque

•
Accelerator
Pedal
Position
D

•
Accelerator
Pedal
Position
E

• Engine
RPM

• Intake
Air Tem-
perature

• Engine
Load
(Abso-
lute)

• Absolute
Throttle
Position
B

• Fuel
Flow
Rate

•
Acceleration
Sensor(X
axis)

•
Acceleration
Sensor(Y
axis)

•
Acceleration
Sensor(Z
axis)

• G(x)

• G(y)

• G(z)

•
Barometric
Pressure

• Altitude

• Bearing

A.3 LibreCAN: Phase 2

Fig. A.1 depicts which CAN IDs have been filtered out at what stage for each

of the 53 events for Vehicle A. Fig. A.2, Fig. A.3, and Fig. A.4 are similar, but for

Vehicles B, C, and D, respectively.

188

Table A.3: Complete List of 53 Events

• Lock
driver’s
side

• Lock
passen-
ger’s
side

• Unlock
driver’s
side

• Unlock
passen-
ger’s
side

• Open
trunk

• Close
trunk

• Open
driver’s
door

• Close
driver’s
door

• Open
passen-
ger’s
door

• Close
passen-
ger’s
door

• Open
door left
back

• Close
door left
back

• Open
door
right
back

• Close
door
right
back

• Open
driver’s
window

• Close
driver’s
window

• Open
passen-
ger’s
window

• Close
passen-
ger’s
window

• Open
window
left back

• Close
window
left back

• Open
window
right
back

• Close
window
right
back

• Turn on
heating

•
Incremental
fan speed
increase

• Increase
tempera-
ture
incre-
mentally
65-75F

• Decrease
tempera-
ture
incre-
mentally
75-65F

•
Incremental
fan speed
decrease

• Air cir-
culation
button
on

• Air cir-
culation
button
off

• Honking
horn

•
Headlights
off-on

•
Headlights
on-off

• Hazard
lights on

• Hazard
lights off

•
Windshield
wipers
once

•
Windshield
wipers
speed 1

•
Windshield
wipers
speed 2

•
Windshield
wipers
speed 3

• Interior
lights all
on

• Interior
lights all
off

•
Windshield
wiper
fluid

• Left turn
signal on

• Left turn
signal off

• Right
turn
signal on

• Right
turn
signal off

• Activate
parking
brake

• Release
parking
brake

• Open
hood

• Close
hood

• Drivers
side
mirror
left right
up down

•
Passengers
side
mirror
left right
up down

• Buckle
driver

• Unbuckle
driver

189

AC
_F

AN
_O

N
AC

_F
AN

_S
PE

ED
_D

OW
N

AC
_F

AN
_S

PE
ED

_U
P

AI
R_

CI
RC

_O
FF

AI
R_

CI
RC

_O
N

BU
CK

LE
_D

RI
VE

R
DO

OR
_C

LO
SE

_D
DO

OR
_C

LO
SE

_L
B

DO
OR

_C
LO

SE
_P

DO
OR

_C
LO

SE
_R

B
DO

OR
_O

PE
N_

D
DO

OR
_O

PE
N_

LB
DO

OR
_O

PE
N_

P
DO

OR
_O

PE
N_

RB
HA

ZA
RD

S_
OF

F
HA

ZA
RD

S_
ON

HE
AD

LI
GH

TS
_O

FF
-O

N
HE

AD
LI

GH
TS

_O
N-

OF
F

HO
OD

_C
LO

SE
HO

OD
_O

PE
N

HO
RN

_H
ON

K
IN

T_
LI

GH
TS

_O
FF

IN
T_

LI
GH

TS
_O

N
LO

CK
_D

LO
CK

_P
M

IR
RO

R_
D

M
IR

RO
R_

P
PA

RK
IN

G_
BR

AK
E_

AC
T

PA
RK

IN
G_

BR
AK

E_
RE

L
TE

M
P_

DO
W

N_
75

-6
5

TE
M

P_
UP

_6
5-

75
TU

RN
_O

FF
_L

EF
T

TU
RN

_O
FF

_R
IG

HT
TU

RN
_O

N_
LE

FT
TU

RN
_O

N_
RI

GH
T

T_
CL

OS
E

T_
OP

EN
UN

BU
CK

LE
_D

RI
VE

R
UN

LO
CK

_D
UN

LO
CK

_P
W

IN
DO

W
_D

OW
N_

D
W

IN
DO

W
_D

OW
N_

LB
W

IN
DO

W
_D

OW
N_

P
W

IN
DO

W
_D

OW
N_

RB
W

IN
DO

W
_P

_U
P

W
IN

DO
W

_U
P_

D
W

IN
DO

W
_U

P_
LB

W
IN

DO
W

_U
P_

RB
W

IP
ER

S_
SE

TT
IN

G_
0-

1
W

IP
ER

S_
SE

TT
IN

G_
1-

2
W

IP
ER

S_
SE

TT
IN

G_
2-

3
W

IP
ER

S_
SE

TT
IN

G_
FL

UI
D

W
IP

ER
S_

SE
TT

IN
G_

ON
CE

Events

0

20

40

60

80

100

120

140

160

Un
iq

ue
 C

AN
 ID

s

Raw Event Trace
Stage 1: Constant message filtering

Stage 2: Reference state filtering
Stage 3: Powertrain filtering

Figure A.1: Number of Unique CAN IDs Remaining After Each Stage for all 53
Events for Vehicle A

190

AC
_F

AN
_O

N
AC

_F
AN

_S
PE

ED
_D

OW
N

AC
_F

AN
_S

PE
ED

_U
P

AI
R_

CI
RC

_O
FF

AI
R_

CI
RC

_O
N

BU
CK

LE
_D

RI
VE

R
DO

OR
_C

LO
SE

_D
DO

OR
_C

LO
SE

_L
B

DO
OR

_C
LO

SE
_P

DO
OR

_C
LO

SE
_R

B
DO

OR
_O

PE
N_

D
DO

OR
_O

PE
N_

LB
DO

OR
_O

PE
N_

P
DO

OR
_O

PE
N_

RB
HA

ZA
RD

S_
OF

F
HA

ZA
RD

S_
ON

HE
AD

LI
GH

TS
_O

FF
-O

N
HE

AD
LI

GH
TS

_O
N-

OF
F

HO
OD

_C
LO

SE
HO

OD
_O

PE
N

HO
RN

_H
ON

K
IN

T_
LI

GH
TS

_O
FF

IN
T_

LI
GH

TS
_O

N
LO

CK
_D

LO
CK

_P
M

IR
RO

R_
D

M
IR

RO
R_

P
PA

RK
IN

G_
BR

AK
E_

AC
T

PA
RK

IN
G_

BR
AK

E_
RE

L
TE

M
P_

DO
W

N_
75

-6
5

TE
M

P_
UP

_6
5-

75
TU

RN
_O

FF
_L

EF
T

TU
RN

_O
FF

_R
IG

HT
TU

RN
_O

N_
LE

FT
TU

RN
_O

N_
RI

GH
T

T_
CL

OS
E

T_
OP

EN
UN

BU
CK

LE
_D

RI
VE

R
UN

LO
CK

_D
UN

LO
CK

_P
W

IN
DO

W
_D

OW
N_

D
W

IN
DO

W
_D

OW
N_

LB
W

IN
DO

W
_D

OW
N_

P
W

IN
DO

W
_D

OW
N_

RB
W

IN
DO

W
_P

_U
P

W
IN

DO
W

_U
P_

D
W

IN
DO

W
_U

P_
LB

W
IN

DO
W

_U
P_

RB
W

IP
ER

S_
SE

TT
IN

G_
0-

1
W

IP
ER

S_
SE

TT
IN

G_
1-

2
W

IP
ER

S_
SE

TT
IN

G_
2-

3
W

IP
ER

S_
SE

TT
IN

G_
FL

UI
D

W
IP

ER
S_

SE
TT

IN
G_

ON
CE

Events

0

10

20

30

40

50

60

70

80

Un
iq

ue
 C

AN
 ID

s

Raw Event Trace
Stage 1: Constant message filtering

Stage 2: Reference state filtering
Stage 3: Powertrain filtering

Figure A.2: Number of Unique CAN IDs Remaining After Each Stage for all 53
Events for Vehicle B

191

AC
_F

AN
_O

N
AC

_F
AN

_S
PE

ED
_D

OW
N

AC
_F

AN
_S

PE
ED

_U
P

AI
R_

CI
RC

_O
FF

AI
R_

CI
RC

_O
N

BU
CK

LE
_D

RI
VE

R
DO

OR
_C

LO
SE

_D
DO

OR
_C

LO
SE

_L
B

DO
OR

_C
LO

SE
_P

DO
OR

_C
LO

SE
_R

B
DO

OR
_O

PE
N_

D
DO

OR
_O

PE
N_

LB
DO

OR
_O

PE
N_

P
DO

OR
_O

PE
N_

RB
HA

ZA
RD

S_
OF

F
HA

ZA
RD

S_
ON

HE
AD

LI
GH

TS
_O

FF
-O

N
HE

AD
LI

GH
TS

_O
N-

OF
F

HO
OD

_C
LO

SE
HO

OD
_O

PE
N

HO
RN

_H
ON

K
IN

T_
LI

GH
TS

_O
FF

IN
T_

LI
GH

TS
_O

N
LO

CK
_D

LO
CK

_P
M

IR
RO

R_
D

M
IR

RO
R_

P
PA

RK
IN

G_
BR

AK
E_

AC
T

PA
RK

IN
G_

BR
AK

E_
RE

L
TE

M
P_

DO
W

N_
75

-6
5

TE
M

P_
UP

_6
5-

75
TU

RN
_O

FF
_L

EF
T

TU
RN

_O
FF

_R
IG

HT
TU

RN
_O

N_
LE

FT
TU

RN
_O

N_
RI

GH
T

T_
CL

OS
E

T_
OP

EN
UN

BU
CK

LE
_D

RI
VE

R
UN

LO
CK

_D
UN

LO
CK

_P
W

IN
DO

W
_D

OW
N_

D
W

IN
DO

W
_D

OW
N_

LB
W

IN
DO

W
_D

OW
N_

P
W

IN
DO

W
_D

OW
N_

RB
W

IN
DO

W
_P

_U
P

W
IN

DO
W

_U
P_

D
W

IN
DO

W
_U

P_
LB

W
IN

DO
W

_U
P_

RB
W

IP
ER

S_
SE

TT
IN

G_
0-

1
W

IP
ER

S_
SE

TT
IN

G_
1-

2
W

IP
ER

S_
SE

TT
IN

G_
2-

3
W

IP
ER

S_
SE

TT
IN

G_
FL

UI
D

W
IP

ER
S_

SE
TT

IN
G_

ON
CE

Events

0

20

40

60

80

100

120

Un
iq

ue
 C

AN
 ID

s

Raw Event Trace
Stage 1: Constant message filtering

Stage 2: Reference state filtering
Stage 3: Powertrain filtering

Figure A.3: Number of Unique CAN IDs Remaining After Each Stage for all 53
Events for Vehicle C

192

AC
_F

AN
_O

N
AC

_F
AN

_S
PE

ED
_D

OW
N

AC
_F

AN
_S

PE
ED

_U
P

AI
R_

CI
RC

_O
FF

AI
R_

CI
RC

_O
N

BU
CK

LE
_D

RI
VE

R
DO

OR
_C

LO
SE

_D
DO

OR
_C

LO
SE

_L
B

DO
OR

_C
LO

SE
_P

DO
OR

_C
LO

SE
_R

B
DO

OR
_O

PE
N_

D
DO

OR
_O

PE
N_

LB
DO

OR
_O

PE
N_

P
DO

OR
_O

PE
N_

RB
HA

ZA
RD

S_
OF

F
HA

ZA
RD

S_
ON

HE
AD

LI
GH

TS
_O

FF
-O

N
HE

AD
LI

GH
TS

_O
N-

OF
F

HO
OD

_C
LO

SE
HO

OD
_O

PE
N

HO
RN

_H
ON

K
IN

T_
LI

GH
TS

_O
FF

IN
T_

LI
GH

TS
_O

N
LO

CK
_D

LO
CK

_P
M

IR
RO

R_
D

M
IR

RO
R_

P
PA

RK
IN

G_
BR

AK
E_

AC
T

PA
RK

IN
G_

BR
AK

E_
RE

L
TE

M
P_

DO
W

N_
75

-6
5

TE
M

P_
UP

_6
5-

75
TU

RN
_O

FF
_L

EF
T

TU
RN

_O
FF

_R
IG

HT
TU

RN
_O

N_
LE

FT
TU

RN
_O

N_
RI

GH
T

T_
CL

OS
E

T_
OP

EN
UN

BU
CK

LE
_D

RI
VE

R
UN

LO
CK

_D
UN

LO
CK

_P
W

IN
DO

W
_D

OW
N_

D
W

IN
DO

W
_D

OW
N_

LB
W

IN
DO

W
_D

OW
N_

P
W

IN
DO

W
_D

OW
N_

RB
W

IN
DO

W
_P

_U
P

W
IN

DO
W

_U
P_

D
W

IN
DO

W
_U

P_
LB

W
IN

DO
W

_U
P_

RB
W

IP
ER

S_
SE

TT
IN

G_
0-

1
W

IP
ER

S_
SE

TT
IN

G_
1-

2
W

IP
ER

S_
SE

TT
IN

G_
2-

3
W

IP
ER

S_
SE

TT
IN

G_
FL

UI
D

W
IP

ER
S_

SE
TT

IN
G_

ON
CE

Events

0

20

40

60

80

100

120

140

160

Un
iq

ue
 C

AN
 ID

s

Raw Event Trace
Stage 1: Constant message filtering

Stage 2: Reference state filtering
Stage 3: Powertrain filtering

Figure A.4: Number of Unique CAN IDs Remaining After Each Stage for all 53
Events for Vehicle D

193

APPENDIX B

S2-CAN: Sufficiently Secure Controller Area

Network

B.1 S2-CAN

Table B.1: Top 2 Cracking Success based on Trace Length (in %)

Trace
Length 5 10 25 50 75 100

ST1 14/20 9/10 4/4 3/3 2/2 1/1
ID 13/20 8/10 4/4 3/3 2/2 1/1Veh. A
cnt 14/20 9/10 4/4 3/3 2/2 1/1
ST1 12/20 4/10 3/4 2/3 1/2 1/1
ID 11/20 3/10 3/4 1/3 1/2 1/1Veh. B
cnt 12/20 4/10 3/4 2/3 1/2 1/1
ST1 8/20 7/10 3/4 3/3 2/2 1/1
ID 8/20 7/10 3/4 3/3 2/2 1/1Veh. C
cnt 8/20 7/10 3/4 3/3 2/2 1/1
f 12/20 7/10 3/4 3/3 2/2 1/1
ID 11/20 5/10 3/4 3/3 2/2 1/1Veh. D
cnt 12/20 7/10 3/4 3/3 2/2 1/1

194

Table B.2: Top 3 Cracking Success based on Trace Length (in %)

Trace
Length 5 10 25 50 75 100

ST1 14/20 9/10 4/4 3/3 2/2 1/1
ID 13/20 8/10 4/4 3/3 2/2 1/1Veh. A
cnt 14/20 9/10 4/4 3/3 2/2 1/1
ST1 12/20 4/10 4/4 2/3 1/2 1/1
ID 11/20 3/10 4/4 1/3 1/2 1/1Veh. B
cnt 12/20 4/10 4/4 2/3 1/2 1/1
ST1 8/20 7/10 3/4 3/3 2/2 1/1
ID 8/20 7/10 3/4 3/3 2/2 1/1Veh. C
cnt 8/20 7/10 3/4 3/3 2/2 1/1
ST1 12/20 7/10 3/4 3/3 2/2 1/1
ID 11/20 5/10 3/4 3/3 2/2 1/1Veh. D
cnt 12/20 7/10 3/4 3/3 2/2 1/1

Table B.3: Top 5 Cracking Success based on Trace Length (in %)

Trace
Length 5 10 25 50 75 100

ST1 14/20 9/10 4/4 3/3 2/2 1/1
ID 13/20 8/10 4/4 3/3 2/2 1/1Veh. A
cnt 14/20 9/10 4/4 3/3 2/2 1/1
ST1 13/20 5/10 4/4 2/3 1/2 1/1
ID 12/20 4/10 4/4 1/3 1/2 1/1Veh. B
cnt 13/20 5/10 4/4 2/3 1/2 1/1
ST1 8/20 7/10 3/4 3/3 2/2 1/1
ID 8/20 7/10 3/4 3/3 2/2 1/1Veh. C
cnt 8/20 7/10 3/4 3/3 2/2 1/1
ST1 14/20 8/10 3/4 3/3 2/2 1/1
ID 13/20 6/10 3/4 3/3 2/2 1/1Veh. D
cnt 14/20 8/10 3/4 3/3 2/2 1/1

195

Table B.4: Top 10 Cracking Success based on Trace Length (in %)

Trace
Length 5 10 25 50 75 100

ST1 15/20 10/10 4/4 3/3 2/2 1/1
ID 14/20 9/10 4/4 3/3 2/2 1/1Veh. A
cnt 15/20 10/10 4/4 3/3 2/2 1/1
ST1 13/20 5/10 4/4 2/3 1/2 1/1
ID 12/20 4/10 4/4 1/3 1/2 1/1Veh. B
cnt 13/20 5/10 4/4 2/3 1/2 1/1
ST1 8/20 7/10 3/4 3/3 2/2 1/1
ID 8/20 7/10 3/4 3/3 2/2 1/1Veh. C
cnt 8/20 7/10 3/4 3/3 2/2 1/1
ST1 16/20 9/10 3/4 3/3 2/2 1/1
ID 15/20 7/10 3/4 3/3 2/2 1/1Veh. D
cnt 16/20 9/10 3/4 3/3 2/2 1/1

196

APPENDIX C

MichiCAN: Practical Spoofing and DoS Protection

for the Controller Area Network

C.1 MichiCAN

Algorithm 7 Find Globally Malicious Bits
Require: E . List of CAN IDs used
1: function globally_malicious(E)
2: GM_bits← {}
3: is_0← []
4: is_1← []
5: for i← 0 to 11 do
6: for j ← 0 to (|E|) do
7: ecu← E[j]
8: if ecu[i] == “0” then
9: is_0[i]← 1
10: else
11: is_1[i]← 1

12: if is_0[i] == 0 then
13: GM_bits[i]← “0”

14: if is_1[i] == 0 then
15: GM_bits[i]← “1”

16: return GM_bits

197

Algorithm 8 Identify Malicious Outliers
1: function has_GM_bits(n)
2: for j ← 0 to 11 do
3: if j in GM_bits then
4: if GM_bits[j] == n[j] then
5: return True
6: return False
7: OUTLIERS ← []
8: for i← 0 to 211 − 1 do
9: if i not in E then
10: if is_malicious(i) == False then
11: AddItem(OUTLIERS, i)

Algorithm 9 Generate local prefixes
1: function generate_local_prefix(outliers)
2: diffs← []
3: for i← 0 to |outliers|) do
4: outlier ← outliers[i]
5: smallest_diff ← 2048
6: for j ← 0 to |E| do
7: ecu← E [j]
8: diff ← outlier XOR ecu
9: if diff < smallest_diff then
10: smallest_diff ← diff

11: diff_len← 11−(log2(smallest_diff))
12: AddItem(diffs, outliers[i][0:diff_len])
13: differences← diffs sorted in ascending length
14: return remove_duplicates(differences)

198

Algorithm 10 Generate FSM Code for ECUi

1: len← 0
2: state← 0
3: start_counterattack ← False
4: function FSM(value)
5: if value == 1 then
6: state | = (1 << (10− len))

7: len← len+ 1
8: if len == 11 and state == ECUi then
9: start_counterattack ← True
10: return True
11: for key, val in GM_bits do
12: if len == key + 1 and value == val then
13: start_counterattack ← True
14: return True
15: for i← 0 to |local_prefixes)| do
16: p← local_prefixes[i]
17: pad← p+ “0” ∗ (11− length(p))
18: decimal_p← pad converted to a decimal number
19: if len == length(p) and state == decimal_p then
20: start_counterattack ← True
21: return True
22: return False

Figure C.1: Testing Time for Varying |E|

199

1 // Generated f o r ECU_4 with CAN ID : 0x150

2 void state_machine_run (uint8_t value) {

3

4 bitWrite (s ta te , 10 − len , va lue) ;

5 l en++;

6

7 i f (s t a t e > 336) {

8 return ;

9 }

10 i f (l en == 11 && s t a t e == 336) {

11 s tar t_counterat tack = true ;

12 return ;

13 }

14 i f (l en == 1 && value == 1) {

15 s tar t_counterat tack = true ;

16 return ;

17 }

18 i f (l en == 2 && value == 1) {

19 s tar t_counterat tack = true ;

20 return ;

21 }

22 i f (l en == 3 && value == 0) {

23 s tar t_counterat tack = true ;

24 return ;

25 }

26 i f (l en == 4 && value == 1) {

27 s tar t_counterat tack = true ;

28 return ;

29 }

30 i f (l en == 6 && value == 1) {

31 s tar t_counterat tack = true ;

32 return ;

200

33 }

34 i f (l en == 8 && value == 1) {

35 s tar t_counterat tack = true ;

36 return ;

37 }

38 i f (l en == 9 && value == 1) {

39 s tar t_counterat tack = true ;

40 return ;

41 }

42 i f (l en == 10 && value == 1) {

43 s tar t_counterat tack = true ;

44 return ;

45 }

46 i f (l en == 7 && s t a t e == 320) {

47 s tar t_counterat tack = true ;

48 return ;

49 }

50 i f (l en == 11 && s t a t e == 273) {

51 s tar t_counterat tack = true ;

52 return ;

53 }

54 i f (l en == 11 && s t a t e == 337) {

55 s tar t_counterat tack = true ;

56 return ;

57 }

58 return ;

59 }

60 // End generated code

Listing C.1: FSM code generated for ECU4

201

APPENDIX D

CARdea: Practical Anomaly Detection for

Connected and Automated Vehicles

D.1 CARdea

3 5 7 9
Frame Size

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

G1
G2
G3

(a) TPR

3 5 7 9
Frame Size

0.00

0.02

0.04

0.06

0.08

0.10

Fa
lse

 P
os

iti
ve

 R
at

e

G1
G2
G3

(b) FPR

Figure D.1: Phase 1 per-frame performance based on frame size

The extracted features from Sec. 5.6.2 are listed as follows:

Rolling Mean X i
t is extracted with a window size of 5 for the measurement of

interest;

202

Rolling Mean Displacement Difference between extracted X i
t and the received

measurement of interest at X i
t ;

Estimated Displacement Difference between estimated measurement of interest

X̃ i
t using the equations mentioned in Sec. 5.5 and the received measurement of interest;

Plausibility Check Difference between the current message’s measurement X i
t and

the respective measurement of a previous message received from that vehicle X i
t−w,

for some constant window size w.

RF
SV

M
DNN

Models

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(a) AT5

RF
SV

M
DNN

Models

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(b) AT6

Figure D.2: Phase 2 AT5 and AT6 per-sample performance

Table D.1: G1 Phase 2 results on frames from Phase 1

G1 AT* G1 AT1 G2 AT2 G1 AT3 G1 AT4

TPR (%) 100.0 (0.0) 99.75 (3.5) 99.67 (3.5) 99.51 (4.5)

FPR (%) 0.0 (0.0) 0.015 (0.4) 0.0 (0.0) 0.0 (0.0)

203

Table D.2: G2 Phase 2 results on frames from Phase 1

G2 AT* G2 AT1 G2 AT2 G2 AT3 G2 AT4

TPR (%) 100.0 (0.0) 85.8 (23.3) 99.06 (6.2) 76.5 (26.8)

FPR (%) 0.0 (0.0) 1.3 (5.4) 0.16 (2.2) 1.9 (5.1)

Table D.3: G3 Phase 2 results on frames from Phase 1

G3 AT* G3 AT1 G3 AT2 G3 AT3 G3 AT4

TPR (%) 98.64 (9.4) 98.37 (9.0) 95.9 (14.9) 91.0 (21.3)

FPR (%) 0.09 (0.99) 0.3 (2.2) 1.06 (5.2) 1.8 (6.1)

204

Table D.4: Phase 2 latency (in ms) and RAM usage (in MB)

Model
Frame

Size
Ubuntu RPi

Latency RAM Latency RAM

RF

3 15.1 (3.1) 153 98.9 (27.3) 106

5 15.2 (1.7) 153 95.1 (21.4) 106

7 15.6 (1.6) 153 99.4 (24.7) 106

10 16.0 (2.2) 153 101.9 (25.0) 106

SVM

3 3.8 (0.4) 147 30.1 (9.2) 102

5 4.2 (0.5) 147 31.9 (10.4) 102

7 4.6 (0.5) 147 33.5 (11.6) 102

10 4.9 (0.7) 147 38.8 (13.5) 102

DNN

3 41.5 (6.3) 485 570 (204) 357

5 39.5 (5.8) 485 532 (99.6) 357

7 39.9 (9.3) 485 528 (67.3) 357

10 40.4 (8.8) 485 538 (119) 357

205

Table D.5: Bandwidth considerations

Sensor Group
Gi

Attack Type
AT ∗

Mean Perc.
(%)

Bandwidth
(kB/s)

G1

AT1 5.3 0.17
AT2 5.2 0.17
AT3 5.2 0.17
AT4 5.3 0.17
AT5 8.7 0.28
AT6 7.6 0.24

G2

AT1 3.9 0.12
AT2 4.2 0.13
AT3 4.5 0.14
AT4 4.7 0.15
AT5 3.0 0.09
AT6 2.7 0.08

G3

AT1 14.5 0.46
AT2 14.0 0.45
AT3 15.0 0.48
AT4 15.6 0.50
AT5 17.9 0.56
AT6 17.8 0.56

206

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(a) SVM AT1

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(b) SVM AT2

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(c) SVM AT3

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(d) SVM AT4

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(e) DNN AT1

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(f) DNN AT2

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(g) DNN AT3

G1 G2 G3
Sensors

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(h) DNN AT4

Figure D.3: SVM and DNN AT1 – AT4 per-sample performance

207

0.0
01 0.0

1 0.1

b

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(a) RF G1

0.0
01 0.0

1 0.1

b

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(b) RF G2

0.0
01 0.0

1 0.1

b

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(c) RF G3

0.0
01 0.0

1 0.1

b

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(d) SVM G1

0.0
01 0.0

1 0.1

b

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(e) SVM G2

0.0
01 0.0

1 0.1

b

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(f) SVM G3

0.0
01 0.0

1 0.1

b

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(g) DNN G1

0.0
01 0.0

1 0.1

b

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(h) DNN G2

0.0
01 0.0

1 0.1

b

0.0

0.2

0.4

0.6

0.8

1.0
TPR
FPR
F-1

(i) DNN G3

Figure D.4: Phase 2 AT7 per-sample performance

208

BIBLIOGRAPHY

209

BIBLIOGRAPHY

[1] Autosar xml schema. https://automotive.wiki/index.php/
AUTOSAR_XML_Schema, 2014.

[2] The openxc platform. http://openxcplatform.com, 2017.

[3] A brief history of car hacking 2010 to the present. https://smart.gi-de.com/
2017/08/brief-history-car-hacking-2010-present/, Nov 2018.

[4] Drive safe & save™ – state farm®. https://www.statefarm.com/insurance/
auto/discounts/drive-safe-save, Aug 2018.

[5] How much data does spotify use? - probably less than you think. https:
//www.androidauthority.com/spotify-data-usage-918265/, Nov 2018.

[6] Sharpening the focus on obd-ii security. https://www.sae.org/news/2017/02/
sharpening-the-focus-on-obd-ii-security, Jan 2018.

[7] Steps carmakers need to make to secure connected car data. https:
//internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Steps-
carmakers-need-to-make-to-secure-connected-car-data, Nov 2018.

[8] Barometric formula. https://www.math24.net/barometric-formula/, 2019.

[9] Obd-ii pids. https://en.wikipedia.org/wiki/OBD-II_PIDs, Feb 2019.

[10] On-board diagnostics. https://en.wikipedia.org/wiki/On-
board_diagnostics#OBD-II_diagnostic_connector, Mar 2019.

[11] Amazon ec2, 2020. https://aws.amazon.com/ec2/.

[12] Automotive safety integrity level. https://en.wikipedia.org/wiki/
Automotive_Safety_Integrity_Level, Dec 2020.

[13] Aws pricing, 2020. https://calculator.aws/.

[14] Can bus load calculation, 2020. https://kb.vector.com/entry/1519/.

[15] Can bus load calculator, 2020. http://www.canbusacademy.com/resources/
can-bus-load-calculator/.

210

https://automotive.wiki/index.php/AUTOSAR_XML_Schema
https://automotive.wiki/index.php/AUTOSAR_XML_Schema
http://openxcplatform.com
https://smart.gi-de.com/2017/08/brief-history-car-hacking-2010-present/
https://smart.gi-de.com/2017/08/brief-history-car-hacking-2010-present/
https://www.statefarm.com/insurance/auto/discounts/drive-safe-save
https://www.statefarm.com/insurance/auto/discounts/drive-safe-save
https://www.androidauthority.com/spotify-data-usage-918265/
https://www.androidauthority.com/spotify-data-usage-918265/
https://www.sae.org/news/2017/02/sharpening-the-focus-on-obd-ii-security
https://www.sae.org/news/2017/02/sharpening-the-focus-on-obd-ii-security
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Steps-carmakers-need-to-make-to-secure-connected-car-data
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Steps-carmakers-need-to-make-to-secure-connected-car-data
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Steps-carmakers-need-to-make-to-secure-connected-car-data
https://www.math24.net/barometric-formula/
https://en.wikipedia.org/wiki/OBD-II_PIDs
https://en.wikipedia.org/wiki/On-board_diagnostics#OBD-II_diagnostic_connector
https://en.wikipedia.org/wiki/On-board_diagnostics#OBD-II_diagnostic_connector
https://aws.amazon.com/ec2/
https://en.wikipedia.org/wiki/Automotive_Safety_Integrity_Level
https://en.wikipedia.org/wiki/Automotive_Safety_Integrity_Level
https://calculator.aws/
https://kb.vector.com/entry/1519/
http://www.canbusacademy.com/resources/can-bus-load-calculator/
http://www.canbusacademy.com/resources/can-bus-load-calculator/

[16] Electronic engine control unit for commercial vehicles, 2020. https:
//www.bosch-mobility-solutions.com/en/products-and-services/
commercial-vehicles/powertrain-systems/natural-gas/electronic-
engine-control-unit/.

[17] Nxp automotive processors — product map. https://www.nxp.com/docs/en/
product-selector-guide/BRAUTOPRDCTMAP.pdf, 2020.

[18] One-time pad. https://en.wikipedia.org/wiki/One-time_pad, Nov 2020.

[19] Spc58 b/c/g-lines product selector guide. https://www.st.com/
content/ccc/resource/sales_and_marketing/promotional_material/
selection_guide/group0/34/0e/4f/b2/1a/49/4f/b6/SPC58%
20selection%20guide/files/SGSPC58C.pdf/jcr:content/translations/
en.SGSPC58C.pdf, 2020.

[20] Un regulations on cybersecurity and software updates to pave the way for
mass roll out of connected vehicles. https://unece.org/sustainable-
development/press/un-regulations-cybersecurity-and-software-
updates-pave-way-mass-roll, Jun 2020.

[21] Android automotive. https://en.wikipedia.org/wiki/
Android_Automotive#Vehicles_with_Android_Automotive, Oct 2021.

[22] Angle-of-arrival, 2021. https://www.sciencedirect.com/topics/
engineering/angle-of-arrival, journal=Angle-of-Arrival - an overview
| ScienceDirect Topics.

[23] Automated vehicles for safety. https://www.nhtsa.gov/technology-
innovation/automated-vehicles-safety, Nov 2021.

[24] Automotive electronics. https://en.wikipedia.org/wiki/
Automotive_electronics, Aug 2021.

[25] Bmw group is showing automated valet parking for the first time at the iaa
mobility 2021. https://www.press.bmwgroup.com/global/article/detail/
T0342473EN/bmw-group-is-showing-automated-valet-parking-for-the-
first-time-at-the-iaa-mobility-2021?language=en, 2021.

[26] The fundamentals of restbus simulation. https://www.ni.com/en-
us/innovations/white-papers/12/the-fundamentals-of-restbus-
simulation.html, Aug 2021.

[27] Android for cars overview. https://developer.android.com/training/cars,
journal=Android Developers, 2022.

[28] Atmel sam3x / sam3a series. https://ww1.microchip.com/downloads/en/
DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-
SAM3A_Datasheet.pdf, 2022.

211

https://www.bosch-mobility-solutions.com/en/products-and-services/commercial-vehicles/powertrain-systems/natural-gas/electronic-engine-control-unit/
https://www.bosch-mobility-solutions.com/en/products-and-services/commercial-vehicles/powertrain-systems/natural-gas/electronic-engine-control-unit/
https://www.bosch-mobility-solutions.com/en/products-and-services/commercial-vehicles/powertrain-systems/natural-gas/electronic-engine-control-unit/
https://www.bosch-mobility-solutions.com/en/products-and-services/commercial-vehicles/powertrain-systems/natural-gas/electronic-engine-control-unit/
https://www.nxp.com/docs/en/product-selector-guide/BRAUTOPRDCTMAP.pdf
https://www.nxp.com/docs/en/product-selector-guide/BRAUTOPRDCTMAP.pdf
https://en.wikipedia.org/wiki/One-time_pad
https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/selection_guide/group0/34/0e/4f/b2/1a/49/4f/b6/SPC58%20selection%20guide/files/SGSPC58C.pdf/jcr:content/translations/en.SGSPC58C.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/selection_guide/group0/34/0e/4f/b2/1a/49/4f/b6/SPC58%20selection%20guide/files/SGSPC58C.pdf/jcr:content/translations/en.SGSPC58C.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/selection_guide/group0/34/0e/4f/b2/1a/49/4f/b6/SPC58%20selection%20guide/files/SGSPC58C.pdf/jcr:content/translations/en.SGSPC58C.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/selection_guide/group0/34/0e/4f/b2/1a/49/4f/b6/SPC58%20selection%20guide/files/SGSPC58C.pdf/jcr:content/translations/en.SGSPC58C.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/selection_guide/group0/34/0e/4f/b2/1a/49/4f/b6/SPC58%20selection%20guide/files/SGSPC58C.pdf/jcr:content/translations/en.SGSPC58C.pdf
https://unece.org/sustainable-development/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll
https://unece.org/sustainable-development/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll
https://unece.org/sustainable-development/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll
https://en.wikipedia.org/wiki/Android_Automotive#Vehicles_with_Android_Automotive
https://en.wikipedia.org/wiki/Android_Automotive#Vehicles_with_Android_Automotive
https://www.sciencedirect.com/topics/engineering/angle-of-arrival
https://www.sciencedirect.com/topics/engineering/angle-of-arrival
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://en.wikipedia.org/wiki/Automotive_electronics
https://en.wikipedia.org/wiki/Automotive_electronics
https://www.press.bmwgroup.com/global/article/detail/T0342473EN/bmw-group-is-showing-automated-valet-parking-for-the-first-time-at-the-iaa-mobility-2021?language=en
https://www.press.bmwgroup.com/global/article/detail/T0342473EN/bmw-group-is-showing-automated-valet-parking-for-the-first-time-at-the-iaa-mobility-2021?language=en
https://www.press.bmwgroup.com/global/article/detail/T0342473EN/bmw-group-is-showing-automated-valet-parking-for-the-first-time-at-the-iaa-mobility-2021?language=en
https://www.ni.com/en-us/innovations/white-papers/12/the-fundamentals-of-restbus-simulation.html
https://www.ni.com/en-us/innovations/white-papers/12/the-fundamentals-of-restbus-simulation.html
https://www.ni.com/en-us/innovations/white-papers/12/the-fundamentals-of-restbus-simulation.html
https://developer.android.com/training/cars
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf

[29] Automated vehicles for safety, 2022. https://www.nhtsa.gov/technology-
innovation/automated-vehicles-safety.

[30] Autosar specification of module secure onboard communication, 2022.
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
2/AUTOSAR_SWS_SecureOnboardCommunication.pdf.

[31] Drivewise - allstate. https://www.allstate.com/drive-wise/drivewise-
device.aspx, 2022.

[32] Esp8266. https://www.espressif.com/en/products/socs/esp8266, 2022.

[33] Esurance insurance company. https://www.esurance.com/drivesense, 2022.

[34] Explore bmw connected drive technology. https://www.bmwusa.com/explore/
connecteddrive.html, 2022.

[35] Google cloud, 2022. https://cloud.google.com/.

[36] Mcp2515. https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-
Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf, 2022.

[37] Mcp2551. https://ww1.microchip.com/downloads/en/DeviceDoc/
21667E.pdf, 2022.

[38] Mcp25625. https://ww1.microchip.com/downloads/en/DeviceDoc/
MCP25625-CAN-Controller-Data-Sheet-20005282C.pdf, 2022.

[39] Pcan-usb. https://www.peak-system.com/PCAN-USB.199.0.html?&L=1,
2022.

[40] Power vs. torque. https://x-engineer.org/automotive-engineering/
internal-combustion-engines/performance/power-vs-torque/, 2022.

[41] Rh850/e2m, 2022. https://www.renesas.com/us/en/products/
microcontrollers-microprocessors/rh850/rh850e2x/rh850e2m.html.

[42] S32k144-q100 general purpose evaluation board. https://www.nxp.com/
design/development-boards/automotive-development-platforms/s32k-
mcu-platforms/s32k144-q100-general-purpose-evaluation-board:
S32K144EVB, 2022.

[43] Sn65hvd230 can board. https://www.waveshare.com/sn65hvd230-can-
board.htm, 2022.

[44] Tesla diagnostic port index. https://teslamotorsclub.com/tmc/threads/
diagnostic-port-index.98663/, 2022.

[45] Tesla model s ecus. https://teslatap.com/undocumented/model-s-
processors-count/, 2022.

212

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.allstate.com/drive-wise/drivewise-device.aspx
https://www.allstate.com/drive-wise/drivewise-device.aspx
https://www.espressif.com/en/products/socs/esp8266
https://www.esurance.com/drivesense
https://www.bmwusa.com/explore/connecteddrive.html
https://www.bmwusa.com/explore/connecteddrive.html
https://cloud.google.com/
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/21667E.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/21667E.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP25625-CAN-Controller-Data-Sheet-20005282C.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP25625-CAN-Controller-Data-Sheet-20005282C.pdf
https://www.peak-system.com/PCAN-USB.199.0.html?&L=1
https://x-engineer.org/automotive-engineering/internal-combustion-engines/performance/power-vs-torque/
https://x-engineer.org/automotive-engineering/internal-combustion-engines/performance/power-vs-torque/
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/rh850/rh850e2x/rh850e2m.html
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/rh850/rh850e2x/rh850e2m.html
https://www.nxp.com/design/development-boards/automotive-development-platforms/s32k-mcu-platforms/s32k144-q100-general-purpose-evaluation-board:S32K144EVB
https://www.nxp.com/design/development-boards/automotive-development-platforms/s32k-mcu-platforms/s32k144-q100-general-purpose-evaluation-board:S32K144EVB
https://www.nxp.com/design/development-boards/automotive-development-platforms/s32k-mcu-platforms/s32k144-q100-general-purpose-evaluation-board:S32K144EVB
https://www.nxp.com/design/development-boards/automotive-development-platforms/s32k-mcu-platforms/s32k144-q100-general-purpose-evaluation-board:S32K144EVB
https://www.waveshare.com/sn65hvd230-can-board.htm
https://www.waveshare.com/sn65hvd230-can-board.htm
https://teslamotorsclub.com/tmc/threads/diagnostic-port-index.98663/
https://teslamotorsclub.com/tmc/threads/diagnostic-port-index.98663/
https://teslatap.com/undocumented/model-s-processors-count/
https://teslatap.com/undocumented/model-s-processors-count/

[46] What is snapshot and how you can save. https://www.progressive.com/auto/
discounts/snapshot/, 2022.

[47] Ahmed Abdo, Sakib Md Bin Malek, Zhiyun Qian, Qi Zhu, Matthew Barth,
and Nael Abu-Ghazaleh. Application level attacks on connected vehicle proto-
cols. In 22nd International Symposium on Research in Attacks, Intrusions and
Defenses ({RAID} 2019), pages 459–471, 2019.

[48] Emad Aliwa, Omer Rana, Charith Perera, and Peter Burnap. Cyberattacks
and countermeasures for in-vehicle networks. arXiv preprint arXiv:2004.10781,
2020.

[49] Sam Banani, Steven Gordon, Surapa Thiemjarus, and Somsak Kittipiyakul.
Verifying safety messages using relative-time and zone priority in vehicular ad
hoc networks. Sensors, 18(4):1195, 2018.

[50] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita. Net-
work anomaly detection: methods, systems and tools. Ieee communications
surveys & tutorials, 16(1):303–336, 2013.

[51] Norbert Bißmeyer, Sebastian Mauthofer, Kpatcha M Bayarou, and Frank Kargl.
Assessment of node trustworthiness in vanets using data plausibility checks with
particle filters. In 2012 IEEE Vehicular Networking Conference (VNC), pages
78–85. IEEE, 2012.

[52] Gedare Bloom. Weepingcan: A stealthy can bus-off attack. In Workshop on
Automotive and Autonomous Vehicle Security (AutoSec), volume 2021, page 25,
2021.

[53] Mehmet Bozdal, Mohammad Samie, Sohaib Aslam, and Ian Jennions. Evalua-
tion of can bus security challenges. Sensors, 20(8):2364, 2020.

[54] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[55] Gabriel Brindusescu. Darpa hacked a chevy impala through its onstar
system. https://www.autoevolution.com/news/darpa-hacked-a-chevy-
impala-through-its-onstar-system-video-92194.html, February 2015.

[56] Richard R Brooks, Sam Sander, Juan Deng, and Joachim Taiber. Automobile
security concerns. IEEE Vehicular Technology Magazine, 4(2):52–64, 2009.

[57] Ken Budd. How long do cars last? a guide to your car’s
longevity. https://www.aarp.org/auto/trends-lifestyle/info-2018/how-
long-do-cars-last.html, Nov 2018.

[58] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner,
Tadayoshi Kohno, et al. Comprehensive experimental analyses of automo-
tive attack surfaces. In Proceedings of the 20th USENIX Security Symposium
(USENIX Security ’11), pages 77–92. USENIX, August 2011.

213

https://www.progressive.com/auto/discounts/snapshot/
https://www.progressive.com/auto/discounts/snapshot/
https://www.autoevolution.com/news/darpa-hacked-a-chevy-impala-through-its-onstar-system-video-92194.html
https://www.autoevolution.com/news/darpa-hacked-a-chevy-impala-through-its-onstar-system-video-92194.html
https://www.aarp.org/auto/trends-lifestyle/info-2018/how-long-do-cars-last.html
https://www.aarp.org/auto/trends-lifestyle/info-2018/how-long-do-cars-last.html

[59] Dongyao Chen, Kyong-Tak Cho, Sihui Han, Zhizhuo Jin, and Kang G Shin.
Invisible sensing of vehicle steering with smartphones. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applications, and
Services, pages 1–13. ACM, 2015.

[60] Kyong-Tak Cho and Kang G Shin. Error handling of in-vehicle networks makes
them vulnerable. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1044–1055, 2016.

[61] Kyong-Tak Cho and Kang G Shin. Fingerprinting electronic control units for ve-
hicle intrusion detection. In 25th {USENIX} Security Symposium ({USENIX}
Security 16), pages 911–927, 2016.

[62] Clemson Vehicular Electronic Laboratory. Clemson vehicular electronics labo-
ratory: Automotive electronic systems, 2022.

[63] Lara Codeca, Raphaël Frank, and Thomas Engel. Luxembourg sumo traffic
(lust) scenario: 24 hours of mobility for vehicular networking research. In 2015
IEEE Vehicular Networking Conference (VNC), pages 1–8. IEEE, 2015.

[64] A Costandoiu and M Leba. Convergence of v2x communication systems and
next generation networks. In IOP Conference Series: Materials Science and
Engineering, volume 477, page 012052. IOP Publishing, 2019.

[65] CSS Electronics. Can bus explained - a simple intro. https:
//www.csselectronics.com/screen/page/simple-intro-to-can-bus/
language/en, 2019.

[66] R Currie. Hacking the can bus: basic manipulation of a modern automobile
through can bus reverse engineering. SANS Institute, 2017.

[67] Tsvika Dagan and Avishai Wool. Parrot, a software-only anti-spoofing defense
system for the can bus. ESCAR EUROPE, page 34, 2016.

[68] Tomoiagă Radu Daniel and Stratulat Mircea. Aes algorithm adapted on gpu
using cuda for small data and large data volume encryption. International
journal of applied mathematics and informatics, 5(2):71–81, 2011.

[69] Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman. Out of control:
stealthy attacks against robotic vehicles protected by control-based techniques.
In Proceedings of the 35th Annual Computer Security Applications Conference,
pages 660–672, 2019.

[70] Pritam Dash, Guanpeng Li, Zitao Chen, Mehdi Karimibiuki, and Karthik Pat-
tabiraman. Pid-piper: Recovering robotic vehicles from physical attacks. In
2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 26–38. IEEE, 2021.

214

https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en

[71] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. Controller
area network (can) schedulability analysis: Refuted, revisited and revised. Real-
Time Systems, 35(3):239–272, 2007.

[72] Stefan Dietzel, Rens van der Heijden, Hendrik Decke, and Frank Kargl. A
flexible, subjective logic-based framework for misbehavior detection in v2v net-
works. In Proceeding of IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks 2014, pages 1–6. IEEE, 2014.

[73] Tri P Doan and Subramaniam Ganesan. Can crypto fpga chip to secure data
transmitted through can fd bus using aes-128 and sha-1 algorithms with a sym-
metric key. Technical report, SAE Technical Paper, 2017.

[74] Ebroecker. ebroecker/canmatrix. https://github.com/ebroecker/
canmatrix/wiki/signal-Byteorder, 2022.

[75] CSS Electronics. Can bus sniffer - reverse engineering vehicle data (wireshark).
https://www.csselectronics.com/screen/page/reverse-engineering-
can-bus-messages-with-wireshark/language/en, 2022.

[76] CSS Electronics. Can dbc file - convert data in real time (wireshark,
j1939). https://www.csselectronics.com/screen/page/dbc-database-
can-bus-conversion-wireshark-j1939-example/language/en, 2022.

[77] Elm Electronics, Inc. Obd. https://www.elmelectronics.com/products/
ics/obd/, 2022.

[78] Equipment and Tool Institute. The case for a vehicle gateway. url: http://
www.eti-home.org/TT-2015/Presos/ETI-ToolTech_2015_Gateway.pdf, 2015.

[79] Jeremy Erickson, Shibo Chen, Melisa Savich, Shengtuo Hu, and Z Morley Mao.
Commpact: Evaluating the feasibility of autonomous vehicle contracts. In 2018
IEEE Vehicular Networking Conference (VNC), pages 1–8. IEEE, 2018.

[80] TCITS ETSI. Intelligent transport systems (its); vehicular communications;
basic set of applications; part 2: Specification of cooperative awareness basic
service. Draft ETSI TS, 20(2011):448–51, 2011.

[81] Wael A Farag. Cantrack: Enhancing automotive can bus security using intu-
itive encryption algorithms. In 2017 7th International Conference on Modeling,
Simulation, and Applied Optimization (ICMSAO), pages 1–5. IEEE, 2017.

[82] Florian Fenzl, Roland Rieke, Yannick Chevalier, Andreas Dominik, and Igor
Kotenko. Continuous fields: enhanced in-vehicle anomaly detection using ma-
chine learning models. Simulation Modelling Practice and Theory, 105:102143,
2020.

[83] Jürgen Frank. https://www.nxp.com/docs/en/supporting-information/
DWF13_AMF_AUT_T0112_Detroit.pdf, Sep 2013.

215

https://github.com/ebroecker/canmatrix/wiki/signal-Byteorder
https://github.com/ebroecker/canmatrix/wiki/signal-Byteorder
https://www.csselectronics.com/screen/page/reverse-engineering-can-bus-messages-with-wireshark/language/en
https://www.csselectronics.com/screen/page/reverse-engineering-can-bus-messages-with-wireshark/language/en
https://www.csselectronics.com/screen/page/dbc-database-can-bus-conversion-wireshark-j1939-example/language/en
https://www.csselectronics.com/screen/page/dbc-database-can-bus-conversion-wireshark-j1939-example/language/en
https://www.elmelectronics.com/products/ics/obd/
https://www.elmelectronics.com/products/ics/obd/
http://www.eti-home.org/TT-2015/Presos/ETI-ToolTech_2015_Gateway.pdf
http://www.eti-home.org/TT-2015/Presos/ETI-ToolTech_2015_Gateway.pdf
https://www.nxp.com/docs/en/supporting-information/DWF13_AMF_AUT_T0112_Detroit.pdf
https://www.nxp.com/docs/en/supporting-information/DWF13_AMF_AUT_T0112_Detroit.pdf

[84] Arun Ganesan, Jayanthi Rao, and Kang Shin. Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection. Technical report, SAE
Technical Paper, 2017.

[85] Andy Greenberg. Chrysler and harman hit with a class action complaint after
jeep hack. https://www.wired.com/2015/08/chrysler-harman-hit-class-
action-complaint-jeep-hack/, Aug 2015.

[86] Andy Greenberg. Hackers remotely kill a jeep on the highway—with
me in it. https://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway, 2015.

[87] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti A Zadeh. Feature
extraction: foundations and applications, volume 207. Springer, 2008.

[88] Kyu Suk Han, Swapna Divya Potluri, and Kang G Shin. Real-time frame au-
thentication using id anonymization in automotive networks, 2016. US Patent
9,288,048.

[89] Kyusuk Han, André Weimerskirch, and Kang G Shin. Automotive cyberse-
curity for in-vehicle communication. In IQT QUARTERLY, volume 6, pages
22–25, 2014.

[90] Kyusuk Han, André Weimerskirch, and Kang G Shin. A practical solution to
achieve real-time performance in the automotive network by randomizing frame
identifier. Proc. Eur. Embedded Secur. Cars (ESCAR), pages 13–29, 2015.

[91] Adam Hanacek and Martin Sysel. Design and implementation of an integrated
system with secure encrypted data transmission. In Computer Science On-line
Conference, pages 217–224. Springer, 2016.

[92] Assaf Harel and Amir Hezberg. Optimizing can bus security with in-place
cryptography. Technical report, SAE Technical Paper, 2019.

[93] M. Hasan, S. Mohan, T. Shimizu, and H. Lu. Securing vehicle-to-everything
(v2x) communication platforms. IEEE Transactions on Intelligent Vehicles,
5(4):693–713, 2020.

[94] Olaf Henniger, Ludovic Apvrille, Andreas Fuchs, Yves Roudier, Alastair Rud-
dle, and Benjamin Weyl. Security requirements for automotive on-board net-
works. In 2009 9th International Conference on Intelligent Transport Systems
Telecommunications,(ITST), pages 641–646. IEEE, 2009.

[95] Md Delwar Hossain, Hiroyuki Inoue, Hideya Ochiai, Doudou Fall, and Youki
Kadobayashi. Lstm-based intrusion detection system for in-vehicle can bus
communications. IEEE Access, 8:185489–185502, 2020.

216

https://www.wired.com/2015/08/chrysler-harman-hit-class-action-complaint-jeep-hack/
https://www.wired.com/2015/08/chrysler-harman-hit-class-action-complaint-jeep-hack/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway

[96] Abdulmalik Humayed, Fengjun Li, Jingqiang Lin, and Bo Luo. Cansentry:
Securing can-based cyber-physical systems against denial and spoofing attacks.
In European Symposium on Research in Computer Security, pages 153–173.
Springer, 2020.

[97] M Jukl and J Čupera. Using of tiny encryption algorithm in can-bus commu-
nication. Research in Agricultural Engineering, 62(2):50–55, 2016.

[98] Julietkilo. julietkilo/kcd. https://github.com/julietkilo/kcd, Jul 2017.

[99] Pallavi Kalyanasundaram, Venkatesh Kareti, Meghana Sambranikar, Naren-
dra Kumar SS, and Priti Ranadive. Practical approaches for detecting dos
attacks on can network. Technical report, SAE Technical Paper, 2018.

[100] Joseph Kamel, Mohammad Raashid Ansari, Jonathan Petit, Arnaud Kaiser,
Ines Ben Jemaa, and Pascal Urien. Simulation framework for misbehavior
detection in vehicular networks. IEEE transactions on vehicular technology,
69(6):6631–6643, 2020.

[101] Joseph Kamel, Michael Wolf, Rens Wouter van der Heijden, Arnaud Kaiser,
Pascal Urien, and Frank Kargl. VeReMi Extension: A Dataset for Compara-
ble Evaluation of Misbehavior Detection in VANETs. In IEEE International
Conference on Communications (ICC), Dublin (virtual), Ireland, June 2020.
Virtual conference.

[102] Min-Joo Kang and Je-Won Kang. Intrusion detection system using deep neural
network for in-vehicle network security. PloS one, 11(6):e0155781, 2016.

[103] Kalwinder Kaur. Accelerator pedal position sensors vs. throttle position sen-
sors. https://www.azosensors.com/article.aspx?ArticleID=51, Mar 2019.

[104] John Kelsey, Bruce Schneier, and David Wagner. Related-key cryptanalysis of
3-way, biham-des, cast, des-x, newdes, rc2, and tea. In International Conference
on Information and Communications Security, pages 233–246. Springer, 1997.

[105] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences militaires,
9:5–38, 1883.

[106] Hyogon Kim and Taeho Kim. Vehicle-to-vehicle (v2v) message content plausi-
bility check for platoons through low-power beaconing. Sensors, 19(24):5493,
2019.

[107] Inhwan Kim, Hyunmi Yoo, Eom Young Hyun, Sungguk Cho, and Byungkook
Jeon. An integrated communication message framework of inter-vehicles for
connected vehicles using mobile virtual fence(mvf). International Journal of
Engineering and Technology(UAE), 7:102–105, 08 2018.

217

https://github.com/julietkilo/kcd
https://www.azosensors.com/article.aspx?ArticleID=51

[108] Jochen Klaus-Wagenbrenner. Zonal ee architecture: Towards a fully auto-
motive ethernet-based vehicle infrastructure. https://standards.ieee.org/
content/dam/ieee-standards/standards/web/documents/other/eipatd-
presentations/2019/D1-04_KLAUS-Zonal_EE_Architecture.pdf, Sep 2019.

[109] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, et al. Experimental security analysis of a modern automobile.
In Security and Privacy (SP), 2010 IEEE Symposium on, pages 447–462. IEEE,
2010.

[110] Sekar Kulandaivel, Shalabh Jain, Jorge Guajardo, and Vyas Sekar. Cannon:
Reliable and stealthy remote shutdown attacks via unaltered automotive mi-
crocontrollers. In 2021 IEEE Symposium on Security and Privacy (SP), pages
195–210. IEEE, 2021.

[111] Ryo Kurachi, Yutaka Matsubara, Hiroaki Takada, Naoki Adachi, Yukihiro
Miyashita, and Satoshi Horihata. Cacan-centralized authentication system in
can (controller area network). In 14th Int. Conf. on Embedded Security in Cars
(ESCAR 2014), 2014.

[112] Philip Lapczynski. Achieving a root of trust with secure boot in automotive
rh850 and r-car devices – part 1. https://www.renesas.com/us/en/blogs/
introduction-about-secure-boot-automotive-mcu-rh850-and-soc-r-
car-achieve-root-trust-1, 2021.

[113] Tim Leinmüller, Robert K Schmidt, and Albert Held. Cooperative position
verification-defending against roadside attackers 2.0. In Proceedings of 17th
ITS World Congress, pages 1–8. Citeseer, 2010.

[114] Xinhua Liu, Huafeng Mei, Huachang Lu, Hailan Kuang, and Xiaolin Ma. A
vehicle steering recognition system based on low-cost smartphone sensors. Sen-
sors, 17(3):633, 2017.

[115] Siti-Farhana Lokman, Abu Talib Othman, and Muhammad-Husaini Abu-
Bakar. Intrusion detection system for automotive controller area network (can)
bus system: a review. EURASIP Journal on Wireless Communications and
Networking, 2019(1):1–17, 2019.

[116] Stefano Longari, Matteo Penco, Michele Carminati, and Stefano Zanero. Copy-
can: An error-handling protocol based intrusion detection system for controller
area network. In Proceedings of the ACM Workshop on Cyber-Physical Systems
Security & Privacy, pages 39–50, 2019.

[117] Feng Luo and Shuo Hou. Security mechanisms design of automotive gateway
firewall. In WCX SAE World Congress Experience. SAE International, apr
2019.

218

https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/eipatd-presentations/2019/D1-04_KLAUS-Zonal_EE_Architecture.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/eipatd-presentations/2019/D1-04_KLAUS-Zonal_EE_Architecture.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/eipatd-presentations/2019/D1-04_KLAUS-Zonal_EE_Architecture.pdf
https://www.renesas.com/us/en/blogs/introduction-about-secure-boot-automotive-mcu-rh850-and-soc-r-car-achieve-root-trust-1
https://www.renesas.com/us/en/blogs/introduction-about-secure-boot-automotive-mcu-rh850-and-soc-r-car-achieve-root-trust-1
https://www.renesas.com/us/en/blogs/introduction-about-secure-boot-automotive-mcu-rh850-and-soc-r-car-achieve-root-trust-1

[118] Feng Luo and Qiang Hu. Security mechanisms design for in-vehicle network
gateway. In WCX World Congress Experience. SAE International, apr 2018.

[119] manitou48. Duezoo/isrperf.txt at master - manitou48/duezoo. https://
github.com/manitou48/DUEZoo/blob/master/isrperf.txt, 2022.

[120] Mirco Marchetti and Dario Stabili. Read: Reverse engineering of automo-
tive data frames. IEEE Transactions on Information Forensics and Security,
14(4):1083–1097, April 2019.

[121] Mirco Marchetti, Dario Stabili, and Michele Colajanni. Vehicle safe-mode, con-
cept to practice limp-mode in the service of cybersecurity. SAE International
Journal of Transportation Cybersecurity and Privacy, 3(1):19–39, feb 2020.

[122] Moti Markovitz and Avishai Wool. Field classification, modeling and anomaly
detection in unknown can bus networks. Vehicular Communications, 9:43–52,
2017.

[123] Kirsten Matheus and Thomas Königseder. Automotive ethernet. Cambridge
University Press, 2017.

[124] Charlie Miller and Chris Valasek. Adventures in automotive networks and con-
trol units. Def Con, 21:260–264, 2013.

[125] Charlie Miller and Chris Valasek. A survey of remote automotive attack sur-
faces. black hat USA, 2014:94, 2014.

[126] Charlie Miller and Chris Valasek. Car hacking: for poories. Technical report,
Tech. rep., IOActive Report, 2015.

[127] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passen-
ger vehicle. Black Hat USA, 2015:91, 2015.

[128] Pal-Stefan Murvay and Bogdan Groza. Dos attacks on controller area networks
by fault injections from the software layer. In Proceedings of the 12th Interna-
tional Conference on Availability, Reliability and Security, pages 1–10, 2017.

[129] Michael Müter and Naim Asaj. Entropy-based anomaly detection for in-vehicle
networks. In 2011 IEEE Intelligent Vehicles Symposium (IV), pages 1110–1115.
IEEE, 2011.

[130] D Nilsson and Ulf Larson. A roadmap for securing vehicles against cyber at-
tacks. In NITRD National Workshop on High-Confidence Automotive Cyber-
Physical Systems, 2008.

[131] William Noble. What is a support vector machine? The journal of machine
learning research, 24:1565–1567, 2006.

219

https://github.com/manitou48/DUEZoo/blob/master/isrperf.txt
https://github.com/manitou48/DUEZoo/blob/master/isrperf.txt

[132] Stefan Nürnberger and Christian Rossow. –vatican–vetted, authenticated can
bus. In International Conference on Cryptographic Hardware and Embedded
Systems, pages 106–124. Springer, 2016.

[133] Shuji Ohira, Araya Kibrom Desta, Ismail Arai, Hiroyuki Inoue, and Kazutoshi
Fujikawa. Normal and malicious sliding windows similarity analysis method for
fast and accurate ids against dos attacks on in-vehicle networks. IEEE Access,
8:42422–42435, 2020.

[134] Jose Pagliery. Tesla car doors can be hacked. https://money.cnn.com/2014/
03/31/technology/security/tesla-hack/, March 2014.

[135] Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano Zanero. A
stealth, selective, link-layer denial-of-service attack against automotive net-
works. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 185–206. Springer, 2017.

[136] A. Perrig, R. Canetti, J. Tygar, and D. Song. Approaches for secure and efficient
in-vehicle key management. In Proceedings of the IEEE Symposium on Security
and Privacy (SP 2000), pages 56–73, 2000.

[137] Mert Pese, Kang Shin, Josiah Bruner, and Amy Chu. Security analysis of an-
droid automotive. SAE International Journal of Advances and Current Prac-
tices in Mobility, 2(2020-01-1295):2337–2346, 2020.

[138] Mert D. Pesé, Arun Ganesan, and Kang G. Shin. Carlab: Framework for
vehicular data collection and processing. In Proceedings of the 2Nd ACM Inter-
national Workshop on Smart, Autonomous, and Connected Vehicular Systems
and Services, CarSys ’17, pages 43–48, New York, NY, USA, 2017. ACM.

[139] Mert D Pesé, Jay W Schauer, Junhui Li, and Kang G Shin. S2-can: Suffi-
ciently secure controller area network. Annual Computer Security Applications
Conference (ACSAC’21), 2021.

[140] Mert D Pesé, Karsten Schmidt, and Harald Zweck. Hardware/software co-
design of an automotive embedded firewall. Technical report, SAE Technical
Paper, 2017.

[141] Mert D Pesé, Troy Stacer, C Andrés Campos, Eric Newberry, Dongyao Chen,
and Kang G Shin. Librecan: Automated can message translator. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 2283–2300, 2019.

[142] PYMNTS. Who controls data in web-connected vehicles? https:
//www.pymnts.com/innovation/2018/data-sharing-smart-cars-privacy/,
June 2018.

220

https://money.cnn.com/2014/03/31/technology/security/tesla-hack/
https://money.cnn.com/2014/03/31/technology/security/tesla-hack/
https://www.pymnts.com/innovation/2018/data-sharing-smart-cars-privacy/
https://www.pymnts.com/innovation/2018/data-sharing-smart-cars-privacy/

[143] Adnan Qayyum, Muhammad Usama, Junaid Qadir, and Ala Al-Fuqaha. Secur-
ing connected & autonomous vehicles: Challenges posed by adversarial machine
learning and the way forward. IEEE Communications Surveys & Tutorials,
22(2):998–1026, 2020.

[144] Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bauman, Alvaro Cardenas,
and Zhiqiang Lin. {SAVIOR}: Securing autonomous vehicles with robust phys-
ical invariants. In 29th USENIX Security Symposium (USENIX Security 20),
pages 895–912, 2020.

[145] A.-I. Radu and F.D. Garcia. Leia: a lightweight authentication protocol for
can. Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS
2016, 878, 2016.

[146] Varsha Raghuwanshi and Simmi Jain. Denial of service attack in vanet: a
survey. International Journal of Engineering Trends and Technology (IJETT),
28(1):15–20, 2015.

[147] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of Compu-
tational Physics, 378:686–707, 2019.

[148] Maxim Raya, Panagiotis Papadimitratos, Imad Aad, Daniel Jungels, and Jean-
Pierre Hubaux. Eviction of misbehaving and faulty nodes in vehicular networks.
IEEE Journal on Selected Areas in Communications, 25(8):1557–1568, 2007.

[149] SAE. Dedicated Short Range Communications (DSRC) Message Set Dictionary,
March 2016.

[150] SAE. On-Board System Requirements for V2V Safety Communications, March
2016.

[151] SAE. Diagnostic Link Connector Security, jun 2018.

[152] Fatih Sakiz and Sevil Sen. A survey of attacks and detection mechanisms on
intelligent transportation systems: Vanets and iov. Ad Hoc Networks, 61:33–50,
2017.

[153] Steffen Sanwald, Liron Kaneti, Marc Stöttinger, and Martin Böhner. Secure
boot revisited: challenges for secure implementations in the automotive domain.
17th Escar Europe: Embedded Security in Cars, pages 113–127, 2020.

[154] Matthias Schäfer, Patrick Leu, Vincent Lenders, and Jens Schmitt. Secure
motion verification using the doppler effect. In Proceedings of the 9th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, pages 135–
145, 2016.

221

[155] S. Seifert and R. Obermaisser. Secure automotive gateway — secure com-
munication for future cars. In 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), pages 213–220, July 2014.

[156] Khaled Serag, Rohit Bhatia, Vireshwar Kumar, Z Berkay Celik, and Dongyan
Xu. Exposing new vulnerabilities of error handling mechanism in {CAN}. In
30th USENIX Security Symposium (USENIX Security 21), pages 4241–4258,
2021.

[157] Alexandru Constantin Serban, Erik Poll, and Joost Visser. A security anal-
ysis of the etsi its vehicular communications. In International Conference on
Computer Safety, Reliability, and Security, pages 365–373. Springer, 2018.

[158] Abhishek B Sharma, Leana Golubchik, and Ramesh Govindan. Sensor faults:
Detection methods and prevalence in real-world datasets. ACM Transactions
on Sensor Networks (TOSN), 6(3):1–39, 2010.

[159] Junjie Shen, Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen. Drift
with devil: Security of multi-sensor fusion based localization in high-level au-
tonomous driving under {GPS} spoofing. In 29th {USENIX} Security Sympo-
sium ({USENIX} Security 20), pages 931–948, 2020.

[160] Ali Shuja Siddiqui, Yutian Gui, Jim Plusquellic, and Fareena Saqib. Secure
communication over canbus. In 2017 IEEE 60th International Midwest Sympo-
sium on Circuits and Systems (MWSCAS), pages 1264–1267. IEEE, 2017.

[161] Craig Smith. The car hacker’s handbook: a guide for the penetration tester. No
Starch Press, 2016.

[162] Steven So, Jonathan Petit, and David Starobinski. Physical layer plausibility
checks for misbehavior detection in v2x networks. In Proceedings of the 12th
Conference on Security and Privacy in Wireless and Mobile Networks, pages
84–93, 2019.

[163] Steven So, Prinkle Sharma, and Jonathan Petit. Integrating plausibility checks
and machine learning for misbehavior detection in vanet. In 2018 17th IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA), pages
564–571. IEEE, 2018.

[164] Christoph Sommer, David Eckhoff, Alexander Brummer, Dominik S Buse, Flo-
rian Hagenauer, Stefan Joerer, and Michele Segata. Veins: The open source
vehicular network simulation framework. In Recent Advances in Network Sim-
ulation, pages 215–252. Springer, 2019.

[165] Daisuke Souma, Akira Mori, Hideki Yamamoto, and Yoichi Hata. Counter
attacks for bus-off attacks. In International Conference on Computer Safety,
Reliability, and Security, pages 319–330. Springer, 2018.

222

[166] Dieter Spaar and Fabian A. Scherschel. Beemer, open thyself! – secu-
rity vulnerabilities in bmw’s connecteddrive. https://www.heise.de/ct/
artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-
ConnectedDrive-2540957.html, February 2015.

[167] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[168] Stephen Stachowski, Ron Gaynier, David J LeBlanc, et al. An assessment
method for automotive intrusion detection system performance. Technical re-
port, United States. Department of Transportation. National Highway Traffic
Safety, 2019.

[169] Jan Peter Stotz, Norbert Bißmeyer, Frank Kargl, Stefan Dietzel, Panos Pa-
padimitratos, and Christian Schleiffer. Security requirements of vehicle security
architecture. Deliverable, PRESERVE consortium, 2011.

[170] Takeshi Sugashima, Dennis Kengo Oka, and Camille Vuillaume. Approaches
for secure and efficient in-vehicle key management. SAE International Journal
of Passenger Cars-Electronic and Electrical Systems, 9(2016-01-0070):100–106,
2016.

[171] Beshr Sultan and Mike McDonald. Assessing the safety benefit of automatic
collision avoidance systems (during emergency braking situations). In Proceed-
ings of the 18th International Technical Conference on the Enhanced Safety of
Vehicle.(DOT HS 809 543), 2003.

[172] Mingshun Sun, Ming Li, and Ryan Gerdes. A data trust framework for vanets
enabling false data detection and secure vehicle tracking. In 2017 IEEE Con-
ference on Communications and Network Security (CNS), pages 1–9. IEEE,
2017.

[173] Masaru Takada, Yuki Osada, and Masakatu Morii. Counter attack against
the bus-off attack on can. In 2019 14th Asia Joint Conference on Information
Security (AsiaJCIS), pages 96–102. IEEE, 2019.

[174] Tecsynt Solutions. How to reach the new business niche: Connected car
app development approaches. https://medium.com/swlh/how-to-reach-
the-new-business-niche-connected-car-app-development-approaches-
7e4d3849b4fb, April 2018.

[175] A. S. Thangarajan, M. Ammar, B. Crispo, and D. Hughes. Towards bridging
the gap between modern and legacy automotive ecus: A software-based secu-
rity framework for legacy ecus. In 2019 IEEE 2nd Connected and Automated
Vehicles Symposium (CAVS), pages 1–5, 2019.

223

https://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html
https://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html
https://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html
https://medium.com/swlh/how-to-reach-the-new-business-niche-connected-car-app-development-approaches-7e4d3849b4fb
https://medium.com/swlh/how-to-reach-the-new-business-niche-connected-car-app-development-approaches-7e4d3849b4fb
https://medium.com/swlh/how-to-reach-the-new-business-niche-connected-car-app-development-approaches-7e4d3849b4fb

[176] Nataša Trkulja, David Starobinski, and Randall A Berry. Denial-of-service
attacks on c-v2x networks. arXiv preprint arXiv:2010.13725, 2020.

[177] A. Van Herrewege, D. Singelee, and I. Verbauwhede. Canauth – a simple, back-
ward compatible broadcast authentication protocol for can bus. ECRYPTWork-
shop on Lightweight Cryptography, 2011.

[178] Franco van Wyk, Yiyang Wang, Anahita Khojandi, and Neda Masoud. Real-
time sensor anomaly detection and identification in automated vehicles. IEEE
Transactions on Intelligent Transportation Systems, 21(3):1264–1276, 2019.

[179] Miki E Verma, Robert A Bridges, and Samuel C Hollifield. Actt: Automotive
can tokenization and translation. arXiv preprint arXiv:1811.07897, 2018.

[180] Qiyan Wang and Sanjay Sawhney. Vecure: A practical security framework
to protect the can bus of vehicles. In 2014 International Conference on the
Internet of Things (IOT), pages 13–18. IEEE, 2014.

[181] Xiaoyang Wang, Ioannis Mavromatis, Andrea Tassi, Raul Santos-Rodriguez,
and Robert J Piechocki. Location anomalies detection for connected and au-
tonomous vehicles. In 2019 IEEE 2nd Connected and Automated Vehicles Sym-
posium (CAVS), pages 1–5. IEEE, 2019.

[182] Yiyang Wang, Neda Masoud, and Anahita Khojandi. Real-time sensor anomaly
detection and recovery in connected automated vehicle sensors. IEEE Trans-
actions on Intelligent Transportation Systems, 22(3):1411–1421, 2020.

[183] Armin R Wasicek, Mert D Pesé, André Weimerskirch, Yelizaveta Burakova, and
Karan Singh. Context-aware intrusion detection in automotive control systems.
In 5th ESCAR USA Conference, USA, pages 21–22, 2017.

[184] Saheed Wasiu, Rashid Abdul Aziz, and Hanif Akmal. Effects of pressure boost
on the performance characteristics of the direct injection spark ignition engine
fuelled by gasoline at various throttle positions. International Journal of Ap-
plied Engineering Research, 13(1):691–696, 2018.

[185] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin. Plug-n-pwned: Comprehen-
sive vulnerability analysis of obd-ii dongles as a new over-the-air attack surface
in automotive iot. In 29th USENIX Security Symposium (USENIX Security
20), pages 949–965, 2020.

[186] Marko Wolf, André Weimerskirch, and Christof Paar. Security in automotive
bus systems. In Workshop on Embedded Security in Cars, pages 1–13. Citeseer,
2004.

[187] David A. Wood. Jeep hacking lawsuit dismissed, Mar 2020.

224

[188] Wufei Wu, Renfa Li, Guoqi Xie, Jiyao An, Yang Bai, Jia Zhou, and Keqin Li.
A survey of intrusion detection for in-vehicle networks. IEEE Transactions on
Intelligent Transportation Systems, 2019.

[189] ZhihongWu, Jianning Zhao, Yuan Zhu, Ke Lu, and Fenglue Shi. Research on in-
vehicle key management system under upcoming vehicle network architecture.
Electronics, 8(9):1026, 2019.

[190] Yuan Yao, Bin Xiao, Gaofei Wu, Xue Liu, Zhiwen Yu, Kailong Zhang, and
Xingshe Zhou. Voiceprint: A novel sybil attack detection method based on
rssi for vanets. In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 591–602. IEEE, 2017.

[191] Yuan Yao, Bin Xiao, Gaofei Wu, Xue Liu, Zhiwen Yu, Kailong Zhang, and
Xingshe Zhou. Multi-channel based sybil attack detection in vehicular ad hoc
networks using rssi. IEEE Transactions on Mobile Computing, 18(2):362–375,
2018.

[192] Chaitanya Yavvari, Zoran Duric, and Duminda Wijesekera. Vehicular dynamics
based plausibility checking. In 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), pages 1–8. IEEE, 2017.

[193] Clinton Young, Joseph Zambreno, Habeeb Olufowobi, and Gedare Bloom. Sur-
vey of automotive controller area network intrusion detection systems. IEEE
Design & Test, 36(6):48–55, 2019.

[194] Michael Ziehensack. Safe and secure communication with automotive ethernet,
Oct 2015.

[195] Werner Zimmermann and Ralf Schmidgall. Bussysteme in der Fahrzeugtechnik.
Springer, 2006.

[196] Qingwu Zou, Wai Keung Chan, Kok Cheng Gui, Qi Chen, Klaus Scheibert,
Laurent Heidt, and Eric Seow. The study of secure can communication for
automotive applications. In SAE Technical Paper. SAE International, 03 2017.

[197] Baozhu Zuo. Can-bus shield v2.0, 2020. https://wiki.seeedstudio.com/CAN-
BUS_Shield_V2.0/.

225

https://wiki.seeedstudio.com/CAN-BUS_Shield_V2.0/
https://wiki.seeedstudio.com/CAN-BUS_Shield_V2.0/

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Evolution of Automotive Security
	Background on CAN Bus
	CAN Primer
	DBC Files
	In-Vehicle Network Architecture

	Background on Vehicle-to-Everything (V2X) Communication
	State-of-the-Art Defenses
	Challenges
	Thesis Contributions
	Thesis Statement
	Thesis Components
	LibreCAN pese2019librecan:
	S2-CAN pese2021s2:
	MichiCAN
	CARdea

	Organization of Thesis Proposal

	LibreCAN: Automated CAN Message Translator
	Introduction
	Background
	Information Sent on the CAN Bus

	System Design
	Phase 0: Signal Extraction
	Phase 1: Kinematic-related Data
	Phase 2: Body-related Data

	Evaluation
	Data Collection
	Accuracy and Coverage
	Manual Effort
	Computation Time
	Testing on Generic Parameters

	Discussion
	Limitations and Improvements
	Other Use-Cases of LibreCAN
	Countermeasures

	Related Work
	Manual CAN Reverse Engineering
	Automating CAN Reverse-Engineering

	Conclusion

	S2-CAN: Sufficiently Secure Controller Area Network
	Introduction
	Background
	Threat Model
	Related Work
	Authenticity and Integrity
	Confidentiality
	Key Management

	System Design
	Phase 0: Key Management
	Phase 1: Handshake
	Phase 2: Operation

	Finding Free Space
	Evaluation
	Experimental Setup
	Handshake Latency
	Operation Latency
	Other Metrics

	Security Analysis
	Experimental Setup
	Stage 0: Generating S2-CAN Traces
	Stage 1: Cracking the Encoding
	Stage 2: Authenticating Correctly
	Difficulty of Successful Cracking
	Determining Session Cycle T

	Discussion and Conclusion

	MichiCAN: Practical Spoofing and DoS Protection for the Controller Area Network
	Introduction
	Background
	CAN Error Handling
	CAN Hardware

	Threat Model
	System Design
	Initial Configuration
	Pin Multiplexing
	Synchronization
	Detection
	Prevention

	Evaluation
	Experimental Setup
	Detection Rate
	Detection Complexity
	Detection Latency
	Bus-off Time
	CPU Utilization
	Bus Load
	Memory

	Discussion
	Prevalence of integrated CAN controllers
	Replicability on other MCUs
	Limitations and Future Work

	Conclusion

	CARdea: Practical Anomaly Detection for Connected and Automated Vehicles
	Introduction
	Background and Threat Model
	Primer on V2X
	Threat Model

	Related Work
	Statistical Approaches
	ML-Based Approaches
	Differences of CARdea from Previous Work

	System Design
	Overview
	Anomalies under Consideration

	Phase 1: Local Anomaly Detection
	Overview
	Calibration
	Validation

	Phase 2: Remote Anomaly Detection
	Overview
	Feature Extraction
	Training and Validation

	Evaluation
	Experimental Setup
	Anomaly Generation
	Data Preparation
	Evaluation Metrics
	Phase 1
	Performance
	Detection Latency
	Memory Consumption

	Phase 2
	Performance
	Computation Time
	Memory Consumption

	Interactions between Phase 1 and 2
	Bandwidth

	Discussion and Conclusion

	Conclusion and Future Directions
	Conclusion
	IC1: Semantics can be automatically reverse-engineered, accelerating CAN injection attacks
	IC2: Solve CAN security problems by satisfying the functional and cost constraints of OEMs
	IC3: Solve V2V security problems by hybrid approach combining in-vehicle and off-vehicle anomaly detection

	Future Directions
	Connected Vehicle Ecosystem
	Adversarial Attacks on Autonomous Vehicles
	APPENDICES
	LibreCAN: Vehicular Signals
	LibreCAN: Phase 1
	LibreCAN: Phase 2
	S2-CAN
	MichiCAN
	CARdea

	BIBLIOGRAPHY

