
Optimization of In-Vehicle Network Design

by

Taeju Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2021

Doctoral Committee:

Professor Kang G. Shin, Chair
Professor Ella M. Atkins
Research Professor Emeritus Peter Honeyman
Associate Professor Alanson Sample

Taeju Park

taeju@umich.edu

ORCID iD: 0000-0002-1439-2709

© Taeju Park 2021

To my wife Minjeong and my family Minsu, Myungok and Jieun

ii

ACKNOWLEDGEMENTS

First and foremost, I thank my parents and my wife for their eternal love and support.

Without their unswerving dedication, my PhD journey would have been more arduous and

difficult.

I sincerely and greatly thank my advisor, Professor Kang G. Shin, for his support, pa-

tience, advice, and guidance. During my doctoral study, he has always guided me in the

right direction and encouraged me to aim high. With his insightful guidance and extraordi-

nary patience, I could grow up to be what I am today. Also, I would like to thank Professors

Ella M. Atkins, Peter Honeyman, and Alanson Sample for serving on my dissertation com-

mittee and giving me valuable feedback on this thesis.

Being a member of Real-Time Computing Laboratory (RTCL) was a great fortune to

me. RTCL members are always enthusiastic of solving real problems, and their attitude

and passion motivated me greatly. I would like to thank all RTCL members; Huan Feng,

Kassem Fawaz, Eugene Kim, Yu-Chih Tung, Kyong Tak Cho, Youngmoon Lee, Arun

Ganesan, Dongyao Chen, Timothy Trippel, Juncheng Gu, Chun-Yu Chen, Mert D. Pese,

Duc Bui, Hsun-Wei Cho, Youssef Tobah, Noah Curran, Wei-Lun Huang, Kyusuk Han,

Liang He, Hoon Sung Chwa, Xiufeng Xie, Hamed Yousefi, Suining He, Haichuan Ding,

and Jinkyu Lee. I would also like to thank my collaborators; Soheil Samnii and Prachi

Joshi at General Motors and Jiarui Lyu.

I am also grateful to my friends in Ann Arbor – Kibok Lee, Sunghyun Park, Heewoo

Kim, Dongyoung Yoon, Yoontae Kang and Amaryllis Rodrı́guez Mojica – for their care

and encouragements.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

ABSTRACT . xii

CHAPTER

1 Introduction . 1

1.1 Design challenges . 2
1.2 State-of-art optimization techniques . 3

1.2.1 Timing verification . 4
1.2.2 Network configuration . 4

1.3 Thesis Statement and Contributions . 5
1.3.1 PAMT . 6
1.3.2 EACAN . 6
1.3.3 DOFP . 7
1.3.4 OPMB . 7
1.3.5 PRMB . 8

1.4 Outline . 9

2 Background . 10

2.1 Controller Area Network (CAN) . 10
2.1.1 CAN frame format . 10
2.1.2 Bus Arbitration . 11
2.1.3 Timing analysis of a CAN message 11

2.2 Controller area network with flexible data rate (CAN-FD) 14
2.2.1 CAN-FD frame format . 14
2.2.2 Switching Bit Rate . 16
2.2.3 Timing analysis of CAN-FD message 16

2.3 Ethernet Time-Sensitive Networking (TSN) 16
2.3.1 Frame preemption . 17

iv

2.3.2 Timing analysis of messages on Ethernet TSN with frame pre-
emption . 18

3 PAMT: Optimal Priority Assignment for Scheduling Mixed CAN and CAN-
FD Frames . 23

3.1 Introduction . 23
3.2 Mixed CAN and CAN-FD System Model 25

3.2.1 Network Model . 25
3.2.2 Mixed Frame Model . 25
3.2.3 Mixed Frame-Instance Model 26

3.3 Scheduling Mixed CAN and CAN-FD 26
3.3.1 Why Problem? . 26
3.3.2 Hardware Solution . 26
3.3.3 Software Solution . 27

3.4 Problem Statement . 29
3.5 Priority Assignment with Mode Transitions 29

3.5.1 Basic Idea of PAMT . 29
3.5.2 PAMT Algorithm . 30
3.5.3 Optimality of PAMT . 35

3.6 Practical Issues . 37
3.6.1 Assigning ID to frame instances 37
3.6.2 Triggering a Mode Transition 38
3.6.3 Transient Error . 39
3.6.4 Unsynchronized Clock . 40
3.6.5 Sporadic Frames . 41

3.7 Evaluation . 42
3.7.1 Simulation Setup . 42
3.7.2 Results and Analysis . 43

3.8 Related Work . 44
3.9 Conclusion . 45

4 EACAN: Reliable and Resource-Efficient CAN Communications 47

4.1 Introduction . 47
4.2 System Model and Assumptions . 48

4.2.1 Overall Architecture . 48
4.2.2 Error Model . 49
4.2.3 Mixed-Criticality CAN Message Model 50

4.3 Problem Statement . 52
4.4 Error-Adaptive CAN (EACAN) . 53

4.4.1 Overview . 53
4.4.2 Runtime TER . 54
4.4.3 Deciding on System Criticality Level 57
4.4.4 Solving the Optimization Problem 58
4.4.5 Runtime Decision on System Criticality Level 60
4.4.6 EACAN Schedulability Analysis 62

v

4.4.7 Analysis of Overhead of Changing γsys 64
4.5 Evaluation . 65

4.5.1 Experimentation . 66
4.5.2 Simulation . 69

4.6 Conclusion . 73

5 DOFP: Design Optimization of Frame Preemption in Real-Time Switched
Ethernet . 74

5.1 Introduction . 74
5.2 System Description and Model . 75

5.2.1 System Architecture . 75
5.2.2 Networked System Model . 76

5.3 Synthesis Problem . 78
5.4 Generic Solution Approach . 80

5.4.1 Overview of GA-Based Framework 80
5.4.2 Initialization . 81
5.4.3 Evolution Procedure . 81

5.5 Case Study 1: Reliability . 82
5.5.1 ARQ Protocol . 82
5.5.2 Applying the GA-Based Framework 83

5.6 Case Study 2: Extensibility . 85
5.6.1 Applying GA-Based Framework 85

5.7 Evaluation . 87
5.7.1 Methodology . 87
5.7.2 Evaluation Results & Analysis 89

5.8 Conclusions . 92

6 OPMB: Optimal Priority Assignment for Multi CAN/CAN-FD Buses with a
Central Gateway . 94

6.1 Introduction . 94
6.2 Related Work . 96

6.2.1 Priority assignment for CAN/CAN-FD 96
6.2.2 Priority assignment for distributed real-time system 97

6.3 System Model . 97
6.3.1 Bus and message models . 98
6.3.2 Gateway model . 99

6.4 Global priority assignment vs. per-bus priority assignment for a CAN/CAN-
FD multi-bus system . 100
6.4.1 Implementation . 101
6.4.2 Schedulability . 101

6.5 Problem Statement . 102
6.6 OPMB . 102

6.6.1 Input parameters and return values 104
6.6.2 Initial state . 104
6.6.3 OPMB overall procedure . 105

vi

6.6.4 Pruning unnecessary searches 106
6.7 Evaluation . 110

6.7.1 Simulator Setup . 111
6.7.2 Test cases . 113
6.7.3 Evaluation results and analyses 116

6.8 Extensions . 118
6.9 Conclusion . 119

7 PRMB: Priority Assignment and Routing Table Synthesis for Multi CAN/CAN-
FD Buses with a Central Gateway . 120

7.1 Introduction . 120
7.2 Related Work . 122
7.3 System Model . 122

7.3.1 Bus model . 123
7.3.2 Signal and message model . 123
7.3.3 Gateway model . 124

7.4 PDU-direct vs. Signal-based Routing . 125
7.4.1 Network load . 126
7.4.2 Processing delay . 126
7.4.3 Measuring and analyzing processing delay 127

7.5 Problem Statement . 130
7.6 PRMB . 131

7.6.1 Overall Procedure . 131
7.6.2 Pre-processing (Init) . 132
7.6.3 Extending OPMB . 132
7.6.4 Merging two messages . 136

7.7 Evaluation . 137
7.7.1 Simulator Setup . 138
7.7.2 Test Cases . 140
7.7.3 Evaluation Results: Schedulability Coverage 140
7.7.4 Evaluation Results: Execution Time 141

7.8 Conclusion . 142

8 Conclusion and Future Directions . 143

8.1 Contributions . 143
8.1.1 Optimizing network configurations 143
8.1.2 Removing pessimism in design verification 144

8.2 Future Work . 144
8.2.1 Analyze and minimize gateway processing time for the limited

number of processing cores . 144
8.2.2 Considering both security and routing at the central gateway . . . 145
8.2.3 Zone-based architecture . 145

BIBLIOGRAPHY . 146

vii

LIST OF FIGURES

1.1 History of application deployment on a vehicle (Source: Boston Consulting
Group) . 1

1.2 Evolution of in-vehicle network architecture 2
1.3 The process of vehicle system design . 3

2.1 CAN frame format (base) . 10
2.2 CAN-FD frame format (base) . 14
2.3 Frame preemption supporting switched-Ethernet port 17
2.4 Format of preemptable and express frames 18

3.1 Network Model . 25
3.2 (Left) Problem in scheduling mixed CAN and CAN-FD frames; software (Mid)

and hardware (Right) solutions . 27
3.3 Experimental platform . 28
3.4 Due to the time overhead, the delivery/completion time of a given frame in-

creases and a frame misses its deadline . 28
3.5 The coverage of existing optimal priority assignment with or without the mode-

transition overhead for given mixed frame sets. 28
3.6 (Top) Assign priorities to frame instances based on NP-EDF; (Bottom) reduc-

ing mode-transition overheads via type-based clustering 30
3.7 Flowchart of PAMT . 31
3.8 Assign priority to a frame instance based on NP-EDF 33
3.9 Type-based clustering. Promoting the priority of fi to i− k + 1 to reduce the

mode-transition overhead . 33
3.10 Violation of C3. (ai > ai−k+1 and ai > ei−k) 35
3.11 Separation of CAN ID into priority and filter sections 37
3.12 Insert a special CAN frame . 39
3.13 Coverage of each priority assignment algorithm for the generated frame sets. . 43
3.14 Coverage of each priority assignment algorithm while varying utilization. . . . 44
3.15 The number of mode transitions required by each priority-assignment algo-

rithm in a planning cycle (X-axis: utilization) 45

4.1 Overall system architecture . 49
4.2 Flow chart of (Left) mEACAN (Right) sEACAN 53

viii

4.3 (Top) Time interval of interest [ts, te) is unnecessarily long. (Bottom) Time
interval of interest is [ts, te) is too short . 55

4.4 The probability of missing a message’s deadline depends on the remaining
execution/transmission time after changing the system criticality level 59

4.5 (Top) Ideal change of system criticality level. (Bottom) Changing system crit-
icality level with overhead considered. 65

4.6 Experimental platform . 66
4.7 (Left) Bandwidth utilization gap between EACAN operation and L1-Only op-

eration. (Right) System criticality-level distribution for a 1-hour CAN operation. 72

5.1 A promising in-vehicle architecture . 75
5.2 Abstracted system architecture . 76
5.3 Frame preemption supportive port . 77
5.4 Example of showing importance of ζi decision. 79
5.5 The overview of GA-based framework . 80
5.6 Initial parents significantly affects the outcome of the genetic algorithm 81
5.7 Evolution procedure . 82
5.8 Assign the isolated queue resource to each class 85
5.9 Average CSF and TC according to the number of evolutions for the generated

400 test cases. Y-axis on the left is average TC and Y-axis on the right is
average CSF. X-axis is the number of evolutions. 89

5.10 (Left) Schedulability with ARQ (Right) Schedulability without ARQ 90
5.11 (Left) The average of maximum CSF for the generated test cases with different

assignment algorithms (Right) The average of maximum CSF for different
number of traffic flows . 90

5.12 The average of maximum TC for the generated test cases with different as-
signment algorithms. 91

5.13 The average of maximum TC for different number of traffic flows 92

6.1 System model of multiple CAN/CAN-FD buses with a central gateway 97
6.2 Message routing in the gateway based on the embedded routing table 99
6.3 Priority-assignment table . 104
6.4 Overall procedure of OPMB . 105
6.5 If CLPj to mi,j is a fixable assignment for a given state S, we do not need to

move forward with other assignments from S. 108
6.6 Encountering failure without resolving its cause 110
6.7 (a) Schedulability coverage of the applied algorithm for ’overall’; (b) Schedu-

lability coverage of OPMB for ’overall’ with different timeouts 114
6.8 Schedulability coverage of the applied algorithm for (a) fixed number of buses,

(b) fixed bus-type, (c) fixed bus link speed and (4) different maximum number
of destinations of a signal . 114

6.9 Schedulability coverage gap between OPMB and MAA for (a) fixed number
of buses, (b) fixed bus-type, (c) fixed bus link speed, and (4) different maxi-
mum number of destinations of a signal . 115

ix

6.10 Maximum room (schedulability coverage) to improve by using per-bus priority
assignment over global priority assignment for (a) fixed number of buses, (b)
fixed bus-type, (c) fixed bus link speed, and (4) different maximum number of
destinations of a signal . 115

6.11 OPMB timeout ratio for (a) fixed number of buses, (b) fixed bus-type, (c) fixed
bus link speed, and (4) different maximum number of destinations of a signal . 116

7.1 System model of multiple CAN/CAN-FD buses with a central gateway 123
7.2 Message routing based on (Up) PDU-direct routing and (Down) signal-based

routing . 123
7.3 AUTOSAR gateway architecture for CAN(-FD) communications 125
7.4 AUTOSAR gateway evaluation platform . 127
7.5 Execution time for copying message from/to CAN(-FD) controller (X-axis:

payload size (in byte), Y-axis: time (in µs)) 128
7.6 (Left) Execution time of core procedure of PDU-direct routing (X-axis: the

number of entries in the PDUR routing table, Y-axis: time (in µs)). (Right)
Execution time of Rx procedure of signal-based routing (X-axis: the number
of signal in a processed message, Y-axis: time (in µs)). 129

7.7 (Left) Execution time of Tx procedure of signal-based routing while varying
the number of triggered messages to be transmitted (Right) and varying the
number of entries in the COM routing table (Y-axis: time (in µs)) 130

7.8 Overall procedures of PRMB . 131
7.9 Schedulability coverage of priority assignment algorithms for the test cases . . 141
7.10 Schedulability coverage difference between PRMB and OPMB in different

network configurations (schedulability coverage of PRMB - schedulabiity cov-
erage of OPMB) . 141

x

LIST OF TABLES

2.1 Supported Payload Size . 15

3.1 An example frame set . 30

4.1 Failure-rate requirements due to random hardware faults in ISO26262 50
4.2 Modified SAE benchmark . 67
4.3 Experimental Results (λmax = 10−3/ms) . 67
4.4 Experimental results (λmax = 10−2/ms) . 68
4.5 Criticality assignment based on the message period 69
4.6 Period and deadline changes according to the system criticality level 70
4.7 Coverage of EACAN and WCTER-based schedulability test (λmax = 10−3/ms) 71
4.8 Coverage of EACAN and WCTER-based schedulability test (λmax = 10−2/ms) 71

5.1 Ethernet traffic flow classes . 78
5.2 Worst-case E2E latency with different type boundary configurations 79
5.3 Simulation Configuration . 88
5.4 Execution time of 1 evolution . 92

6.1 System model configuration . 111
6.2 Signal characteristics . 112
6.3 Configuration for signal generation . 112
6.4 OPMB execution times (in seconds) . 117
6.5 Execution time (in second) . 118

7.1 System model configuration . 138
7.2 Signal characteristics . 139
7.3 Configuration for signal generation . 139
7.4 Values of coefficients used in the simulation (in µs) 139
7.5 Execution time (in second) . 142

xi

ABSTRACT

Automakers keep adding new functions to their products to attract more customers. Since

such newly-introduced functions usually require communication with other electronic con-

trol units (ECUs) to acquire & deliver sensor (e.g., speedometer, radar, etc.) data, the

amount of in-vehicle network traffic keeps rising. To deal with this ever-increasing trend,

automakers have re-designed in-vehicle network architecture and adopted high-bandwidth

protocols such as controller area network with flexible data-rate (CAN-FD), switched-

Ethernet, etc. However, since the complexity and cost related to in-vehicle networks in-

creases with this change, optimizing the in-vehicle network to minimize the cost becomes

a major challenge to the automakers.

To tackle such a challenge, we propose a suite of design optimization methods for

modern in-vehicle network architectures. First, we present PAMT, an optimal priority-

assignment algorithm for a single mixed CAN and CAN-FD bus. By clustering messages

based on their type, PAMT minimizes the timing overhead for mode transitions. Second,

we propose EACAN to relax the pessimistic assumptions used in the formal verification for

CAN communication. Third, we identify configurable parameters for standardized frame

preemption of Ethernet Time-Sensitive Networking (TSN) and present DOFP, a genetic

algorithm based optimization for the frame preemption. Fourth, we propose OPMB, an op-

timal priority assignment algorithm for multi CAN/CAN-FD buses with a central gateway.

Finally, we propose PRMB which finds a schedulable priority assignment and generates

routing tables to use signal-based routing at the central gateway while meeting the timing

requirements of in-vehicle data.

xii

CHAPTER 1

Introduction

A modern vehicle is typically equipped with dozens of small computers [71], called elec-

tronic control units (ECUs), and applications running thereon control almost everything
(even including invisible things) in the vehicle by exchanging sensor data and control com-
mands with each other through an established in-vehicle network. Since automakers keep
adding new functions to their products for safe, convenient, and fun driving as illustrated
in Fig. 1.1, the amount of in-vehicle network traffic keeps rising. One such example is
Advanced Driver Assistant Systems (ADAS) that require large amounts of high-resolution
image data.

To deal with this ever-increasing trend, the automakers (e.g., GM, Ford, Toyota, Dailmer-
Benz, Hyundai, etc.) have re-designed in-vehicle network architecture over the past several
decades as described in Fig. 1.2. In the early days of automotive electronics, in-vehicle ap-
plications were confined to a single, stand-alone ECU. Today, applications are distributed
over several ECUs that must constantly exchange data. Until the beginning of 90s, data
was exchanged through point-to-point links between ECUs. However, the point-to-point

Figure 1.1: History of application deployment on a vehicle (Source: Boston Consulting
Group)

1

Figure 1.2: Evolution of in-vehicle network architecture

architecture lacked scalability, due to the rapidly increasing number of ECUs within a ve-
hicle, which led to the use of multiplexed communication over a shared medium. Since
then, the Controller Area Network (CAN) has been widely used. Even though this bus
architecture has been successful, the bandwidth requirements of ECU applications quickly
exceeded the bandwidth limit of a single bus. Moreover, not all ECU functions require the
same communication performance either. Thus today, modern vehicles deploy heteroge-
neous buses interconnected via a central gateway, e.g., both low-bandwidth protocols, such
as CAN, and high-bandwidth protocols, such as CAN-FD, and Ethernet time-sensitive net-
work (TSN) are used together.

Even though re-designing the in-vehicle architecture has been effective in dealing with
the increasing network traffic, the cost of in-vehicle network is also rising. For example, (1)
more buses require more wires and connectors within a vehicle, (2) high-bandwidth buses
require expensive materials, (3) and the more complex the bus architecture (i.e., number
of bus protocols and ECUs), the more human capital and time are needed to design the
vehicle. Thus, optimizing in-vehicle networks to minimize cost has become a major focus
of automakers today.

1.1 Design challenges

The process of vehicle system design is shown in Fig. 1.3. In the planning phase, system
designers define the functionality of a target system. In the design phase, they analyze
the requirements of the system for the planned functions, and design prototypes for the
target system. The designed prototypes then go into the phase of validation and verification
(V&V). In this phase, test engineers check if every function works correctly and also check

2

Figure 1.3: The process of vehicle system design

whether every requirement is met or not. If a prototype passes the V&V phase, it goes
to the manufacturing phase. Otherwise, system designers have to modify them by adding
more resources or by optimizing the tested prototypes further to pass the V&V phase. Thus,
finding an optimal network configuration in the design phase and relaxing test conditions
while guaranteeing the satisfaction of system requirements in the V&V phase are important
for in-vehicle network optimization. Unfortunately, these are challenging.

First, there are too many configurable parameters that the system designers should con-
sider in the design phase. For example, they have to determine not only network archi-
tecture, network hardware, and network protocols but also scheduling of in-vehicle traffic,
signal packing, etc. Moreover, finding an optimal configuration for a single configurable
parameter is a difficult problem. For example, frame packing for CAN-FD [18] and syn-
thesizing gate control list for TSN [76] is NP problems.

Second, formal verification is widely used in the V&V phase to verify whether a proto-
type design satisfies the system requirements or not. At design and verification time, there
are many unknownn (e.g., the number of transmission errors that will happen at runtime).
So, the pessimistic case (or the worst case) is assumed in the formal verification. How-
ever, the pessimistic case rarely happens at runtime, and thus the pessimism causes severe
under-utilization of given resources and lowers the acceptance ratio in the V&V phase.

1.2 State-of-art optimization techniques

Various ideas have been proposed for the design of cost-optimized in-vehicle networks. The
design phase ideas focus on how to find an optimal or a near-optimal network configuration
from a large design space. The V&V phase ideas focus on finding tight conditions that can
guarantee the satisfaction of the given requirements. The following subsections summarize
the proposed ideas related to the formal timing verification and configurations of in-vehicle

3

network architectures.

1.2.1 Timing verification

Because sensor data or control commands generated in a vehicle have valid times, each in-
vehicle message should be delivered within a pre-defined time. For example, delivering a
brake control command generated by a cruise control system 10 seconds late could cause a
catastrophic accident. Thus, guaranteeing the worst-case end-to-end latency of a message
to be less than its deadline is an essential requirement. For timing verification, various
ways of analyzing/computing the worst-case end-to-end latency have been proposed in
both academia and industry.

Tindell et al. [102, 104] proposed the first timing analysis for CAN(-FD) protocol based
on the well-known busy period analysis [59]. However, that analysis has flaws in finding
the critical instant, which was corrected by Davis et al. [82]. Based on this analysis, various
practical issues have been addressed such as the limited size of Tx buffer [51] in the CAN
controller, FIFO queuing in the device driver [26], non-abortable Tx buffer [53], and non-
negligible time for copying a message into Tx buffer [52]. In particular, several studies
[21, 12] focus on the impact of transmission errors on the worst-case latency on CAN.

For Ethernet TSN, the worst-case end-to-end delay of network traffic is usually com-
puted based on either network calculus [109, 108] or compositional performance analysis
[101, 100]. These analyses focus on the effects of the various standardized features of TSN
on the worst-case end-to-end delay. For example, [101] analyzes the worst-case latency
when the time-aware shaper (802.1Qbv) or the peristaltic shaper (802.1Qch) is used. [100]
analyzes the impact of frame preemption (802.1Qbu) on the worst-case delay.

1.2.2 Network configuration

In the timing analyses introduced above, the worst-case end-to-end latency of a message
depends on how the given networked-system is configured. For example, the priority of
a message determines its waiting time at Tx buffer. Thus, it is essential to find a network
configuration that makes every message meet its timing requirement. Also, if there are
multiple configurations that can satisfy the given requirements, it is important to select the
one that minimizes cost. Various ways of finding an optimal/near-optimal configuration
have also been proposed.

For CAN(-FD) protocol, [18] proposes heuristic algorithms to pack signals into CAN-
FD messages to minimize bus utilization. [50] solves the frame packing problem for the
system consisting of multiple CAN-FD buses with a central gateway. [49] further improves

4

the bus utilization by formulating and solving the signal offset assignment problem. Also,
researchers have studied how to assign priorities to the packed frames to find a schedula-
ble priority assignment. Audsley’s priority assignment [7] is proven optimal for a single
CAN/CAN-FD bus if there is no priority inversion problem. However, priority inversions
can happen in practice [26, 51, 52]. [89, 28, 79] try to maximize extensibility for future
changes of the message set in addition to finding a schedulable priority assignment. [50]
proposes an optimal priority-assignment algorithm for the multi-bus system with a central
gateway where the gateway does not change ID of messages.

For Ethernet TSN, [24, 76, 40] focus on the scheduling of network traffic on TSN.
In particular, they focus on synthesizing gate control list (GCL). [58, 39, 74] studied the
routing of network traffic on TSNs. Especially, they focus on determining static routes for
time-triggered traffic [74] and audio-video-bridge (AVB)[58] traffic because the predictable
and deterministic operation is important for a real-time and safety-critical system. Topol-
ogy planning for TSN [6, 39] and traffic type assignment [38] problem are also studied
there.

1.3 Thesis Statement and Contributions

The growing complexity of the in-vehicle network makes it challenging to design a cost-
optimized network. To tackle this challenge, researchers have explored various ways of
designing an in-vehicle network to use the given resource efficiently and reduce production
and manufacturing costs by finding optimal/near-optimal network configurations and by
developing verification methods for prototype designs while guaranteeing the satisfaction
of requirements. However, many optimization problems for the in-vehicle network still
remain unsolved, and pessimistic assumptions are applied in the design verification. Thus,
there still remains ample room to design a cost-optimized in-vehicle network.

Thesis Statement: Design minimum-cost in-vehicle networks by optimizing their
configuration and removing/reducing pessimism in their verification

This thesis proposes a set of design optimization methodologies for in-vehicle net-
works. It designs algorithms and frameworks to optimize the parameters of communication
protocols used in modern vehicles. Moreover, it relaxes a pessimistic assumption in timing
verification based on run-time system reconfiguration schemes.

5

1.3.1 PAMT

Due to the differences of their frame format, whenever CAN controllers receive a message
with the CAN-FD frame format, they recognize it as an erroneous frame and generate
an error frame. In other words, high-speed communication between CAN-FD nodes is
impossible due to the error frame when CAN nodes and CAN-FD nodes share the same
bus. Two approaches [3, 67] have been proposed to resolve the problem. One is adding a
hardware filter in front of the CAN controller to remove CAN-FD frames. The other uses
the silent mode (known as listen only mode) in commercial CAN controllers that do not
transmit any messages.

Resolving the problem by using the silent mode saves money because hardware filters
are not needed. However, CAN controllers must first switch their operation mode from
the normal mode to the silent mode before transmitting a CAN-FD frame, and must then
switch their operational mode back to normal mode before transmitting a CAN frame at
run-time. The transitions between the two modes are not free: they require non-negligible
timing overheads that are a big burden for time-critical automotive systems. This overhead
can cause failure of timing verification for a significant number of message sets.

To mitigate the timing overhead, we propose a novel message scheduling algorithm,
called PAMT. Because the mode change is only needed when transmitting different types
of messages successively, clustering the same type of messages to the maximum extent
possible can minimize the required number of mode transitions. To achieve the type-based
clustering, we apply priority promotion to messages which are scheduled using NP-EDF.
We prove that PAMT is an optimal priority assignment algorithm for the bus with both CAN
and CAN-FD nodes. Also, our simulation results show that PAMT effectively reduces the
required number of mode transitions, and thus PAMT can schedule 17-–18% more mixed
CAN and CAN-FD frame sets than existing optimal priority-assignment algorithms for
CAN.

1.3.2 EACAN

At the design time of an automotive system, the timing verification relies on the worst-case
scenario. However, the worst-case scenario seldom happens at run-time. This inefficient
timing verification is also applied to estimate the latency of a CAN message on a bus. In
particular, the worst-case transmission error rate measured in a very pessimistic environ-
ment is used in the timing verification to guarantee safe operation in a harsh environment.
Thus, the worst-case-based timing verification results in inefficient use of networking re-
sources.

6

To alleviate this problem, we propose a run-time adaptation methodology, called error-

adaptive CAN (EACAN). Instead of using the worst-case transmission error rate in the tim-
ing verification, timing verification with EACAN assumes a zero transmission error rate
at design time. Then, EACAN observes the runtime behavior of transmission error. If the
transmission error rate measured at run-time exceeds the pre-defined threshold, EACAN re-
configures the periods of low-criticality messages to guarantee the reliability requirement
continuously. According to our experimental results, EACAN improves bandwidth utiliza-
tion by 14% over the timing verification with the worst-case transmission error rate without
violating the reliability requirement.

1.3.3 DOFP

Ethenet TSN is gaining popularity for backbone and domain networks which require high
bandwidth in the next-generation automotive communication architectures. In particular,
in-vehicle messages with various payload sizes and criticality levels would share a back-
bone network. Thus, (1) small-size packets wait for the completion of transmitting a large-
size packet and (2) high-critical messages wait for the completion of transmitting a low-
critical message. To avoid these unfortunate situations, the frame preemption (802.1Qbu
and 802.3br) feature is standardized by the IEEE TSN Task Group. However, to gain ben-
efits from the frame preemption, careful shaping of frame preemption at design time is
required.

In this piece of work, we identify configurable parameters to shape the frame pre-
emption at design time and present a genetic algorithm-based optimization framework to
find optimal parameter configurations. Our framework exploits the worst-case preemption-
aware timing analysis presented in Section 2.3. We show the usefulness of our framework
through two case studies; improving reliability and extensibility of networks. In the case
studies of effective and efficient use of the framework, we also propose an initialization
algorithm for each goal. Our simulation results have demonstrated that the proposed ini-
tialization algorithms outperforms the existing assignment algorithms (AOPA, RPA) used
in general real-time systems and an intuitive approach (FPCP) in the reliability and exten-
sibility.

1.3.4 OPMB

Automakers keep introducing new functions to vehicles to entice customers, thus increas-
ing the size/number of in-vehicle buses. As a result, adopting multi-buses with a central
gateway is becoming a norm in current and future vehicles. Since adding buses increases

7

production cost, knowing whether or not to add a bus at design time to meet the given
requirements is essential to design a cost-optimized in-vehicle network. However, due to
the lack of an optimal priority-assignment algorithm for multi-bus systems, it is difficult to
determine whether additional buses are needed.

To address this difficulty, we propose an optimal priority-assignment algorithm, called
OPMB, for multiple CAN/CAN-FD buses with a central gateway. OPMB builds on back-
tracking, and is thus of exponential time complexity. To reduce the execution time effec-
tively for industry-size problems, we identify several theory-proven search-space reduction
conditions. Our in-depth simulation has demonstrated that OPMB outperforms the state-
of-art priority-assignment algorithms for multi-bus systems, and is suitable for high-speed
systems which represent future automotive systems. Also, OPMB is shown to be feasible
for most realistic automotive message sets.

1.3.5 PRMB

This architecture, consisting of multiple network buses connected via a central gateway,
is widely used in modern vehicles. Additionally, the AUTomotive Open System ARchi-
tecture (AUTOSAR) had standardized a software framework for the gateway as part of
communication services. The AUTOSAR gateway supports multiple routing methods such
as PDU-direct routing and signal-based routing. With signal-based routing, the gateway
can extract signals from incoming messages and can generate new messages by assem-
bling some of the extracted signals. Thus, signal-based routing can reduce network loads
by avoiding forwarding unnecessary signals to their destinations, and by reducing the total
number of messages on buses. However, applying signal-based routing while guaranteeing
timely delivery of given signals is non-trivial. When the gateway uses signal-based routing,
the priority assignment problem and routing table synthesis problem should be considered
together to guarantee the timely delivery of given signals.

To gain benefits of signal-based routing, we propose an algorithm which performs Pri-
ority assignment and Routing table synthesis for Multiple CAN/CAN-FD Buses with a cen-
tral gateway, called PRMB. For the priority assignment in PRMB, we extend OPMB, the
state-of-art optimal priority-assignment algorithm, to consider signal-based routing. When
the extended OPMB cannot find a schedulable priority assignment for a given message set,
PRMB tries to merge two messages into one message to reduce network load, and retries
to find a schedulable priority assignment. Internally, when PRMB applies a merge, PRMB
keeps updating routing tables to reflect the merge. Our simulation results show that PRMB
outperforms the state-of-art priority assignment algorithms in schedulability coverage.

8

1.4 Outline

Chapter 2 introduces the basics of CAN, CAN-FD, and TSN as background knowledge.
Chapter 3 discusses the priority-assignment problem for a bus shared by both CAN and
CAN-FD ECUs. Chapter 4 presents relaxation of the worst-case transmission error rate
in formal verification. Chapter 5 presents a genetic-algorithm-based framework for syn-
thesizing configurable parameters for the standardized frame preemption on Ethernet TSN.
Chapter 6 considers the priority-assignment problem for multi CAN/CAN-FD buses with a
central gateway. Chapter 7 presents a way of priority assignment and routing table synthesis
to use signal-based routing at the central gateway while guaranteeing the timely delivery of
the given signals. Finally, Chapter 8 concludes this thesis and discusses future directions.

9

CHAPTER 2

Background

2.1 Controller Area Network (CAN)

CAN is regarded as de facto standard of in-vehicle network since its official release in the
mid 80s. It covers from physical layer to data link layer (in the perspective of OSI model)
to allow ECUs connected to a shared physical wire (bus) to communicate each other via
broadcast without a centralized controller. The maximum speed of a CAN bus is 1Mbps
with a maximum cable length of about 40 meters according to the standard (ISO 11898-2),
but usually 500Kbps and 250Kbps bus speeds are used in automotive systems.

2.1.1 CAN frame format

A CAN protocol supports two different frame formats; (a) base and (b) extended. Because
the difference between the base format and the extended format is only the length of iden-
tifier field (11-bit for base and 29-bit for extended), we cover the base format here in detail.
The frame format of CAN protocol is illustrated in Fig. 2.1, and consists of start-of-frame,
arbitration field, control field, data field, cyclic redundancy check, acknowledgement and
end-of-frame.

A frame starts from a dominant (0) bit, called start-of-frame, which indicates the begin-
ning of transmission of a frame. The following unique 11-bits in the arbitration field are the

Figure 2.1: CAN frame format (base)

10

identifier of the frame, which represents not only the what data it carries but also priority
of the frame. The remaining 1-bit (RTR bit) in the arbitration field indicates a type of the
frame. If RTR bit is dominant, the frame is data frame, which carries data from a trans-
mitter to receiver. If RTR bit is recessive (1), the frame is remote frame, which requests
a transmission of a data frame with the same identifier. In the next control field, there are
identifier extension (IDE) bit and data length code (DLC). IDE bit indicates frame format.
If IDE bit is dominant then the frame has the base frame format else the frame has the
extended frame format. The 4-bit DLC represents the length of data field in bytes (from
0–8 bytes).

In addition to the data frame and remote frame, there are two more types of CAN frame;
error frame and overload frame. Error frame represents the detection of transmission errors
by sending at least 6 consecutive dominant bits. Note that every bit stream of more than 5
same bits is considered as error in the CAN protocol. Overload frame is used to shape an
extra delay between successive data or remote frame.

2.1.2 Bus Arbitration

The CAN protocol schedules messages based on the value of identifier (ID) field of mes-
sages in a decentralized way. When CAN bus is idle, multiple ECUs can try to transmit
messages at the same time. Because CAN physical layer is designed to operate as a wired-
AND gate, ECUs which send recessive bit can see the dominant bit on the bus during the
transmission of ID bits. When an ECU loses bus arbitration by the dominant bit, the ECU
gives up transmitting its message. As a result, the message with the lowest ID value is se-
lected to be transmitted under the CAN protocol. The ECUs that lost the arbitration will try
retransmission of their messages after completing the transmission of the message which
won the current round of arbitration. Thus, by assigning ID properly, the system designer
can control the transmission order of messages. In other words, priority assignment to a
CAN message means an ID assignment.

2.1.3 Timing analysis of a CAN message

Many applications which use CAN are time-critical, and hence it is important to determine,
at design time, whether or not a CAN message can be delivered before its deadline. To meet
this requirement, researchers have analyzed the worst-case delivery/response time (WCRT)
of each CAN message.

The first timing analysis of a CAN message was done by Tindell et al. [102, 104]. They
analyzed the WCRT, Ri, of a CAN message, mi, by decomposing the response time into

11

three components. The first component is release jitter (Ji), the maximum time necessary
to queue the message in a transmission buffer (TxObject) of the CAN controller. The
second component is queuing delay (wi), which is the waiting time of the message in the
TxObject before its transmission. The third component is the transmission time (Ci) on the
CAN bus. The transmission time of a single CAN message can be easily analyzed [82] by
considering the bit-stuffing rule according to the following equation where p is the payload
size in bytes, tnom is the transmission time for a single bit and g is 34 for the base format
or 54 for the extended format:

Ci =

(
g + 8p+ 13 + bg + 8p− 1

4
c
)
tnom. (2.1)

Since the release jitter is determined a priori by considering the performance of micropro-
cessor, Tindell et al. focused on the analysis of a message’s queuing delay. To derive the
worst-case queuing delay of a message, they analyzed the message’s critical instant. They
recursively derived the worst-case queuing delay of a message as:

wn+1
i = Bi +

∑
∀k∈hp(i)

⌈
wni + Jk + τ

Tk

⌉
Ck (2.2)

Ri = Ji + wi + Ci, (2.3)

where Ti is the period of the message, Bi is the blocking time by a lower-priority message,
hp(i) is a set of the messages whose priority is higher than that of message (mi), and τ is a
bit time.

However, this analysis has a severe flaw, and hence Davis et al. [82] used a fine-grained
approach to correct the flaw in Eq. (2). They computed the response time of every in-
stance of the message and chose the maximum response time as the message’s WCRT. The
queuing delay of the q-th instance of the message (wi(q)) is defined as: (q starts from 0).

wn+1
i (q) = Bi + qCi +

∑
∀k∈hp(i)

⌈
wni (q) + Jk + τ

Tk

⌉
Ck (2.4)

and WCRT of the message is defined as:

Ri(q) = Ji + wi(q)− qTi + Ci (2.5)

Ri = max
q

Ri(q). (2.6)

Since the q-th instance of the message is released at qTi, qTi is subtracted from the com-

12

pletion time of the q-th instance to calculate the response time as shown in Eq. (4).
These WCRT analyses have been extended to address various practical issues, such as

the limited size of TxObject [51], FIFO queuing in the device driver [26], non-abortable
TxObject [53], and non-negligible time for copying a message into TxObject [52]. In
particular, several studies [21, 12] focused on the impact of transmission errors on the
response time. They derived an equation to compute the worst-case queuing delay of a
message with Z transmission errors:

wn+1
i|Z (q) = Bi + qCi + Ei|Z +

∑
∀k∈hp(i)

⌈
wni|Z(q) + Jk + τ

Tk

⌉
Ck, (2.7)

where Ei|Z is the error recovery time (time for transmitting an error frame plus time for
retransmitting the message) for Z errors. Similar to Eqs. (4) and (5), WCRT with Z trans-
mission errors is defined as:

Ri|Z(q) = Ji + wi|Z(q)− qTi + Ci (2.8)

Ri|Z = max
q

Ri|Z(q). (2.9)

Since there is no way to predict the exact number of transmission errors that will occur
in future, every CAN message is intrinsically unschedulable. Any schedulability test can-
not guarantee the timing requirements to be met deterministically. Thus, previous studies
[21, 12] focused on probabilistic schedulability analyses which compute the probability of
deadline misses for a given set of CAN messages. To compute the probability of CAN
message deadline misses, they first compute the probability of WCRT of the message that
experiences Z transmission errors (p(Ri|Z)) as:

p(Ri|Z) = p(Z,Ri|Z)−
Z−1∑
j=0

p(Ri|j)p(Z − j, Ri|Z −Ri|j) (2.10)

under the assumption that the distribution of transmission errors follows a Poisson distri-
bution with given TER (λ):

p(Z,Ri|Z) =
e−λRi|Z (λRi|Z)Z

Z!
. (2.11)

They then compute the probability of a message deadline miss by adding all the probabili-

13

Figure 2.2: CAN-FD frame format (base)

ties p(Ri|Z) such that Ri|Z ≤ Di (Di is the relative deadline of message i):

pi(DM) = 1−
∑

∀Z|Ri|Z≤Di

p(Ri|Z), (2.12)

where DM stands for “deadline miss”.
If the probability of missing the deadline of a given message is less than a pre-specified

value, then the probabilistic schedulability test regards the message as schedulable.

2.2 Controller area network with flexible data rate (CAN-
FD)

CAN is simple and cheap but can support only up to 8 bytes of data field and 1 Mbps band-
width, making it difficult to achieve secure transmission by appending a secure key and
deal with the increasing amount of in-vehicle traffic. Thus, Robert Bosch, the inventor of
CAN, proposed CAN-FD to overcome the drawbacks of CAN in 2012. CAN-FD can sup-
port up to 64 bytes of data field and 12 Mbps bandwidth while having the same architecture
and physical layer backward compatibility with the original CAN. Thus, CAN-FD became
attractive to many OEMs and suppliers, unlike Flexray [47] which was also proposed as a
substitute for CAN and has higher bandwidth (10Mbps).

2.2.1 CAN-FD frame format

The CAN-FD frame format is similar to the CAN frame format as shown in Fig. 2.2. Both
frames consist of start-of-frame, arbitration field, control field, data field, cyclic redundancy
check, acknowledgment, and end-of-frame. However, there are several differences between
them in the arbitration field, control field, data field, and CRC field.

14

Data Frame Type DLC Payload Size (in Bytes) CRC Bits

CAN & CAN-FD

0000 0

CAN:15
CAN-FD:17

0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

CAN 1xxx 8

CAN-FD

1000 8
171001 12

1010 16
1011 20

21
1100 24
1101 32
1110 48
1111 64

Table 2.1: Supported Payload Size

The RTR bit in the arbitration field of the CAN frame format, which indicates whether
the frame is data frame (dominant bit) or remote frame (recessive bit), is replaced with a
reserved bit, and the following three control bits are newly introduced.

• Flexible Data-rate Format (FDF) bit indicates whether the frame is encoded as CAN
frame (dominant bit) or CAN-FD frame (recessive bit).

• Bit Rate Switch (BRS) bit indicates whether the bit time changes during the payload
transmission (recessive bit) or not (dominant bit).

• Error Status Indicator (ESI) bit indicates whether the transmitter which sends the
frame is in error active state (dominant bit) or error passive state (recessive bit).

The supported payload sizes in CAN frame and CAN-FD frame are listed in Table 2.1.
CAN-FD frame supports up to 64 bytes payload size. Since the increase of the maximum
payload size requires more redundancy bits to check the correctness in transmitted data, the
number of CRC bits also increases. Note that, for the CRC field, a static number of stuff
bits is used. For example, if 17-bits CRC is used, 4 stuff bits are added. If 21-bits CRC is
used, 5 stuff bits are added.

15

2.2.2 Switching Bit Rate

Since only one ECU can access the shared CAN bus during payload transmission (other
ECUs already lost bus arbitration), synchronization between ECUs is not required for the
payload transmission. Hence, CAN-FD increases the maximum payload size and transmis-
sion speed by boosting up the bit rate when it transmits payload bits.

CAN-FD frame is separated into two phases, arbitration phase and data phase, as shown
in Figure 2.2. The interval between BRS bit and CRC delimiter bit is defined as the data
phase. The other intervals are defined as the arbitration phase. The purposes of this sepa-
ration are to support improved transmission rate and to keep the key features of CAN such
as non-destructive arbitration. Thus, the CAN-FD protocol defines two bit-times, nomi-
nal bit-time (tnom) and data bit-time (tdata). These bit-times are configured by considering
properties of the given CAN-FD network (e.g., the number of ECUs, the length of wire,
limitations of CAN-FD transceivers, etc.). Since the CAN-FD protocol does not allow
slowing down the bit rate in the middle of transmission of a frame, tdata must be smaller
than, or equal to tnom.

The bit-time for the arbitration phase is always set to tnom. However, the bit-time for
the data phase depends on the value of the BRS bit. If the BRS bit of a CAN-FD frame is
set to recessive bit, then the bit time is switched from tnom to tdata to boost the transmission
rate. Otherwise, tnom holds for the data phase.

2.2.3 Timing analysis of CAN-FD message

The timing analysis of CAN (Eq. 2.6) is applicable to analyze the worst-case response time
of CAN-FD messages. However, Eq. 2.1 has to be revised to consider differences between
CAN frame format and CAN-FD frame format. Bordoloi et al. [18] provided the revised
equation for CAN-FD as follows where p is the payload size in bytes:

Ci = 32tnom +

(
28 + 5dp− 16

64
+ 10pe

)
tdata. (2.13)

2.3 Ethernet Time-Sensitive Networking (TSN)

The IEEE 802.1 Time-Sensitive Networking (TSN) Task Group1 developed a set of stan-
dards to enhance the real-time and dependability properties of IEEE 802 networks. Ex-
ample standards include credit-based shaping (IEEE Std 802.1Qav-2009), time synchro-

1formerly known as the Audio/Video Bridging (AVB) Task Group

16

Figure 2.3: Frame preemption supporting switched-Ethernet port

nization (802.1AS-2011), time-triggered communication (802.1Qbv-2015), and frame pre-
emption (802.1Qbu-2016 and 802.3br-2016). The enhancements help automotive OEMs
adopt the switched-Ethernet for next-generation vehicles. In particular, the OEMs consider
the switched-Ethernet for some domain networks (ADAS, infotainment) and the in-vehicle
backbone network.

Chapter 5 of this dissertation focuses on design optimization of the standardized frame
preemption, and thus we provide an overview of Ethernet TSN with the frame preemption.

2.3.1 Frame preemption

IEEE 802.1Qbu and IEEE 802.3br describe how a frame preemption takes place at egress
and ingress ports. To enable frame preemption, an egress port and the corresponding
ingress port have to support the frame preemption.

An egress port can have up to 8 queues to serve multiple frame classes, and each queue
is mapped to either express MAC (eMAC) interface or preemptable MAC (pMAC) inter-
face as shown in Fig. 2.3. If a message passes through the eMAC, the message is called an
express frame. If a message passes through the pMAC, the message is called a preempt-

able frame. An express frame cannot be preempted by any other frames, but a preemptable
frame can be preempted by any express frame. Note that preemptable frames cannot pre-
empt each other. Hence, only one level of frame preemption is allowed. The formats of
both express and preemptable frames are shown in Fig. 2.4. In addition to the MAC in-
terfaces, IEEE 802.3br introduces a key component, MAC merge sublayer, that performs
both transmit and receive processing for express and preemptable frames to implement the
frame preemption function.

In the transmit processing, the MAC merge sublayer (1) replaces the value of start of
mPacket delimiter (SMD) with either SMD-E, SMD-Sx or SMD-Cx2 to indicate whether
the current frame is either express or preemptable frame. For example, if a frame is deliv-

2The values of SMD-E, SMD-Sx and SMD-Cx are: SMD-E(0xD5), SMD-S0(0xE6), SMD-S1(0x4C),
SMD-S2(0x7F), SMD-S3(0xB3), SMD-C0(0x61), SMD-C1(0x52), SMD-C2(0x9E), SMD-C3(0x2A). Note
that the 2-bit frame count is encoded in SMD-Sx and SMD-Cx.

17

Figure 2.4: Format of preemptable and express frames

ered via the eMAC interface, the value of SMD is replaced with SMD-E. It also (2) gener-
ates cyclic redundancy code (CRC) for each frame and fragment, (3) preempts a preempt-
able frame to intersperse an express frame between fragments of the preemptable frame,
and (4) resumes the transmission of the remainder of the preempted frame. To inform the
order of fragments to a receiver, the fragment count (FCnt) is appended after SMD-Cx.

In the receive processing, the MAC merge sublayer checks the type of received frames
by inspecting their SMD values. If SMD = SMD-E, the frame is directly delivered to
eMAC. If SMD = SMD-Sx, it checks whether the current frame is the last fragment or not
by comparing MCRC and the last four octets of the current frame. If the current frame is
not the last fragment (matching the MCRC), the MAC merge sublayer sends the data in the
current frame to pMAC and waits for continuing fragments. If SMD = SMD-Cx, the MAC
merge sublayer checks frame count, FCnt, and the last four octets. If there is any violation
in these checked values, it informs pMAC of the error state. The reason for checking the
last four octets is the same as for SMD-Sx.

2.3.2 Timing analysis of messages on Ethernet TSN with frame pre-
emption

Thiele et al. [100] proposed a worst-case latency analysis for Ethernet TSN with the frame
preemption. The analysis leverages the compositional performance analysis (CPA) frame-
work, and models egress ports as the major resources. Below we briefly introduce this
analysis.

Transmission Time Analysis: At an egress port, a frame consumes service time for
transmission, and the service time depends on its payload size. The maximum service time
for a frame of traffic flow i is modeled as follows where Li is the maximum payload size

18

of traffic flow i and rTX is the link speed:

C+
i =

42bytes+max{42bytes, Li}
rTX

. (2.14)

Because an egress port can transmit only one frame at a time, the frames queued at the
port compete with each other to receive the service time. So, a frame needs to wait for
the completion of other frames’ transmission in a queue. The queuing delay (waiting time
in a queue) of the frame depends on its priority and the type of queue where the frame is
queued.

Queuing delay analysis for preemptable frame: A (preemptable) frame can be pre-
empted by express frames, and thus can be fragmented. Thus, the queuing delay of a pre-
emptable frame consists of (1) blocking time by a lower-priority frame, (2) blocking time
by same-priority frames, (3) blocking time by higher-priority frames, and (4) preemption
overhead.

If a lower-priority frame A is being transmitted when a preemptable frame B is queued,
B has to wait for the completion of A’s transmission regardless of the type of A. Thus, the
worst-case blocking time by a lower-priority frame for a preemptable frame is:

ILPB,Pi = max
j∈lp(i)

{
C+
j

}
(2.15)

Because of the first-in-first-out (FIFO) policy, a preemptable frame needs to wait for the
completion of transmission of frames that are already in the same queue. Moreover, be-
cause of preemption, we should analyze the blocking time by same-priority frames from
the perspective of the last fragment of the preemptable frame. Suppose the q-th frame of
traffic i is queued at time aqi . Then, the last fragment of the frame should wait for the com-
pletion of transmission of (a) q−1 frames of traffic i, (b) continuous fragments of the frame
and (c) η+j (aqi) frames of traffic j where η+j (t) is the number of frame of traffic j queued
before time t. Because the worst case happens when the last fragment has the minimum
size (84 bytes), the worst-case blocking time by same-priority frames is:

ISPB,Pi (q, aqi) = (q − 1)C+
i + C+

i −
84bytes

rTX
+
∑

j∈sp(i)

{
η+j (aqi)C

+
j

}
. (2.16)

Suppose the transmission of the last fragment of a preemptable frame begins at time
t. Then, higher-priority frames queued before time t must be transmitted before the trans-
mission of the last fragment. Thus, the worst-case blocking time by higher-priority frames
is:

IHPBi (t) =
∑

j∈hp(i)

{
η+j (t)C+

j

}
. (2.17)

19

Because the minimum frame size is 84 bytes, the first fragment of a preemptable frame
contains at least 42-bytes payload and the other fragments of the preemptable frame contain
at least 60 bytes payload. Thus, a preemptable frame of traffic i can experience up to the
following number of preemptions:

F+
i =

⌊
Li − 42bytes

60bytes

⌋
. (2.18)

Suppose the q-th frame of traffic i is blocked by a lower-priority preemptable frame and
the lower-priority preemptable frame experiences F+

j preemptions. Then, the maximum
number of frame preemptions that occurs during the transmission of the lower-priority
frame is:

NLP
i = max

j∈lpP (i)

{
F+
j

}
(2.19)

We also need to analyze the maximum number of frame preemptions for same-priority
preemptable frames and higher-priority preemptable frames. Because these analyses are
similar to the blocking time analysis, the maximum number of frame preemptions during
the transmission of same-priority preemptable frames.

Suppose the q-th frame of traffic i is blocked by same-priority preemptable frames and a
same-priority preemptable frame experiences F+

j preemptions. Then, the maximum num-
ber of frame preemptions that occurs during the transmission of the same-priority frames
is:

NSP
i (q, aqi) = aF+

i − 1 +
∑

j∈sp(i)

{
η+j (aqi)F

+
j

}
(2.20)

and the maximum number of frame preemptions that occurs during the transmission of
higher-priority preemptable frames is:

NHP
i (t) =

∑
j∈hpP (i)

{
η+j (t)F+

j

}
. (2.21)

The summation ofNLP
i , NSP

i (q, aqi) andNHP
i (t) bounds the number of frame preemptions

which increase the queuing delay of the q-th frame. However, the number of frame preemp-
tions cannot exceed the number of express frames which are queued before the transmission
of the last fragment of the q-th frame. So, if the transmission of the last fragment of the
q-th frame begins at time t, then the number of frame preemptions cannot exceed:∑

j∈hpE(i)

{
η+j (t)

}
. (2.22)

Consequently, the maximum number of frame preemptions happens before the transmis-

20

sion of the last fragment of the q-th frame of traffic i is:

Ni(t, q, a
q
i) = min

{ ∑
j∈hpE(i)

{
η+j (t)

}
, NLP

i +NSP
i (q, aqi) +NHP

i (t)

}
. (2.23)

Because additional overhead per frame preemption is 24 bytes (preamble, SMD-Cx, FCnt,
MCRC, and IFG), the preemption overhead for the q-th frame of traffic i is:

IPOi (t, q, aqi) =
24bytes

rTX
Ni(t, q, a

q
i) (2.24)

and the queuing delay of a preemptable frame is:

wPi (q, aqi) = ILPB,Pi + ISPB,Pi (q, aqi) + IHPBi (wPi (q, aqi)) + IPOi (wPi (q, aqi), q, a
q
i). (2.25)

Queuing delay analysis for an express frame. Queuing delay analysis for an ex-
press frame. Because an express frame cannot be preempted, it cannot be fragmented. So,
the queuing delay of the express frame consists of (1) blocking time by a lower-priority
frame, (2) blocking time by same-priority frames, and (3) blocking time by higher-priority
frames.

To analyze the blocking time by a lower-priority frame, we need to consider two cases:
the lower-priority frame is (a) an express frame or (b) a preemptable frame. If the type of
the lower-priority frame is preemptable, the express frame can preempt the lower-priority
frame. Otherwise, the express frame has to wait until the transmission of the lower-priority
frame is completed. Note that 143 bytes are the longest frame size which cannot be frag-
mented. Thus, the worst-case blocking time by a lower-priority frame for an express frame
is:

ILPB,Ei = max

{
max

j∈lpE(i)

{
C+
j

}
,min

{
max

j∈lpP (i)

{
C+
j

}
,
143bytes

rTX

}}
. (2.26)

Unlike the preemptable frame case (Eq. 2.15), we analyze blocking time by same-
priority frames from the perspective of the p-th frame (not the last fragment of the p-th
frame). Thus, the worst-case blocking time by same-priority frames is:

ISPB,Ei (q, aqi) = (q − 1)C+
i +

∑
j∈sp(i)

{
η+j (aqi)C

+
j

}
. (2.27)

The worst-case blocking time by a higher-priority frame for the express frames is the same
as that for preemptable frames. Consequently, the queuing delay of an express frame is:

wEi (q, aqi) = ILPB,Ei + ISPB,Ei (q, aqi) + IHPBi (wEi (q, aqi)). (2.28)

21

End-to-end frame latency. From the queuing delay, we can easily derive the worst-
case response time of the q-th frame of frame i at egress port j. Because the queuing delay
depends on the queuing instant of the frame (aqi), all possible instants should be considered.
LetAqi be the set of possible instants.3 Then, the worst-case response time of the q-th frame
of frame i at egress port j is:

Rji (q) =


max
aqi∈A

q
i

{
wEi (q, aqi) + C+

i − a
q
i

}
, if express at j

max
aqi∈A

q
i

{
wPi (q, aqi) + 84bytes

rTX
− aqi

}
, if preemtable at j

(2.29)

the worst-case response time of frames of traffic i at egress port j is:

Rji = max
q

{
Rji (q)

}
. (2.30)

So, the worst-case E2E latency of frames of traffic i is:

R+
i =

∑
j∈ρi

{
Rji

}
. (2.31)

3See [100] for details of finding possible instants.

22

CHAPTER 3

PAMT: Optimal Priority Assignment for
Scheduling Mixed CAN and CAN-FD Frames

3.1 Introduction

Controller Area Network (CAN) [86] is the de facto standard of current in-vehicle networks
because of its robustness, wide deployment, low resource requirement, and real-time sup-
port. However, the advent of new functions to improve the driver’s safety and comfort
will make CAN unlikely to meet in-vehicle communication requirements in the near fu-
ture [91]. To overcome the shortcomings of CAN, a new protocol, Controller Area Net-

work with Flexible Data-rate (CAN-FD), has recently been proposed [87]. CAN-FD not
only overcomes the drawbacks of CAN but also allows use of existing/legacy CAN infras-
tructures — e.g., Electronic Control Units (ECUs) developed with CAN controllers and
transceivers, CAN wires, etc. — thanks to its physical-layer compatibility with CAN. As
a result, CAN-FD has been attracting significant attention as the most promising substitute
of CAN [93].

Even though CAN-FD-based ECUs can share the same communication bus with CAN-
based ECUs, legacy CAN controllers, which do not support CAN-FD frame format, cause
a significant problem [67]. Whenever CAN controllers receive a CAN-FD frame, they
generate an error frame because the CAN-FD frame is recognized as an erroneous frame
due to the difference between CAN and CAN-FD frame formats [87]. As a result, CAN-
FD-based ECUs discard the CAN-FD frame upon receiving an error frame, in accordance
with the CAN protocol [86]. So, CAN-FD-based ECUs cannot communicate with each
other via CAN-FD frames, making it infeasible to realize the advantages of CAN-FD, such
as relatively high bandwidth and large payload size.

Recently, hardware [3, 60] and software [67] solutions have been proposed to address
this problem. The hardware solutions [3, 60] use an additional hardware component (e.g,
NXP FD Shield) which filters out CAN-FD frames before reaching the CAN controllers.

23

However, they are more expensive and more difficult to deploy, than the software solutions.
The software solution [67] is cheaper than the hardware solutions, but relies on the silent
mode of CAN controller to prevent the CAN controller from generating error frames. Thus,
all CAN controllers must switch their mode from normal mode to silent mode at run-
time before transmitting CAN-FD frames. Also, the CAN controllers have to return to
normal mode after transmitting the CAN-FD frames to resume reception of CAN frames.
These mode transitions incur non-negligible time overheads and hence negatively impact
the schedulability of mixed CAN and CAN-FD frame sets significantly. Thus, the existing
optimal priority-assignment algorithms for CAN [7, 111] cannot find a schedulable priority
order for the mixed frame sets even when a schedulable priority assignment exists for the
mixed frame sets.

To remedy the above problem, we propose a new priority-assignment algorithm, called
Priority Assignment with Mode Transition (PAMT), which minimizes the negative impact
of the silent mode-based solution on the schedulability of a given set of mixed CAN and
CAN-FD frames. PAMT reduces the required number of mode transitions for the given
set of mixed frames via type-based clustering which groups frame instances based on their
type. We prove that PAMT is an optimal priority assignment algorithm for mixed frame
sets. We also conduct extensive simulations to evaluate the effectiveness of PAMT for
mixed frame sets by comparing it with the existing optimal priority-assignment algorithms
for CAN. Our simulation results show that PAMT effectively reduces the required number
of mode transitions, and thus PAMT can schedule 17–18% more mixed CAN and CAN-
FD frame sets than existing optimal priority-assignment algorithms for CAN. This chapter
makes the following main contributions:

• Identify and analyze the negative impact of the software (silent-mode-based) solution
on the schedulability of mixed CAN and CAN-FD frame sets;

• Propose a new priority assignment algorithm, PAMT, to minimize the negative im-
pact of using silent mode on the schedulability of mixed frame sets, and prove that
PAMT is optimal priority assignment for mixed frame sets; and

• Demonstrate via extensive simulations that PAMT effectively reduces the required
number of mode transitions and outperforms the existing optimal priority-assignment
algorithms for mixed frame sets.

24

Figure 3.1: Network Model

3.2 Mixed CAN and CAN-FD System Model

3.2.1 Network Model

We consider a system consisting of multiple ECUs connected via one shared CAN bus
as illustrated in Fig. 3.1. Some of the ECUs are equipped with CAN-FD controllers and
transceivers, while the others are equipped with CAN controllers and transceivers. For
convenience, we will use the term ‘CAN-FD node’ (‘CAN node’) to represent an ECU
equipped with a CAN-FD (CAN) controller and a CAN-FD (CAN) transceiver.

We say the system is in CAN mode when the CAN controllers are in normal mode
because only CAN frames are transmitted on the bus in this mode. Also, we say the system
is in FD mode when the CAN controllers are in silent mode. To avoid transmitting CAN-
FD frames in CAN mode, CAN-FD nodes do not queue the CAN-FD frames in CAN
mode. Because our approach sends a special message to trigger mode transition of CAN
controllers, CAN-FD nodes can easily know the current system mode.

Some may expect this mixed CAN and CAN-FD network architecture to be short-lived
and used only during the transition from CAN to CAN-FD, but this architecture would last
for a long time, because (1) a vehicle platform, once developed, is utilized for a long time1;
(2) the implementation cost of a CAN node is cheaper than that of a CAN-FD node and
the automotive industry seldom uses anything more than absolutely needed to save cost;
and (3) automotive manufacturers tend to use already-verified modules/systems to meet the
mandatory requirements, such as safety.

3.2.2 Mixed Frame Model

We adopt the widely-used CAN frame model in [26, 53] with an additional parameter
indicating whether a frame is CAN or CAN-FD frame. Thus, a frame is defined as Fi =

{Ti, Di, Ji, FDi, Ci} where Ti is the period of Fi, Di the relative deadline of Fi; Ji the

1According to a report by the Center for Automotive Research, a developed platform lasts
over 5 years on average (http://www.cargroup.org/automotive-product-development-cycles-and-the-need-for-
balance-with-the-regulatory-environment/)

25

release jitter of Fi; FDi the type of Fi, FDi ∈ {0, 1} – if FDi = 0 then Fi is a CAN
frame else Fi is a CAN-FD frame; Ci is the transmission time of Fi and depends on the
data length of Fi and FDi.

3.2.3 Mixed Frame-Instance Model

F j
i is an instance of frame Fi, and hence inherits the properties of Fi such as frame type

and transmission time. Thus, F j
i is defined as F j

i = {Aji , D
j
i , Ji, FDi, Ci} where Aji is the

release time of F j
i and Dj

i is its deadline such that Dj
i = Aji +Di.

We will assign priorities to frame instances in an mixed frame instance set I:

I = {F j
i |∀i, j A

j
i < HP}

where HP = LCM{T1, . . . , Tn} is the planning cycle (the least common multiple of
periods) of a given mixed frame set.

We use fi to represent a frame instance of priority i; fi has a higher priority than fj if
i < j, i.e., the lower the number, the higher the priority.

3.3 Scheduling Mixed CAN and CAN-FD

3.3.1 Why Problem?

According to the CAN-FD specification [87], the format of CAN-FD data frame is partially
different from that of CAN data frame to support higher bandwidth and larger payload size
as shown in Fig. 2.1 and Fig. 2.2. Due to this frame format difference, CAN nodes always
recognize CAN-FD frames as erroneous frames (CRC error) and generates an error frame
whenever they receive a CAN-FD frame. Because of this incorrect error detection, an
‘innocent’ CAN-FD frame will be retransmitted by the sender and the retransmitted CAN-
FD frame will again be detected as an erroneous frame as illustrated in Fig. 3.2 (Left). This
makes the communication between CAN-FD nodes via CAN-FD frames impossible, thus
losing all the advantages of CAN-FD. Both hardware [3, 60] and software (silent mode-
based) [67] solutions to this problem have been proposed recently.

3.3.2 Hardware Solution

The hardware solutions [3, 60] require an additional hardware component which filters out
the CAN-FD frames by inspecting FDF (FD Format) bit of all incoming frames in front of

26

Figure 3.2: (Left) Problem in scheduling mixed CAN and CAN-FD frames; software (Mid)
and hardware (Right) solutions

the CAN controller as shown in Fig. 3.2 (Right). Thus, CAN-FD nodes can communicate
with each other using CAN-FD frames without any software change. However, the spe-
cialized hardware has to be attached to all the CAN nodes, increasing implementation and
deployment costs. A single hardware component might be inexpensive, but the cost for its
mass production could be significant. Note that more than 100 million new vehicles are
built and sold each year [1].

3.3.3 Software Solution

The software solution [67] relies on the silent mode of the legacy CAN controllers. Before
transmitting a CAN-FD frame, an ECU has to transmit a special CAN frame (trigger frame)
that triggers a mode transition. All CAN nodes must transit from normal mode to silent
mode upon receiving a trigger frame. A CAN-FD node then begins the transmission of
CAN-FD frames as shown in Fig. 3.2 (Mid). Since all the CAN nodes are in silent mode,
CAN-FD nodes can communicate with each other using CAN-FD frames. A CAN-FD
node must thereafter send another trigger frame to wake up the CAN nodes from silent
mode to normal mode as shown in Fig. 3.2 (Mid). Although the software solution can
resolve the problem without any additional hardware, it incurs non-negligible delays for
mode transitions.

3.3.3.1 Analysis of Mode-Transition Delay

The time overhead of the software solution for a mode transition consists of two parts;
transmission time of a trigger frame and processing time of a mode transition.

The transmission time of a trigger frame depends on the CAN bus speed as well as
its payload size. We must thus define and use the format of a trigger frame to compute
its transmission time. So, a trigger frame is differentiated from a normal data frame by

27

Figure 3.3: Experimental platform

Figure 3.4: Due to the time overhead, the delivery/completion time of a given frame in-
creases and a frame misses its deadline

Figure 3.5: The coverage of existing optimal priority assignment with or without the mode-
transition overhead for given mixed frame sets.

assigning it a unique ID (of 11 bits) and its payload size is set to 0. With this setting, if the
CAN bus speed is 500Kbps then the transmission time of the trigger frame is 112µs.

The processing time of a mode transition depends on the computing power of a CAN
node. However, since a mode transition is very simple (writing a value to a register in the
CAN controller and reading the changed value in the register), there will be only a small
processing time variation. We have measured the processing time on our experimental
platform as shown in Fig. 3.3. We use Arduino [5] and MCP2515 CAN controller [64] to
build a CAN node. The processing time was about 84µs on average, and hence a mode
transition takes about 200µs in total (500Kbps CAN bus speed).

28

3.3.3.2 Negative Impact of Time Overhead

Fig. 3.4 illustrates the negative impact of the time overhead of a mode transition; the de-
livery/completion times of F 1

2 , F
1
3 , and F 1

4 increase, missing the deadline of F 1
4 . That is,

the time overhead degrades the schedulability of a given mixed frame set. According to
our simulation results (in Section 7), more than 20% of given mixed frame sets become un-
schedulable due to the overhead with the existing frame-level optimal priority assignment
(AOPA [7]) and frame-instance-level optimal priority assignment (NP-EDF [48]) as shown
in Fig. 3.5.

3.4 Problem Statement

Placing CAN and CAN-FD nodes on the same network to utilize the established CAN
infrastructure is problematic as we discussed earlier, and thus hardware and software solu-
tions have been proposed to address the problem. The software solution is more attractive
than the hardware solution for a cost reason, but it degrades the schedulability of mixed
CAN and CAN-FD frame sets due to its reliance on the mode transitions of the existing
CAN controllers. As a result, the schedulability or coverage of the existing optimal priority
assignment degrades significantly, i.e., the software solution with the existing optimal pri-
ority assignment fails to schedule many mixed frame sets while meeting all of their frame
deadlines.

In order to enable the software solution to schedule more mixed frame sets, we pro-
pose a new priority-assignment algorithm, called Priority Assignment with Mode Transition

(PAMT), that minimizes the schedulability degradation by minimizing the mode-transition
overhead.

3.5 Priority Assignment with Mode Transitions

We present PAMT for a given mixed frame instance set, which minimizes the coverage loss
of the software solution. We first introduce the basic idea of PAMT and then provide its
details.

3.5.1 Basic Idea of PAMT

Non-Preemptive Earliest Deadline First (NP-EDF) based priority assignment and type-

based clustering are the key of PAMT.

29

Frame Ti Di Ji FDi Ci
F1 5ms 0.75ms 0ms 0 272µs
F2 5ms 1ms 0ms 1 320µs
F3 5ms 1.5ms 0ms 0 272µs
F4 5ms 1.75ms 0ms 1 400µs

Table 3.1: An example frame set

PAMT assigns priorities to the frame instances in a given mixed frame set based on
NP-EDF, because NP-EDF is known to be optimal for work-conserving system like CAN
[48] if there were no mode transition overhead. However, the software solution may incur a
high mode-transition overhead, and hence PAMT performs type-based clustering of frame
instances to reduce the mode-transition overhead. For example, suppose that priorities are
assigned to the frame instances of a given mixed frame in Table 3.1. PAMT first assigns
priorities to the frame instances based on NP-EDF, but this incurs 3 mode transitions, caus-
ing F 1

4 to miss its deadline as shown in Fig. 3.6 (Top). To reduce mode transitions and to
make the given mixed frame set schedulable, PAMT performs type-based clustering. As
illustrated in Fig. 3.6 (Bottom), after the type-based clustering, the same-type frame in-
stances are clustered and the number of mode transitions is reduced to 1. As a result, there
are no deadline misses with the clustered priority ordering, making the given mixed frame
set schedulable.

3.5.2 PAMT Algorithm

Even though the type-based clustering is a natural way to reduce mode transition overheads,
it is challenging to group frame instances so as to minimize the degradation of schedulabil-
ity, because the type-based clustering can increase the delivery/completion times of frame
instances (e.g., F 1

2 in Fig. 3.6 (Bottom)), which can cause unexpected deadline misses.

Figure 3.6: (Top) Assign priorities to frame instances based on NP-EDF; (Bottom) reducing
mode-transition overheads via type-based clustering

30

Figure 3.7: Flowchart of PAMT

Next, we will first give an overview of PAMT algorithm that meets the above challenge,
and then give a detailed account of each part of the algorithm.

3.5.2.1 Algorithm Overview

Fig. 3.7 shows how PAMT operates on a given mixed frame instance set I . PAMT selects a
frame instance according to NP-EDF and assigns priority i to the frame instance as the first
step. After selecting the frame instance (fi), PAMT checks several conditions to cluster fi
and fi−k, where fi−k is the nearest frame instance whose type is the same as the type of
fi. If all conditions are met, PAMT performs the type-based clustering. Otherwise, PAMT
does not perform the type-based clustering but just checks whether fi meets its deadline
or not. If fi meets its deadline, PAMT selects another frame instance to assign priority
i + 1 according to NP-EDF. Otherwise, PAMT declares the given mixed frame instance
set I unschedulable and terminates the process. This process will be repeated until all the
frame instances in I are assigned priorities. The pseudo-codes of PAMT implementation
are stated in Algorithm 1 and 2. Next, we will detail how to implement each procedure.

3.5.2.2 Select fi according to NP-EDF

We need an off-line assignment of priorities to the frame instances in a mixed frame set
I even though NP-EDF is an on-line scheduling algorithm. So, we simulate a planning

31

Algorithm 1: PAMT
Input : I: Mixed frame instance set

omode: Mode transition overhead
Output: Ipas: Priority-assigned frame instance set

1 init(); // Initialize virtual time, competing set and priority assigned set
2 N ← |I|;
3 while N 6= |Ipas| do
4 isMigrated← false;
5 sort(I); // By arrival time — ascending order
6 for k ← 0 to |I| − 1 do
7 if I[k].arrival time ≤ tv then
8 Ics[|Ics|]← I[k]; I[k]← null; isMigrated← true;
9 end

10 end
11 if isMigrated = false and |Ics| = 0 then
12 tv ← I[0].arrival time;
13 continue;
14 end
15 sort(Ics); // By deadline — ascending order
16 idxsel ← 0; fsel ← Ics[0]; // fsel: selected frame instance by NP-EDF
17 for k ← 1 to |Ics| − 1 do
18 if Ics[k].deadline = fsel.deadline and Ipas[|Ipas| − 1].type = Ics[k].type

then
19 fsel ← Ics[k]; idxsel ← k;
20 end
21 end
22 Ipas[|Ipas|]← fsel; Ics[idxsel]← null;
23 if Cluster(Ipas) = true then
24 tv ← tv + fsel.transmission time;
25 end
26 else
27 tv ← tv + fsel.transmission time;
28 if Ipas[|Ipas| − 1].type 6= Ipas[|Ipas| − 2].type then
29 tv ← tv + omode;
30 end
31 Ipas[|Ipas| − 1].completion time← tv;
32 if Ipas[|Ipas| − 1].completion time > Ipas[|Ipas| − 1].deadline then
33 return null; // Declare unschedulable
34 end
35 end
36 end
37 return Ipas;

32

Figure 3.8: Assign priority to a frame instance based on NP-EDF

Figure 3.9: Type-based clustering. Promoting the priority of fi to i − k + 1 to reduce the
mode-transition overhead

cycle or hyper-period (HP) of I to assign priorities to the frame instances in I . Usually,
the periods of in-vehicle CAN frames are harmonic [79], and thus an HP is not too long to
simulate. According to our measurements through on-board diagnostic (OBD) port, HP is
6s for 2015 Chevrolet Trax LT AWD.

To simulate an HP, we manage a virtual time tv and 3 data structures: mixed-frame in-

stance set (I), competing set, priority-assigned set. This simulation requires I to be sorted
in ascending order of frame instances’ arrival times and the virtual time to be initialized
with 0. Described below is how the HP is simulated.

At time tv, if the arrival times of frame instances in I are earlier than, or equal to tv,
then the frame instances are migrated from I to the competing set as shown in Fig. 3.8.
After the migration, PAMT sorts the competing set in ascending order by the deadline, and
then selects the frame instance with the earliest deadline from the competing set to assign
priority i. If two or more frame instances have the same earliest deadline, PAMT selects
one of them that has the same type as fi−1 to avoid a mode transition between fi−1 and fi.
The chosen frame instance is then moved to the tail of the priority-assigned set as shown
in Fig. 3.8. Note that the index of a priority-assigned set indicates the priority of a frame
instance.

33

3.5.2.3 Cluster fi and fi−k

Suppose PAMT selects the frame instance (F q
p) to assign priority i and fi−1 has a different

type from F q
p . Let fi−k be the nearest frame instance which has the same type asF q

p (fi), and
both fi−k and F q

p belong to the same busy period as shown in Fig. 3.9. Clearly, promoting
the priority of F q

p to i − k + 1 reduces the number of mode transitions since it eliminates
the mode transition between F q

p and fi−1. However, this priority promotion is not always
possible. All of the following conditions must be met for the priority promotion:

C1: fi−1.type 6= fi.type

C2: After promoting the priority of fi to i− k + 1, dp ≥ ep,∀p ∈ {i− k + 1, . . . , i}

C3: ai ≤ ai−k+1 or ai ≤ ei−k

where ai is the arrival time of fi, di is the deadline of fi, and ei is the completion time of
fi.

C1 is obvious, and hence its discussion is omitted. If we promote the priority of fi to
i − k + 1, then it will delay the completion of frame instances between fi and fi−k. If
any of these delayed frame instances violates its deadline, then the priority promotion is
not allowed. That is, the delayed frame instances must finish before their deadlines and C2
must hold.

The last condition C3 comes from the unique characteristic of CAN scheduling, non-
preemptive work-conserving scheduling. Suppose ai > ai−k+1 and ai > ei−k as shown in
Fig. 3.10. We expect F q

p to be scheduled right after the transmission of fi−k by promoting
the priority of F q

p to i−k+1 (dotted line). However, fi−k+2 is scheduled before transmission
of F q

p (fi−k+1) (solid line), since there is no ready frame instance at ei−k and fi−k+2 arrives
before F q

p arrives. So, clustering fi and fi−k is impossible even though the priority of F q
p is

promoted to i−k+ 1. The priority promotion in this case could rather increase the number
of mode-transitions as shown in Fig. 3.10.

After executing the above procedures, the virtual time is updated to the completion
time of the lowest-priority frame instance. If there is no frame instance to be moved from
the mixed frame instance set to the competing set and if the competing set is empty, then
the arrival time of the frame instance at the head of the instance set is assigned as the next
virtual time. For example, if the arrival time of the frame instance at the head of the instance
set is Aqp, then the virtual time becomes Aqp.

34

Figure 3.10: Violation of C3. (ai > ai−k+1 and ai > ei−k)

3.5.3 Optimality of PAMT

We now prove that PAMT is the optimal priority assignment for a given mixed frame in-
stance set. That is, if PAMT cannot schedule a given mixed frame instance set, then no
other priority assignment algorithm can find a schedulable priority order for the mixed
frame instance set.

Lemma 1. Let IA be the set of frame instances in a busy period A. PAMT minimizes the

number of mode transitions for IA if no deadline miss is allowed.

Proof: Let Sk (Sk ⊂ IA) be the set of chosen frame instances whose cardinality is k.
We will show that PAMT minimizes the number of mode transitions for Sk regardless of k
if no deadline miss is allowed. This way, we can prove Lemma 1 because Sk is the same as
IA if k = |IA|.

1. (Initial, k = 1). Since there is only one frame instance, there is no mode transition.
2. (Suppose this holds for k = i − 1). Assume that PAMT minimizes the number of

mode transitions for Si−1 without any deadline miss.
3. (Show this holds for k = i). Let g be the ith frame instance chosen by PAMT. To

avoid any additional mode transition, we need to schedule g right after the transmission of
a frame instance whose type is the same as that of g. Since PAMT selects frame instances
according to NP-EDF, we only consider placing g right after fi−k which is the latest same-
type frame instance in Si−1. Let’s analyze the following three cases.
Case 1. Suppose the arrival time of g is earlier than, or equal to ei−k and placing g right
after fi−k does not cause any deadline miss. Then, we need to show that PAMT moves
g to right after fi−k. We know that C3 (ai ≤ ei−k) and C2 holds by supposition. If
C1 is not met, then fi−k = fi−1. So, g is already placed at right after fi−k. Otherwise,
all three conditions are met and PAMT moves g to right after fi−k by performing type-
based clustering. Thus, g doesn’t incur any additional mode transition, and hence PAMT
minimizes the mode transitions.
Case 2. Suppose the arrival time of g is larger than ei−k. For this case, we need to show
that additional mode transitions incurred by g are unavoidable and only one additional

35

mode transition is incurred by g under PAMT. Since all the frame instances scheduled after
fi−k have different types from g, the type of the frame instance scheduled right before
g is different from that of g. Thus, the additional mode transition before transmitting g
is unavoidable. In this case, PAMT does not perform type-based clustering due to the
violation of C3. Instead, PAMT schedules g last, i.e., there is no frame instance after g and
the number of mode transitions incurred by g is 1. So, PAMT minimizes the number of
mode transitions.
Case 3. Suppose the arrival time of g is earlier than, or equal to ei−k and placing g right
after fi−k causes at least one deadline miss. In this case, we need to show that the additional
mode transitions incurred by g are unavoidable and only one additional mode transition is
incurred by g under PAMT. Since placing g right after fi−k causes at least one deadline
miss, g must be scheduled after fi−k+1 to avoid any deadline miss. However, the frames
instances (from fi−k+1 to fi−1) have different types from g. Thus, the additional mode
transition before transmitting g is unavoidable. In this case, PAMT does not perform type-
based clustering due to the violation of C2. Instead, PAMT schedules g last, i.e., there is no
frame instance after g and the number of mode transitions incurred by g is 1. Thus, PAMT
minimizes the number of mode transitions.

Theorem 1. PAMT is the optimal priority-assignment algorithm for a mixed frame instance

set I .

Proof: We prove this theorem by induction. Let K be the number of priority-assigned
frame instances and let gi be the ith frame instance chosen by PAMT.

1. (Initial, K = 1). Since there is only one frame instance, every priority-assignment
algorithm is optimal.

2. (Suppose this holds for K = i − 1). Assume that PAMT is the optimal for Ii−1 =

{g1, . . . , gi−1}.
3. (Show this holds for k = i). We will show that PAMT is optimal for the mixed frame

instance set Ii = {g1, . . . , gi} by proving that there is no schedulable priority order for Ii if
PAMT declares Ii unschedulable. Let’s consider the following two cases.
Case 1. The type of gi is the same as that of fi−1. In this case, PAMT schedules gi last
(after fi−1) because C1 is not met. If gi meets its deadline, PAMT makes Ii schedulable.
However, if gi misses its deadline, we need to show that there is no schedulable priority
order for Ii. Suppose gi misses its deadline. There are two ways to make gi schedulable:
(1) reduce the number of mode transitions during a busy period in which gi resides; (2)
schedule gi earlier than last. By Lemma 1, PAMT minimizes the number of mode transi-
tions in a busy period, so there is no way to reduce the number of mode transitions. Thus,

36

Figure 3.11: Separation of CAN ID into priority and filter sections

we only need to consider (2). Since PAMT selects a frame instance according to NP-EDF,
the frame instances, which are transmitted after the arrival of gi, have earlier deadlines than
gi. This means that scheduling gi at any possible instant causes at least one deadline miss.
Thus, there is no schedulable priority order for Ii, and hence PAMT is optimal.
Case 2. The type of gi is different from that of fi−1, satisfying C1. Thus, if both C2 and C3
are met, PAMT schedules gi right after fi−k which is the nearest same-type frame instance
in Ii−1 and every frame instance in Ii meets its deadline (C2), making PAMT optimal. If
either C2 or C3 is not met, PAMT schedules gi last. If gi meets its deadline last, every
frame instance meets its deadline, thus making PAMT optimal. If gi misses its deadline,
we need to show that there is no schedulable priority order for Ii. As in Case 1, there are
two ways to make gi schedulable and we only need to consider the second case by Lemma
1. Also, like Case 1, scheduling gi at any possible instant causes at least one deadline miss
because the frame instances transmitted after the arrival of gi have earlier deadline than gi.
Thus, there is no schedulable priority order for Ii, hence making PAMT optimal.

3.6 Practical Issues

3.6.1 Assigning ID to frame instances

A CAN controller does not, in practice, accept all incoming CAN frames to reduce the
processing load of the host ECU [80]. The CAN controller filters the incoming CAN
frames by comparing the IDs of incoming frames with the registered values in its receive
filter. However, the number of receive filters is limited in a commercial CAN controller
(e.g., only 6 filters in MCP2515 [64]). The limited number of receive filters makes difficult
to implement PAMT because PAMT assigns priorities to frames instances, not frames.
For example, when a frame F1 is instantiated three times in a planning cycle, these three
different instances have different priorities/IDs. Then, to receive all the instances F1, an
ECU has to register all of the three IDs in its receive filters.

To resolve this problem, we separate a CAN ID into priority and filter sections, as
shown in Fig. 3.11. The priority section is only used to distinguish the priority of CAN
frames. Thus, the bits in the priority section are set as ‘don’t care bits‘ in the mask reg-

37

isters2. Since the priority section is forwarded to the filter section, it can be used in the
ID arbitration process. That is, the lower the number in the priority section, the higher the
priority in CAN frame scheduling. We can set the priority determined by PAMT in the pri-
ority section directly. The filter section is only used for filtering the incoming CAN frames.
We give a unique value to each frame (not frame instance) and put the value in the filter
section. For example, we give a value of 1 to F1 and put the value of 1 to the filter section
of the instances of F1. As a result, an ECU can receive all the instances of F1 by using only
one (not multiple) receive filter(s).

Let n be the number of bits in the priority section with which all possible priorities must
be covered. PAMT assigns a unique priority to each frame instance in a given mixed-frame
set I . We also reserve whole odd numbers for a special CAN frame to trigger a mode
transition. A frame instance can only have an even-numbered priority. For example, the
priority of fi−1 is 0x10 and that of fi is 0x12. 0x11 is reserved for the trigger frame (see
Section 7.2). Hence, 2n−1 has to be larger than the number of frame instances in I and we
select the minimum n that satisfies this requirement. Also, 211−n or 229−n has to be larger
than the number of frames in a given mixed-frame set because we need to assign a unique
value to each frame.

3.6.2 Triggering a Mode Transition

Triggering a mode transition precisely at the specified time is important because a late/early
mode transition can cause severe problems. For example, a CAN node will generate an
error frame when the node receives a CAN-FD frame due to a late transition (from normal
to silent). Also, a CAN frame instance, which is sent by a CAN-FD node, may not be
delivered to a CAN node due to the late transition (from silent to normal). To transmit a
trigger frame at a precise time, we mark frame instances after which a trigger frame must
be transmitted. For example, if fi−1 is a CAN frame and fi is a CAN-FD frame, then we
mark fi−1. Since frame instances in the priority-assigned set are sorted in their transmission
order, we can easily determine which frame instances should be marked.

At runtime, if an ECU queues a marked frame instance in its transmission buffer (TxOb-
ject), it also queues a trigger frame in TxObject. To transmit the trigger frame right after
the marked frame instance, the value in the priority section of the trigger frame is larger by
1 than that of the marked frame instance. For example, as shown in Fig. 3.12, the value in
the priority section of a marked frame instance (fi−1) is 0x10 and that of the corresponding
trigger frame is 0x11. This way, the ID of a trigger frame can be larger than that of any

2When the CAN controller performs bitwise comparisons, it ignores several bits which are set to the
‘don’t-care bits’ in a mask register.

38

Figure 3.12: Insert a special CAN frame

other frame instances queued in TxObject. Thus, the trigger frame can be transmitted right
after the transmission of the corresponding marked frame instance by winning the CAN
bus arbitration.

3.6.3 Transient Error

Rare transient errors (bit error) can occur on CAN bus due to electromagnetic interference
(EMI). Since each transient error is handled by generating error frames and retransmitting
the unsuccessful CAN frame, the error causes additional delays to the delivery/response
time of CAN frames. That is, the frame instances scheduled under PAMT may miss their
deadlines due to the transient errors. To account the transient errors, we compute the max-
imum possible delay to fi caused by the transient error (αtci) and reflect the delay into the
deadline.

αtci = η(λ,R, di)× E (3.1)

where λ is the maximum transient error rate determined during the design phase of a vehicle
according to the knowledge of the worst environment in which the vehicle operates [72],
R is the reliability requirement of a vehicle system, η(λ,R, di) is the maximum number of
transient errors possible within di, and E is the error recovery time [21]. Here, we compute
N = η(λ,R, di) under the assumption that the process of transient errors is Poisson, as
commonly used for CAN transient errors [21, 12]:

N = argmin
Zm

1−
Zm∑
Z=0

p(Z, di)

subject to 1−
Zm∑
Z=0

p(Z, di) ≤ R.

(3.2)

39

where p(Z, di) is the probability of Z errors within di.

p(Z, t) =
e−λt(λt)Z

Z!
. (3.3)

3.6.4 Unsynchronized Clock

Since there is no global clock on CAN, CAN frames are triggered according to the local
time clock of each ECU. However, the local clocks are not synchronized with each other,
and thus there is a clock drift/skew between ECUs. Unfortunately, this clock drift may
alter the scheduling order of messages at runtime. For example, if the maximum drift on
an ECU is δ and fi and fj (i < j) are sent by different ECUs and ai + δ > aj − δ, fj could
be transmitted before fi.

Because the runtime change in scheduling order can incur an additional delay to the
delivery/response time of CAN frames, the frame instances scheduled under PAMT may
miss their deadlines. Thus, as in the previous subsection, we compute the maximum possi-
ble delay to fi caused by the unsynchronized clocks (αuci) and account for the delay in the
deadline:

Here we assume that a software-based synchronization protocol [88] for CAN is ap-
plied, and thus the maximum drift (δ) is limited and the arrival time range of fi is also
limited; ai ∈

[
ai − δ, ai + δ

]
. According to the re-synchronization interval condition in

[88], we can infer that the maximum drift can be limited by 20µswith 5s re-synchronization
interval, and the 20µs is much smaller than the transmission time of a CAN frame. So, we
assume that δ < minCi

i∈F
and δ < E.

3.6.4.1 Finding maximum possible delay by unsynchronized clocks

Suppose Ii,rev = {fj|i < j & ai + δ ≥ aj − δ}. Then, the frame instances in Ii,rev can be
transmitted before transmitting fi due to the clock drift at runtime unlike the deterministic
scheduling order by PAMT.

Ii,rev,diff is the set of frame instances whose type is different from the type of fi in
Ii,rev, and Ii,rev,same is the set of frame instances whose type is the same as that of fi in
Ii,rev.

Lemma 2. fi is always transmitted before fj if fj ∈ Ii,rev,diff .

proof: Suppose the type of fi is different from that of fj . Then, there is at least one
marked frame instance fk (i ≤ k < j) to trigger a mode transition. If ak + δ > aj − δ, fj
can be queued before queuing fk. However, the mode is not changed yet at the arrival of fj .

40

Thus, fj cannot be transmitted before fk because a FD frame cannot be queued in the CAN
mode and a CAN frame cannot be transmitted in the FD mode. If fi arrives earlier than fk,
fi is transmitted before fj . If fk arrives earlier than fi (in the case of fi + δ > fk − δ),
fk can be transmitted before fi. Since δ < minCi

i∈F
, fi is guaranteed to arrive during the

transmission of fk. Thus, fi is transmitted right after the transmission of fk. Hence, fi is
transmitted before fj .

Lemma 3. The maximum delay to fi caused by the reversed order between fi and fj ∈
Ii,rev,same is max cj

fj∈Ii,rev,same

+ δ where cj is the transmission time of fj .

proof: Suppose the type of fi is the same as that of fj , and fj is transmitted before fi
at runtime due to the unsynchronized clocks. Because fi is guaranteed to arrive during the
transmission of fj , fi is always transmitted right after the transmission of fj . The worst-
case scenario which contributes the maximum delay to fi is that fj arrives at ai + δ− ε and
fi arrives at ai + δ where ε is a very small. In the worst case, the delay to fi is cj + δ. Thus,
the maximum delay to fi caused by the reversed order between fi and fj ∈ Ii,rev,same is

max cj
fj∈Ii,rev,same

+ δ.

Collorary 1. αuci is max cj
fj∈Ii,rev,same

+ δ

proof: By Lemma 2, if fj ∈ Ii,rev,diff , fi is always transmitted before fj . In such
a case, the maximum delay of fi due to the unsynchronized clocks is δ. Since δ ≤

max cj
fj∈Ii,rev,same

+ δ (by Lemma 3), αuci is max cj
fj∈Ii,rev,same

+ δ.

3.6.5 Sporadic Frames

As described in Section 3.C, frames arrive periodically. However, in practice, some frames
can be triggered by asynchronous events or vehicle conditions, and arrivals of such mes-
sages can be represented with a sporadic frame model (with minimum inter-arrival times).
Since our approach is designed with a periodic model, sporadic frames should be converted
to periodic frames by using their minimum inter-arrival time as the period. Suppose, for
example, transmitting a message which includes brake pedal pressure is triggered by an
event that a vehicle driver is pressing the brake pedal. This message should be converted to
a periodic message. So, a null message (when the driver does not press the brake pedal) or
a message that contains the brake pedal pressure (when the driver presses the brake pedal)
should be sent periodically.

41

3.7 Evaluation

We have conducted extensive simulations to evaluate PAMT in comparison with NP-EDF,
optimal frame-instance level priority assignment, and Audsley’s Optimal Priority Assign-
ment (AOPA), the well-known optimal frame-level priority assignment. We focus on the
schedulability degradation of each priority assignment algorithm by measuring its cover-
age. We also measure the coverage of the optimal priority assignments when we use the
hardware-based solution by ignoring the mode-transition overhead (labeled with AOPA*
and NP-EDF*). The coverage of the hardware-based solution is the best achievable be-
cause AOPA and NP-EDF are proven to be optimal for CAN scheduling. We also evaluate
PAMT-R, which accounts for transient errors (Section 6.C) and unsynchronized clocks
(Section 6.D) by using a virtual deadline di,r = di − αtci − αuci instead of di. To compute
di,r, we set λ = 0.01/s, R = 2.6 ∗ 10−9/s (SIL in IEC-61508 [2]) and δ = 20µs.

3.7.1 Simulation Setup

3.7.1.1 The Benchmark for Simulations

We use NETCARBENCH [19] (powertrain configuration), which is a widely-used CAN
benchmark. Since its latest version does not yet support the CAN-FD frame, we slightly
modified NETCARBENCH to support CAN-FD. If the payload of a generated frame is
larger than 8, then the type of the frame is CAN-FD. Otherwise, we assign the frame type
randomly. For our simulation, we generated 10,000 mixed frame sets from NETCAR-
BENCH. As a result of frame type assignment, the CAN-FD frame ratio is in the range
of [0.361, 0.79], and about 60% of the simulated mixed frame sets have 40-60% CAN-FD
frame ratio. We assume that the jitter of each frame is 0 and the transmission of all the
frames begins at time 0.

3.7.1.2 Simulation Configuration

500Kbps is used as the bit-rate for the arbitration phase and 2Mbps for the data phase,
because 500Kbps is commonly used for the powertrain network [30] and up to 2Mbps is
supported by the current commercial CAN-FD transceiver which satisfies the automotive
OEM’s EMC requirement [44]. Also, we use 200µs as the mode-transition overhead ac-
cording to our experimental measurement.

In addition, we use 11-bit IDs to simulate AOPA and AOPA* because there are typically
about 100 different frames3 for a single in-vehicle CAN bus [79]. and 11-bit ID suffices for

3We observed 96 different messages in 2015 Chevorlet Trax LT AWD through the On Board Diagnostic

42

Figure 3.13: Coverage of each priority assignment algorithm for the generated frame sets.

that number. However, we use 29-bit IDs to simulate PAMT, PAMT-R, NP-EDF, and NP-
EDF* because these frame-instance-level priority assignment algorithms require multiple
IDs for a frame and 11 bits are not enough.

3.7.2 Results and Analysis

Coverage: is defined as the percentage of given frame sets whose schedulable priority
order is found by each priority assignment algorithm. We evaluate the coverage of each
priority assignment algorithm for the generated mixed frame sets. Fig. 3.13 plots the sim-
ulation results. PAMT is shown to outperform the existing optimal priority assignments
when the software solution is used. PAMT can find a schedulable priority order for 17–
18% more mixed frame sets than the existing optimal priority assignments when we use
the software solution because PAMT effectively reduces the negative impact of mode tran-
sitions on schedulability by performing type-based clustering. PAMT-R has about 7.5%
less coverage than PAMT because each frame has the reduced deadline to account transient
error and unsynchronized clock. But, PAMT-R still has 10% larger coverage than existing
optimal priority assignments. Thus, for 10% additional mixed frame sets, we can use the
economic software solution with our approach. Also, the software solution is shown to
have lower coverage than the hardware solution because the latter is not affected by the
negative impact of mode transitions on schedulability. The coverage difference between
PAMT and AOPA* (the maximum achievable coverage using 11-bit ID) is about 8%. Also,
the coverage difference between PAMT and NP-EDF* (the maximum achievable coverage
using 29-bit ID) is about 2%. Because 29-bit ID is common in trucks [90], PAMT is now
more useful for trucks, although this may change in future. Interestingly, the coverage of
NP-EDF is lower than the coverage of AOPA due to its use of 29-bit ID.

(OBD) port.

43

Figure 3.14: Coverage of each priority assignment algorithm while varying utilization.

Varying utilization: Fig. 3.14 shows the coverage of each priority assignment algo-
rithm while varying the utilization of the generated frame sets. PAMT outperforms the
existing priority assignment algorithms regardless of the utilization. PAMT can cover over
97% of mixed frame sets if the utilization of the mixed frame sets is in the range of 30–40%.
The number is 52% higher than NP-EDF and 46% higher than AOPA. Fig. 3.15 shows the
number of mode transitions incurred by each priority assignment algorithm. The number
of mode transitions incurred by PAMT is much smaller than those incurred by AOPA and
NP-EDF and the gap in the number of mode transitions between PAMT and the others be-
comes larger as the utilization of mixed frame sets increases. For example, the number of
mode transitions incurred by AOPA is 1.6x larger than that by PAMT in the 10–20% range
and the gap becomes 2.5x in the 60–70% range. The coverage improvement of PAMT over
existing optimal priority assignments comes from the reduced number of mode transitions.

3.8 Related Work

Priority assignment affects greatly the schedulability of a given CAN frame set [28]. Repre-
sentative frame-level fixed priority assignment algorithms are Deadline minus Jitter Mono-
tonic Priority Order (DJMPO) [111] and AOPA [7]. AOPA is proven optimal [82] if there
were no priority inversion which may occur in practice [26, 52, 51]. Since frame-level
fixed priority is less efficient than frame-instance-level fixed priority in utilization, use of
the frame-instance-level fixed priority has been proposed [69, 110]. The representative
frame-instance-level fixed priority assignment algorithm is NP-EDF, which is proven to be
optimal among work-conserving scheduling algorithms for periodic tasks [48].

As in a typical electronic system, signals on CAN are interfered with by EMI [84],
which may induce bit errors by distorting the signals. Since error recovery delays the
delivery of CAN data frames, it impacts the schedulability of a given CAN frame set.
Thus, Davis et al. [27] proposed a robust priority assignment algorithm which not only is

44

Figure 3.15: The number of mode transitions required by each priority-assignment algo-
rithm in a planning cycle (X-axis: utilization)

optimal but also maximizes the number of successive tolerable transmission errors.
Since assigned IDs of the existing frame sets usually do not change even though new

frames are introduced for new functions (e.g., updating an ECU), researchers focused on the
backward compatibility of priority assignment. Schmidt [89] proposed a robust priority-
assignment algorithm for a frame set when some frame IDs are fixed. Davis et al. [28]
showed the existence of flaws in [89] when there is not an enough gap between fixed IDs
and proposed a correction of robust priority assignment. Davis et al. [29] also consider
optimal priority assignment under mixed use of FIFO queues and priority queues.

Prior work on priority assignment for CAN focused on the single-type frame set, and
thus is agnostic of mode-transition overhead which must only be accounted for mixed frame
sets. Therefore, the priority order determined by existing priority-assignment algorithms
may incur many mode transitions.

3.9 Conclusion

Utilizing the silent mode of the existing CAN controller is a simple solution to solve the
CAN and CAN-FD coexistence problem. However, it is non-trivial to minimize the neg-
ative impact of mode-transition overhead of the silent mode. To minimize the negative
impact, we have proposed a new priority-assignment algorithm, called PAMT. PAMT min-
imizes the negative impact of mode transitions by clustering the frame instances based on
their type, and is shown to be the optimal priority assignment for a mixed frame set. Also,
our extensive simulation results show that PAMT outperforms existing priority-assignment
algorithms in minimizing the negative impact of mode-transition overhead.

45

Algorithm 2: Cluster
Input : Ipas: Priority-assigned frame instance set

1 i← |Ipas| − 1;
2 // Check C1
3 if Ipas[i].type = Ipas[i− 1].type then
4 return false; // Already clustered
5 end
6 isSameTypeExist← false;
7 k ← 0;
8 for j ← 2 to |Ipas|+ 1 do
9 if Ipas[i].type = Ipas[i− j].type then

10 isSameTypeExist← true;
11 k ← j;
12 break;
13 end
14 end
15 if isSameTypeExist = false then
16 return false;
17 end
18 // Check C3
19 if Ipas[i].arrival time > Ipas[i− k + 1].arrival time and

Ipas[i].arrival time > Ipas[i− k].completion time then
20 return false;
21 end
22 // Check C2
23 for p← k − 1 to 0 do
24 if Ipas[i− p].completion time+ Ipas[i].transmission time >

Ipas[i− p].deadline then
25 return false;
26 end
27 end
28 temp← Ipas[i];
29 for p← 0 to k − 1 do
30 Ipas[i− p]← Ipas[i− p− 1];
31 Ipas[i− p].completion time←

Ipas[i− p].completion time+ temp.transmission time;
32 end
33 Ipas[i− k + 1]← temp;
34 Ipas[i− k + 1].completion time←

Ipas[i− k].completion time+ temp.transmission time;
35 return true;

46

CHAPTER 4

EACAN: Reliable and Resource-Efficient CAN
Communications

4.1 Introduction

More and more functions, such as advanced driving assistance system (ADAS), are being
introduced to improve the driver’s safety and comfort, and to reduce maintenance cost. The
introduction of these new functions rapidly increases the bandwidth demand for in-vehicle
communications [92], especially in the controller area network (CAN) which is the de facto

standard of in-vehicle networks. To meet this increasing bandwidth demand, both the CAN
data rate and the number of CAN buses within a vehicle have been increased [70], thus
raising in-vehicle communication costs. So, achieving high efficiency of CAN bandwidth
utilization has become important for cost-effective in-vehicle communications.

Timing verification for CAN is key in ensuring safety during the early design phases of
a vehicle [56]. The timing verification used in COTS tools [97, 105] relies on the schedu-
lability analysis based on the worst-case response time (WCRT) [82]. In particular, a prob-
abilistic schedulability analysis based on the worst-case transmission error rate (WCTER)
[12, 20, 21] is employed when a temporal requirement has to be verified while accounting
for transmission errors. However, the worst-case-based timing verification for CAN results
in severe under-utilization of bandwidth because the worst case requires too conservative
a safety margin [73]. Besides, the under-utilization of CAN bandwidth will exacerbate
even more as WCTER is expected to increase in future. For example, the rate of bit errors
induced by electromagnetic interference (EMI), a major cause of bit errors in CAN [84],
has been continuously increasing due to the changes in the external environment (5G net-
works using millimeter wave [42]) and internal vehicle systems (hybrid electrical vehicles
& electrical vehicles [32], on-line electrical vehicles [23]).

To alleviate this problem, we propose a runtime adaptation, called error-adaptive CAN
(EACAN). Instead of using WCTER, EACAN observes the behavior of transmission errors

47

at runtime. Based on the observed behavior of recent past transmission errors, EACAN
reconfigures the periods of low-criticality messages to guarantee the reliability (timing-
failure) requirement to be met. As a result, we can remove the assumption used in the
existing probabilistic schedulability analyses that the system is always exposed to the WC-
TER. There are two challenges in designing EACAN: determination of (1) when to adjust
the message period to meet the given reliability requirement and to maximize the band-
width usage, and (2) how to make a quick adjustment of the message period.

To address the first challenge, EACAN measures the runtime transmission error rate
(TER) based on the observed behavior of recent past transmission errors. Because the
probability of deadline misses depends on the TER, EACAN determines system critical-

ity level using the runtime TER. The thus-determined system criticality level adaptively
controls the periods of given messages. To address the second challenge, we employ pre-
defined thresholds in EACAN to make a quick decision on the system criticality level at
runtime. The pre-defined thresholds are directly compared against the runtime TER instead
of computing the probability of a deadline miss, which is computationally expensive. We
formulate an optimization problem to find the thresholds that maximize the utilization of
CAN bandwidth. We also provide a fast heuristic algorithm that yields a near-optimal solu-
tion. According to our evaluation result, EACAN improves bandwidth utilization by 14%
over WCTER-based analyses without violating the reliability requirement.

4.2 System Model and Assumptions

4.2.1 Overall Architecture

We consider a system composed of a single CAN bus and multiple devices/ECUs which
share the CAN bus as shown in Fig. 4.1. Applications running on each ECU initiate CAN
messages periodically. The initiated messages are then copied into a TxObject. A message
in the TxObject is broadcast over the CAN bus if the value in the ID value of the message
is lower (higher priority) than that of any other queued messages.

We propose an error-adaptive CAN (EACAN) which is composed of master and slave
components. The master component (mEACAN) is deployed on a monitoring ECU which
has more computing power (higher performance CPU, larger memory size) like a vehicle
domain controller [35]. The slave component (sEACAN) is deployed in all ECUs, except
for the monitoring ECUs, as shown in Fig. 4.1. Whenever a transmission error occurs,
mEACAN computes the runtime TER and determines the system criticality level (γsys),
which starts from the lowest level, based on the runtime TER. If transmission errors occur

48

Figure 4.1: Overall system architecture

more frequently than usual, then mEACAN raises the criticality level and broadcasts a
special message to notify the raised criticality level to the sEACAN. Otherwise, the system
criticality level stays at the low level.

4.2.2 Error Model

The electrical signal on the CAN bus can be temporarily distorted by EMI [84]. This distor-
tion will, in turn, induce bit errors during the transmission of a CAN message. To cope with
these transient errors, the CAN protocol comprises robust error detection mechanisms such
as transmitter-based-monitoring, bit stuffing, cyclic redundancy check (CRC), and message
format check [14]. The CAN protocol can detect the following transmission errors:

• Bit error: the value on the bus is not the same as that the transmitter sent (except
during an arbitration phase);

• Stuff error: 6 same consecutive bits on the bus

• Form error: invalid value shown in value-fixed bits (e.g., CRC delimiter, ACK de-
limiter, etc.);

• ACK error: no dominant value found in the ACK slot;

• CRC error: the received CRC is not the same as the computed value.

Upon detection of a transmission error, (1) an error frame is generated by the device
that detected the error, (2) devices discard the erroneous message, and (3) the transmitter
of the erroneous message automatically retransmits the message.

In this chapter, we only consider the detected transmission errors because the response
time is increased only as a result of their detection. Even though multiple bit errors can
occur within a single message transmission, we err on the side of safety by making a con-
servative assumption that every single bit error causes one transmission error for timing
assurance. Thus, the bit error rate (BER) is the same as the transmission error rate. More-
over, we assume that every transmission error is detected by the underlying robust error

49

ASIL Level Reliability Requirement
D 10−8/hr
C 10−7/hr
B 10−7/hr
A 10−6/hr

Table 4.1: Failure-rate requirements due to random hardware faults in ISO26262

detection mechanism. As in previous studies [21, 12], we assume that the distribution of
bit errors follows a Poisson process and the WCTER, λmax, is given, e.g., λmax is deter-
mined and then specified during the design phase of a vehicle based on the knowledge of
the worst environment/condition in which the vehicle must operate [72].

4.2.3 Mixed-Criticality CAN Message Model

In a vehicle, multiple electronic control units (ECUs) share a physical link (e.g., CAN bus)
to communicate with each other. The messages on the shared bus can be used by high-
or low-criticality applications. Thus, the system designer can classify in-vehicle messages
into multiple criticality levels according to their corresponding functions.1 Due to this
resource sharing, low-criticality applications have to sacrifice their performance for high-
criticality applications in an abnormal situation (e.g., TER exceeds the permitted error rate
at runtime) to achieve a fail-safe operation.

According to ISO26262 [46], vehicular functions can be classified into multiple critical-
ity levels, e.g., Automotive Safety Integrity Level (ASIL), and each function has a different
reliability requirement according to its criticality level. For example, ISO26262 [46] speci-
fies the requirement of failure rate caused by random hardware faults as shown in Table 4.1.
Transmission errors can be regarded as random hardware faults, and also message deadline
misses as timing failures. The timing failure of a CAN message, in turn, causes the execu-
tion failure of the associated functions because the correct execution of the functions relies
on the correct and timely delivery of input data. Thus, to meet the reliability requirement
of a function, we must consider timely delivery of the corresponding CAN messages.

We propose a new mixed-criticality CAN message model based on the model in [22]. In
the model proposed in [22], CAN messages have their own criticality levels and (multiple)
periods, and the message period is altered when the system is in an abnormal state to ensure
the timely delivery of high-criticality messages.

Our model contains an additional parameter—the probabilistic requirement of deadline

1The criticality level of a function can be determined according to the standard ISO26262.

50

misses. This requirement for a CAN message is derived from the reliability requirement
of its associated function. In our model, low-criticality messages are transmitted less fre-
quently at a higher system criticality level than at a lower system criticality level. As a
result, the system criticality level has a direct impact on the CAN bandwidth utilization.
Thus, the higher the system criticality level, the lower the bandwidth utilization of CAN.

We assume that the message parameters, such as periods, deadline, data length, and
criticality, are defined a priori by the application programmers or vehicle system design-
ers. Also, we assume that the given parameters satisfy the functional requirement (e.g.,
control system stability) of the corresponding functions. A mixed-criticality CAN message
is defined as mi = {χi, ~Ti, Ji, Li, ~Di, ~εi} where

• χi ∈ {1, . . . , L}: criticality; Criticality is mapped to an ASIL, e.g, for a 2-level
system, criticality 1(2) is mapped to ASIL A(D);

• ~Ti: periods (function of the system criticality level), Ti(1) = . . . = Ti(χi) ≤ . . . ≤
Ti(L);

• Ji: release jitter;

• Li: data length. Transmission time (Ci) of the message is proportional to the data
length;

• ~Di: relative deadline (function of the system criticality level). AssumeDi(l) ≤ Ti(l);

• ~εi: requirement of probability of deadline miss (function of the system criticality
level).

In practice, tasks running on ECUs, or CAN messages can be time- or event-triggered,
e.g., a user input or a specific vehicle condition [54]. However, it is difficult to predict the
initiation of event-triggered messages at runtime, the event-triggered messages are regarded
as sporadic messages with the minimum inter-arrival time in the timing verification process.
The minimum inter-arrival time is treated as the period in our message model.

In addition, in our model, the period (or the minimum inter-arrival time) of CAN mes-
sages are altered according to the system criticality level. However, because the perfor-
mance of applications (usually control tasks) running on ECUs is affected greatly by their
periods [99], the periods adaptation according to the system criticality level could degrade
the app functionality. Thus, the system designer should carefully determine the allowable
(elastic) range of period and adapt the period within the allowable range.

51

4.2.3.1 Deriving the requirement of probability of deadline misses

We derive the requirement of probability of deadline miss of each message from the given
reliability requirement in Table 4.1. Suppose reliability requirement of a message (corre-
sponding function) is RR(χi), and its period is Ti(l) at the system criticality level l. Also,
suppose the probability of deadline miss of the message is pi(DM |γsys = l) at the system
criticality level l.

If the message is transmitted 1
pi(DM |γsys=l) times, then there will be one timing failure in

average. Because the message is transmitted 1hr
Ti(l)

times in 1 hour, 1hr
Ti(l)
× pi(DM |γsys = l)

timing failures occur on average in 1-hour. To meet the reliability requirement, 1hr
Ti(l)
×

pi(DM |γsys = l) ≤ RR(χi). Then, we can derive:

1hr

Ti(l)
× pi(DM |γsys = l) ≤ RR(χi)× 1hr ⇒ 1

Ti(l)
× pi(DM |γsys = l) ≤ RR(χi)

. Thus, we can define the requirement of probability of message deadline misses at system
criticality level l as:

εi(l) = RR(χi)× Ti(l) (4.1)

Definition 1. (Mixed-Criticality CAN Message Set Probabilistic Schedulability) For a given

mixed-criticality CAN message set, if ∀l pi(DM |γsys = l) ≤ εi(l) holds where χi ≥ l ,

then the given mixed-criticality message set is schedulable.

4.3 Problem Statement

Timing verification for CAN communications is key in ensuring vehicle safety during the
early design phases of a vehicle. However, the WCRT-based pessimistic timing verification
for CAN has been the bottleneck to its bandwidth usage efficiency. The bandwidth under-
utilization due to the WCTER-based probabilistic schedulability analysis is expected to
become even worse in future because EMI-induced bit errors are continuously increasing.
To alleviate this problem, we propose EACAN with the following goals:

G1: Ensure pi(DM |γsys = l) ≤ εi(l) where χi ≥ l if l 6= Lwhere L is the highest system
criticality level;

G2: Maximize the bandwidth usage for a given mixed-criticality message set.

Even though EACAN achieves G1, ensuring Pi(DM |γsys = L) ≤ εi(L) for the highest
criticality messages is still needed offline. Thus, we propose a probabilistic schedulability
test which fully exploits the characteristics of EACAN.

52

Figure 4.2: Flow chart of (Left) mEACAN (Right) sEACAN

4.4 Error-Adaptive CAN (EACAN)

4.4.1 Overview

4.4.1.1 Basic Idea

Our basic idea is to adapt the periods of low-criticality messages to the behavior of recent
past transmission errors. To achieve that, mEACAN observes the behavior of recent past
transmission errors, and measure runtime TER. If the runtime TER exceeds the pre-defined
threshold that is embedded in EACAN, EACAN changes the system criticality level, and
thus adaptively controls the periods to guarantee the satisfaction of the requirement of prob-
ability of message deadline misses. The challenges in realizing this idea are to determine
when to reconfigure the system (when to change the system criticality level) and how to
make such a decision and reconfigure the system quickly.

4.4.1.2 Workflow of EACAN

The workflow of EACAN is illustrated in Fig. 4.2. Whenever a transmission error occurs,
an interrupt is generated to handle it. The interrupt-handling routine calls the functions of
mEACAN. First, mEACAN computes the runtime TER based on the behavior of recent
past transmission errors. It then determines the system criticality level (γsys) for use in
the immediate future. If the determined system criticality level is higher than the current
system criticality, mEACAN broadcasts a special CAN message to notify the change of
system criticality level to other ECUs (sEACANs). Upon receiving this special CAN mes-

53

sage, sEACANs reconfigure their message set according to the system criticality level. To
guarantee all or no node to receive the special CAN message, every ECU connected to
the CAN bus should accept the special message by registering the ID of the special CAN
message.2

Also, when the CAN bus becomes idle, mEACAN re-initializes the runtime TER to 0
and the system criticality level to the lowest level (see Section 5.2.3).

4.4.2 Runtime TER

To measure the runtime TER, mEACAN needs to know, at runtime, when the transmission
errors occurred. Fortunately, mEACAN can easily obtain this information because the
commercial CAN controller [64] generates an interrupt to handle each transmission error.

4.4.2.1 Requirement of Runtime TER

As can be seen from Eq. (2.10), computing the probability of deadline misses requires
the transmission error rate. We will use runtime TER instead of WCTER to compute the
probability of deadline misses. To achieve G1 (Requirement), the runtime TER must be
larger than the TER that a message actually experiences.

4.4.2.2 Definition of runtime TER

Let us consider the CAN bandwidth usage during [ts, te). Suppose a transmission error
occurs at time tc such that ts ≤ tc < te. Then, mEACAN computes the runtime TER
(λrun) and determines the system criticality level at time tc as described in the workflow.

At time tc, we want to know whether or not the probability of missing a message’s
deadline will be lower than its requirement during [tc, te). However, the behavior of trans-
mission errors in [tc, te) is unpredictable at time tc. That is, it is impossible to know the
TER that a message actually experiences, and is thus difficult to determine the value of
TER at runtime in order to meet the runtime TER requirement.

To overcome this difficulty, we assume that inter-arrival times of transmission errors
in the near future [tc, te) are greater than the minimum inter-arrival time (ξ[ts,tc]) of trans-
mission errors occurred in the recent past [ts, tc]. Under this assumption, we can use the
inverse of the minimum inter-arrival time as the value of runtime TER because the TER
that a message actually experiences must be lower than the inverse.

2The value, 0x1, is used as the ID of the special message in our experiments.

54

Figure 4.3: (Top) Time interval of interest [ts, te) is unnecessarily long. (Bottom) Time
interval of interest is [ts, te) is too short

λrun =
1

ξ[ts,tc]
(4.2)

ξ[ts,tc] = min
i

(ei − ei−1) (4.3)

where ei is the arrival time of the i-th transmission error in [ts, te), e0 = ts and i ∈ N+.
However, the above assumption may not hold at runtime. For example, at a certain

time (tf such that tc < tf < te), a new transmission error can yield a smaller inter-arrival
time than the inverse of the runtime TER, computed at time tc. At that time (tf), the
probability of missing message deadlines computed with the runtime TER becomes useless.
Thus, the probability of missing message deadlines must be re-computed with the inverse
of the new minimum inter-arrival time to meet our first goal (G1). So, whenever a new
transmission error occurs, EACAN updates the runtime TER, accounting for the effect of
the new transmission error.

Our upper bound — the inverse of the minimum inter-arrival times — could be larger
than the true upper bound (λmax) due to short-time burst errors. We increase the system
criticality level to the highest level L to cope with this urgent case.

4.4.2.3 Deciding on the Time Interval of Interest

When computing the runtime TER, we must carefully determine the time interval of inter-
est [ts, te). If the interval [ts, te) is too long, then a transmission error may negatively and
unnecessarily affect the probability of deadline misses. For example, as shown in Fig. 4.3
(Top), the transmission error occurring at time e1 affects the probability for the messages
A2 and B2 unnecessarily even though the transmission error does not influence the re-

55

sponse time of the messages. This is because the increased runtime TER at time e1 does
not decrease until the end of time interval of interest te.

On the other hand, if [ts, te) is too short, EACAN may fail to achieve G1. For example,
as shown in Fig. 4.3 (Bottom), the runtime TER is re-initialized to 0 at te because it reaches
the end of time interval of interest. However, the transmission error occurred at time e1
increases the response time of the message B1. It means that EACAN ignores the impact
of the transmission error, and thus EACAN cannot ensure the probability of deadline miss
of B1 to be smaller than its requirement.

To configure [ts, te) properly, we define ts as the starting point of a busy period and te
as the closest bus idle instant after ez, where ez is the arrival time of the latest transmission
error after ts. For example, as shown in Fig. 4.3 (Up), the time t∗ becomes te because t∗

is the closest bus idle instant after e1 which is the arrival time of the latest transmission
error after ts. In other words, a time interval of interest [ts, te) is the same as a busy
period. By design, there will not be any message whose response time is lengthened by the
latest transmission error after te, and thus the defined time interval of interest [ts, te) is not
too short. Also, [ts, te) is not too long because the closest bus idle instant after ez is the
minimum possible value for te. If te is smaller than the closest bus idle time after ez, then a
message may be delayed by the latest transmission error after te. Thus, [ts, te) becomes too
short. At time te, the runtime TER and the system criticality level are reset to their initial
values.

The pseudo code for computing runtime TER is provided in Algorithm 3. mEACAN
executes Algorithm 3 whenever a transmission error occurs. As stated in Line 1, we can
compute the minimum inter-arrival time of transmission errors in [ts, tc] by comparing the

Algorithm 3: Computing runtime TER
Input : ξ[ts,tc]: previous minimum inter-arrival time of errors

eprev: arrival time of the previous error
ecur: arrival time of current error

Output: λrun: the updated runtime TER

1 if ξ[ts,tc] = 0 OR ξ[ts,tc] > ecur − eprev then
2 ξ[ts,tc] = ecur − eprev;
3 λrun = 1

ξ[ts,tc]
;

4 end
5 if λrun > λmax then
6 λrun = λmax;
7 end
8 return λrun;

56

previous minimum inter-arrival time of transmission errors and inter-arrival time of two
most recent transmission errors. Thus, we can measure the runtime TER with a small
computation time overhead. We omit the description of how to reset the system criticality
level and the runtime TER since it is trivial.

4.4.3 Deciding on System Criticality Level

The periods of CAN messages depend on the system criticality level, and thus changing the
system criticality level significantly affects the bandwidth utilization of CAN. Optimizing
the instant of changing the system criticality level is, therefore, important to achieve G2.

We first seek a condition to decide on the system criticality level (γsys) and then derive
a TER threshold from the condition. The TER threshold is directly compared against the
runtime TER in order to determine the system criticality level quickly at runtime.

4.4.3.1 Decision based on the probability of deadline misses

During the mission, the system criticality level must satisfy the following condition to
achieve G1.

χi ≥ l ∧ pi(DM |γsys = l, λ = λrun) > εi(l)⇒ γ[tc,te)sys > l

where γ[tc,te)sys is the system criticality level in the future time interval [tc, te).
If the probability of deadline miss of message (mi) at the system criticality level l is

greater than its requirement, the system criticality level should be greater than l in the
future time interval [tc, te). Otherwise, the requirement will not be met in the future time
interval. However, computing the probability of deadline misses for all the messages and
all the system criticality levels incurs a significant computation overhead, thus making it
impractical.

4.4.3.2 Decision based on the runtime TER

Instead of computing the probability of deadline miss at runtime, we define a proxy task:
we compare the runtime TER against the pre-defined thresholds. Since the probability
of deadline miss relies on the TER as stated in Eqs. (2.10), (2.11), and (2.12), the system
criticality level has to be higher than l in the future time interval if the runtime TER exceeds
the embedded threshold (θli) such that pi(DM |γsys = l, λ = θli) = εi(l). Thus, we can

57

derive the following condition that the system criticality level must satisfy:

∃i, χi ≥ l ∧ θli < λrun ⇒ γ[tc,te)sys > l.

To find this threshold, we formulate the optimization problem as:

θli = argmax
θ

pi(DM |γsys = l; θ)

subject to pi(DM |γsys = l; θ) ≤ εi(l).
(4.4)

Since the objective of optimization is the largest possible argmax, the system criticality
level can stay at the lower level as long as possible. As a result, EACAN maximizes the
bandwidth utilization of CAN.

4.4.4 Solving the Optimization Problem

Described below is how to solve the proposed optimization problem. We first address
how to compute the optimization objective function and then present an efficient heuristic
algorithm which yields a near-optimal solution.

4.4.4.1 Computing the Objective Function

We compute the objective function, pi(DM |γsys = l), using the following three steps.

Step 1: Compute Rl
i|Z , the upper bound of response time of message mi with Z trans-

mission errors at the system criticality level l. We can easily derive the worst-case queuing
delay for message mi with Z transmission errors at system criticality level l using Eq. (2.7)
because only the period and the deadline depend on the system criticality level:

wn+1
i|Z (q, l) = Bi + qCi + Ei|Z +

∑
∀k∈hp(i)

⌈
wni|Z(q, l) + Jk + τ

Tk(l)

⌉
Ck +Ochg, (4.5)

where Ochg is the time overhead of changing the system criticality level which will be
detailed later. Rl

i|Z can then be defined as:

Rl
i|Z(q) = Ji + wi|Z(q, l)− qTi(l) + Ci (4.6)

Rl
i|Z = max

q
Rl
i|Z(q) (4.7)

58

Figure 4.4: The probability of missing a message’s deadline depends on the remaining
execution/transmission time after changing the system criticality level

Step 2: Compute pi(Rl
i|Z), the probability of Rl

i|Z . We derive pi(Rl
i|Z) from Eq. (2.10)

by replacing Ri|Z with Rl
i|Z .

p(Rl
i|Z) = p(Z,Rl

i|Z)−
Z−1∑
j=0

p(Rl
i|j)p(Z − j, Rl

i|Z −Rl
i|j) (4.8)

Step 3: Compute pi(DM |γsys = l). Suppose the system criticality level is raised
from a lower level to l at time ti,c, where ti,c is the time between the release of mi and
the current time tc. Also, suppose message mi is released before the system criticality
level is raised. Then, the remaining (execution) time of the message is Di(l) − ti,c after
increasing the system criticality level. We want to show that pi(DM |γsys = l) depends
on the remaining time. For example, if the remaining time satisfies the inequality Rl

i|1 ≤
Di(l) − ti,c ≤ Rl

i|2, as illustrated in Fig. 4.4 (according to [21], the response time with 2
errors is always larger than that with 1 error), then 2 or more errors are not allowed after
ti,c to meet its deadline. Thus, the probability of missing the message deadline at system
criticality level l is 1 − p(Rl

i|0) − p(Rl
i|1). Likewise, if the remaining time satisfies the

inequality Rl
i|2 ≤ Di(l)− ti,c ≤ Rl

i|3, then the probability of missing the message deadline
at criticality level l is 1− p(Rl

i|0)− p(Rl
i|1)− p(Rl

i|2). Hence, we can define the probability
of missing the message deadline at system criticality level l as:

pi(DM |γsys = l) = 1−
Zm∑
Z=0

p(Rl
i|Z) (4.9)

where Zm is an integer such that Rl
i|Zm
≤ Di(l)− ti,c ≤ Rl

i|Zm+1. If a message is released
after raising the system criticality level to l, then ti,c is 0.

4.4.4.2 Finding a Near-Optimal Solution

Since the objective function of the optimization problem is computed recursively, it is dif-
ficult to solve the problem directly. So, we find an alternative, near-optimal solution by

59

using a binary search. Since the objective function is an increasing function of λ, the op-
timal solution (θo) exists between a lower bound (θl,LBi) and an upper bound (θl,LBi) such
that

pi(DM |γsys = l, λ = θl,LBi) ≤ εi(l)

pi(DM |γsys = l, λ = θl,UBi) > εi(l).

Also, we can easily find lower and upper bound candidates, e.g., selecting 0/ms and a large
number (e.g., 1000/ms), respectively. We can thus gradually approach the optimal solution
from these bounds using a binary search. Even though we cannot guarantee the finding of
the optimal solution, we can find a near-optimal solution (θno) such that θo - θno < δ where
δ is a suitably small number.

As mentioned before, because pi(DM |γsys = l) depends on the remaining execution
time at γsys = l, the thresholds θli also depend on the remaining time. Thus, we need to
find all θli|k thresholds for message i, criticality l and the remaining time Di(l) − ti,c such
that Rl

i|k ≤ Di(l) − ti,c ≤ Rl
i|k+1. The pre-defined thresholds θli|k are computed offline

and saved in a 3-dimensional array (Θ), which is then embedded in mEACAN. So, there is
no need to consider the runtime overhead for solving the optimization problem. Note that
space complexity of Θ is O(N ∗L ∗Kmax) (see Section 5.6 for detailed information of N ,
L, and Kmax).

4.4.5 Runtime Decision on System Criticality Level

Algorithm 4 describes how to determine the system criticality level at runtime for the fu-
ture time interval. In line 1, the system criticality level for the future time interval is ini-
tialized with the current system criticality level to maximize CAN bandwidth utilization.
Algorithm 4 then tries to find the lowest possible system criticality level by comparing the
runtime TER with the pre-defined thresholds. As stated in lines 17 and 18, if the runtime
TER is larger than θli|k and smaller than θl+1

i|k , the system criticality level for the future time
interval will be switched to l + 1.

The lines between 7 and 12 state how to compute ti,c and the lines between 26 and 30
states how to compute baseli which is needed to compute ti,c. baseli is the first release time
of mi after changing the system criticality level to l. Thus, the value of baseli is assigned
only when the system criticality level is raised to l as stated in line 24.

If the determined system criticality level is larger than the current system criticality
level, mEACAN broadcasts a special CAN message to change the system criticality level.
Then, sEACANs reconfigure their message set according to the determined system critical-

60

Algorithm 4: Determining System Criticality Level
Input : N : the number of messages

L: the number of criticality levels
Kmax: the maximum number of errors within a lifetime of a message
Θ: an array contains thresholds of TER
R: an array contains the upper bound of response times
λrun: the runtime TER over [ts, te]
γsys: current system criticality level
tc: current time

Output: χ[tc,te]
sys : determined system criticality level

1 χ
[tc,te]
sys ← γsys;

2 MsgFlag []← false;
3 for i← 1 to N do
4 if χi < γsys then
5 Continue;
6 end
7 if Ti(γsys) < (tc − baseγsysi) then
8 ti,c ← 0;
9 end

10 else
11 ti,c ← (tc − baseγsysi) mod Ti(γsys);
12 end
13 for l← χ

[tc,te]
sys to L do

14 for k ← 1 to Kmax do
15 if MsgFlag [i] = false then
16 if Rli|k ≤ Di(l)− ti,c ≤ Rli|k+1 and θli|k > λrun and θl+1

i|k ≤ λrun then
17 χ

[tc,te]
sys ← l + 1; MsgFlag [i]← true;

18 end
19 end
20 end
21 end
22 end
23 if γsys < χ

[tc,te]
sys then

24 for i← 1 to N do

25 base
χ
[tc,te]
sys

i ← tc + (Ti(χ
[tc,te]
sys)− ti,c)

26 end
27 end
28 return χ[tc,te]

sys

ity level.

61

4.4.6 EACAN Schedulability Analysis

The inequality pi(DM |γsys = l) ≤ εi(l) holds where l < L (the highest level), because
EACAN automatically raises the system criticality level if it doesn’t hold. But, we still need
timing verification for the system criticality level L. To analyze the schedulability at the
highest level L, we need to analyze the worst-case response time of the highest-criticality
messages when the messages are delivered at the highest level L.

When the delivery of a highest criticality message is completed at the highest level
L, in terms of response time, the worst case occurs when the system criticality level is
changed directly from 1 to L, and the message stays at the lowest level (γsys = 1) as long
as possible. This is because messages’ periods are the smallest at the lowest level, and thus
the interference by higher-priority messages is the greatest at the lowest level.

We first analyze the worst-case busy period of a highest-criticality message when its
transmission is completed at the highest level L. We assume that the system criticality level
is changed from 1 to L at time tchg. Because the periods of higher priority messages are
changed after tchg, the last term (the interference by higher-priority messages) in Eq. (2.7)
should be separated out, and also the overhead of changing the criticality level should be
accounted for as:

wn+1
i|Z,[1.L](q) = Bi + qCi + Ei|Z +Ochg + IBC(tchg) + IAC(wni|Z,[1.L](q)− tchg) (4.10)

where wn+1
i|Z,[1.L](q) is the busy period of the q-th instance of message i with Z transmission

errors when the system criticality level is changed directly from 1 to L at tchg and the
message transmission is completed at the highest level L. IBC is the interference by higher-
priority messages before changing the system criticality level, and IAC is the interference by
higher-priority messages after changing the system criticality level. We can easily compute
IBC and IAC as:

IBC(tchg) =
∑
∀k∈hp(i)

⌈
tchg + Jk + τ

Tk(1)

⌉
Ck (4.11)

IAC(wni|Z,[1.L](q)− tchg) =
∑
∀k∈hp(i)

(⌈
wni|Z,[1.L](q)− tchg + Jk + τ

Tk(L)

⌉
− 1

)
Ck. (4.12)

In the equation of IAC , there is ‘−1′ term because due to the ceiling function, one frame
instance can be counted twice in both IBC and IAC . For example, suppose that the period
of a higher-priority frame is 3 at the system criticality level 1 and 6 at the system criticality

62

level L. Also, suppose that tchg = 10 and transmission of the frame instance starts at time
20. Then, the higher-priority frame is counted 4 times by the ceiling function in Eq. (4.11),
and also counted 2 times in Eq. (4.12). However, the higher-priority frame is released only
5 times within 20 time units (0, 3, 6, 9, 15). Thus, this double counting should be figured
out. Note that when the remainder of division in the ceiling function is 0, we do not apply
the ‘ − 1′ term because there is no double counting. For example, suppose that the period
of a higher priority frame is 2 at the system criticality level 1, and 5 at the system criticality
level L. Then, the frame is counted 5 times by the ceiling function in Eq. (4.11), and also
counted 2 times in Eq. (4.12). In this case, the frame is released 7 times (0, 2, 4, 6, 8, 13,
18), which is the same as the number we counted (5 from IBC , 2 from IAC).

Because when to change the system criticality level to L is unknown beforehand, it is
challenging to bound the maximum possible duration (the value of tchg) at the lowest level
1. To deal with this difficulty, we utilize the property of EACAN: the system criticality
level changes to the highest level L if λrun ≥ λmax.

Lemma 4. λrun ≥ Z
wi|Z(q,1)

where wi|Z(q, 1) is the busy period of message i with Z trans-

mission errors when the system only stays at the lowest level 1

Proof: Suppose n transmission errors occur during time duration t. λrun is then
minimized when all the intervals between any two consecutive errors are the same. So,
λrun = n

t
. wi|Z(q, 1) is the busy period for the q-th instance of message i, and wi|Z(q, 1)

inherently includes Z transmission errors. In such a case, the minimum possible value of
λrun is Z

wi|Z(q,1)
. Thus, λrun ≥ Z

wi|Z(q,1)
.

By Lemma 1 and the property of EACAN, we can derive the following proposition.

Z

wi|Z(q, 1)
≥ λmax ⇒ γ

[wi|Z(q,1),te)
sys = L.

From this proposition, we know that the system criticality level changes toL beforewi|Z(q, 1)

such that Z
wi|Z(q,1)

≥ λmax. To find such Z, we need to solve the following optimization
problem.

Zc = argmin
Z

[
Z

wi|Z(q, 1)
≥ λmax

]
(4.13)

Since Eq. (4.5) can be used to compute wi|Z(q, 1), the optimization problem can be
solved easily, and wi|Zc(q, 1) can be used as tchg for the computation of Eq. (4.10). With the
result of Eq. (4.10), we can compute the worst-case response time of the highest-criticality

63

messages when its transmission is completed at the highest level L as:

Ri|Z,[1,L](q) = Ji + wi|Z,[1,L](q)− qTi(L) + Ci (4.14)

Ri|Z,[1,L] = max
q

Ri|Z,[1,L](q). (4.15)

Since the periods of highest-criticality messages are the same for all system criticality lev-
els, we can use qTi(L) as the release time of the q-th instance.

Also, the probability of missing message deadlines can be computed and the probabilis-
tic schedulability can be tested for the system criticality level L as:

p(Ri|Z,[1,L]) = p(Z,Ri|Z,[1,L])−
Z−1∑
j=0

p(Ri|j,[1,L])p(Z − j, Ri|Z,[1,L] −Ri|j,[1,L]) (4.16)

pi(DM) = 1−
∑

∀Z|Ri|Z,[1,L]≤Di

p(Ri|Z,[1,L]) (4.17)

4.4.7 Analysis of Overhead of Changing γsys

Suppose a transmission error occurs at time tc and the system criticality level is raised
due to the transmission error. Ideally, we expect that the raise of system criticality level is
synchronized with the arrival of the transmission error as shown in Fig. 4.5 (Top). However,
this ideal synchronization is infeasible because a reconfiguration based on the determined
system criticality level requires time (Ochange). The system criticality level is raised from
a lower level to a higher level after consuming that amount of time as shown in Fig. 4.5
(Bottom). Thus, the period change is also delayed by that amount of time. This is the
reason for considering the time overhead in the analysis of the worst-case queuing delay in
Eq. (4.6).

The time overhead of changing the system criticality level consists of two parts: the time
for determining the system criticality level (computation time) and the time for notifying
the new system criticality level to sEACAN (communication time). The period adjustment
on sEACAN also requires a small amount of time, and it is simple to change the period,
and hence its analysis is omitted.

Computation Time Analysis. We analyze the time complexity of Algorithms 3 and Al-
gorithm 4 as they represent the core functions of determining the system criticality level.
Algorithm 4 contains only several comparisons and statements, and its time complexity is
O(1). In Algorithm 4, Lines 6–13 are repeated at most N ∗ L ∗Kmax times, and hence its

64

Figure 4.5: (Top) Ideal change of system criticality level. (Bottom) Changing system criti-
cality level with overhead considered.

time complexity is O(N ∗ L ∗Kmax).
The number (N) of messages is typically less than 100 on a single CAN bus in con-

temporary vehicles and the criticality is typically divided into 4 or 5 levels. Also, Ferreira
et al. [33] reported that less than 1000 bit errors per hour take place in a CAN bus 2m
away from a welding machine. Thus, there might be a few transmission errors within a few
seconds (a typical maximum lifetime of a message). Formally, we can obtain:

Kmax = argmax
n

∃i pi(n,Di(L)|λ = λmax) ≤ RR(mi).

Communication Time Analysis. If mEACAN decides to raise the system criticality level,
it broadcasts a special CAN message to notify the change of criticality level to other ECUs
(sEACANs). We use a unique identifier for the special CAN message and assign it the
lowest ID value (e.g., 0x1)or the highest priority. Therefore, the special CAN message can
only be blocked by one lower-priority message already being transmitted on the bus. Also,
the special CAN message only contains the information of criticality level. Since there are
typically 4 or 5 criticality levels, we can assume that the special CAN message embeds at
most 1-byte data. As a result, the worst-case communication time of this message is the
transmission time of a CAN message with 8-byte data (a lower-priority message) plus the
transmission time of a CAN message with 1-byte data (the special CAN message).

4.5 Evaluation

We have evaluated EACAN in comparison with existing WCTER-based approaches [12,
21]. Our evaluation focuses on measuring the utilization of CAN bandwidth. To show
the realism of EACAN, we have conducted simple experiments on our testing platform.
To show the utility of EACAN for a wide range of scenarios, we have also conducted
simulations while varying mutable parameters, such as λmax, maximum criticality (L) and

65

Figure 4.6: Experimental platform

utilization of a given message set.

4.5.1 Experimentation

4.5.1.1 Experimental Platform

We have built an experimental platform to evaluate EACAN as shown in Fig. 4.6. The
experimental platform consists of one imx6 sabrelite3 and six Arduino [5] boards with
MCP2515 CAN controller [64]. The boards are all connected through a CAN bus. We
use the imx6 sabrelite board as a domain controller, and thus mEACAN is deployed on the
imx6 sabrelite board and sEACAN is deployed on the Arduino boards.

By winding the CAN wire as shown in Fig. 4.6, we can control the strength of EMI.
Thus, we can control the transmission error rate by increasing and decreasing the number
of coil turns.

4.5.1.2 Benchmark and Configuration

We slightly modified the SAE benchmark [45] as shown in Table 4.2, and then used it as
the set of CAN messages in our experiments. We modified the SAE benchmark to include
two criticality levels. To introduce the criticality characteristics, we assign criticality-level
2 to the messages whose period is 5ms, and assign criticality-level 1 to the others. This is
because safety-critical (e.g., control) messages usually have short periods. At criticality-
level 2, the modified SAE benchmark is identical to the original SAE benchmark.

The CAN bus speed was set to 250Kbps, a widely-used speed of current in-vehicle
network communications, such as body and powertrain control networks. For the bi-
nary search, we set δ = 10−15. We control the number of coil turns to set λmax =

3Imx6 sabrelite board has 1GHz CPU and 1GB Memory size. On the board, LinuxRK[75] is used as
operating system for the board.

66

ID χi Li Ji Ti(1) Ti(2) Di(1) Di(2)

1 1 (ASIL A) 1 0.1 25 50 2.5 5
2 2 (ASIL D) 2 0.1 5 5 5 5
3 2 (ASIL D) 1 0.1 5 5 5 5
4 2 (ASIL D) 2 0.1 5 5 5 5
5 2 (ASIL D) 1 0.1 5 5 5 5
6 2 (ASIL D) 2 0.1 5 5 5 5
7 1 (ASIL A) 6 0.2 5 10 5 10
8 1 (ASIL A) 1 0.2 5 10 5 10
9 1 (ASIL A) 2 0.2 5 10 5 10

10 1 (ASIL A) 3 0.2 5 10 5 10
11 1 (ASIL A) 1 0.2 25 50 10 20
12 1 (ASIL A) 4 0.3 50 100 50 100
13 1 (ASIL A) 1 0.3 50 100 50 100
14 1 (ASIL A) 1 0.2 50 100 50 100
15 1 (ASIL A) 3 0.4 500 1000 500 1000
16 1 (ASIL A) 1 0.3 500 1000 500 1000
17 1 (ASIL A) 1 0.3 500 1000 500 1000

Table 4.2: Modified SAE benchmark

Schedulability Deadline
Method Test Utilization L1 Time L2 Time Miss
EACAN Pass 57.94% 3599822751µs 177249µs 0

WCTER-Based
(γsys = 2) Pass 44.01% 0µs 360000000µs 0

WCTER-Based
(γsys = 1) Fail 57.95% 360000000µs 0µs 0

Table 4.3: Experimental Results (λmax = 10−3/ms)

10−3/ms, since the TER measured in an aggressive environment (near a welding ma-
chine) is about 10−4/ms [33]. The TER for 1-hour experiments was observed to be about.
8.0× 10−4/ms± 1.0× 10−4/ms. We also performed experiments with λmax = 10−2/ms.

In practice, it is difficult to know whether the CAN bus is in idle or active state with-
out sensing voltage of CAN bus. Thus, we identified the idle state of CAN bus when the
monitoring ECU does not receive any message for 700µs since the transmission time for
an 8-byte message is 544µs over a 250Kbps CAN.

67

Schedulability Deadline
Method Test Utilization L1 Time L2 Time Miss
EACAN Pass 57.89% 3582859215µs 17140785µs 0

WCTER-Based
(γsys = 2) Pass 44.01% 0µs 360000000µs 0

WCTER-Based
(γsys = 1) Fail 57.95% 360000000µs 0µs 0

Table 4.4: Experimental results (λmax = 10−2/ms)

4.5.1.3 Experimental Results

First, we measured time needed to execute Algorithms 1 and 2. On the imx6 sabrelite
board, at the maximum 34µs was required to execute the both Algorithms 1 and 2 for the
given modified SAE benchmark.4 We also measured the size of the arrays R and θ in
Algorithm 1. For the given modified SAE benchmark, the amount of memory required to
embed the arrays R and θ was 1288 bytes.

By applying the measured overhead to Eq. (4.10), we performed the EACAN schedu-
lability test for the given modified SAE benchmark. The results are shown in Table 4.3
and Table 4.4. The modified SAE benchmark passes the EACAN schedulability test where
λmax = 10−3/ms and λmax = 10−2/ms. Thus, the given mixed-criticality CAN message
set can operate without violating its requirement using EACAN. Also, we performed the
WCTER-based schedulability test. The modified SAE benchmark at system criticality-
level 2 passes the WCTER-based schedulability tests [12, 21] where λmax = 10−3/ms

and λmax = 10−2/ms. However, the modified SAE benchmark at system criticality-
level 1 failed the WCTER-based schedulability tests where λmax = 10−3/ms and λmax =

10−3/ms. That is, the system can only operate acceptably at criticality-level 2.
We measured the utilization of CAN bandwidth by transmitting messages in the modi-

fied SAE benchmark for an hour. The utilization of CAN bandwidth is calculated by active
(transmission) time during which the CAN messages are transmitted. To assess the ac-
tual utilization (akin to goodput), we subtracted the error frame transmission time and the
time for transmitting corrupted messages from the entire active time. We only count the
successfully transmitted messages. Due to the clock drift in Arduino boards, the number
of initiated CAN messages is very slightly different from the theoretic number. Thus, the
measured utilization was also different from the theoretically computed utilization.

In our experiments, with EACAN, the system operates at both criticality levels 1 and 2,
but only operates at system criticality level 2 without EACAN because the given message

4When we measured the overheads on the Arduino board, it was 780µ.

68

set fails WCTER-based schedulability tests at level 1.
Tables 4.3 and 4.4 summarize our experimental results. Inthe case of λmax = 10−3/ms,

the bandwidth utilization is 57.94% with EACAN, which is very close to the maximum
achievable utilization (57.95%) (the system operates only at the system criticality-level 1).
However, with the WCTER-based analysis, the system can achieve only 44.01% bandwidth
utilization because the system is limited to operate at system criticality-level 1. For the case
of λmax = 10−2/ms, the bandwidth utilization is 57.89% with EACAN. The presence of
more errors changes the system criticality level to 2 more times than the case of λmax =

10−3.
In addition, we measured the number of deadline misses during the experimentation.

In every case considered, we did not see any deadline miss because significant burst trans-
mission errors are required to cause a deadline miss, but the probability of occurrence of
significant burst errors is very low. Despite the low probability of deadline misses, we
could not utilize the bandwidth efficiently with the existing WCTER-based schedulabil-
ity test, but we could with EACAN. In summary, EACAN made a 14% improvement of
bandwidth utilization over the existing schemes using a modified SAE benchmark.

4.5.2 Simulation

4.5.2.1 Benchmark and Configuration.

We generated 1800 mixed frame sets by using NETCARBENCH (powertrain configura-
tion5) [19] to evaluate the usefulness of EACAN for various cases. Since the latest version
of NETCARBENCH does not support mixed criticality, we slightly modified the bench-
mark program to support it. We also slightly modified the powertrain configuration to

Period 2-Level System 3-Level System 4-Level System
5ms

70%-(ASIL) D
30%-A

50%-D, 30%-C
20%-A

70%-D, 10%-C
10%-B, 10%-A10ms

20ms 10%-D, 70%-C
10%-B, 10%-A50ms 25%-D, 50%-C

25%-A100ms

30%-D, 70%-A

10%-D, 10%-C
70%-B, 10%-A200ms

1s 20%-D, 30%-C
50%-A

10%-D, 10%-C
10%-B, 70%-A2s

Table 4.5: Criticality assignment based on the message period

5In the configuration, the distribution of payload size, message period, jitter and etc. are defined.

69

Criticality 2-Level System 3-Level System 4-Level System

ASIL A 3Ti(1) = Ti(2)
1.5Ti(1) = Ti(2)
3Ti(1) = Ti(3)

1.5Ti(1) = Ti(2)
2Ti(1) = Ti(3)
3Ti(1) = Ti(4)

ASIL B - -
Ti(1) = Ti(2)

1.5Ti(2) = Ti(3)
2Ti(2) = Ti(4)

ASIL C -
Ti(1) = Ti(2)
2Ti(2) = Ti(3)

Ti(1) = Ti(2)
Ti(2) = Ti(3)

1.5Ti(3) = Ti(4)

ASIL D Ti(1) = Ti(2)
Ti(1) = Ti(2)
Ti(2) = Ti(3)

Ti(1) = Ti(2)
Ti(2) = Ti(3)
Ti(3) = Ti(4)

Table 4.6: Period and deadline changes according to the system criticality level

generate 5ms-period messages to consider the recent ADAS6-related messages which re-
quire very short latency. Since critical messages usually have relatively short periods, we
assign criticality to each CAN message based on its period as shown in Table 4.5.

The change of period according to the system criticality level is described in Table 4.6.
As stated before, the period of messages gradually increases according to the system crit-
icality level if γsys > χi. For example, in this simulation, the period of ASIL A messages
at system criticality level 2 is 1.5x higher than that at the system criticality level 1. Like-
wise, the period of ASIL A messages at the system criticality level 3 is 2x higher than
that at the system criticality level 1, and the period of ASIL A messages at the system
criticality level 4 is 3x higher than that at the system criticality level 1. Consequently,
Ti(1) <= Ti(2) <= Ti(3) <= Ti(4) as we modeled in Section 3.3. We arbitrarily deter-
mine the amount of period stretch in this simulation.

We applied the Robust Priority Assignment (RPA) [27], which is proven to maximize
the number of tolerable transmission errors, to the generated frame set to assign priority to
each message.

70

λmax = 10−3/ms
Total 50%-60% 60%-70% 70%-80%

EACAN
Pass 703 288 246 169
Fail 197 12 54 131

Coverage 78.1% 96.0% 82.0% 56.3%

WCTER
Based

Pass 638 287 235 118
Fail 262 13 65 182

Coverage 70.8% 95.6% 78.3% 39.3%
Coverage Difference 7.2% 0.3% 3.6% 17%

Table 4.7: Coverage of EACAN and WCTER-based schedulability test (λmax = 10−3/ms)

λmax = 10−2/ms
Total 50%-60% 60%-70% 70%-80%

EACAN
Pass 374 211 116 47
Fail 526 89 184 253

Coverage 41.5% 70.3% 38.6% 15.6%

WCTER
Based

Pass 313 198 95 20
Fail 587 102 205 280

Coverage 34.7% 66.0% 31.6% 6.6%
Coverage Difference 6.7% 4.3% 7% 9%

Table 4.8: Coverage of EACAN and WCTER-based schedulability test (λmax = 10−2/ms)

4.5.2.2 Simulation Results

We measured the (coverage) rate of passing the EACAN schedulability test and that of
passing the WCTER-based test for the generated message sets. The results are summarized
in Table 4.7 and Table 4.8. If a given message set passes the EACAN schedulabilty test, we
count the given message set verifiable with EACAN. Also, if a given message set passes
the WCTER-based test at the system criticality level 1, we count the given message set
verifiable with WCTER.

Regardless of the utilization7 of given message sets and the applied λmax, the coverage
of EACAN schedulability test is shown to be higher than that of WCTER-based test. This
is because the EACAN schedulability test considers the system criticality-level transition
and the level change provides more chances to pass the test. The average improvement of
coverage for a total of 1800 generated sets is 7%, and the maximum improvement is 17%
where λmax = 10−3/ms and the utilization of the given message set is in the range of

6Advanced Driver-Assistance System — adaptive cruise control, collision detection,d etc.
7Note that the utilization is measured using the periods at the system criticality level 1.

71

Figure 4.7: (Left) Bandwidth utilization gap between EACAN operation and L1-Only op-
eration. (Right) System criticality-level distribution for a 1-hour CAN operation.

70–80%.
We also measured the bandwidth utilization of EACAN by simulating a 1-hour CAN

operation for the generated message sets. We generated transmission errors using a Poisson
process. For example, if λmax = 10−3/ms, then we generate 3600 transmission errors,
following a Poisson distribution for the 1-hour operation. Fig. 4.7 (Right) shows the system
criticality-level distribution over the 1-hour operation. The system is shown to stay at the
system criticality-level 1 for over 97% of its operation. This is because the length of a busy
period is usually not large, and thus system criticality-level returns quickly to the base level
(γsys = 1). The figure also shows that the proportion of γsys = 1 increases if the λmax
decreases. The large portion of staying at the lowest level makes the bandwidth utilization
gap between EACAN operation and L1-only operation (the best achievable utilization) very
small as shown in Fig. 4.7 (Left). This result is very similar to our experimental result.

In our simulation, deadline miss occurs in only two test cases of 70%-80% utilization
and λmax = 10−2/ms when the system only operates at the system criticality level 1
(WCTER-Based). With EACAN, there is no deadline miss for every test cases. This is
because that we generate the errors using poisson distribution in the simulations, and thus
burst error arrival which could lead deadline miss was rarely showed up in the simulations
like the experimental result.

From the evaluation and simulation results, we see that network utilization and schedu-
lability can be improved by using EACAN. That is, more CAN messages can be transmit-
ted on a single CAN bus, and thus system designers can reduce the number of CAN buses
required to implement the target system. From the automotive perspective, the implemen-
tation cost, space and weight for CAN bus wire can be saved.

72

4.6 Conclusion

In this chapter, we have developed EACAN, which adaptively controls the period of mes-
sages according to the recent past transmission errors to achieve reliable and resource-
efficient CAN communications. Also, we have analyzed probabilistic schedulability for a
given CAN frame set with EACAN operation. Our experimental results show that EACAN
makes a 14% improvement of bandwidth utilization for the modified SAE benchmark. Be-
sides, our simulation results show that 7% more CAN message sets can be verified for their
schedulability with EACAN schedulability test, on average.

Even though of use CAN may decline in future, our methodology can be easily applied
to Controller Area Network with Flexible Data-rate (CAN-FD), which is an emerging sub-
stitute of CAN, by just replacing CAN timing analysis with the state-of-art CAN-FD timing
analysis [57].

73

CHAPTER 5

DOFP: Design Optimization of Frame
Preemption in Real-Time Switched Ethernet

5.1 Introduction

Switched Ethernet is increasingly used in various real-time embedded and cyber-physical
systems due to the increasing bandwidth requirements in industrial automation, avion-
ics, and automotive electronics. The IEEE 802.1 Time-Sensitive Networking (TSN) Task
Group1 developed a set of standards to enhance the real-time and dependability properties
of switched Ethernet. Examples of these standards include credit-based shaping (IEEE
Std 802.1Qav-2009), time synchronization (802.1AS-2011), time-triggered communica-
tion (802.1Qbv-2015), and frame preemption (802.1Qbu-2016 and 802.3br-2016). a

The successful deployment of real-time applications in Ethernet networks with these
new technologies relies on design-time synthesis and optimization to determine network
configurations. Several researchers have recently developed methods and techniques for the
optimization of real-time Ethernet app design. A large body of related work deals with the
synthesis of time-triggered Ethernet schedules for hard real-time applications [17, 95, 43].
This has recently been extended to synthesize gate control lists (IEEE Std 802.1Qbv for
time-driven scheduling) [76], as well as towards robustness to link failures [11] and mixed-
criticality applications [96, 98]. Researchers have also addressed routing synthesis [58, 63]
and traffic class assignment [37].

While most past research focused on synthesis of communication schedules and priori-
ties, frame preemption on Ethernet has received very little attention. Thiele and Ernst [100]
proposed a worst-case timing analysis framework for networks employing frame preemp-
tion. To the best of our knowledge, there has not been any design method for real-time,
preemptable Ethernet.

1formerly known as the Audio/Video Bridging (AVB) Task Group

74

Figure 5.1: A promising in-vehicle architecture

Our contributions: We address the synthesis problem for frame preemption on Eth-
ernet according to the recently developed 802.1Qbu-2016 and 802.3br-2016 standards.
Specifically, we study the problem of assigning priorities, and hence queue allocation, of
each real-time data flow, as well as, for each queue, assigning whether the flow is transmit-
ted in the preemptable MAC (pMAC) or express MAC (eMAC) interface of the correspond-
ing egress port. We present a genetic algorithm-based optimization framework that exploits
a worst-case preemption-aware timing analysis, and use it to improve reliability and exten-
sibility of networks as case studies. For the effective and efficient use of the framework,
we propose an initialization algorithm for each goal. We conduct experimental evaluations
on networks of different sizes and complexities, including a real-life automotive system.

5.2 System Description and Model

5.2.1 System Architecture

A promising in-vehicle architecture is provided in Fig. 5.1. Electronic Control Units
(ECUs) are grouped by their functions, forming a functional domain. Each domain may
use a different network protocol to optimize the implementation cost while satisfying its
requirements. For example, body, powertrain and chassis domains use controller area net-
works (CANs) or CAN flexible data-rate (CAN-FD), while ADAS, infotainment and con-
nectivity domains use switched-Ethernet as their internal network. Moreover, the switched-
Ethernet may be used as the backbone-network. A domain whose internal network is

75

Figure 5.2: Abstracted system architecture

CAN(FD) must have an Ethernet-CAN(FD) converter, and the domain controller of the
domain would assume the role of the converter internally. Domain controllers or gateways
are physically connected to a central gateway to make connection between domains, and
the central gateway receives and forwards inter-domain messages.

5.2.2 Networked System Model

The architecture shown in Fig. 5.1 can be abstracted as a tree-topology switched-Ethernet
system as shown in Fig. 5.2. End-stations represent either domain controllers or ECUs
equipped with a Ethernet port, and switches represent gateways. An end-station has only
one physical Ethernet port, and the port is physically linked to a corresponding port in a
switch. A switch has one or multiple ports, and each port is physically linked to a corre-
sponding port of either an end-station or a switch. The physical links are full-duplex.

5.2.2.1 Frame Preemption Supportive Ethernet Port

We assume that every Ethernet port supports frame preemption based on IEEE 802.1Qbu
and IEEE 802.3br. Each egress port has at most 8 queues to serve different classes of frame,
and the queues are mapped to either express MAC (eMAC) interface or preemptable MAC
(pMAC) interface as shown in Fig. 5.3. We call a queue mapped to eMAC interface an
express queue, and call that mapped to pMAC interface preemptable queue.

Even though higher-priority (lower-priority) queues can be mapped to pMAC (eMAC)
interface, we assume that every express frames have higher priority than preemptable
frames because a lower priority frame’s preemption of higher priority frames does not make
sense. Based on this assumption, an egress port i can be defined as epi = {Qi, Vi, rTX,i, ζi}
where

• Qi: the set of queues in the egress port i. Qi = {qi,0, qi,1, ..., qi,n}, n ≤ 7. qi,0 is the

76

Figure 5.3: Frame preemption supportive port

highest-priority queue and qi,n is the lowest- priority queue in order;

• Vi: the corresponding end-station or switch with egress port i;

• rTX,i: physical link speed; and

• ζi: boundary between express and preemptable queues.

For example, if ζi is 3, then qi,0, . . . , qi,3 are express queues and qi,4, . . . , qi,n are preempt-
able queues.

5.2.2.2 Traffic Flow

An in-vehicle traffic flow is initiated periodically and has fixed route because of determin-
istic operation requirement. We group in-vehicle traffic flows into four classes; control
signal, sensor data (vehicle dynamics), raw data from camera or radar (lidar) and the others
as shown in Table 5.1. The control signal, sensor data, raw data from camera or radar (li-
dar) are usually used by time-critical applications, and thus these data flows have deadlines.
On the other hand, non-time-critical traffic flows do not have deadlines. A traffic flow is
defined as fi = {Ti, Di, Li, Pi, Ji, χi, ρi} where

• Ti: period of fi;

• Di: relative deadline of fi;

• Li: maximum payload size of fi;

• Pi: the value of priority code point (PCP) of fi;

77

Critical Frame Non-Critical Frame
Class 1 Class 2 Class 3 Class 4

Type Control Sensor (Vehicle Dynamics) CAM, Radar Others
Period 10ms-40ms 40ms-100ms 20ms-100ms 50ms-1s

Deadline same as period No deadline
Payload 10-100byte 100-200byte 400-1500byte 1500byte

Table 5.1: Ethernet traffic flow classes

• Ji: release jitter of fi;

• χi: class of fi;

• ρi: route of fi.

As shown in Fig. 2.4, the PCP value is specified in the header of frames of a traffic flow.
The frames are forwarded to one of eight queues based on their PCP value. For example,
suppose PCP = k is mapped to qi,k. If the PCP value of a frame is 0, then the frame is
queued into qi,0. Because queues in egress ports have priority, the priority of frames are
intrinsically determines by their PCP values. We assume that, for any port i, PCP = k is
mapped to qi,k.

5.3 Synthesis Problem

To utilize the standardized frame preemption, we must synthesize not only the assignment
of frames of traffic flows to queues but also the assignment of queues to MAC interface.
That is, we need to determine not only a set of Pi for given traffic flows but also a set of
ζi for given egress ports because we assume that express queues have higher priority than
preemptable queues. However, to the best of our knowledge, there is no solution which
deals with the two assignments at once — we are the first to address these problems at once
for the standardized frame preemption.

The example shown in Fig. 5.4 stresses the importance of ζi decision. As explained
before, the placement of type boundary at an egress port determines the type of frames of
traffic flows. For example, the frames of f1 are express and the frames of f2 and f3 are
preemptable at the egress port ep1 when ζ1 = 2. Hence, placement of the type boundary
affects the maximum queuing delay of the frames at the egress port.

Suppose the maximum transmission time of frames of f1, f2 and f3 is 5. That is,
the maximum waiting time for the entire transmission of a frame is 5 at an egress port.
Also, suppose that the maximum waiting time is 1 when an express frame waits for the

78

Figure 5.4: Example of showing importance of ζi decision.

ζ1 ζ2 R+
1 R+

2 R+
3

2 2 12 30 30
2 4 16 26 30
2 6 16 30 30
4 4 20 22 30
4 6 20 26 30
6 6 20 30 30

Table 5.2: Worst-case E2E latency with different type boundary configurations

transmission of a fragment of a preemptable frame. Then, with the configuration of ζ1 = 2

and ζ2 = 4, the maximum queuing delay of frames of f1 at ep1 is 1 because the frames
can preempt any frames of f2 and f3. Also, that at ep2 is 5 because a frame of f1 needs
to wait for the entire transmission of a frame of f2 in the worst case. Thus, the worst-case
end-to-end (E2E) latency of frames of f1 is 1+5+5+5 = 16. The worst-case E2E latency
of given traffic flows (R+

i) with different boundary configurations are shown in Table 5.2.
The given traffic flow is schedulable (R+

i ≤ Di) only with configuration of ζ1 = 4 and
ζ2 = 4.

As shown in the above example, synthesis of PCP and placement of type boundaries
directly affect the scheduling sequence of competing frames at egress ports. In other words,
the synthesis affects the worst-case end-to-end (E2E) latency of the frames, and the compet-
ing frames have a seesaw relationship with respect to the worst-case E2E latency.2 That is,
we can configure the worst-case E2E latency of the frames by controlling the assignments
to achieve a given optimization goal (G).

However, finding the optimal assignments for a given goal is non-trivial because there
are millions of ways of making assignments, so it is computationally infeasible to explore

2The worst-case E2E latency is analyzed using an existing worst-case E2E latency analysis[100]. See the
Appendix for detail.

79

Figure 5.5: The overview of GA-based framework

all possible combinations even for a small number of traffic flows. Suppose, for example,
there are n traffic flows and m egress ports. Then, there are at least 8n+m different combi-
nations because there are 8 possible priority levels for each traffic flow and 8 queues in an
egress port.

5.4 Generic Solution Approach

As mentioned in the previous section, it is computationally infeasible to find the optimal
assignments for a given goal G. Thus, we propose a heuristic framework based on the
well-known genetic algorithm (GA).

Definition 2 (Individual). Each individual has two genes PS and TBS, where PS is a set

of Pi for given traffic flows and TBS is a set of ζi for given egress ports. An individual is

thus defined as si = (PS, TBS).

Definition 3 (Population). The kth population φk is a set of individuals. The individuals in

a population are always sorted by the fitness function. φk,i denotes the individual that has

the ith best result of fitness function in the in the kth population φk

5.4.1 Overview of GA-Based Framework

Fig. 5.5 provides an overview of our GA-based framework. The initialization step sets up
an initial population (φ0), with which the algorithm starts and continues evolution until the
number of evolutions exceeds the pre-defined maximum. Since we want to optimize the set
of Pi’s and the set of ζi’s, PS and TBS are the evolution parameters. During the evolution
step, the algorithm generates a new individual repeatedly by inheriting the evolution pa-
rameters from two randomly chosen individuals in the current population (cross-over) and
mutating the inherited parameters.

After the mutation, the framework computes the worst-case E2E latency for the given
traffic flows using the state-of-the-art worst-case E2E analysis technique. With the com-
puted worst-case E2E latency, the framework obtains the result of fitness function for the

80

Figure 5.6: Initial parents significantly affects the outcome of the genetic algorithm

new individual. The given optimization goal G is often used as the fitness function. The
result for the new individual is compared to that for individuals in the current population.
If the new individual has a better result than any individuals in the current population (φc),
the current population is updated.

5.4.2 Initialization

The individuals in the initial population (φ0) are used as initial parents. From the initial
parents, the GA-based framework gradually approaches a convergence point through the
defined evolution procedure. Because the convergence point can be either the global opti-
mum or a local optimum point, the initial parents significantly affect the final result from
the GA-based framework. As shown in Fig. 5.6, the final result with a well-chosen initial
parent (blue dot) can outperform the final result with a poor-chosen initial parent (green
dot). Due to the importance of initial parents, we need an initialization algorithm to gener-
ate an initial population for a given optimization goal.

5.4.3 Evolution Procedure

The evolution procedure consists of selection, cross-over, mutation and population update
as illustrated in Fig. 5.7. The selection step randomly selects two individuals from the
current population (φc) as parents. In the cross-over step, a new individual is generated,
and the individual inherits the evolution parameters from the selected individuals. The new
individual inherits PS from the first-selected parent and TBS from the second-selected
parent.

In the mutate step, a traffic flow or an egress port is randomly selected to be mutated.
When a traffic flow is chosen, the traffic flow’s PCP value is replaced with a random value.
When an egress port is chosen, the placement of type boundary of the port is replaced with
a random value. Through the cross-over and mutate steps, the evolution parameters are
shaken, and thus the new individual can have a better or worse result than its parents. To

81

Figure 5.7: Evolution procedure

evaluate the new individual, the worst-case E2E latency and the fitness function are re-
computed with the changed PS and TBS. If the new individual has a better result than
the lowest-ranked individual (φc,n) in the current population (φc), the current population is
updated by placing the new individual in the population and removing the lowest-ranked
individual from the population.

5.5 Case Study 1: Reliability

Reliable communication is one of the most important requirements for vehicle applica-
tions. Unexpected functional failures could lead to disastrous results, such as damage/loss
of properties or lives. However, the standardized error-handling mechanism, Seamless Re-

dundancy (IEEE 802.1CB), is expensive to implement because it requires at least two sepa-
rate physical routes. Moreover, it requires complex status management in switches, so only
specified frames in switches can be corrected. Thus, a general and cheap error-handling
mechanism is required. Recent studies [68, 13] claim that the well-known automatic re-
peat request (ARQ) protocol [62] is a promising way to improve reliability for real-time
switched Ethernet.

5.5.1 ARQ Protocol

We assume that every end-station supports the following ARQ protocol and the ARQ pro-
tocol is implemented in Layer2.

When a frame of traffic flow i is initiated by a sender, the frame is first forwarded
into an ARQ buffer. Then, ARQ sets an expiration time for the frame. The worst-case

82

roundtrip time of the traffic flow is used as the expiration time. ARQ then copies the
frame and forwards the frame to the egress port without waiting for the completion of
transmission of any prior frames. When the receiver receives the frame correctly, it sends
an acknowledgement (ACK) frame to the sender. The ACK frame has same priority as its
corresponding data frame. If the ACK frame arrives at the sender within the expiration
time, the frame is removed from the ARQ buffer. If the ACK frame does not arrive at the
sender within the expiration time or the negative acknowledgement (NAK) frame arrives at
the sender, ARQ copies and re-transmits the frame again.

ARQ improves reliability via this re-transmission mechanism. We will explain below
how the proposed GA-based framework can be applied to maximize the number of “allow-
able” re-transmissions.

5.5.2 Applying the GA-Based Framework

5.5.2.1 Optimization Goal (Fitness Function)

Critical Scaling Factor (CSF) [83, 81] is a well-known metric that represents the number of
times each task can be (re-)executed to recover a system from unexpected failures without
missing its deadline. Thus, a higher CSF value means higher reliability. In the context
of networking, the metric represents the maximum number of re-transmissions allowed
without missing deadlines. Thus, CSF for a traffic flow is defined as:

CSFi =
Di −R+

i −R+
ACK,i

R+
i +R+

ACK,i

, (5.1)

where R+
i is the worst-case E2E latency of frames of traffic flow i, and R+

ACK,i is the
worst-case E2E latency of ACK frames of traffic flow i.

Maximizing the number of allowable re-transmissions for given traffic flows translates
to maximizing the minimum CSF among all traffic flows. Thus, it can be formulated as a
max-min optimization problem as:

G :Maximize

{
Min
i
{CSFi}

}
(5.2)

5.5.2.2 Generating initial population

As mentioned above, competing frames have a seesaw relationship with respect to the
worst-case E2E frame latency. Since CSF depends on the worst-case round trip time
(RTT+

i = R+
i + R+

ACK,i), the competing frames also have a seesaw relationship with

83

respect to CSF. Thus, the above optimization problem can be cast into the problem of bal-
ancing CSF for given traffic flows.

We want to generate an initial individual which has a well-balanced CSF among given
traffic flows. We make three hypothesis about a set of Pi’s which leads well-balanced CSF
as:

H1: The lower the class, the higher the PCP;
H2: Traffic flows are well distributed to eight queues;
H3: The smaller the payload size, the higher the PCP.

(H1) In general, frames of lower-class traffic flows have relatively short deadlines than
those of higher class traffic flows. So, the frames of lower-class traffic flows have relatively
less room for re-transmission than higher-class traffic. Thus, assigning higher priorities to
lower-class traffic might result in a well-balanced CSF.

(H2) If queue length is not balanced, it will increase queuing delay included in the
worst-case E2E latency of traffic flows. Suppose, for example, there are two frames; one
is a frame of traffic flow A and the other is a frame of traffic flow B. If the frames are
forwarded into the same queue, then they interfere with each other in terms of the worst-
case E2E latency. On the other hand, if the frames are forwarded to different queues, only
lower-priority frames would be interfered with by higher-priority frames. So, the latter case
may result in a well-balanced CSF.

(H3) Transmission time of a frame with a smaller payload is smaller than that with a
larger payload size. Since the interference by a frame with large transmission time is less
likely to keep the safety margin large than that by a frame with small transmission time,
a frame with smaller payload should have a higher PCP than that with larger payload to
enable well-balanced CSF.

Based on the above hypotheses, we generate an initial population. For H1, the algo-
rithm assigns separate queue resource to each class. The first ω1 queues are assigned to
class 1 and the next ω2, ω3 and ω4 queues are assigned to class 2, 3 and 4 as illustrated
in Fig. 5.8. Ω = {ω1, ω2, ω3, ω4} denotes the queue resource isolation. For example, the
frames of class 1 traffic flows should be buffered in the first ω1 queues, and thus the PCP of
the frame should be {0, . . . , ω1 − 1}. There are a total of 60 different Ω’s. Because of the
manageable number of ways to consider, the algorithm explores the entire search space to
find the best Ω.

For H2, the maximum payload of each queue is limited in the initialization process.
The payload limit is computed for each class, and thus the queues assigned to the same

84

Figure 5.8: Assign the isolated queue resource to each class

class have the same payload limit. The payload limit for each class is computed as:

PLk =

∑
fi∈Fk

Li

ωk
,

where Fk is the set of traffic flows whose class is k and ωk is the number of queues assigned
to class k. For example, suppose that queue 0 and 1 are assigned to class 1 and PL1 = 100.
Also, suppose that the sum of payloads of traffic flows assigned to queue 0 already reached
100. Then, the remainder of class 1 traffic flows should be assigned to queue 1.

For H3, the algorithm sorts the given frames in ascending order by the payload size, and
fills up from the highest priority queue to the lowest priority queue with the sorted frames.
Thus, a frame with the smaller payload is buffered into the higher priority queue.

5.6 Case Study 2: Extensibility

Vehicle owners will soon be able to update their vehicles, just like smartphones, by down-
loading newly developed functions. Thus, the extensibility of in-vehicle networks will be
a very important non-functional requirement in the near future.

5.6.1 Applying GA-Based Framework

5.6.1.1 Optimization Goal (Fitness Function)

Suppose system designers want to improve the extensibility of a configured in-vehicle net-
work to accept newly introduced traffic flows from firmware updates, application updates,
and communication with other entities (e.g., V2X messages). Then, to accept the new
traffic flows, existing traffic flows must have enough time-cushion (TC):

TC−i = Di −R+
i

, where TC−i is the smallest time-cushion of frames of traffic flow i.

85

The system designers, therefore, need to maximize the minimum time-cushion among
frames of given traffic flows:

G : Maximize

{
Min
i
{TC−i }

}
5.6.1.2 Generating the initial population

To find a good initial population for the given optimization goal, we design an initialization
algorithm based on a parametric search. The algorithm tries to find a set of Pi’s which
makes the minimum TC of given traffic flows larger than a pre-specified value α.

The maximum possible TC (αmax) is smaller than the largest deadline of given traf-
fic flows and the minimum possible TC (αmin) is larger than zero if all the flows are
schedulable. Thus, we initialize three variables as: αmax = maxi Di, αmin = 0 and
α = (αmin + αmax)/2.

Frames of traffic flows which have relatively short deadlines will have small TCs. So,
to make the minimum TC for given traffic flows as large as possible, assigning higher pri-
orities to shorter-deadline traffic flows is a good strategy. The algorithm works as follows.

Step 1: Sort the given traffic flows in ascending order by deadline to assign higher
priorities to flows with shorter deadlines. Suppose that the set of sorted traffic flows are
Fs = {fs,0, fs,1, . . . , fs,n}, where fs,0 is the traffic flow with the shortest deadline, fs,1 is
the traffic flow with the second shortest deadline, and so on.

Step 2: Assign the current priority (Pcurr) to fs,i (priorities of the traffic flows from fs,0

to fs,i−1 have already been assigned). Note that the current priority starts from the highest
priority (0).

Step 3: Analyze the worst-case E2E latency for each priority-assigned traffic flow
({fs,0, . . . , fs,i}) and compute TC for the flows.

Step 4: If any of the priority-assigned traffic flows have lower TC than the pre-specified
value α, then increase the current priority (Pcurr ← Pcurr + 1), re-assign the increased
current priority to fs,i, and go to Step 3. Otherwise, increment i by 1 and go to Step 1.

At this time, if the current priority becomes larger than maximum possible value (Pcurr >
7), then our algorithm cannot find the set of Pi’s which makes the minimum TC of given
traffic flows larger than α. Thus, αmax ← α − 1 and α are re-computed with the updated
αmax. Or, if all the given traffic flows are assigned their priorities, our algorithm succeeds
in finding the set of Pi’s which makes the minimum TC of given traffic flows larger than α.
Thus, αmin ← α + 1 and α are re-computed with the updated αmin.

86

5.7 Evaluation

5.7.1 Methodology

We have evaluated the performance of our proposed GA-based framework with the two
above optimization goals by developing an evaluation tool, Priority Assignment Evaluation

for TSN (PAET). The roles of PAET are to (1) generate a parameterized random network and
traffic, (2) apply baselines or our proposed GA-based framework to the generated network
and traffic, (3) compute fitness function and (4) perform a series of tests. Describe below
is how to generate the network and traffic.

5.7.1.1 Baselines

The baselines we used in this evaluation are:

• FPCP: Fixed PCP for each class. (Class1: 0, Class2: 2, Class3: 4, Class4: 7).

• AOPA: Audsley’s Optimal Priority Assignment [8].

• RPA: Robust Priority Assignment [25]

Because these baselines only determine a set of Pi for given traffic flows, we have to
decide the ζi for given egress ports. Thus, we assign fixed value to all egress ports. For
example, ∀i ζi = 0. Because the performance of the baselines depends on the value of
ζi, we test all possible values (0, 1, ..., 7) and use the best performance with the fixed
borderline assignment as the results of baselines. For example, if the performance of FPCP
with ζi = 2 is better than the performance of FPCP with ζi = 4, we use results with ζi = 2

as the results of FPCP.

5.7.1.2 Network Generation

PAET receives the number of frames, the number of end stations and the number of switches
as input parameters. The ranges of these parameters are shown in Table. 5.3. With the given
parameters, the network generator in PAET generates a random tree-topology network ac-
cording to the following sequences.

• Step 1. Assign a random corresponding switch to each end station.

• Step 2. Select two random switches to make connection between them.

• Step 3. If there already exists a valid route between the randomly chosen switch, go
to step 2 to avoid making any cycle.

87

Number of End Stations 5 - 20
Number of Switches 3 - 7
Number of Frames 100 - 500

Topology Tree
Portion of Class 1 Frames 5%
Portion of Class 2 Frames 5%
Portion of Class 3 Frames 50%
Portion of Class 4 Frames 40%

Number of Evolution 100000

Table 5.3: Simulation Configuration

• Step 4. Otherwise, Make a connection between them.

• Step 5. Check whether all the switches have at least two links or not. If all the
switches have at least two links, the process of network generation terminates. Oth-
erwise, go to step 2.

5.7.1.3 Traffic Generation

PAET receives the total number of traffic flows as an input parameter. With the given total
number of traffics, the traffic generator in PAET generates random traffic flows according
to the following sequences.

• Step 1: Generate a traffic flow and decide its class with fixed portion of each class
shown in Table 5.3.

• Step 2: Decide period, deadline, maximum payload size and release jitter for the
traffic flow. The range of these values are shown in 5.1.

• Step 3: Choices two random different end stations. One becomes source of the
traffic flow and the other becomes sink of the traffic flow. Because the network
is tree-topology, route of the traffic between the source and the sink automatically
determined.

• Repeat until the number of generated traffic flows is same as the given total number
of traffic flows.

5.7.1.4 Metrics

We measure the schedulability, CSF and TC for the different assignment algorithms as the
evaluation metrics. CSF is used to quantify the effectiveness of the proposed GA-based

88

Figure 5.9: Average CSF and TC according to the number of evolutions for the generated
400 test cases. Y-axis on the left is average TC and Y-axis on the right is average CSF.
X-axis is the number of evolutions.

framework and initialization algorithm in terms of reliability. TC is used for extensibility.

5.7.2 Evaluation Results & Analysis

We compare our algorithm with the baseline explained above by generating 400 different
test cases. The ’Init’ is the results after applying the designed initialization algorithm, and
the ’Genetic’ is the results after 100000 evolutions. Fig. 5.9 shows the average CSF and
TC according to the number of evolutions for the 400 test cases. As shown in the figures,
the improvement rapidly slowdown near the 100000 evolutions, and thus we can infer that
it almost reaches to the convergence point. So, even though we can obtain the better result
with more evolutions, the benefit from the additional evolutions would not be significant.

5.7.2.1 Schedulability

We first evaluate the baselines and our algorithms in terms of schedulability. With ARQ,
if RTT+

i ≤ Di∀i, the given set of traffic flow is schedulable. The results with ARQ are
shown in Fig. 5.10 (Left). Without ARQ, if R+

i ≤ Di∀i, the given set of traffic flow is
schedulable because there is no acknowledgement. The results without ARQ are shown in
Fig. 5.10 (Right). Because RTT+

i > R+
i , the schedulability without ARQ is higher than

that with ARQ.
According to the results, while the every generated test cases are schedulable with our

algorithm, some of the test cases are unschedulable with the baselines. These schedulability
difference mainly comes from the queue usage. We know that there are eight queues in an
egress port. However, FPCP assigns priorities to traffic flows based on their class, and thus
only four queues in an egress port are used. In other words, the other four queues are not

89

Figure 5.10: (Left) Schedulability with ARQ (Right) Schedulability without ARQ

Figure 5.11: (Left) The average of maximum CSF for the generated test cases with different
assignment algorithms (Right) The average of maximum CSF for different number of traffic
flows

used. Also, AOPA and RPA assign the lowest possible priority to each traffic flow, and
thus lower priority queues are more likely used than higher priority queues. As a result,
the given resources are not used efficiently, and these algorithms cannot benefit from load
balancing effect in the worst-case E2E latency. For example, if there are two traffics and
the two traffics are queued into same queues, then they interfere each other in terms of the
worst-case E2E latency. On the other hand, if the two traffics are queued into different
queues, the traffic queued in the higher priority queue does not interfered by the traffic
queued in the lower priority queue.

5.7.2.2 CSF: Reliability

The average maximum CSF for the generated 400 test cases are shown in Fig. 5.11 (Left).
Because CSF represents the number of possible re-transmission, we assume that CSF is 0
if a given test case is unschedulable. As shown in Fig. 5.11 (Right), in terms of CSF, FPCP,

90

Figure 5.12: The average of maximum TC for the generated test cases with different as-
signment algorithms.

AOPA and RPA have the low performance because these algorithms do not efficiently uti-
lize the given queue resources in egress ports as we explained in the previous subsection.
Therefore, results with Init and Genetic are better than that with FPCP, AOPA, and RPA.

We think that the initialization algorithm for CSF optimization is the advanced version
of FPCP. It assigns priorities to given traffic flows based on their class like FPCP. However,
it well distributes the given traffic flows to the eight queues. Thanks to the efficient use
of given resources, Init shows better results than the baselines. The results of Genetic
shows not only the effect of efficient use of given queue resources but also the effect of
optimization of Pi and ζi. Even though the results of Genetic is not the optimal value, the
average maximum CSF with Genetic is about 8.5 times higher than that with AOPA and
RPA, about 3.9 times higher than that with FPCP, and 1.32 times higher than that with Init.

As shown in Fig. 5.11 (Right), Genetic shows much better performance with the small
number of traffic flows. This is because, with the small number of traffic flows, frame
with small deadline can have small worst-case E2E latency and it makes large number of
re-transmission available.

5.7.2.3 TC: Extensibility

The average maximum TC for the generated 400 test cases are shown in Fig. 5.12. When
we compute the average maximum, we assume that TC is 0 if a given test case is unschedu-
lable. Similar to the average maximum CSF, Init and Genetic outperforms the baselines.
In detail, the average maximum TC with Genetic is about 2.74 times longer than that with
AOPA and RPA, about 1.11 times longer than that with FPCP. However, Genetic very
slightly improves TC from Init. This is because the initialization algorithm (Init) can find
a very good set of Pi using parametric search. We believe that the set of Pi found by Init
is almost optimum. Thus, Genetic might benefit from the optimization of ζi, and it seems

91

Figure 5.13: The average of maximum TC for different number of traffic flows

that ζi optimization does not affect the TC improvement much.
As shown in Fig. 5.13, FPCP and Genetic show almost same performance for the test

cases with low utilization. This is because the deadline of frames of traffic flow is large
enough for the cases. However, the benefit from using Genetic increases according to the
increase of utilization.

5.7.2.4 Scalability

We have measured the average execution time of 1 evolution for different number of traffic
flows to evaluate the scalability of our approach. The measured execution time on our
machine (Intel Xeon E5-2683 @ 2.10GHz, 128GB Memory) are shown in Table. 5.4. The
results show that the execution time of 1 evolution is exponentially increased along the
number of traffic flows. For example, the execution time of 1 evolution for 400 traffic flows
is about 16 times larger than the execution time of 1 evolution for 100 traffic flows. Because
of the exponential increase, this approach is not suitable for large number of traffic flows
cases. However, we believe that the performance is acceptable for practical automotive use
cases, in particular due to that our method is applied at design time.

Traffic Flows 100 200 300 400 500
Execution Time 0.3s 1.15s 2.86s 5.02s 8.02s

Table 5.4: Execution time of 1 evolution

5.8 Conclusions

In this chapter, We address the synthesis problem for the standardized frame preemption
(802.1Qu, 802.3br). Because frame preemption can be utilized various optimization pur-

92

pose, we propose a GA-based framework to determine a set of priority and a set of type
borderline for given traffic flows. We show that the proposed framework can be applied to
optimize reliability and extensibility by designing an initialization algorithm. Our experi-
mental results demonstrate that the GA-based framework with the proposed initialization
algorithms outperforms the existing assignment algorithms (AOPA, RPA) used in general
real-time systems and an intuitive approach (FPCP).

93

CHAPTER 6

OPMB: Optimal Priority Assignment for Multi
CAN/CAN-FD Buses with a Central Gateway

6.1 Introduction

Automakers keep adding new functions to their products to attract more customers. Since
such newly-introduced functions usually require communication with other electronic con-
trol units (ECUs) to acquire & deliver sensor (e.g., speedometer, radar, etc.) data, the
amount of in-vehicle network traffic keeps rising. Due to this increase of in-vehicle traffic,
the controller area network (CAN) — de facto standard of the in-vehicle network which
supports up to 1Mbps — reaches its bandwidth limit. Thus, the automakers are adding
more CAN buses and connecting them via a central gateway to handle the increasing vehi-
cle data traffic. In other words, a system of multiple buses connected via a central gateway
has become a norm in new vehicles. Recently, automakers have also begun replacing CAN
with a higher bandwidth protocol, Controller Area Network with Flexible Data rate (CAN-
FD), which can support up to 12Mbps. However, since CAN has enough bandwidth and
speed to support certain domains like powertrain and is also cheaper than CAN-FD, both
CAN and CAN-FD are expected to coexist in the foreseeable future.

Automakers are very conscious of production cost, and hence want to design a cost-
minimized in-vehicle network. It is, therefore, important to know if a designed system
satisfies the requirements of given in-vehicle messages at design time. If the system can-
not meet the requirements, the system designer must modify the designed system by either
adding more resources (e.g., more CAN/CAN-FD buses) or optimizing the system further.
Thus, it is necessary to have an “optimal” priority assignment algorithm1 available at de-
sign time. The optimal algorithm can then be used to determine the (non)existence of a
schedulable priority assignment for the given set of messages on the designed system.

1If the optimal priority-assignment algorithm cannot find a schedulable priority assignment, no other
assignment algorithm can find a schedulable priority assignment either.

94

The priority-assignment problem has been studied by many researchers for decades.
Of them, Audsley’s optimal priority assignment (AOPA) [82] is proven optimal for a single

CAN/CAN-FD bus. Even though the central-gateway-based architecture is commonly used
in modern vehicles, to the best of our knowledge, Joshi et al. [50] are the first and the
only one with focus on priority assignment for multi-buses with a central gateway. Their
algorithm is claimed to be optimal for the multi-bus system under the assumption that
central gateway cannot change priority of in-coming network traffic. However, the central
gateway for automotive (e.g., AUTOSAR gateway) can easily change the priority of in-
coming network messages with very little cost, and hence there is no reason to restrict
priority changes at central gateway in practice. Also, to the best of our knowledge, there is
no optimal algorithm proposed thus far for the multi-bus system where the central gateway
can change the priority of in-coming network messages. Thus, we need an optimal priority
assignment algorithm for the system.

To meet this need, we propose an Optimal Priority-assignment algorithm for Multiple
CAN/CAN-FD Buses with a central gateway (OPMB). It builds on backtracking (brute-
force search with theoretically-proven pruning) to assign priorities to given messages. In
particular, OPMB can tell the system designers the (non)existence of priority assignments
which satisfy the timing requirements of the given set of messages in a networked system.
However, the brute-force search incurs exponential time complexity, making it essential
to prune unnecessary searches. We have identified several ways of pruning unnecessary
searches and proved that the identified pruning does not affect the discovery of a schedula-
ble priority assignment. We have also conducted extensive simulation by generating realis-
tic in-vehicle messages. Our simulation results show OPMB is able to determine whether
schedulable priority assignment exists or not for 96.9% of realistic automotive message-sets
within 1 second. Also, the results show that OPMB outperforms the state-of-art priority
assignment algorithms in terms of schedulability coverage.2

This chapter makes the following main contributions:

• A counter-example showing that global priority assignment cannot be optimal for
a multi-bus system where the central gateway can alter the priority of in-coming
network messages.

• Development of an optimal priority-assignment algorithm, OPMB, for a multiple
CAN/CAN-FD bus system with a central gateway;

• Demonstration of utility of OPMB for industry-size problems and its superiority to
2Defined as the ratio of the number of schedulable cases (by using a priority assignment algorithm) to

the number of tested cases.

95

existing priority-assignment algorithms for the system consisting of multiple CAN/CAN-
FD buses with a central gateway.

The rest of chapter is organized as follows. We discuss the related work in Section 2.
We provide the primers of CAN and CAN-FD in Section 3, and describe the system model
in Section 4. We prove that global priority assignment algorithm cannot be optimal in
Section 5, and state the priority-assignment problem in Section 6. In Section 7, we present
the new optimal priority-assignment algorithm, OPMB, for multiple CAN/CAN-FD buses
with a central gateway. Section 8 evaluates the utility of OPMB by measuring its execution
time and performance in comparison with the existing priority-assignment algorithms. We
discuss the limitation of OPMB in Section 9 and conclude the chapter in Section 10.

6.2 Related Work

6.2.1 Priority assignment for CAN/CAN-FD

Since priority assignment to CAN/CAN-FD messages greatly affects the schedulability
of a given set of messages, there have been various priority-assignment algorithms pro-
posed for CAN/CAN-FD buses. The most representative of them is Audsley’s optimal
priority assignment (AOPA) [7], which is proven optimal by Davis et al. [82] for a single

CAN/CAN-FD bus without priority inversion, but priority inversions can occur in practice
[26, 51, 52].

The variants of AOPA have also been proposed to address practical problems. For ex-
ample, Davis et al. [27] proposed a robust priority assignment by maximizing the number
of successive tolerable transmission errors without any timing violation, in order to account
for transmission errors that may happen in practice. Schmidt et al. [89] considered back-
ward compatibility in a priority assignment to reflect a condition in which some messages
have fixed IDs. Additionally, the limitation of their approach due to the insufficient gap
between fixed IDs is addressed in [28]. Joshi et al. [50] proposed an algorithm for multiple
CAN-FD buses with a central gateway. Even though their algorithm is claimed to be opti-
mal for multi-bus systems, we find that claim does not hold when buses have different link
speeds.

There are also different types of ID/priority assignment algorithms for CAN/CAN-FD
messages. Pölzlbauer et al. [79] considered the extensibility problem of ID assignment for
CAN. Park et al. [78] proposed a message priority-assignment algorithm for a bus shared
by both CAN nodes and CAN-FD nodes where changing the operation mode of CAN

96

Figure 6.1: System model of multiple CAN/CAN-FD buses with a central gateway

controller is required. The algorithm is designed based on NP-EDF [48] to minimize the
number of operation-mode changes.

6.2.2 Priority assignment for distributed real-time system

Multiple buses with a central gateway can be regarded as a distributed real-time system
since we need to schedule each message on two buses to meet its end-to-end deadline. The
task priority assignment in distributed real-time systems has been studied extensively. This
problem is NP-hard [103], and hence various heuristic algorithms have been proposed. Gar-
cia et al. [36] proposed a heuristically optimized priority assignment (HOPA) by leveraging
those design parameters affecting the worst-case response time. Azketa et al. [15] proposed
use of the genetic algorithm to find a schedulable priority assignment. Yoon et al. [107]
proposed zero slack priority assignment (ZSPA), which decomposes an end-to-end dead-
line into local per-task deadlines and assigns priorities to the sub-tasks using AOPA. If the
worst-case response time of a sub-task after assigning a priority is smaller than its local
deadline, the remaining slack is used for other sub-tasks. Thus, initially-determined local
deadlines are automatically adjusted in the priority assignment.

6.3 System Model

Fig. 6.1 illustrates the system under consideration which is composed of multiple CAN/CAN-
FD buses, ECUs, and a central gateway. This central gateway-based networked system is
commonly used in modern vehicles (e.g., Volkswagen Atlas 2018). Several ECUs and the
gateway are connected to a bus, and they use the shared medium to transmit messages to
other ECUs or the gateway on the bus.

97

6.3.1 Bus and message models

If every ECU connected to a shared bus has the ability to receive a CAN-FD data frame
using its CAN-FD controller/transceiver, we call the shared bus CAN-FD bus. Otherwise,
we call the shared bus CAN bus. We assume that only messages compatible with the CAN
data frame format can be transmitted on a CAN bus. Likewise, we assume that only mes-
sages compatible with the CAN-FD data frame format can be transmitted on a CAN-FD
bus. Thus, a bus (bi) can be modeled as bi = { ~ecui, typei, lsarbi , lsdatai } where

• ~ecui: a set of ECUs connected to bi;

• typei ∈ {CAN,FD}: type of bi;

• lsarbi : link speed of bi during the arbitration phase;

• lsdatai : link speed of bi during the data phase.

ECUs generate periodic messages (mi) which usually contain sensor data and/or control
commands. We call the ECU that generates (receives) a message mi source (destination)
ECU of mi and the bus connected to the ECU source (destination) bus. Since a sensor
data can be used by multiple applications on different ECUs, a message can have more
than one destination ECU. When the source ECU of a message and its destination ECU(s)
are on different buses, the message is forwarded and routed to the destination ECU(s) via
the central gateway. In addition, due to the characteristics of vehicle functions, the sensor
data or control command carried in a message has a valid time, thus imposing a timing
constraint on the message. For example, a braking command from an ADAS3 application
(e.g, cruise control) should be delivered to the brake module within 10ms to avoid a crash.
Consequently, a message is modeled as mi = {srci, ~desti, pi, di, li}, where

• srci: source ECU of mi;

• ~desti: a set of destination ECUs of mi;

• pi: period of mi;

• di: relative deadline of mi;

• li: payload size of mi.

3Advanced Driver-Assistance System

98

Figure 6.2: Message routing in the gateway based on the embedded routing table

Since a message can be transmitted on multiple (source and destinations) buses, we
need to treat a message on different buses as different messages so as to assign different
priorities for each bus. Thus, we let mi,j denote mi on bus j. In our priority-assignment
algorithm, mi,j has a ”local” deadline di,j , so mi,j is described as {pi,j, di,j, li,j, tri,j, χi,j},
where

• pi,j: period of mi,j , (pi,j = pi);

• di,j: relative deadline of mi,j;

• li,j: payload size of mi, (li,j = li);

• tri,j: transmission time of mi,j;

• χi,j: class of mi,j (χi,j ∈ {NOF, SRC,DEST}).

We classify a message mi,j to be one of three types:

• χi,j = NOF if the message is not forwarded through the central gateway, i.e., mi is
only transmitted on bus j;

• χi,j = SRC if mi is forwarded via the gateway and j is the source bus;

• χi,j = DEST if mi is forwarded via the gateway and j is one of the destination
buses.

6.3.2 Gateway model

The central gateway processes in-coming messages to be routed to their destination ECUs
based on the embedded routing table in the gateway. Fig. 6.2 illustrates the message rout-
ing in the gateway. If the source ECU and a destination ECU are connected to the same
type of buses (e.g., source and destination ECUs are connected to a CAN bus), only the

99

identifier (ID) field of the in-coming message is changed and the message is forwarded to
the destination ECU like in AUTOSAR 4 PDU-based routing [10].

On the other hand, if the source and destination ECUs are connected to different types
of bus (e.g., the source ECU is connected to CAN bus, but the destination ECU is connected
to CAN-FD bus), a frame format conversion is required. A conversion from CAN frame to
CAN-FD frame is simple because only the header and tail format changes are required.

However, a conversion from CAN-FD frame to CAN frame is tricky because the maxi-
mum payload size of CAN-FD frame is much larger than that of a CAN frame. For exam-
ple, a 16-byte CAN-FD frame cannot be transformed into a single CAN frame because the
maximum payload size of CAN frame is 8 bytes. If a CAN-FD frame with the payload of
> 8 bytes needs to be forwarded to a CAN bus, the gateway must split the CAN-FD frame
into multiple CAN frames. For example, if a 12-byte CAN-FD frame has to be forwarded
to a CAN bus, then the CAN-FD frame will be fragmented into one 8-byte CAN frame
and one 4-byte CAN frame by the gateway. The gateway then applies the same ID to the
fragmented frames based on the routing table as described in Fig. 6.2.

Our model accounts for the conversion of a CAN-FD frame to multiple CAN frames
by summing up the transmission times of the fragmented frames. For example, if 12-byte
CAN-FD frame is fragmented into one 8-byte CAN frame and another 4-byte CAN frame
to transmit on CAN bus j, then tri,j is the sum of the transmission times of 8-byte and
4-byte CAN frames.

6.4 Global priority assignment vs. per-bus priority as-
signment for a CAN/CAN-FD multi-bus system

There are two possible ways of assigning priorities to messages for a multi-bus system: (1)
global priority assignment and (2) per-bus priority assignment. Global priority assignment
algorithms assign a unique priority to each message for the entire system. For example,
under a global priority assignment policy, if the priority of mi on b1 is 1, then that of mi

on any other bus is also 1. Also, the priority of mi should be different from the priority of
mj if mi 6= mj . The Modified Audsley’s Algorithm (MAA) [50] is an example of global
priority assignment. On the other hand, per-bus priority assignment algorithms assign a
unique priority to each message on a bus. For example, under a per-bus priority assignment
policy, any value can be the priority of mi on bj if the value is a unique priority for bj .
ZSPA [107] is an example of per-bus priority assignment. We compare these two priority

4AUTomotive Open System ARchitecture

100

assignments with respect to implementation and schedulability.

6.4.1 Implementation

Since the value in the identifier field represents the priority of a CAN/CAN-FD message,
to implement the per-bus priority, the central gateway must be able to change the ID value
of in-coming messages according to the embedded routing table. However, to implement
global priority, the central gateway only needs to forward incoming messages to destination
buses according to the embedded routing table. Thus, additional memory space is needed
for the per-bus assignment as a penalty to store new IDs for incoming messages in the
central gateway. The required additional memory space increases with the size of routing
table. For example, if we assume there are 500 entries in the routing table, additional
500 × 2Bytes (assuming 2Bytes used for an ID) for the new ID are required. Also, the
execution time for changing ID is also the penalty of per-bus assignment. However, because
changing the value of ID requires a single memory copy instruction, the execution time
would be very small.

6.4.2 Schedulability

Even though global priority assignment has advantage in memory usage over per-bus pri-
ority assignment, it has a disadvantage in finding schedulable priority assignment. The fol-
lowing example shows that global priority assignment cannot be optimal for a CAN/CAN-
FD multi-bus system where the gateway can change the IDs of messages.

• b1 = {{ecu1}, 0, 1Mbps, 1Mbps};

• b2 = {{ecu2}, 1, 500Kbps, 5Mbps};

• m1 = {ecu1, ecu2, 400us, 400us, 8byte};

• m2 = {ecu1, ecu2, 400us, 400us, 8byte}.

With a global priority assignment, there are two ways of priority assignment for the
above example. The first way is that m1 has priority 1 (higher) and m2 has priority 2
(lower). In this case, the WCRT of m1 on b1 is 135µs, and that of m1 on b2 is 86.6µs ac-
cording to Eq. (2.6). Thus, the worst-case end-to-end (e2e) delay ofm1 (135µs+86.6µs =

221.6µs) is smaller than its deadline (400µs). However, the WCRT of m2 on b1 is 270µs,
and that of m2 on b2 is 173.2µs. Thus, the worst-case e2e delay of m2 (270µs+ 173.2µs =

443.2µs) exceeds its deadline (400µs).

101

The second way is that m1 has priority 2 (lower), and m2 has priority 1 (higher). How-
ever, the worst-case e2e delay of m1 is larger than its deadline. Thus, any global priority
assignment algorithms cannot find a schedulable priority assignment for this example.

However, there is a schedulable priority assignment if the same messages on different
buses can have different priorities (per-bus priority assignment) as follows: (priority 1 to
m1,1), (priority 2 to m2,1), (priority 1 to m2,2), and (priority 2 to m1,2). With these priority
assignments, the WCRT of m1 on b1 is 135µs, and that of m1 on b2 is 173.2µs according to
Eq. (2.6). Thus, the worst-case e2e delay of m1 (135µs+ 173.2µs = 308.2µs) is less than
its deadline (400µs). Also, the worst-case e2e delay of m2 (270µs+ 86.6µs = 356.6µs) is
less than its deadline (400µs). Hence, global priority assignment cannot be optimal.

6.5 Problem Statement

Determining whether a designed in-vehicle network can meet the requirements of a given
set of messages is of great importance to minimization of the in-vehicle network cost, thus
calling for an optimal priority-assignment algorithm.

To meet this need, we first want to determine whether there exists a schedulable priority
assignment for a given set of messagesM = {m1, . . . ,mn} on a designed network of buses
B = {b1, . . . , bm} such that

∀i, delay+i,src + delay+cgw + delay+i,dest ≤ di,

where delay+i,src is the worst-case delay on the source network (the time between mi’s
release at srci and its arrival at a Rx buffer of the central gateway), delay+cgw is the worst-
case processing delay in the gateway (the time between mi’s arrival at the Rx buffer of
the source network and its arrival at the Tx buffer of the destination network within the
gateway), and delay+i,dest is the worst-case delay on the destination network (time between
mi’s arrival at the Tx buffer of the destination network in the gateway and its arrival at the
destination ECU).

Our additional goal is to find and provide a schedulable priority assignment, if exists,
for the given set M of messages on the set B of buses.

6.6 OPMB

We now present an Optimal Priority assignment for Multi CAN/CAN-FD Buses (OPMB).
OPMB is a backtracking-based priority-assignment algorithm. Since backtracking is ba-

102

Algorithm 5: OPMB
Input : S: the current state of buses
Output: Sfail: the failure state

1 if isSolutionFound(S) == true then
2 return NULL;
3 end
4 Sfail ← NULL;
5 schd← getSchedulableAssignments(S);
6 fix← getF ixableAssignment(S);
7 if j = failureCheck(schd) then
8 Sfail.bus← j;
9 Sfail.state← S.Sj ;

10 return Sfail;
11 end
12 if fix 6= ∅ then
13 S′ ← applyF ixableAssignment(S, fix);
14 Sfail ← OPMB(S′)
15 return Sfail;
16 end
17 for i← 1 to |schd| do
18 correctable← false;
19 if Sfail 6= NULL then
20 if schd[selIdx].bus == Sfail.bus or isCrpdInUMf (schd[selIdx], Sfail) then
21 correctable = true;
22 end
23 if correctable == false then
24 continue;
25 end
26 end
27 selIdx← i;
28 S′ ← applySchedulableAssignment(S, schd[i]);
29 Sfail ← OPMB(S′);
30 if Sfail == NULL then
31 return NULL;
32 end
33 end

sically a brute-force search with theoretically-proven pruning, it can always determine
whether a solution exists or not. That is, our algorithm is intrinsically optimal priority
assignment algorithm. However, without efficient pruning, it may consume a huge amount
of time before it terminates. Thus, we need to overcome the key challenge of identifying
theoretically-proven pruning.

103

Figure 6.3: Priority-assignment table

6.6.1 Input parameters and return values

Before delving into OPMB, we first need to define the state of buses and the failure state,
S and Sfail, respectively, which are used as the input parameter and the return value in
OPMB.

The state S of buses consists of the states of individual buses, i.e., S = {S1, . . . , Sn}.
The state Sj of a bus j consists of a set of assigned messages (AMj), a set of unassigned
messages (UMj) on the bus, and the current lowest priority (CLPj) of the bus. Thus,
Sj = {AMi, UMi, CLPi}. For example, if there is no assigned message for bus j, then
CLPj = 1 (the lowest priority) as shown in Fig. 6.3 (Bus m). If there is one assigned
message for bus j, then CLPj = 2 (the second lowest priority) as shown in Fig. 6.3 (Bus
1), and so on. Also, If the source or the destination of a message (mi) is on bus j, it (mi,j)
must belong to either AMj or UMj .

The failure state FS consists of the index of failed bus j and the state of bus j at the
time of failure Sfj ← Sj , and thus FS = {j, Sfj }.

6.6.2 Initial state

In the initial state of a bus, every message belongs to the unassigned message set, i.e.,
∀i, j mi,j ∈ UMj, AMj = ∅. Also, CLPj is initialized to 1 (the lowest priority for each
bus) in the initial state.

Since mi,j needs a local deadline, we have to assign it a local deadline di,j . Initially, we
assume that mi,j can fully consume the given time margin di for mi. Thus, we assign the
value of di to di,j if χi,j = SRC or χi,j = NOF , and we assign the value of di − tri,srci to
di,j if χi,j = DEST . For example, if di = 5 and mi is transmitted on buses 1 and 2, then
di,1 = 5 and di,2 = 5− tri,1. The local deadline is changed during the execution of OPMB.

After assigning the local deadline, we subtract delay+cgw from di,j if χi,j = SRC or
χi,j = DEST to ignore the gateway processing time in the process of OPMB. For exam-

104

Figure 6.4: Overall procedure of OPMB

ple, if delay+cgw is 1, then di,1 = 4 and di,2 = 4− tri,1.

6.6.3 OPMB overall procedure

OPMB is designed to fill the priority assignment table shown in Fig. 6.3. Algorithm 5 and
Fig. 6.4 describe the overall algorithm flow of OPMB, which is implemented recursively.
On each function call, OPMB assigns CLPj to unassigned messages mi,j ∈ UMj , and
calls OPMB recursively for the reduced problem (S ′) as illustrated in Fig. 6.4. If assigning
priority to every message is completed successfully, OPMB returns NULL. To determine
the assignment to apply, OPMB first finds the set of schedulable assignments and a fixable
assignment for the given state S. Note that we will define and detail the schedulable and
fixable assignments. Before applying either a schedulable or a fixable assignment, OPMB
checks whether there is a failure condition in the given state S as stated in Lines 7-11 of Al-
gorithm 5. If there is no schedulable assignment for bus j and UMj 6= ∅, the failureCheck

procedure returns the failed bus j as well as its state.
If there is a fixable assignment, then OPMB applies that assignment for the given state

S. Otherwise, OPMB applies a schedulable assignment. If OPMB gets a failure return
for the reduced problem (with a schedulable assignment), OPMB tries another schedulable
assignment. For instance, suppose m1,1, m1,2, m2,1 and m2,2 are unassigned messages for
the given state S as illustrated in Fig. 6.4. Also, suppose OPMB assigns priority CLP1

to m1,1 and calls OPMB with the reduced problem (S ′), recursively. If OPMB gets a
failure return for the reduced problem, OPMB tries another way of assigning priorities to

105

Algorithm 6: getSchedulableAssignment
Input : S: the current state of buses
Output: schd: a set of schedulable assignment

1 schd← φ
2 UM = UM1 ∪ ... ∪ UMm // m is the number of buses
3 for mi,j ∈ UM do
4 compute delay+i,j by applying CLPj to mi,j

5 if delay+i,j ≤ di,j then
6 add (CLPj to mi,j) to schd
7 end
8 end
9 delList← φ

10 for (CLPj to mi,j) ∈ schd do
11 for (CLPj to mp,j) ∈ schd do
12 removeF lag ← true
13 for k ← 1 to |B| do
14 if mi,k exists and mp,k exists then
15 if min(di,k, di − delay+i,j) ≤ min(dp,k, dp − delay+p,j) then
16 removeF lag ← false
17 end
18 end
19 end
20 if removeF lag == true then
21 add (CLPj to mp,j) to delList
22 end
23 end
24 end
25 return schd− delList;

unassigned messages (e.g., CLP1 to m2,1).

6.6.4 Pruning unnecessary searches

6.6.4.1 Schedulable assignments

For a given state S, if a certain assignment immediately violates the requirement, we have to
discard the branch with that assignment and select a different assignment to find a solution
for the given state. Thus, for the given state, OPMB discards any assignment that violates
timing constraints (delay+i,j > di,j) as shown in Lines 5-7 of Algorithm 6. Note that we
compute delay+i,j based on Eq. (2.6). OPMB only selects schedulable assignments which
are defined as:

• CLPj to mi,j when delay+i,j ≤ di,j .

106

Suppose OPMB applies a schedulable assignment (CLPj to mi,j), then delay+i,j is
determined. So, the local deadline of mi,j’s corresponding messages (∀k mi,k such that
χi,k 6= χi,j) has to be re-evaluated because the amount of time can be used by mi,k is
reduced, i.e., di,k is re-evaluated after applying a schedulable assignment as:

di,k = min(di,k, di − delay+i,j).

We can further prune the unnecessary searches by excluding some schedulable as-
signments from the set of schedulable assignments. Suppose a schedulable assignment
A assigns CLPj to the message mi,j and a schedulable assignment A′ assigns CLPj
to the message mp,j . Also, suppose that if mi,k exists, then mp,k also exists for every
bus k. We can exclude the assignment A′ from the set of schedulable assignments if
min(dp,k, di − delay+p,j) < min(di,k, di − delay+i,j) for every bus k. Because the corre-
sponding messages on the other bus can have a larger local deadline by selecting A than
selecting A′, A is a better choice than A′. Note that large time margin is always better
than small time margin to be schedulable. Thus, we exclude A′ from the set of schedulable
assignments as stated in Line 25 of Algorithm 6.

6.6.4.2 Fixable assignments

Suppose state S becomes S ′ when we select an assignment as illustrated in Fig. 6.5. If the
non-existence of a solution for S ′ can guarantee the non-existence of a solution for S, we
do not need to search a solution with other assignments for the given state S. Thus, the
number of assignments we have to explore for the given state S becomes 1. We call such
assignments fixable-assignments for the given state S. For example, in Fig. 6.4, if failure
to find a solution with the assignment of CLP1 to m1,1 can guarantee the non-existence of
a solution for the given state, we do not need to try any other assignments such as CLP1 to
m2,1. We have identified three fixable-assignments as:

• FA1: CLPj to mi,j when χi,j = NOF , delay+i,j ≤ di,j .

• FA2: CLPj to mi,j when χi,j = DEST , mi,srci ∈ AMsrci , delay
+
i,j ≤ di,j .

• FA3: CLPj tomi,j andCLPk tomi,k when χi,j = SRC, χi,k = DEST , ∀k delay+i,j+
delay+i,k ≤ di − delay+cgw.

How to obtain these fixable assignments for a given state S is described in Algorithm 7.

Lemma 5. Suppose the given state S is changed to S ′ after applying a FA1. Then, the

non-existence of a solution for S ′ guarantees the non-existence of a solution for S.

107

Algorithm 7: getFixableAssignment
Input : S: the current state of buses
Output: fix: a set of fixable assignments

1 fix← φ;
2 UM = UM1 ∪ ... ∪ UMm; // m is the number of buses
3 for mi,j ∈ UMj do
4 compute delay+i,j by applying CLPj to mi,j ;
5 if (χi,j == NOF and delay+i,j ≤ di,j) or (χi,j == DEST and mi,srci ∈ AMsrci

and delay+i,j ≤ di,j) then
6 add (CLPj to mi,j) to fix;
7 continue;
8 end
9 addF lag ← true;

10 for k ← 1 to m do
11 if mi,k exists and χi,j == SRC and χi,k == DEST and

delay+i,j + delay+i,k > di − delay+cgw then
12 addF lag ← false;
13 break;
14 end
15 end
16 if addF lag == true then
17 for k ← 1 to |B| do
18 if mi,k exists then
19 add (CLPk to mi,k) to fix;
20 end
21 end
22 end
23 end
24 return fix;

Figure 6.5: If CLPj to mi,j is a fixable assignment for a given state S, we do not need to
move forward with other assignments from S.

Proof: Since χi,j = NOF , mi is not forwarded via a central gateway. Thus, the
assignment (CLPj to mi,j) only affects the state of bus j (Sj) from the given state S.
Hence, the assignment only affects the message schedulability on bus j.

Suppose there is no solution for S ′, but a solution exists for S. That is, every message on
bus j is schedulable in state S, but the assignment makes ∃k mk,j ∈ UMj unschedulable.

108

When CLPj is assigned, delay+k,j of messages (∀k mk,j ∈ UMj) is not affected by
the assignment. Also, the assignment does not change dk,j . Hence, the assignment does
not affect the schedulability of ∀k mk,j ∈ UMj . That is, the assignment cannot make
∀k mk,j ∈ UMj unschedulable. It contradicts the supposition. Thus, if there is no solution
for S ′, then there is no solution for S.

Lemma 6. Suppose the given state S is changed to S ′ after applying a FA2. Then, the

non-existence of a solution for S ′ guarantees the non-existence of a solution for S.

Proof: Since χi,j = DEST and mi,srci ∈ AMsrci , the assignment CLPj to mi,j only
changes the state of bus j (Sj) from the given state S. Thus, the assignment can only affect
the message schedulability on bus j. Similarly to the proof of Lemma 5, we can show that
the assignment cannot make ∀k mk,j ∈ UMj unschedulable. Thus, if there is no solution
for S ′, then there is no solution for S.

Lemma 7. Suppose the given state S is changed to S ′ after applying a FA3. Then, the

non-existence of a solution for S ′ guarantees the non-existence of a solution for S.

Proof: Unlike FA1 and FA2, FA3 makes multiple assignments at once, and changes the
state of multiple buses (j and k) from the given state S. Thus, FA3 can affect the message
schedulability on the multiple buses.

Suppose there is no solution for S ′, but a solution exists for S. It means that every
message on the multiple buses is schedulable in the state S, but the assignments make at
least one unassigned message on the buses unschedulable.

Since CLPj is assigned to mi,j and CLPk is assigned to ∀k mi,k at once, the assign-
ments do not change any local deadline of messages on the buses. Also, the worst-case
delay of unassigned messages on the buses is not affected by the assignments. Thus, like
the proofs of Lemma 5 and 6, the assignments cannot make a message unschedulable on
the buses. Thus, if there is no solution for S ′, then there is no solution for S.

6.6.4.3 Restriction from Failure State

Suppose OPMB performs a schedulable assignment A in the given state S, and the as-
signment returns a failure state. To find a solution for the state S, OPMB tries a different
schedulable assignment (A′) if exists. However, if A′ does not resolve the cause of failure
OPMB experienced with A, OPMB will encounter the same failure again as illustrated
in Fig. 6.6. Thus, to prune the unnecessary search (A′), OPMB checks whether A′ can
potentially resolve the received failure state or not.

109

Figure 6.6: Encountering failure without resolving its cause

When OPMB cannot find any schedulable assignment for bus j, OPMB returns the
failure state (FS = {j, Sfj }). To resolve the failure state (there is no schedulable message
in UM f

j), at least one applied assignment related to UM f
j has to be revoked. Thus, OPMB

allows A′ to be tried only when A is related to UM f
j . In other words, OPMB allows an

assignment (A′) to be tried only when (1) A assigns CLPj to a message on the failed bus j
or (2) A assigns a priority to the corresponding message in UM f

j as stated in Lines 19–26
in Algorithm 5.

Lemma 8. Suppose OPMB fails to find a schedulable priority assignment for a given

state S with an assignment A and get a failure state FS = {j, Sfj }. Also, suppose A

does not assign priority to a message on the failed bus j and A does not assign priority

to the corresponding message in UM f
j . Then, OPMB cannot find a schedulable priority

assignment with any other schedulable assignment (A′) for the given state S.

Proof: Suppose OPMB can find a schedulable priority assignment with an arbitrary
assignment A′, i.e., every message on bus j is schedulable with A′. In other words, assign-
mentAmakes messages in UM f

j unschedulable. However, the local deadlines of messages
in UM f

j are not affected by the assignment A because A does not assign priority to the cor-
responding message in UM f

j . Also, the worst-case delays of messages in UM f
j are not

affected by the assignment A because A does not assign priority to a message on the failed
bus j. Hence, A cannot make a message in UM f

j unschedulable. It contradicts the sup-
position. Thus, OPMB cannot find a schedulable priority assignment with an arbitrary
assignment A′.

6.7 Evaluation

aWe have conducted extensive simulation to evaluate OPMB in comparison with (i) deadline-
monotonic (DM) — simple heuristic, (ii) ZSPA — the state-of-art fixed-priority assignment

110

Table 6.1: System model configuration
Number of buses 3 - 8

Bus type CAN or CAN-FD
CAN bus link speed 250Kbps, 500Kbps

CAN-FD bus arbitration phase link speed 500Kbps
CAN-FD bus data phase link speed 2Mbps, 5Mbps, 8Mbps

250Kbps: 3 - 4ECUs
500Kbps: 4 - 7 ECUs

Number of ECUs 2Mbps: 7 - 10 ECUs
5Mbps: 8 - 12 ECUs
8Mbps: 10 - 15 ECUs

algorithm for general distributed real-time systems [107] — and (iii) MAA (Algorithm 2
in [50]) — the state-of-art fixed-priority assignment algorithm for a multi-domain system
with a central gateway [50].

The main goals of this evaluation are to (1) compare the schedulability coverage of
different algorithms for industry-size problems, (2) identify the strength of OPMB over
MAA, (3) understand the reason for the identified OPMB’s strength, and (4) check the
feasibility of OPMB for the industry-size problems. To meet these goals, we measured
schedulability coverage and execution time of each algorithm. To assess the schedulabil-
ity coverage, we have designed and implemented a simulator5 which randomly generates
multi-domain system models and message sets. Generation of the system models and the
message sets is detailed next.

6.7.1 Simulator Setup

6.7.1.1 System model generation

The simulator generates a multi-domain system model based on the configuration in Ta-
ble 6.1. To scale up to industry-size problems, we use the maximum number of domains in
[50] as the maximum number of buses. Our simulation adopted the CAN bus link speeds
commonly used in the automotive industry. Also, the listed CAN-FD data phase speeds are
supported by current commercial CAN-FD transceivers/controllers. The maximum number
of ECUs on each bus is restricted to its data phase link.

5Available at https://github.com/TaejuPark/OPMB_RTSS_2020

111

https://github.com/TaejuPark/OPMB_RTSS_2020

Table 6.2: Signal characteristics
Period (ms) share Size (Bytes) share

1 4% 1 35%
2 3% 2 49%
5 3% 4 13%

10 31% 5 - 8 0.8%
20 31% 9 - 16 1.3%
50 3% 17 - 32 0.5%

100 20% 33 - 64 0.4%
200 1%

1000 4%

Table 6.3: Configuration for signal generation
Number of signals Number of buses × (10 - 200)

Number of destinations 1 - 4
Probability of gatewayed signal 10− 100%

6.7.1.2 Message set generation

Our simulator generates signals (instead of messages) and packs them using Algorithm 1
in [50]. We also use the same signal characteristics used in [50] because they generate
realistic in-vehicle signals based on real-world automotive benchmarks [94]. The signal
characteristics are provided in Table 6.2.

When the simulator generates a signal, the source ECU of the generated signal is ran-
domly chosen with an equal probability. Also, the simulator determines whether the signal
is forwarded to other buses or not. If a signal is determined to be forwarded to other buses,
the destination ECUs are randomly chosen among all ECUs with an equal probability.
Otherwise, only those ECUs that share the same bus with the source ECU of the signal are
chosen as the destination ECUs for the signal.

6.7.1.3 Gateway processing delay

We use the state-of-art analysis in [55] for CAN message processing to compute the worst-
case gateway processing delay (delay+cgw):

Twait(ISRrx) + Te(ISRrx) +
k∑
i=1

θ + Tc + Te(Tasktx), (6.1)

112

where Twait(ISRrx) is the waiting time for Rx interrupt service routine (ISR), Te(ISRrx)

is the execution time for Rx ISR, θ is the time to compare the received ID with the ID value
in the routing table, Tc is the time for converting the source bus message to the destination
bus message, Te(Tasktx) is the execution time for Tx task, and k is the number of elements
in the routing table.

We set Te(ISRrx) = 5µs, θ = 1µs, Tc = 5µs, Te(Tasktx) = 20µs according to the
measurement results in [55], and set Twait(ISRrx) = 0 since the gateway is assumed to
have a dedicated core for each bus in this simulation.

6.7.1.4 OPMB timeout

Even though we try to reduce the execution time of OPMB as much as possible, its execu-
tion time could be unacceptably large. Thus, OPMB is forced to terminate upon expiration
of a timer. That is, OPMB is terminated whenever the execution time exceeds a pre-
defined expiration time (10,000s in this simulation) on Intel Xeon E5-2683 @ 2.10GHz,
128GB Memory. If OPMB is terminated due to a timeout, we regard it as OPMB’s failure
to find a schedulable priority assignment.

6.7.2 Test cases

To compare OPMB with the existing algorithms for the various system configurations, we
generated test cases by randomly selecting parameters in Tables 6.1 and 6.3 as follows:

• Overall: generate 36,000 cases randomly.

• Fixed number of buses: generate 6,000 test cases for each fixed number of buses
(e.g., 6,000 cases of a 3-bus system, 6,000 cases of a 4-bus system,. . .).

• Fixed bus-type: generate 6,000 test cases for each fixed bus-type (CAN only, CAN-
FD only, and mixed CAN/CAN-FD). Note that the system is set to have 3 bus types
for these test cases.

• Fixed bus link speed: generate 6,000 test cases for each fixed bus link speed (250Kbps,
500Kbps, 2Mbps and 5Mbps). Note that the system is set to have 3 bus-types for
these test cases.

• Fixed the maximum number of destination ECUs: generate 36,000 test cases for
each configuration (the maximum number of destinations of a signal is 1,2,3 and 4).

113

Figure 6.7: (a) Schedulability coverage of the applied algorithm for ’overall’; (b) Schedu-
lability coverage of OPMB for ’overall’ with different timeouts

Figure 6.8: Schedulability coverage of the applied algorithm for (a) fixed number of buses,
(b) fixed bus-type, (c) fixed bus link speed and (4) different maximum number of destina-
tions of a signal

Note that we only use valid cases, where every bus has less than 1.0 utilization (load),
from the generated test cases to find a schedulable priority assignment using DM, ZSPA,
MAA, and OPMB. Also, when we generate the test cases, the number of buses, the average
number of signals per bus and the probability of gatewayed-signals are given manually as
command line arguments.6

6./run -c 3 -s 50 -p 70 means 3 buses, average 50 signals per bus, 70% of gateway signals.

114

Figure 6.9: Schedulability coverage gap between OPMB and MAA for (a) fixed number
of buses, (b) fixed bus-type, (c) fixed bus link speed, and (4) different maximum number of
destinations of a signal

Figure 6.10: Maximum room (schedulability coverage) to improve by using per-bus pri-
ority assignment over global priority assignment for (a) fixed number of buses, (b) fixed
bus-type, (c) fixed bus link speed, and (4) different maximum number of destinations of a
signal

115

Figure 6.11: OPMB timeout ratio for (a) fixed number of buses, (b) fixed bus-type, (c)
fixed bus link speed, and (4) different maximum number of destinations of a signal

6.7.3 Evaluation results and analyses

6.7.3.1 Comparison of schedulability coverage

First, we compare the schedulability coverage of the algorithms. Fig. 6.7(a) shows that the
schedulability coverage of the evaluated algorithms for industry-size problems. As we ex-
pected, for ‘overall’ test cases, OPMB outperforms DM by 7%, ZSPA by 16%, and MAA
by 4% in schedulability coverage. Also, Fig. 6.7(b) shows that even though increasing
the expiration time of OPMB helps to cover more cases, the increase of schedulability
coverage is not significant. Fig. 6.8 shows OPMB outperforming the existing algorithms
regardless of system configuration.

6.7.3.2 Where does OPMB have strength and why?

The schedulability coverage gap between OPMB and MAA shown in Fig. 6.9. It shows
that OPMB has strength for systems with a smaller number of buses, higher bus link speed,
and a larger number of destinations of a signal. In fact, OPMB also has strength for systems
composed of only CAN-FD buses, and the strength comes from the higher bus link speed
of CAN-FD buses.

This can be reasoned about as follows: higher bus link speed and larger number of des-
tinations of a signal make the problem more complex as it increases the available number
of combinations for message priority assignment. For example, a higher link speed means

116

Table 6.4: OPMB execution times (in seconds)
t <= 1 t <= 10 t <= 102 t <= 103 t <= 104 Timeout

Schedulable 2327 3 2 5 3 0
Unschedulable 1286 14 17 7 9 56

Total 3613 17 19 12 12 56

a larger number of signals can be scheduled on a bus without exceeding the bus utilization
limit (= 1.0). Also, a larger number of destinations of a signal means that a signal can
have more priorities, e.g., priority 1 for bus 1, priority 2 for bus 2, . . . Thus, OPMB shows
strength over MAA in these cases.

However, it is difficult to infer the reasons for strength in the case of smaller number
of buses. So, we have investigated how much of room (in perspective of schedulability) to
improve by using per-bus priority assignment over global priority assignment for various
system configurations. If there is more room to improve for the system with a smaller
number of buses, OPMB can have more chances to outperform MAA. Thus, it makes sense
that OPMB has strength for systems with a smaller number of buses. To investigate the
maximum room to improve, we count the following test cases since OPMB is the optimal
per-bus priority assignment and MAA is the optimal global priority assignment.

• OPMB finds a schedulable priority assignment while MAA cannot;

• OPMB cannot find a schedulable priority assignment due to the timeout (not decid-
able).

The percentage of room to improve (counted cases / valid cases) is shown in Fig. 6.10.
We can see the percentage of the maximum room to improve increases with the decrease
of the number of buses and the increase of bus link speed and the number of signal desti-
nations. This trend is exactly same as the pattern in schedulability coverage gap between
OPMB over MAA. That is, the amount of benefit from OPMB is proportional to the pos-
sible room to improve by using per-bus priority assignment.

6.7.3.3 Feasibility of OPMB

Since DM, ZSPA and MAA are polynomial-time algorithms, their execution times are
expected to be small enough for industry-size (automotive) problems. In contrast, OPMB
is basically an exponential-time algorithm, and hence its completion could take very long.
To see the differences in execution time, we first measure the average execution time and
standard deviation of each algorithm for ‘overall’ test cases as shown in Table 6.5.

117

Table 6.5: Execution time (in second)
DM ZSPA MAA OPMB

Min 0.0004 0.0007 0.0001 0.0001
Max 0.1166 3.885 0.8056 10000

Average 0.0099 0.0912 0.0136 164.6877
Standard deviation 0.0108 0.2012 0.0343 1245.41

5% Percentile 0.0012 0.0028 0.0003 0.0005
25% Percentile 0.0032 0.011 0.0012 0.0018
50% Percentile 0.0065 0.0308 0.0035 0.0049
75% Percentile 0.0127 0.089 0.0111 0.0134
95% Percentile 0.0298 0.3641 0.0595 0.1306

The average execution times of DM, ZSPA and MAA are less than 1 second and the
standard deviations are also small. Thus, about 1 second would be expected for industry-
size problems. However, the average execution time of OPMB is about 164x larger than
those of ZSPA and MAA, and its execution time varies widely (i.e., a large standard devia-
tion) for the test cases. Thus, we investigate the distribution of OPMB’s execution time as
shown in Table 6.4. OPMB is shown to take less than 1 second for most of the test cases
(96.9% for ‘overall’ test cases).

We also measured the timeout ratio for the other test cases as shown in Fig. 6.11 with
the expiration time of 10,000s. The results show that OPMB has the worst timeout ratio
for systems with 5Mbps bus link speed. Because the worst timeout ratio is about 5.3%, we
expect OPMB to be feasible for about 95% of real-world scenarios.

6.8 Extensions

Switched Ethernet is prevalent in modern vehicles for ADAS and infotainment to handle
large amounts of network traffic from camera/lidar/radar sensors. The raw data is processed
and transformed into smaller-sized data and then forwarded to other (e.g., powertrain or
body) domains. However, the current OPMB only covers the system composed of multiple
CAN/CAN-FD buses with a central gateway, and thus cannot handle the switched Ethernet.
However, OPMB can be extended to the system that includes the switched Ethernet. From
OPMB’s perspective, the differences between CAN/CAN-FD and switched Ethernet are
(1) computing the worst-case delay in a network and (2) the limited number of priorities.
We can use the timing analysis for the switched Ethernet [100] instead of Eq. (2.6). For the
limited number (up to 8) of priorities, OPMB needs to assign the same priority to multiple
messages on a network because the number of messages might be greater than 8. Thus,

118

CLPk should not be incremented by 1 after assigning priority to a message, but CLPk
should be incremented when there is no schedulable message with CLPk.

6.9 Conclusion

Determining whether or not a designed in-vehicle network can meet the timing require-
ments of a given set of messages is important to minimize the in-vehicle network cost, thus
calling for optimal priority assignment. To meet this need, we have proposed an optimal
priority-assignment algorithm, OPMB, for multiple CAN/CAN-FD buses with a central
gateway. It is designed based on backtracking (brute-force search with theory-proven prun-
ing). Our in-depth simulation has demonstrated that OPMB outperforms the state-of-art
priority-assignment algorithms for multi-bus systems, and has strength especially in high-
speed systems which represent future automotive systems. OPMB is also shown to be
feasible for most realistic automotive message sets.

119

CHAPTER 7

PRMB: Priority Assignment and Routing Table
Synthesis for Multi CAN/CAN-FD Buses with a

Central Gateway

7.1 Introduction

Modern vehicles like Volkswagen Atlas 2018 are equipped with multiple network buses —
such as the Controller Area Network (CAN) bus, the de facto standard in-vehicle network
— interconnected via a central gateway for information collection and distribution. The
AUTomotive Open System ARchitecture (AUTOSAR) standardizes a software framework
for the gateway as part of in-vehicle communication services, and the AUTOSAR Asso-
ciation has been continuously updating the standard documents for the gateway to reflect
advances in the automotive industry, e.g., adding features for CAN with Flexible Data-rate

(CAN-FD).
The AUTOSAR gateway supports both PDU-direct and signal-based routing. Under

PDU-direct routing, an incoming message is directly forwarded from a source network
to destination network(s). On the other hand, under signal-based routing, signals in an
incoming message are extracted by the gateway which then generates new messages by
assembling the signals extracted from multiple incoming messages and forwards the newly
generated message to destination networks. This way, signal-based routing can reduce net-
work loads by avoiding unnecessary signal forwarding and combining signals of multiple
messages into a single message. Since minimizing production cost is a primary goal for
every automaker to attract potential customers at a low price, efficient resource usage while
satisfying the given performance (especially timing) requirement is essential. Signal-based
routing is a better option than PDU-direct routing for efficient resource usage. However, the
procedure associated with signal-based routing is more complex than that with PDU-direct
routing, and thus the processing time required for signal-based routing is much larger than

120

that for PDU-direct routing. Thus, applying signal-based routing to in-vehicle messages
while guaranteeing the timely delivery of given signals is a non-trivial problem.

The end-to-end (e2e) delay of a signal depends on the priority assignment of messages
on source and destination in-vehicle networks. Also, if the gateway uses signal-based rout-
ing, the set of messages on the network depends greatly on how the gateway generates and
forwards messages to networks. Hence, if the gateway uses signal-based routing, priority
assignment to messages on the network and synthesis of the routing table (describing how
messages are generated and forwarded) in the gateway should be considered together to
guarantee the timely delivery of given signals. However, to the best of our knowledge,
there are no existing solutions that consider message priority assignment and routing table
synthesis together. There are a few studies [50, 77] that consider priority a ssignment in
multi-bus systems with a central gateway, assuming the central gateway forwards incoming
messages based on PDU-direct (not signal-based) routing.

To use signal-based routing in in-vehicle networks, we propose Priority assignment
and Routing table synthesis for Multiple CAN/CAN-FD Buses with a central gateway
(PRMB). PRMB consists of two main components. The first component executes the
extended version of OPMB— an optimal priority assignment algorithm for a multi-bus
system with a central gateway — to find a schedulable priority assignment for a given set
of messages. Since OPMB is designed without considering signal-based routing, we ex-
tend OPMB to account for differences between PDU-direct routing and signal-based rout-
ing. In particular, to consider the difference of gateway processing time between the two
routing methods, we have built an experimental platform where the AUTOSAR gateway is
ported and the processing times of the two routing methods are measured. Based on the
measurement results, we create processing time models for the two routing methods. The
second component selects two messages to merge at the gateway and updates the routing
table to reflect the chosen merge. Especially, PRMB tries to find a merge that maximally
reduces the network load. To evaluate PRMB, we have conducted extensive simulation
by generating realistic in-vehicle signals. Our simulation results show that PRMB out-
performs state-of-the-art priority assignment algorithms in schedulability coverage. This
paper makes the following main contributions:

• Modeling the worst-case gateway processing times for PDU-direct routing and signal-
based routing;

• Extending OPMB to support signal-based routing;

• Proposing PRMB to solve priority assignment and routing table synthesis prob-
lems together for a prevalent in-vehicle system consisting of multiple CAN/CAN-FD

121

buses interconnected via a central gateway; and

• Demonstration of PRMB’s superiority to existing priority-assignment algorithms for
representative automotive message sets.

7.2 Related Work

Since priority assignment to CAN/CAN-FD messages greatly influences the schedulabil-
ity of a given set of messages, there have been numerous priority-assignment algorithms
proposed for CAN/CAN-FD buses.

For a single CAN(-FD) bus, Audsley’s optimal priority assignment (AOPA) [7] is
proven optimal by Davis et al. [82] if there is no priority inversion. However, priority
inversions can happen in practice [26, 51, 52]. Variants of AOPA have also been proposed
to address practical problems. For example, Davis et al. [27] considered transmission er-
rors i n priority assignment. The authors of [89, 28, 79] addressed the extensibility of CAN
for future changes of message set.

Park et al. [78] first considered a bus shared by both CAN and CAN-FD nodes where
changing the operation mode of CAN controller is required. They proposed a message
priority-assignment algorithm based on NP-EDF [48] to minimize the number of operation-
mode changes.

There have also been a few studies that consider the multiple CAN/CAN-FD buses with
a central gateway. Joshi et al. [50] proposed an algorithm based on AOPA for multi-bus
systems. However, they assumed that the central gateway does not change the priority
of an incoming message for the destination bus. Park et al. [77] addressed the limitation
of [50] by allowing the central gateway to change message priorities. They proposed an
optimal priority assignment for multi-bus systems using backtracking. However, all of
these studies do not consider signal-based routing at the central gateway, so they cannot
achieve the benefit of reducing bus load with signal-based routing.

7.3 System Model

The system consists of multiple CAN/CAN-FD buses interconnected via a central gate-
way as illustrated in Fig. ??. Each ECU is connected to a single CAN/CAN-FD bus and
transmit/receive in-vehicle messages via the bus and possibly the central gateway.

122

Figure 7.1: System model of multiple CAN/CAN-FD buses with a central gateway

Figure 7.2: Message routing based on (Up) PDU-direct routing and (Down) signal-based
routing

7.3.1 Bus model

If each ECU connected to a shared bus can receive a CAN-FD data frame using its CAN-
FD controller/transceiver, then the shared bus is called a CAN-FD bus else a CAN bus. We
assume that only messages compatible with the CAN data frame format can be transmitted
on a CAN bus. Likewise, we assume that only messages compatible with the CAN-FD data
frame format can be transmitted on a CAN-FD bus. Thus, a bus bi can be modeled as bi =

{ ~ecui, typei, lsarbi , lsdatai }, where ~ecui = the set of ECUs connected to bi; typei ∈ {CAN,
CAN-FD} = the type of bi; lsarbi = the link speed of bi during the arbitration phase; and
lsdatai = the link speed of bi during the data phase.

7.3.2 Signal and message model

Apps running on ECUs periodically generate signals like sensor data, control commands,
etc. The generated signals are used as the input to other apps running on other ECUs in

123

the system. Due to the characteristics of automotive apps, each signal has a valid time. A
signal can, therefore, be modeled as ψi = {src(ψi), ~dest(ψi), p(ψi), d(ψi)}, where src(ψi)
= source ECU of ψi; ~dest(ψi) = destination ECUs of ψi; p(ψi) = period of ψi; d(ψi) =
deadline of ψi; and l(ψi) = size of ψi (in bytes).

The generated signals are packed into CAN/CAN-FD frames and then transmitted
to the destination ECUs in the form of CAN/CAN-FD frames via CAN/CAN-FD buses
and the central gateway. Since a frame has to be delivered to all destination ECUs of
the embedding signals within its specified valid time, the characteristics of a frame de-
pends on the characteristics of the embedding signals. Thus, a frame can be modeled
as mi = {b(mi),Ψ(mi), p(mi), d(mi), l(mi), tt(mi), ~ω(mi), χ(mi)}, where b(mi) = bus
where mi is transmitted; Ψ(mi) = set of embedding signals in mi; p(mi) = period of mi;
d(mi) = deadline of mi; l(mi) = payload size of mi (in bytes); tt(mi) = transmission time
of mi; and ~ω(mi) = set of corresponding messages of mi; if ψk ∈ Ψ(mi) and ψk ∈ Ψ(mj),
then mj is the corresponding message of mi. NOF means that not every signal in Ψ(mi)

is forwarded via the central gateway. SRC means that a signal (ψk ∈ Ψ(mi)) is forwarded
via the central gateway and b(mi) is the bus to which src(ψk) is attached. DEST means
that a signal (ψk ∈ Psi(mi)) is forwarded via the central gateway and b(mi) is the bus to
which one of dest(ψk) is attached.

The period of mi is set to the greatest common divisor of the period of the signals in
Ψ(mi), the deadline of mi is set to the minimum deadline of signals in Ψ(mi) or p(mi).

7.3.3 Gateway model

We consider an AUTOSAR-compliant gateway that forwards incoming messages based on
either PDU-direct routing [10] or signal-based routing [9]. The architecture of AUTOSAR
g ateway for CAN(-FD) communication is illustrated in Fig. 7.3.

7.3.3.1 Procedures of PDU direct routing

When a message arrives at the Rx buffer of a CAN(-FD) controller, the interrupt routine
defined in the CAN(-FD) driver is called to process the incoming message. The incoming
message is forwarded to the PDUR (PDU Router) module. PDUR tries to find a matched
entry from a pre-defined PDUR routing table for the message based on its ID as shown
in Fig. 7.2 (Up). If the value of ‘route’ in the matched entry is ‘CANIF’, the message
is forwarded to the CAN(-FD) driver from the PDUR module with the destination bus
information through CANIF (CAN Interface) module. The CAN(-FD) driver stores the
message in the Tx buffers of a CAN(-FD) controller for the destination buses. Thus, if a

124

Figure 7.3: AUTOSAR gateway architecture for CAN(-FD) communications

message is forwarded based on PDU-direct routing, a transmission request is synchronized
with the message reception.

7.3.3.2 Procedures of signal-based routing

Under signal-based routing, the incoming message should be forwarded to the COM (Com-
munication) module from the PDUR module within the interrupt routine. Thus, the value
of ’route’ in the matched entry for the incoming message should be ‘COM’ as shown in
Fig. 7.2 (Down). Once the COM module receives a message, it extracts all signals from the
message. It updates Tx-type messages (in the COM routing table) which contain some of
the extracted signals. After the updates, the reception interrupt routine terminates.

Unlike PDU-direct routing, there is no transmission request within the interrupt rou-
tine. The Tx procedures for signal-based routing are executed in a dedicated periodic task
as shown in Fig. 7.3. Note that the periodic task is called by the timer interrupt supported
by either operating system or hardware. During the execution of the periodic task, it scans
the entire Tx-type messages in the COM routing table. If the timer for a Tx-type message
expires, the task triggers a transmission request for the message. Then, the message is for-
warded from the COM module to the CAN(-FD) driver, and then finally copied into the Tx
buffers of the CAN(-FD) controller for the destination buses. After triggering the transmis-
sion, the expired timer for the message is reset to the period of the Tx-type message.

7.4 PDU-direct vs. Signal-based Routing

Applying PDU-direct and signal-based routing to an incoming message has pros and cons.
We compare them in terms of network load and processing delay at the central gateway.

125

7.4.1 Network load

When PDU-direct routing is applied to an incoming message, the gateway does not modify
the data in the message. So, unnecessary signals would be forwarded to the network. For
example, suppose the destination bus of ψ1 is b1 and that of ψ2 is b2. Also, suppose the
signals in a message (m1,Ψ(m1) = {ψ1, ψ2}) is forwarded to b1 by the central gateway
using PDU-direct routing. Then, ψ2 is sent on b1 even though no ECU connected to b1
needs ψ2.

On the other hand, with signal-based routing, the central gateway can generate a new
message by picking up signals from incoming messages, and transmit the newly-generated
message to the buses. For example, suppose the destination bus of ψ1 and ψ3 is b1 and that
of ψ2 is b2. Also, suppose the signals in messages (m1,Ψ(m1) = {ψ1, ψ2}, m2,Ψ(m2) =

{ψ3}) are forwarded to b1 by the central gateway using signal-based routing. Then, the
central gateway can pick up ψ1 from m1 and ψ3 from m2, and generate and transmit a new
message (m3,Ψ(m3) = {ψ1, ψ3}) to b1. We can thus avoid transmission of unnecessary
signals (ψ2 here), and also reduce overheads by sending fewer messages (sending m3 once
instead of sending m1 and m2). So, we can reduce the load of the given network buses.

7.4.2 Processing delay

The worst-case processing delay at the gateway for a signal (delay+cgw(ψi)
1) can be divided

into three parts: (1) copying an incoming message from the Rx buffer of CAN(-FD) con-
troller to memory, (2) core procedure of PDU-direct routing (or signal based routing) at the
gateway, (3) copying an outgoing message from memory to the Tx buffer of CAN(-FD)
controller. The first part is the same for both PDU-direct routing and signal-based routing.
However, the second and the third parts have different effects on delay+cgw(ψi).

The core procedure of signal-based routing is more complex than that of PDU-direct
routing as we explained in Section 7.3.3. Thus, the delay for the second part becomes larger
when a signal is forwarded based on signal-based routing.

For the third part, there is no clear winner between the two routing methods because
the delay for the third part depends on the payload size of the outgoing message, and
the payload size of a destination message of a signal could become larger (or smaller)
than that of the source message of the signal. For example, suppose Ψ(m1) = {ψ1, ψ2},
Ψ(m2) = {ψ3} and b3 is the destination bus of ψ1 and ψ3. If signals in m1 and m2 are
forwarded to b3 based on signal-based routing by the central gateway, there are two ways

1The time between ψi’s arrival at the Rx buffer of the source bus and its arrival at the Tx buffer of the
destination bus within the central gateway

126

Figure 7.4: AUTOSAR gateway evaluation platform

of forwarding. First, ψ1 and ψ3 are merged intom3. In this case, the payload size ofm3 can
be larger than that of m1 (say l(ψ3) > l(ψ2)). Second, Ψ(m3) = {ψ1}, Ψ(m4) = {ψ3}. In
this case, the payload size of m1 is smaller than m3.

7.4.3 Measuring and analyzing processing delay

To learn the difference of processing delay between the two routing methods, we have
built an evaluation platform as shown in Fig. 7.4 and measured the execution time of the
two routing procedures on the platform. Specifically, we have implemented an AUTOSAR
gateway by porting Arctic Core AUTOSAR 4.0 [4] and FreeRTOS [34] on mikroC fusion
for ARM v8 board [65] w ith MCP2517FD click board [66]. Also, we implemented ECUs
using Arduino Uno [5] and MCP2515/MCP2517FD shields [64]. The click board on the
gateway board and the CAN(-FD) shields on Arduino are connected to each other via a
copper wire, and thus the ECUs are connected via the implemented AUTOSAR gateway.

7.4.3.1 Delay for copying message

We measured the worst-case execution time of copying messages by varying the payload
size of the copied message. The results in Fig. 7.5 show that the worst-case execution time
for the copy increases as the payload size increases. Especially, it increases almost by an
identical amount for every 4 bytes. We conjecture the reason to be: the API for CAN(-FD)
chip control provided by mikroC makes 4-byte data transactions to store (load) the given
data to the Tx buffer (memory). Thus, we can model the delay as:

delay+cgw,rx(mi) = ηrx,1 ×
⌈
l(mi)

4

⌉
+ ηrx,2 (7.1)

delay+cgw,tx(mj) = ηtx,1 ×
⌈
l(mj)

4

⌉
+ ηtx,2, (7.2)

127

Figure 7.5: Execution time for copying message from/to CAN(-FD) controller (X-axis:
payload size (in byte), Y-axis: time (in µs))

where mi is the message loaded from Rx buffer, mj is the message stored to Tx buffer,
ηrx,1, ηrx,2, ηtx,1 and ηtx,2 are coefficients which depend on the gateway hardware.

7.4.3.2 Delay for core routing procedures

Fig. 7.6 (Left) shows the measured worst-case execution time of the core procedure of
PDU-direct routing. We measured the execution time while varying Nprt (the number of
entries in the PDUR routing table) because Nprt may affect the time to find a matched
entry for an in-coming message. As we expected, the measured worst-case execution time
linearly increases with the increase of Nprt. But the measured worst-case execution time
remained the same for different payload sizes. That is, the payload size does not have
significant impact on the execution time of PDU-direct routing procedure. Thus, we can
model the processing delay for PDU-direct routing as:

delay+pdr = ηpdr,1 ×Nprt + ηpdr,2, (7.3)

where ηpdr,1 and ηpdr,2 are coefficients which depend on the running platform hardware.
Unlike PDU-direct routing, the Rx process is separated from the Tx process for signal-

based routing. So, we separately measured the execution time for the Rx and the Tx pro-
cesses. Fig. 7.6 (Right) shows the measured worst-execution time of the Rx procedure of
signal-based routing while varying the number of signals in a processed message. The re-
sult shows that the worst-case execution time of the Rx procedure of signal-based routing
linearly increases with the increase of the number of signals in a message. This is because

128

Figure 7.6: (Left) Execution time of core procedure of PDU-direct routing (X-axis: the
number of entries in the PDUR routing table, Y-axis: time (in µs)). (Right) Execution
time of Rx procedure of signal-based routing (X-axis: the number of signal in a processed
message, Y-axis: time (in µs)).

the core procedure extracts signals from the received message and updates Tx-type mes-
sages with the received signal value. The receiving procedure also needs to find a matched
entry in the PDR-routing table for the received message like PDU-direct routing, and hence
we can calculate the processing delay for the Rx procedure of signal-based routing as:

delay+srx = ηsrx,1 ×Nprt + ηsrx,2 × |Ψ(mi)|+ ηsrx,3, (7.4)

where |Ψ(mi)| is the number of signals inmi, and ηsrx,1, ηsrx,2 & ηsrx,3 are coefficients that
depend on the gateway hardware.

Fig. 7.7 shows the measured worst-execution time of the Tx procedure of signal-based
routing while varying the number of COM routing table entries and the number of triggered
messages to be transmitted in a periodic task. The worst-execution is shown to increase lin-
early with the increase of the number of entries. This is because the periodic task scans all
the messages in the COM routing table to find messages to be transmitted, and thus a des-
tination message of ψi triggered last in the worst case. Also, the worst-case execution time
increases linearly with the increase of the number of triggered messages to be transmitted.
This is because when the transmission of a message is triggered, the message is copied
from memory to Tx buffer of CAN(-FD) controller. That is, if there are multiple triggered
messages to be transmitted, then the delay for copying messages from memory to the Tx
buffer is applied multiple times. Thus, we can compute the processing delay of the Tx
procedure of signal-based routing as:

delay+stx(TM) =ηstx,1 ×Ncrt + ηstx,2 +∑
mj∈TM

∑
mk∈FG(mj)

(delay+cgw,tx(mk))
(7.5)

where Ncrt is the number of entries in the COM routing table, TM is a set of triggered
messages, FG(mj) is the set of fragments of mj , ηstx,1 and ηstx,2 are coefficients which

129

Figure 7.7: (Left) Execution time of Tx procedure of signal-based routing while varying the
number of triggered messages to be transmitted (Right) and varying the number of entries
in the COM routing table (Y-axis: time (in µs))

depend on the gateway hardware. Note that if the payload size of mj is larger than 8 bytes
and mj is forwarded to a CAN bus, the message is split into multiple fragments before
transmission.

7.4.3.3 Gateway processing delay for a signal

Putting all things together, we can compute the gateway processing delay for a signal under
PDU-direct routing as:

delay+cgw(ψi) = delay+cgw,rx(mi) + delay+pdr

+
∑

mk∈FG(mj)

(delay+cgw,tx(mk))
(7.6)

where mi is the source message containing ψi, mj is the destination message containing
ψi.

Also, we can compute the gateway processing delay for a signal under signal-based
routing as:

delay+cgw(ψi) = delay+cgw,rx(mi) + delay+srx + Pstx+

delay+stx(TM(mj)) +
∑

mk∈FG(mj)

(delay+cgw,tx(mk))
(7.7)

where mi is the source message containing ψi, mj is a destination message containing ψi,
Pstx is the period of the task for signal-based routing and TM(mj) is the set of messages
triggered to be transmitted with mj in an instance of the task.

7.5 Problem Statement

Signal-based routing has great potential for the efficient use of resources since it can re-
duce network loads by avoiding unnecessary signal forwards and combining signals from

130

Figure 7.8: Overall procedures of PRMB

multiple incoming messages into one message. However, it is not easy to use signal-based
routing because timely delivery of the given signals should be guaranteed as:

∀i, delay+src(ψi) + delay+cgw(ψi) + delay+dest(ψi) ≤ d(ψi),

where delay+src(ψi) is the worst-case delay on the source network (the time between ψi’s
release at src(ψi) and its arrival at a Rx buffer of the central gateway), and delay+dest(ψi) is
the worst-case delay on the destination network (time between ψi’s arrival at the Tx buffer
of the destination network in the gateway and its arrival at the destination ECU).

Since (1) delay+src(ψi) and delay+dest(ψi) are affected by the priority assignment of mes-
sages which contain the given signals, (2) delay+cgw(ψi) is affected by the routing method
and merge of signals at the central gateway, and (3) the generated messages on destina-
tion buses are affected by the signal merge at the central gateway, priority assignment and
routing table synthesis must be addressed together to guarantee the timing requirements.

Thus, our goal is to solve the priority assignment and routing table synthesis problems
together to maximize schedulability coverage for given signals (Ψ = {ψ1, . . . , ψn}) on a
designed network of buses (B = {b1, . . . , bm}).

7.6 PRMB

7.6.1 Overall Procedure

We now present a Priority assignment and Routing table synthesis for Multi CAN/CAN-FD
Buses (PRMB).

Fig. 7.8 illustrates its overall procedure. First, PRMB pre-processes the given signals
(Ψ) to apply the extended OPMB (or OPMB+) (see [77] the original OPMB). PRMB
then performs OPMB+ for a given message set. If OPMB+ finds a schedulable priority
assignment for the message set, PRMB returns the current routing table configuration and
a schedulable priority assignment. Otherwise, PRMB tries to reduce the network load by

131

merging two messages under signal-based routing. So, it selects two messages to merge,
and updates routing tables to reflect the merge. After performing the merge, PRMB re-
applies OPMB+ to find a schedulable priority assignment. Until PRMB finds such an
assignment, the process of performing OPMB+ and merging messages is repeated. If
there is no more possible merge, then PRMB declares that it cannot find any schedulable
priority assignment for the given set of signals on a designed network (B).

7.6.2 Pre-processing (Init)

PRMB converts the given signals to the input parameters of OPMB+. The input param-
eters of OPMB+ (same as that of OPMB) are the set of bus states (S = {S1, . . . , Sm})
where a bus state (Sj = {AMj, UMj, CLPj}) contains messages on the bus whose priori-
ties have not yet been assigned (UMj), priority assigned messages on the bus (AMj), and
the current lowest priority of the bus (CLPj)).

For the conversion, the given set of signals are packed into CAN/CAN-FD messages
using the state-of-art signal packing algorithm [50] for a multi-bus system. The generated
messages are assigned to the corresponding buses by assuming that every message is for-
warded by the central gateway using PDU-direct routing. For example, suppose a message
contains ψ1 and ψ2 and the source ECU of ψ1 is on b1 and the destination ECU of ψ1 is
on b2. Also, suppose the destination ECU of ψ2 is on b3. Then, the message is assigned to
b1, b2 and b3 as m1, m2 and m3 each. So, m1 ∈ UM1,m2 ∈ UM2 and m3 ∈ UM3 after the
initialization step.

7.6.3 Extending OPMB

OPMB is proven to be optimal for the system consists of multiple CAN/CAN-FD buses
and a central gateway where the gateway can change the ID (or priority) of a message.
That is, OPMB can find a schedulable priority assignment for a given set of messages on
the system, if any. However, since OPMB is not designed for signal-based routing, we
cannot use the original OPMB directly. So, we extend the original OPMB to account for
the following distinct characteristics of signal-based routing.

• A destination message (χ(mi) = DEST) can have multiple source messages as a
result of merging signals at the central gateway;

• Due to the difference in the arrival time of merged signal, the delay at the central
gateway should account for the difference of arrival times.

132

Algorithm 8: Extended OPMB (or OPMB+)
Input : S: the current state of buses
Output: Sfail: the failure state

1 if isSolutionFound(S) == true then
2 return NULL;
3 end
4 Sfail ← NULL;
5 schd← getSchedulableAssignments(S);
6 fix← getF ixAssignmentExt(S);
7 if j = failureCheck(schd) then
8 Sfail.bus← j;
9 Sfail.state← S.Sj ;

10 return Sfail;
11 end
12 if fix 6= ∅ then
13 S′ ← applyF ixedAssignment(S, fix);
14 Sfail ← OPMB(S′)
15 return Sfail;
16 end
17 for i← 1 to |schd| do
18 correctable← false;
19 if Sfail 6= NULL then
20 if schd[selIdx].bus == Sfail.bus or isCrpdInUMf (schd[selIdx], Sfail) then
21 correctable = true;
22 end
23 if correctable == false then
24 continue;
25 end
26 end
27 selIdx← i;
28 S′ ← applySchdAssignmentExt(S, schd[i]);
29 Sfail ← OPMB(S′);
30 if Sfail == NULL then
31 return NULL;
32 end
33 end

7.6.3.1 Algorithm of OPMB+

Algorithm 8 describes OPMB+ and has almost the same algorithmic flow as the original
OPMB. However, the conditions for fixed assignment and the way of deadline adjustment
after applying a schedulable assignment need to be changed. So, we replace the functions
’getFixableAssignment’ and ’applySchedulableAssignment’ with ’getFixAssignmentExt’
and ’applySchdAssignmentExt’ (see lines 6 and 28 in Algorithm 8). Next, we describe
how those functions are revised.

133

7.6.3.2 Schedulable assignment with signal-based routing

In the original OPMB, when a schedulable assignment (CLPb(mi) tomi) is applied, OPMB
updates the deadlines of corresponding messages (mk ∈ ~ω(mi)) because the available time
for mk decreases. For example, suppose that message mi consumes 3ms, then mk can
spend up to d(mi)− 3ms.

Under signal-based routing, the message (mk) corresponding to mi may have a signal
not in mi if mk is the result of signal merge at the central gateway. So, the difference
of arrival times of merged signals should be considered when OPMB+ updates the dead-
line of the corresponding messages. For example, suppose Ψ(m1) = {ψ1},Ψ(m2) =

{ψ2},Ψ(m3) = {ψ1, ψ2}. Then, the the deadline adjustment for m3 should consider the
arrival time difference of ψ1 and ψ2.

Then, how much of deadline reduction is needed for a merged message? We analyze
the amount of reduction required from the following two cases.

Case 1: p(mi)−delay+(mi) > p(mk). For example, Suppose Ψ(mi) = {ψ1},Ψ(mj) =

{ψ2},Ψ(mk) = {ψ1, ψ2}, p(mi) = 20ms, delay+(mi) = 4ms, p(mk) = 10ms. Then,
this example belongs to Case 1. In this example, ψ1 can arrive at the central gateway
before t = 4ms, and can be contained in Tx-type messages which were transmitted after
t = 4ms because delay+(mi) = 4ms. If the transmission offset ofm3 is set to delay+(mi)

mod p(mk), then mk is transmitted at t = 4ms, 14ms, Because the deadline of mk

is 10ms, the transmitted instance of mk at t = 4ms can arrive before t = 20ms if mk is
guaranteed to satisfy its timing requirement. Thus, the deadline adjustment for mk is not
required when OPMB+ applies the schedulable assignment (CLPb(mi) to mi).

Case 2: p(mi)−delay+(mi) ≤ p(mk). For example, Suppose Ψ(mi) = {ψ1},Ψ(mj) =

{ψ2},Ψ(mk) = {ψ1, ψ2}, p(mi) = 20ms, delay+(mi) = 14ms, p(mk) = 10ms. Then,
this example belongs to Case 2.

In this example, ψ1 can arrive at the central gateway before t = 14ms, and can be con-
tained in Tx-type messages which were transmitted after t = 14ms because delay+(mi) =

14ms. If the transmission offset of mk is set to delay+(mi) mod p(mk), then mk is
transmitted at t = 4ms, 14ms, Because the deadline of mk is 10ms, the transmitted
instance of mk at t = 14ms cannot arrive before t = 20ms although mk is guaranteed to
be delivered before its deadline. Thus, reduction of the deadline of mk is required when
OPMB+ applies the schedulable assignment (CLPb(mi) to mi). Thus, for Case 2, d(mk)

has to be updated to:

d(mk) = min{p(mk)− (delay+(mi) mod p(mk)), d(mk)} (7.8)

134

7.6.3.3 Fixed assignment with signal-based routing

In the original OPMB, three fixed assignments are identified: FA1, FA2 and FA3 (see
[77]for details). Since FA1 only considers not-yet-forwarded messages (χ(mi) = NOF),
it is not affected by signal-based routing. So, we only revise FA2 and FA3 to account for
signal merges at the central gateway.

FA2 assigns a priority to a destination message (χ(mi) = DEST) if the timely de-
livery of signals in Ψ(mi) can be guaranteed. Hence, ∀k delay+(mk) should be known to
apply FA2 where mk ∈ ~ω(mi). In other words, mk should be a priority-assigned message.
Because a destination message can have multiple corresponding messages under signal-
based routing, FA2 has to be revised to:

• FA2-Ext: CLPb(mi) to mi when χ(mi) = DEST , ∀k mk ∈ AMb(mk) where mk ∈
ω(mk), delay+(mi) ≤ d(mi).

FA3 assigns priorities to a source message (χ(mi) = SRC) and ∀k mk ∈ ~ω(mi) at
once if timely delivery of signals in Ψ(mi) and Ψ(mk) can be guaranteed. Under PDU-
direct routing only, a source message can have multiple corresponding messages, but a
destination message can have one corresponding message (1 : N relation). So, when we
select a source message (mi) to apply FA3, we only need to guarantee the timely delivery
of signals in Ψ(mi). Thus, the set of messages to which priorities need to be assigned are
automatically determined: mi ∪ ~ω(mi).

On the other hand, under signal-based routing, a destination message can also have mul-
tiple corresponding messages (N : N relation). Due to the N : N relation, when we select
a source message (mi) to apply FA3, guaranteeing the timely delivery of signals, which
do not belong to mi, is also required. For example, suppose Ψ(mi) = {ψ1},Ψ(mj) =

{ψ2},Ψ(mk) = {ψ1, ψ2}. If we select mi to apply FA3, guaranteeing the timely delivery
of ψ2 is also required.

Thus, OPMB+ needs to discover a set of messages to assign priorities when it selects a
source message (mi) to apply FA3. The discovery process has a signal set and a message
set as the variables. The process starts with copying mi to the message set. It then extracts
every signal in the message set and copies the extracted signals into the signal set. It
then tries to find all messages which contain any signal in the signal set. The process of
extracting signals and finding messages is repeated until no more message is found. Let
Ω(mi) is the discovered message set and Ψ(Ω(mi)) is the set of signals in the discovered
messages. Then, FA3 has to be revised to:

• FA3-Ext: ∀k CLPb(mk) to mk ∈ Ω(mi) when χ(mi) = SRC, ∀j delay+src(ψj) +

135

delay+dest(ψj) ≤ d(ψj)−delay+cgw(ψj) where ψj ∈ Ψ(Ω(mi)), delay+(mk) ≤ d(mk)

and χ(mk) = DEST .

7.6.4 Merging two messages

7.6.4.1 Selecting two messages to merge

When OPMB+ cannot find a schedulable priority assignment, PRMB tries to reduce the
network load by merging two messages. To select two messages to merge, PRMB first
finds every possible merge (merging mi and mj into mk) which holds the following condi-
tions:

• χ(mi) = DEST and χ(mj) = DEST ;

• b(mi) is equal to b(mj);

• tt(mi)
p(mi)

+
tt(mj)

p(mj)
> tt(mk)

p(mk)
.

The first condition checks if the messages to merge are forwarded by the central gate-
way. The second condition checks whether the messages to merge are transmitted on the
same bus or not. The third condition checks if the merge can reduce the network load. After
finding the every possible merge, PRMB selects the merge with the largest load reduction.

7.6.4.2 Update routing tables and message set

When PRMB determines two messages to merge, PRMB updates the routing table as
described in Algorithm 9.

Suppose mi and mj are merged into mk. To update the routing table, PRMB finds
matched entries for mi and mj in PDUR and COM routing tables. If the matched entry
for mi (mj) is in the PDUR routing table and its ‘route’ is not the ‘COM’ module, its
‘route’ and ‘dests’ columns must be updated: (1) removing b(mk) from the ‘dests’ because
mi (mj) should not be forwarded to b(mk) based on PDU-direct routing, and (2) adding
‘COM’ to the ‘route’. Also, because mi (mj) is forwarded to the COM module, mi (mj)
has to be added to the COM routing table as an RX-type entry.

Existence of mi (mj) in the COM routing table means that mi (mj) was already gen-
erated by merging some messages, and PRMB tries another merge on already merged
messages. mi (mj) no longer exists after merging with mj (mi) into mk, and hence the
entry for mi (mj) has to be removed from the COM and the PDUR routing tables. After its
removal, we need to add an entry for the newly-merged message (mk) to the COM and the
PDUR routing tables.

136

Algorithm 9: updateRoutingTable
Input : rt : routing table, merge: merge

1 idxPdurt1← getMatchedInPdurt(rt, merge.m1);
2 idxComrt1← getMatchedInComrt(rt, merge.m1);
3 idxPdurt2← getMatchedInPdurt(rt, merge.m2);
4 idxComrt2← getMatchedInComrt(rt, merge.m2);
5 if idxPdurt1 6= -1 then
6 dests← getPdurtEntry(rt, idxPdurt1, ’Dests’);
7 if dests 6= {‘COM’} then
8 dests← dests ∪ {‘COM’} - merge.bus;
9 updatePdurtEntry(rt, idxPdurt1, ’Dests’, dests);

10 addComrtEntry(rt, merge.m1.id, RX, merge.m1.signals);
11 end
12 end
13 if idxComrt1 6= -1 then
14 deleteComrtEntry(rt, idxComrt1);
15 deletePdurtEntry(rt, idxPdurt1);
16 end
17 if idxPdurt2 6= -1 then
18 dests← getPdurtEntry(rt, idxPdurt2, ’Dests’);
19 if dests 6= {‘COM’} then
20 dests← dests ∪ {‘COM’} - merge.bus;
21 updatePdurtEntry(rt, idxPdurt2, ’Dests’, dests);
22 addComrtEntry(rt, merge.m2.id, RX, merge.m2.signals);
23 end
24 end
25 if idxComrt1 6= -1 then
26 deleteComrtEntry(rt, idxComrt2);
27 deletePdurtEntry(rt, idxPdurt2);
28 end
29 addComrtEntry(rt, rt.maxID, TX, merge.mm.signals);
30 addPdurtEntry(rt, rt.maxID, merge.bus);

With the updated routing table, PRMB also has to update the current message set to
reflect the applied merge. First, PRMB has to remove mi and mj from the message set
and add mk to the message set. Second, PRMB updates the message deadlines to reflect
the change of central gateway processing time caused by the change of PDUR and COM
routing tables.

7.7 Evaluation

We have conducted extensive simulations to evaluate PRMB in comparison with (i) deadline-
monotonic (DM), simple heuristic for priority assignment, and (ii) OPMB, the state-of-art

137

Table 7.1: System model configuration
Number of buses 3 - 8

Bus type CAN or CAN-FD
CAN bus link speed 250Kbps, 500Kbps

CAN-FD bus arbitration phase link speed 500Kbps
CAN-FD bus data phase link speed 2Mbps, 5Mbps, 8Mbps

250Kbps: 3 - 4ECUs
500Kbps: 4 - 7 ECUs

Number of ECUs 2Mbps: 7 - 10 ECUs
5Mbps: 8 - 12 ECUs
8Mbps: 10 - 15 ECUs

fixed-priority assignment algorithm for a multi-domain system with a central gateway [77].
From this evaluation, we want to know how effectively the evaluated algorithms use given
resource, thus focusing on the comparative schedulability coverage of these algorithms.

7.7.1 Simulator Setup

To assess the schedulability coverage of the evaluated algorithms, we have designed and
implemented a simulator which (1) generates a multi-bus system and a set of signals, (2)
applies the state-of-art signal packing algorithm [50] to the generated signals, (3) applies
DM, OPMB and PRMB to a generated system and a set of messages resulting from signal-
packing. We run the simulator on a machine equipped with Intel Xeon E5-2683 @ 2.10GHz
and 128GB Memory.

7.7.1.1 System and signal generation

The simulator generates a multi-bus system and a set of signals based on the configuration
in Tables 7.1, 7.2, and 7.3 used in [77] because they try to emulate the real-world vehicle
scenarios by referring to [50] and [94]. When the simulator generates a system, the value
of a parameter is randomly chosen within the parameter’s range. For example, for a CAN-
FD bus, the data phase link speed for the bus is randomly chosen from {2Mbps, 5Mbps,
8Mbps}. When the simulator generates a signal, its period and size are determined with the
probabilities in Table 7.2. For example, a signal would have 10ms with a 31% probability.
Note that the number of buses, the average number of signals per bus and the percentage of
gatewayed signals are given as command line arguments to the simulator, so the values of
the three parameters are not randomly chosen.

138

Table 7.2: Signal characteristics
Period (ms) share Size (Bytes) share

1 4% 1 35%
2 3% 2 49%
5 3% 4 13%

10 31% 5 - 8 0.8%
20 31% 9 - 16 1.3%
50 3% 17 - 32 0.5%

100 20% 33 - 64 0.4%
200 1%

1000 4%

Table 7.3: Configuration for signal generation
Number of signals Number of buses × (10 - 200)

Number of destinations 1 - 4
Probability of gatewayed signal 10− 100%

Table 7.4: Values of coefficients used in the simulation (in µs)
ηrx,1 ηrx,2 ηtx,1 ηtx,2 ηpdr,1 ηpdr,2

0 30 1.11 27 0.37 65
ηsrx,1 ηsrx,2 ηsrx,r ηstx,1 ηstx,1 Pstx
0.37 3.3 22.5 0.56 80 1000

7.7.1.2 Time to terminate OPMB and the extended OPMB

The execution time of OPMB and the extended OPMB could be unacceptably large be-
cause they have exponential time complexity. Thus, we must force them to terminate by
setting an expiration time. According to [77], OPMB can make a result for 97% of realistic
automotive message sets within 1 second. So, we set the expiration time to 1 second in this
simulation.

7.7.1.3 Gateway processing delay

To consider the effect of gateway processing delay in this simulation, we need to set the
values of coefficients in Eqs. (7.1)–(7.7) and the period of task for signal-based routing
in the simulator. We obtain the values of coefficients via a regression analysis using the
measured execution time on the evaluation platform. The task period is set to 1ms in this
simulation. The values of the coefficients used in this simulation are provided in Table 7.4.

In fact, to compute the value for ηrx,1, ηrx,2, ηtx,1 and ηtx,2, we use data collected from
Arduino boards because the time for loading/storing data from/to registers in CAN(-FD)

139

controller takes abnormally large time on the mikroC board. For example, on the Arduino
boards, loading/storing data takes about 20 30µs which is consistent with the reported
number in [55]. However, it takes about 400µs (20x than normal) on the mikroC board. We
conjecture the reason to be: every CAN(-FD) click board shares a single serial peripheral
interface (SPI) on the mikroC board, and thus continuous change of SPI slave is required
to load/store data from/to registers in a specific CAN(-FD) controller.

7.7.2 Test Cases

We have generated 12000 different test cases for our evaluation. From the generated test
cases, we only use valid test cases by excluding the following cases.

• Lower bound of utilization (load) of a bus exceeds 1.0

• Best end-to-end latency of a signal is larger than the deadline of the signal.

To compute the lower bound of utilization of a bus (bi), we sort signals for each ECU
attached to bi by their size. And we packed the sorted signals into CAN(-FD) messages.
In this process, every message fully utilize the payload size limit and a signal is separated
into multiple messages if its size is larger then remaining space of a message. Because
we compute the lower bound of utilization, period of a message is the maximum period
of signals in the message. After that, we sum the utilization of each message on the bus.
Also, to compute the best end-to-end latency of a signal, we assume a message contains
the signal has the highest priority on its bus. Also, the signal experiences the minimum
gateway processing time by assuming the signal forwarded based on PDU-direct routing
and the matched entry for the signal in the PDUR routing table is located at the first place.

7.7.3 Evaluation Results: Schedulability Coverage

For each case, we try to find a schedulable priority assignment using different priority-
assignment algorithms. The results (schedulability coverage) are shown in Fig. 7.9. As
we expected, priority assignment algorithms (OPMB and PRMB) for a multi-domain
CAN/CAN-FD network are shown to have much better performance than the simple heuris-
tic algorithm. Also, as expected, PRMB gains 5.7% out of 100% over OPMB from the
bus load reduction using signal-based routing.

We also measured the schedulability coverage difference between PRMB and OPMB
for different network configurations. The results are shown in Fig. 7.10. In the results,
PRMB shows strength over OPMBwhen the multi-bus system has slow link-speed buses.

140

Figure 7.9: Schedulability coverage of priority assignment algorithms for the test cases

Figure 7.10: Schedulability coverage difference between PRMB and OPMB in differ-
ent network configurations (schedulability coverage of PRMB - schedulabiity coverage of
OPMB)

When PRMB performs a merge, the amount of data reduction on a bus is fixed from
the merge, and thus a single merge can have large impact in load reduction on the slow
linkspeed bus. Also, the gateway processing time for signal-based routing increases with
the number of messages forwarded based on signal-based routing, signal-based routing
lose its benefit if the number of entries in the COM routing table. Thus, PRMB shows
strengths over OPMBwith the slow link-speed buses. Also, PRMB shows more strength
over OPMBwith the larger number of of buses in a system. This is because, with the
large number of buses, the probability of existence of a slow link-speed bus in the system
increases.

7.7.4 Evaluation Results: Execution Time

We also measured the execution time of PRMB to know how much time needed to obtain
results from PRMB. The result is shown in Table. 7.5. The maximum execution time of
PRMB took in the extensive simulation was about 6192 seconds. Since the priority as-
signment and routing table synthesis is done at design time (not at runtime), the maximum

141

Table 7.5: Execution time (in second)
Average Standard deviation Max
106.10 150.77 6196.33

number shows the usability of PRMB.

7.8 Conclusion

Reducing production cost is a primary goal of every automaker, and thus efficient use of
given resource is essential. With signal-based routing, we can reduce network loads by
merging multiple in-coming messages into one outgoing message at the central gateway.
To exploit signal-based routing for efficient use of in-vehicle network resources, we have
proposed PRMB which performs priority assignment and routing table synthesis together
to guarantee the timely delivery of given signals. Our extensive simulation has demon-
strated the superior performance of PRMB over the state-of-art algorithms in terms of
schedulability coverage.

142

CHAPTER 8

Conclusion and Future Directions

The amount of in-vehicle network traffic keeps rising, and automakers have dealt with the
increasing trend by re-designing the in-vehicle network architecture and adopting high-
bandwidth protocols, such as CAN-FD and Ethernet TSN. Such changes have led to in-
creasing the cost of in-vehicle networks, and thus designing minimum-cost in-vehicle net-
works becomes important to automotive system designers. This thesis has made five con-
tributions by finding optimal/near-optimal network configurations (PAMT, DOFP, OPMB,
and PRMB) and by removing pessimism in the design verification (EACAN). We summa-
rize the contributions and discuss future research directions.

8.1 Contributions

8.1.1 Optimizing network configurations

In Chapter 2, we proposed an optimal priority assignment algorithm, PAMT, for a mixed
CAN/CAN-FD bus where CAN and CAN-FD nodes share a single bus. On this mixed
bus, CAN nodes are required to change their operation mode to avoid generating error
messages. PAMT minimizes the negative impact of mode transition by performing type-
based clustering.

In Chapter 5, we identified two key configurable parameters that affect the worst-case
end-to-end latency of a message for the standardized frame preemption (802.1Qbu) fea-
ture of TSN. We also proposed a genetic algorithm-based optimization framework, called
DOFP, to optimize the identified parameters.

In Chapter 6, we showed finding a schedulable priority assignment for multiple CAN
and CAN-FD buses with a central gateway is an NP-hard problem where the central gate-
way can change ID (priority) of messages. Thus, we proposed an exponential time-complexity
optimal priority assignment algorithm, called OPMB, for the system, and demonstrated that
OPMB is feasible for automotive-size problems.

143

In Chapter 7, we extended OPMB to support signal-based routing. Also, we proposed
PRMB that performs priority assignment and routing table synthesis together to benefit
from signal-based routing in resource usage.

8.1.2 Removing pessimism in design verification

In chapter 4, we proposed a runtime adaptation scheme, called EACAN. Instead of using
the worst-case transmission error rate in the timing verification, timing verification with
EACAN assumes zero transmission error rate at the design time. Then, EACAN monitors
the runtime behavior of transmission error, reconfigures the system based on the obser-
vation. Verification with the best-case and runtime system reconfiguration increases the
acceptance rate at the verification phase while guaranteeing the satisfaction of the given
timing requirement.

8.2 Future Work

8.2.1 Analyze and minimize gateway processing time for the limited
number of processing cores

In Chapters 6 and 7, we used the gateway processing delay for PDU-based routing and
signal-based routing by assuming there is a dedicated processing core for each bus. Thus,
we did not consider the waiting time between the arrival of a message at the Rx buffer
of CAN(-FD) controller and the execution of the interrupt routine for message reception.
However, in practice, the number of processing cores could be lower than the number of
buses. So, the beginning of the interrupt routine needs to wait for the completion of another
interrupt routine. Thus, we need to analyze how the worst-case gateway processing time for
the two routing methods is changed to guarantee the satisfaction of timing requirements.

Moreover, because the waiting time to execute the interrupt routine depends on the bus-
to-core assignment, we should find an optimal bus-to-core assignment that minimizes the
average gateway processing time, and reflect the optimal assignment within the analysis
to remove pessimism in the verification. We can also reduce the gateway processing time
by finding the optimal period of each periodic task for signal-based routing or by finding a
better merge.

144

8.2.2 Considering both security and routing at the central gateway

In Chapters 6 and 7, we only considered routing tasks in the central gateway. However, with
the growing concerns about secure in-vehicle networking, the central gateway is expected
to be the hub of secure in-vehicle networking because the central gateway [31] manages the
security keys and performs the access control for incoming messages. However, running
the security tasks on the central gateway could interfere with the execution of routing tasks
due to the limited processing resource, and will likely cause schedulability degradation. Be-
cause the security requirement is not the same for the entire in-vehicle messages, satisfying
just the minimum requirement for each message is the best to minimize the schedulability
degradation.

In Chapter 7, we showed that signal-based routing enhances the schedulability of an in-
vehicle network. However, when signals with different security requirements are packed
into one message (e.g., packing signals with the low-security requirement and those with
the high-security requirement together), the signal packing could raise the security require-
ment. So, it could offset the benefit of signal-based routing. Thus, to maximize the benefits
from signal-based routing, we must consider the security requirement of each signal when
merging signals.

8.2.3 Zone-based architecture

Because of the rapid advancement of System-on-Chip (SoC) and high-bandwidth commu-
nication technologies for vehicle systems, a zone-based architecture is now emerging as
the next-generation in-vehicle network architecture. In the zone-based architecture, instead
of distributing functions to multiple ECUs, a domain controller (or a high-performance
ECU) covers functions for a specific domain. A small number of ECUs within a vehi-
cle communicate with each other using high-bandwidth communication protocols (e.g.,
Ethernet). Thus, the architecture would become much simpler than the current gateway-
based architecture. However, the implementation of dozens of time-critical functions on
a single high-performance ECU is not trivial because interference between the functions
makes it difficult to guarantee the satisfaction of timing requirements. Numerous studies
have already proposed (1) scheduling time-critical tasks on a multiprocessor by consider-
ing interference between tasks [16, 41] and (2) timing isolation [61, 106, 85] to solve the
problem. However, we still need to leverage the trade-off between isolation and efficient
use of the resource.

145

BIBLIOGRAPHY

[1] https://web.archive.org/web/20201116220119/https:
//www.worldometers.info/cars/.

[2] IEC 61508. Functional safety of electric / electronic / programmable electronic
safety-related systems, 2011.

[3] T. Adamson. Hybridization of CAN and CAN FD networks. In 15th International
CAN Conference, 2015.

[4] ARCCORE. https://web.archive.org/web/20200210125428/
http://dev.arccore.com/public/user-doc/UD441x/
Arctic-Studio-4.0_9503258.html.

[5] Arduino. https://web.archive.org/web/20201201232114/https:
//www.arduino.cc/.

[6] A. A. Atallah, G. B. Hamad, and O. A. Mohamed. Fault-resilient topology planning
and traffic configuration for ieee 802.1qbv tsn networks. In 2018 IEEE 24th Inter-
national Symposium on On-Line Testing And Robust System Design (IOLTS), pages
151–156, 2018.

[7] N. C. Audsley. On priority assignment in fixed priority scheduling. Information
Processing Letters, pages 79(1):39–44, 2001.

[8] N.C. Audsley. On priority assignment in fixed priority scheduling. Information
Processing Letters, 79(1):39 – 44, 2001.

[9] AUTOSAR. Specification of Communication, AUTOSAR CP Release 4.4.0, 2018.

[10] AUTOSAR. Specification of PDU Router, AUTOSAR CP Release 4.4.0, 2018.

[11] G. Avni, S. Guha, and G. Rodriguez-Navas. Synthesizing time-triggered schedules
for switched networks with faulty links. In 2016 International Conference on Em-
bedded Software (EMSOFT), pages 1–10, Oct 2016.

[12] P. Axer, M. Sebastian, and R. Ernst. Probabilistic response time bound for CAN
messages with arbitrary deadlines. In 2012 Design, Automation Test in Europe Con-
ference Exhibition (DATE), pages 1114–1117, March 2012.

146

https://web.archive.org/web/20201116220119/https://www.worldometers.info/cars/
https://web.archive.org/web/20201116220119/https://www.worldometers.info/cars/
https://web.archive.org/web/20200210125428/http://dev.arccore.com/public/user-doc/UD441x/Arctic-Studio-4.0_9503258.html
https://web.archive.org/web/20200210125428/http://dev.arccore.com/public/user-doc/UD441x/Arctic-Studio-4.0_9503258.html
https://web.archive.org/web/20200210125428/http://dev.arccore.com/public/user-doc/UD441x/Arctic-Studio-4.0_9503258.html
https://web.archive.org/web/20201201232114/https://www.arduino.cc/
https://web.archive.org/web/20201201232114/https://www.arduino.cc/

[13] P. Axer, D. Thiele, and R. Ernst. Formal timing analysis of automatic repeat re-
quest for switched real-time networks. In Proceedings of the 9th IEEE International
Symposium on Industrial Embedded Systems (SIES 2014), pages 78–87, June 2014.

[14] H. Aysan, A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Efficient fault tolerant
scheduling on controller area network (can). In Emerging Technologies and Factory
Automation (ETFA), 2010 IEEE Conference on, pages 1–8, Sept 2010.

[15] E. Azketa, J. P. Uribe, M. Marcos, L. Almeida, and J. J. Gutierrez. Permutational
genetic algorithm for the optimized assignment of priorities to tasks and messages
in distributed real-time systems. In 2011IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications, pages 958–965,
Nov 2011.

[16] Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor Scheduling
for Real-Time Systems. Springer Publishing Company, Incorporated, 2015.

[17] Sofiene Beji, Sardaouna Hamadou, Abdelouahed Gherbi, and John Mullins. Smt-
based cost optimization approach for the integration of avionic functions in ima
and ttethernet architectures. In Proceedings of the 2014 IEEE/ACM 18th Interna-
tional Symposium on Distributed Simulation and Real Time Applications, DS-RT
’14, pages 165–174, Washington, DC, USA, 2014. IEEE Computer Society.

[18] U. D. Bordoloi and S. Samii. The frame packing problem for can-fd. In 2014 IEEE
Real-Time Systems Symposium, pages 284–293, Dec 2014.

[19] Christelle Braun, Lionel Havet, and Nicolas Navet. NETCARBENCH: A bench-
mark for techniques and tools used in the design of automotive communication sys-
tems. In 7th IFAC International Conference on Fieldbuses & Networks in Indus-
trial & Embedded Systems - FeT’2007, pages 321–328, Toulouse, France, November
2007.

[20] I. Broster, A. Burns, and G. Rodriguez-Navas. Probabilistic analysis of can with
faults. In Real-Time Systems Symposium, 2002., pages 269–278, 2002.

[21] I. Broster, A. Burns, and G. Rodriguez-Navas. Comparing real-time communica-
tion under electromagnetic interference. In Real-Time Systems, 2004. ECRTS 2004.
Proceedings. 16th Euromicro Conference on, pages 45–52, 2004.

[22] A. Burns and R. I. Davis. Mixed criticality on controller area network. In 2013 25th
Euromicro Conference on Real-Time Systems, pages 125–134, July 2013.

[23] Y. Chun, S. Park, J. Kim, H. Kim, K. Hwang, J. Kim, and S. Ahn. System and elec-
tromagnetic compatibility of resonance coupling wireless power transfer in on-line
electric vehicle. In Antennas and Propagation (ISAP), 2012 International Sympo-
sium on, pages 158–161, Oct 2012.

147

[24] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelı́k, and Wilfried Steiner.
Scheduling real-time communication in ieee 802.1qbv time sensitive networks. In
Proceedings of the 24th International Conference on Real-Time Networks and Sys-
tems, RTNS ’16, pages 183–192, New York, NY, USA, 2016. ACM.

[25] R. I. Davis and A. Burns. Robust priority assignment for fixed priority real-time
systems. In 28th IEEE International Real-Time Systems Symposium (RTSS 2007),
pages 3–14, Dec 2007.

[26] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka. Controller Area Network (CAN)
Schedulability Analysis with FIFO Queues. In 2011 23rd Euromicro Conference on
Real-Time Systems, pages 45–56, July 2011.

[27] Robert I. Davis and Alan Burns. Robust priority assignment for messages on Con-
troller Area Network (CAN). Real-Time Systems, 41(2):152–180, 2009.

[28] Robert I. Davis, Alan Burns, Victor Pollex, and Frank Slomka. On Priority As-
signment for Controller Area Network when Some Message Identifiers Are Fixed.
In Proceedings of the 23rd International Conference on Real Time and Networks
Systems, RTNS ’15, pages 279–288, New York, NY, USA, 2015. ACM.

[29] Robert I. Davis, Steffen Kollmann, Victor Pollex, and Frank Slomka. Schedulability
Analysis for Controller Area Network (CAN) with FIFO Queues Priority Queues
and Gateways. Real-Time Syst., 49(1):73–116, January 2013.

[30] Eude Cezar de Oliveira. Electrical Architectures and In-Vehicles Networks. In SAE
Technical Paper. SAE International, 04 2007.

[31] TATA ELEXI. Gateway Architecture for Secured Connectivity and in Vehicle Com-
munication.

[32] Reinhard Felgenhauser. Electromagnetic interference (emi) in e-
vehicles. https://web.archive.org/web/20201208050934/
https://www.eenewsautomotive.com/content/
electromagnetic-interference-emi-e-vehicles [Online; posted
12-Octobuer-2011], October 2011.

[33] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca. An experiment to assess bit error
rate in can. In In Proceedings of 3rd International Workshop of Real-Time Networks
(RTN2004, pages 15–18, 2004.

[34] FreeRTOS. https://web.archive.org/web/20201127150258/
https://www.freertos.org//.

[35] Freescale. Future advances in body electronics. https://web.archive.
org/web/20190827084634/https://www.nxp.com/docs/en/
white-paper/BODYDELECTRWP.pdf.

148

https://web.archive.org/web/20201208050934/https://www.eenewsautomotive.com/content/electromagnetic-interference-emi-e-vehicles
https://web.archive.org/web/20201208050934/https://www.eenewsautomotive.com/content/electromagnetic-interference-emi-e-vehicles
https://web.archive.org/web/20201208050934/https://www.eenewsautomotive.com/content/electromagnetic-interference-emi-e-vehicles
https://web.archive.org/web/20201127150258/https://www.freertos.org//
https://web.archive.org/web/20201127150258/https://www.freertos.org//
https://web.archive.org/web/20190827084634/https://www.nxp.com/docs/en/white-paper/BODYDELECTRWP.pdf
https://web.archive.org/web/20190827084634/https://www.nxp.com/docs/en/white-paper/BODYDELECTRWP.pdf
https://web.archive.org/web/20190827084634/https://www.nxp.com/docs/en/white-paper/BODYDELECTRWP.pdf

[36] J. J. G. Garcia and M. G. Harbour. Optimized priority assignment for tasks and
messages in distributed hard real-time systems. In Proceedings of Third Workshop
on Parallel and Distributed Real-Time Systems, pages 124–132, April 1995.

[37] Voica Gavriluţ and Paul Pop. Traffic class assignment for mixed-criticality frames
in ttethernet. SIGBED Rev., 13(4):31–36, November 2016.

[38] Voica Gavriluţ and Paul Pop. Traffic-type assignment for tsn-based mixed-criticality
cyber-physical systems. ACM Trans. Cyber-Phys. Syst., 4(2), January 2020.

[39] Voica Gavrilut, Bahram Zarrin, Paul Pop, and Soheil Samii. Fault-tolerant topol-
ogy and routing synthesis for ieee time-sensitive networking. In Proceedings of the
25th International Conference on Real-Time Networks and Systems, RTNS ’17, page
267–276, New York, NY, USA, 2017. Association for Computing Machinery.

[40] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop. Avb-aware routing and scheduling
of time-triggered traffic for tsn. IEEE Access, 6:75229–75243, 2018.

[41] Zhishan Guo, Kecheng Yang, Fan Yao, and Amro Awad. Inter-task cache inter-
ference aware partitioned real-time scheduling. In Proceedings of the 35th Annual
ACM Symposium on Applied Computing, SAC ’20, page 218–226, New York, NY,
USA, 2020. Association for Computing Machinery.

[42] A. R. Guraliuc, M. Zhadobov, R. Sauleau, L. Marnat, and L. Dussopt. Millimeter-
wave electromagnetic field exposure from mobile terminals. In Networks and Com-
munications (EuCNC), 2015 European Conference on, pages 82–85, June 2015.

[43] Z. Hanzalek, P. Burget, and P. Sucha. Profinet io irt message scheduling with tem-
poral constraints. IEEE Transactions on Industrial Informatics, 6(3):369–380, Aug
2010.

[44] F. Hartwich. Bit Time Requirements for CAN FD. In 14th International CAN Con-
ference, 2013.

[45] SAE International. Class c application requirement considerations. SAE Technical
Report J2056/1, Feb 2000.

[46] ISO/TC22. Iso26262: Road vehicles - functional safety. Technical report, Interna-
tional Organization for Standardization, 2011.

[47] ISO/TC22/SC31. Iso17458-1: Road vehicles - flexray communications system -
part1: General information and use case definition. Technical report, International
Organization for Standardization, 2013.

[48] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of period
and sporadic tasks. In Proceedings of Twelfth Real-Time Systems Symposium, pages
129–139, Dec 1991.

149

[49] P. Joshi, S. S. Ravi, Q. Liu, U. D. Bordoloi, S. Samii, S. K. Shukla, and H. Zeng.
Approaches for assigning offsets to signals for improving frame packing in can-fd.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(5):1109–1122, 2020.

[50] Prachi Joshi, Haibo Zeng, Unmesh D. Bordoloi, Soheil Samii, S. S. Ravi, and
Sandeep K. Shukla. The Multi-Domain Frame Packing Problem for CAN-FD. In
29th Euromicro Conference on Real-Time Systems (ECRTS 2017), 2017.

[51] U. Keskin. Evaluating Message Transmission Times in Controller Area Network
(CAN) without Buffer Preemption Revisited. In Vehicular Technology Conference
(VTC Fall), 2013 IEEE 78th, pages 1–5, Sept 2013.

[52] D. A. Khan, R. J. Bril, and N. Navet. Integrating hardware limitations in CAN
schedulability analysis. In Factory Communication Systems (WFCS), 2010 8th IEEE
International Workshop on, pages 207–210, May 2010.

[53] D. A. Khan, R. I. Davis, and N. Navet. Schedulability analysis of CAN with non-
abortable transmission requests. In ETFA2011, pages 1–8, Sept 2011.

[54] J. Kim, K. Lakshmanan, and R. Rajkumar. Rhythmic tasks: A new task model with
continually varying periods for cyber-physical systems. In 2012 IEEE/ACM Third
International Conference on Cyber-Physical Systems, pages 55–64, April 2012.

[55] J. H. Kim, S. Seo, N. Hai, B. M. Cheon, Y. S. Lee, and J. W. Jeon. Gateway frame-
work for in-vehicle networks based on can, flexray, and ethernet. IEEE Transactions
on Vehicular Technology, 64(10):4472–4486, 2015.

[56] Daniel Kästner, Marek Jersak, Christian Ferdinand, Peter Gliwa, and Reinhold
Heckmann. An integrated timing analysis methodology for real-time systems. In
SAE Technical Paper. SAE International, 04 2011.

[57] R. Lange, A. C. Bonatto, F. Vasques, and R. S. de Oliveira. Timing analysis of
hybrid flexray, can-fd and can vehicular networks. In IECON 2016 - 42nd Annual
Conference of the IEEE Industrial Electronics Society, pages 4725–4730, Oct 2016.

[58] Sune Mølgaard Laursen, Paul Pop, and Wilfried Steiner. Routing optimization of
avb streams in tsn networks. SIGBED Rev., 13(4):43–48, November 2016.

[59] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary dead-
lines. In [1990] Proceedings 11th Real-Time Systems Symposium, pages 201–209,
1990.

[60] K. Lennartsson. CAN FD filter for Classical CAN controllers. In 15th International
CAN Conference, 2015.

[61] Y. Lim and H. Kim. Cache-aware real-time virtualization for clustered multi-core
platforms. IEEE Access, 7:128628–128640, 2019.

150

[62] Shu Lin, D. J. Costello, and M. J. Miller. Automatic-repeat-request error-control
schemes. IEEE Communications Magazine, 22(12):5–17, December 1984.

[63] Rouhollah Mahfuzi, Amir Aminifar, Soheil Samii, Ahmed Rezine, Petru Eles, and
Zebo Peng. Stability-aware integrated routing and scheduling for control applica-
tions in ethernet networks. 2018.

[64] Microchip. Stand-Alone CAN Controller with SPI Interface, August 2012. Rev. G.

[65] MikroElktronika. https://web.archive.org/web/20201112042535/
https://www.mikroe.com/fusion-for-arm//.

[66] MikroElktronika. https://web.archive.org/web/20200809195701/
https://www.mikroe.com/mcp2517fd-click.

[67] S. Monroe, D. Stout, and J. Griffith. Solutions of CAN and CAN FD in a mixed
network topology. In 14th International CAN Conference, 2013.

[68] Mischa Möstl, Daniel Thiele, and Rolf Ernst. Invited - towards fail-operational eth-
ernet based in-vehicle networks. In Proceedings of the 53rd Annual Design Automa-
tion Conference, DAC ’16, pages 53:1–53:6, New York, NY, USA, 2016. ACM.

[69] M. Di Natale. Scheduling the CAN bus with earliest deadline techniques. In Pro-
ceedings 21st IEEE Real-Time Systems Symposium, pages 259–268, 2000.

[70] N. Navet and H. Perrault. Can in automotive applications: a look forward. In 13th
International CAN Conference, 2012.

[71] N. Navet and F. Simonot-Lion. In-vehicle communication networks - a historical
perspective and reveiw. Technical report, University of Luxembourg, 2013.

[72] N. Navet, Y.-Q. Song, and F. Simonot. Worst-case Deadline Failure Probability in
Real-time Applications Distributed over Controller Area Network. J. Syst. Archit.,
46(7):607–617, April 2000.

[73] Nicolas Navet, Schehnaz Louvart, Jose Villanueva, Sergio Campoy-Martinez, and
Jorn Migge. Timing verification of automotive communication architectures using
quantile estimation. In 2014 Embedded Real Time Software and Systems, Feburary
2014.

[74] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. Routing algorithms for
ieee802.1qbv networks. SIGBED Rev., 15(3):13–18, August 2018.

[75] Shuichi Oikawa and Ragunathan Rajkumar. Linux/rk: A portable resource kernel in
linux. In In 19th IEEE Real-Time Systems Sumposium, 1998.

[76] R. Serna Oliver, S. S. Craciunas, and W. Steiner. Ieee 802.1qbv gate control list
synthesis using array theory encoding. In 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 13–24, April 2018.

151

https://web.archive.org/web/20201112042535/https://www.mikroe.com/fusion-for-arm//
https://web.archive.org/web/20201112042535/https://www.mikroe.com/fusion-for-arm//
https://web.archive.org/web/20200809195701/https://www.mikroe.com/mcp2517fd-click
https://web.archive.org/web/20200809195701/https://www.mikroe.com/mcp2517fd-click

[77] T. Park, J. Lyu, and K. G. Shin. Optimal priority assignment for multiple can/can-fd
buses with a central gateway. In 2020 IEEE Real-Time Systems Symposium (RTSS),
Dec 2020.

[78] T. Park and K. G. Shin. Optimal priority assignment for scheduling mixed can and
can-fd frames. In 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2019.

[79] Florian Pölzlbauer, Robert I. Davis, and Iain Bate. A Practical Message ID Assign-
ment Policy for Controller Area Network That Maximizes Extensibility. In Pro-
ceedings of the 24th International Conference on Real-Time Networks and Systems,
RTNS ’16, pages 45–54, New York, NY, USA, 2016. ACM.

[80] Florian Pölzlbauer, Robert I. Davis, and Iain Bate. Analysis and Optimization of
Message Acceptance Filter Configurations for Controller Area Network (CAN). In
Proceedings of the 25th International Conference on Real-Time Networks and Sys-
tems, RTNS ’17, pages 247–256, New York, NY, USA, 2017. ACM.

[81] Sasikumar Punnekkat, Rob Davis, and Alan Burns. Sensitivity analysis of real-time
task sets. In R. K. Shyamasundar and K. Ueda, editors, Advances in Computing
Science — ASIAN’97, pages 72–82, Berlin, Heidelberg, 1997. Springer Berlin Hei-
delberg.

[82] R. I. Davis and A. Burns and R. J. Bril and J. J. Lukkien. Controller Area Network
(CAN) Schedulability Analysis: Refuted, Revisited and Revised. Real-Time Syst.,
35(3):239–272, April 2007.

[83] J. Regehr. Scheduling tasks with mixed preemption relations for robustness to timing
faults. In 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002., pages 315–
326, 2002.

[84] F. Ren, Y. R. Zheng, M. Zawodniok, and J. Sarangapani. Effects of Electromag-
netic Interference on Control Area Network Performance. In Region 5 Technical
Conference, 2007 IEEE, pages 199–204, April 2007.

[85] James Robb and Björn B. Brandenburg. Nested, but Separate: Isolating Unrelated
Critical Sections in Real-Time Nested Locking. In Marcus Völp, editor, 32nd Eu-
romicro Conference on Real-Time Systems (ECRTS 2020), volume 165 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 6:1–6:23, Dagstuhl, Ger-
many, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[86] Robert Bosch GmbH. CAN Specification, 1991. Ver 2.0.

[87] Robert Bosch GmbH. CAN with Flexible Data-Rate Specificaton, April 2012. Ver
1.0.

[88] L. Rodrigues, M. Guimaraes, and J. Rufino. Fault-tolerant clock synchroniza-
tion in can. In Proceedings 19th IEEE Real-Time Systems Symposium (Cat.
No.98CB36279), pages 420–429, Dec 1998.

152

[89] K. W. Schmidt. Robust Priority Assignments for Extending Existing Controller Area
Network Applications. IEEE Transactions on Industrial Informatics, 10(1):578–
585, Feb 2014.

[90] M. Schreiner, H. Mahmoud, M. Huber, S. Koc, and J. Waldmann. Safe-guarding
CAN FD for applications in trucks. CAN Newsletter, 01/2013.

[91] M. Schreiner, H. Mahmoud, M. Huber, S. Koc, and J. Waldmann. CAN FD from an
OEM point of view. In 14th International CAN Conference, 2013.

[92] M. Schreiner, H. Mahmoud, M. Huber, S. Koc, and J. Waldmann. Can fd from an
oem point of view. In 14th International CAN Conference, 2013.

[93] J. W. Shin, J. H. Oh, S. M. Lee, and S. E. Lee. CAN FD controller for in-vehicle
system. In 2016 International SoC Design Conference (ISOCC), pages 227–228,
Oct 2016.

[94] Arne Hamann Simon Kramer, Dirk Ziegenbein. Real world automotive benchmark
for free. In 6th International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS 2015), 2015.

[95] W. Steiner. An evaluation of smt-based schedule synthesis for time-triggered multi-
hop networks. In 2010 31st IEEE Real-Time Systems Symposium, pages 375–384,
Nov 2010.

[96] W. Steiner. Synthesis of static communication schedules for mixed-criticality sys-
tems. In 2011 14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops, pages 11–18, March 2011.

[97] Symtavision. https://web.archive.org/web/20201208050402/
https://www.luxoft.com/automotive/.

[98] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of communica-
tion schedules for ttethernet-based mixed-criticality systems. In Proceedings of the
Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis, CODES+ISSS ’12, pages 473–482, New York, NY, USA,
2012. ACM.

[99] L. Tan, C. Du, and Y. Dong. Control-performance-driven period and deadline se-
lection for cyber-physical systems. In 2015 10th Asian Control Conference (ASCC),
pages 1–6, May 2015.

[100] D. Thiele and R. Ernst. Formal worst-case performance analysis of time-sensitive
ethernet with frame preemption. In 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), pages 1–9, Sept 2016.

[101] D. Thiele, R. Ernst, and J. Diemer. Formal worst-case timing analysis of ethernet
tsn’s time-aware and peristaltic shapers. In 2015 IEEE Vehicular Networking Con-
ference (VNC), pages 251–258, 2015.

153

https://web.archive.org/web/20201208050402/https://www.luxoft.com/automotive/
https://web.archive.org/web/20201208050402/https://www.luxoft.com/automotive/

[102] K. W. Tindell and A. Burns. Guaranteed message latencies for distributed safety-
critical hard real-time control networks. Technical Report YCS 229, University of
York, Department of Computer Science, 1994.

[103] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time tasks: An
np-hard problem made easy. Real-Time Systems, 4(2):145–165, Jun 1992.

[104] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing real-time communications:
controller area network (can). In Real-Time Systems Symposium, 1994., pages 259–
263, Dec 1994.

[105] Volcano. https://web.archive.org/web/20201026163851/https:
//www.mentor.com/embedded-software/autosar/.

[106] Meng Xu, Robert Gifford, and Linh Thi Xuan Phan. Holistic multi-resource alloca-
tion for multicore real-time virtualization. In Proceedings of the 56th Annual Design
Automation Conference 2019, DAC ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[107] H. Yoon and M. Ryu. Guaranteeing end-to-end deadlines for autosar-based automo-
tive software. International Journal of Automotive Technology, 16(4):635–644, Aug
2015.

[108] L. Zhao, P. Pop, and S. S. Craciunas. Worst-case latency analysis for ieee 802.1qbv
time sensitive networks using network calculus. IEEE Access, 6:41803–41815,
2018.

[109] L. Zhao, P. Pop, Z. Zheng, and Q. Li. Timing analysis of avb traffic in tsn networks
using network calculus. In 2018 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 25–36, 2018.

[110] K. M. Zuberi and K. G. Shin. Non-preemptive scheduling of messages on controller
area network for real-time control applications. In Proceedings Real-Time Technol-
ogy and Applications Symposium, pages 240–249, May 1995.

[111] A. Zuhily and A. Burns. Optimality of (D-J)-monotonic priority assignment. Infor-
mation Processing Letters, page 103(6), 2007.

154

https://web.archive.org/web/20201026163851/https://www.mentor.com/embedded-software/autosar/
https://web.archive.org/web/20201026163851/https://www.mentor.com/embedded-software/autosar/

	DEDICATION
	ACKNOWLEDGEMENTS
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Design challenges
	State-of-art optimization techniques
	Timing verification
	Network configuration

	Thesis Statement and Contributions
	PAMT
	EACAN
	DOFP
	OPMB
	PRMB

	Outline

	Background
	Controller Area Network (CAN)
	CAN frame format
	Bus Arbitration
	Timing analysis of a CAN message

	Controller area network with flexible data rate (CAN-FD)
	CAN-FD frame format
	Switching Bit Rate
	Timing analysis of CAN-FD message

	Ethernet Time-Sensitive Networking (TSN)
	Frame preemption
	Timing analysis of messages on Ethernet TSN with frame preemption

	PAMT: Optimal Priority Assignment for Scheduling Mixed CAN and CAN-FD Frames
	Introduction
	Mixed CAN and CAN-FD System Model
	Network Model
	Mixed Frame Model
	Mixed Frame-Instance Model

	Scheduling Mixed CAN and CAN-FD
	Why Problem?
	Hardware Solution
	Software Solution
	Analysis of Mode-Transition Delay
	Negative Impact of Time Overhead

	Problem Statement
	Priority Assignment with Mode Transitions
	Basic Idea of PAMT
	PAMT Algorithm
	Algorithm Overview
	Select fi according to NP-EDF
	Cluster fi and fi-k

	Optimality of PAMT

	Practical Issues
	Assigning ID to frame instances
	Triggering a Mode Transition
	Transient Error
	Unsynchronized Clock
	Finding maximum possible delay by unsynchronized clocks

	Sporadic Frames

	Evaluation
	Simulation Setup
	The Benchmark for Simulations
	Simulation Configuration

	Results and Analysis

	Related Work
	Conclusion

	EACAN: Reliable and Resource-Efficient CAN Communications
	Introduction
	System Model and Assumptions
	Overall Architecture
	Error Model
	Mixed-Criticality CAN Message Model
	Deriving the requirement of probability of deadline misses

	Problem Statement
	Error-Adaptive CAN (EACAN)
	Overview
	Basic Idea
	Workflow of EACAN

	Runtime TER
	Requirement of Runtime TER
	Definition of runtime TER
	Deciding on the Time Interval of Interest

	Deciding on System Criticality Level
	Decision based on the probability of deadline misses
	Decision based on the runtime TER

	Solving the Optimization Problem
	Computing the Objective Function
	Finding a Near-Optimal Solution

	Runtime Decision on System Criticality Level
	EACAN Schedulability Analysis
	Analysis of Overhead of Changing sys

	Evaluation
	Experimentation
	Experimental Platform
	Benchmark and Configuration
	Experimental Results

	Simulation
	Benchmark and Configuration.
	Simulation Results

	Conclusion

	DOFP: Design Optimization of Frame Preemption in Real-Time Switched Ethernet
	Introduction
	System Description and Model
	System Architecture
	Networked System Model
	Frame Preemption Supportive Ethernet Port
	Traffic Flow

	Synthesis Problem
	Generic Solution Approach
	Overview of GA-Based Framework
	Initialization
	Evolution Procedure

	Case Study 1: Reliability
	ARQ Protocol
	Applying the GA-Based Framework
	Optimization Goal (Fitness Function)
	Generating initial population

	Case Study 2: Extensibility
	Applying GA-Based Framework
	Optimization Goal (Fitness Function)
	Generating the initial population

	Evaluation
	Methodology
	Baselines
	Network Generation
	Traffic Generation
	Metrics

	Evaluation Results & Analysis
	Schedulability
	CSF: Reliability
	TC: Extensibility
	Scalability

	Conclusions

	OPMB: Optimal Priority Assignment for Multi CAN/CAN-FD Buses with a Central Gateway
	Introduction
	Related Work
	Priority assignment for CAN/CAN-FD
	Priority assignment for distributed real-time system

	System Model
	Bus and message models
	Gateway model

	Global priority assignment vs. per-bus priority assignment for a CAN/CAN-FD multi-bus system
	Implementation
	Schedulability

	Problem Statement
	OPMB
	Input parameters and return values
	Initial state
	OPMB overall procedure
	Pruning unnecessary searches
	Schedulable assignments
	Fixable assignments
	Restriction from Failure State

	Evaluation
	Simulator Setup
	System model generation
	Message set generation
	Gateway processing delay
	OPMB timeout

	Test cases
	Evaluation results and analyses
	Comparison of schedulability coverage
	Where does OPMB have strength and why?
	Feasibility of OPMB

	Extensions
	Conclusion

	PRMB: Priority Assignment and Routing Table Synthesis for Multi CAN/CAN-FD Buses with a Central Gateway
	Introduction
	Related Work
	System Model
	Bus model
	Signal and message model
	Gateway model
	Procedures of PDU direct routing
	Procedures of signal-based routing

	PDU-direct vs. Signal-based Routing
	Network load
	Processing delay
	Measuring and analyzing processing delay
	Delay for copying message
	Delay for core routing procedures
	Gateway processing delay for a signal

	Problem Statement
	PRMB
	Overall Procedure
	Pre-processing (Init)
	Extending OPMB
	Algorithm of OPMB+
	Schedulable assignment with signal-based routing
	Fixed assignment with signal-based routing

	Merging two messages
	Selecting two messages to merge
	Update routing tables and message set

	Evaluation
	Simulator Setup
	System and signal generation
	Time to terminate OPMB and the extended OPMB
	Gateway processing delay

	Test Cases
	Evaluation Results: Schedulability Coverage
	Evaluation Results: Execution Time

	Conclusion

	Conclusion and Future Directions
	Contributions
	Optimizing network configurations
	Removing pessimism in design verification

	Future Work
	Analyze and minimize gateway processing time for the limited number of processing cores
	Considering both security and routing at the central gateway
	Zone-based architecture

	BIBLIOGRAPHY

