Efficient Resource Management for Deep Learning
Clusters

by

Juncheng Gu

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in the University of Michigan
2021

Doctoral Committee:

Assistant Professor Mosharaf Chowdhury, Co-chair
Professor Kang G. Shin, Co-chair

Assistant Professor Baris Kasikci

Associate Professor Harsha V. Madhyastha
Professor Lei Ying



Juncheng Gu
jegu@umich.edu

ORCID iD: 0000-0002-3315-5784

© Juncheng Gu 2021
All Rights Reserved



To my wife and my parents for their unwavering love and support.

i



ACKNOWLEDGMENTS

PhD study is a long journey. I can not imagine how I would complete it without the
help and support of my supervisors, family, colleagues, and friends.

First and foremost, I want to give special thanks to my supervisors, Professor Kang
G. Shin, and Professor Mosharaf Chowdhury, for their invaluable advice, continuous sup-
port, and extraordinary patience during my PhD study. Professor Kang G. Shin grants me
the freedom to explore research topics I like, and always offers me insightful guidance
at the right moments. Professor Mosharaf Chowdhury instrumentally teaches me how to
approach research in the right manner, and warmly encourages me when I am facing hard-
ships. I am truly fortunate to have the two great supervisors who share their vision and
wisdom in these years.

I am thankful to Professor Baris Kasikci, Harsha V. Madhyastha, and Ying Lei for serv-
ing on my thesis committee. Their valuable and constructive comments and suggestions
help me improve the quality of my thesis.

I would like to thank my collaborators, Youngmoon Lee, Yiwen Zhang, and Haizhong
Zheng. I will never forget the days and nights when we worked together for experiments,
brainstorm, and discussion. I am grateful to Xiaoen Ju for his guidance during the first year
of my PhD study.

It is a great fortune to be a member of both the Real-Time Computing Laboratory
(RTCL) and the Symbiotic Lab where I learned a lot and received lots of help. I would like
to thank all RTCL members: Chun-Yu Chen, Dongyao Chen, Kyoung Tak Cho, Kassem

Fawaz, Huan Feng, Arun Ganesan, Liang He, Suining He, Taeju Park, Mert Pese, Yu-Chih

1l



Tung, Xiufeng Xie; and Symbiotic members: Fan Lai, Hasan Al Maruf, Peifeng Yu, Jie
You. I also want to thank my friends in Ann Arbor, especially the family of Zhe Wu.
Finally and most importantly, my sincere gratitude goes to my family for their deep
love and tremendous support. My father, Xiaohong Gu, and my mother, Biyu Zhang, have
persistently given their unconditional care and support throughout my life. My wife, Yujie
Yan, is the light of my life that is always with me and encourages me. Her love has been
supporting me to go through the darkness. My son, Yijian Gu, is the best gift I received

during my PhD journey.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . e il

ACKNOWLEDGMENTS . . . . . . .. . . iii

LIST OF FIGURES . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . e Xi

LIST OF ABBREVIATIONS . . . . . . . .. .. . . .. xii

ABSTRACT . . . . . . . e Xiv
CHAPTER

I. Imtroduction. . . . . . . . . ... 1

1.1 Background: Developing Deep Learning Models . . . . ... .. .. .. 2

1.1.1 DataPreparation . . . ... ... ... ... ........... 2

1.1.2 Model Training . . . . . . ... .. ... .. .. .. ... 3

1.2 Challenges in Deep Learning Clusters . . . . . . ... ... ... .... 7

1.3 Thesis Statement and Contributions . . . . . . . ... ... ... .... 8

1.4 Thesis Structure . . . . . . . . . . L L 11

I1. INFINISWAP: Decentralized Memory Disaggregation for Data Processing . 12

2.1 Introduction . . . . . . . . . . . . . .. 12
22 Motivation . . . . . . . .. e e e e e e e e 15
22.1 Background. . . . ... ... ... 15
2.2.2 Potential Benefits . . . . . . .. ... ... o 16
2.2.3 Characteristics of Memory Imbalance . . . . .. ... ... ... 18
2.3 INFINISWAP OVEIVIEW . . . . . . . o i v it e e e e e e e e e e 20
2.3.1 Problem Statement . . . . . . ... ... ... ... ... ... 20
2.3.2 Architectural Overview . . . . . . . . . ... ... ... ... 21

2.4 Efficient Memory Disaggregation
via INFINISWAP Block Device . . . ... .. ... ... ......... 23
24.1 SlabManagement . . . .. ... ... .. ... ... ... 23
2.4.2 Remote Slab Placement . . . ... ... ... .......... 24



243 I/OPipelines . . . .. ... ... .. 26

2.4.4 Handling Slab Evictions . . . . . ... ... ... .. ...... 28
2.4.5 Handling Remote Failures . . . . . ... ... .......... 28

2.5 Transparent Remote Memory
Reclamation via INFINISWAP Daemon . . . . . . . ... ... ...... 29
2.5.1 Memory Management . . . . ... ... .. ... ........ 30
2.5.2 Decentralized Slab Eviction . . . . .. ... ... ... ..... 31
2.6 Implementation . . . . . . . . . . ... 33
2.6.1 ControlPlane . . . . . ... ... ... ... .. .. .. ..., 33
2.6.2 Connection Management . . . . . . . .. ... ... ....... 36
277 Evaluation . . . . . . . ... 36
2.7.1 Characteristics of the Benchmarks . . . . . ... ... ...... 37
2.7.2 INFINISWAP Performance as a Block Device . . ... ... ... 39
2.7.3 INFINISWAP’s Impact on Applications . . . . . .. .. ... ... 41
2.7.4 Performance of INFINISWAP Components . . . . . .. ... ... 47
2.7.5 Cluster-Wide Performance . . . . . .. ... .. ......... 50
2.7.6 Cost-Benefit Analysis . . . . .. ... ... ... ... ..., 53
2.8 DISCuSSION . . . . . ..o e e e e e e e 55
29 Related Work . . . . . . . . .. e 56
2.10Conclusion . . . ... e e e e 58
IIL. TIRESIAS: A GPU Cluster Manager for Deep Learning . . . . . . . . . .. 60
3.1 Introduction . . . . . . . . . . .. 60
3.2 Background and Motivation. . . . . . . ... .. L oL 64
3.2.1 Characteristics of Production DL Cluster . . . . . ... .. ... 64
322 Challenges . . . . . . . . . e 68
3.2.3 Potential for Benefits . . . . . . ... ... ... ... ..., 71
3.3 TIRESIAS Design . . . . . . . . . . . it e 72
3.3.1 Overall Architecture . . . . . ... ... .. ... .. ...... 72
3.3.2 Scheduling . ... ... ... ... 74
333 Placement. . . . . . . . ... 83
334 Summary . ... .. e e e e e e e 88
34 Implementation . . . . .. .. .. ... e 89
3.5 Evaluation . . . . . . .. e 90
3.5.1 Experimental Setup. . . . ... ... ... ... ... ... 91
3.5.2 TIRESIAS in Testbed Experiments . . . . . . ... ... ..... 94
3.5.3 TIRESIAS in Trace-Driven Simulations . . . . .. ... ... .. 98
3.5.4 Sensitivity Analysis . . . .. ..o 99
3.6 DISCUSSION . . . . . . v ot e e e e e 101
3.7 Related Work . . . . . . . .. . ... ... 102
3.8 Conclusion . . . . . . ... 104
IV. AuTOPS: Elastic Model Aggregation with Parameter Service . . . . . . . . 105
4.1 Introduction . . . . . . . . . . . . e e e 105
4.2 Background and Motivation. . . . . . ... ... ... .. 108

vi



4.2.1 CPU Underutilization . . . . . . . . . . . . o v v v ... 109

4.2.2 Opportunities Brought by DDL training . . . . . . ... .. ... 111

4.3 Parameter Service . . . . . . .. ... e e e 111

4.3.1 SystemOverview . . . . . . . . . . e 112

4.3.2 Tensor Migration . . . . . . . . . . .. i 115

4.3.3 Model Aggregation Management . . . . . .. .. ... ..... 118

4.4 Implementation . . . . . . . . . . .. . e e 129

4.5 Evaluation . . . . . . . . ... 130

4.5.1 Experimental Setup. . . . . . . . . . ... ... .. ... 131

4.5.2 EvaluationResults . . . ... ... ... ... ... ....... 133

4.6 Discussion . . . . . . ... e e e e e e 139

47 Related Work . . . . . . . . . . . . ..o 140

4.8 Conclusion . . . . .. . . . . .. e 143

V. Conclusions . . . . . . . . . . . 144
5.1 Contributions . . . . . . . . . . . .. e 144

5.2 LIimitations . . . . . . . . .. e e e e e e e e e e e 146

53 FutureWork . . . . . . ... 148

5S4 Summary ... e 152
Bibliography . . . . . . .. ... 154

vil



1.1
1.2
1.3
1.4
2.1
22

2.3
24
2.5
2.6
2.7

2.8
29
2.10

2.11
2.12
2.13
2.14
2.15
2.16
2.17

LIST OF FIGURES

Developing DL models . . . . . ... ... .. ... .. ... .. .. .. ...
Two major patterns of DDL training. . . . . . . . .. ... .. ... ......
A toy example of data-parallel distributed training. . . . . . .. .. ... ...
INFINISWAP, TIRESIAS, and AUTOPS inaDL cluster . . . . ... ... ...
Performance of in-memory applications under different memory constraints.
Imbalance in 10s-averaged memory usage in two large production clusters at
Facebook and Google. . . . . . .. ... ... ... .
INFINISWAP architecture. . . . . . ... .. ... ... ... ... ......
Remote machine selection by using power of two choices. . . . . .. ... ..
INFINISWAP block device overview. . . . . . . . .. .. .. .. ... .. ...
INFINISWAP daemon OVerview. . . . . . . . . . v v v v v v v v v v oo

Analytical eviction performance for evicting F/(= 10) slabs for varying values

Batch eviction by INFINISWAP daemon. . . . . . . . . .. ... .. .. ....
Decentralized placement and eviction protocols in INFINISWAP. . . . . . . ..
Timing diagrams (not drawn to scale) during decentralized placement and
EVICHON €VENES. . . . . . . . o v it et e e e e e e e
CPU and memory usage characteristics of the benchmarked applications.

Read and write bandwidths of INFINISWAP. . . . . . . ... ... ... ....
Performance of in-memory applications using INFINISWAP. . . . . .. .. ..
nbdX performance for comparison. . . . . .. .. ...
Comparative performance for PageRank using Apache Spark. . . . .. .. ..
Throughput lossof VoltDB. . . . . . . . ... ... ... ... ... .....

Memory utilization when INFINISWAP evicts slabs. . . . . . .. .. .. .. ..

viii

34



2.18
2.19

2.20

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
4.1
42
43
4.4
45
4.6
4.7
4.8
4.9
4.10

Cluster memory utilization when using INFINISWAP. . . . . . ... ... ...
Median completion times of containers for different configurations in the clus-
ter eXPEeriment. . . . . . . . vt i e e e e e e e e e e e e e e e e
Revenue increases with INFINISWAP under three different cloud vendors’ reg-
ular and discounted pricing models. . . . . . .. ... oL,
Characteristics of DL jobs in the production cluster P. . . . . . . ... .. ..
Training loss of two production jobs from P. . . . .. ... .. ... .....
Training performance with different placement schemes. . . . . . . .. .. ..
Time overhead of pausing a DDL job in Tensorflow. . . . .. ... ... ...
Time overhead of resuming a DDL job in Tensorflow. . . . . . ... ... ...
TIRESIAS components and their interactions. . . . . . . .. ... ... ....
A scheduling example using 2D-Gittins index. . . . . . . .. ... ... ...
Discretized 2DAS with K queues. . . . . . . . . . .. .. ... .. .. ...,
State transition diagram of a jobin TIRESIAS. . . . . . . . . . . . . ... ...
Improvements in the average JCT using TIRESIAS w.r.t. YARN-CS and SRTF.
Cluster-wide GPU utilization. . . . . .. .. .. ... ... .. ........
Performance improvement from job placement in TIRESIAS-L.. . . . . . . ..
JCT distributions using different solutions in the trace-driven simulation.
Sensitivity analysis of TIRESIAS-L. . . . .. ... ... ... .. .. .....
Sensitivity analysis of TIRESIAS-G. . . . . . .. . .. .. ... ... .....
CPU usage of model aggregation in VGG19 training. . . . . . ... ... ...
Average CPU utilization of model aggregation. . . . . . ... ... .. ....
Parameter Service architecture. . . . . . ... ... ... L.
Interactions among worker and Parameter Service components. . . . . . . . .
Procedure of tensor migration in Parameter Service. . . . ... .. .. .. ..
Toy examples of cyclic execution of Aggregator. . . . . . . ... ... ....
Overview of Aggregatorcluster. . . . . . . . . .. .. ... ... .......
Normalized performance of single job using AUTOPS. . . . . ... ... ...
Number of Aggregators when multiple (2s-2w) jobs use AUTOPS together. .

Performance impact when multiple (2s-2w) jobs share AUTOPS. . . . . . . ..

1X

51

52

54

70

74

100
100
109
110
112
114
117
120
126
133

. 135



4.11
4.12

5.1
5.2

Time trace of the two-jobcasestudy.. . . . . . .. ... ... ... ... ... 137

CPU consumption of AUTOPS compared to total CPU requirements of run-

ning jobs in the trace-driven simulation. . . . . . . . .. ... ..o, 138
Prediction pipeline for traffic analysis application. . . . . . .. .. ... ... 150
Number of objects detected in individual images in COCO dataset. . . . . . . . 151



2.1

22
3.1
32
33
34

3.5
3.6
4.1
4.2
4.3
4.4

LIST OF TABLES

Performance of an in-memory Memcached server with and without INFIN-

ISWAP USINg remote MEeMOTY. . . .« . v v v v v e v e e e e e e e e e e e 49
Cost model parameters. . . . . . . . . . .. L Lo 53
Normalized performance of single-dimensional schedulers w.r.t. SRSE. . . . . 76
Comparison of DL cluster managers. . . . .. ... ... ... ........ 88
Characteristics of the DL models (in TensorFlow) used the experiments. . . . . 92

Bins of DL jobs with different GPU requirements (Small and Large) and exe-

cution time (Shortand Long). . . . . . . . ... ... ... ... ... ..., 93
Queueing delays for DDL jobs for different solutions. . . . . . ... ... .. 96
Improvements in JCT using TIRESIAS in simulation. . . . . . ... ... ... 99
Notations in the IP problem and assignment scheme. . . . . . ... ... ... 121
Models and datasets in the experiments. . . . . . . . . . . . . ... ... ... 131
Time overhead of migrating all tensorsinamodel. . . . . ... ... ... .. 134
CPU reduction ratio when 2 (4s-4w) jobs use AUTOPS. . . .. .. ... ... 136

X1



LIST OF ABBREVIATIONS

DL Deep Learning . . . . . . . . . . . . . e Xiv
DDL Distributed Deep Learning . . . . . . . . .. ... ... L. Xiv
JCT Job Completion Time . . . . . ... ... ... .. ... ..., Xiv
PS Parameter Server . . . . . . ... L. 4
SJF ShortestJob First. . . . . . . . . .. 7
SRTF Shortest Remaining Time First . . . . . .. ... ... ... ........ 7
RDMA Remote Direct Memory Access . . . . . . . . oo v v e 9
EWMA Exponentially Weighted Moving Average . . . . . . ... ... ...... 23
LAS Least Attained Service . . . . . .. . .. ... 62
FIFO FirstIn, FirstOut . . . . . . . . . . . . e s e 75
HOL Head Of Line . . . . . . . . . . .. . . e 75
SF Smallest First . . . . . . . . . . . . 75
SRSF Shortest Remaining Service First . . . . . . ... ... ... ....... 75

Xii



MLFQ Multi Level Feedback Queue

SERPT Shortest Expected Remaining Processing Time . . . . . .. ... ... ..

SLO Service Level Objective . . . .

X1il



ABSTRACT

Deep Learning (DL) is gaining rapid popularity in various domains, such as computer
vision, speech recognition, etc. With the increasing demands, large clusters have been
built to develop DL models (i.e., data preparation and model training). DL jobs have some
unique features ranging from their hardware requirements to execution patterns. However,
the resource management techniques applied in existing DL clusters have not yet been
adapted to those new features, which leads to resource inefficiency and hurts the perfor-
mance of DL jobs.

We observed three major challenges brought by DL jobs. First, data preparation jobs,
which prepare training datasets from a large volume of raw data, are memory intensive. DL
clusters often over-allocate memory resource to those jobs for protecting their performance,
which causes memory underutilization in DL clusters. Second, the execution time of a DL,
training job is often unknown before job completion. Without such information, existing
cluster schedulers are unable to minimize the average Job Completion Time (JCT) of those
jobs. Third, model aggregations in Distributed Deep Learning (DDL) training are often
assigned with a fixed group of CPUs. However, a large portion of those CPUs are wasted
because the bursty model aggregations can not saturate them all the time.

In this thesis, we propose a suite of techniques to eliminate the mismatches between
DL jobs and resource management in DL clusters. First, we bring the idea of memory
disaggregation to enhance the memory utilization of DL clusters. The unused memory in
data preparation jobs is exposed as remote memory to other machines that are running out

of local memory. Second, we design a two-dimensional attained-service-based scheduler to

X1V



optimize the average JCT of DL training jobs. This scheduler takes the temporal and spatial
characteristics of DL training jobs into consideration and can efficiently schedule them
without knowing their execution time. Third, we define a shared model aggregation service
to reduce the CPU cost of DDL training. Using this service, model aggregations from
different DDL training jobs are carefully packed together and use the same group of CPUs
in a time-sharing manner. With these techniques, we demonstrate that huge improvements
in resource efficiency and job performance can be obtained when the cluster’s resource

management matches with the features of DL jobs.
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CHAPTER 1

Introduction

In recent years, DL has gained significant successes in many research domains, such
as image classification [93], speech recognition [95], and machine translation [68]. More
importantly, it has become the driving power in a variety of application disciplines, such
as robotics [104], autonomous driving [55, 139], and healthcare [88], and has remarkably
changed our daily lives.

The core of a DL application is to build and train a particular mathematical model (i.e.,
deep neural network). The model contains many parameters that are tuned throughout
the training process to fit the observed data closely. After training, the model can predict
outcomes for the new data based on the data patterns it learned.

With the popularity of DL applications, an increasing number of DL. models are being
developed. A 10.5x increase of DL jobs has been observed in Microsoft from 2016 to
2018 [99]. Meanwhile, more and more large-scale DL clusters have been built and shared
among many users to meet the rising demands [41, 3, 4, 10]. Training a DL model is typ-
ically compute-intensive and heavily reliant on powerful GPU for acceleration. Therefore,
different from the traditional clusters, DL clusters are often equipped with a large number

of GPU devices.



Despite the rapid innovations in hardware (e.g., GPU, TPU [101]), the software sys-
tems for resource management in DL clusters are lagging behind. Existing DL clusters still
apply the resource management techniques that were designed for traditional big-data clus-
ters [164, 99]. However, those techniques have not yet been adapted to the new features of
DL applications, which leads to resource inefficiency of clusters and hurts the performance
of DL jobs as well. For example, existing cluster managers perform poorly in scheduling
DL training jobs (Chapter III). The unpredictable execution time of DL training jobs makes
them unable to optimize the overall JCT.

This thesis focuses on the mismatches between DL jobs and resource management
techniques in existing DL clusters. We propose a suite of techniques to mitigate them with
the objectives of improving resource efficiency and the performance of DL jobs.

In the remainder of this chapter, we introduce some background information of DL

jobs, the major challenges in DL clusters, and summarize the contributions of this thesis.

1.1 Background: Developing Deep Learning Models

This section introduces the background knowledge of DL models. Generally, develop-

ing a DL model contains two major steps: data preparation and model training (Figure 1.1).

1.1.1 Data Preparation

A DL model contains the patterns learned from a large amount of observed data. There-
fore, one important foundation of developing DL models is to have well-prepared training

datasets. For example, the success of ImageNet [67] dataset has greatly driven the evolu-
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Figure 1.1: Developing DL models. There are two steps: data preparation and model training.

tion in image classification. In the data preparation step, a large volume of raw data are
processed and converted into usable datasets. The processing operations include but are
not limited to data cleaning, validation, and labeling. There is no existing end-to-end plat-
form that automatically runs data preparation for DL yet. Snorkel [144] is the first tool
that can automatically label the training data. Normally, developers have to customize data

preparation systems by utilizing the existing data processing frameworks (e.g., Spark [32]).

1.1.2 Model Training

Model training is the process that uses a learning algorithm to adjust model parameters
to make the DL model fit the training data most closely. DL training works in an iterative
fashion. In each iteration, the training process operates on a few samples of training data
called mini-batch. It first performs a forward pass with one mini-batch of input data. The
error between the outputs of the forward pass and the desired outputs will be propagated
over the model through a backward pass where the gradient for each model parameter is

generated. Before the end of the iteration, the model parameters will be updated using
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Figure 1.2: Two major patterns of DDL training. Data parallelism in (a) uses Parameter Server (PS)
for model aggregation.

their gradients by the model updating function. Due to the very large number of model
parameters in a single model, the forward-and-backward computation is often executed by
GPU s for acceleration. Typically, millions of such iterations have to be executed before the

model reaches its accuracy target.

1.1.2.1 Distributed Training

To deal with the rapid increase of training datasets and model complexity, DDL train-
ing, which leverages multiple (GPU) workers to work on the same model in parallel, is
becoming more prevalent [ 140, 164]. There are two major approaches of distributed train-
ing: data parallelism and model parallelism, both of which are available in popular DL

frameworks [35, 25, 31, 20].

Data Parallelism. The most common choice for DDL training is data parallelism. Each
worker node operates on its local copy of the model (i.e., parameters); the training dataset
is divided into equal-sized subsets to feed those workers (Figure 1.2a). In each iteration,
workers perform forward-and-backward computation and generate their local gradients in-

4
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Figure 1.3: A toy example of data-parallel distributed training. Parameter server (PS) is applied
for model aggregation. There are 2 workers and 2 server instances in this job. The DL model
has 2 tensors. Each server instance is in charge of one tensor and handles the related aggregation
operations. (a) presents the key job components in this example. (b) shows the execution timeline
of all participants(i.e., workers and servers) on different resource (e.g., GPU, CPU, and network).
After the n'" iteration, the job proceeds to the (n + 1) iteration with the same operations. For

simplicity, the width of each operation block is equalized and does not represent the actual execution
time.

dependently. Different from single-worker training, data-parallel distributed training needs
to execute model aggregation' before starting the next training iteration (Figure 1.3b). In
model aggregation, the local gradients from distributed workers are aggregated together

and transformed into global gradients for model updating. After updating the model pa-

! Also known as tensor aggregation and gradient aggregation.



rameters, the new model parameters are pulled back by each worker for the next training
iteration. Parameter server (PS) [112, 141] (Figure 1.3a) is the most common implemen-
tation of model aggregation in popular DL frameworks. The server instance in PS is in-
dependent of the training workers. It hosts the most updated copy (i.e., master copy) of
model tensors ((i.e., a group of parameters) and updates them using the aggregated results

(Figure 1.3b).

Model Parallelism. Instead of dividing training data, model parallelism partitions model
parameters across worker nodes (Figure 1.2b), which makes it possible to train a large
model whose size exceeds the capacity of a single worker. Each worker in the training job
operates on a subset of model parameters on the same training data. Data communication
happens when passing intermediate results between workers who hold the neighbor pa-
rameters. However, implementing model parallelism, which needs to partition the model,
requires full knowledge of the training task. Therefore, model parallelism is less popular
than data parallelism.

Beyond those two types of distributed training, several alternatives have been proposed
with different optimization objectives. Tofu [162] enables training extra-large DL models
by partitioning the dataflow graph of model tensors, which has less GPU memory foot-
print than vanilla model parallelism. PipeDream [130] proposes pipeline parallelism that

achieves faster DL training by combing data and model parallelism.



1.2 Challenges in Deep Learning Clusters

As discussed above, existing DL clusters ignore the features of DL jobs and reuse the
resource management techniques from traditional big-data clusters. The mismatches be-
tween DL jobs and resource management techniques in DL clusters lead to the following

challenges:

Memory over-allocation for data processing applications causes cluster-wise mem-
ory underutilization. In the data preparation step (§1.1.1), the data processing jobs are
mostly memory-intensive applications that have to keep their working data in memory
for good performance. They will experience rapid performance deteriorations when their
working sets do not fully fit in memory (§2.2.2). Therefore, existing clusters often over-
allocate memory to those jobs for satisfying their peak usages [51], which results in severe

memory underutilization across the cluster.

DL training jobs suffer from long JCTs due to their unpredictable execution time.
To minimize the average JCT, job scheduling algorithms (e.g., Shortest Job First (SJF)
and Shortest Remaining Time First (SRTF)) often require the information of jobs’ (remain-
ing) execution time. For DL training jobs, this information is mostly unknown before job
completion. Also, it is infeasible to predict a DL training job’s remaining execution time
in a production environment (§3.2.2). Therefore, existing DL clusters perform poorly in
minimizing the average JCT of DL training jobs. They only provide basic orchestrations,
i.e., non-preemptive scheduling of jobs as they arrive. Consequently, jobs suffer from long

queuing delays when the cluster is over-subscribed.



Bursty model aggregations in DDL training leave the CPU resource being under-
utilized. In existing DL clusters, PS instances of a DDL job are run in containers or
virtual machines with a fixed group of CPUs. However, a PS instance usually can not keep
its assigned CPUs saturated — model aggregation is inherently bursty (§4.2.1). The model
aggregation of a tensor can not start until the completion of its backward computation (Fig-
ure 1.3b). Therefore, the PS instance must idly wait for workers’ local gradients that are

generated in backward computation.

1.3 Thesis Statement and Contributions

Thesis Statement:
Existing DL clusters have not yet been adapted to the unique characteristics of DL jobs.

We characterize DL jobs and design techniques to take advantage of them in DL clusters

with improved resource efficiency and application performance.

In this thesis, we propose the following software approaches to meet the challenges
imposed by DL jobs. These approaches work in the different software layers of DL clusters

(Figure 1.4).

1. Decentralized Memory Disaggregation: To improve cluster-wise memory utiliza-
tion, we bring the idea of memory disaggregation, where the unused memory in data
preparation jobs can be utilized as remote memory by other machines in the DL cluster.
With this idea, we design and implement INFINISWAP, a remote memory paging system

in the operating system layer (Figure 1.4). INFINISWAP can opportunistically harvest and
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Figure 1.4: INFINISWAP, TIRESIAS, and AUTOPS in a DL cluster.

transparently expose unused memory to remote machines without any modifications in ap-
plications, OSes, or hardware. To manage remote memory at scale, INFINISWAP leverages
the power-of-many-choices algorithms to perform remote memory mapping and eviction
in a decentralized manner. We have deployed and evaluated INFINISWAP on a real cluster
with a Remote Direct Memory Access (RDMA) network. INFINISWAP can significantly
improve the memory utilization of the cluster and bring performance benefits to the data

preparation jobs.

2. Two-Dimensional Attained-Service-Based Scheduler: Although the execution time
of a DL training job is unpredictable, its attained service (e.g., execution time) is easy
to measure. We propose a two-dimensional attained-service-based scheduler that aims to
minimize the overall JCT of DL training jobs without complete job information. Con-
sidering the huge variations in both temporal (i.e., executed time) and spatial (i.e., GPU
requirements) aspects of DL training jobs, we define the total executed GPU time as the

two-dimensional attained service of jobs and use it as the input of our scheduler. This



scheduler has two algorithms: Two-Dimensional Gittins Index relies on partial information
and Two-Dimensional LAS is information-agnostic. We implemented TIRESIAS, a GPU
cluster manager that can efficiently schedule and place DL training jobs. The profile-based
placement algorithm in TIRESIAS relaxes the consolidated placement constraint of DDL
training jobs without any user input. Experiments on the Michigan ConFlux cluster and
large-scale trace-driven simulations show that TIRESIAS improves the average JCT by up
to 5.5x over an Apache YARN-based resource manager used in production. Compared
to a state-of-the-art DDL cluster scheduler (Gandiva [164]), TIRESIAS shows significant

improvements in the average JCT.

3. Elastic Model Aggregation Service: To reduce the CPU cost of model aggregation,
we propose the idea of elastic model aggregation service. It decouples the function of
model aggregation from individual training jobs and provides a shared service to execute
model aggregations from all the DDL jobs in the cluster. In this service, model aggregations
from different jobs are efficiently packed together and dynamically migrated to fit into the
available CPUs. Furthermore, it can elastically scale up or down its CPUs based on its total
load. We implemented this idea into a new model aggregation framework AUTOPS and
evaluated it in testbed experiments and trace-driven simulations. AUTOPS reduces up to
75% of CPU consumption with little or no performance impact on the training jobs. The
design of AUTOPS is transparent to the users and can be incorporated into popular DL

frameworks.
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1.4 Thesis Structure

The remainder of this thesis is organized as follows. Chapter II introduces how to har-
vest the unused memory resource in a cluster for accelerating data processing applications
in DL through INFINISWAP. Chapter III presents TIRESIAS, a GPU cluster manager that
aims at reducing the average JCT of DL training job without complete job information.
Chapter IV discusses AUTOPS, a unified model aggregation service for DDL training with
the purpose of reducing CPU cost. In Chapter V, we conclude this thesis and discuss future

work.
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CHAPTER 11

INFINISWAP: Decentralized Memory

Disaggregation for Data Processing

2.1 Introduction

In data preparation phase (§1.1.1), the data processing jobs are mostly memory-intensive
applications who keep their working data in memory for good performance. However, they
will experience rapid performance deteriorations when their working sets do not fully fit in
memory (§2.2.2).

There are two primary ways of mitigating this issue: (i) rightsizing memory allocation
and (i1) increasing the effective memory capacity of each machine. Rightsizing is difficult
because applications often overestimate their requirements [145] or attempt to allocate for
peak usage [51], resulting in severe underutilization and unbalanced memory usage across
the cluster. Our analysis of two large production clusters shows that more than 70% of the
time there exists severe imbalance in memory utilizations across their machines (§2.2.3).

Proposals for memory disaggregation [91, 143, 77, 110] acknowledge this imbalance

and aim to expose a global memory bank to all machines to increase their effective mem-
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ory capacities. Recent studies suggest that modern RDMA networks can meet the latency
requirements of memory disaggregation architectures for numerous in-memory workloads
[77, 143]. However, existing proposals for memory disaggregation call for new archi-
tectures [91, 19, 15], new hardware designs [116, 117], and new programming models
[131, 142], rendering them infeasible.

In this chapter, we present INFINISWAP, a new scalable, decentralized remote memory
paging solution that enables efficient memory disaggregation. It is designed specifically
for RDMA networks to perform remote memory paging when applications cannot fit their
working sets in local memory. It does so without requiring any coordination or modifica-
tions to the underlying infrastructure, operating systems, and applications (§2.3).

INFINISWAP is not the first to exploit memory imbalance and disk-network latency
gap for remote memory paging [74, 76, 121, 132, 56, 47, 71, 115, 26]. However, unlike
existing solutions, it does not incur high remote CPU overheads, scalability concerns from
central coordination to find machines with free memory, and large performance loss due to
evictions from, and failures of, remote memory.

INFINISWAP addresses these challenges via two primary components: a block device
that is used as the swap space and a daemon that manages remotely accessible memory.
Both are present in every machine and work together without any central coordination.
The INFINISWAP block device writes synchronously to remote memory for low latency
and asynchronously to disk for fault-tolerance (§2.4). To mitigate high recovery overheads
of disks in the presence of remote evictions and failures, we divide its address space into
fixed-size slabs and place them across many machines’ remote memory. As a result, remote

evictions and failures only affect the performance of a fraction of its entire address space.
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To avoid coordination, we leverage power of two choices [129] to find remote machines
with available free memory. All remote I/O happens via RDMA operations.

The INFINISWAP daemon in each machine monitors and preallocates slabs to avoid
memory allocation overheads when a new slab is mapped (§2.5). It also monitors and
proactively evicts slabs to minimize performance impact on local applications. Because
swap activities on the hosted slabs are transparent to the daemon, we leverage power of
many choices [138] to perform batch eviction without any central coordination.

We have implemented INFINISWAP ! on Linux kernel 3.13.0 (§2.6) and deployed it on
a 56 Gbps, 32-machine RDMA cluster on CloudLab [7]. We evaluated it using multiple
unmodified memory-intensive applications: VoltDB, Memcached, PowerGraph, GraphX,
and Apache Spark using industrial benchmarks and production workloads (§2.7). Using
INFINISWAP, throughputs improve between 4x (0.94x) and 15.4x (7.8x) over disk (Mel-
lanox nbdX [26]), and median and tail latencies by up to 5.4x (2x) and 61x (2.3%),
respectively. Memory-heavy workloads experience limited performance difference dur-
ing paging, while CPU-heavy workloads experience some degradation. In comparison to
nbdX, INFINISWAP does not use any remote CPU and provides a 2x—4 x higher read/write
bandwidth. INFINISWAP can recover from remote evictions and failures while still pro-
viding higher application-level performance in comparison to disks. Finally, its benefits
hold in the presence of high concurrency and at scale, with a negligible increase in network
bandwidth usage.

Despite its effectiveness, INFINISWAP cannot transparently emulate memory disaggre-

gation for CPU-heavy workloads such as Spark and VoltDB (unlike memory-intensive

Thttps://github.com/SymbioticLab/infiniswap
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Memcached and PowerGraph) due to the inherent overheads of paging (e.g., context switch-
ing). We still consider it useful because of its other tangible benefits. For example, when
working sets do not fit in memory, VoltDB’s performance degrades linearly using INFIN-
ISWAP instead of experiencing a super-linear drop.

We discuss related work in Section 2.9.

2.2 Motivation

This section overviews necessary background (§2.2.1) and discusses potential benefits
from paging to remote memory in memory-intensive workloads (§2.2.2) as well as oppor-

tunities for doing so in production clusters (§2.2.3).

2.2.1 Background

Paging. Modern operating systems (OSes) support virtual memory to provide applica-
tions with larger address spaces than physically possible, using fixed-size pages (typically
4KB) as the unit of memory management. Usually, there are many more virtual pages
than physical ones. Page faults occur whenever an application addresses a virtual address,
whose corresponding page does not reside in physical memory. Subsequently, the virtual
memory manager (VMM) consults with the page table to bring that page into memorys; this
is known as paging in. To make space for the new page, the VMM may need to page out
one or more already existing pages to a block device, which is known as the swap space.
Any block device that implements an expected interface can be used as a swap space.

INFINISWAP is written as a virtual block device to perform this role.
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See [22] for a detailed description of memory management and its many optimizations

in a modern OS.

Application Deployment Model. We consider a container-based application deployment
model, which is common in production datacenters [161, 145, 51] as well as in container-
as-a-service (CaaS) models [94, 159, 21, 11]. These clusters use resource allocation or
scheduling algorithms [51, 150, 85, 78] to determine resource shares of different appli-
cations and deploy application processes in containers to ensure resource isolation. Ap-
plications start paging when they require more memory than the memory limits of their

containers.

Network Model. INFINISWAP requires a low-latency, RDMA network, but we do not
make any assumptions about specific RDMA technologies (e.g., Infiniband vs. RoCE)
or network diameters. Although we evaluate INFINISWAP in a small-scale environment,
recent results suggest that deploying RDMA (thus INFINISWAP) on large datacenters may

indeed be feasible [175, 90, 128].

2.2.2 Potential Benefits

To illustrate the adverse effects of paging, we consider four application types: (i) a
standard TPC-C benchmark [37] running on the VoltDB [39] in-memory database; (ii) two
Facebook-like workloads [49] running on the Memcached [23] key-value store; (ii1) Power-
Graph [82] running the TunkRank algorithm [38] on a Twitter dataset [106]; and (iv) PageR-

ank running on Apache Spark [168] and GraphX [83] on the Twitter dataset. We found that
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Spark starts thrashing during paging and does not complete in many cases. We defer dis-

cussion of Spark to Section 2.7.3.4 and consider the rest here.
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Figure 2.1: Performance of in-memory applications under different memory constraints. For mod-
ern in-memory applications, a decrease in the percentage of the working set that fits in memory
often results in a disproportionately larger loss of performance. This effect is further amplified for
tail latencies. All plots show single-machine performance and the median value of five runs. Lower
is better for the latency-related plots (lines) and the opposite holds for the throughout-related ones
(bars). Note the logarithmic Y-axes in the latency/completion time plots.

To avoid externalities, we only focus on single-server performance. Peak memory us-
age of each of these runs were around 10GB, significantly smaller than the server’s total
physical memory. We run each application inside containers of different memory capaci-
ties: 2% in the X-axes of Figure 2.1 refers to a run inside a container that can hold at most

x% of the application’s working set in memory, and = < 100 forces paging. Section 2.7.3
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has more details on the experimental setups.

We highlight two observations that show large potential benefits from INFINISWAP.
First, paging has significant, non-linear impact on performance (Figure 2.1). For example,
a 25% reduction in in-memory working set results in a 5.5x and 2.1x throughput loss
for VoltDB and Memcached; in contrast, PowerGraph and GraphX worsen marginally.
However, another 25% reduction makes VoltDB, Memcached, PowerGraph, and GraphX
up to 24 %, 17x, 8%, and 23X worse, respectively.

Second, paging implications are highlighed particularly at the tail latencies. As working
sets do not fit into memory, the 99th-percentile latencies of VoltDB and Memcached worsen
by up to 71.5x and 21.5x, respectively. In contrast, their median latencies worsens by up
to 5.7x and 1.1x, respectively.

These gigantic performance gaps suggest that a theoretical, 100%-efficient memory
disaggregation solution can result in huge benefits, assuming that everything such solutions
may require is ensured. It also shows that bridging some of these gaps by a practical,

deployable solution can be worthwhile.

2.2.3 Characteristics of Memory Imbalance

To understand the presence of memory imbalance in modern clusters and corresponding
opportunities, we analyzed traces from two production clusters: (i) a 3000-machine data
analytics cluster (Facebook) and (ii) a 12500-machine cluster (Google) running a mix of
diverse short- and long-running applications.

We highlight two key observations — the presence of memory imbalance and its tempo-
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Figure 2.2: Imbalance in 10s-averaged memory usage in two large production clusters at Facebook
and Google.

ral variabilities — that guide INFINISWAP’s design decisions.

Presence of Imbalance. We found that the memory usage across machines can be sub-
stantially unbalanced in the short term (e.g., tens of seconds). Causes of imbalance include
placement and scheduling constraints [79, 51] and resource fragmentation during packing
[85, 161], among others. We measured memory utilization imbalance by calculating the
99th-percentile to the median usage ratio over 10-second intervals (Figure 2.2). With a per-
fect balance, these values would be 1. However, we found this ratio to be 2.4 in Facebook
and 3.35 in Google more than half the time; meaning, most of the time, more than a half of

the cluster aggregate memory remains unutilized.

Temporal Variabilities. Although skewed, memory utilizations remained stable over
short intervals, which is useful for predictable decision-making when selecting remote
machines. To analyze the stability of memory utilizations, we adopted the methodology
described by Chowdhury et al. [60, §4.3]. Specifically, we consider a machine’s memory
utilization U(m) at time ¢ to be stable for the duration 7" if the difference between U;(m)
and the average value of U;(m) over the interval [t, ¢ + 7T') remains within 10% of U;(m).
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We observed that average memory utilizations of a machine remained stable for smaller
durations with very high probabilities. For the most unpredictable machine in the Face-
book cluster, the probabilities that its current memory utilization from any instant will not
change by more than 10% for the next 10, 20, and 40 seconds were 0.74, 0.58, and 0.42, re-
spectively. For Google, the corresponding numbers were 0.97, 0.94, and 0.89, respectively.
We believe that the higher probabilities in the Google cluster are due to its long-running

services, whereas the Facebook cluster runs data analytics with many short tasks [46].

2.3 INFINISWAP Overview

INFINISWAP is a decentralized memory disaggregation solution for RDMA clusters that
opportunistically uses remote memory for paging. In this section, we present a high-level
overview of INFINISWAP to help the reader follow how INFINISWAP performs efficient and
fault-tolerant memory disaggregation (§2.4), how it enables fast and transparent memory

reclamation (§2.5), and its implementation details (§2.6).

2.3.1 Problem Statement

The main goal of INFINISWAP is to efficiently expose all of a cluster’s memory to user
applications without any modifications to those applications or the OSes of individual ma-
chines. It must also be scalable, fault-tolerant, and transparent so that application perfor-

mance on remote machines remains unaffected.

20



oo Infiniswap

Container 1 Container N |Daemon .
A Infiniswap
User Space
-— _&_ — o o o _p_ -— Container A| DaemOIl

Kernel Space

User Space

Virtual Memory Manager (VMM) Kernel Space

Bl o | e

|
C '_”_”_”? I§ Page fault
IR T
I [} Individual page

Infiniswap Block Device I

- | Slab whose pages are mapped to
Sync : Il remote memory of Machine-I

RNIC I |:| Slab whose pages are

located only on local disk

Machine-1 =

Figure 2.3: INFINISWAP architecture. Each machine loads a block device as a kernel module (set
as swap device) and runs an INFINISWAP daemon. The block device divides its address space into
slabs and transparently maps them across many machines’ remote memory; paging happens at page
granularity via RDMA.

2.3.2 Architectural Overview

INFINISWAP consists of two primary components — INFINISWAP block device and IN-
FINISWAP daemon — that are present in every machine and work together without any cen-
tral coordination (Figure 2.3).

The INFINISWAP block device exposes a conventional block device I/O interface to the
virtual memory manager (VMM), which treats it as a fixed-size swap partition. The entire
address space of this device is logically partitioned into fixed-size slabs (SlabSize). A slab
is the unit of remote mapping and load balancing in INFINISWAP. Slabs from the same
device can be mapped to multiple remote machines’ memory for performance and load

balancing (§2.4.2). All pages belonging to the same slab are mapped to the same remote
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machine. On the INFINISWAP daemon side, a slab is a physical memory chunk of SlabSize
that is mapped to and used by an INFINISWAP block device as remote memory.

If a slab is mapped to remote memory, INFINISWAP synchronously writes a page-out
request for that slab to remote memory using RDMA WRITE, while writing it asyn-
chronously to the local disk. If it is not mapped, INFINISWAP synchronously writes the
page only to the local disk. For page-in requests or reads, INFINISWAP consults the slab
mapping to read from the appropriate source; it uses RDMA READ for remote memory.

The INFINISWAP daemon runs in the user space and only participates in control plane
activities. Specifically, it responds to slab-mapping requests from INFINISWAP block de-
vices, preallocates its local memory when possible to minimize time overheads in slab-
mapping initialization, and proactively evicts slabs, when necessary, to ensure minimal
impact on local applications. All control plane communications take place using RDMA
SEND/RECV.

We have implemented INFINISWAP as a loadable kernel module for Linux 3.13.0 and
deployed it in a 32-machine RDMA cluster. It performs well for a large variety of memory-

intensive workloads (§2.7.3).

Scalability. INFINISWAP leverages the well-known power-of-choices techniques [129,
138] during both slab placement in block devices (§2.4.2) and eviction in daemons (§2.5.2).
The reliance on decentralized techniques makes INFINISWAP more scalable by avoiding the

need for constant coordination, while still achieving low-latency mapping and eviction.
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Fault-tolerance. Because INFINISWAP does not have a central coordinator, it does not
have a single point of failure. If a remote machine fails or becomes unreachable, INFIN-
ISWAP relies on the remaining remote memory and the local backup disk (§2.4.5). If the

local disk also fails, INFINISWAP provides the same failure semantic as of today.

2.4 Efficient Memory Disaggregation

via INFINISWAP Block Device

In this section, we describe how INFINISWAP block devices manage their address spaces
(§2.4.1), perform decentralized slab placement to ensure better performance and load bal-
ancing (§2.4.2), handle I/0 requests (§2.4.3), and minimize the impacts of slab evictions

(§2.4.4) and remote failures (§2.4.5).

2.4.1 Slab Management

An INFINISWAP block device logically divides its entire address space into multiple
slabs of fixed size (SlabSize). Using a fixed size throughout the cluster simplifies slab
placement and eviction algorithms and their analyses.

Each slab starts in the unmapped state. INFINISWAP monitors the page activity rates
of each slab using an Exponentially Weighted Moving Average (EWMA) with one second
period:

Acurrent(5> = Ameasured<5) + (1 - a) Aold(s)
where « is the smoothing factor (o« = 0.2 by default) and A(s) refers to total page-in and
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page-out activities for slab s (initialized to zero).

When Acyrrent(s) crosses a threshold (HotSlab), INFINISWAP initiates remote place-
ment (§2.4.2) to map the slab to a remote machine’s memory. This late binding helps
INFINISWAP avoid unnecessary slab mapping and potential memory inefficiency. We set
HotSlab to 20 page I/O requests/second. In our current design, pages are not proactively
moved to remote memory. Instead, they are written to remote memory via RDMA WRITE
on subsequent page-out operations.

To keep track of whether a page can be found in remote memory, INFINISWAP maintains
a bitmap of all pages. All bits are initialized to zero. After a page is written out to remote
memory, its corresponding bit is set. Upon failure of a remote machine where a slab is
mapped or when a slab is evicted by the remote INFINISWAP daemon, all the bits pertaining
to that slab are reset.

In addition to being evicted by the remote machine or due to remote failure, INFIN-
ISWAP block devices may preemptively remove a slab from remote memory if Acyrrent(s)
goes below a threshold (ColdSlab). Our current implementation does not use this optimiza-

tion.

2.4.2 Remote Slab Placement

When the paging activity of an unmapped slab crosses the HotSlab threshold, INFIN-
ISWAP attempts to map that slab to a remote machine’s memory.
The slab placement algorithm has multiple goals. First, it must distribute slabs from

the same block device across as many remote machines as possible in order to minimize
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Figure 2.4: Remote machine selection by using power of two choices. INFINISWAP block device

uses power of two choices to select machines with the most available memory. It prefers machines
without any of its slabs to those who have to distribute slabs across as many machines as possible.

the impacts of future evictions from (failures of) remote machines. Second, it attempts to
balance memory utilization across all the machines to minimize the probability of future
evictions. Finally, it must be decentralized to provide low-latency mapping without central
coordination.

One can select an INFINISWAP daemon uniformly randomly without central coordina-
tion. However, this is known to cause load imbalance [129, 138].

Instead, we leverage power of two choices [129] to minimize memory imbalance across
machines. First, INFINISWAP divides all the machines (M) into two sets: those who already
have any slab of this block device (M;;4) and those who do not (Mpew). Next, it contacts
two INFINISWAP daemons and selects the one with the lowest memory usage (Figure 2.4).
It first selects from Mpew and then, if required, from M ;4. The two-step combination
distributes slabs across many machines while decreasing load imbalance in a decentralized

manner.
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Figure 2.5: INFINISWAP block device overview. Each machine uses one block device as its swap
partition.

2.4.3 1/0O Pipelines

The VMM submits page write and read requests to INFINISWAP block device using the
block I/O interface (Figure 2.5). We use the multi-queue block 10 queuing mechanism [5]
in INFINISWAP. Each CPU core is configured with an individual software staging queue,
where block (page) requests are staged. The request router consults the slab mapping and
the page bitmap to determine how to forward them to disk and/or remote memory.

Each RDMA dispatch queue has a limited number of entries, each of which has a regis-
tered buffer for RDMA communication. Although the number of RDMA dispatch queues

is the same as that of CPU cores, they do not follow one-to-one mapping. Each request from
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a core is assigned to a random RDMA dispatch queue by hashing its address parameter to

avoid load imbalance.

Page Writes. For a page write, if the corresponding slab is mapped, a write request is
duplicated and put into both RDMA and disk dispatch queues. The content of the page is
copied into the buffer of RDMA dispatch entry, and the buffer is shared between the dupli-
cated requests. Once the RDMA WRITE operation completes, the page write is completed
and its corresponding physical memory can be reclaimed by the kernel without waiting for
the disk write. However, the RDMA dispatch entry — and its buffer — will not be released
until the completion of the disk write operation. When INFINISWAP cannot get a free entry
from all RDMA dispatch queues, it blocks until one is released.

For unmapped slabs, a write request is only put into the disk dispatch queue; in this

case, INFINISWAP blocks until the completion of the write operation.

Page Reads. For a page read, if the corresponding slab is mapped and the page bitmap is
set, an RDMA READ operation is put into the RDMA dispatch queue. When the READ

completes, INFINISWAP responds back. Otherwise, INFINISWAP reads it from the disk.

Multi-Page Requests. To optimize I/O requests, the VMM often batches multiple page
requests together and sends one multi-page (batched) request. The maximum batch size in
the current implementation of INFINISWAP is 128 KB (i.e., 32 4 KB pages). The challenge
in handling multi-page requests arises in cases where pages cross slab boundaries, espe-
cially when some slabs are mapped and others are unmapped. In these cases, INFINISWAP

waits until operations on all the pages in that batch have completed in different sources;
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then, it completes the multi-page I/O request.

2.4.4 Handling Slab Evictions

The decision to evict a slab (§2.5.2) is communicated to a block device via the EVICT
message from the corresponding INFINISWAP daemon. Upon receiving this message, the
block device marks the slab as unmapped and resets the corresponding portion of the
bitmap. All future requests will go to disk.

Next, it waits for all the in-flight requests in the corresponding RDMA dispatch queue(s)
to complete, polling every 10 microseconds. Once everything is settled, INFINISWAP re-
sponds back with a DONE message.

Note that if A(s) is above the HotSlab threshold, INFINISWAP will start remapping the

slab right away. Otherwise, it will wait until A(s) crosses HotSlab again.

2.4.5 Handling Remote Failures

INFINISWAP uses reliable connections for all communication and considers unreach-
ability of remote INFINISWAP daemons (e.g., due to machine failure, daemon process
crashes, etc.) as the primary failure scenario. Upon detecting a failure, the workflow is
similar to that of eviction: the block device marks the slab(s) on that machine as unmapped
and resets the corresponding portion(s) of the bitmap.

The key difference and a possible concern is handling in-flight requests, especially
read-after-write scenarios. In such a case, the remote machine fails after a page (F) has

been written to remote memory but before it is written to disk (i.e., P is still in the disk
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Figure 2.6: INFINISWAP daemon overview. INFINISWAP daemon periodically monitors the avail-
able free memory to pre-allocate slabs and to perform fast evictions. Each machine runs one dae-
mon.

dispatch queue). If the VMM attempts to page P in, the bitmap will point to disk, and a
disk read request will be added to the disk dispatch queue. Because all I/O requests for
the same slab go to the same disk dispatch queue, such read requests will be served by the
on-disk data written by the previous write operation.

In the current implementation, INFINISWAP does not handle transient failures sepa-
rately. A possible optimization would be to use a timeout before marking the corresponding

slabs unmapped.

2.5 Transparent Remote Memory

Reclamation via INFINISWAP Daemon

In this section, we describe how INFINISWAP daemons (Figure 2.6) monitor and man-

age memory (§2.5.1) and perform slab evictions to minimize remote and local performance

impacts (§2.5.2).
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2.5.1 Memory Management

The core functionality of each INFINISWAP daemon is to claim memory on behalf of re-
mote INFINISWAP block devices as well as reclaiming them on behalf of local applications.
To achieve this, the daemon monitors the total memory usage of everything else running

on the machine using an EWMA with one second period:

Ucurrent = 5 Umeasured +(1-5) Uold

where [ is the smoothing factor (5 = 0.2 by default) and U refers to total memory usage
(initialized to 0).

Given the total memory usage, INFINISWAP daemon focuses on maintaining a Head-
Room amount of free memory in the machine by controlling its own total memory allo-
cation at that point. The optimal value of HeadRoom should be dynamically determined
based on the amount of memory and the applications running in each machine. Our current
implementation does not include this optimization and uses 8 GB HeadRoom by default on
64 GB machines.

When the amount of free memory grows above HeadRoom, INFINISWAP proactively
allocates slabs of size SlabSize and marks them as unmapped. Proactive allocation of slabs
makes the initialization process faster when an INFINISWAP block device attempts to map

to that slab; the slab is marked mapped at that point.
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2.5.2 Decentralized Slab Eviction

When free memory shrinks below HeadRoom, INFINISWAP daemon proactively re-
leases slabs in two stages. It starts by releasing unmapped slabs. Then, if necessary, it
evicts I/ mapped slabs as described below.

Because applications running on the local machine do not care which slabs are evicted,
when INFINISWAP must evict, it focuses on minimizing the performance impact on the ma-
chines that are remotely paging. The key challenge arises from the fact that remote INFIN-
ISWAP block devices directly interact with their allocated slab(s) via RDMA READ/WRITE
operations without any involvement of INFINISWAP daemons. While this avoids CPU in-
volvements, it also prevents INFINISWAP from making any educated guess about perfor-
mance impact of evicting one or more slabs without first communicating with the corre-
sponding block devices.

This problem can be stated formally as follows. Given S mapped slabs, how to release
the E least-active ones to leave more than HeadRoom free memory?

At one extreme, the solution is simple with global knowledge. INFINISWAP daemon
can contact all block devices in the cluster to determine the least-used £ slabs and evict
them. This is prohibitive when F is significantly smaller than the total number of slabs
in the cluster. Having a centralized controller would not have helped either, because this
would require all INFINISWAP block devices to frequently report their slab activities.

At the other extreme, one can randomly pick one slab at a time without any communi-
cation. However, in this case, the likelihood of evicting a busy slab is very high. Consider a

parameter p, € [0, 1], and assume that a slab is busy (i.e., it is experiencing paging activities
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Figure 2.7: Analytical eviction performance for evicting E(= 10) slabs for varying values of E’.
Random refers to evicting E slabs one-by-one uniformly randomly.
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Figure 2.8: Batch eviction by INFINISWAP daemon. INFINISWAP daemon employs batch eviction
(i.e., contacting E’ more slabs to evict F slabs) for fast eviction of F lightly active slabs.

beyond a fixed threshold) with probability p;,. If we now reformulate the problem to finding
E lightly active slabs instead of the least-active ones, the probability would be (1 — p;).

As the cluster becomes busier (p, increases), this probability plummets (Figure 2.7).

Batch Eviction. Instead of randomly evicting slabs without any communication, we per-
form bounded communication to leverage generalized power of choices [138]. Similar
techniques had been used before for task scheduling and input selection [137, 160].

For F slabs to evict, INFINISWAP daemon considers F/+ E’ slabs, where £’ < E. Upon
communicating with the machines hosting those £/ + E’ slabs, it evicts F least-active ones

(i.e., the E slabs of E + E’ with the lowest A(.) values) (Figure 2.8). The probability of

?rE’(l i, E+E'—i (EfE/)‘

finding F lightly active slabs in this case is > — D) Db :
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Figure 2.7 plots the effectiveness of batch eviction for different values of £’ for £ =
10. Even for moderate cluster load, the probability of evicting lightly active slabs are
significantly higher using batch eviction.

The actual act of eviction is initiated when the daemon sends EVICT messages to cor-
responding block devices. Once a block device completes necessary bookkeeping (§2.4.4),

it responds with a DONE message. Only then INFINISWAP daemon releases the slab.

2.6 Implementation

INFINISWAP is a virtual block device that can be used as a swap partition, for example,
/dev/infiniswap0. We have implemented INFINISWAP as a loadable kernel module
for Linux 3.13.0 and beyond in about 3500 lines of C code. Our block device implemen-
tation is based on nbdX, a network block device over Accelio framework, developed by
Mellanox[26]. We also rely on stackbd [34] to redirect page I/O requests to the disk to
handle possible remote failures and evictions. INFINISWAP daemons are implemented and

run as user-space programs.

2.6.1 Control Plane

INFINISWAP components use message passing to transfer memory information and
memory service agreements. There are eight message types; the first four of them are used
by the placement algorithm (Figure 2.9a) and the rest are used by the eviction algorithm

(Figure 2.9b).
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(a) Sequence diagram during placement

Infiniswap Infiniswap Infiniswap
Block Block Infiniswap Block
Devicel Device 2 Daemon 1 Device 3

CHECK_ACTIVITY | CHECK_ACTIVITY

-

ACTIVITY

Decide which slabs
to evict

ACTIVITY

Process EVICT message;
Context switch;
Handle in-flight requests

Release memory

(b) Sequence diagram during eviction
Figure 2.9: Decentralized placement and eviction in INFINISWAP. (a) INFINISWAP block devices
use the power of two choices to select machines with the most available memory to place each slab.
(b) INFINISWAP daemons use the power of many choices to select slab(s) to evict; in this case, the
daemon is contacting 3 block devices to evict 2 slabs.
1. QUERY _MEM: Block devices send it to get the number of available memory slabs on
the daemon.
2. FREE_MEM: Daemons respond to QUERY_MEM requests with the number of available
memory slabs.

3. MAP: Block device confirms that it has decided to use one memory slab from this

daemon.
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4. MR_INFO: Daemon sends memory registration information (rkey, addr, 1len) of an

available memory slab to the block device in response to MAP.

5. CHECK_ACTIVITY: Daemons use this message to ask for paging activities of specific

memory slab(s).
6. ACTIVITY: Block device’s response to the CHECK ACTIVITY messages.
7. EVICT: Daemons alert the block device which memory slab(s) it has selected to evict.

8. DONE: After completely redirecting the requests to the to-be-evicted memory slab(s),
block device responds with this message so that the daemon can safely evict and return

physical memory to its local OS.

Send QUERY_MEM messages
]

Receive FREE_MEM from both daemons

® pick one and send MAP .
® RDMA register at daemon

and receive MR_INFO
0 0.26 54.25
Time (ms)

(a) Timing diagram of placement

® Receive CHECK_ACTIVITY

o Reply back with ACTIVITY
® Receive EVICT
T Context switch and o Wait for in-flight
process EVICT requests to complete
¢ DONE
02 176 189 349 363
Time (us) >

(b) Timing diagram of eviction

Figure 2.10: Timing diagrams (not drawn to scale) during decentralized placement and eviction
events.
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Detailed information of how they are used during placement and eviction, and corre-
sponding sequence diagrams can be found in Figures 2.9a and 2.9b. Figures 2.10a and
2.10b breakdown placement and eviction, and provide their timings from a INFINISWAP

block device’s perspective.

2.6.2 Connection Management

INFINISWAP uses reliable connections for all communications. It uses one-sided RDMA
READ/WRITE operations for data plane activities; both types of messages are posted by
the block device. All control plane messages are transferred using RDMA SEND/RECV
operations.

INFINISWAP daemon maintains individual connections for each block device connected
to it instead of one for each slab. Similarly, INFINISWAP block devices maintain one con-
nection for each daemon instead of per-slab connections. Overall, for each active block
device-daemon pair, there is one RDMA connection shared between the data plane and the

control plane.

2.7 Evaluation

We evaluated INFINISWAP on a 32-machine, 56 Gbps Infiniband cluster on CloudLab

[7] and highlight the results as follows:

* INFINISWAP provides 2x—4x higher I/O bandwidth than Mellanox nbdX [26]. While

nbdX saturates 6 remote virtual cores, INFINISWAP uses none (§2.7.2).
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* INFINISWAP improves throughputs of unmodified VoltDB, Memcached, PowerGraph,
GraphX, and Apache Spark by up to 4x (0.94x) to 15.4x (7.8x) over disk (nbdX) and

tail latencies by up to 61x (2.3x) (§2.7.3).

* INFINISWAP ensures fast recovery from remote failures and evictions with little impact

on applications; it does not impact remote applications either (§2.7.4).

* INFINISWAP benefits hold in a distributed setting; it increases cluster memory utiliza-

tion by 1.47x using a small amount of network bandwidth (§2.7.5).

Experimental Setup. Unless otherwise specified, we use SlabSize = 1 GB, HeadRoom
= 8 GB, HotSlab = 20 paging activities per second, and & = 3 = 0.2 in all the experiments.
For comparison, nbdX also utilizes remote memory for storing data.

Each of the 32 machines had 32 virtual cores and 64 GB of physical memory.

2.7.1 Characteristics of the Benchmarks

We ran each benchmark application in separate containers with 16 GB memory (32 GB
only for Spark) and measured their real-time CPU and memory utilizations from cold start.
We make the following observations from these experiments.

First, while memory utilizations of all applications increased gradually before plateau-
ing, Spark has significantly higher memory utilization along with very high CPU usage
(Figure 2.11a). This is perhaps one of the primary reasons why Spark starts thrashing
when it cannot keep its working set in memory (i.e., in 75% and 50% configurations).
While GraphX exhibits a similar trend (Figure 2.11e), its completion time is much smaller

for the same workload.
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Figure 2.11: CPU and memory usage characteristics of the benchmarked applications. Applications
run on containers with 16 GB memory (32 GB only for Spark). Note the increasingly smaller
timescales in different X-axes due to smaller completion times of each workload.
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Second, other than Spark and GraphX, VoltDB has at least 3x higher average CPU
utilization than other benchmarks (Figure 2.11d). This is one posible explanation of its
smaller improvements with INFINISWAP for the 50% and 75% cases in comparison to other
less CPU-heavy applications — overheads of paging (e.g., context switch) was possibly a
considerable fraction of VoltDB’s runtimes.

Third, both ETC and SYS workloads gradually allocate more memory over time, but
ETC plateaus early because it has mostly GET operations (Figure 2.11b), whereas SYS
keeps increasing because of its large number of SET operations (Figure 2.11c).

Finally, PowerGraph is the most efficient of the workloads we considered (Figure 2.11f).
It completes faster and has the smallest resource usage footprint, both of which contribute

to its consistent performances using INFINISWAP across all configurations.

2.7.2 INFINISWAP Performance as a Block Device

Before focusing on INFINISWAP’ effectiveness as a decentralized remote paging sys-
tem, we focus on its raw performance as a block device. We compare it against nbdX and
do not include disk because of its significantly lower performance. We used fio [9] — a

well-known disk benchmarking tool — for these benchmarks.
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Figure 2.12: Read and write bandwidths of INFINISWAP. INFINISWAP provides higher read and
write bandwidths without remote CPU usage, whereas Mellanox nbdX suffers from high CPU over-
heads and lower bandwidth.

For both INFINISWAP and nbdX, we performed parameter sweeps by varying the num-
ber of threads in fio from 1 to 32 and I/O depth from 2 to 64. Figure 2.12a shows the
highest average bandwidth observed for different block sizes across all these parameter
combinations for both block devices. In terms of bandwidth, INFINISWAP performs be-
tween 2x and 4 x better than nbdX and saturates the 56 Gbps network at larger block sizes.

More importantly, we observe that due to nbdX’s involvement in copying data to and
from RAMdisk at the remote side, it has excessive CPU overheads (Figure 2.12b) and
becomes CPU-bound for smaller block sizes. It often saturates the 6 virtual cores it runs
on. In contrast, INFINISWAP bypasses remote CPU in the data plane and has close to zero

CPU overheads in the remote machine.

40



40 3589 1000

ggﬁ 28.91 ./'/.
g s 23.80 E 190
= *——
£20 g
=
215 2
210 EWN
& -e—Median
5 -=-99th
0 1
100% 75% 50% 100% 75% 50%

In-Memory Working Set In-Memory Working Set
(a) TPC-C on VoltDB

160 BETC 1000
- 140 | o : S‘;S L0 - 10000
e 120 8 S o : —_ I N ~
F100 |m- 32 S & 100 £ 1000
£ s0 S g &
€ e £ £ 100
2 ® 10 —e—ETC Median <
& 40 = -8-ETC 99th S 10 | -®™PowerGraph
SYS Median £
20 SYS 99th 3 6~ GraphX
0 1 Q 1
100% 75% 50% 100% 75% 50% 100% 75% 50%
In-Memory Working Set  In-Memory Working Set In-Memory Working Set
(b) Facebook workloads [49] on Memcached (c) Analytics

Figure 2.13: Performance of in-memory applications using INFINISWAP. All plots show single-
machine, server-side performance, and the median value of five runs. Lower is better for the
latency-related plots (lines) and the opposite is true for the throughout-related ones (bars). Note
the logarithmic Y-axes in the latency/completion time plots.

2.7.3 INFINISWAP’s Impact on Applications

In this section, we focus on INFINISWAP’s performance on multiple memory-intensive
applications with a variety of workloads (Figure 2.13) and compare it to that of disk (Fig-

ure 2.1) and nbdX (Figure 2.14).

Workloads. We used four memory-intensive application and workload combinations:
1. TPC-C benchmark [37] on VoltDB [39];

2. Facebook workloads [49] on Memcached [23];

3. Twitter graph [106] on PowerGraph [82]; and

4. Twitter data on GraphX [83] and Apache Spark [168].
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Figure 2.14: nbdX performance for comparison. All plots show single-machine, server-side per-
formance, and the median value of five runs. Lower is better for the latency-related plots (lines)
and the opposite is true for the throughout-related ones (bars). Note the logarithmic Y-axes in the
latency/completion time plots.

Methodology. We focused on single-machine performance and considered three config-
urations — 100%, 75%, and 50% — for each application. We started with the 100% configu-
ration by creating an 1xc container with large enough memory to fit the entire workload in
memory. We measured the peak memory usage, and then ran 75% and 50% configurations
by creating containers with enough memory to fit those fractions of the peak usage. For

INFINISWAP and nbdX, we use a single remote machine as the remote swap space.

2.7.3.1 VoltDB

VoltDB is an in-memory, transactional database that can import, operate on, and export

large amounts of data at high speed, providing ACID reliability and scalability. We use its
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community version available on Github.

We use TPC-C to create transactional workloads on VoltDB. TPC-C performs 5 dif-
ferent types of transactions either executed on-line or queued for deferred execution to
simulate an order-entry environment. We set 256 warehouses and 8 sites in VoltDB to
achieve a reasonable single-container workload of 11.5 GB and run 2 million transactions.

We observe in Figure 2.13a that, unlike disk (Figure 2.1a), performance using INFIN-
ISWAP drops linearly instead of super-linearly when smaller amounts of workloads fit in
memory. Using INFINISWAP, VoltDB experiences only a 1.5x reduction in throughput
instead of 24x using disk in the 50% case. In particular, INFINISWAP improves VoltDB
throughput by 15.4x and 99th-percentile latency by 19.7x in comparison to paging to

disk. nbdX’s performance is similar to that of INFINISWAP (Figure 2.14a).

Overheads of Paging. To understand why INFINISWAP’s performance drops significantly
when the workload does not fit into memory even though it is never paging to disk, we ana-
lyzed and compared its CPU and memory usage with all other considered applications (see
§ 2.7.1). We believe that because VoltDB is more CPU-intensive than most other memory-
intensive workloads we considered, the overheads of paging (e.g., context switches) have a
larger impact on its performance.

We note that paging-aware data structure placement (by modifying VoltDB) can help in

mitigating this issue [156, 70]. We consider this a possible area of future work.
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2.7.3.2 Memcached

Memcached is an in-memory object caching system that provides a simple key-value
interface.

We use memaslap, aload generation and benchmarking tool for Memcached, to mea-
sure performance using recent data published by Facebook [49]. We pick ETC and SYS to
explore the performance of INFINISWAP on workloads with different rates of SET opera-
tions. Our experiments start with an initial phase, where we use 10 million SET operations
to populate a Memcached server. We then perform another set of 10 million queries in
the second phase to simulate the behavior of a given workload. ETC has 5% SETs and
95% GETs. The key size is fixed at 16 bytes and 90% of the values are evenly distributed
between 16 and 512 bytes [49]. The workload size is measured to be around 9 GB. SYS,
on the other hand, is SET-heavy, with 25% SET and 75% GET operations. 40% of the keys
have length from 16 to 20 bytes, and the rest range from 20 to 45 bytes. Values of size be-
tween 320 and 500 bytes take up 80% of the entire data, 8% of them are smaller, and 12%
sit between 500 and 10000 bytes. The workload size is measured to be 14.5 GB. We set the
memory limit in Memcached configurations to ensure that for 75% and 50% configurations
it will respond using the swap space.

First, we observe in Figure 2.13b that, unlike disk (Figure 2.1b), performance using
INFINISWAP remains steady instead of facing linear or super-linear drops when smaller
amounts of workloads fit in memory. Using INFINISWAP, Memcached experiences only
1.03x (1.3x) reduction in throughput instead of 4 x (17.4x) using disk for the 50% case for

the GET-dominated ETC (SET-heavy SYS) workload. In particular, INFINISWAP improves
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Memcached throughput by 4.08x (15.1x) and 99th-percentile latency by 36.3x (61.4x)
in comparison to paging to disk.

Second, nbdX does not perform as well as it does for VoltDB. Using nbdX, Memcached
experiences 1.3x (3x) throughput reduction for the 50% case for the GET-dominated ETC
(SET-heavy SYS) workload. INFINISWAP improves Memcached throughput by 1.24x
(2.45x) and 99th-percentile latency by 1.8x (2.29x) in comparison to paging to nbdX.

nbdX’s performance is not very stable either (Figure 2.14b).

Pitfalls of Remote CPU Usage by nbdX. When the application itself is not CPU-intensive,
the differences between INFINISWAP and nbdX designs become clearer. As paging ac-
tivities increase (i.e., for the SYS workload), nbdX becomes CPU-bound in the remote

machine; its performance drops and becomes unpredictable.

2.7.3.3 PowerGraph

PowerGraph is a framework for large-scale machine learning and graph computation.
It provides parallel computation on large-scale natural graphs, which usually have highly
skewed power-law degree distributions.

We run TunkRank [38], an algorithm to measure the influence of a Twitter user based
on the number of that user’s followers, on PowerGraph. TunkRank’s implementation on
PowerGraph was obtained from [8]. We use a Twitter dataset of 11 million vertices as the
input. The dataset size is 1.3 GB. We use the asynchronous engine of PowerGraph and
t sv input format with the number of CPU cores set to 2, resulting in a 9 GB workload.

Figure 2.13c shows that, unlike disk (Figure 2.1c), performance using INFINISWAP re-
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Figure 2.15: Comparative performance for PageRank using Apache Spark. The 50% configuration
fails for all alternatives because Spark starts thrashing.

mains stable. Using INFINISWAP, PowerGraph experiences only 1.24x higher completion
time instead of 8 x using disk in the 50% case. In particular, INFINISWAP improves Power-
Graph’s completion by 6.5 in comparison to paging to disk.

nbdX did not even complete at 50% (Figure 2.14c¢).

2.7.3.4 GraphX and Apache Spark

GraphX is a specialized graph processing system built on top of the Apache Spark
in-memory analytics engine. We used Apache Spark 2.0.0 to run PageRank on the same
Twitter user graph using both GraphX and vanilla Spark. For the same workload, GraphX
could run using 12 GB maximum heap, but Spark needed 16 GB.

Figure 2.13c shows that INFINISWAP makes a 2x performance improvement over the
case of paging to disk for the 50% configuration for GraphX. However, for Spark, all three
of them fail to complete for the 50% configuration (Figure 2.15). In both cases, the under-
lying engine (i.e., Spark) starts thrashing — applications oscillate between paging out and
paging in making little or no progress. In general, GraphX has smaller completion times

than Spark for our workload.
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Figure 2.16: Throughput loss of VoltDB. Average throughput loss of VoltDB with 75% in-memory
working set w.r.t. INFINISWAP from different failure and eviction events. Lower is better.

2.7.4 Performance of INFINISWAP Components

So far we have considered INFINISWAP’s performance without any eviction or failures.

In this section, we analyze from both block device and daemon perspectives.

2.7.4.1 INFINISWAP Block Device

For these experiments, we present results for the 75% VoltDB configuration. We select
VoltDB because it experienced one of the lowest performance benefits using INFINISWAP.
We run it in one machine and distribute its slabs across 6 machines’ remote memory. We
then introduce different failure and eviction events to measure VoltDB’s throughput loss

(Figure 2.16).

Handling Remote Failures. First, we randomly turned off one of the 6 machines in 10
different runs; the failed (turned-off) machine did not join back. The average throughput
loss was about 34.5% in comparison to INFINISWAP without any failures. However, we
observed that the timing of failure has a large impact (e.g., during high paging activity or
not). So, to create an adversarial scenario, we turned off one of the 6 machines again, but
in this case, we failed the highest-activity machine during its peak activity period. The

average throughout loss increased to 58.3%.
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Handling Evictions. In this experiment, we evicted 1 slab from one of the remote ma-
chines every second and measured the average throughput loss to be about 2.3%, on aver-
age, for each eviction event (of 7—29 eviction-and-remapping events). As before, eviction

of a high-activity slab had a slightly larger impact than that of one with lower activity.

Time to Map a Slab. We also measured the time INFINISWAP takes to map (for the first
time) or remap (due to eviction or failure) a slab. The median time was 54.25 millisec-
onds, out of which 53.99 went to Infiniband memory registration. Memory registration
is essential and incurs the most interfering overhead in Infiniband communication [125];
it includes address translation, and pinning pages in memory to prevent swapping. Note
that preallocation of slabs by INFINISWAP daemons mask close to 400 milliseconds, which
would otherwise have been added on top of the 54.25 milliseconds. A detailed breakdown

of slab mapping is given in Figure 2.9a and 2.10a.

2.7.4.2 INFINISWAP Daemon

Now, we focus on INFINISWAP daemon’s reaction time to increase in memory demands
of local applications. For this experiment, we set HeadRoom to be 1 GB and started at time
zero with INFINISWAP hosting a large number of remote slabs. We started a Memcached

server soon after and started performing the ETC workload.
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Figure 2.17: Memory utilization when INFINISWAP evicts slabs. INFINISWAP daemon proactively
evicts slabs to ensure that a local Memcached server runs smoothly. The white/empty region toward
the top represents HeadRoom.

Figure 2.17 shows how INFINISWAP daemon monitored local memory usage and proac-
tively evicted remote slabs to make room — the white/empty region toward the top repre-
sents the HeadRoom distance INFINISWAP strived to maintain. After 120 seconds, when
Memcached stopped allocating memory for a while, INFINISWAP stopped retreating as

well. INFINISWAP resumed evictions when Memcached’s allocation started growing again.

Table 2.1: Performance of an in-memory Memcached server with and without INFINISWAP using
remote memory.

ETC SYS

W/o | With | W/o | With

Ops (Thousands) 959 | 94.1| 96.0 | 93.5

Median Latency (us) | 152.0 | 152.0 | 152.0 | 156.0

99th Latency (us) 319.0 | 318.0 | 327.0 | 343.0

To understand whether INFINISWAP retreated fast enough not to have any impact on
Memcached performance, we measured its throughput as well as median and 99th-percentile

latencies (Table 2.1), observing less than 2% throughput loss and at most 4% increase in
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tail latency. Results for the SYS workload were similar.

Time to Evict a Slab The median time to evict a slab was 363 microseconds. A detailed
breakdown of eviction is provided in Figure 2.9b and 2.10b.

The eviction speed of INFINISWAP daemon can keep up with the rate of memory al-
location in most cases. In extreme cases, the impact on application performance can be

reduced by adjusting HeadRoom.

2.7.5 Cluster-Wide Performance

So far we have considered INFINISWAP’s performance for individual applications and
analyzed its components. In this section, we deploy INFINISWAP on a 32-machine RDMA

cluster and observe whether these benefits hold in the presence of concurrency and at scale.

Methodology. For this experiment, we used the same applications, workloads, and con-
figurations from Section 2.7.3 to create about 90 containers. We created an equal number
of containers for each application-workload combination. About 50% of them were using
the 100% configuration, close to 30% used the 75% configuration, and the rest used the
50% configuration.

We placed these containers randomly across 32 machines to create an memory imbal-
ance scenario similar to those shown in Figure 2.2 and started all the containers at the same
time. We measured completion times for the workload running each container; for VoltDB

and Memcached completion time translates to transactions- or operations-per-second.
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Figure 2.18: Cluster memory utilization when using INFINISWAP. Memory utilization increases and
memory imbalance decreases significantly. Error bars in (a) show the maximum and the minimum
across machines.

2.7.5.1 Cluster Utilization

Figure 2.18a shows that INFINISWAP increased total cluster memory utilization by
1.47x by increasing it to 60% on average from 40.8%. Moreover, INFINISWAP signifi-
cantly decreased memory imbalance (Figure 2.18b): the maximum-to-median utilization
ratio decreased from 2.36x to 1.6x and the maximum-to-minimum utilization ratio de-

creased from 22.5x to 2.7 X.

Increase in Network Utilization. We also measured the total amount of network traffic
over RDMA in the case of INFINISWAP. This amounted to less than 1.88 TB over 1300
seconds across 32 machines or 380 Mbps on average for each machine, which is less than

1% of each machine’s 56 Gbps interface.
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Figure 2.19: Median completion times of containers for different configurations in the cluster ex-
periment. INFINISWAP’s benefits translate well to a larger scale in the presence of high application
concurrency.

2.7.5.2 Application-Level Performance

Finally, Figure 2.19 shows the overall performance of INFINISWAP. We observe that
INFINISWAP’s benefits are not restricted only to microbenchmarks, and it works well in the
presence of cluster dynamics of many applications. Although improvements are sometimes

lower than those observed in controlled microbenchmarks, INFINISWAP still provides 3 x—

6x improvements for the 50% configurations.
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Table 2.2: Cost model parameters.

Parameter Value
Datacenter OPEX $0.04/W/month
Electricity Cost $0.067/kWh
InfiniBand NIC Power 8.41W [17]
InfiniBand Switch Power 231W [18]
Power Usage Effectiveness (PUE) 1.1

2.7.6 Cost-Benefit Analysis

In many production clusters, memory and CPU usages are unevenly distributed across
machines (§2.2.3) and resources are often underutilized [173, 146]. Using memory dis-
aggregation via INFINISWAP, machines with high memory demands can use idle memory
from other machines, thus enabling more applications to run simultaneously on a cluster
and providing more economic benefits. Here we perform a simple cost-benefit analysis to
get a better understanding of such benefits.

We limit our analysis only to RDMA-enabled clusters, and therefore, do not consider
capital expenditure and depreciation cost of acquiring RDMA hardware. The major source
of operational expenditure (OPEX) comes from the energy consumption of Infiniband de-
vices — the parameters of our cost model are listed in Table 2.2. The average cost of
INFINISWAP for a single machine is around $1.45 per month.

We also assume that there are more idle CPUs than idle memory in the cluster, and
INFINISWAP’s benefits are limited by the latter. For example, on average, about 40% and
30% of allocated CPUs and memory are reported to remain unused in Google clusters
[146]. We use the price lists from Google Cloud Compute [12], Amazon EC2 [1], and Mi-

crosoft Azure [24] to build the benefit model. INFINISWAP is found to increase total cluster
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Figure 2.20: Revenue increases with INFINISWAP under three different cloud vendors’ regular and
discounted pricing models.

memory utilization by around 20% (2.7.5.1), varying slightly across different application
deployment scenarios. We assume that there are 20% physical memory on each machine
that has been allocated to local applications but the remainder is used as remote memory
via INFINISWAP. The additional benefit is then the price of 20% physical memory after
deducting the cost of operating Infiniband.

There are several price models from different vendors. In a model we call the regular
pricing model, resource availability is strictly guaranteed. In another model from Google
(preemptible instance) and Amazon (spot instance), resource can be preempted or become
unavailable based on resource availability in a cluster. Of course, the resource price in the
latter model is much lower than the regular model. We call it the discounted pricing model.

If INFINISWAP can ensure unnoticeable performance degradation to applications, re-
mote memory can be counted under regular pricing; otherwise, discounted pricing should
be used. Figure 2.20 shows benefits of INFINISWAP. With an ideal INFINISWAP, cluster
vendors can gain up to 24.7% additional revenue. If we apply the discounted model, then

it decreases to around 2%.
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2.8 Discussion

Slab Size. For simplicity and efficiency, unlike some remote paging systems [72], IN-
FINISWAP uses moderately large slabs (SlabSize), instead of individual pages, for re-
mote memory management. This reduces INFINISWAP’s meta-data management overhead.
However, too large a SlabSize can lower flexibility and decrease space efficiency of re-
mote memory. Selecting the optimal slab size to find a good balance between management

overhead and memory efficiency is part of our future work.

Application-Aware Design. Although application transparency in INFINISWAP provides
many benefits, it limits INFINISWAP’s performance for certain applications. For exam-
ple, database applications have hot and cold tables, and adapting to their memory access
patterns can bring considerable performance benefits [156]. It may even be possible to

automatically infer memory access patterns to gain significant performance benefits [70].

OS-Aware Design. Relying on swapping allows INFINISWAP to provide remote memory
access without OS modifications. However, swapping introduces unavoidable overheads,
such as context switching. Furthermore, the amount of swapped data can vary significantly
over time and across workloads even for the same application. Currently, INFINISWAP
cannot provide predictable performance without any controllable swap mechanism inside
the OS. We would like to explore what can be done if we are allowed to modify OS-level
decisions, such as changing its memory allocator or not making context switches due to

swapping.
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Application Differentiation. Currently, INFINISWAP provides remote memory to all the
applications running on the machine. It cannot distinguish between pages from specific
applications. Also, there are no limitations in remote memory usage for each application.
Being able to differentiate the source of a page will allow us to manage resources better

and isolate applications.

Network Bottleneck. INFINISWAP assumes that it does not have to compete with other
applications for the RDMA network; i.e., the network is not a bottleneck. However, as the
number of applications using RDMA increases, contentions will increase as well. Address-
ing this problem requires mechanisms to provide isolation in the network among competing

applications.

2.9 Related Work

Resource Disaggregation. To decouple resource scaling and to increase datacenter ef-
ficiency, resource disaggregation and rack-scale computing have received significant at-
tention in recent years, with memory disaggregation being the primary focus [19, 16, 15,
91, 62, 116, 117]. Recent feasibility studies [143, 77, 110] have shown that memory dis-
aggregation may indeed be feasible even at a large scale, modulo RDMA deployment at
datacenter-scale [175, 90]. INFINISWAP realizes this vision in practice and exposes the
benefits of memory disaggregation to any user application without modifications. Differ-
ent from INFINISWAP, Fastswap [44], one of the most recent memory disaggregation solu-

tions, modifies the OS kernel for reducing the overhead of memory swap. LegoOS [153] is
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anew OS designed for the next-generation datacenters who are composed of disaggregated,

network-attached hardware (e.g., CPU, memory, storage) components.

Remote Memory. Paging out to remote memory instead of local disks is a known idea
[74, 76, 121, 132, 56, 47, 71, 73]. However, their performance and promises were often
limited by slow networks and high CPU overheads. Moreover, they rely on central coordi-
nation for remote server selection, eviction, and load balancing. INFINISWAP focuses on a
decentralized solution for the RDMA environment. HPBD [115] and Mellanox nbdX [26]
come the closest to INFINISWAP. Both of them can be considered as network-attached-
storage (NAS) systems that use RAMdisk on the server side and are deployed over RDMA
networks. However, there are several major differences that make INFINISWAP more effi-
cient, resilient, and load balanced. First, they rely on remote RAMdisks, and data copies
to and from RAMdisks become CPU-bound; in contrast, INFINISWAP does not involve re-
mote CPUs, which increases efficiency. Second, they do not perform dynamic memory
management, ignoring possibilities of evictions and subsequent issues. Finally, they do not
consider fault tolerance nor do they attempt to minimize the impact of failures. Remote Re-
gions [42] provides remove memory access through remote I/O interfaces, which is much
simpler than the original verbs RDMA interface. However, it requires modifications in ap-
plications. Lagar-Cavilla et al. [107] is a software-defined remote memory solution with
the objective of cutting down total cost of ownership (TCO) of warehouse-scale comput-
ers (WSCs). It proactively move cold data to remote memory and compresses those cold
memory pages for reducing memory cost. Leap [122] is a page prefetching solution for

remote memory systems. Its prefetching algorithm can improve the page cache hit rate.
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Its lightweight data path in kernel for remote paging can greatly reduce the remote access

latency.

Software Distributed Shared Memory (DSM). DSM systems [133, 111, 52] expose a
shared global address space to user applications. Traditionally, these systems have suf-
fered from communication overheads to maintain coherence. To avoid coherence costs, the
HPC community has favored the Partitioned Global Address Space (PGAS) model [65, 53]
instead. However, PGAS systems require complete rewriting of user applications with ex-
plicit awareness of remote data accesses. With the advent of RDMA, there has been a
renewed interest in DSM research, especially via the key-value interface [131, 127, 103,
69, 136, 142]. However, most of these solutions are either limited by their interface or
require careful rethinking/rewriting of user applications. INFINISWAP, on the contrary, is

a transparent, efficient, and scalable solution that opportunistically leverages remote mem-

ory.

2.10 Conclusion

This chapter rethinks the well-known remote memory paging problem in the context of
RDMA. We have presented INFINISWAP, a pragmatic solution for memory disaggregation
without requiring any modifications to applications, OSes, or hardware. Because CPUs
are not involved in INFINISWAP’s data plane, we have proposed scalable, decentralized
placement and eviction algorithms leveraging the power of many choices. Our in-depth

evaluation of INFINISWAP on unmodified VoltDB, Memcached, PowerGraph, GraphX, and
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Apache Spark has demonstrated its advantages in substantially improving throughputs (up
to 16.3x), median latencies (up to 5.5x), and tail latencies (up to 58 x) over disks. It also
provides benefits over existing RDMA-based remote memory paging solutions by avoid-
ing remote CPU involvements. INFINISWAP increases the overall memory utilization of a

cluster, and its benefits hold at scale.
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CHAPTER III

TIRESIAS: A GPU Cluster Manager for Deep

Learning

3.1 Introduction

DL is gaining rapid popularity in various domains, such as computer vision, speech
recognition, etc. DL training is typically compute-intensive and requires powerful and
expensive GPUs. To deal with ever-growing training datasets, it is common to perform
DDL training to leverage multiple GPUs in parallel. Many platform providers have built
GPU clusters to be shared among many users to satisfy the rising number of DDL jobs [41,
3,4, 10]. Indeed, our analysis of Microsoft traces shows a 10.5x year-by-year increase in
the number of DL jobs since 2016. Efficient job scheduling and smart GPU allocation (i.e.,
job placement) are the keys to minimizing the cluster-wide average JCT and maximizing
resource (i.e., GPU) utilization.

Due to the unique constraints of DDL training, we observe two primary limitations in

current cluster manager designs.
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1. Naive scheduling due to unpredictable training time. Although SJF and SRTF al-
gorithms are known to minimize the average JCT [87, 86], they require a job’s (remaining)
execution time, which is often unknown for DL training jobs. Optimus [140] can predict
a DL training job’s remaining execution time by relying on its repetitive execution pat-
tern and assuming that its loss curve will converge. However, such proposals make over-
simplified assumptions about jobs having smooth loss curves and running to completion;
neither is always true in production systems (§3.2.2).

Because of this, state-of-the-art resource managers in production are rather naive. For
example, the internal solution of Microsoft is extended from Apache YARN’s Capacity
Scheduler that was originally built for big data jobs. It only performs basic orchestration,
1.e., non-preemptive scheduling of jobs as they arrive. Consequently, users often experience
long queuing delays when the cluster is over-subscribed — up to several hours even for small

jobs (§ 3.2.1).

2. Over-aggressive consolidation during placement. Existing cluster managers also
attempt to consolidate a DDL job onto the minimum number of servers that have enough
GPUs. For example, a job with 16 GPUs requires at least four servers in a 4-GPUs-per-
server cluster, and the job may be blocked if it cannot find four completely free servers.
The underlying assumption is that the network should be avoided as much as possible
because it can become a bottleneck and waste GPU cycles [119]. However, we find that
this assumption is only partially valid.

In this chapter, we propose TIRESIAS, a shared GPU cluster manager that aims to ad-

dress the aforementioned challenges regarding DDL job scheduling and placement (§3.3).
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To ensure that TIRESIAS is practical and readily deployable, we rely on the analysis of pro-
duction job traces, detailed measurements of training various DL models, and two simple
yet effective ideas. In addition, we intentionally keep TIRESIAS transparent to users, i.e.,
all existing jobs can run without any additional user-specified configurations.

Our first idea is a new scheduling framework (2DAS) that aims to minimize the JCT
when a DL job’s execution time is unpredictable. We propose two scheduling algorithms
under this framework: Discretized 2D-LAS and Discretized 2D-Gittins index. The Gittins
index policy [80, 40] is known to be the optimal in the single-server scenario in minimizing
the average JCT when JCT distributions are known. Similarly, the classic Least Attained
Service (LAS) algorithm [134] has been widely applied in many information-agnostic sce-
narios, such as network scheduling in datacenters [59, 50]. Both assign each job a priority
— the former uses the Gittins index while the latter directly applies the service that job has
received so far — that changes over time, and jobs are scheduled in order of their current
priorities.

Adapting these approaches to the DDL scheduling problem faces two challenges. First,
one must consider both the spatial (how many GPUs) and temporal (for how long) dimen-
sions of a job when calculating its priorities. We show that simply considering one is not
enough. Specifically, a job’s total attained service in our algorithms jointly considers both
its spatial and temporal dimensions.

More importantly, because relative priorities continuously change as some jobs receive
service, jobs are continuously preempted. Although this may be tolerable in networking
scenarios where starting and stopping a flow is simpler, preempting a DDL job from its

GPUs can be expensive because data and model must be copied back and forth between the
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main memory and GPU memory. To avoid aggressive job preemptions, we apply priority
discretization atop the two classic algorithms — a job’s priority changes after fixed intervals.

Overall, when the cluster manager has the distribution of previous job execution times
that may still be valid in the near future, our scheduling framework chooses the Discretized
2D-Gittins index. If no prior knowledge is available, Discretized 2D-LAS will be applied.

Our second idea is to use model structure to loosen the consolidated placement con-
straint whenever possible. We observe that only certain types of DL models are sensitive
to whether they are consolidated or not, and their sensitivity is due to skew in tensor size
distributions in their models. We use this insight to separate jobs into two categories: jobs
that are sensitive to consolidation (high skew) and the rest. We implement an RDMA net-
work profiling library in TIRESIAS that can determine the model structure of DDL jobs
through network-level activities. By leveraging the profiling library and the iterative na-
ture of DDL training, TIRESIAS can transparently and intelligently place jobs. TIRESIAS
first runs the job in a trial environment for a few iterations, and then determines the best
placement strategy according to the criteria summarized from previous measurements.

We have implemented TIRESIAS' and evaluated using unmodified TensorFlow DDL
jobs on a 15-server GPU cluster (each server with four P100 GPUs with NVlink) using
traces derived from a Microsoft production cluster. We further evaluate TIRESIAS using
large-scale trace-driven simulations. Our results show that TIRESIAS improves the average
JCT by up to 5.5x w.r.t. current production solutions and 2x w.r.t. Gandiva [164], a state-
of-the-art DDL cluster scheduler. Moreover, it performs comparably to solutions using

perfect knowledge of all job characteristics.

Thttps://github.com/SymbioticLab/Tiresias
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In summary, we make the following contributions:

* TIRESIAS is the first information-agnostic resource manager for GPU clusters. Also, it
is the first that applies two-dimensional extension and priority discretization into DDL
job scheduling. It can efficiently schedule and place unmodified DDL jobs without any
additional information from the users. When available, TIRESIAS can leverage partial

knowledge about jobs as well.
* TIRESIAS leverages a simple, externally-observable, model-specific criteria to deter-
mine when to relax worker GPU collocation constraints.

* QOur design is practical and readily deployable, with significate performance improve-

ments.

3.2 Background and Motivation

3.2.1 Characteristics of Production DL Cluster

We describe Project Philly [99], the DL cluster manager in one of Microsoft internal
production clusters, referred as P. P is shared by several production teams that work on
projects related to a search engine. It is managed by an Apache YARN-like resource man-
ager, which places and schedules DDL jobs submitted by users via a website/REST API
front end. P supports various framework jobs, including TensorFlow [41], Caffe [6] and
CNTK [166]. In 2016, P consisted of around 100 4-GPU servers. In 2017, due to the
surging demand of running DDL, P is expanded by more than 250 8-GPU servers. So, the

total number of GPUs has grown by 5x. Servers in P are interconnected using a 100-Gbps
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RDMA (InfiniBand) network.

We collect traces from P over a 10-week period from Oct. 2017 to Dec. 2017. This
cluster runs Ganglia monitoring system, which collects per-minute statistics of hardware
usage on every server. Since some jobs are quickly terminated because of bugs in user’s job
configuration, we only show the data of jobs that run for at least one minute. Also, we col-
lect the per-job logs output by the DL framework which include the time for each iteration
and the model accuracy along the running time. The network-level activities are monitored
by TIRESIAS profiler which is explained in Section 3.3.3.2, that logs every RDMA network
operation, e.g., the send and receive of every message,and their timestamps. In addition,
we add hooks that intercept the important function calls in a DDL framework, e.g., the start
of an iteration or aggregation, and log their timestamps.

Although we cannot disclose the details of proprietary DL models in P, we present the

results of several public and popular models, some of which are also run in P.

Large and different DL model sizes. As shown in Figure 3.1a, production DL models
range from a few hundreds of megabytes to a few gigabytes. The model size distribution
is rather independent from the number of GPUs used. According to the cluster users, the
number of GPUs used often depends more on the training data volume and the urgency
of jobs, and less on model sizes. Larger model sizes mean heavier communication over-
head per iteration in distributed training. The largest one is 7.5GB. It may cause network
congestion even with 100 Gbps network and greatly hurt the job-level performance. > To

minimize this overhead, existing job placement strategy intuitively consolidates DDL jobs

2Section 3.3.3 shows that in fact it mostly depends on the model structure.
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Figure 3.1: Characteristics of DL jobs in the production cluster P.

as much as possible.

A staggering increase in the number DDL jobs. We compare the number of DDL jobs
(with at least two GPUs) during ten weeks from Oct. 2017 to Dec. 2017, and the number
of DDL jobs during the same ten weeks in 2016. The total number of DDL jobs has grown
by 10.5x year over year. We refer to jobs using more than 8 GPUs as “large jobs,” since
such jobs have to run on multiple servers (8 GPUs per server in P). Large jobs have grown
by 9.4x. The largest job run on 128 GPUs in 2017, while the number was 32 GPUs in

2016. We expect this trend to continue as DL jobs are trained on ever larger data sets.
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Long job queuing time in production clusters. We also observe that the number of
DDL jobs is increasing faster than the speed of cluster expansion. As a result, some jobs
have to wait in a queue when the cluster is overloaded. From the trace, we see the average
queuing delay of all jobs is 4102 seconds! A brute-force solution is to add GPUs as fast
as the demand. However, this poses significant monetary costs — each 8-GPU server in P
costs around 100K US Dollars based on public available GPU price. Thus, the DDL cluster
service providers are seeking ways to improve job completion time (including the queuing

time) given limited GPU resources.

Unpredictable job arrivals. Since the cluster is shared by multiple teams and jobs are
submitted on demand, the job arrival intervals are naturally unpredictable. Figure 3.1c
shows that the job arrival interval is mostly less than one hour. Many arrival intervals are
less than one second, suggesting that they are generated by AutoML to sweeping hyperpa-

rameters.

Various aggregation frequency depending on algorithm demands. The communica-
tion overhead also depends on how frequently aggregations are performed, which depends
on the minibatch sizes. The size of minibatches is determined by the model developers —
the larger the minibatches, the larger the learning step, which may help the learning pro-
cess avoid local optimas but risk final convergence due to too-large steps. Thus, it is usually
chosen by the users based on the requirements of specific models.

Figure 3.1b shows that the per iteration time varies significantly across jobs. However,

the distribution of large jobs is very close to all jobs. This means that users probably do not
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Figure 3.2: Training loss of two production jobs from P.

choose minibatch sizes based on how many GPUs are used in each job.

Trial-and-error exploration. Training a DL model is not an one-time effort and often
works in a trial-and-error manner. DL. model exposes many hyperparameters that express
the high-level properties of the model. To get a high-quality model, jobs with different
combinations of hyperparameters need to be explored; this is known as hyperparameter-
tuning [171, 164]. Most of those jobs will be killed because of random errors, or low
quality of improvement. We show two representative examples from P in Figure 3.2. The
spikes in the first example and the non-decreasing curve in the second example lead to
early terminations of those jobs. With the feedbacks from trials, users can search new
configurations and launch new jobs. Only a very small portion of those jobs with good

qualities can run to completion.

3.2.2 Challenges

We highlight three primary challenges faced by DDL cluster managers in production.
These challenges originate from the nature of DDL training and are not specific to the

Microsoft cluster.
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Unpredictable job duration. Current solutions that predict DL job training times [140]
all assume DL jobs to (1) have smooth loss curves and (2) reach their training targets
and complete. However, for many poor models during a trial-and-error exploration, their
loss curves are not as smooth as the curves of the best model ultimately picked at the
end of exploration, which make it challenging to predict when the training target will be
hit. In addition to these proprietary models, popular public models sometimes also show
non-smooth curves [93]. Additionally, the termination conditions of DL jobs are non-
deterministic. In AutoML [2], most of the trials are killed because of quality issues which
are determined by the searching mechanism. Usually, users also specify a maximum epoch
number to train for cases when the job cannot achieve the training target. Therefore, a
practical resource manager design should not rely on the accuracy/loss curve for predicting

eventual job completion time.

Over-aggressive job consolidation. Trying to minimize network communication during
model aggregation is a common optimization in distributed training because the network
can be a performance bottleneck and waste GPU cycles [119]. Hence, many existing GPU
cluster managers blindly follow a consolidation constraint when placing DDL jobs — specif-
ically, they assign all components (parameter servers and workers) of the job to the same
or the minimum number of servers. A DDL job will often wait when it cannot be con-
solidated, even if there are enough spare resources elsewhere in the cluster. Although this
constraint was originally set for good performance, it often leads to longer queuing delays

and resource under-utilization in practice.
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Figure 3.3: Training performance with different placement schemes. Each training job has 8 work-
ers. The performance values are normalized by the value of the consolidation scheme. We use the
median value from 10 (20) runs for consolidation (random) scheme.

To understand the importance of this constraint, we run four concurrent 8-GPU jobs us-
ing different placement (random and always-consolidate) strategies on eight 4-GPU servers.
Similar to [170], each job uses eight parameter servers — the same as the number of work-
ers. Figure 3.3 shows that the locality of workers mainly impacts the VGG family and
AlexNet. Nevertheless, neither the cluster operator nor the users can tell which category a

job belongs to.
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Figure 3.4: Time overhead of pausing a DDL job in Tensorflow. Only the chief worker checkpoints
the most updated model.
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Figure 3.5: Time overhead of resuming a DDL job in Tensorflow. Each model is tested with different
number of workers.

Time overhead of preemption. The current production cluster does not preempt jobs
because of large time overhead. To show this, we manually test pausing and resuming a
DDL job on our local testbed. Upon pausing, the chief worker checkpoints the most recent
model on a shared storage. The checkpointed model file will be loaded by all workers when
the job is resumed. Figures 3.4 and 3.5 show the detailed numbers. Whenever TIRESIAS

preempts a job, we must take this overhead into account.

3.2.3 Potential for Benefits

We can achieve large gains by mitigating two common myths.

Myth I: jobs cannot be scheduled well without exact job duration. Despite the fact
that DDL job durations are often unpredictable, their overall distribution can be learned
from history logs. The Gittins index policy [80], which is widely used for solving the
classic multi-armed bandit problem [80], can decrease the average JCT as long as the job

duration distribution is given. Even without that information, the LAS algorithm can effi-

71



ciently schedule jobs based on their attained service.

Myth II: DDL jobs should always be consolidated. While it is true that consolidated
placement of a job may minimize its communication time, we find that some DDL jobs are
insensitive to placement. We identify that the core factor is the model structure (§3.3.3).
In the rest of this chapter, we demonstrate that TIRESIAS — using smarter job placement
and scheduling strategies — can improve the average total job completion time by more than

5x when running the same set of jobs.

3.3 TIRESIAS Design

This section describes TIRESIAS’s architecture, followed by descriptions of its two
key components — scheduler and placement manager — and the profiler that learns the job

characteristics during runtime.

3.3.1 Overall Architecture

TIRESIAS is a bespoke resource manager for GPU clusters, where the primary workload
is DL training. It deals with both allocating GPUs to individual jobs (i.e., job placement)
and scheduling multiple jobs over time. So, it has two primary objectives: one user-centric
and the other operator-centric.

1. Minimizing the average JCT: Jobs should complete as fast as possible regardless of

their requirements.

2. High GPU utilization: All the GPUs in the cluster should be utilized as much as possi-
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ble.

TIRESIAS has an additional goal to balance between operator- and user-centric objec-

tives.

3. Starvation freedom: Jobs should not starve for arbitrarily long periods.

Constraints and assumptions: TIRESIAS must achieve the aforementioned objectives

under realistic assumptions highlighted in prior sections:

1. Online job arrival: Jobs are submitted by users (trial-and-error exploration mechanisms
such as AutoML) in an online fashion. The resource requirements of a job J (i.e., the
number of parameter servers PS; and workers W) are given but unknown prior to its
arrival. Model and data partitions are determined by the DL framework and/or the user
[41, 58, 166]. TIRESIAS only deals with resource allocation and scheduling.

2. Unknown job durations: Because of non-smooth loss curves and non-deterministic
termination in practice, a DL job’s duration cannot be predicted. However, the overall
distribution of job duration may sometimes be available via history logs.

3. Unknown job-specific characteristics: A user does not know and cannot control how
the underlying DL framework(s) will assign tensors to parameter servers and the extent
of the corresponding skew.

4. All-or-nothing resource allocation: Unlike traditional big data jobs where tasks can be
scheduled over time [45], DL training jobs require all parameter servers and workers to

be simultaneously active; i.e., all required resources must be allocated together.

Job lifecycle: TIRESIAS is designed to optimize the aforementioned objectives without
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Figure 3.6: TIRESIAS components and their interactions. Job lifecycle under TIRESIAS is described
in Section 3.3.1. In this figure, each machine has four GPUs; shaded ones represent GPUs in use.

making any assumptions about a job’s resource requirements, duration, or its internal char-
acteristics under a specific DL framework.

Figure 3.6 presents TIRESIAS’s architecture along with the sequence of actions that take
place during a job’s lifecycle. As soon as a job is submitted, its GPU requirements become
known, and it is appended to a WAITQUEUE (0). The scheduler (§3.3.2) periodically
schedules jobs from the WAITQUEUE and preempts running jobs from the cluster to the
WAITQUEUE (@ and @) on events such as job arrival, job completion, and changes
in resource availability. When starting a job for the first time or resuming a previously
preempted job, the scheduler relies on the placement module (§3.3.3) to allocate its GPUs
(@). If a job is starting for the first time, the placement module first profiles it — the profiler
identifies job-specific characteristics such as skew in tensor distribution — to determine

whether to consolidate the job or not (@).

3.3.2 Scheduling

The core of TIRESIAS lies in its scheduling algorithm that must (1) minimize the aver-

age JCT and (2) increase cluster utilization while (3) avoiding starvation.
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We observe that preemptive scheduling is necessary to satisfy these objectives. One
must employ preemption to avoid Head Of Line (HOL) blocking of smaller/shorter jobs by
the larger/longer ones — HOL blocking is a known problem of First In, First Out (FIFO)
scheduling currently used in production [164]. Examples of preemptive scheduling algo-
rithms include time-sharing,® SJF, and SRTF. For example, DL jobs in Gandiva [164] are
scheduled by time-sharing. However, time-sharing based algorithms are designed for iso-
lation via fair sharing, not minimizing the average JCT. SJF and SRTF are also inapplicable
because of an even bigger uncertainty: it is difficult, if not impossible, to predict how long
a DL training job will run. At the same time, size-based heuristics (i.e., how many GPUs a

job needs) are not sufficient either, because they ignore job durations.

3.3.2.1 Why Two-Dimensional Scheduling?

By reviewing the time- or sized-based heuristics, we believe that considering only one
aspect (spatial or temporal) is not enough when scheduling DDL jobs on a cluster with
limited GPU resources. In an SRTF scheduler, large jobs with short remaining time can
occupy many GPUs, causing non-negligible queuing delays for many small but newly sub-
mitted jobs. If the scheduler is Smallest First (SF) (w.r.t. the number of GPUs), then large
jobs may be blocked by a stream of small jobs even if they are close to completion.

To quantify the approaches, we ran trace-driven simulations on three different sched-
ulers using the Microsoft production trace: (1) SF; (2) SRTF; and (3) Shortest Remaining
Service First (SRSF). Of them, the first two are single-dimensional schedulers; the last one

considers both spatial and temporal aspects. The remaining service in SRSF is the multipli-

3 Also known as processor-sharing.
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Table 3.1: Normalized performance of single-dimensional schedulers w.r.t. SRSF.

Avg. JCT Med. JCT 95thJCT

SF 1.52 1.20 3.45
SRTF 1.03 1.01 1.55

cation of a job’s remaining time and the number of GPUs. For this simulation, we assume
that job durations are given when needed.

Table 3.1 shows that SRSF outperforms the rest in minimizing the average JCT. SRSF
has a much smaller tail JCT than the single-dimensional counterparts as well. Altogether,
we move forward in building a DDL scheduler that considers both spatial and temporal
aspects of resource usage.

Note that, among the three, SF is not a time-based algorithm; hence, it does not actively
attempt to minimize the average JCT. As for the rest, SRTF is not always worse than SRSF,
either. For example, large-and-short jobs that have many GPUs but short service time
can mislead the SRSF scheduler and block many smaller jobs. However, in DL training,
multiple GPUs are typically allocated to the jobs that have well-tuned hyperparameters and

run to completion. Therefore, the fraction of large-and-short jobs is often small in practice.

3.3.2.2 Two-Dimensional Attained Service-Based

Scheduler (2DAS)

We address the aforementioned challenges with the 2DAS scheduler, which schedules
DL jobs without relying on their exact durations while taking their GPU requirements into
consideration. 2DAS generalizes the classic least-attained service (LAS) scheduling dis-

cipline [134] as well as the Gittins index policy [80] to DL job scheduling by considering
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Pseudocode 1 Priority function in 2DAS
1: procedure PRIORITY(Job J, Distribution D)

2: ifDis & then > w/o distribution, apply LAS
3: R J = W 7T X1y

4: else > w/ distribution, apply Gittins index
5: Ry =Gittins_Index(J,D)

6: end if

7: return R;

8. end procedure

10: procedure GITTINS_INDEX(Job J, Distribution D)

11: aj=Wjx t,]( | )
. _ P(S—a;<A|S>ay
12 Gy = SUP Blmin{sa A5 >a,]
13: > P is the probability and E is the mean, both of which are calculated from ID. A is the service
quantum.
14: return G

15: end procedure

both the spatial and temporal aspects of such jobs as well as their all-or-nothing character-
istic. At a high-level, 2DAS assigns each job a priority based on its attained service. The
attained service of a job is calculated based on the number of GPUs it uses (W) and the
amount of time it has been running so far (¢;). The former becomes known upon the job
arrival, while the latter continuously increases.

The priority function in 2DAS can be changed based on different prior knowledge.
When no job duration information is provided, the priority function applies the LAS algo-
rithm where a job’s priority is inverse to its attained service. If the cluster operator provides
the distribution of job duration from previous experience, then a job’s priority equals its
Gittins index value (Pseudocode 1). In the Gittins index-based algorithm, the ratio (Line
12) is between (1) the probability that the job will complete within the service quantum of
A (i.e., the possibility of reward when adding up to A overhead on all subsequent jobs) and

(2) the expected service that Job J will require for completion.
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Both LAS and Gittins index take job’s attained service as their inputs. LAS prefers
jobs that received less service. All jobs start with the highest priority, and their priorities
decrease as they receive more service. The Gittins index value of job represents how likely
the job that has received some amount of service can complete within the next service

quantum. Higher Gittins index value means higher priority.
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Figure 3.7: A scheduling example using 2D-Gittins index. (a) shows the time sequence of three jobs
with three different two-dimensional scheduling algorithms. Job 1 (black) is (2, 2), job 2 (orange)
is (1,8), and job 3 (blue) is (2,6). The first value in each tuple is the number of GPUs while the
second is duration. The scheduling interval is one unit of time. The 2D-Gittins index values for this
example are shown in (b). The three jobs have required service 4, 8, and 12, each with probability
1/3. Job index is used to break ties.

Example: Let us consider an example that illustrates both the algorithms and compares

them against SRSF that has complete information (Figure 3.7). Three DL jobs arrive at a
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two-GPU machine at the same time. The resource requirement of each job is represented
using (number of GPUs, duration) pairs. Only SRSF has prior knowledge of job duration.
2D-Gittins index knows the distribution, while 2D-LLAS has no related information. The
average JCTs in this example are 9.3, 10 and 11.7 units of time for SRSF, 2D-Gittins index,
and 2D-LAS, respectively. In general, algorithms with more information perform better in

minimizing the average JCT.

3.3.2.3 Priority Discretization

As observed in prior work [59], using continuous priorities can lead to a sequence of
preemptions and subsequent resumptions for all jobs. Unlike preempting a network flow
or a CPU process, preempting and resuming a DL job on GPU(s) can be time-consuming
and expensive (§3.2.2). The excessive cost can make 2DAS infeasible. Furthermore, con-
tinuous preemption degenerates 2DAS to fair sharing by time-division multiplexing, which
increases the average JCT.

We address these challenges by adopting the priority discretization framework based

on the classic Multi Level Feedback Queue (MLFQ) algorithm [48, 61, 59].
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Figure 3.8: Discretized 2DAS with K queues. Starving jobs are periodically promoted to the highest
priority queue.
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Discretized 2DAS: Instead of using a continuous priority spectrum, we maintain K logi-
cal queues (Q1, Qs, . . . , Q k), with queue priorities decreasing from (), to () (Figure 3.8).
The i-th queue contains jobs of attained service (Wt ;) values within [Q}O, Q?i). Note that

Qlo =0, QB = 00, and QI9, = QM.

Timeout Scheduled

Figure 3.9: State transition diagram of a job in TIRESIAS.

Actions taken during four lifecycle events determine a job’s priority (Figure 3.9).

* Arrival: If there are available resources, a new job enters the highest priority queue ),

when it starts.

* Activity: A job is demoted to ;1 from @);, when its (W;t;) value crosses queue

threshold Q?i.
* Starvation: A job’s priority is reset if it had been preempted for too long.
* Completion: A job is removed from its current queue upon completion.

The overall structure ensures that jobs with similar (I ;% ;) values are kept in the same
queue. Jobs with highly different (Wt ;) values are kept in different priority levels.

When LAS is used, jobs in the same queue are scheduled in a FIFO order of their start
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Pseudocode 2 2DAS Scheduler

1: procedure 2D-LAS(Jobs J, Queues Q1 ... Qx, Distribution D) >§83.3.2
2. P={} > Tracks jobs to preempt
3: forall Job J € J do
4:  if J is RUNNING then
5: rj = PRIORITY(J, D) > calculate job’s priority
6: end if
7. if J is WAITING longer than STARVELIMIT then
8: Reset ¢ 5
9: Enqueue J to ()1 > Promote if J is STARVING
10:  end if
11: end for
12:  while Cluster has available GPUs do
13:  foralli e [1, K] do > Prioritize across queues
14: ifDisnot @ andi € [1, K — 1] then
15: Sort_Gittins_Index((Q);) > Sort jobs in Q);
16: end if
17: for all Job J € Q; do > From the first J in @Q); to the end
18: if Available GPUs > W then > J can run
19: Mark W; GPUs as unavailable
20: else > J cannot run
21: P=PUJ
22: Preempt J if it is already RUNNING
23: end if
24: end for
25:  end for
26: end while
27: forallJob J € Jand J ¢ P do
28:  if J is not already RUNNING then
29: if J was not profiled before then
30: Profile J >§3.3.3.2
31 end if
32: Store J’s start time > Used for FIFO in Discretized 2D-LAS
33: Assign GPUs by comparing .Sy to PACKLIMIT >§3.3.3
34:  endif
35: end for
36: end procedure

time (i.e., when they were first scheduled) without any risk of HOL blocking. Because of
the all-or-nothing nature of DDL jobs, high-priority jobs without enough GPUs must be
skipped over to increase utilization; as such, FIFO ordering on submission time instead of

start time can lead to unnecessary preemptions.
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The service quantum A in Gittins index is also discretized. For jobs in @Q);, A; equals
thi which is the upper limit of ();. When a job consumes all its service quantum, it will
be demoted to the lower priority queue. For Gittins index, jobs in the same queue are
scheduled according to their Gittins index values. In the last queue, Qx, Ak is set to co.
In this extreme case, Gittins index performs similar to that of LAS, and jobs in the last
queue are scheduled in the FIFO order. The detail of Discretized 2DAS can be found in

Pseudocode 2.

Determining K and queue thresholds: While the discretization framework gives us
the flexibility to pick K and corresponding thresholds, optimally picking them is an open
problem [59, 50]. Instead of frequently solving an integer linear programming (ILP) [50]
formulation or using a heavy-weight deep learning mechanism [57], we leverage the classic
foreground-background queueing idea [134], which has been shown to perform well for
heavy-tailed distributions. There are only two queues (/X = 2) and only one threshold.
Our sensitivity analysis shows that using X = 2 performs close to that of larger K values,
ignoring preemption overheads. In practice, K = 2 limits the number of times a job can be

preempted, which reduces job completion time.

Avoiding starvation: Using Discretized 2DAS, some jobs can starve if a continuous
stream of small-and-short jobs keep arriving. This is because jobs in the same queue may
be skipped over due to the lack of free GPUs. Similarly, jobs in lower priority queues may
not receive sufficient GPUs either.

To avoid starvation, we promote a job to the highest-priority (), if it has been WAITING
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for longer than a threshold: STARVELIMIT (Line 7).

This poses a tradeoff: while promotion can mitigate starvation, promoting too often
can nullify the benefits of discretization altogether. To this end, we provide a single knob
(PROMOTEKNOB) for the cluster operator to promote a job if its WAITING time so far (0 )

is PROMOTEKNOB times larger than its execution time so far (¢); i.e.,

07 > PROMOTEKNOB * t

Setting PROMOTEKNOB = oo disables promotion and focuses on minimizing the aver-
age JCT. As PROMOTEKNOB becomes smaller, 2DAS becomes more fair, sacrificing the
average JCT for tail JCT.

Note that both ¢; and d; are reset to zero to ensure that a promoted job is not demoted

right away.

3.3.3 Placement

Given a job J that needs PS; parameter servers and W ; workers, if there are enough
resources in the cluster, TIRESIAS must determine how to allocate them. More specifically,
it must determine whether to consolidate the job’s GPUs in as few machines as possible or
to distribute them. The former is currently enforced in Microsoft production clusters; as a
result, a job may be placed in the WAITQUEUE even if there are GPUs available across the
cluster.

Taking this viewpoint to its logical extreme, we created an ILP formulation to opti-

mally allocate resources in the cluster to minimize and balance network transfers among
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machines. The high-level takeaways from such a solution are as follows. First and fore-
most, it is extremely slow to solve the ILP for a large-scale cluster with many DDL jobs.
Second, from small-scale experiments, we found that explicitly minimizing and balancing

the load of the network does not necessarily improve DL training performance.

3.3.3.1 ILP Formula for DDL Placement

When placing a DDL job on to a shared GPU cluster, the network traffic generated by
that job affects not only itself, but also all the jobs that share the same machines or network
links. The existing network status can affect the newly-placed DDL job as well. Therefore,
the objective of placing a DDL job is to maximize the overall performance of the entire
cluster. To achieve this, we have to minimize the total network traffic and also balance the
network load on individual machines in the cluster. In our ILP formulation, the objective
function is to minimize the maximal network load of machines when placing a new DDL
job onto the cluster.

By default, we assume all DDL jobs have the same number of parameter servers (PS)
and GPU worker, which is a common practice [170]. Actually, changing number of param-
eter servers does not affect the total amount of data in aggregation in the parameter server
architecture. There are N GPU nodes in the cluster. V; is the i-th node whose network
traffic from existing DDL jobs is ¢;. And N; has g; free GPUs before placing any new jobs.
We assume a new DDL job J with model size M is going to be placed. There are W GPU
workers and K parameter servers in it. The total size of tensors hosted by the j-th param-
eter server is s;. For J, w; is the number of GPU workers placed on N;. pj; is a binary

variable. It will be 1 if the j-th parameter server is placed on /V;, and vice versa.
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The total network traffic of NV; comes from three parts: (1) existing traffic, (2) traffic
from the workers of J on it, and (3) traffic from the parameter servers of .J on it. For
collocated parameter servers and workers, the traffic between them has to be deducted.

Therefore, the total network traffic 7T} is:

Tz‘:ti+wi'(M_iji'3j>+zpji'5j'(W_wi)

jEK JEK

The overall objective can then be expressed as:

minimize Izréé}@({ﬂ}

The corresponding constraints are the following:

Vienw; < g (IL..T)
> wi=W (11L..2)
1EN
Viex » pji=1 (11L..3)
iEN

The first one is GPU resource constraints on all nodes. The second one requires the con-
sistency of total number of GPU workers in J. The last one means every parameter server
must have exactly one host machine. Of course, more constraints, such as CPU and host

memory limitations, can be added into this ILP formulation.

How important is consolidation? Given the infeasibility of an ILP-based formulation,

we focused on developing a faster solution by asking a simple question: which jobs benefit
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from consolidation?

We found that the skew of the model structure (S;) can be a good predictor. The DL
models whose performance are sensitive to consolidated placement (Figure 3.3) have huge
tensor(s); their largest tensor size dominates the whole model (Table 3.3). This is because
messages sizes in model aggregation are closely related to the structure of the model. For
example, a model in TensorFlow consists of many tensors. Each tensor is wrapped as a
single communication message.* Therefore, the message size distribution in DDL depends
on the tensor size distribution of the model. The tensor sizes are often unevenly distributed;
sometimes there is a huge tensor which holds most of the parameters in those models.
Hence, aggregating larger tensors suffers from network contention more severely, while
transmissions of smaller tensors tend to interleave better with each other.

Leveraging this insight, we design TIRESIAS profiler that finds out the skew level of

each model, which is then used by the TIRESIAS placement algorithm.

3.3.3.2 Profiler

For a given job J, TIRESIAS’s profiler identifies the amount of skew in tensor distribu-
tions across parameter servers (5;) without user input and in a framework-agnostic manner.
The skew is a function of the tensor size distribution of the DL job and tensor-to-parameter
server mapping of the DL framework (e.g., TensorFlow assigns tensors in a round-robin
fashion). Instead of forcing users to design DL models with equal-sized tensors or making
assumptions about the tensor assignment algorithm of a given DL framework, we aim to

automatically identify the skew via profiling.

4Other frameworks may split each tensor into multiple messages, but still, these messages are sent out in
clear batches for each tensor.
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Because each parameter server periodically sends out its portion of the updated model
to each worker (§1.1.2.1), observing these network communications can inform us of the
skew. Given that most production DL jobs use RDMA (e.g., InfiniBand in Microsoft) for
parameter server-worker communication, and to the best of our knowledge, there exists no
RDMA-level traffic monitoring tool, we have built one for TIRESIAS.

TIRESIAS’s profiler intercepts communication APIs — including the low-level network-
ing APIs like RDMA ibverbs —in each machine to collect process-level communication
traces. Whether a DDL job uses RDMA directly or through GPUDirect, TIRESIAS can
capture detailed meta-data (e.g., message sizes) about all RDMA communications.

During the profiling run of a job, TIRESIAS aggregates information across all relevant
machines to determine Sy for job .J. Because each iteration is exactly the same from a com-
munication perspective, we do not have to profile for too many iterations. This predictabil-
ity also enables us to identify a job’s iteration boundaries, model size, and skew charac-
teristics. TIRESIAS’s placement algorithm uses this information to determine whether the

GPU allocation of a job should be consolidated or not.

3.3.3.3 The Placement Algorithm

TIRESIAS’s placement algorithm compares S; with a threshold (PACKLIMIT); if S is
larger than PACKLIMIT, TIRESIAS attempts to consolidate the job in as few machines as
possible. As explained above, a job with a large skew performs worse due to a skewed
communication pattern if it is not consolidated. For the rest, TIRESIAS allocates GPUs
in machines to decrease fragmentation. Albeit simple, this algorithm is very effective in

practice (§3.5). It performs even better than the previous ILP-based design because the ILP
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Table 3.2: Comparison of DL cluster managers.

Gandiva Optimus TIRESIAS TIRESIAS

YARN-CS [164] [140] (Gittins index) (LAS)
Prior JCT ICT
Knowledge None None prediction distribution None
Scheduling FIFO Time | Remaining |- 00 oin dex LAS
Algorithm sharing time driven
Scheduling Arrival time N/A Remammg Attalped Attal'ned
Input time service service
Sc.hedul'e Temporal None Temporal Spatial & Spatial &
Dimensions temporal temporal
Job . . . Discretized Discretized

. Continuous | Continuous | Continuous

Priority queues queues
Job N/A Context Model Model Model
Preemption switch checkpoint checkpoint checkpoint
Minimizing
Average JCT No No Yes Yes Yes
Starvation Dynamic
Avoidance N/A N/A FeSOUTCe Promote to (); | Promote to ()1
Job . Trial- Capacity- Profile- Profile-
Placement Consolidation and-error based based based

cannot capture the different effects of consolidation on different models.

Determining PACKLIMIT: We rely on job history to periodically update PACKLIMIT.
Currently, we use a simple linear classifier to periodically determine the PACKLIMIT value

using a job’s placement and corresponding performance as features. More sophisticated

mechanism to dynamically determine PACKLIMIT can be an interesting future work.

3.3.4 Summary

Compared to Apache YARN’s Capacity Scheduler (YARN-CS) and Gandiva, TIRESIAS
aims to minimize the average JCT. Unlike Optimus, TIRESIAS can efficiently schedule jobs

without or with partial prior knowledge (Table 3.2). Additionally, TIRESIAS can smartly
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place DDL jobs based on the model structure automatically captured by the TIRESIAS

profiler.

3.4 Implementation

We have implemented TIRESIAS as a centralized resource manager. The Discretized
2DAS scheduler, the placement algorithm, and the profiler are integrated into the central
master, and they work together to appropriately schedule and place DDL jobs. Similar to
using current DDL clusters, users submit their DDL jobs with the resource requirements,
primarily the number of parameter servers (P.S;) and the number of GPUs/workers ().
The resource manager then handles everything, from resource allocation when a job starts
to resource reclamation when it completes.

As mentioned earlier, TIRESIAS makes job placement decisions based on profiling via
a network monitoring library. This library is present in every server of the cluster and
communicates with the central profiler so that TIRESIAS can determine the skew of each

new DDL job.

Central master: In addition to starting new jobs and completing existing ones, a major
function of the master is to preempt running jobs when their (GPU) resources are assigned
to other jobs by the scheduler. Because of the iterative nature of DL jobs, we do not
need to save all the data in GPU and main memory for job preemption. Currently, we use
the checkpoint function provided by almost every DL framework and just save the most

updated model for the preempted job. When a preemption is triggered, the job is first
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paused; then its chief worker checkpoints its model to a cluster-wide shared file system.
When a paused job is resumed again by the scheduler, its most recent checkpoint will be
loaded before it is restarted. The central master also determines a job’s placement using the

placement algorithm and the profiler.

Distributed RDMA monitoring: Because RDMA is widely used in GPU clusters for
DDL jobs, we implement the profiler as a loadable library that intercepts RDMA ibverbs
APIs. Therefore, it can record all the RDMA activities on each server, such as building con-
nections, sending and receiving data. The RDMA-level information of all relevant workers
and parameter servers are then aggregated at the central profiler. Based on the aggregated
information (e.g., message size and the total amount of traffic), TIRESIAS can resolve the
detailed model information of a given DDL job, including its skew. Though implemented
for RDMA networks, the profiler can easily be extended to support TCP/IP networks by

intercepting socket APIs.

3.5 Evaluation

We have deployed TIRESIAS on a 60-GPU cluster and evaluated it using experiments
and large-scale simulations using production traces from Microsoft. The highlights are:
* In testbed experiments, TIRESIAS improves the average JCT by up to 5.5 and the
makespan by 1.21x compared to YARN-CS. It also performs comparably to SRTF,
which uses complete prior information (§3.5.2). TIRESIAS’s benefits are due to job

placement benefits for skewed DDL jobs and reduction in queueing delays during
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scheduling.

* TIRESIAS’s benefits hold for large-scale simulation of the production trace from Mi-

crosoft (§3.5.3).
* TIRESIAS is robust to various configuration parameters and workload variations (§3.5.4).

In this section, TIRESIAS-G (TIRESIAS-L) represents TIRESIAS using the Discretized

2D-Gittins index (Discretized 2D-LAS).

3.5.1 Experimental Setup

Testbed. Our testbed consists of 15 4-GPU PowerNV 8335-GTB machines from IBM in
the Michigan ConFlux cluster. Each machine has 4 NVIDIA Tesla P100 GPUs with 16
GB GPU memory, two 10-core (8 threads per core) POWERS8 CPUs, 256 GB DDR4 mem-
ory, and a 100 Gbps EDR Mellanox InfiniBand adapter. There is also a high-performance
cluster file system, GPFS [149], shared among those machines. In TIRESIAS, the check-
point files used in job preemptions are written to and read from GPFS. The read and write

throughput of GPFS from each machine is 1.2 GB/s.

Simulator. We developed a discrete-time simulator to evaluate TIRESIAS at large scale
using a real job trace from Microsoft. It simulates all job events in TIRESIAS, including
job arrival, completion, demotion, promotion, and preemption. However, it cannot deter-
mine job training time with the dynamic cluster environment; instead, it uses actual job

completion times.
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Table 3.3: Characteristics of the DL models (in TensorFlow) used the experiments.

Model size #Large tensors Largest tensor size Largest tensor
Model (MB) #Tensors ( 2g IMB) & (MB) gratio
VGG19 548.1 39 15 392.0 71.5%
VGG16 527.8 33 12 392.0 74.3%
VGG11 506.8 23 9 392.0 77.3%
AlexNet 235.9 17 7 144.0 61.0%
ResNet152 230.2 778 48 9.0 3.9%
ResNet101 170.4 523 35 9.0 5.3%
ResNet50 97.7 268 18 9.0 9.2%
Inception4 162.9 599 81 5.9 3.6%
Inception3 91.0 397 21 7.8 8.6%
GoogleNet 26.7 117 7 3.9 14.6%

Workload. Given the scale of our GPU cluster, we generate our experimental workload
of 480 DL/DDL jobs by scaling down the original job trace. Job requirements (number of
GPUs, and training time) in our workload follow the distributions of the real trace. Half of
these jobs are single-GPU DL jobs; the rest are DDL ones (40 2-GPU jobs, 80 4-GPU jobs,
90 8-GPU jobs, 25 16-GPU jobs, and 5 32-GPU jobs). The number of parameter servers in
each DDL job is the same as its GPU number. Each model in Table 3.3 has 48 jobs. Each
job has a fixed number of iterations to run. The training time of jobs varies from 2 mins
to 2 hours. Jobs arrive following a Poisson process with an average inter-arrival time of 30
seconds. We run the jobs in synchronous data parallelism mode using TensorFlow 1.3.1

with RDMA extension and using model files from the TensorFlow benchmark [36].

Job Bins. We category our jobs based on both their spatial (number of GPUs) and tem-
poral (job training time) characteristics (Table 3.4). For the original trace, we consider a
job to be small if it does not need more than 8 GPUs (Microsoft uses 8-GPU machines) and

short if its training time is less than 4 hours. After scaling down, we consider a job to be
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Table 3.4: Bins of DL jobs with different GPU requirements (Small and Large) and execution time
(Short and Long).

Bin 1(SS) 2(SL) 3(LS) 4(LL)
% of Jobs 63.5% 12.5% 16.5% 7.5%

small if it needs at most 4 GPUs (we are using 4-GPU machines) and short if it trains for

less than 800 seconds.

Baselines. We compare TIRESIAS to an Apache YARN’s capacity scheduler (YARN-CS)
used in Microsoft (§ 3.2.1). For comparison, we also implement an SRTF scheduler that has
complete information, i.e., the eventual training time that in practice, cannot be obtained
before running the job. Note that job durations are unknown to both TIRESIAS and YARN-
CS. SRTF uses TIRESIAS’s placement mechanism. We also comapre TIRESIAS with the

time-sharing scheduler in Gandiva [164] in the large-scale simulation.

Metric. Our key metric is the improvement in the average JCT (i.e., time from submission

to completion):

Duration of an Approach

Factor of Improvement = -
Duration of TIRESIAS-L

To clearly present the performance of TIRESIAS, unless otherwise specified, the results
of all schedulers (including TIRESIAS-G) are normalized by that of TIRESIAS-L. Factor of

improvement (FOI) greater than 1 means TIRESIAS-L is performing better, and vice versa.
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3.5.2 TIRESIAS in Testbed Experiments

In testbed experiments, we compare the performance of YARN-CS, SRTF, TIRESIAS-
G and TIRESIAS-L. For TIRESIAS, there are two priority queues with a threshold of 3200
GPU seconds. The PROMOTEKNOB for avoiding starvation is disabled in Testbed experi-

ments.
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Figure 3.10: Improvements in the average JCT using TIRESIAS w.r.t. YARN-CS and SRTF.

3.5.2.1 JCT Improvements

TIRESIAS-L achieves 5.5x improvement in terms of the average JCT w.r.t. to YARN-
CS (Figure 3.10). If we look at the median JCT, then TIRESIAS-L is 27x better than

YARN-CS. TIRESIAS-G has almost the same performance as TIRESIAS-L (1.06x in av-
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erage, 1.05x in median). Its negligible performance loss is due to more job preemptions
(§3.5.2.4). Half of all jobs avoid severe queueing delays using TIRESIAS. Moreover, TIRE-
SIAS is not far from SRTF either.

The key idea of TIRESIAS’s scheduler is avoiding queueing delays to small or short
jobs, thus saving them from large or long jobs. When using TIRESIAS-L (TIRESIAS-G),
the average JCT of jobs in Binl (SS) is just 300 (330) seconds, which is 27.6x (25.2x)
better than that using YARN-CS. On the other hand, jobs in Bin4 (LL) have almost the

same average JCT in both TIRESIAS and YARN-CS.
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Figure 3.11: Cluster-wide GPU utilization.

3.5.2.2 Cluster-Wide GPU Utilization

Figure 3.11 shows the averaged GPU utilizations of our cluster over time. While there
are some small variations, overall utilizations across solutions look similar. However,
TIRESIAS reduces the makespan compared to YARN-CS. The makespan of TIRESIAS-
L (27400 seconds) was 1.21 x smaller than that of YARN-CS (33270 seconds), and it was

similar to TIRESIAS-G (27510 seconds) and SRTF (28070 seconds).
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Table 3.5: Queueing delays for DDL jobs for different solutions.

Average Median 95th

YARN-CS 8146s 7464s  15327s
SRTF 593s 32s  3133s
TIRESIAS-G 1005s 39s  7933s
TIRESIAS-L 963s 13s  7755s

3.5.2.3 Sources of Improvements

Smaller queueing delays. TIRESIAS’s scheduler can reduce the average queueing delay
of all jobs (Table 3.5), especially for small and short jobs. The average queueing delay is
reduced from over 8000 seconds to around 1000 seconds when comparing YARN-CS and
TIRESIAS. More importantly, half of the jobs are just delayed for less than or equal to 13
(39) seconds in TIRESIAS-L (TIRESIAS-G), which is negligible compared to the median
delay in YARN-CS. Note that while TIRESIAS’s average queueing delay is higher than

SRTF, smaller jobs actually experience similar or shorter delays.

10
0.8
0.6

Fraction of
DDL Jobs
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Ratio of Job Training Time

Figure 3.12: Performance improvement from job placement in TIRESIAS-L. We pick all the DDL
jobs and compare their training times when TIRESIAS-L is running with and without placement.

Faster training. Albeit smaller, another source of performance improvement is TIRE-
SIAS’s job placement algorithm. To illustrate this, we rerun the experiment using TIRE-
SIAS-L but without its profiler; i.e., jobs are randomly placed on the cluster. We compare

the training time of DDL jobs in TIRESIAS-L without job profiling versus in the original

96



TIRESIAS-L. We use the ratio of training time in random placement to TIRESIAS-L as the
factor of improvement. In Figure 3.12, large ratio means random placement slows down
the training, and vice versa; single-GPU jobs are excluded from the figure. TIRESIAS-L
achieves up to 1.67x improvement w.r.t. random placement, because it can identify sen-
sitive jobs and place them on minimal number of machines for better performance. Fewer
than 30% of DDL jobs experience limited performance loss.

Because of the highly-skewed job distribution and the variety of model types, the major
improvement comes from the job scheduling by avoiding HOL blocking of small/short jobs

by the large/long ones.

3.5.2.4 Overheads

Because TIRESIAS uses preemption in its scheduling algorithm, its major overhead
comes from preempting DDL jobs. The Discretized 2DAS scheduler in TIRESIAS provides
discretized priority levels to jobs. Hence, two cases trigger job preemptions in TIRESIAS:
job arrivals/promotions and demotions that change the priority queue of a job. In our ex-
periments, TIRESIAS-L spent 13724 seconds performing 221 preemptions; TIRESIAS-G
triggered 297 preemptions with 17425 seconds overhead in total. There are more preemp-
tions in TIRESIAS-G because jobs in the same queue are sorted based on their Gittins index
value at every event. In TIRESIAS-L, jobs will not be re-sorted because of FIFO ordering.

In contrast, job priorities in SRTF are continuous. Whenever short jobs come in, jobs
that with longer remaining time (lower priorities) may be preempted due to lack of re-
sources. Overall, SRTF spent 18057 seconds for 316 preemptions.

Note that the exact overhead of each preemption depends on the specific job and cluster
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conditions.

3.5.3 TIRESIAS in Trace-Driven Simulations

Here we evaluate TIRESIAS’s performance on the Microsoft job trace. We compare it
against YARN-CS, SRTF, and Best-effort, where Best-effort is defined as YARN-CS but
without HOL blocking —i.e., it allows small jobs to jump in front of large jobs that do not

have enough available GPUs.

3.5.3.1 Simulator Fidelity

We replayed the workload used in our testbed experiments in the simulator to verify the
fidelity of our simulator. We found the simulation results to be similar to that of our testbed
results — 5.11x (1.50x) average (95th percentile) improvement w.r.t. YARN-CS, 0.74 x
(0.55x) w.r.t. SRTF, and 1.01x (1.13x) w.r.t. TIRESIAS-G. Because the simulator cannot

capture overheads of preemption, the impact of placement, or cluster dynamics, the results

are slightly different.
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Figure 3.13: JCT distributions using different solutions in the trace-driven simulation. The x-axis is
in logarithmic scale.
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3.5.3.2 JCT Improvements

We then simulated the job trace from Microsoft to identify large-scale benefits of TIRE-
SIAS (Figure 3.13). TIRESIAS-L improves the average JCT by 2.4x, 1.5x, and 2Xx over
YARN-CS, Best-effort, and Gandiva, respectively (Table 3.6). In addition, TIRESIAS-L
reduces the median JCT by 30.8x (9x) w.r.t. YARN-CS (Best-effort). This means half of
the Microsoft jobs would experience significantly shorter queueing delays using TIRESIAS.
Compared to TIRESIAS-L, TIRESIAS-G has almost the same (median JCT) or slightly bet-
ter (average and 95th percentile JCT) performance. More importantly, TIRESIAS performs

similar to SRTF that uses complete knowledge.

Table 3.6: Improvements in JCT using TIRESIAS in simulation. Numbers are normalized by that of
TIRESIAS-L.

Average Median 95th

YARN-CS 241x  30.85x 1.25x

Best-effort 1.50 % 9.03x 1.08x

SRTF 1.00x  1.00x 0.84x

Gandiva 2.00x 2.59%x  2.08x

TIRESIAS-G 0.97x 1.00x 0.85x

3.5.4 Sensitivity Analysis

Here we explore TIRESIAS’s sensitivity to /' (number of priority queues), queue thresh-
olds (server quantum A), and PROMOTEKNOB. By applying the Discretized 2D-LAS al-

gorithm, TIRESIAS relies on K and corresponding thresholds to differentiate between jobs.
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In this section, we use (K, thresholdl, threshold2, ...) to represent different settings in

TIRESIAS. For example, (2, 1h) means TIRESIAS has 2 priority queues and the threshold

between them is 1 hour GPU time.
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Figure 3.14: Sensitivity analysis of TIRESIAS-L. The queue settings in (b) are (2, 1h), (3, 1h, 2h),

and (4, 1h, 2h, 4h) for each bar.
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Figure 3.15: Sensitivity analysis of TIRESIAS-G. The queue settings in (b) are (2, 1h), (3, 1h, 2h),

and (4, 1h, 2h, 4h) for each bar.

3.54.1 Impact of X' (number of priority queues)

3.5.4.2 Impact of Queue Thresholds

We use TIRESIAS with A'=2 and increase the threshold between the two priority queues

(Figure 3.14a and 3.15a). We observe that (2, 0.5h) is slightly worse than others who have

larger thresholds in terms of the average JCT in TIRESIAS-L. When the threshold is larger
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than or equal to 1 hour, TIRESIAS-L’s performance almost does not change. For TIRESIAS-
G, different A values have almost the same performance. These are because 1h GPU time
can cover more than 60% of all the jobs.

Next, we examine TIRESIAS’s sensitivity to /. We evaluate TIRESIAS with K set to 2,
3 and 4, and pick the best thresholds in each of them. The number of priority queues does
not significantly affect TIRESIAS (Figure 3.14b and 3.15b). The 3- and 4-queue TIRESIAS

only improves the average JCT by 1% in comparison to the 2-queue TIRESIAS-L.

3.5.4.3 Impact of PROMOTEKNOB

This simulation is based on (2, 1h). We pick the initial PROMOTEKNOB as 1, and
increase it by the power of 2. When PROMOTEKNOB is infinite, TIRESIAS does not pro-
mote. Smaller PROMOTEKNOB means more frequent promotions of long-delayed jobs
back to the highest priority queue. For TIRESIAS-G, the maximal JCT is cut down by
PROMOTEKNOB (Figure 3.15¢). However this trace is not sensitive to the different value
of PROMOTEKNOB. In Figure 3.14c, the 95th JCT minutely changes when we use smaller
PROMOTEKNOB in TIRESIAS-L — the key reason PROMOTEKNOB has little impact for

this trace is due to its heavy-tailed nature [134].

3.6 Discussion

Formal analysis. Although Discretized 2DAS has advantages in minimizing the aver-
age JCT of DL jobs, formal analyses are still needed to precisely present its applicable

boundaries (in terms of cluster resources and DL jobs’ requirements). This will simplify
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TIRESIAS configuration in practice.

Lightweight preemption. Existing preemption primitives for DL jobs are time-consuming.
To reduce the number of preemptions, TIRESIAS adopts priority discretization using MLFQ
(§3.3.2.3). A better way of preempting DL jobs has been proposed in Gandiva [164]. How-
ever, that approach requires DL framework modifications. At the same time, its overhead is
still non-negligible. With lightweight preemption mechanisms, many classic and efficient

algorithms in network flow and CPU scheduling can be applied for DDL scheduling.

Fine-grained job placement. TIRESIAS’s profile-based placement scheme coarsely tries
to avoid network transfers when necessary. However, there can be interferences within the
server (e.g., on the PCle bus) when too many workers and parameter servers are collocated.
Further investigations on how placement can affect job performance are required. To this
end, possible approaches include topology-aware schemes [43] and fine-grained placement

of computational graphs in DL jobs [126].

3.7 Related Work

Cluster Managers and Schedulers. There are numerous existing resource managers and
schedulers for CPU-based clusters for heterogeneous workloads [78, 94, 159, 161, 174, 86,
102, 81, 158, 87] or for traditional machine learning jobs [97, 157, 171]. As explained in
Section 3.1, these frameworks are not designed to handle the unique characteristics of DDL
jobs — e.g., all-or-nothing task scheduling, and unpredictable job duration and resource

requirements — running on GPU clusters.
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Resource Management in DDL Clusters. Optimus [140] is an online resource sched-
uler for DDL jobs on GPU clusters. It builds resource-performance model on the fly and
dynamically adjusts resource allocation and job placement for minimizing the JCT. It is
complementary to TIRESIAS in terms of job placement, because the latter focuses on the
efficiency of the initial job placement based on job characteristics, while the former per-
forms online adjustment according to a job’s realtime status. However, Optimus assumes
that the remaining time of a DL job is predictable, which is not always true in practice
(§3.2.2). TIRESIAS can schedule jobs without any or with partial prior knowledge, and it
does not rely on such assumptions. Gandiva [164] is a resource manager for GPU clus-
ters that gets rid of the HOL blocking via GPU time sharing. However, the time-slicing
scheduling approach in Gandiva brings limited improvement in terms of the average JCT.
Themis [120], Gandivayq, [54] and AlloX [108] are resource managers that focus on
how to fairly share the DL cluster among multiple jobs or users. Themis proposes a new
fairness metrics for DL training jobs and allows trading off fairness for efficiency without
affecting long-term fairness. Gandivay,i, achieves fairness and efficiency in DL clus-
ters with heterogenous GPUs. It provides performance isolation between users and uses a
novel resource trading mechanism for maximizing cluster efficiency. AlloX manages hy-
brid computing resources (e.g., CPU and GPU) that are interchangeable for DL training
jobs. It proposes a dynamic fair allocation algorithm that achieves fairness among users
and prevents starvation. AntMan [165] co-designs cluster manager and DL frameworks.
It introduces dynamic scaling mechanisms in DL frameworks by utilizing the spare GPU
resources. AFS [98] is an elastic resource sharing scheme for DL clusters. It could balance
resource efficiency and short job prioritization for average JCT minimization.
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Resource Management with Partial or No Information. To the best of our knowledge,
TIRESIAS is the first cluster scheduler for DDL training jobs that minimizes the average
JCT with partial or no information. While similar ideas exist in networking [50, 59] and
CPU scheduling [48, 61], GPU clusters and DDL jobs provide unique challenges with
high preemption overheads and all-or-nothing scheduling. There exist all-or-nothing gang
schedulers for CPU, but they are not information-agnostic. While fair schedulers do not
require prior knowledge [13, 14, 169], they cannot minimize the average JCT. Similar to
the Gittins index policy, Shortest Expected Remaining Processing Time (SERPT) [151]
just needs partial knowledge of job durations. However, the Gittins index policy is proven

to be better because it prioritizes a larger number of potentially shorter jobs [151].

3.8 Conclusion

TIRESIAS is a GPU cluster resource manager that minimizes distributed deep learning
(DDL) jobs’ completion times with partial or no a priori knowledge. It does not rely on any
intermediate DL algorithm states (e.g., training loss values) or framework specifics (e.g.,
tensors-to-parameter server mapping). The key idea in TIRESIAS is the 2DAS scheduling
framework that has two scheduling algorithms (Discretized 2D-LAS and Discretized 2D-
Gittins index). They can respectively minimize the average JCT with no and partial prior
knowledge. Additionally, TIRESIAS’s profile-based job placement scheme can maintain
the resource (GPU) utilization of cluster without hurting job performance. Compared to
a production solution (Apache YARN’s Capacity Scheduler) and a state-of-the-art DDL

cluster scheduler (Gandiva), TIRESIAS shows significant improvements in the average JCT.
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CHAPTER IV

AUTOPS: Elastic Model Aggregation with

Parameter Service

4.1 Introduction

DL has become a major driving force in many application domains, including image
classification, speech recognition, and machine translation [93, 95, 68]. With increasing
model complexity and large training datasets, many DL models are trained in a distributed
manner. Training distributed deep learning (DDL) on large shared clusters is becoming
prevalent [113, 100, 3, 4, 10] to meet the ever-growing demands.

Although GPU scheduling has so far received the most attention in the context of DL
clusters [120, 89, 164, 140] and rightly so, we observe that the impact of traditional cluster
resources such as CPU can be significant (§4.2). This is especially true for DDL training
jobs, where parameter servers run on traditional virtual machines (VMs) or containers.
When running those jobs, up to 80% of the allocated CPUs may be wasted due to the bursty
and periodic nature of model aggregation. Notice that, CPUs are not free to use. Renting

one CPU core in the cloud takes around $900/yr [75]. Given the increasing number of DDL
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training jobs, users spend a substantial amount of money on the CPUs that are left unused.

The root cause of this CPU underutilization is forcing resource management techniques
from big data clusters onto emerging DDL jobs. A VM or container allocated to a param-
eter server has a fixed amount of CPU resource, which is exclusive (non-sharable) and
provisioned for peak usage. However, a parameter server usually cannot keep its assigned
CPU saturated — CPU consumption of DDL training is inherently bursty. Parameter servers
of a DDL job must idly wait for the workers’ model updates that are generated layer by
layer according to the progress of back-propagation.

To remedy this problem, we propose Parameter Service, an elastic model aggregation
framework for DDL training that aims to improve overall CPU utilization without sacrific-
ing training performance. Unlike prior work on model aggregation [30, 35] where parame-
ter servers are assigned to individual jobs, Parameter Service decouples model aggregation
from training and exposes a shared model aggregation service to all training jobs for better
CPU utilization. Parameter Service is a middle layer between the DL framework and the
low-level infrastructure. Therefore, it is transparent to the users (and applications) and only
requires a few modifications to the DL framework.

The crux of the problem is answering: How to efficiently share CPU resources for
model aggregation among DDL jobs without degrading their performance? Parameter
Service relies on two key knobs to address this question: dynamic workload assignment
and elastic resource management. It can flexibly pack the model aggregations from the
same or different jobs onto a single server to fill its idle CPU cycles so as to avoid resource
wastage. When any workload change occurs (e.g., job arrivals and/or exits), Parameter Ser-

vice can dynamically update the assignments to enhance resource efficiency and preserve
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job performance. In addition, Parameter Service manages CPU resource elastically at the
server level. The number of servers for model aggregation can be seamlessly scaled up or
down based on the change of load in Parameter Service.

Moreover, dynamic model aggregation management requires efficient orchestration
among servers, which would otherwise elongate the execution of workers and waste their
GPUs. Leveraging two unique characteristics of DDL training, Parameter Service can flex-
ibly re-assign model aggregations with negligible time overhead. First, model aggregations
happen at the tensor level with no data dependencies between them. Thus, Parameter Ser-
vice can reassign a single model aggregation without interrupting the entire DDL job. Sec-
ond, there are not many constraints (e.g., data locality and special resource requirements)
that prevent a server from accepting the re-assigned tasks. Once a decision is made, the
master copy of tensor data needs to be migrated from the original server to the new one.
Because DDL training is done iteratively with a fixed execution pattern, Parameter Service
hides the time overhead by only performing data migration when the job is in the training
stage at the worker side.

We propose a heuristic for assignment of model aggregations and a simple feedback-
based scheme for resource scaling. Relying on the iterative nature of DDL training, our
assignment scheme finds proper servers and gets cyclic execution slots for model aggrega-
tions. Incorporating with model aggregation assignment, our resource scaling mechanism
balances between resource utilization and job performance. We have implemented Param-
eter Service in a system called AUTOPS and deployed it on a real DL cluster. We evaluated
it using Apache MXNet [25] with multiple state-of-the-art DL models. AUTOPS reduces
up to 75% of CPU resource from workload packing, with very-limited performance impact
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on the training jobs.

Overall, we make the following contributions in this paper:

» Parameter Service decouples model aggregation from DDL training and elevates it as a
shared cluster-wide service. This makes it easier for users to run DDL training without

maintaining parameter servers for each DDL job.

* Parameter Service resolves the mismatch between DDL training and the infrastructure.
It improves CPU utilization by dynamic workload assignment and elastic resource man-

agement.

* Parameter Service is completely transparent to users and requires trivial modifications

in the popular DL frameworks.

4.2 Background and Motivation

In this work, we focus on the classic data-parallel DDL training (§1.1.2.1) using the
Parameter Server (PS) architecture(Figure 1.3a), where multiple workers work on their
local copies of the DL model in parallel and the training dataset is partitioned across all the

workers.

Static Parameter Assignment. For performance reasons, a single DDL job may have
multiple PS instances, each of which host different parts (i.e., parameter) of the model
(Figure 1.3a). In current PS design [112, 141], the assignment of model parameters is often
static once the job starts. Thus, the workload on each PS instance will not be changed as

long as the job is running.
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Figure 4.1: CPU usage of model aggregation in VGG19 training. VGG19 is trained on MXNet with
2 different distributed settings: 1 PS server and 2 workers, 2 PS servers and 2 workers. Servers and
workers are distributed to different machines. “1s-2w” means the job has 1 PS server and 2 workers.

4.2.1 CPU Underutilization

Most DDL training jobs run in shared clusters to attain cost-effectiveness. Despite
its benefits, there is a crucial mismatch between DDL applications and the resource man-
agement software of the infrastructure. Many CPU cores, that are statically assigned to
parameters server containers or VMs, are wasted due to the bursty model aggregations in
DDL training.

In each training iteration, the aggregation of a tensor cannot start until the completion of
backward computation on that tensor. Due to this dependency, the CPU resource reserved
for model aggregation at server side is mostly idle when the job is in the forward-and-
backward stage (Figure 1.3b). Besides, model aggregation is performed at tensor-scale.

There will be a spike of CPU usage when a tensor is ready to be updated. Therefore, the
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Figure 4.2: Average CPU utilization of model aggregation. Each model is trained on MXNet with
1 PS server and different number of workers.

CPU usage of model aggregation is a combination of sharp spikes and idle cycles (Fig-
ure 4.1a). In a shared cluster, CPU resource are assigned through the abstraction of VM or
container for isolation. To achieve good performance, users often oversubscribe the CPU
resource of their virtual machines (or containers) to satisfy the peak demand. Due to the
mismatch between the dynamic CPU usage and the static CPU allocation, CPUs reserved
for model aggregation remain underutilized.

Figure 4.2 shows the average CPU utilization of model aggregation when training dif-
ferent models. The number of reserved CPU cores for each job’s PS server is the same as
its peak usage. Since there is only 1 PS server in each job, the CPU consumption of model
aggregation is concentrated at the single PS server. Among all the jobs, more than a half of
the CPU resource are left unused. For VGG19 (1s-2w), the average CPU utilization of its
server instance is only 16%.

This issue will get worse when multiple PS servers are used in a single training job.
Since the workload of model aggregation is divided among those PS servers, the corre-
sponding CPU consumption is also split (Figure 4.1). Users need to reserve plenty of CPU

cores for each PS server without violating the spikes on each of them.
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4.2.2 Opportunities Brought by DDL training

DDL training has unique characteristics that create opportunities to resolve the mis-

match with infrastructure.

Tensor-Based Model Structure. Although tensors are layered in the model and have
dependencies with their neighbors in forward-and-backward computation, they are inde-
pendent of each other when they are getting aggregated. Each tensor can be managed
individually at the server side. Based on this feature, it is possible to apply fine-grained
and dynamic workload management. Model aggregations can be independently mapped to
the proper CPU slots for execution. The CPU utilization could be improved by packing

more model aggregations from multiple jobs in a single server instance.

Iterative Training. To handle the mismatch mentioned above, the information of the
training job, especially model aggregation, is required. Relying on the iterative feature, the
runtime information (e.g., CPU consumption) of the training job measured in the previous
iterations can be used as the input for making long-term decisions in workload manage-

ment.

4.3 Parameter Service

Parameter Service is an elastic model aggregation framework for DDL training. It aims
at enhancing CPU utilization for model aggregation without sacrificing job performance. In
this section, we first present the overview of Parameter Service followed by how to migrate
tensor data without negligible time overhead. We then illustrate how model aggregations
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are managed by Parameter Service which includes the schemes of workload assignment

and resource scaling.

4.3.1 System Overview

To achieve the aforementioned goals, Parameter Service introduces two features, dy-
namic workload assignment and elastic resource allocation, to the traditional parameter
server-based approach. When the total load in Parameter Service changes (e.g., job arrival
and completion), workload reassignment might be triggered if Parameter Service finds any
CPU slots that fit better for some existing model aggregations. Meanwhile, incorporating
with workload (re)assignment, the number of model aggregation servers will be scaled up

or down based on demands.
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Figure 4.3: Parameter Service architecture. Agent is loaded under the DL framework layer at each
worker. There is a pMaster in the cluster that manages the pool of Aggregator. Each Aggregator is
placed on an individual machine.

With Parameter Service, model aggregation is decoupled from individual training jobs,
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whereby their workers only need to submit the model aggregation requests to Parameter
Service through the unique interface and wait for the response, without worrying about
where the requests are handled and how much of resource to be allocated (Figure 4.3). In
the backend, Parameter Service carefully assigns those requests to the available servers.
In the Parameter Service design, model aggregations are not grouped by training job any
longer; each one is independent and can share the aggregation server with the ones from
other training jobs.

Parameter Service has three components (Figure 4.3):

1. pMaster is a centralized manager. It has a job profiler and a server profiler that keep
monitoring the status of training jobs and resource availability (i.e., CPU) of each Ag-
gregator, respectively. When anything is changed, it will adjust the workload assign-

ment and resource allocation accordingly.

2. Aggregator maintains the model tensors of different jobs and handles their aggregation
requests. There is a pool of Aggregators managed by pMaster. pMaster elastically
adjusts the number of its Aggregator according to the change of total load. Any two
Aggregators can migrate the workload from one to the other, when pMaster reassigns
the workload between them.

3. Agent is the interface that Parameter Service exposes to the workers. Each one works
for a single worker. It maintains a mapping table that keeps the information of Aggre-
gator for tensors in the job. When a model aggregation request comes, it will forward

the request from its worker to the destination by checking the table.
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Figure 4.4: Interactions among worker and Parameter Service components. Model aggregation
requests in Parameter Service are identified by the combination of job ID and tensor ID. Agent
sends Init to Parameter Service when a new tensor arrives. Aggregator receives Migration from
Parameter Service when one of its tensor is reassigned.

4.3.1.1 Decoupled Model Aggregation

To dynamically assign workload to the proper CPU slots, Parameter Service decouples
model aggregations from their training jobs.

Originally, each training job maintains a group of parameter servers (PS) of its own. As
mentioned in §4.2, the assignment of model aggregation is static once the job starts. Model
aggregation requests use a Key-Value format. The key field is filled with the tensor ID, so
that the request can be easily identified at both worker and PS side.

As a major mechanism in Parameter Service, the function of workload assignment is
moved from individual training job to pMaster (Figure 4.4). In order to avoid application
modification, Parameter Service keeps the Key-Value interface for model aggregation. For
each worker, there is one Agent that has a mapping table for tensor assignment. It can assist

the worker to figure out where the requests should be forwarded. When an aggregation
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request of a new tensor arrives at Agent, it will send the initial request to pMaster for
assignment. Other than tensor ID, the job information (i.e., job ID) also has to be kept for
each model aggregation request in Parameter Service, since an Aggregator might be shared
by multiple training jobs. Therefore, the key field of aggregation request is transferred to
be a pair of job ID and tensor ID by Agent before sending to the destination. Aggregator

uses the updated key to identify model aggregation requests.

4.3.2 Tensor Migration

There is one challenge: the aggregation servers keep the master copy (latest version) of
tensors for model updating (Figure 1.3). Blocked by this data dependency, model aggrega-
tions cannot be freely reassigned to different servers.

In the current PS systems [30, 35], reassigning a single model aggregation task will in-
terrupt the entire training job. It needs to pause the training process, checkpoint the model
parameters, and resume the job with the new assignment, which brings tens of seconds
overhead to the training process. In Parameter Service, we propose a deep-learning-specific
migration mechanism that migrates tensor data between the Aggregators and updates as-
signment information in the mapping table of each Agent. It is performed at the tensor-
level and exploits the features of DDL training for reducing time overhead and ensuring
data consistency.

Figure 4.5 shows the procedure of tensor migration in our design. pMaster initiates a
migration request when a model aggregation needs to be reassigned. At (D), Aggregator,,,

receives the migration request (MIGRATE_INIT) and keeps the information of the ten-
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sor and Aggregator,,,,. When the tensor is needed (Pull) by the workers at the begin-
ning of next iteration (@), Aggregator,, embeds the information of Aggregator,,,, into
the response and sends to the workers. Once workers receive the information (), their
Agents update the mapping table for the tensor. Then, workers can continue the forward-
backward computation. Meanwhile, Aggregator,,; copies the contents (e.g., metadata,
and model parameters) of the tensor (TENSOR_COPY) to Aggregator,,,, once the re-
sponse to workers completes (@). At Aggregator,,,, side, it adds the incoming tensor
into its tensor list (3)). When the copy finishes (©)), Aggregator ,,; will notify pMaster
(TENSOR_COPY_DONE) that the tensor data has arrived at Aggregator,,,,. After get-
ting the gradient of the tensor in backward computation, workers pushes their results to
Aggregator,,,,. Once those local results arrive (®)), Aggregator,,,, also notifies pMas-
ter (WORKER_DONE) that the workers have the updated tensor assignment. The migra-

tion request completes after pMaster receives notifications from both Aggregator,,; and

Aggregator,,,,

Negligible Time Overhead. In model aggregation, the master copy of tensor at the Ag-
gregator side is only needed when it is being updated. There is a large time window (from
the completion of the last Pull to the start of Update) in each iteration that the tensor copy
hosted by Aggregator is not accessed (Figure 1.3b). The actual migration of tensor data
is performed within this window to hide its time overhead as much as possible. In many

cases, a tensor migration exposes negligible or even zero time overhead to the training job.
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Figure 4.5: Procedure of tensor migration in Parameter Service. Aggregator ,,; denotes the old
Aggregator, and Aggregator,,.,, means the new one. Pull and Push are the original messages in
model aggregation. The completion notifications of data transmission are from the network transport
layer.

Data Consistency. There are two data consistencies that should be guaranteed during
tensor migration: (1) the mapping table among Agents, and (2) the master copy of the
migrating tensor between Aggregator,,,; and Aggregator,,,,. Parameter Service merges
the procedure of tensor migration into the iterative training procedure. The information
of Aggregator,,,, is added into the response message of Pull request. The corresponding
mapping table of each Agent can be updated, as long as its worker receives the updated
tensor. Thus, the consistency of the mapping table among Agents is guaranteed. Besides,
Aggregator,,,, will not execute model update on the tensor that is under migration until
the tensor data is completely copied (TENSOR_COPY) from Aggregator,,;. This insures

the right version of tensor at Aggregator,,.,, is used in the following model aggregation.
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4.3.3 Model Aggregation Management

The core of Parameter Service lies in its schemes of model aggregation assignment and
resource scaling that aim at improving CPU utilization without losing job performance.

When assigning model aggregations, Parameter Service has to carefully balance the
trade-off between job performance and resource utilization. Allocating too many Aggrega-
tors is good for the jobs because of less resource contention but sacrifices resource utiliza-
tion; and vice versa. One extreme is the current parameter server solution that allocates in-
dividual parameter servers for each training job. When an Aggregator has surplus capacity,
Parameter Service will opportunistically pack more model aggregations on it for resource
efficiency. It follows the principle that a training job should not lose its performance when
other jobs share Aggregators with it.

Parameter Service can elastically change the amount of resource (i.e., the number of
Aggregators) according to the total load of model aggregation in the cluster. There are two
events that may trigger Aggregator scaling: (1) new training job arrival; (2) existing job
exit. When a new training job arrives, Parameter Service will assign its model aggregations
onto the existing Aggregators as much as possible. If they do not fit, new Aggregators
will be allocated for the extra workload. For job exit, Parameter Service will return the
empty Aggregators back to the cluster manager to avoid wastage. Moreover, it explores
the opportunity of freeing the least-loaded Aggregators by trying to reassign the model

aggregations to other Aggregators.
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4.3.3.1 Profiler

Parameter Service requires the information of training jobs and infrastructure when
managing workload and resource under it. For a new job, Parameter Service needs to know
its characteristics including the iteration duration and the detailed resource consumption
of every tensor in model aggregation. Because of the iterative nature of DDL training,
these characteristics can be profiled through several trial iterations, and then used for future
training. When a job arrives, Parameter Service will temporarily allocate a new group of
Aggregators to it for profiling. The number of temporary Aggregators is the same as the
number of parameter servers in the job settings which are configured by its user. Once a job
starts, Parameter Service keeps periodically calibrating those job information. Similarly,

Parameter Service periodically monitors the load and CPU usage of each Aggregator.

4.3.3.2 Model Aggregation Assignment

After collecting the characteristics of a new training job, Parameter Service needs to as-
sign the model aggregations from the temporary Aggregators to the stable ones and allocate
new ones if needed. The objectives here includes minimizing the total number of Aggre-
gator for resource efficiency, and balancing the load of each Aggregator for less resource
contention among model aggregations

It is infeasible to tackle this assignment problem at scale in an online manner. When
many DDL jobs are served by Parameter Service, the large number of tensors (parameters)
in DL models and fast training speed generate high volume of model aggregation requests’

per second, which can easily overwhelm the scheduler and lead to non-negligible queuing

'Each model aggregation task has one request per iteration.
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Figure 4.6: Toy examples of cyclic execution of Aggregator. In the two figures at the top, the
Aggregator only serves one job (J; or J2). In the bottom one, it serves both J; and J2. The iteration
duration of J; (J3) is 6 (12) units of time; its model aggregation takes 2 (3) units of time.

delay. Based on the periodicity of model aggregation workload, we propose an offline

approach that gets fixed and cyclic execution slots for model aggregations.

Cyclic Execution. Aggregator has an execution cycle that covers the execution slots of
model aggregation tasks assigned to it. The execution cycle is determined by the model
aggregations on it and is updated when the assignments change. When Aggregator serves
model aggregations from one job, its execution cycle is simply the job’s (also those model
aggregations’) iteration duration. When model aggregations from multiple jobs are packed
together, Aggregator picks the largest iteration duration among those jobs as its execution
cycle. With that, all the model aggregations can be executed within a single cycle. And the
jobs with smaller iteration duration may gets executed for multiple iterations. In the toy
examples of Figure 4.6, the execution cycle of Aggregator is 6 (12) units of time when only
tasks of J; (J2) are assigned to it. If the tasks of .J; and .J, are packed together, Aggregator
will have an execution cycle for 12 units of time. The model aggregations from ./; will be

executed twice within one cycle.
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With this cyclic execution design, assigning a model aggregation task could change the
execution cycle of Aggregator, which affects the execution of existing tasks. For example,
there is an Aggregator serving a model aggregation task whose execution time (iteration
duration) is 1 (5) unit of time. If the task of .J; in Figure 4.6 is assigned to it, then its
execution cycle will be 12 units of time. Accordingly, the iteration duration of the existing
task will be 6 units of time, since the task can run twice in one cycle. Theoretically, the job

of the existing task may lose 17% of its training speed.

Table 4.1: Notations in the IP problem and assignment scheme.

Notation Description

Cr Execution cycle of Aggregator n

Cest Estimated C,

D; Profiled iteration duration of job j
d; Current iteration duration of job j
et the execution (CPU) time of task ¢

Fest Estimated free CPU slots on Aggregation n
Wh, Total execution time of tasks on Aggregation n
Ly, Performance (i.e., training speed) loss of job j

N Set of allocated Aggregators

J Set of training jobs

Jn Set of jobs that have tasks on Aggregator n

T Set of tasks on Aggregator n that belong to job j

With the purpose of eliminating potential performance loss, the assignment problem
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can be expressed as an integer programming problem (IP) with the objective of minimizing
the performance loss of all job. The variable in this problem is p,,. It is a binary variable,
and indicates whether model aggregation task ¢ is assigned to Aggregator n or not. The
objective function is to minimize the maximal performance loss among all jobs, which is
expressed as:

minimize max{L;}
jel

There are two constraints:

> =1, Ve (IV.1)
neN
W, < C,, Vpen (Iv..2)

with the following definitions:

C, = max (p, - D;)

jelteg
C,
dj = max ( ] Pin)
D;
Cy
Wn :ZZ(ptn'et' d_ )
JET tej J
d: — D
L. = J J
J d]

The first constraint (IV..1) means each model aggregation can only be assigned to a single
Aggregator. The second one (IV..2) requires that Aggregators should not be overloaded

within each execution cycle. Due to the non-linear constraints and objective function, the
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problem is NP-hard and is infeasible to solve.

Here, we introduce a heuristic-based solution (Pseudocode 3). The first step of our
scheme is to estimate the performance impact to the co-located jobs on each Aggrega-
tor (Line 1 - 10). Assuming the new task (¢) is assigned to Aggregator n, it updates the
execution cycle (C") of n (Line 2), and then, the iteration duration (Djfs'f) of jobs on n
(Line 4). When any job’s (estimated) performance loss exceeds the predefined threshold
(LossLimit, default is 0.1), Aggregator n will be remove from the list of assignment
destination (Line 7). After examining all the Aggregators, if no Aggregator remains, the
scheme will allocate a new one (Line 12) and assign the task there (Line 13). Meanwhile,
how many free CPU slots (F*") on each Aggregator is calculated with the updated exe-
cution cycle and task execution (Line 9). Among the qualified Aggregators, our scheme
assigns the new task to the best-fit one who has sufficient but the least number of free CPU
slots. (Line 16 - 21). In the end, if no one has enough free CPU to fit the new task, a new
Aggregator will be allocated (Line 22 - 23).

After assigning model aggregations to Aggregators, Parameter Service monitors the
performance (i.e., training speed) of training jobs and compares with their standalone per-
formance which is profiled at the beginning. If there is any performance loss that exceeds

the threshold (LossLimit), the new assignments will be reverted.

Handling Outliers in Cyclic Execution. Due to many random reasons (e.g., cache misses,
and network variations), workers in a DDL training job may become transient stragglers [96,
66, 92], which makes some model aggregation requests miss their execution slots in the ex-

ecution cycle. Parameter Service handles those delayed outliers in two different ways.
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Pseudocode 3 Model Aggregation Assignment Scheme

Input 7T is the set of model aggregation tasks (tensors)

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:

22:
23:
24:

Sl A

e

e; 1s the execution (CPU) time of ¢
N is the set of allocated Aggregators
for all Aggregator n € N do
Cet + max(Cy,, Dy)
for all job 5 € J,, do
C;:;st
d; < max(Dj, {c;;s J)
Dj
end for

if d];ij > LossLimit then
N < N\ n, and skip
end if
Fot e Ot = 50 (|95 x % @)

j€ln i€T?

end for

if N is () then
Allocate Aggregator s
T < t,. N+ NnNs
return s and N

end if

for Aggregator n € N in descending order do
if F¢5! > ¢, and is the best fit then
Ty < Tp Nt
return n and N
end if
end for

Allocate Aggregator s
T; < t, N+ NnNs
return s and N

When a request arrives late, Aggregator will check whether it has sufficient CPU slots for
this delayed request after reserving enough slots for the remaining scheduled requests in
current execution cycle. If so, then the outlier will get executed in this cycle. Otherwise,
the request will be postponed to the next execution cycle, so that the co-located model ag-

gregations are not affected by this outlier. In worst case, the affected job could be delayed

by one iteration.
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4.3.3.3 Aggregator Scaling

Other than the model aggregation assignment scheme, Parameter Service needs to scale
up or down the number of Aggregators to balance the tradeoff between CPU utilization and

job performance. Aggregator scaling can be triggered by two events: job arrival and exit.

Job Arrival. When a new job arrives, all of its model aggregations will be assigned by
the scheme (§4.3.3.2). After that, if its performance is worse than the standalone one,
Parameter Service will add a new Aggregator and re-assign the entire job. This procedure

will repeat until the performance loss of job is within the threshold (LossLimit).

Job Exit. Parameter Service opportunistically recycles some light-loaded Aggregators
when there are Aggregators released because of job exit. Starting from the least-loaded
Aggregator, Parameter Service reassigns its workload to other Aggregators without new
allocations allowed. If it succeeds, Parameter Service will recycle that Aggregator and

repeat the procedure on the next least-loaded one.

4.3.3.4 Aggregator Cluster

It is a common issue that having a single centralized resource manager (i.e., pMaster)
may hurt the performance of system at scale. In Parameter Service, assigning one model
aggregation needs pMaster to scan all available Aggregators in the pool. One training job
may have hundreds or even thousands of model aggregations (i.e., tensors) in its model.
Assuming Parameter Service gets deployed in a large-scale cluster, the time complexity of

assigning one training job will exponentially increase with large numbers of Aggregators
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Figure 4.7: Overview of Aggregator cluster.

and model aggregations. Additionally, it could take even longer if there are new Aggregator
allocations triggered in the assignments. Therefore, pMaster can be easily overwhelmed by
a burst of job arrivals. Moreover, on-demand resource scaling in Parameter Service could
affect the execution of running jobs through workload reassignments. A sequence of job
events may thrash the workload assignments in Parameter Service, which makes it hard to
get stable execution for the running jobs.

To handle this issue in Parameter Service, we apply the idea of server (i.e., Aggregator)
cluster that the pool of Aggregators is split into multiple independent clusters (Figure 4.7).
Each cluster has a controller who is in charge of managing the Aggregator resource in its
cluster. All cluster controllers are under the management of pMaster. Workload assignment
is split into two steps. A new job is firstly forwarded from pMaster to an appropriate
cluster controller, then the cluster controller assigns model aggregations of the job to its
Aggregators. Therefore, one job gets Aggregator resource for model aggregation from a

single cluster. Each cluster works independently. There is no cross-cluster interactions.
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Why Aggregator Cluster? Splitting the pool of Aggregators into multiple clusters brings
the following benefits in mitigating the scalability issue. First, it is the cluster controller
that allocates Aggregator resource to model aggregations. The number of assignment des-
tinations in a cluster is much fewer than the total number of Aggregators in Parameter
Service. Second, model aggregations of a job get the Aggregator resource from a single
cluster. Only the jobs that are served by the same Aggregator cluster may be affected by a
job event (arrival or exit). The impact of workload reassignments is limited within a sin-
gle cluster. Moreover, multiple cluster controllers could perform workload assignments in
parallel when there are multiple new job arrivals.

With Aggregator cluster design, Parameter Service assigns model aggregations of new
jobs in two steps. First, pMaster decides which cluster should be chosen for placing the
new job. pMaster keeps track of the remaining free CPU resource of each Aggregator
cluster. According to the profiled job information, specially total CPU consumption of the
job, pMaster selects the best-fit cluster, who has sufficient but least amount of free CPU
resource, and forwards the new job there. The complexity of this step is negligible com-
pared to the assignment scheme in Pseudocode 3. Once the job is forwarded to a cluster,
the cluster controller assigns model aggregations in this job to its Aggregators following
the assignment scheme in §4.3.3.2. As discussed above, the time complexity in this step
is greatly reduced because of much fewer assignment destinations. When a job exits, its
cluster controller should report this event to pMaster. pMaster will update the status of the

cluster on its side for future job forwarding.
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Hybrid Resource Scaling. As mentioned above, on-demand resource scaling triggered
by job arrivals or exits may jeopardize the execution of running jobs when there are too
many workload reassignments generated. Although periodically resource scaling could
reduce such disruptions, it can not respond to the change of resource demand in real-time.
Consequently, Parameter Service performs resource scaling in a hybrid manner. There is
a predefined resource scaling period in Parameter Service. By default, Parameter Service
adjusts the number of clusters and the amount of Aggregators in each cluster according
to the resource demand measured in the latest period. To avoid starvation, on-demand
Aggregator allocation is also allowed when the demand of new Aggregator is higher than
a predefined threshold.

There are interactions between pMaster and cluster controllers when job events or re-
source scaling occurs. For a new job arrival, pMaster needs to forward the new job infor-
mation to the chosen cluster controller for assigning model aggregations. When a job exit,
the cluster controller sends job completion information to pMaster for bookkeeping. A
cluster controller should send allocation or deallocation requests to pMaster when resource
scaling is triggered by job events in it. Approval has to be received before the cluster con-
troller can carry out the operation. The amount of those interaction messages is at the same
order of magnitude of job arrival and exit rate. Therefore, these interactions will not be the

bottleneck of Parameter Service.

4.3.3.5 Admission Control

To prevent system overload, Parameter Service relies on the admission control of the

cluster manager. When the cluster manager cannot satisfy the resource requirements (a
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number of standalone parameter servers) of a new incoming job, it should not schedule the
job to run. Because Parameter Service may require the same number of Aggregators to run

the job in worst case.

4.4 Implementation

We have implemented the design of Parameter Service into a system named AUTOPS.
AUTOPS is built on top of ps-lite [30] with about 5K lines of C++ code added.

In AUTOPS, pMaster is a daemon process that serves the entire cluster. It opens a
connection address to the DDL training jobs who want to use Parameter Service. A training
job can connect to pMaster through the Agents that are collocated with its workers. Agent is
a implemented as a Key-Value library that is loaded by the DL framework of worker. Agent
exposes the standard Push and Pull APIs to the Key-Value store layer in DL framework for
model aggregation requests and responses. Since RDMA network is widely deployed in

many DL clusters, our current implementation uses RDMA ibverbs for communication.

Control Plane. Every Agent and Aggregator has a control channel to the pMaster. Agent
needs to send requests to pMaster for job registration and tensor initialization. In response,
pMaster sends back the initial assignments of tensor. When re-assigning workload, pMaster
sends the migration command to the Aggregator that is currently hosting the tensor, and
waits completion notifications from the two related Aggregators. In addition, pMaster
sends profiling commands to Agents and Aggregators when there are updates in workload

assignment or Aggregator allocation.
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Data Plane. There are two primary data plane activities in AUTOPS. The first one is
between Agent and Aggregator for regular model aggregation. The other one is among
Aggregators for tensor migration when pMaster re-assigns workload. To avoid the possible

blocking between the two, Aggregator uses two individual threads.

Profiler. Ineach Agent and Aggregator, there is a profiling thread that monitors the status
of job and infrastructure (e.g., iteration duration, network and CPU utilization, and so on)
following the requirements from pMaster. Each profiling thread only collects one record of
data within one profiling period which is configurable by pMaster. Therefore, the profilers

are light-weight and have negligible impacts to the training jobs.

4.5 Evaluation

We have evaluated AUTOPS using both testbed experiments and trace-driven simula-

tions, and highlight the results as follows:

AUTOPS improves the resource (CPU) efficiency with none or negligible performance
loss to the training jobs. It can reduce up to 75% of CPU servers comparing to the

traditional parameter server approach.

* AUTOPS outperforms the traditional parameter server approach (up to 1.17x) when a

single job uses each of them in standalone mode.

* Compared to the existing approach, AUTOPS cuts the time overhead of reassigning

model aggregation from second-level to millisecond-level.

* The CPU saving benefits of AUTOPS hold for the large-scale cluster scenario in trace-
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driven simulation.

4.5.1 Experimental Setup

Testbed. Our testbed consists of 8 GPU machines and 8 CPU machines. Every machine
has 40 CPU cores, 256 GB DDR4 memory, and a 100 Gbps RDMA (InfiniBand) network

adapter. Each GPU machine has 4 NVIDIA Telsa P100 GPUs with NVLink connections.

Workload. We train 4 classic and popular DL models (Table 4.2) using MXNet in the
experiments. Two of them are CNN models (AlexNet [105], VGG19 [155]), which are
trained with ImageNet [67] dataset. The other two are RNN models (AWD-LM [124],
BERT [68]). AWD-LM is trained with WikiText-2 [123] dataset; BERT uses BookCor-
pus [176]. Batch size of each model is set to the maximum to fit into the GPU memory in
our testbed. Jobs can have different training settings (the number of workers and parameter
servers). In this chapter, “1s-2w” means the job requires 1 parameter server and 2 workers.
Parameter server (and Aggregator) uses CPU machine, and worker runs on GPU machine.

Each worker has 4 GPUs (from the one machine).

Table 4.2: Models and datasets in the experiments.

Model Dataset # of Tensors Model Size
AlexNet ImageNet 17 236 MB
VGG19 ImageNet 39 548 MB
AWD-LM  WikiText-2 14 396 MB
BERT BookCorpus 393 1278 MB
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Simulator. We build an event-based simulator and use a real job trace from Microsoft
to evaluate AUTOPS when it gets deployed on a large scale cluster. It simulates all job
events and resource scaling activities. For workload assignment, it uses the job information,

specially CPU consumption and iteration duration, measured from actual runs.

Baseline. We compare AUTOPS to the classic parameter server implementation (ps-
lite [30], also using RDMA network) which is used for distributed training in MXNet by
default. Using ps-lite, each training job has an individual group of parameter servers for
model aggregation. AUTOPS also takes the number of parameter servers of each job to

profile the standalone performance of the job (§4.3.3.1).

Metric. We use the training speed (i.e., images or samples per second) to represent job
performance. AUTOPS saves CPU resource through reducing the number of Aggregators
allocated for model aggregation. In testbed experiments, we focus on how many CPU

servers are reduced in AUTOPS comparing to ps-lite under the same scenarios, and define:

# of param. servers — # of Agg.

CPU Reduction Ratio =
# of param. servers

Larger value of this ratio means savings more CPU servers for model aggregation.
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4.5.2 Evaluation Results

4.5.2.1 Single-Job Experiments
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Figure 4.8: Normalized performance of single job using AUTOPS. The performance of each job
is normalized by its performance when using ps-lite. For each job, it use the same number of
Aggregators (AUTOPS) and parameter servers (ps-lite).

To verify the effectiveness of model aggregation function in AUTOPS, we compare
the performance of jobs when they are using AUTOPS and ps-lite in standalone mode
(Figure 4.8).

The performance of AUTOPS is not worse than ps-lite, which means the extra oper-
ations (e.g., extra request mappings for decoupling model aggregation, and periodic job
profiling) have negligible impact on the training job. In addition, AUTOPS outperforms
ps-lite by up to 1.17x in some cases. These performance improvements come from the
better balanced load distribution in AUTOPS, comparing to the round-robin distribution in

ps-lite.

4.5.2.2 Time Overhead of Reassignment Operation

As a key knob in Parameter Service, reassigning model aggregation may be frequently

triggered when there are workload changes. It could block the execution of workers and
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Table 4.3: Time overhead of migrating all tensors in a model.

AlexNet VGG19 AWD-LM BERT
Overhead (ms) 13.6 21.5 40.6 43.8

waste their GPUs when the tensor data is not totally migrated to the new Aggregator.

We measure the time overhead of reassigning model aggregation by manually reas-
signing all tensors in a model from one group of Aggregators to the other when the job
is running, and taking the averaged value from 10 runs for each model. From the view of
training jobs, they are only suspended for fens of milliseconds by the reassignment (Ta-
ble 4.3). The actual durations of those reassignment operations are much longer, most of
which are hidden under the computing time at worker side. Compared with the existing
approach of reassigning model aggregation (pause, checkpoint, and resume), which halts
the training job for tens of seconds [164, 89], the reassignment operation in AUTOPS has
negligible time overhead.

AUTOPS uses protobuf [29] library to format the data before sending to the network.
It introduces unavoidable overhead (e.g., data copy) by several milliseconds to each reas-
signment. The reassignment operation in AUTOPS could be further optimized if it directly

applies remote data access feature from RDMA networks.

4.5.2.3 Multi-Job Experiments

When multiple jobs run on AUTOPS, it can opportunistically shrink the number of
allocated Aggregators for resource efficiency. Here, we run multiple training jobs (with the
same DL model and distributed settings) together to see how jobs’ performance and CPU

server allocation will be changed. Due to the limitation of machines, we can run up to 4
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Figure 4.9: Number of Aggregators when multiple (2s-2w) jobs use AUTOPS together. Each job
requires 2 parameter servers when using ps-lite. 2-job means two jobs use AUTOPS together. Jobs
in the same group train the same model.

(2s-2w) jobs, or 2 (4s-4w) jobs.

CPU Reduction. Figure 4.9 shows the number of allocated Aggregators in AUTOPS
when multiple (2s-2w) jobs runs together. The baseline here is the total number of required
parameter servers in each scenario. For example, there are 6 parameter servers needed in
total when 3 (2s-2w) jobs use ps-lite for model aggregation. Comparing to ps-lite, AUTOPS
can save 25% to even 75% of CPU servers. The AlexNet jobs need more Aggregators than
the jobs of other models. AlexNet is the only model that requires one extra Aggregator to
run 2 (2s-2w) jobs. That’s because of the very short iteration time of AlexNet jobs, which
makes them have much higher frequency of model aggregation than others. In contrast, 2

Aggregators can serve 4 VGG19 jobs whose iteration time is much longer. Table 4.4 shows
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Table 4.4: CPU reduction ratio when 2 (4s-4w) jobs use AUTOPS.

AlexNet VGG19 AWD-LM BERT
Ratio  0.375 0.5 0.5 0.5

the CPU reduction ratio of AUTOPS when there are 2 (4s-4w) jobs. Same as Figure 4.9,

most of the “2-job” cases can run without allocating new Aggregator.

Impact on Job Performance. In Parameter Service, the performance of training jobs
should not be sacrificed for improving resource efficiency. When any workload assignment
makes the job performance lower than the threshold (LowPerf), AUTOPS will revoke it
and re-do the assignment with new Aggregator added. Figure 4.10 shows how job per-
formance is impacted when multiple jobs uses AUTOPS. The number of allocated Aggre-
gators of each multi-job group can be found in Figure 4.9. The average performance is
measured when all jobs in the group are in stable state. Because of the performance pro-
tection (LowPerf), the performance loss caused by resource contentions among jobs are
limited and even negligible in AUTOPS. Comparing to the performance from AUTOPS (in
standalone mode), sharing AUTOPS among multiple jobs jobs may lose up to 9% training
speed in our experiments. In some cases, the averaged performance of multiple jobs using
AUTOPS is even better than the standalone performance from ps-lite.

To conclude, AUTOPS can reduce the number of Aggregators allocated for model ag-
gregation through packing workload from multiple jobs. Meanwhile, it imports negligible

performance loss to the training jobs.

136



mvs. ps-lite  mvs. AutoPS (standalone)

1

1.2 4

1.0 . 098
0

AlexNet

Figure 4.10: Performance impact when multiple (2s-2w) jobs share AUTOPS. Jobs in the same
group train the same model. The averaged performance of each multi-job group is used. For com-
parison, it is normalized by the performance of the same job when using ps-lite and AUTOPS in
standalone mode, respectively.
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Figure 4.11: Time trace of the two-job case study. The training performance of the jobs is normal-
ized by their standalone performance, respectively.

Case Study of Aggregator Scaling. We bring a case study with two jobs to show how
AUTOPS scales Aggregator when job events (i.e., arrival and exit) occur. Figure 4.11
shows how the performance of jobs and Aggregator allocation is changed when job events
occur. There is a VGG19 (2s-2w) job that uses AUTOPS for model aggregation and is
already in steady state. Following its parameter server requirement, AUTOPS allocates
2 Aggregators for it. A new AlexNet (2s-2w) job just completed its initial performance
profiling, and gets its first assignments to the two existing Aggregators at 11" second.

The performance of VGG19 job is slightly affected because of resource contentions on
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those two servers. However, the new AlexNet job loses up to 22% of its performance.
After monitoring enough iterations (default is 100), AUTOPS determines the assignments
of AlexNet job should be revoked. At 27" second, AUTOPS allocates a new Aggregator
and reassigns the AlexNet job. Both of the two jobs get better performance after that. The
AlexNet job completes at the 42"¢ second. Since the newest Aggregator only has the model

aggregations from AlexNet, AUTOPS releases it right after job exit.

4.5.2.4 Trace-Driven Simulation

We evaluate AUTOPS’s performance in CPU saving using a real job trace. This is 10-
week job trace from a 2000-GPU cluster in Microsoft. We compare the CPU consumption
of AUTOPS against the CPU requirements of running jobs specified by users. Because
ps-lite allocates the required amount of CPU resource for each job if it is used for model

aggregation.
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Figure 4.12: CPU consumption of AUTOPS compared to total CPU requirements of running jobs in
the trace-driven simulation. The x-axis is the ratio of allocated CPU cores of AUTOPS to total CPU
requirements of running jobs. CPU consumption and CPU requirements are measured with 1-min
interval.

CPU Saving. We verify that the CPU saving benefits of AUTOPS still hold when it gets

deployed in a large-scale cluster. Figure 4.12 compares the CPU consumption of AUTOPS
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against total CPU requirements of running jobs in the trace-driven simulation. The x-axis
in the figure is the ratio of allocated CPU servers of AUTOPS to total CPU requirements of
running jobs. Smaller value of this ratio means more CPU savings of AUTOPS. Over 99%
of the time, this ratio is lower than 1, which means AUTOPS could save CPU resource for
model aggregation for majority of the time. Very rarely, AUTOPS consumes more CPU
resource than the CPU requirements from users. In worst cases, the ratio can be even larger
than 2.5. These come from the scenarios that some allocated CPU resource in AUTOPS are
idle because of recently-completed jobs. Due the periodical resource scaling in §4.3.3.4,
AUTOPS could not release the free CPU resource until the end of current period, which
makes CPU consumption of AUTOPS being higher than the CPU requirements of running
jobs. Overall, AUTOPS could reduce the CPU cost (i.e., CPU time) of model aggregations

by 52.7% in the simulated scenario

Revenue Benefit. From cloud provider’s perspective, the saved CPU resource from AU-
TOPS can be rent for general purpose. Renting one CPU core in the cloud takes around
$900/year [75]. Based on the CPU saving results from trace-driven simulation, the addi-
tional revenue contributed by AUTOPS in such a 2000-GPU cluster is around 1.5 million

dollars for a 10-week period.

4.6 Discussion

Utilizing Transient Resource. The cloud clusters usually have some amount of transient

resource that has short available time. Cloud providers often sell the transient resource to
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users as spot instances with discounted price [33]. With resource elasticity in Parameter
Service, it is feasible to run model aggregations on spot instances for cost saving purpose.
When the spot instance of a Aggregator is going to expire, other Aggregators could im-
mediately take over the affect model aggregations through workload reassignment with

negligible overhead.

Performance Isolation for Multitenancy. To pursue resource (CPU) efficiency, Aggre-
gator may assign model aggregations from different jobs to the same Aggregator where
jobs interfere with each other. Using a feedback-based assignment scheme, Parameter
Service limits performance degradation caused by the interferences within a threshold
(LossLimit). However, this mechanism is infeasible to the multi-tenant environment
where jobs may have different requirements of performance. Parameter Service needs a

performance isolation scheme which can satisfy the requirements from different users.

4.7 Related Work

Priority-based Model Aggregation ByteScheduler [141] is state-of-the-art data parallel
training framework based on parameter server architecture. It optimizes the execution or-
der of model aggregations according to the execution DAG of the training job and enforces
their priorities in the data communication layer for less queuing delay. Parameter Service
differs from ByteScheduler in two fundamental ways. First, the role of parameter server
in ByteScheduler has been changed. The function of updating model parameters, which is

originally executed by parameter server, is moved to the execution engine at worker side.
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Therefore, the parameter server in ByteScheduler is just a hub that redistributes local gra-
dients from workers. Second, the two PS-based systems working on different problems.
Parameter Service focuses on reducing CPU consumption without sacrificing training per-
formance. ByteScheduler [141] aims at improving training performance without consider-
ing CPU consumption. Moreover, comparing to ByteScheduler, Parameter Service has two
benefits that are originated from the design of decoupling model aggregation. First, Param-
eter Service is easy to use since it is transparent to DL frameworks. However, users have
to run the modified DL frameworks provided by ByteScheduler to receive performance
improvement. Second, Parameter Service can utilize the transient resource in the cloud
through its elastic feature. ByteScheduler is incapable of dynamically changing its under-
lying resource. Actually, the priority-based model aggregation scheme in ByteScheduler

can be integrated into Parameter Service to improve training performance.

Alternatives for Model Aggregation. Horovod [152] applies bandwidth optimal ring-
based AllReduce algorithms for model aggregation in DDL training. This approach can
fully utilize the network bandwidth among the training nodes. But it requires homoge-
neous hardware (specially network links of equal bandwidth) which does not hold in the
shared cluster. ParameterHub [119] is a physical machine designed for model aggregation.
Similar to Parameter Service, ParameterHub provides a cluster-wise parameter hosting and
aggregation function to multiple DDL training jobs. However, it is not cost-effective be-

cause it can not flexibly scale up or down according to the change of its load.
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In-Network Model Aggregation With the trend of deploying programmable network
devices in the cluster, in-network model aggregation has been proposed in the recent years.
SwitchML [148] uses programmable switch dataplane to execute the model aggregation
operations in DDL. It reduces the volume of exchanged data during model aggregation and
network latency, which accelerate the training speed. iSwitch [114] is an in-switch aggre-
gation acceleration solution for distributed reinforcement learning training. Focusing on
the smaller but more frequent aggregations in reinforcement learning training, it conduces
network packet level aggregation rather than the entire gradient vectors to reduce the aggre-
gation overhead. SHARP [84] is a collective technology from Mellanox that is commonly
applied for in-network aggregation. It’s only available in certain InfiniBand switches and
comes with fixed functions, which make it difficult to evolve to support new aggregation

approaches.

Elastic Scaling on GPU Workers. Applying resource elasticity in GPU workers (i.e.,
dynamically adjusting training parallelism) could significantly improve GPU efficiency and
shorter job completion time. However, existing DL frameworks either apply a fixed number
of GPU workers throughout the lifetime of jobs, or adjusts the number of workers with high
overheads that counteracts the benefits from elasticity. Recent work [135, 163, 98] has been
proposed to cut down the overhead of scaling GPU workers. Furthermore, Or et al. [135]
has an autoscaling engine, which considers account cost, other than GPU efficiency and
job performance. Wu et al. [163] develops an elasticity-aware DL scheduler that achieves
various scheduling objectives in multi-tenant GPU clusters. Hwang et al. [98] proposes

an elastic resource sharing scheme for DL clusters. Its customized DL framework can
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transparently adjust the parallelization of jobs (i.e., number of GPU workers).

4.8 Conclusion

Parameter Service is an elastic model aggregation framework for emerging DDL train-
ing jobs. It could enhance the utilization of CPU, reserved for model aggregations, without
hurting job performance. It exposes a shared model aggregation service. With that, mul-
tiple jobs can submit their model aggregations to the unique interface without allocating
their own parameter servers. Internally, Parameter Service balances the tradeoff between
resource efficiency and job performance through two knobs: dynamic workload and elastic
resource scaling. Our implementation of Parameter Service, called AUTOPS, saves up to
75% of CPU servers when serving DDL training jobs. Its CPU saving benefits hold when
it gets deployed in a large-scale cluster. More importantly, Parameter Service is totally

transparent to user and can easily be adopted by popular DL frameworks.
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CHAPTER V

Conclusions

5.1 Contributions

This thesis answers the question: How to efficiently utilize the resources in a DL cluster
and deliver good performance to the DL jobs on it? We identify that the mismatches
between DL jobs and resource management techniques in DL clusters are the root causes
of severe resource and performance issues. Existing DL clusters ignore the new features of
DL jobs and still apply the resource management techniques designed for traditional big-
data clusters. We proposed and implemented a suite of new techniques to eliminate these
mismatches and demonstrate that they can significantly improve resource-efficiency and the

performance of DL jobs. More specifically, this thesis makes the following contributions:

Decentralized memory disaggregation for improving cluster-wise memory utilization:
We built INFINISWAP, a decentralized memory disaggregation system, to improve the
memory utilization of DL clusters. It opportunistically harvests and transparently exposes
the unused memory in data preparation jobs to remote machines that are running out of

memory. For scalability, INFINISWAP manages remote memory in a decentralized manner

144



by leveraging the power-of-many-choices algorithms. To deliver good performance to the
jobs, it utilizes a low-latency RDMA network to provide fast remote memory access. IN-
FINISWAP can greatly improve cluster memory utilization and bring performance benefits
to the data preparation jobs. INFINISWAP is easy to deploy and requires no modifications
to applications, OSes, or hardware. To the best of our knowledge, INFINISWAP is the first
runnable open-sourced memory disaggregation system and has inspired many follow-ups

in the related research areas [153, 42, 44, 122, 109].

Two-dimensional attained-service-based scheduler for reducing the average JCT with-
out complete job information: One important feature, which is often ignored, of DL
training jobs, is that their execution time is mostly unpredictable. Without such informa-
tion, the job schedulers in existing DL clusters are unable to minimize the average JCT of
those jobs. We presented TIRESIAS, a GPU cluster manager tailored for DL training jobs.
Its two-dimensional attained-service-based scheduler can efficiently schedule DL training
jobs with partial or no prior knowledge of job execution time. In addition, the scheduler
shows that considering both temporal and spatial information of DL training jobs is nec-
essary for reducing their JCTs. TIRESIAS is the first GPU cluster manager that is capable
of reducing the average JCT of DL training jobs without complete job information. It has

shown significant improvements, in terms of the average JCT, over existing solutions.

Elastic model aggregation service for saving CPU cost: Existing DL clusters statically
allocate CPUs to model aggregation in DDL training jobs. However, a considerable fraction

of those CPUs is wasted due to the bursty nature of model aggregation. After characterizing
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the execution patterns of DDL training, we found the function of model aggregation could
be decoupled from training jobs and be executed by third-party processes. Therefore, we
implemented AUTOPS, an elastic model aggregation service, to reduce the CPU cost of
model aggregation in a DL cluster. In AUTOPS, model aggregations from different jobs
are efficiently packed to fit into the same group of CPUs. Also, AUTOPS can elastically
scale up/down its CPUs based on the load on it. AUTOPS can significantly reduce the
CPU consumption of model aggregation in DL clusters without sacrificing the training
performance. The design of AUTOPS is transparent to users and compatible with popular

DL frameworks.

5.2 Limitations

Even though the effectiveness of our proposed approaches has been shown in this thesis,
the following limitations should be resolved or considered before applying them in real DL

clusters.

INFINISWAP. Although INFINISWAP significantly outperforms the traditional disk-based
swap space, its remote memory access latency is still much higher than the latency of
local memory access, which can not bring performance transparency to many applications.
A significant overhead was incurred because accessing a remote page still relies on the
original data path in the kernel that was designed for low-speed disk-based swap space.
For example, remote access requests have to go through the block I/O layer before being

forwarded to INFINISWAP block device module. An efficient and lightweight data path
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from the kernel’s memory controller to INFINISWAP is needed. Indeed, Leap [122], a
direct follow-up to INFINISWAP has recently addressed this problem. The local backup
disk in INFINISWAP block device is designed to handle remote failures (e.g., machine crash,
network disconnection). If that happens, INFINISWAP will be as bad as the disk-based swap
space. More advanced fault-tolerance mechanisms should be imported to protect data in
remote memory from various failures without sacrificing the performance of INFINISWAP
too much. Hydra [109], another follow-up to INFINISWAP brings the idea of erasure-coded

remote memory to preserve fast remote memory access when remote failures occur.

TIRESIAS. The resource management scheme (2DAS) in TIRESIAS assumes homoge-
neous GPU devices in a DL cluster, which rarely holds in real scenarios. A DL cluster
is often equipped with GPU devices with different computation and memory capabilities.
One training job may have very different training performance (i.e., time to accuracy) on
different GPU devices. Moreover, people may choose to use CPU to train some non-critical
DL models, who do not care about their completion time, for cost-efficiency. Therefore,
the proposed scheme should be extended to manage hybrid and heterogeneous computing
devices for DL training. AlloX [108] is one of the most recent schemes that can manage
both CPU and GPU resource for DL training. The primary design objective of TIRESIAS
is to minimize the average JCT for a private DL cluster. It ignores the fairness among
jobs and users, which is one of the most important service objectives in multi-tenant public
clusters. Without fairness, some jobs or users may starve for a very long time even though
the average JCT gets optimized by TIRESIAS. Recent solutions, such as Themis [120] and

Gandiva e [54], focus on how to fairly share the DL cluster among multiple jobs.
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AUTOPS. To migrate tensors with negligible overhead, AUTOPS requires synchronized
data-parallel distributed training. Without the synchronization constraint, workers may
push their local gradients and pull back the updated model parameters at any time. There-
fore, it will be very hard to find a time window for handling the overhead of tensor migra-
tion. In addition, AUTOPS does not account for the network activities of model aggrega-
tion. In a DL cluster, the background network traffic can significantly slow down the data
transmission in model aggregation, which indirectly wastes GPU and CPU resource. The
cyclic execution design in AUTOPS relies on the periodic iteration features of DL training.
If the iteration duration of a job becomes longer and unpredictable due to network interfer-
ence, the fixed execution cycle of the affected Aggregators will be jeopardized. Other jobs,
which have model aggregations on the affected Aggregators, may suffer from performance

degradation. Thus, future AUTOPS needs to handle network interference.

5.3 Future Work

Following the success of DL technology, an increasing number of model serving ap-
plications with well-trained models are deployed in many domains. As a future research
direction, one may focus on optimizing model serving systems running in DL clusters.

The objective of training a DL model is to learn the patterns from observed data that
can be generalized to the unseen data. Model serving uses the pre-trained DL model to
make predictions on new inputs (e.g., videos). Unlike model training which may take days
or even weeks to complete, model serving is latency-sensitive and mostly used in user-

interactive applications [63, 154]. The Service Level Objective (SLO) of a model serving

148



system is to render a certain degree of prediction within the latency budgets specified by
users. In addition, model serving systems have to efficiently leverage the hardware resource
for reducing their operating cost as much as possible.

It is non-trivial for model serving systems to satisfy these two objectives together [147,
63]. Model serving systems often operate queries in batch for better resource efficiency, but
a larger bath size means a longer execution time. DL. models can be deployed on different
hardware processors (e.g., CPU, GPU) which have very different processing capabilities
and costs. Some serving systems choose to use inexpensive hardware (i.e., CPU), instead
of the expensive GPU devices, as long as their latency requirements are satisfied [172,
147]. Moreover, each model can be assigned to multiple processors to meet the throughput
requirements. Therefore, a serving system needs to be built by making trade-offs among
latency, throughput, and cost (i.e., resource consumption) through configuration of its batch

size, type, and amount of hardware resource.

GPU Multiplexing for Model Serving. Originally, one GPU device can only run a sin-
gle DL model serving instance due to the limitations in GPU sharing. Therefore, it is
hard to precisely allocate GPU resource for model serving applications. A fraction of re-
source may be wasted when a lightweight model serving instance is assigned to a powerful
GPU device [167]. Multi-Process Service (MPS) [28] is a software feature designed for
NVIDIA GPUs. It can statically partition the GPU resource among multiple serving in-
stances. Recently, the new generation GPUs from NVIDIA come with a new hardware
feature — Multi-Instance GPU (MIG) [27]. This technology allows multiple model serving

instances to be physically isolated on the same GPU, greatly increasing the flexibility in
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Figure 5.1: Prediction pipeline for traffic analysis application.

resource provisioning for model serving workloads.

However, it is not straightforward to adopt this new feature in existing model serving
solutions [147, 63, 154, 64] that still manage GPU resource at device granularity. To fully
leverage the benefits of fine-grained GPU slicing, the resource consumption of a model
serving instance, which changes with the query load, has to be precisely predicted or mon-
itored. A model serving system often has an elastic resource scaling feature to handle the
variations in its query load. With MIG, the resource manager needs to choose between
GPU device(s) and GPU slice(s). Although using GPU slices can reduce resource wastage
when there is not sufficient query load, the model serving instances running on GPU slices
render less resource-efficiency because of the much smaller batch sizes. On the other hand,
the fragmented free GPU slices spread in the DL cluster could hurt resource utilization if

the new instances need entire GPU devices instead of GPU slices.

Model Serving Pipeline with End-to-End Latency Targets. Other than involving a sin-
gle DL model, prediction pipelines spanning multiple models are receiving increasing at-
tention. A pipeline serving system must render a single complex query within its end-

to-end latency budgets (SLO) and have enough capacity to meet the throughput require-
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ments [154]. For example, a traffic analysis application needs to detect pedestrians and
vehicles from traffic video. Figure 5.1 shows its prediction pipeline that has two stages:
object detection and target recognition. The first one detects objects on the input image;
the second one identifies whether the tagged objects are the targets (e.g., pedestrians, ve-
hicles) or not. Note that two recognition models work in parallel in the second stage since
the application requires two kinds of target objects. The pipeline serving system has to

complete the two steps and gets the prediction result within 150ms.
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Figure 5.2: Number of objects detected in individual images in COCO dataset.

The complexity of configuring model serving systems grows when serving prediction
pipelines. The end-to-end latency budget has to be split and assigned to the multiple
pipeline stages so that each stage (i.e., model) can have its own latency budget. Latency
splitting itself is a new configurable entity for prediction pipelines. The optimal configura-
tions of individual models do not necessarily achieve the global optimization of the entire
pipeline. Although the throughput target of the entire pipeline is specified in advance,
downstream models do not yet have clear throughput objectives. In a prediction pipeline,
the input of the downstream model is the intermediate results of its upstream models. In
many cases, the number of results of a model is not fixed given different input data. For ex-

151



ample, the input size/number of the vehicle recognition model in Figure 5.1 is determined
by the number of detected objects in the initial traffic image. We measure the number of
objects in individual images from COCO [118] dataset — a classic dataset for training ob-
ject detection models — and find this number varying from 0 to more than 90 (Figure 5.2).
On average, each image contains 7 objects. Among all the training images, 63% of them
contain 6 or fewer objects. 33% of those images have 8 or more objects. Therefore, the
intermediate load (i.e., input arrival rate of downstream models) of a prediction pipeline
is hard to predict. Existing solutions such as Nexus [154] estimate the intermediate load
using the averaged number of results of upstream models in the last cycle. However, this
approach cannot approximate the intermediate load in real time. Most of time, it either
overestimates or underestimates the intermediate load. The former leads to missing latency
deadlines, while the latter renders resource underutilized. To the best of our knowledge,
InferLine [64] is the only model serving system that considers this problem. It uses net-
work calculus to make the scaling decisions for models in response to changes in their input

arrival rate.

5.4 Summary

In this thesis, we first observe existing DL clusters are still applying the resource man-
agement techniques for traditional big-data clusters and ignoring the new features of DL
jobs. Thus, we present INFINISWAP, TIRESIAS, and AUTOPS systems that can improve
cluster memory utilization, reduce the average JCT of DL jobs, and save CPU cost of model

aggregation, respectively. These systems sit in the different software layers of DL clusters
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and are transparent to DL jobs. Our proposed approaches are shown to mitigate the mis-
matches between DL jobs and resource management techniques in existing DL clusters
and make notable improvements in both resource efficiency and job performance. These
approaches and their findings have already influenced the related research area. Hopefully,

this thesis will be useful for future development of resource-efficient DL clusters.
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