
Developing Trustworthy Hardware with Security-Driven
Design and Verification

by

Timothy D. Trippel

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2021

Doctoral Committee:

Assistant Professor Matthew Hicks, Co-Chair, Virginia Tech
Professor Kang G. Shin, Co-Chair
Research Professor Peter Honeyman
Assistant Professor Baris Kasikci
Professor Euisik Yoon

Timothy D. Trippel

trippel@umich.edu

ORCID iD: 0000-0002-3448-6868

© Timothy D. Trippel 2021

To my parents, Christine and Terrence.

And to my siblings, Caroline and Christopher.

ii

ACKNOWLEDGEMENTS

As my time as a Michigan graduate is student is coming to an end, I reflect on the

people in my life that partook in making this experience both possible and exciting.

First I would like to thank my advisor, Professor Kang G. Shin. While I did not start

the Ph.D. program as a student in his lab, Professor Shin took a chance on me. He taught

me the value of perseverance, and has kept me motivated throughout my studies.

I would also like to thank my co-advisor, Matthew Hicks, for his support and mentor-

ship throughout my academic career. I first met Matt when he was finishing his position as

a post-doc at Michigan. During his first year as research staff at MIT Lincoln Laboratory,

Matt convinced me to due a summer internship in his group. Little did I know, that intern-

ship would set the path for the remainder of my dissertation work. Matt has always kept

my best interests in mind, and has taught me how to become a successful researcher.

Thank you to my remaining committee members—Baris Kasikci, Peter Honeyman, and

Eusik Yoon—for their feedback and support. A special thank you to Peter Honeyman for

always being available to chat, and guiding me through the ups and downs of graduate

school. I will miss his end-of-term celebrations, and seeing him out around Ann Arbor.

Thank you to my high school and undergraduate mentors who sparked my interests

in scientific research and engineering. A special thank you to Matt Champion from the

University of Notre Dame who gave me an early glimpse of academic research as a high

school student. Through various successful science fair projects Matt sparked my creativity

in engineering and always held me to a high standard. Additionally, I want to thank Cheng-

kok Koh and David Meyer from Purdue University that gave me opportunities to continue

iii

pursuing scientific research and teaching during my time as undergraduate student. Without

them, I would have never pursued graduate school to begin with.

Thank you to Kevin Bush, my supervisor and close mentor at MIT Lincoln Labora-

tory. I first met Kevin when I came to work in his group at Lincoln with Matt Hicks.

The internship was such a success I decided to do two more during my graduate studies.

Kevin’s support both academically and professionally has directly contributed to the suc-

cess of many projects in my dissertation. I would also like to thank my industry mentors at

Google—Alex Chernyakovsky, Garret Kelly, and Dominic Rizzo—for giving me the op-

portunity to apply my research ideas to real-world commercial products, and for a great

virtual internship experience, during unprecedented pandemic times.

I would like to extend a thank you to my early lab mates, Ofir Weisse and Jeremy

Erickson, who helped guide me early in the program, and have provided me countless

hours of advice as I transition to the next chapter of my career. Additionally, thank you to

all RTCL lab members who overlapped with me during my time at Michigan, especially,

Kassem Fawaz, Eugene Kim, Yu-Chih Tung, Kyong Tak Cho, Youngmoon Lee, Hamed

Yousefi, Arun Ganesan, Dongyao Chen, Chun-Yu Chen, Taeju Park, Mert Pesé, Duc Bui,

Juncheng Gu, Jinkyu Lee, Haichuan Ding, Youssef Tobah, Hsun-Wei Cho, Noah Curran,

and Wei-Lun Huang.

Additionally, thanks to all the friends I made at Michigan, especially my house mates

and colleagues: Alejandro, Alex, Becky, Ian, Jonathan, Jule, Lauren, Max, Mo, and Richard.

You made these years fly by with delicious food and good times.

Thanks to my Grandma (June) and Grandpa (Ed) Garrow, and Grandma (Angie) and

Grandpa (Jim) Trippel, for being supportive of me and watching me every summer as I grew

up. I know if you were all still alive, you would be very proud of what I have accomplished.

Thanks to my Uncle Bob (UB), Aunt Paula (AP), and my cousins Matthew and Sarah

for being my second family and hosting me during my numerous summer internships in

the Boston area. Thanks for all your support and encouragement and for making me feel at

iv

home every summer. I always looked forward to spending summers on the Cape, enjoying

countless hours of boating, golfing, and eating.

Thanks to my older sister, Caroline, and younger brother Christopher. You are the best

siblings I could ever ask for. Thank you for sparking my competitive edge that keeps me

motivated and brings out the best in myself. You give me someone to look up to, and always

set the bar high.

Most importantly, thank you to my parents, Christine and Terrence who have instilled

in me the values of perseverance and education from a young age. You taught me I could do

anything and become anyone if I put my mind to it, and always encouraged me to take on

tough challenges. Thank you for always ensuring I got the best education, and for signing

me up for piano and golf lessons. These activities taught me how to focus and never give up.

Thank you for exposing me to computers and electronics at a young age and encouraging

me to pursue my interests in science and technology. Lastly, thank you for teaching how to

enjoy life through cooking and sharing good food, something my house mates and I have

continued throughout graduate school.

Additionally, thank you Lauren for being my best friend, and biggest fan. Your hard

work and perseverance through your teaching inspires me everyday. Thanks for keeping

me active and encouraging me to try new things through our numerous bike rides, ski trips,

hikes, and dining endeavors across Michigan. You make time fly by, and I can’t wait for

our next adventure.

Lastly, thank you to the several funding agencies that supported the work described

in this dissertation, including: 1) the Under Secretary of Defense for Research and En-

gineering under Air Force Contract No. FA8702-15-D-0001, 2) the US National Science

Foundation under Grant CNS-1646130, 3) the National Science Foundation Graduate Re-

search Fellowship Program under Grant No. DGE 1256260, 4) the US Army Research

Office under Grant W911NF-21-1-0057, and 5) the Defense Advanced Research Projects

Agency. Any opinions, findings, and conclusions or recommendations expressed in this

v

dissertation are those of the author and do not necessarily reflect the views of the funding

agencies.

vi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . xii

LIST OF TABLES . xx

LIST OF APPENDICES . xxi

LIST OF ABBREVIATIONS . xxii

ABSTRACT . xxv

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Hardware Development Trends 2
1.3 Research Challenges & Thesis Statement 2
1.4 Dissertation Contributions . 3

1.4.1 Security-Driven (Layout) Design 3
1.4.2 Security-Driven (RTL) Verification 4

1.5 Road Map . 5

II. Background . 6

2.1 IC Design Process . 6
2.2 Hardware Trojans . 7

2.2.1 Trojan Trigger . 7
2.2.2 Trojan Payload . 8

2.3 Threat Models . 8
2.3.1 Fabrication-Time Attacks 8
2.3.2 Design-Time Attacks 10

vii

III. ICAS . 11

3.1 Introduction . 11
3.2 Background . 14

3.2.1 IC Layouts . 14
3.2.2 Fabrication-Time Trojan Implementations 15

3.3 Threat Model . 16
3.4 Untrusted Foundry Defenses . 17

3.4.1 Undirected . 18
3.4.2 Directed . 18

3.5 Unified Attack Metrics . 19
3.5.1 Challenges of Trojan Placement 19
3.5.2 Challenges of Victim/Trojan Integration 20
3.5.3 Challenges of Intra-Trojan Routing 23

3.6 Extensible Coverage Assessment Framework 24
3.6.1 Nemo . 25
3.6.2 GDSII-Score . 28

3.7 Evaluation . 32
3.7.1 Experimental Setup . 33
3.7.2 Undirected Defense Coverage 35
3.7.3 Directed Defense Coverage 41

3.8 Discussion . 43
3.8.1 ICAS-Driven Defensive Layout 43
3.8.2 Constrained Security Metrics 44
3.8.3 Extensibility of Security Metrics 44
3.8.4 Extensibility of CAD Tools 44
3.8.5 Extensibility of Process Technologies 45
3.8.6 Limitations . 45
3.8.7 Justification for Metrics 46

3.9 Related Work . 47
3.9.1 Untrusted-foundry Attacks 47
3.9.2 Untrusted-foundry Defenses 47

3.10 Conclusion . 48
3.11 Citation . 49

IV. T-TER . 50

4.1 Introduction . 50
4.2 Background . 54

4.2.1 Fabrication-Time Attack Steps 54
4.2.2 Layout-Level Defenses. 54
4.2.3 Time-Domain Reflectometry (TDR) 55
4.2.4 IC Interconnect Models 55
4.2.5 TDR for IC Fault Analysis 56

viii

4.3 Threat Model . 57
4.4 Targeted Tamper-Evident Routing (T-TER) 58

4.4.1 Identifying Security-Critical Nets to Guard 58
4.4.2 Guard Wire Bypass Attacks 59
4.4.3 Tamper-Evident Guard Wires 59

4.5 Implementation . 62
4.5.1 Place-&-Route Process 62
4.5.2 Automated Toolchain 63

4.6 Evaluation . 66
4.6.1 Experimental Setup . 66
4.6.2 Effectiveness . 69
4.6.3 Practicality . 73
4.6.4 Threat Analysis of Bypass Attacks 75

4.7 Discussion . 79
4.7.1 Limitations . 80
4.7.2 Scalability . 80
4.7.3 Signal Integrity Impact 81
4.7.4 Defense-in-Depth . 81
4.7.5 Extensibility of CAD Tools 82

4.8 Related Work . 82
4.9 Conclusion . 83
4.10 Citation . 84

V. Bomberman . 85

5.1 Introduction . 85
5.2 Background . 89

5.2.1 Design-Time Hardware Trojans 89
5.3 Threat Model . 90
5.4 Ticking Timebomb Triggers . 91

5.4.1 Definition . 91
5.4.2 TTT Components . 92
5.4.3 TTT Variants . 93

5.5 Bomberman . 96
5.5.1 SSC Identification . 97
5.5.2 SSC Classification . 99

5.6 Evaluation . 101
5.6.1 Experimental Setup . 102
5.6.2 False Positives . 104
5.6.3 Constrained Randomized Verification 109
5.6.4 Comparative Analysis of Prior Work 110
5.6.5 Run Time and Complexity Analysis 116

5.7 Discussion . 119
5.7.1 Test Vector Selection 119
5.7.2 Latches . 120

ix

5.7.3 TTT Identification in Physical Layouts 120
5.8 Related Work . 122
5.9 Conclusion . 123
5.10 Citation . 124

VI. Fuzzing Hardware Like Software . 125

6.1 Introduction . 125
6.2 Background . 130

6.2.1 Dynamic Verification of Hardware 130
6.2.2 Software Fuzzing . 133

6.3 Threat Model . 135
6.4 Hardware Fuzzing . 135

6.4.1 Why Fuzz Hardware like Software? 136
6.4.2 Driving Hardware with Software Fuzzers 138

6.5 Hardware Fuzzing Pipeline . 142
6.6 Feasibility Evaluation . 143

6.6.1 Digital Lock Hardware 144
6.6.2 Digital Lock HSB Architectures 145
6.6.3 Interfacing Software Fuzzers with Hardware 146
6.6.4 Hardware Fuzzing vs. CRV 152

6.7 Practicality Evaluation . 153
6.7.1 Hardware Fuzzing vs. RFUZZ 154
6.7.2 Fuzzing OpenTitan IP 155

6.8 Discussion . 158
6.8.1 Detecting Bugs During Fuzzing 158
6.8.2 Additional Bus Protocols 158
6.8.3 Hardware without a Bus Interface 159
6.8.4 Limitations . 159

6.9 Related Work . 159
6.9.1 Design-Agnostic . 160
6.9.2 Design-Specific . 160

6.10 Conclusion . 161
6.11 Citation . 161

VII. Conclusion & Future Directions . 162

7.1 Conclusion . 162
7.2 Future Directions . 163

7.2.1 Security as an Optimization Objective during IC Layout 163
7.2.2 Directed Fuzzing for Trojan Detection 164
7.2.3 Fuzzing Hardware with Sparse Memories 164
7.2.4 Hardware Sanitizers 165

APPENDICES . 166

x

BIBLIOGRAPHY . 178

xi

LIST OF FIGURES

Figure

2.1 IC Design Process. The typical IC design process starts with a behavioral
description of the design, and ends with a fabricated and packaged chip.
All stages in the design process are often heavily augmented with CAD
tools. 7

2.2 Hardware Trojan Taxonomy. A hardware Trojan is an undesired al-
teration to an IC design for the purpose of modifying its functionality.
Hardware Trojans can be classified based on the construction of their two
main components: trigger and payload [34, 75, 194]. 7

2.3 IC Supply Chain Attack Vectors. Given current economic trends [19,
58, 94, 169, 170, 184, 202], there are two main attack points in the IC
supply chain resulting from out-sourcing fabrication and design respec-
tively: A) fabrication-time and B) design-time. 9

3.1 IC Floorplan. Typical IC floorplan created during the place-and-route
design phase. The floorplan consists of an I/O pad ring surrounding the
chip core. Within the core is the placement grid. Circuit components are
placed and routed within the placement grid. 15

3.2 Trojan Placement Difficulty. Assume an attacker is attempting to in-
sert 6 additional Trojan components that consume a total of 9 placement
sites (as shown). If inserting these components on the Trivial placement
grid (left), they can be placed adjacent to each other to simplify intra-
Trojan routing. If inserting these components on the Difficult placement
grid (middle), they must be scattered across the grid, making intra-Trojan
routing more challenging. The Not Possible placement grid (right) does
not have enough empty placement sites to accommodate the Trojan com-
ponents. 21

xii

3.3 Challenges of Victim/Trojan Integration. The supervisor bit signal of
the OR1200 processor SoC is the data input to the supervisor register
of the OR1200 CPU. The supervisor register stores the privilege mode
the processor is currently executing in. Changing the value on this net
changes the privilege level of the processor allowing an attacker to exe-
cute privileged instructions. The more congested the area around this net,
the more difficult it is for a foundry-level attacker to attach (or route in
close proximity) a rogue wire to it. 22

3.4 ICAS Work Flow. ICAS consists of two tools, Nemo and GDSII-Score,
and fits into the existing IC design process (Fig. 2.1) between PaR and
fabrication. Nemo analyzes a gate-level (PaR) netlist and traces the fan-
in to security-critical nets in a design. GDSII-Score analyzes a GDSII file
(i.e., an IC layout) and computes metrics quantifying its vulnerability to
a set of foundry-level attacks. 26

3.5 Net Blockage Algorithm. A) Same-layer net blockage is computed by
traversing the perimeter of the security-critical net, with granularity g,
and extension distance d, and determining if such points lie inside another
component in the layout. B) Adjacent-layer net blockage is computed
by projecting the area of the security-critical net to the layers above and
below and determining the area of the projections that are occupied by
other components. 31

3.6 Trigger Space Results. Trigger Space distributions for 15 different OR1200
processor IC layouts. Core density and max transition time parameters
are varied across the layouts, while target clock frequency is held con-
stant at 1 GHz. The boxes represent the middle 50% (interquartile range
or IQR) of open placement regions in a given layout, while the dots rep-
resent individual open placement region sizes. 37

3.7 Net Blockage Results. Overall Net Blockage results computed across
20 different OR1200 processor IC layouts. A target density of 50% was
used for all layouts, while target clock frequency and max transition time
parameters were varied. 38

3.8 Route Distance Results. Heatmaps of routing distances across six unique
IC layouts of the OR1200 processor. Core density and max transition
times are labeled. Each heatmap is to be read column-wise, where each
column is a histogram, i.e, the color intensity within a heatmap col-
umn indicates the percentage of (critical-net, trigger-space) pairs that are
within a (y-axis) distance apart. Overlaid are rectangles, indicating re-
gions on each heatmap a given attack can exploit, and numbers indicating
the number of unique attack implementations. 39

xiii

3.9 Effectiveness of Layout-Level Defenses. Routing Distance heatmaps
across three IC designs, with and without the placement-centric defense
described in [9, 10]. Heatmaps should be interpreted similar to Fig. 3.8. . 42

3.10 ICAS Coverage of Trojans. I assume that, at the very least, layout-
level additive Trojans require adding rogue wires to the layout3. Whether
the Trojan design is integrated (requires connecting to a host circuit) or
standalone, or requires additional transistors, the difficulty of inserting it
into a victim IC layout can be captured by our three metrics: 1) Trigger
Space (TS), 2) Net Blockage (NB), and 3) Route Distance (RD). 46

4.1 T-TER is a preventive layout-level defense against fabrication-time Tro-
jans. T-TER deploys tamper-evident guard wires around security-critical
wires in a circuit layout—in a pattern similar to variant A or B—to pre-
vent attackers from attaching Trojan wires to them. 52

4.2 Three Dimensional IC Layout. Typical 3D physical IC layout designed
during the place-and-route IC design phase (Fig. 2.1). On the bottom is a
device layer, and stacked above are several routing layers. 55

4.3 There are three ways an attacker could bypass T-TER guard wires to con-
nect a Trojan wire to a security-critical wire, color-coded by attacker dif-
ficulty: A) delete guard wire(s), B) move an intact set of guard wires, or
C) jog guard wires out of the way. I study the jog attack to assess de-
fensive sensitivity, as it strikes a balance in attacker difficulty, and is the
most difficult to detect. 60

4.4 T-TER is an automated toolchain consisting of three phases. My toolchain
first identifies which wires are security-critical, determines potential (un-
blocked) attachment points, and routes guard wires to block all attach-
ment points. Identified components & wires are placed & routed before
phase (A) of my toolchain is invoked. Before continuing with the tra-
ditional PaR flow, the protected nets and their guard wires are locked
in-place to ensure they are untouched throughout the remainder of the
layout process. 63

4.5 Plot of the net blockage [169] computed across three different sets of
targeted nets within my SoC layout, with and without guard wires. 70

xiv

4.6 Plot of the ICAS route distance metric [169] computed across four differ-
ent layouts of each core within my surrogate SoC, with and without guard
wires and Ba et al.’s defensive placement [9, 10]. Each heatmap illus-
trates the percentage of (targeted net, trigger-space) pairs (possible Tro-
jan layout implementations) of varying distances apart. The heatmaps are
intended to be analyzed by column, as each column encodes a histogram
of possible attack configurations with trigger-spaces of a given size range
(X-axis). Route distances (Y-axis) are displayed in terms of standard de-
viations from mean net length in each respective design. Heatmaps that
are completely dark indicate no possible attack configurations exist, i.e.,
no placement/routing resources to insert any Trojan. Overlaid on each
heatmap are rectangles indicating regions on the heatmap a given A2 Tro-
jan (Tab. 4.1) may exploit, and markers (checks and x-marks) indicating
if a non-zero number of specific Trojan layout implementations are possible. 72

4.7 T-TER hardware overheads. The far right plot shows the number of wire
(route) segments that implement the labeled security-critical feature (set
of nets) in my surrogate SoC. 74

4.8 Worst-case manufacturing process variation (error bars) effect on unmod-
ified and minimal jog attacks on 100-micron guard-wires. 77

4.9 Number of TDR measurements required to detect the smallest jog attacks
(Table 4.2) with 95% and 99% confidence, per layer. 79

5.1 Ticking Timebomb Trojan (TTT). A TTT is a hardware Trojan that im-
plements a ticking timebomb trigger. Ticking timebomb triggers mono-
tonically move closer to activating as the system runs longer. In hardware,
ticking timebomb triggers maintain a non-repeating sequence counter that
increments upon receiving an event signal. 87

5.2 Taxonomy of Hardware Trojans. Hardware Trojans are malicious mod-
ifications to a hardware design that alter its functionality. I focus on time-
based Trojans (TTTs) and categorize them by design and behavior. . . . 90

5.3 Ticking Timebomb Trigger Behaviors. There are four primitive ticking
timebomb trigger counting behaviors, in order of increasing complexity,
captured by my definition (Properties 1 & 2 in §5.4.1). A) The simplest
counting behavior is both periodic and uniform. Alternatively, more so-
phisticated counting behaviors are achieved by: B) encrypting the count
to make the sequence non-uniform, C) incrementing it sporadically, or
D) both. 92

xv

5.4 Bomberman Architecture. Bomberman is comprised of two stages: A)
State-Saving Component (SSC) Identification, and B) SSC Classification.
The first stage (A) identifies all coalesced and distributed SSCs in the
design. The second stage (B) starts by assuming all SSCs are suspicious,
and marks SSCs as benign as it processes the values expressed by each
SSC during verification simulations. 97

5.5 Hardware Data-Flow Graph. Example data-flow graph, generated by
Bomberman, of an open-source floating-point division unit [121]. Bomber-
man cross-references this graph with verification simulation results to
identify SSCs (red). In the graph, rectangles represent registers, or flip-
flops, and ellipses represent intermediate signals, i.e., outputs from com-
binational logic. Red rectangles indicate coalesced SSCs, while red el-
lipses represent distributed SSCs. 99

5.6 Hardware Testbenches. Testbench architectures for each Design Under
Test (DUT) (outlined in red). For the AES and UART designs, Linear
Feedback Shift Registers (LFSRs) generate random inputs for testing.
For the RISC-V and OR1200 CPUs, I compile ISA-specific assembly
programs [122, 193] into executables to exercise each design. 101

5.7 Hardware Design Complexities. Histograms of the (coalesced) registers
in each hardware design. 102

5.8 False Positives. Reduction in SSCs classified as suspicious across all four
hardware designs over their simulation timelines. A) AES. Bomberman
identifies the SSCs of all six TTT variants implanted with zero false posi-
tives. B) UART. (Same as AES). C) RISC-V. Bomberman flags 19 SSCs
as suspicious, six from implanted TTTs, three from benign performance
counters, and ten benign constants resulting from on-chip Control/Status
Registers (CSRs). D) OR1200. Bomberman flags nine SSCs as suspi-
cious, six from implanted TTTs, and three benign constants. 105

5.9 Randomized Testing. Randomly generated verification test vectors do
not affect Bomberman’s performance. Rather, Bomberman’s performance
is dependent on verification coverage with respect to SSC Properties 1 &
2 (§5.4.1) that define the behavior of a TTT. Namely, tests that cause
more SSCs to cycle through all possible values, or repeat a value, reduce
false positives. 110

xvi

5.10 Distributions of Logic Depths per Pipeline Stage. The length of com-
binational logic chains between any two sequential components in most
hardware designs is bounded to optimize for performance, power, and/or
area. High performance designs have the shortest depths (less than 8 [63]),
while even the flattened and obfuscated logic model of the lowest-performance
Arm processor available [6] (worst case scenario) has a depth <25. Even
in the worst case, Bomberman’s run time (overlaid for each core), is <11
min. on a commodity laptop. 118

6.1 Fuzzing Hardware Like Software. Unlike prior Coverage Directed Test
Generation (CDG) techniques [22, 49, 91, 148], we advocate for fuzzing
software models of hardware directly, with a generic harness (testbench)
and feature rich software fuzzers. In doing so, we address the barriers to
realizing widespread adoption of CDG in hardware Design Verification
(DV): 1) efficient coverage tracing, and 2) design-agnostic testing. 126

6.2 Hardware Simulation Binary (HSB). To simulate hardware, the DUT’s
Hardware Description Language (HDL) is first translated to a software
model, and then compiled/linked with a testbench (written in HDL or
software) and simulation engine to form a Hardware Simulation Binary
(HSB). Executing this binary with a sequence of test inputs simulates the
behavior of the DUT. 132

6.3 Hardware Fuzzing. Fuzzing hardware in the software domain involves:
translating the hardware DUT to a functionally equivalent software model
(1) using a SystemVerilog compiler [145], compiling and instrumenting
a Hardware Simulation Binary (HSB) to trace coverage (2), crafting a set
of seed input files (3) using our design-agnostic grammar (§ 6.4.2.4), and
fuzzing the HSB with a coverage-guided greybox software fuzzer [104,
155, 201] (4–6). 132

6.4 Hardware Fuzzing Instruction. A bus-centric harness (testbench) reads
binary Hardware Fuzzing Instructions from a fuzzer-generated test file,
decodes them, and performs TileLink Uncached Lightweight (TL-UL)
bus transactions to drive the DUT (Fig.6.13). Our Hardware Fuzzing In-
structions comprise a grammar (Tbl. 6.1) that aid syntax-blind coverage-
guided greybox fuzzers in generating valid bus-transactions to fuzz hard-
ware. 141

6.5 Hardware Fuzzing Pipeline (HWFP). We design, implement, and open-
source a HWFP that is modeled after Google’s OSS-Fuzz [140]. Our
HWFP enables us to verify Register-Transfer Level (RTL) hardware at
scale using only open-source tools, a rarity in hardware DV. 142

xvii

6.6 Digital Lock FSM. We use a configurable digital lock (Finite State Ma-
chine (FSM) shown here) to demonstrate: 1) how to interface software
fuzzers with hardware simulation binaries, and 2) the advantages of Hard-
ware Fuzzing (vs. traditional Constrained Random Verification (CRV)).
The digital lock FSM can be configured in two dimensions: 1) total num-
ber of states and 2) width (in bits) of input codes. 144

6.7 Digital Lock HSB Architectures. (A) A traditional CRV architecture:
random input code sequences are driven into the DUT until the unlocked
state is reached. (B) A software fuzzer generates tests to drive the DUT.
The fuzzer monitors coverage of the DUT during test execution and uses
this information to generate future tests. Both HSBs are configured to
terminate execution upon unlocking the lock using an SystemVerilog As-
sertion (SVA) in the testbench that signals the simulation engine (Fig. 6.2)
to abort. 146

6.8 Instrumentation Level vs. Coverage Convergence Rate. Distribution
of fuzzer run times required to unlock various sized digital locks (code
widths are fixed at four bits), i.e., achieve ≈ full FSM coverage. For
each HSB, we vary the components we instrument for coverage tracing.
Run times are normalized to the median DUT-only instrumentation level
(orange) across each lock size (red line). While the fuzzer uses the test-
bench and simulation engine to manipulate the DUT, instrumenting only
the DUT does not hinder the coverage convergence rate of the fuzzer.
Rather, it improves it when DUT sizes are small, compared to the simu-
lation engine and testbench (Fig. 6.9). 148

6.9 Basic Blocks per Simulation Binary Component. We break down
the number of basic blocks that comprise the three components within
HSBs of different size locks (Fig. 6.6 & List. VI.1), generated by Veri-
lator [145]: simulation engine and testbench (TB), and DUT. As locks
increase in size, defined by the number of FSM states (code widths are
fixed to 4 bits), so do the number of basic blocks in their software model. 150

6.10 Hardware Resets vs. Fuzzer Performance. Fuzzing run times across
across digital locks (similar to Fig. 6.8) with different fork server ini-
tialization locations in the testbench to eliminate overhead due to the re-
peated simulation of hardware DUT resets. DUT resets are only a fuzzing
bottleneck when DUTs are small, reducing fuzzer–HSB integration com-
plexity. 151

xviii

6.11 Hardware Fuzzing vs. CRV. Run times for both Hardware Fuzzing
(A) and CRV (B) to achieve ≈ full FSM coverage of various digital lock
(Fig. 6.6) designs—i.e., time to unlock the lock—using the testbench ar-
chitectures shown in Fig. 6.7. Run times are averaged across 20 trials
for each lock design—defined by a (# states, code width) pair—and DV
method combination. Across these designs, Hardware Fuzzing achieves
full FSM coverage faster than traditional CRV approaches, by over two
orders of magnitude. 151

6.12 Hardware Fuzzing vs. RFUZZ. Fuzzing eight different hardware de-
signs, including an FFT accelerator, RISC-V CPUs, and TileLink com-
munication peripherals, with my Hardware Fuzzing approach vs. RFUZZ
[91] (Fig. 6.1), yields 24.76% better HDL coverage (on average) after 24
hours, across all cores. 153

6.13 OpenTitan HSB Architecture. A software fuzzer learns to generate
fuzzing instructions (Fig. 6.4)—from .hwf seed files—based on a hard-
ware fuzzing grammar (§6.4.2.4). It pipes these instructions to stdin

where a generic C++ fuzzing harness fetches/decodes them, and performs
the corresponding TileLink bus operations to drive the DUT. SVAs are
evaluated during execution of the HSB, and produce a program crash (if
violated), that is caught and reported by the software fuzzer. 155

6.14 Coverage vs. Time Fuzzing with Empty Seeds. Fuzzing four OpenTi-
tan [105] Intellectual Property (IP) cores for one hour, seeding the fuzzer
with an empty file in each case, yields over 88% HDL line coverage in
three out of four designs. 157

A.1 Route Distance Results for OR1200 at 50% Density. 168

A.2 Route Distance Results for OR1200 at 70% Density. 169

A.3 Route Distance Results for OR1200 at 90% Density. 170

C.1 Coverage Convergence vs. Hardware Fuzzing Grammar. Various
software and hardware coverage metrics over fuzzing time across four
OpenTitan [105] IP cores and hardware fuzzing grammar variations (§C).
In the first row, we plot line coverage of the software models of each hard-
ware core computed using kcov. In the second row, we plot basic block
coverage computed using LLVM. In last row, we plot HDL line coverage
(of the hardware itself) computed using Verilator [145]. From these
results we formulate two conclusions: 1) coverage in the software do-
main correlates to coverage in the hardware domain, and 2) the Hardware
Fuzzing grammar with variable instruction frames is best for greybox
fuzzers that prioritize small test files. 176

xix

LIST OF TABLES

Table

3.1 Hardware Trojans used in defensive coverage assessment. 33

4.1 A2 Trojans used in T-TER effectiveness assessment. 68

4.2 Minimum guard wire jog attack (Fig. 4.3C) edit–distances for each rout-
ing layer in the IBM 45 nm SOI process technology. 76

5.1 Comparative Security Analysis of TTT Defenses and Bomberman. 111

5.2 Bomberman scalability comparison for circuit Data-Flow Graphs (DFGs)
with n signals simulated over c clock cycles. 116

6.1 Hardware Fuzzing Grammar. 142

6.2 OpenTitan IP Core Complexity in HW and SW Domains. 156

6.3 Hardware Fuzzing RTL Bug Discovery Times. 157

xx

LIST OF APPENDICES

Appendix

A. Route Distances of OR1200 Layouts . 167

B. Descriptions of OpenTitan IP Blocks . 171

C. Optimizing the Hardware Fuzzing Grammar 174

xxi

LIST OF ABBREVIATIONS

ASLR Address Space Layout Randomization . 87

AST Abstract Syntax Tree . 136

CRV Constrained Random Verification . xviii

CVE Common Vulnerability Exposure . 125

CAD Computer Aided Design . 6

CDG Coverage Directed Test Generation . xvii

CSR Control/Status Register . xvi

DEP Data Execution Prevention . 87

DFG Data-Flow Graph . xx

DFS Depth-First Search . 98

DUT Design Under Test . xvi

DV Design Verification . xvii

E2E End-to-End . 101

xxii

EDA Electronic Design Automation . 162

FSM Finite State Machine . xviii

GCP Google Cloud Platform . 129

GCS Google Cloud Storage . 143

GDSII Graphics Database System II . 6

HDL Hardware Description Language . xvii

HSB Hardware Simulation Binary . xvii

HWFP Hardware Fuzzing Pipeline . xvii

IC Integrated Circuit . 1

ICAS IC Attack Surface . 3

IP Intellectual Property . xix

IVL Icarus Verilog . 98

LFSR Linear Feedback Shift Register . xvi

LOC Lines of Code . 156

PaR Place-&-Route . 9

RTL Register-Transfer Level . xvii

SoC System-on-Chip . 85

xxiii

SSC State-Saving Component . xvi

SVA SystemVerilog Assertion . xviii

TDR Time-Domain Reflectometry . 3

TL-UL TileLink Uncached Lightweight . xvii

T-TER Targeted Tamper-Evident Routing . 3

TTT Ticking Timebomb Trojan . xv

UART Universal Asynchronous Receiver-Transmitter 4

UVM Universal Verification Methodology . 131

VCD Value Change Dump . 100

xxiv

ABSTRACT

Over the past several decades, computing hardware has evolved to become smaller, yet

more performant and energy-efficient. Unfortunately, these advancements have come at a

cost of increased complexity, both physically and functionally. Physically, the nanometer-

scale transistors used to construct Integrated Circuits (ICs), have become astronomically

expensive to fabricate. Functionally, ICs have become increasingly dense and feature-rich

to optimize application-specific tasks. To cope with these trends, IC designers outsource

both fabrication and portions of Register-Transfer Level (RTL) design. Outsourcing, com-

bined with the increased complexity of modern ICs, presents a security risk: we must trust

our ICs have been designed and fabricated to specification, i.e., they do not contain any

hardware Trojans.

Working in a bottom-up fashion, I initially study the threat of outsourcing fabrication.

While prior work demonstrates fabrication-time attacks (modifications) on IC layouts, it is

unclear what makes a layout vulnerable to attack. To answer this, in my IC Attack Surface

(ICAS) work, I develop a framework that quantifies the security of IC layouts. Using ICAS,

I show that modern ICs leave a plethora of both placement and routing resources available

for attackers to exploit. Next, to plug these gaps, I construct the first routing-centric defense

(T-TER) against fabrication-time Trojans. T-TER wraps security-critical interconnects in

IC layouts with tamper-evident guard wires to prevent foundry-side attackers from modi-

fying a design.

After hardening layouts against fabrication-time attacks, outsourced designs become

the most critical threat. To address this, I develop a dynamic verification technique (Bomber-

xxv

man) to vet untrusted third-party RTL hardware for Ticking Timebomb Trojans (TTTs). By

targeting a specific type of Trojan behavior, Bomberman does not suffer from false nega-

tives (missed TTTs), and therefore systematically reduces the overall design-time attack

surface. Lastly, to generalize the Bomberman approach to automatically discover other

behaviorally-defined classes of malicious logic, I adapt coverage-guided software fuzzers

to the RTL verification domain. Leveraging software fuzzers for RTL verification enables

IC design engineers to optimize test coverage of third-party designs without intimate imple-

mentation knowledge. Overall, this dissertation aims to make security a first-class design

objective, alongside power, performance, and area, throughout the hardware development

process.

xxvi

CHAPTER I

Introduction

1.1 Motivation

Since the inception of the Integrated Circuit (IC), modern computing capabilities have

been closely tied to advancements in hardware. Through the era of Moore’s Law [113]

and Dennard scaling [44], computer architects realized most performance gains from peri-

odic, exponentially shrinking, transistor sizes. However, as transistors have gotten smaller,

they have become increasingly expensive to manufacture. For example, TSMC’s latest IC

fabrication facility, slated for completion in 2023, is expected to cost $19.6 billion [46].

Similarly, when transistor scaling became challenging due to fundamental physical lim-

its, computer architects responded by increasing the amount of on-chip parallelism, first,

through (homogeneous) multi-core designs, and second, through (heterogeneous) domain-

specific accelerators [37, 55, 78, 106, 118, 141]. Unfortunately, with increased heteroge-

neous parallelism, comes increased verification complexity. Today, to completely design

and verify an IC of moderate complexity on an advanced silicon node requires an estimated

500 engineering years, or one year’s time from 500 engineers working together [53, 92].

Of this time, it is estimated that up to 70% is spent verifying design correctness [47], rather

than implementing the design itself.

1

1.2 Hardware Development Trends

In response to these challenges, hardware development trends have shifted. First, to

cope with rising fabrication costs, most semiconductor companies have become fabless.

While they still have the financial resources to design custom hardware, they outsource its

fabrication. Today, only two companies remain that are capable of fabricating leading edge

silicon at scale (≈40,000/wafers a month): Samsung and TSMC1 [95]. Second, to con-

tinue building increasingly complex designs, while maintaining expected time-to-market,

semiconductor companies have outsourced portions of the design/verification process by

purchasing third-party IP blocks [171].

1.3 Research Challenges & Thesis Statement

Unfortunately, outsourcing combined with the size and complexity of modern ICs presents

a security risk. How do we know untrusted third parties will design and fabricate ICs ac-

cording to specification? In other words, how can we be certain our designs will be free of

malicious modifications, i.e., hardware Trojans?

Thesis Statement:

In this dissertation, I present techniques to harden IC designs against the threats of in-

creased outsourcing through security-driven design and verification.

Specifically, I address the security risks associated with outsourcing: 1) fabrication and 2)

design.

1As of writing this dissertation, Intel does not fabricate third-party designs at scale, but they have recently
announced plans they will in the near future [158].

2

1.4 Dissertation Contributions

1.4.1 Security-Driven (Layout) Design

In the first half of my dissertation, I tackle the challenge of designing secure hardware

in the face of an untrusted foundry. To fundamentally understand how to address this

issue, in Chapter III I study the susceptibility of IC layouts to fabrication-time modification,

i.e., fabrication-time attacks. First, I enumerate the challenges a foundry-side adversary

faces when attempting to insert a hardware Trojan into an IC layout. From there, I design,

implement, and open-source a framework, called IC Attack Surface (ICAS) [169], that

estimates the difficulty—i.e., resources—required to mount a fabrication-time attack. ICAS

provides back-end IC design engineers with an automated toolchain to assess the risk of a

fabrication-time attack, before sending their designs to the foundry. I demonstrate the utility

of ICAS by analyzing over 60 real-world IC layouts with and with-out existing layout-level

defenses. ICAS results indicate that even with defenses deployed, IC layouts still leave tens

to thousands of possible Trojan attack points available for foundry-side attackers to exploit.

To fill these defensive gaps, I proceed in designing and implementing the first routing-

centric layout-level defense against fabrication-time attacks—Targeted Tamper-Evident Rout-

ing (T-TER)—in Chapter IV. T-TER deploys tamper-evident guard wires—similar to those

used for cross-talk reduction [60, 61]—around all sides of security-critical nets in a lay-

out to prevent foundry-side attackers from connecting rogue Trojan wires to, or nearby,

them [170]. The analog characteristics of T-TER guard wires are then analyzed post-

fabrication, using continuity checks and Time-Domain Reflectometry (TDR), to nonde-

structively determine if any guard wires were manipulated at the foundry. Using the ICAS

framework (Chapter III), I show that with T-TER, back-end design engineers can com-

pletely close the fabrication-time attack surface with regard to the security-critical features

they care about.

3

1.4.2 Security-Driven (RTL) Verification

After securing the layout, the next critical threat in modern ICs is the integration of

untrusted third-party IP. In the second half of my dissertation, I tackle this threat by

proposing a new technique—Bomberman—for vetting third-party IP for hardware Tro-

jans (Chapter V). Unlike prior Trojan verification techniques [58, 184, 202], Bomberman

is TTT-specific, and aims to systematically constrict the overall design-time attack surface

by provably eliminating the threat of TTTs. To achieve this, Bomberman starts by assum-

ing all components in the design are suspicious (part of a TTT), and only marks compo-

nents as benign if they violate any TTT-specific behavioral invariants during verification

simulations. As a result, false negatives are impossible. Moreover, by carefully crafting

verification test vectors, I demonstrate Bomberman’s false positive rate is less than 1.2%

across four real-world hardware designs, including: an AES accelerator [136], a Universal

Asynchronous Receiver-Transmitter (UART) core [121], an OR1200 processor [121], and

a RISC-V processor [193].

While Bomberman demonstrates the effectiveness of Trojan-specific verification, its

success (false positive rate) is largely determined by a verification engineer’s ability to craft

test vectors that exercise potential TTT logic. Unfortunately, doing so requires verification

engineers have intimate knowledge of the DUT’s implementation, which is rarely the case

when analyzing third-party designs. To address this issue, and generalize attack-specific

verification techniques to automatically discover other behaviorally-defined security vul-

nerabilities, I propose a new DV technique called hardware fuzzing in Chapter VI. In this

work, I borrow recent advancements in the software testing community, namely coverage-

guided greybox fuzzing [20, 201], to optimize RTL DV test generation for maximal design

coverage. Rather than re-implementing software fuzzing techniques in the hardware do-

main, I develop a mechanism to fuzz software models of RTL hardware directly in a design

agnostic manner. Moreover, I demonstrate over two orders-of-magnitude improvement in

coverage convergence over existing CRV techniques.

4

1.5 Road Map

The remainder of this dissertation is structured as follows. In Chapter II, I discuss perti-

nent background information regarding the IC design process, the construction of hardware

Trojans, and two hardware supply chain threat models that are the focus of this disserta-

tion. Next, in Chapters III–IV, I present two works that address the threat of outsourcing

IC fabrication by making security a first-class design objective during IC layout. Follow-

ing this, in Chapters V–VI, I present two additional works that address security concerns

stemming from rising design complexities by making security a primary objective during

RTL verification. Lastly, I conclude with a summary of my dissertation work in the context

of my thoughts on future directions in Chapter VII.

5

CHAPTER II

Background

2.1 IC Design Process

In order to design complex ICs, like the Apple A13 Bionic chip that contains 8.5 billion

transistors [43], the design process is broken down into several phases (Fig. 2.1) and heavily

augmented with Computer Aided Design (CAD) tools. To design complex ICs, while min-

imizing time-to-market, hardware designers often first purchase existing IP blocks from

third parties to integrate into their designs. Next, designers integrate all third-party IP

blocks, and describe the behavior of any custom circuitry at the RTL, using HDLs like

Verilog. Next, CAD tools synthesize the HDL into a gate-level netlist (also described

using HDL) targeting a specific process technology, a process analogous to software com-

pilation. After synthesis, designers place the circuit components (i.e., logic gates) on a

3-dimensional grid and route wires between them to connect the entire circuit. CAD tools

encode the physical layout in the Graphics Database System II (GDSII) format, which is

then sent to the fabrication facility. Finally, the foundry fabricates the IC, and returns it to

the designers who then test and package it for mounting onto a printed circuit board.

6

3rd Party IP RTL Design
(Behavioral)

Synthesis
(Structural)

Place-&-Route
(Physical)

Fabrication Packaging

Front-End Design

Ve
rif
ica

tio
n

Ve
rif
ica

tio
n

Ve
rif
ica

tio
n

Back-End Design

Ve
rif
ica

tio
n

Ve
rif
ica

tio
n

Figure 2.1: IC Design Process. The typical IC design process starts with a behavioral
description of the design, and ends with a fabricated and packaged chip. All
stages in the design process are often heavily augmented with CAD tools.

Digital Analog

Combinational
Sequential

Rare Values

Clock
Synchronous

Event
Synchronous

Trigger

Digital Analog

Bridging

Activity

Timing

Drive Nodes

Modify
Memory

Payload

Sensor

Activity

Hardware Trojan

Figure 2.2: Hardware Trojan Taxonomy. A hardware Trojan is an undesired alteration
to an IC design for the purpose of modifying its functionality. Hardware Tro-
jans can be classified based on the construction of their two main components:
trigger and payload [34, 75, 194].

2.2 Hardware Trojans

A hardware Trojan is a malicious modification to a circuit designed to alter its operative

functionality [16]. It consists of two main building blocks: a trigger and payload [34, 75,

169, 194]. Prior work provides hardware Trojan taxonomies based on the type of trigger

and payload designs they employ [34, 75, 194]. I adopt this taxonomy, depicted in Fig. 2.2.

2.2.1 Trojan Trigger

The trigger is circuitry that initiates the delivery of the payload when it encounters a

specific state. The goal of the trigger is to control payload deployment such that it is hidden

from test cases (stealthy), but readily deployable by the attacker (controllable). Triggers are

7

created by adding, removing, and/or manipulating existing circuit components [90, 142,

162, 196], and can be digital or analog [85, 135, 196]. The ideal trigger—e.g., A2 [196]—

achieves stealth and controllability while being small (i.e., requiring few additional circuit

components).

2.2.2 Trojan Payload

The payload is circuitry that, upon being signaled by the trigger, alters the functionality

of the victim (host) circuit. Like the trigger, the payload can be analog or digital, and

has a variety of possible malicious effects. Prior work demonstrates Trojan payloads that

leak information [101], alter the state of the IC [196], and render the IC inoperable [142].

One attribute all documented controllable hardware Trojans have in common is that they

must route a rogue wire to, or directly adjacent to, a security-critical wire within the victim

IC [169].

2.3 Threat Models

There are two main threats to the IC supply chain given current economic trends [19,

58, 94, 169, 170, 184, 202]: 1) out-sourced fabrication and 2) out-sourced design. As a

result, in this thesis I focus on two threat models, or IC supply chain attack points: 1)

fabrication-time attacks and 2) design-time attacks, as shown in Figure 2.3.

2.3.1 Fabrication-Time Attacks

In the fabrication-time attack threat model, all phases of the IC design process are

trusted except fabrication (Fig. 2.3A). This threat model stems from the extreme ramp-up

costs associated with fabricating leading-edge silicon [94, 95] that make outsourcing IC

fabrication a necessity—even for nation states. In line with previous untrusted foundry

threat models [101, 135, 162, 169, 196], I assume the worst case: that any fabrication-

time modifications are carried out by a malicious actor within the foundry (or any foundry

8

3rd Party IP RTL Design
(Behavioral)

Synthesis
(Structural)

Place-&-Route
(Physical)

Fabrication Packaging

Front-End Design

Ve
rif

ica
tio

n

Ve
rif

ica
tio

n
Back-End Design

Ve
rif

ica
tio

n

Ve
rif

ica
tio

n

3rd Party IP RTL Design
(Behavioral)

Synthesis
(Structural)

Place-&-Route
(Physical)

Fabrication Packaging

Front-End Design

Ve
rif
ica

tio
n

Ve
rif
ica

tio
n

Back-End Design

Ve
rif
ica

tio
n

Ve
rif
ica

tio
n

B) Design-Time Attacks

A) Fabrication-Time Attacks

= Outsourced/Untrusted

= Outsourced/Untrusted

Figure 2.3: IC Supply Chain Attack Vectors. Given current economic trends [19, 58, 94,
169, 170, 184, 202], there are two main attack points in the IC supply chain re-
sulting from out-sourcing fabrication and design respectively: A) fabrication-
time and B) design-time.

partners) that has access to the entire physical layout of the IC in the form of a GDSII file,

the output of the Place-&-Route (PaR) phase in Figure 2.1.

Inserting a hardware Trojan at fabrication-time is different from inserting a Trojan dur-

ing the front-end design. Unlike behavioral or structural-level attackers that maliciously

modify the HDL or gate-level netlist, respectively [5, 74, 184], the fabrication-time at-

tacker only has access to the physical-level representation of the IC design (i.e., output of

the PaR phase in Fig. 2.1). Specifically, they must edit the geometric representation of the

circuit layout, e.g., the GDSII file. While this is more challenging than editing the design

at the behavioral- (HDL) or structural-level (netlist), where design specific semantics are

more readily interpretable, it is even more difficult to defend. The post-fabrication defender

receives a literal black box from the foundry. Comprehensively inspecting each fabricated

die to verify the absence of malicious perturbations is infeasible for the most advanced

hardware Trojans [196].

9

2.3.2 Design-Time Attacks

In the design-time attack threat model, the untrusted phase is the front-end-design

phase, where third party IP is integrated. In order to decrease time-to-market in and

maintain feature rich designs, companies favor a reliance on untrusted third parties and

large design teams [19]. Moreover, without a trusted front-end design, any result of back-

end design and fabrication cannot be trusted. Similar to prior design-time attack stud-

ies [69, 99, 151, 181–183, 191], I focus on malicious modifications that are embedded

in third party HDL (Fig. 2.3B). I assume that a design-time adversary has the ability

to add, remove, and modify the HDL of the core design or IP block in order to imple-

ment hardware Trojans. This can be done either by a single rogue employee at a hard-

ware design company, or by entirely rogue design teams. Lastly, I assume that any mali-

cious circuit behavior induced by Trojan trigger activation is caught via verification test-

ing [58, 69, 183, 184, 191, 202].

Compared with fabrication-time attacks, design-time attacks are easier to implement,

as the attacker has access to semantically rich HDL. However, design-time attacks are also

easier to detect. A defender has full visibility into the design and its functionality, and there

is no notion of analog behavior. A defender can use heuristics based tools [58, 99, 151, 171,

184, 202] to vet their designs, prior to passing them off to the back-end design phase.

10

CHAPTER III

ICAS

3.1 Introduction

The relationship between complexity and security seen in software also holds for In-

tegrated Circuits (ICs). Since the inception of the IC, transistor sizes have continued to

shrink. For example, compare the 10 µm feature size of the original Intel 4004 proces-

sor [71] to the 10 nm feature size of Intel’s recently announced Ice Lake processor fam-

ily [4]. Smaller transistors enable IC designers to create increasingly complex circuits

with higher performance and lower power-usage. However, continuing this trend pushes

the laws of physics and comes at a substantial cost: building a 3 nm fabrication facility is

estimated to cost $15–20B [94].

Such costs are prohibitive for not only most semiconductor companies, but also nation

states. Thus, most hardware design houses are fabless, i.e., while they are able to fully

design and lay out an IC, they must outsource its fabrication. Outsourcing combined with

the black-box nature of testing a fabricated IC requires fabless semiconductor companies to

trust that their physical designs will not be altered maliciously by the foundry, also known

as a fabrication-time attack. Previous work demonstrates several ways a fabrication-time

attacker can insert a hardware Trojan into an otherwise trusted IC [17, 90, 196]. A2 [196]

demonstrates the most stealthy and controllable IC fabrication-time attack to date, whereby

a hardware Trojan with a complex, yet stealthy, analog trigger circuit is inserted into the

11

finalized layout of a processor. Even though the inserted Trojan is small, the attacker can

trigger it and escalate to a persistent software-level attack (i.e., a hardware foothold [85])

using only user-mode code.

Early work focuses on post-fabrication detection of hardware Trojans in ICs [162].

Broadly, there are two classes of detection: 1) side-channel analysis and 2) Trojan-activation

via functional testing. Side-channel (power, timing, etc.) analysis [3, 75, 117, 131] assumes

that the Trojan’s trigger is complex (i.e., many logic gates), and thus noticeably changes

the physical characteristics of the chip. For example, inserting the large amount of extra

logic required by a complex trigger into a design alters the power signature of the device.

Alternatively, Trojan-activation via functional testing assumes that the Trojan’s trigger is

simple (i.e., few logic gates [17, 90]), and is thus easily activated by test vectors. Unfortu-

nately, layering detection classes is not sufficient as it is shown possible to create an attack

that is both small and stealthy [196].

To address the gaps left by post-fabrication Trojan detection schemes, recent work fo-

cuses on pre-fabrication, IC layout-level, Trojan prevention [9, 40, 195]. IC layout-level

defenses work by:

1. increasing placement & routing resource utilization

2. increasing congestion around security-critical design components.

The lack of resources deprives the attacker of the required transistors needed to implement

their Trojan trigger/attack circuits, and the increased congestion around security-critical

wires acts as a barrier for the attacker attempting to integrate their Trojan into the vic-

tim design. Ideally, defenders utilize just enough resources and create enough congestion

such that the attacker cannot implement and insert their attack, while keeping the design

routable. Short of that, the added barriers require the attacker to expend significantly more

resources (e.g., time) to insert their attack into an IC layout.1

1Time is the most critical resource for the attacker as IC fabrication is usually bounded in terms of
turnaround time.

12

Two IC layout-level defensive approaches exist: undirected and directed. Undirected

approaches aim to (probabilistically) increase resource utilization and congestion across

the entire layout by altering existing place-and-route parameters (e.g., core density [195])

that will likely result in increased resource utilization and congestion. More recently, a

line of directed approaches have emerged [9, 10] that systematically increase utilization

of specific-regions of the device layer, i.e., nearby security-critical components. Given that

it is infeasible to occupy the entire device layer in a tamper-evident manner [9, 10], both

classes of approaches may leave IC layouts vulnerable to attack by an untrusted foundry.

To identify gaps in existing defenses and guide future IC layout-level defenses, I design

and implement an extensible measurement framework that estimates the susceptibility of

an IC layout to foundry-level additive Trojan attacks. Our framework, IC Attack Surface

(ICAS), estimates resilience in three dimensions that capture the essence and difficulty of

inserting a hardware Trojan at an untrusted foundry:

1. Trojan logic placement: finding unused space to place additional circuit compo-

nents

2. Victim/Trojan integration: attaching hardware Trojan payload to security-critical

logic

3. Intra-Trojan routing: connecting the trigger and payload portions of the hardware

Trojan

A successful attack requires all three steps.

Using ICAS, I analyze over 60 different IC layouts across three fully-functional ASIC

designs: an AES accelerator, a DSP accelerator, and an OR1200 processor. For each layout,

ICAS reports the coverage against four additive Trojan attacks [58, 85, 136, 196] that span

the digital and analog domain as well a range of attack outcomes. ICAS’s analysis reveals

that all existing IC layout-level defenses are incomplete, leaving 1000’s of opportunities

for an attacker at an untrusted foundry to insert a hardware Trojan. An additional finding is

13

that even though most existing countermeasures do increase the complexity of inserting a

hardware Trojan, some countermeasures are ineffective. Lastly, ICAS’s analysis suggests

that focusing on exhausting resources on the device layer (i.e., transistors) is an incomplete

defense; future defenses should also aim to increase congestion around security-critical

wires.

This chapter makes the following contributions:

• I propose an extensible methodology that estimates the difficulty of inserting additive

hardware Trojans into an existing IC layout by an untrusted foundry.

• I design, implement, and open-source [110, 111] our extensible framework, ICAS,

that computes various layout-specific security metrics. The ICAS framework pro-

vides an interface to programmatically query the physical layout of an IC (encoded

in the GDSII format) to compute various security metrics with respect to attacks-of-

interest.

• I use ICAS to estimate the effectiveness and expose the gaps of previously-proposed

untrusted foundry defenses by analyzing over 60 IC layouts of three real-world hard-

ware cores.

• I identify future directions for defenses that work in a layered fashion with existing

defenses.

3.2 Background

3.2.1 IC Layouts

IC layouts consist of multiple layers. The bottom layers are device layers, while the

top layers are metal layers. Device layers are used for constructing circuit components

(e.g., transistors), and the metal layers are used for routing (e.g., vias and wiring). The

first stage of PaR is creating a floorplan. Figure 3.1 illustrates an IC floorplan. To create

14

Figure 3.1: IC Floorplan. Typical IC floorplan created during the place-and-route design
phase. The floorplan consists of an I/O pad ring surrounding the chip core.
Within the core is the placement grid. Circuit components are placed and routed
within the placement grid.

a floorplan, the dimensions of the overall chip are specified and the core area is defined.

Typically a ring of I/O pads is then placed around the chip core, while a placement grid is

drawn over the core. Each tile in the placement grid is known as a placement site. Circuit

components (e.g., standard cells) are then placed on the placement grid, occupying one or

more placement sites, depending on the size of the component. Lastly, all components are

routed together, using one or more routing layers. The output from the back-end design is

a Graphics Database System II (GDSII) file that is a geometric description of the placed-

and-routed circuit layout. The GDSII file is then sent to a fabrication facility where it is

manufactured. The final step is testing and packaging.

3.2.2 Fabrication-Time Trojan Implementations

There are three types of hardware Trojans a malicious foundry can craft into an oth-

erwise trusted IC layout: additive, substitution, and subtractive. Additive Trojans involve

inserting additional circuit components and/or wiring into an existing design. Substitution

Trojans require removing logic with low observability to make room for additional Trojan

circuit components and/or wiring in an existing circuit design. Lastly, subtractive Trojans

require removing circuit components and/or wiring to alter the behavior of a existing cir-

cuit design. The focus of this chapter is estimating the susceptibility of a circuit layout

15

to additive Trojan attacks. Substitution and subtractive Trojans, while intriguing, remain

largely unexplored by the community. I do not know of any demonstrably stealthy and con-

trollable substitution or subtractive Trojans and when researchers do create such an attack,

there exists orthogonal mitigation strategies [190].

Inserting an additive Trojan at an untrusted foundry requires modifying two fundamen-

tal characteristics of an IC’s physical layout—placement and routing—regardless of how an

attacker implements the Trojan’s trigger and payload. I define Trojan placement to be the

act of placing additional hardware components into an IC layout for the purpose of crafting

a Trojan trigger and payload, Victim/Trojan integration to be wiring the Trojan’s payload

to, or in the vicinity, of a security-critical net in the victim IC layout, and intra-Trojan

routing to be the act of wiring the hardware Trojan together. The most challenging aspect

of inserting a hardware Trojan at fabrication-time is finding empty space on the IC’s device

layer to insert the trigger and payload components (Trojan placement), AND routing the

payload to a security-critical net (Victim/Trojan integration). ICAS estimates each of

these fundamental tasks, in turn identifying weak points in the IC layout that an attacker

might exploit.

3.3 Threat Model

In this chapter, I adopt the threat model for foundry-side attacks—§2.3.1 and Fig-

ure 2.3A—that assumes all steps in the IC design process can be trusted, except for all

of the processes performed by a foundry, and its sub-contractors. I further restrict this

threat model to fabrication-time attacks involving additive Trojans, i.e., hardware Tro-

jans that require inserting additional circuitry into a physical IC design. Previous work

on substitution/subtractive hardware Trojans shows that such Trojan insertion methods are

addressable by measuring the controllability and observability of logic at the behavioral

and/or structural level of the IC design, for which several methods have already been pro-

posed [51, 58, 137, 138, 184, 202]. Orthogonally, this work fills the void of quantifying the

16

susceptibility of an IC design to additive hardware Trojan insertion at the physical level of

the IC design process by an untrusted foundry.

Focusing on additive hardware Trojans, an adversary can only insert additional compo-

nents/wires. They cannot increase the size of the chip to make additional room for the im-

plants because this is readily caught by defenders. As a result, an attacker has two choices:

find open space in the design large enough to accommodate the additional circuitry, or

create open space in the design by moving circuitry around. The latter is extremely chal-

lenging due to its recursive nature, it runs the risk of violating fragile timing constraints

and manufacturing design rules, and it increases fabrication turnaround time (which is usu-

ally set to three months); any of which could expose the Trojan. Therefore, my focus is

identifying open spaces suitable for hardware Trojan implementation.

3.4 Untrusted Foundry Defenses

To protect IC layouts against insertion of a hardware Trojan by attackers at an untrusted

foundry, two classes of defenses exist: undirected and directed. Undirected defenses

leverage existing tuning knobs available during the IC layout process, but do not differ-

entiate between security-critical and general-purpose wires and logic. Thus, undirected

approaches provide probabilistic protection. On the other hand, directed defenses require

augmenting existing PaR tool flows to harden the resulting IC layout, focusing on deploying

defenses systematically around security-critical wires and logic. Thus directed approaches

provide targeted protection, but increase the complexity of the place-and-route process.

This section provides an overview of the landscape of undirected and directed de-

fenses. The focus is the mechanism each defense uses to increase the complexity faced

by a foundry-level attacker. I use the results of the defensive analysis in this section to

develop a set of unifying coverage metrics in the next section. Finally, in the evaluation,

I evaluate commercial IC layouts using the defense-inspired metrics to quantify each de-

fense’s coverage.

17

3.4.1 Undirected

The lowest cost approach for protecting an IC layout from a foundry-level attacker is to

take advantage of existing physical layout parameters (e.g., core density, clock frequency,

and max transition time) offered by commercial CAD tools [195]. The goal is to increase

congestion across the component layer and the routing layer. Ideally, this also results in

increased congestion around security-critical logic and wires. Practically, increases in con-

gestion around security-critical logic and wires is probabilistic.

Increased congestion is a symptom of increased resource utilization; hence, there are

fewer resources available to the attacker. The most obvious resource that an attacker cares

about are placement sites on the component layer. Increasing the density, decreases unused

placement sites. Without sufficient placement sites, the attacker cannot implement their

Trojan logic. A less obvious resource is attachment points on security-critical wires that

serve as victim/Trojan integration points. Increasing routing layer congestion (via density

and/or timing constraints) increases the blockage around security-critical wires, meaning

there are less integration points.

3.4.2 Directed

To address the shortcoming of undirected approaches, recent defenses advocate focus-

ing on security-critical logic and wires. Specifically, the approaches aim to prevent the

attacker from being able to implement their hardware Trojan by occupying unused place-

ment sites (i.e., transistors) [9, 10]. The challenge is that the filler cells used by these

defenses must be tamper-evident, i.e., a defender must be able to detect if an attacker re-

moved filler cells to implement their Trojan. Previous work shows that filling the entire

component layer with tamper-evident filler cells (e.g. [195]) is infeasible due to routing

congestion [10]. To make routing feasible, the most recent placement-centric defense fo-

cuses on filling the unused placement sites nearest security-critical logic first [9, 10].

Such placement-centric defenses increase the complexity faced by the attacker in two

18

ways. First, it is harder for the attacker to find contiguous unused placement sites to im-

plement their Trojan’s logic. Second, an indirect complication is increased intra-Trojan

routing complexity. The more distributed the attacker’s placement sites, the more long

(i.e., uses upper routing layers) routes the attacker must create. Additionally, since the

unused placement sites are far away from security critical logic, the attacker must make a

longer, more complex, route to connect their hardware Trojan to the victim security-critical

wire.

3.5 Unified Attack Metrics

Drawing from existing untrusted foundry defenses, I create an extensible set of IC lay-

out attack metrics. I unify the objectives of existing defenses by decomposing the act of

inserting a hardware Trojan into ICs at an untrusted foundry into three fundamental tasks

and corresponding metrics:

1. Trojan logic placement: Trigger Space

2. Victim/Trojan integration: Net Blockage

3. Intra-Trojan routing: Route Distance

These tasks and accompanying metrics are the foundation for our methodology of assessing

defensive coverage of an IC layout against an untrusted foundry. I implement our method-

ology as ICAS.

3.5.1 Challenges of Trojan Placement

The first phase of mounting a fabrication-time attack is Trojan placement. This requires

locating unused placement sites on the placement grid to insert additional circuit compo-

nents. While prior work [9, 10, 195] employs the notion of limiting the quantity of unused

placement sites as a defense against fabrication-time attacks, how can I characterize unused

19

placement sites to gain insight into the feasibility of a fabrication-time attack on a given IC

layout?

Only 60–70% of the placement cites are occupied in a typical IC layout to allow space

for routing [196]. To facilitate intra-Trojan routing, an attacker prefers open placement sites

form contiguous (adjacent) regions. This allows the attacker to drop-in a pre-designed Tro-

jan, or if one had not been pre-designed, it minimizes the intra-Trojan routing complexity

by confining the intra-Trojan routing to the lowest routing layers, i.e., reducing the jump-

ing and jogging of nets. Such adjacency is classified in image processing as “4-connected”.

Therefore, a key factor that determines the difficulty of mounting fabrication-time attacks

is the difficulty of inserting additional circuit components into a finalized IC design. I rank

this difficulty in increasing order as follows.

1. Trivial: the Trojan components fit within a single contiguous group of 4-connected

placement sites.

2. Difficult: the Trojan components must be split across multiple contiguous groups

of 4-connected placement sites. The more placement site groups required, the more

difficult intra-Trojan routing becomes.

3. Not Possible: the total area required by the hardware Trojan exceeds that of available

placement sites.

Figure 3.2 illustrates these difficulty levels. The susceptibility of an IC design to

fabrication-time attack can therefore be partially quantified by the size and number of con-

tiguous open sites on the placement grid. This is the basis for ICAS’ Trigger Space metric.

3.5.2 Challenges of Victim/Trojan Integration

Routing the Trojan payload to the targeted security-critical net requires the attacker to

locate the nets of interest in the IC layout. I assume the worst case: the attacker has knowl-

edge of all security-critical nets in the design, particularly, the nets they are trying to extract

20

Figure 3.2: Trojan Placement Difficulty. Assume an attacker is attempting to insert 6
additional Trojan components that consume a total of 9 placement sites (as
shown). If inserting these components on the Trivial placement grid (left),
they can be placed adjacent to each other to simplify intra-Trojan routing. If
inserting these components on the Difficult placement grid (middle), they must
be scattered across the grid, making intra-Trojan routing more challenging. The
Not Possible placement grid (right) does not have enough empty placement sites
to accommodate the Trojan components.

information from or influence. An example of such a net in the OR1200 processor [121] is

the net that holds the privilege bit. The attacker can acquire this knowledge either through

a design-phase co-conspirator or through advanced reverse-engineering techniques [196].

No matter how the attacker gains this information, I assume they have it with zero addi-

tional effort.

I extend this threat to include nets that influence security-critical nets. To increase

stealth, an attacker could also trace backwards from the targeted security-critical net, through

logic gates, to identify nets that influence the value of the targeted security-critical net. This

is called the fan-in of the targeted net. By connecting in this way, the attacker sacrifices

controllability for stealth as their circuit modification is now physically separated from the

security-critical net. To gain back controllability, attackers must create a more complex

(hence larger) trigger circuit—decreasing the Trigger Space score, as well as increasing the

likelihood of visual and/or side-channel detection. This trade-off limits how many levels

back the attacker can integrate their payload.

No matter if the attacker is attacking the targeted security-critical wire directly or indi-

21

Figure 3.3: Challenges of Victim/Trojan Integration. The supervisor bit signal of the
OR1200 processor SoC is the data input to the supervisor register of the
OR1200 CPU. The supervisor register stores the privilege mode the processor
is currently executing in. Changing the value on this net changes the privi-
lege level of the processor allowing an attacker to execute privileged instruc-
tions. The more congested the area around this net, the more difficult it is for a
foundry-level attacker to attach (or route in close proximity) a rogue wire to it.

rectly, the attacker must attach to some victim wire or route directly adjacent to it. Since

an IC layout is three-dimensional, it is possible for the attacker to attach to any open point

on the victim wire, either on the same layer (i.e., North, South, East, West) or from an

adjacent layer (i.e., above or below). In the worst case, there are no other nets blocking the

attacker from attaching to the targeted security-critical net or its N-level-deep influencers.

In the best case, all attachment points are blocked by other nets. To quantify the number of

points along, above, and below a targeted security-critical wire—and its N-deep fan-in—I

implement the Net Blockage metric. Figure 3.3 shows the open (unblocked) integration

points for the privilege net on the OR1200 processor.

22

3.5.3 Challenges of Intra-Trojan Routing

The final phase of a fabrication-time attack is Intra-Trojan routing. Intra-Trojan routing

requires connecting the components that comprise the trigger and payload portions of the

hardware Trojan together—including connecting to the integration point with the victim—

to form a complete hardware Trojan. In the worst case, the attacker is able to find a single

contiguous region to place the trigger and payload components that is nearby the victim

security-critical net. Thus, routing the trigger and payload components will be trivial and

the wire used to inject the payload will be short. In the best case, the attacker will have

to implement their attack using many 4-connected placement regions (i.e., low Trigger

Space score) and the only integration point on the targeted security-critical net (i.e., high

Net Blockage score) is as far away from the open placement regions. Hence, I focus on

quantifying the difficulty of routing the payload output to open attachment points on tar-

geted security-critical nets (and its N-deep fan-in). To this end, I identify two challenges of

intra-Trojan routing:

• Comply with design and fabrication rules

• Meet Trojan and payload-delivery timing requirements

3.5.3.1 Complying with Design Rules

For each process technology, there are many rules associated with how wires and com-

ponents must be laid out in a design. Some of these rules are defined in the Library Ex-

change Format (LEF) [29] and contained in files that are loaded by modern Computer

Aided Design (CAD) tools throughout the IC design process. There are two types of design

rules: 1) those regarding the construction of circuit components (i.e., standard cells), and

2) those regarding routing. I classify these as component design rules and routing design

rules, respectively. As technology nodes shrink, both rule sets are becoming increasingly

complex [147].

23

It is vital for an attacker to comply with these design rules as violating them risks ex-

posure. If an attacker inserts additional logic gates (standard cells) by making copies of

existing components in a design, they can avoid violating component design rules involved

with Trojan placement. However, to connect a wire from the Trojan payload to security-

critical target net(s), they must perform custom Trojan routing. Therefore, complying with

routing design rules is a concern. Routing design rules include specifications for the mini-

mum distance between two nets on a specific routing layer, the minimum width of nets on

a given layer, etc. Complying with these rules becomes easier for an attacker if security-

critical net(s) are not blocked by other wires or components. The higher the Net Blockage

score, the more difficult it is to make a connection, the more complex—and error prone—

the route.

3.5.3.2 Meeting Timing Requirements

Every wire in an IC has a resistance and a capacitance, making it behave like an RC cir-

cuit, i.e., there is a time delay associated with driving the wire high (logic 1) or low (logic

0). The longer the wire, the more time delay there is [45]. If the security-critical net(s)

has timing constraints (e.g., setup and hold times) that dictate when the payload signal

must arrive for the attack to be successful, the Trojan routing must meet these constraints.

Furthermore, the farther the security-critical net is from the payload circuit, the more ob-

stacles that must be routed around, increasing the routing distance even further. This is the

basis for ICAS’ Route Distance metric. A natural limit for Route Distance is dictated by

the clock frequency of the victim circuit, as most attacks must operate synchronously with

their victim.

3.6 Extensible Coverage Assessment Framework

The ICAS framework is comprised of two tools, Nemo and GDSII-Score, as shown in

Figure 3.4. Nemo identifies security-critical wires based on designer annotations and circuit

24

dataflow, while GDSII-Score assesses the defensive coverage of a given IC layout against a

set of attacks. ICAS takes as input four sets of files: 1) gate-level netlist (generated after all

physical layout optimizations), 2) process technology files, 3) physical layout files, and 4)

set of attacks. The process technology files include a Library Exchange Format (LEF) file

and layer map file [27, 29]. The physical layout files include a Design Exchange Format

(DEF) file and the GDSII file of an IC layout [29, 31]. The attack files are are a list of

properties for each attack to assess coverage against: number of transistors, security-critical

wire(s) to attach to, and timing constraints. All ICAS input files except the attack files

are either generated-by or inputs-to the back-end IC design phase, and hence are readily

available to back-end designers.

Though ICAS is extensible, our implementation includes three security metrics that

capture the challenges faced by a foundry-level attacker looking to insert a hardware Trojan:

amount and size of open-placement regions (Trigger Space), quantity of viable attachment

points to targeted security-critical (and influencer) nets (Net Blockage), and the proximity

of open placement regions to targeted security-critical net(s) (Route Distance). Together

with the attack requirements, these metrics quantify the complexity an attacker faces for

each step of inserting specific hardware Trojans into the given IC layout. I describe the

implementation of both ICAS components below.

3.6.1 Nemo

Nemo is the first analysis tool in the ICAS framework. It bridges the semantic gap be-

tween the human readable RTL netlist and post-PaR netlist. Additionally, Nemo broadens

the set of “security-critical” nets by performing a fan-in analysis of root security-critical

nets. This is necessary since the inter-connected nature of signals within a circuit design

means an adversary could influence the state of security-critical nets by controlling a net

that is a part of its fan-in. Nemo takes as input a Verilog netlist and automatically iden-

tifies security-critical nets in the post-PaR netlist HDL, which it outputs in the form of a

25

Figure 3.4: ICAS Work Flow. ICAS consists of two tools, Nemo and GDSII-Score, and
fits into the existing IC design process (Fig. 2.1) between PaR and fabrica-
tion. Nemo analyzes a gate-level (PaR) netlist and traces the fan-in to security-
critical nets in a design. GDSII-Score analyzes a GDSII file (i.e., an IC layout)
and computes metrics quantifying its vulnerability to a set of foundry-level at-
tacks.

Graphviz dot file. Similar to prior work [74, 102, 205], Nemo assumes that a unique sig-

nal name prefix (within the RTL HDL) has been appended to various signals considered

“security-critical”. I make this assumption since determining what signals are “security

critical” requires contextual knowledge of how the design will be used.

3.6.1.1 Annotating Security-Critical Signals in the RTL Netlist

The process of uncovering and annotating security-critical signals in the RTL netlist

is Security-Critical Component Identification (SCCI). While SCCI is an active area of re-

search in the hardware security community, orthogonal to addressing the untrusted foundry

problem, there are two approaches I are aware of: manual and semi-autonomous identifica-

tion. The first, and most traditional, is manual identification. Manual identification requires

a human expert to study the design’s specification (e.g., Instruction Set Architecture in the

case of a processor), and identify properties that are critical to the security of software

or other hardware utilizing the design [59, 74]. The second, and current state-of-the-art

developed by Zhang et al. [205], is semi-autonomous identification. Semi-autonomous

26

identification involves two steps. First, a program observes a variety of test-benches ex-

ercising the design to generate a large set of possible invariants defined over the hardware

specification. Second, a pre-trained penalized logistic regression classifier is used to clas-

sify which invariants, or portions of the specification, are security-critical. This method

of SCCI is semi-autonomous, as it requires the classifier model be pre-trained with either

existing published errata on previous versions of the hardware design, or using manual

identification. While I perform manual SCCI, results reported by Zhang et al. [205] sug-

gest that their tool would result in a similar set of root security-critical signals.

3.6.1.2 Identifying Security-Critical Signals in the PaR Netlist

While there are existing (aforementioned) techniques for identifying and annotating

security-critical components in the RTL netlist, unfortunately, these techniques do not track

security-critical signals past the RTL design phase and do not capture data-flow. Thus,

Nemo’s core task is to bridge the semantic gap and uncover duplicated or renamed security-

critical signals in the post-PaR netlist. Fortunately, while synthesis and layout tools do

modify a netlist by duplicating and removing signals and components (as part of opti-

mization and meeting performance requirements), they do not completely rename existing

signals. This makes it possible for Nemo to identify root security-critical signals (flagged

at the behavioral level) by name at the physical level. To avoid removal of security-critical

signals, I modify synthesis and layout scripts to essentially lock them in place. Nemo

works backwards from root security-critical signals to identify the fan-in to these signals.

The search depth is a configurable parameter of Nemo.

3.6.1.3 Implementation

Nemo is implemented as a back-end target module to the open-source Icarus Verilog

(IVL) [192] Verilog compiler and simulation tool written in C++. The IVL front-end ex-

poses an API to allow third-parties to develop custom back-end target modules. Nemo is a

27

custom target module (also written in C++) designed to be loaded by IVL. Since gate-level

netlists are often described with the same HDL that was synthesized to generate the netlist

(e.g., Verilog), I utilize the IVL front-end to interpret the Verilog representation of the

netlist and our custom back-end target module, Nemo, to perform a breadth-first search of

the post-PaR netlist. I open-source Nemo [111] and release instructions on how to compile

and integrate Nemo with IVL.

3.6.2 GDSII-Score

GDSII-Score is the second analysis tool in the ICAS framework. GDSII-Score is an

extensible Python framework for computing security metrics of a physical IC layout. It

takes as input the following: Nemo output, GDSII file, DEF file, technology files (LEF

and layer-map files), and attacks description file. First, GDSII-Score loads all input files

and locates the security-critical nets within the physical layout. Next, it computes security

metrics characterizing the susceptibility of an IC design to each of the input attacks. Specif-

ically, the three security metrics that I implement are: 1) Trigger Space: the difficulty of

implementing the hardware Trojan, 2) Net Blockage: the difficulty of Trojan/victim inte-

gration, and 3) Route Distance: the difficulty of meeting Trojan timing constraints. I open

source the GDSII-Score framework and our security metric implementations [110].

3.6.2.1 Metric 1: Trigger Space

The Trigger Space metric estimates the challenges of Trojan placement (§3.5.1). It

computes a histogram of open 4-connected regions of all sizes on an IC’s placement grid.

The more large 4-connected open placement regions available, the easier it is for an attacker

to locate a space to insert additional Trojan circuit components at fabrication time. A

placement site is considered to be “open” if the site is empty, or if it is occupied by a filler

cell. Filler cells, or capacitor cells, are inserted into empty spaces during the last phase of

layout to aid fabrication. Since they are inactive, an attacker can create empty placement

28

sites by removing them, without altering the functionality or timing characteristics of the

victim IC.

To compute the trigger space histogram, GDSII-Score first constructs a bitmap repre-

senting the placement grid. Placement sites occupied by standard cells (e.g., NAND gate

transistors) are colored while those that are open are not. Information about the size of the

placement grid and the occupancy of each site in the grid is available in the Design Ex-

change Format (DEF) file produced by commercial PaR tools. GDSII-Score then employs

a breadth-first search algorithm to enumerate the maximum size of all 4-connected open

placement regions.

3.6.2.2 Metric 2: Net Blockage

The Net Blockage metric estimates the challenges of integrating the hardware Trojan’s

payload into the victim circuit (§3.5.2). It computes the percent blockage around security-

critical nets and their influencers. The more congested the area surrounding security-critical

nets, the more difficult it is to attach the Trojan circuitry to these nets. There are two types

of net blockage that are calculated for each security-critical net: same-layer and adjacent-

layer.

Same-layer blockage is computed by traversing points around the perimeter (North,

South, East, West) at a granularity of g, at a specific distance, d, around the security-

critical net and determining which points lie within other circuit components, as detailed in

Figure 3.5a. To determine if a specific point along the perimeter lies within the bounds of

another circuit component, I utilize the point-in-polygon ray-casting algorithm [66]. The

extension distance, d, around the security-critical path element and the granularity of the

perimeter traversal, g, are configurable in our implementation. However, I default to an

extension distance of one wire-pitch and a granularity of 1 database units, respectively, as

defined in the process technology’s LEF file. The IC designs used in our evaluation are

built using a 45 nm process technology, for which 1 database units is equivalent to 0.5 nm.

29

Additionally, an open region is considered “blocked” if it is not wide enough for a minimal

width wire to be routed through while maintaining the minimal amount of wire spacing

required on that metal layer, as defined in the LEF file. The percentage of the perimeter

length that is blocked by other circuit components is considered the same-layer blockage

percentage.

Adjacent-layer blockage is computed by analyzing the area directly above and below a

security-critical net, and computing the total area of overlap between other components, as

detailed in Figure 3.5b. To calculate this overlap area I utilize an overlapping sliding win-

dow approach. Additionally, any un-blocked regions above or below the security-critical

net are considered “blocked” if they are not large enough to accommodate the smallest

possible via geometry allowed on the respective via layer, as defined in the LEF file. The

percentage of the total top and bottom area that is blocked by nearby circuit components is

the adjacent-layer blockage percentage.

The same-layer and adjacent-layer blockage percentages are combined via a weighted

average to form a comprehensive overall net blockage percentage where 66% is based on

same-layer blockage (north, south, east, and west) and 33% is based on adjacent-layer

blockage (top and bottom). I weight the same-layer blockage by 66%, or 2
3 , because 4 out

of 6 total sides of a wire (north, south, east, west, top, and bottom) are on the same layer.

Likewise, I weight the adjacent-layer blockage by 33%, or 1
3 .

Lastly, a total same-layer, adjacent-layer, and overall net blockage metric is computed

for the entire IC design. For an IC design with n security-critical nets, the same-layer

(bsame), adjacent-layer (badjacent), and overall (boverall) net blockage metrics are computed

according to equations 3.1, 3.2, and 3.3, respectively.

bsame =
∑

n
i=1 perimeter blockedn

∑
n
i=1 perimetern

(3.1)

30

Figure 3.5: Net Blockage Algorithm. A) Same-layer net blockage is computed by travers-
ing the perimeter of the security-critical net, with granularity g, and extension
distance d, and determining if such points lie inside another component in the
layout. B) Adjacent-layer net blockage is computed by projecting the area of
the security-critical net to the layers above and below and determining the area
of the projections that are occupied by other components.

badjacent =
∑

n
i=1 area blockedn

∑
n
i=1 2∗arean

(3.2)

boverall =

(
2
3
∗bsame

)
+

(
1
3
∗badjacent

)
(3.3)

3.6.2.3 Metric 3: Route Distance

The Route Distance metric combines the Net blockage and Trigger Space metrics (thus

is correlated with these metrics) to estimate the difficulty of of meeting Trojan and at-

tack timing constraints (§3.5.3). It computes a conservative estimate, i.e., Manhattan dis-

tance, for the minimal routing distance between open trigger placement sites and the n

least blocked integration sites on the targeted security critical nets. It cross-references each

Manhattan distance with the distribution of net lengths within the entire IC design. Net

31

length can impact whether or not the Trojan circuit will meet timing constraints and func-

tion properly. Understanding where in the distribution of net lengths the Trojan routing falls

provides insights into the ability of the Trojan circuit to meet its timing requirements and

is an opportunity for outlier-based defenses. In summary, the more Manhattan distances

that fall within one standard deviation of the mean net length, the easier it is to carry out an

attack.

I implement the Route Distance metric as follows. First, the Net Blockage and Trigger

Space metrics are computed. Next, the the distribution of all net-lengths within the IC lay-

out are computed. Then, two-dimensional Manhattan distances between all unblocked nets

(< 100% overall net blockage) and trigger spaces are calculated. The Manhattan distance

calculated is the minimum distance between a given trigger space and security-critical net,

i.e., the minimum distance between any placement site within the given trigger space and

any unblocked location on the targeted security-critical net. Lastly, each Manhattan dis-

tance is reported in terms of standard deviations away from the mean net-length in the

given IC layout.

3.7 Evaluation

I use ICAS to quantify the defensive coverage of existing defensive layout techniques—

revealing that gaps persist. First, I analyze the effectiveness of undirected defenses [195].

Specifically, I measure the impact of varying both physical and electrical back-end design

parameters of the same IC layout on its susceptibility to attack. Second, I analyze the ef-

fectiveness of directed defenses [9, 10]. Specifically, I measure the coverage of existing,

placement-oriented, defensive layout schemes in preventing the insertion of an attack by

the foundry. Beyond revealing gaps, our results reveal that there is an opportunity for im-

proving both directed and undirected defenses that systematically eliminates Trojan/victim

integration points. Lastly, our evaluation also demonstrates that ICAS is design-agnostic,

works with commercial tools, and scales to complex IC layouts.

32

Table 3.1: Hardware Trojans used in defensive coverage assessment.

Trojan # Std
Cells

Placement
Sites

Timing
Critical?

A2 Analog [196] 2 20 7

A2 Digital [196] 91 1444 3

Privilege
Escalation [58, 85] 25 342 3

Key Leak [136] 187 2553 3

3.7.1 Experimental Setup

I utilize three IC designs for our evaluations: OR1200 processor SoC, AES accelerator,

and DSP accelerator. The OR1200 processor SoC is an open-source design [121] used

in previous fabrication-time attack studies [196]. The AES and DSP accelerator designs

are open-sourced under the Common Evaluation Platform (CEP) benchmark suite [108].

The OR1200 processor SoC consists of a 5-stage pipelined OR1200 CPU that implements

the 32-bit OR1K instruction set and Wishbone bus interface. The AES accelerator sup-

ports 128-bit key sizes. The DSP accelerator implements a Fast Fourier Transform (FFT)

algorithm.

All designs target a 45nm Silicon-On-Insulator (SOI) process technology. I synthesize

and place-and-route all designs with Cadence Genus (version 16.23) and Innovus (version

17.1), respectively. In our first evaluation (§3.7.2) the design constraints (clock frequency,

max transition time, core density) used for both synthesis and layout are varied as noted.

However, in our second evaluation (§3.7.3) the same design constraints (100 MHz clock

frequency, 100 ps max transition time, 60% core density) were used for both synthesis and

layout to form a common baseline. All ICs are synthesized and placed-and-routed on a

server with 2.5 GHz Intel Xeon E5-2640 CPU and 64 GB of memory running Red Hat

Enterprise Linux (version 6.9).

33

3.7.1.1 Security-critical Signals

The first tool in the ICAS flow is Nemo. Nemo tracks security-critical signals from the

HDL level to the IC layout level. The first step is flagging root security-critical signals at

the RTL level, for each IC design. For the OR1200 processor SoC, the supervisor bit signal

supv is flagged. I select this signal because one can alter the state of this bit to escalate the

privilege mode of the processor [196]. For the AES accelerator, I flag all 128 key bits as

security-critical. The next out signal within the DSP accelerator was flagged as security-

critical. The next out signal of the DSP accelerator indicates to external hardware when an

FFT computation is ready at the output registers. Tampering with the next out signal allows

the attacker to hide specific outputs of the DSP accelerator. Lastly, Nemo marks, for each

design’s IC layout, all root security-critical nets and their 2-deep fan-in as security-critical

nets.

3.7.1.2 Hardware Trojans

Table 3.1 lists the hardware Trojan designs that I use in our evaluation. The first two

Trojan designs (analog and digital variants of A2) are attacks on the OR1200 processor

and DSP accelerator ICs. With respect to the OR1200, the A2 attacks act as a hardware

foothold [85] for a software-level privilege escalation attack. With respect to the DSP

accelerator, the A2 attacks suppress the next out signal (§3.7.1). The Privilege Escalation

Trojan targets solely the OR1200 and the Key Leak solely the AES accelerator.

3.7.1.3 Build Environment

Both ICAS tools (Nemo and GDSII-Score) were run on the same server as the synthesis

and place-and-route CAD tools. Nemo and Icarus Verilog were compiled from source

using GCC (version 4.4.7). For increased performance, GDSII-Score was executed using

the PyPy Python interpreter with JIT compiler (version 4.0.1).

34

3.7.2 Undirected Defense Coverage

As detailed in §3.4.1, a defensive strategy for protecting an IC layout from foundry-

level attackers is to exploit physical layout parameters (e.g., core density, clock frequency,

and max transition time) offered by commercial CAD tools to increase congestion—hopefully

around security-critical wires. The tradeoff is that while this is a low cost defense in that

CAD tools already expose such knobs, the entire design is impacted and there is no guar-

antee that security-critical wires will be protected. I use ICAS and its three security metrics

to quantify the effectiveness of such undirected approaches [195].

To uncover the impact of each parameter, I start by generating 60 different physical

layouts of the OR1200 processor design by varying:

1. Target Core Density (%): 50, 70, 90

2. Clock Frequency (MHz): 100, 200, 500, 1000

3. Max Transition Time (ps): 100, 150, 200, 250, 300

Target core density is a measure of how congested the placement grid is. Typically, de-

signers select die dimensions that achieve ∼60–70% placement density to allow space for

routing [196]. Target clock frequency is the desired speed at which the circuitry should

perform. Typically, designers select the clock frequency based on performance goals. Max

transition time is the longest time required for the driving pin of a net to change logical

values. Typically, designers choose a value for max transition time based upon power con-

sumption and combinational logic delay constraints.

For each of the 60 layout variations I compute ICAS metrics. Figures 3.6, 3.7, and 3.8

provide a visual representation for each metric. Overlaid on Figure 3.8 are the number of

unique attack (color-coded) implementations for each Trojan (Tab. 3.1) at six parameter

configurations. Across the 60 IC layouts, the time it took ICAS to complete its analyses

ranged from 38 seconds to 18 minutes. On average, this translates to less than 10% of the

35

combined synthesize and place-and-route run-times. These run-time results demonstrate

the deployability of ICAS as a back-end design analysis tool. Overall, our evaluation indi-

cates that while some of these layout parameters do increase attacker complexity, none are

sufficient on their own. I break down the results metric-by-metric.

3.7.2.1 Trigger Space Analysis

Figure 3.6 shows the distributions of open trigger spaces across 15 unique OR1200 lay-

outs. I vary target core density and max transition time parameters across layouts, while I

fix the target clock frequency at 1 GHz. A trigger space is defined as a contiguous region

of open placement sites on the device layer placement grid and is measured by number

of contiguous “4-connected” placement sites. Each box represents the middle 50%, or

interquartile range (IQR), of open trigger space sizes for a given IC layout. The dots rep-

resent individual data points within and outside the IQR. Our empirical results affirm prior

notions [9, 10, 195] that increasing the target core density of an IC layout results in fewer

large open spaces to insert hardware Trojans. Additionally our results indicate that at lower

densities, decreasing the max transition time constraint decreases the median trigger space

size. Similar trends occur at lower clock frequencies. While results show that modulat-

ing target core density is effective, observe that even in the best case, large trigger spaces

remain.

From our Trigger Space analysis, I conclude future undirected defenses should mod-

ulate layout parameters that both 1) shrink the trigger space IQR, and 2) shift the median

towards one. In doing so, defenders: 1) minimize the variation in sizes of contiguous open-

spaces available to the attacker—therefore limiting their Trojan design (size) options, and

2) force the attacker to have to distribute Trojan components across the die making Trojan

logic placement and intra-Trojan routing more challenging.

36

Figure 3.6: Trigger Space Results. Trigger Space distributions for 15 different OR1200
processor IC layouts. Core density and max transition time parameters are
varied across the layouts, while target clock frequency is held constant at 1
GHz. The boxes represent the middle 50% (interquartile range or IQR) of open
placement regions in a given layout, while the dots represent individual open
placement region sizes.

3.7.2.2 Net Blockage Analysis

Figure 3.7 shows the Net Blockage metric (Eq. 3.3) computed across 20 unique OR1200

layouts. I fix the target density at 50% across all layouts, while the target clock frequency

and max transition time are varied (as listed above). The results show that at lower clock

frequencies a smaller max transition time parameter corresponds to increased Net Block-

age. This corresponds to less open Trojan/victim integration points available to the attacker.

However, as clock speed increases, the correlation between max transition time and overall

Net Blockage deteriorates. Intuitively, smaller max transition times should lead to smaller

average net-lengths within the design, as transition time is a function of the capacitive load

on the net’s driving pin [45]. Shorter net-lengths result in more routing congestion as com-

ponents cannot be spread-out across the die. However, capacitive load (on a driving pin)

is inversely proportional to frequency, thus at higher clock frequencies the max-transition

time constraint is more easily satisfied, and altering it has less effect on the Net Blockage.

Given these results, the effectiveness of modulating transition time is context dependent

and—even in the best case—open integration points remain.

From our Net Blockage analysis, I conclude future undirected defenses should mod-

37

100 150 200 250 300
Max Transition (ps)

10

20

30

40

50

60

70

80

90

N
et

 B
lo

ck
ag

e
(%

)

Clock (MHz)
100
200
500
1000

Figure 3.7: Net Blockage Results. Overall Net Blockage results computed across 20 dif-
ferent OR1200 processor IC layouts. A target density of 50% was used for all
layouts, while target clock frequency and max transition time parameters were
varied.

ulate layout parameters that both 1) shrink overall security-critical wire lengths, and 2)

maximize routing congestion in the vicinity of security-critical wires. In doing so, defend-

ers minimize the Victim/Trojan integration attack surface.

3.7.2.3 Route Distance Analysis

Figure 3.8 shows the Route Distances across six various OR1200 layouts in the form

of heatmaps that capture the trade space between layout parameters. Core density and

max transition times were varied across the layouts (indicated in the labels), while clock

frequency was held constant at 100 MHz. Each heatmap describes several (column-wise)

histograms of Route Distances in terms of standard deviations from the mean net length ob-

served in that particular IC layout (y-axis). The Route Distances reported are those between

any unblocked security-critical nets, and trigger spaces large enough to hold an attack of a

given size range (x-axis). That is, the color intensities within in a given heatmap column

indicate the percentage of (security-critical-net, trigger-space) pairs in that column that are

within a range of distance apart. Additionally, overlaid on each heatmap are rectangles

indicating the region of the heatmap where a given attack (Tab. 3.1) can be implemented,

38

Figure 3.8: Route Distance Results. Heatmaps of routing distances across six unique IC
layouts of the OR1200 processor. Core density and max transition times are
labeled. Each heatmap is to be read column-wise, where each column is a his-
togram, i.e, the color intensity within a heatmap column indicates the percent-
age of (critical-net, trigger-space) pairs that are within a (y-axis) distance apart.
Overlaid are rectangles, indicating regions on each heatmap a given attack can
exploit, and numbers indicating the number of unique attack implementations.

and the number of possible attack configurations, (security-critical-net, trigger-space) pairs,

that can be exploited.

If timing is critical to the operation of an attacker’s desired Trojan, (critical-net, trigger-

space) pairs with routing distances significantly greater than the average net length in the

IC layout are less likely to be viable candidates for constructing hardware Trojans. IC

layouts with few desirable (critical-net, trigger-space) pairs are much more time-consuming

to attack. Namely, the IC layouts with heatmaps that indicate a higher percentages of far-

apart (critical-net, trigger-space) pairs, where the trigger spaces are small, are most secure.

From Figure 3.8, I conclude that at high density, max transition time has little affect on

IC layout security; while at lower densities, lower max transition time designs are more

secure. Similar trends exist across other layout parameters, as shown in Figures A.1–A.3

39

in Appendix A.

From our Route Distance analysis, I conclude future undirected defenses should mod-

ulate layout parameters that maximimze the distance between security critical wires and

open trigger spaces. In doing so, defenders: 1) maximize intra-Trojan routing difficulty,

and 2) restrict attackers from implanting timing-critical Trojans.

3.7.2.4 Cost of Varying Layout Parameters

The results indicate that increasing core density is effective, but incomplete, and in-

creasing clock frequency and decreasing max transition time is marginally effective and

incomplete. While tuning these parameters is low cost to the designer, there is a cost to

the design in terms of complexity and power requirements. I elucidate by discussing how

varying each design parameter (density, clock frequency, and max transition time) impacts

non-security characteristics of a circuit design.

While increasing core density to 90% makes placing-and-routing a Trojan more diffi-

cult, it also makes placing-and-routing the rest of the design more challenging. Specifically,

it can become nearly impossible to meet timing closure for the entire design if there is not

enough space within the core area to re-size cells and/or add additional buffer cells. De-

pending on performance and security requirements, a layout engineer may choose to relax

timing constraints in order to achieve a higher core density. Alternatively, a layout en-

gineer may attempt to surround security-critical nets with areas of high densities, while

maintaining a lower overall core density, as previously suggested [9, 10].

Decreasing the maximum transition time and increasing the clock speed of an entire cir-

cuit design makes it more difficult to place-and-route a functional Trojan that meets timing

constraints, but also directly impacts the performance characteristics of the circuit. Addi-

tionally, it is important to note that max transition time is related to the clock frequency,

so varying one without the other changes performance tolerances. While increasing the

performance of the design might increase security, it comes at the cost of increasing power

40

consumption. Depending on the power-consumption requirements of the design, it may be

possible for a designer to over-constrain these parameters for added security.

3.7.3 Directed Defense Coverage

As an alternative to probabilistically adding impediments to the attacker inserting a

hardware Trojan, recent works proposes a directed approach. As detailed in §3.4.2, placement-

centric directed defenses [9, 10] attempt to prevent the attacker from implementing their

Trojan by occupying all open placement sites with tamper-evident filler cells. The limita-

tion with such defenses is that it is infeasible to fill all open placement sites with tamper-

evident logic [10]. Thus, the defenses focus their filling near security-critical logic, leaving

gaps near the periphery of the IC layout. Whether these open placement sites near the

periphery are sufficient to implement an attack is an open question.

The goal of this evaluation is to determine not only if it is still possible for a foundry-

level attacker to insert a hardware Trojan, given placement-centric defenses, but to quantify

the number of viable implementations available to the attacker—to act as a surrogate for

attacker complexity. For the evaluation, I use our three IC designs (OR1200 processor

SoC, AES accelerator, and DSP accelerator). For each design, I create two IC layouts:

(1) unprotected and (2) protected. For the protected IC layout, I use the latest placement-

centric defense [9]; using the identified security-critical wires (§3.7.1) to direct the defense.

I lay out all IC designs using these parameters: target clock frequency of 100 MHz, max

transition time of 100 ps, and a target core density of 60%.

I then use ICAS to asses the defensive coverage of each of the six IC layouts. This anal-

ysis has two goals: (1) determine whether the IC is vulnerable to attack and (2) understand

the impact of applying the defense. I answer both questions in an attack-centric manner

using the hardware Trojans in Table 3.1 to asses defensive coverage against. For each at-

tack/IC layout combination I plot the number of (security-critical-net, trigger-space) pairs

that could be used in implementing each Trojan. A (security-critical-net, trigger-space) pair

41

Figure 3.9: Effectiveness of Layout-Level Defenses. Routing Distance heatmaps across
three IC designs, with and without the placement-centric defense described
in [9, 10]. Heatmaps should be interpreted similar to Fig. 3.8.

is considered a viable candidate for implementing a Trojan if:

1. the trigger space size is at least as large as the minimum number of placement sites

required to implement the desired hardware Trojan design

2. the security-critical net is less than 100% blocked

3. if the hardware Trojan is “Timing-Critical”, i.e., it must function at the design’s core

operating frequency, then the distance between the trigger space and open integration

point on the security-critical net must be ≤ 3 standard deviations from average net

length; otherwise, any distance is allowed.2

Figure 3.9 shows the defensive coverage for each IC design. Overlaid on each heatmap

2Three standard deviations from the average net length is the threshold for Trojan-to-integration-point
routing without violating timing constraints, because it accounts for 99.7% of the designs’ wires—outliers
tend to be power wires. For an exact calculation, it is possible to extract parasitics for a target Trojan’s route
to determine if it violates timing constraints.

42

are rectangles (and numbers) indicating unique possible attack implementations. These

results show that existing placement-centric defenses are effective at reducing an IC’s

fabrication-time attack surface, compared to no defense—but gaps persist. Given that fill-

ing placement sites with tamper-evident logic is already maximized, these results point to

systematically adding congestion around security-critical wires as a means to close all re-

maining defensive gaps; i.e., a directed version with similar effect to existing undirected

defenses.

3.8 Discussion

ICAS is the first tool to provide insights into the security of physical IC layouts. It

is extensible across many dimensions including CAD tools, process technologies, secu-

rity metrics, and fabrication-time attacks and defenses. To demonstrate ICAS’ capabilities

I implemented three security metrics (net blockage, trigger space, and routing distance)

using it. The focus of this paper is using these metrics to estimate the coverage of exist-

ing untrusted foundry defenses, which show that IC designs are still vulnerable to attack.

I envision uses for ICAS beyond this, as an integral part of the IC design process using

commercial tools.

3.8.1 ICAS-Driven Defensive Layout

ICAS provides an added notion of security to the IC layout (place-and-route) process to

enable researchers to explore countermeasures against fabrication-time attacks. To the best

of our knowledge, the existing targeted defensive IC layout techniques [9, 10, 195] are en-

tirely placement-centric, i.e., filling unused space on the device layer with functional logic

cells. While ICAS is capable of evaluating placement-centric defensive layout techniques,

its security-insights also asses routing-centric defensive layout techniques. For example,

layout engineers can leverage ICAS to create high degrees of routing congestivity in close

proximity to security-critical nets. ICAS’ security metrics enable IC layout designers to

43

optimize the security of both the placement and routing of their designs.

3.8.2 Constrained Security Metrics

In its primary state, ICAS focuses on computing metrics that reason about the spa-

tial resources required to implant hardware Trojans in IC layouts. While our metrics are

unconstrained and thus conservative, it is trivial to extend, and constrain, ICAS metrics

to account for other layout resources that may impact an attacker’s decision process. For

example, even with a plethora of spatial resources available to insert Trojan components,

doing so in certain areas of the chip may impact local power consumption enough to disrupt

normal operating behavior. Alternatively, inserting a hardware Trojan nearby un-shielded,

fast toggling, interconnects may negatively impact the Trojan’s signal integrity, rendering it

benign. I recognize it is impractical to consider all possible constraints, and hence I design

ICAS to be extensible.

3.8.3 Extensibility of Security Metrics

GDSII-Score is the ICAS tool that computes security metrics from an IC layout. It loads

several files describing the IC layout to instantiate a single Python class (called “Layout”)

that contains query-able data structures containing a polygon representation of all compo-

nents in the layout. Additionally, GDSII-Score contains several subroutines that compute

spatial relationships between polygon objects and points within the layout. From these

data structures and the provided subroutines, it is trivial to integrate additional metrics into

GDSII-Score. To facilitate additional metrics, I open-source GDSII-Score [110], and our

three example metrics that demonstrate how to query the main “Layout” data structure.

3.8.4 Extensibility of CAD Tools

Almost all steps of the IC design process utilize CAD tools. ICAS integrates into

a commercial IC design process after placement-and-routing (Figure 2.1). While ICAS is

44

validated with IC layouts generated by Cadence tools, integrating ICAS with other vendors’

CAD tools does not require any additional effort due to the common process technology

(LEF) and GDSII specifications used by ICAS.

3.8.5 Extensibility of Process Technologies

I test ICAS using IC layouts built with a 45 nm SOI process technology; however,

ICAS is agnostic of process technology. The LEF and layer map files (§3.6) are the only

ICAS input files that are dependent on the process technology. A LEF file describes the

geometries and characteristics of each standard cell in the cell library, and the layer map file

describes the layer name-to-number mappings, respectively, for a given process technology.

ICAS adapts to different process technologies provided that all input files adhere to their

specifications [27, 29].

3.8.6 Limitations

The goal of ICAS is to estimate the susceptibility of circuit layouts to additive hardware

Trojans, thus there are limitations. First, as implemented, ICAS is not capable of estimating

the susceptibility of a circuit layout to subtractive or substitution Trojans. I are unaware of

any stealthy and controllable subtractive hardware Trojans, but should researchers develop

such an attack, metrics will need to be added to ICAS to enable detection. Dopant-level

Trojans are the closest example of substitution Trojans [17, 90]. Though their non-existent

footprints make them difficult to detect via side channels, post-fabrication imaging tech-

niques that can identify such Trojans have been proposed [152]. Lastly, our implemented

metrics do not capture the threat of via-only additive Trojans. A via-only attack shorts two

vertically-adjacent wires for the purpose of leaking information. I feel the possibility of

such pernicious attacks in the future highlights the importance of ICAS’s extensibility.

3Via-only attacks are outside the scope of our metrics as they are currently implemented (§3.8.6).

45

Additive (Layout-Level) Trojans

Design Type?

Add Transistors?

Parasitic Wire
RD

Parasitic Circuit
TS, RD

Short-Circuit
NB, RD

Functional
TS, NB, RD

Standalone

YesNo

Integrated

YesNo

TS = Trigger Space; NB = Net Blockage; RD = Route Distance

Add Transistors?

Figure 3.10: ICAS Coverage of Trojans. I assume that, at the very least, layout-level
additive Trojans require adding rogue wires to the layout3. Whether the Trojan
design is integrated (requires connecting to a host circuit) or standalone, or
requires additional transistors, the difficulty of inserting it into a victim IC
layout can be captured by our three metrics: 1) Trigger Space (TS), 2) Net
Blockage (NB), and 3) Route Distance (RD).

3.8.7 Justification for Metrics

As a first step in estimating risk, I chose to implement three metrics that capture our

decade worth of experience in implementing hardware Trojans: net blockage, trigger space,

and route distance. These metrics capture the challenges I faced when inserting various

types of additive Trojans into circuit layouts, i.e., Trojan logic placement, victim/Trojan

integration, intra-Trojan routing. To facilitate mapping our metrics to specific Trojans I

provide a taxonomy in Figure 3.10. To summarize the taxonomy: if a Trojan needs to attach

to a victim wire (i.e., an integrated Trojan), our Net Blockage metric provides coverage;

if the Trojan requires transistors to implement logic, our Trigger Space metric provides

coverage; and if the Trojan needs to be near the victim wire (for capacitive coupling in

the case of a standalone Trojan or to meet timing requirements in the case of a integrated

Trojan), our Route Distance metric provides coverage. Additionally, as our evaluation with

existing Trojans and real IC layouts shows, our metrics are both Trojan- and IC-layout-

sensitive. Lastly, the metrics are hardware design agnostic. While I do not suggest that

the implemented metrics are all-encompassing, our results suggest that these metrics are a

46

viable first step towards estimating a circuit’s susceptibility to additive hardware Trojans.

3.9 Related Work

Fabrication-time attacks and defenses have been extensively researched. Attacks have

ranged in both size and triggering-complexity [17, 90, 101, 142, 196]. Defenses against

these attacks include: side-channel analysis [3, 13, 75, 117], imaging [2, 209], on-chip

sensors [48, 97], and preventive measures [9, 10, 40, 195]. The most pertinent attacks and

defenses are highlighted below.

3.9.1 Untrusted-foundry Attacks

The first foundry-level attack was conceived by Lin et al. [101]. This hardware Trojan

was comprised of approximately 100 additional logic gates and designed to covertly leak

the keys of an AES cryptographic accelerator using spread spectrum communication to

modulate information over a power side channel. While the authors only demonstrated this

attack on an FPGA, they are the first to mention the possibility of this type of Trojan circuit

being implanted at an untrusted foundry.

The A2 attack [196] is the most recent fabrication-time attack. A2’s analog triggering

mechanism is stealthy, controllable, and small. It prevents the Trojan from being exposed

during post-fabrication testing, or unintentionally through common usage. The attack re-

quires only two additional standard cells and evades every known detection mechanism to

date. ICAS quantifies the defensive coverage to these and other fabrication-time attacks.

3.9.2 Untrusted-foundry Defenses

Most untrusted foundry defenses rely on post-fabrication detection schemes [2, 3, 13,

48, 75, 97, 117, 209]. ICAS aims to guide innovation in preventive defenses against

fabrication-time attacks, for which few mechanisms currently exist [9, 10, 40, 195]. I high-

light some of these preventive measures and how ICAS could measure their effectiveness.

47

While preventive security-by-design was first explored at the behavioral (RTL) level by

of Jin et al. [74], Xiao et al. were the first to demonstrate security-by-design at the layout-

level with their BISA (Built-In Self-Authentication) scheme [195]. The undirected BISA

approach attempts to eliminate all unused space on the device layer placement grid, and

create routing congestion, by filling the device layer with interconnected tamper-resistant

fill cells. Alternatively, recognizing the impracticality of filling 100% of the empty place-

ment sites in complex circuit designs, Ba et al. take a directed approach to filling empty

placement cites [9, 10]. Specifically, they only fill empty placement sites in close proximity

to security-critical nets.

3.10 Conclusion

ICAS is an extensible framework that I use to expose and quantify gaps in existing de-

fenses to the threat posed by an untrusted foundry. ICAS has two high-level components:

Nemo, a tool that bridges the semantic gap across IC design processes by tracking security-

critical signals across all stages of hardware development and GDSII-Score, a tool that

estimates the difficulty a foundry-level attacker faces in attacking security-critical logic.

Experiments with over 60 IC layouts across three open-source hardware cores and four

foundry-level hardware Trojans reveal that all current defenses leave the IC design vulner-

able to attack—and some are totally ineffective. These results show the value of a tool like

ICAS that can help designers identify and address defensive gaps.

From a high level, ICAS is momentus in that it makes security a first-class concern

during IC layout (in addition to power, area, and performance): ICAS allows IC designers

to measure the security implications of tool settings and design decisions. ICAS fits well

with existing IC design tools and flows, allowing them to consider security. ICAS is a

critical measurement tool that enables the systematic development of future physical-level

defenses against the threat of an untrusted foundry.

48

3.11 Citation

Work from this chapter was partially completed while interning at MIT Lincoln Lab-

oratory, and is co-authored by Kang G. Shin, Kevin B. Bush, and Matthew Hicks. This

work appeared in the 2020 IEEE Symposium on Security and Privacy, and can be cited as

[169].

49

CHAPTER IV

T-TER

4.1 Introduction

Integrated circuits (ICs) are the foundation of computing systems. Security vulnerabili-

ties in silicon are devastating as they subvert even formally verified software. For almost 50

years, the transistors within ICs have continued to shrink, enhancing performance while re-

ducing power and area usage. However, these advances that push the laws of physics come

with a financial cost: the price to build a 3 nm fabrication facility capable of producing

ICs at a commercial scale is estimated to be $15–20B [94]. Even when entities can afford

to make such an investment, they must continually run the IC fabrication line (approxi-

mately 40,000 wafers/month) as many fabrication processes cannot be readily stopped and

restarted.

This extreme cost forces most semi-conductor companies, and even nation states, to

become “fabless”, i.e., they outsource fabrication. Today, only 3 companies in the world

(Intel, Samsung, and TSMC) have capabilities to fabricate ICs at the 10/7 nm process

nodes [95]. This presents a security threat: fabless semiconductor companies and nation

states must trust these three manufacturers (and their partners) not to alter their designs at

any point throughout the fabrication process (i.e., implant a hardware Trojan).

The most stealthy and controllable hardware Trojans involve inserting additional1 cir-
1Additive hardware Trojans are a class of Trojan designs that require additional hardware to be added to a

50

cuit components designed to maliciously subvert the functionality of the chip (i.e., an addi-

tive hardware Trojan). Specifically, the A2 Trojan [196] utilizes only two additional cells—

one analog capacitor and one digital logic gate— to provide a hardware foothold [85] within

a microprocessor IC for an attacker to gain unauthorized supervisor privileges with user-

mode code.

There are now only two ways of defending against hardware Trojans implanted at

fabrication-time: post-fabrication detection [3, 48, 75, 97, 131, 209] and pre-fabrication

prevention [9, 195]. The former tries to detect the presence of Trojan components after the

chip has been fabricated, while the latter attempts to alter the IC’s physical layout, at design

time, in a way that makes foundry-side alterations challenging to an attacker.

Detection is more commonly studied than prevention and consists primarily of two

techniques [162]: 1) side-channel analysis and 2) functional testing. Side-channel analysis

attempts to detect noticeable deviations in power usage, electromagnetic (EM) emanations,

performance (timing), etc. [3, 75, 117, 131]. It often requires a “golden” reference chip to

be effective, and can only detect the side-channel signature deviations greater than those

caused by process variation (i.e., the hardware Trojan must have a large physical footprint).

Alternatively, functional testing attempts to inadvertently trigger the Trojan by activating

as many logic paths through the circuit as possible. Functional testing does not require

any “golden” reference chip, but it requires the Trojan’s trigger to be activated by the IC’s

common mode operation, as exhaustive testing of even a moderately complex integrated

circuit is infeasible.

Albeit less studied, prevention is another defense against fabrication-time hardware

Trojans. To prevent such attacks, I advocate that the placement and routing of security

critical circuit elements should be a first-class part of an IC’s back-end design, on the

level of performance, power, and cost. To the best of my knowledge, only three preventive

circuit design. I are unaware of any documented stealthy and controllable subtractive or substitution Trojans.
Dopant-level Trojans [17, 90, 142] are the closest to such; however, they have limited controllability and are
detectable [152].

51

Figure 4.1: T-TER is a preventive layout-level defense against fabrication-time Trojans.
T-TER deploys tamper-evident guard wires around security-critical wires in a
circuit layout—in a pattern similar to variant A or B—to prevent attackers from
attaching Trojan wires to them.

fabrication-time defenses have been explored [9, 10, 195]. All of them are placement-

centric, attempting to increase the device layer (core) density by filling empty spaces with

with tamper-evident logic gates, thus making it challenging for an attacker to find open

space in the design to insert their Trojan components (cells/gates). However, there are sev-

eral problems with placement-centric defenses. As Ba et al. [10] point out, the BISA cell

approach [195] is infeasible as it requires 100% placement density. Contrast this with the

60-80% density of current IC layouts that ensures routability. If 100% density were fea-

sible, every IC design would be manufactured that way to save cost. Alternatively, Ba et

al. [9, 10] suggest targeted filling: only filling placement sites that are located closest to

“security-critical” logic. While prioritizing security-critical logic is a significant improve-

ment, focusing on the device layer only impedes attacks due to inflated timing require-

ments, it does not prevent them, as §4.6.2.2 shows.

Unfortunately, no single technique is effective in detecting, and/or preventing the inser-

tion of the stealthiest known additive hardware Trojan, the A2 Trojan [196], which requires

only two additional cells. To fill this gap, I propose Targeted Tamper-Evident Routing (T-

TER), a routing-centric defense that prevents foundry-side attackers from routing Trojan

wires to, or directly adjacent to, security-critical wires. I define T-TER as any routing

52

method that protects security-critical wires from fabrication-time alterations. Specifically,

I leverage concepts from the signal-integrity domain [60, 61] and apply them to a secu-

rity domain (addressing several technical challenges along the way): I route “guard wires”

around security-critical wires that make it infeasible for an attacker to tap any such wire

without detection (i.e., tamper-evident), something characteristic of additive Trojans [169]

(Fig. 4.1). Extending signal-integrity domain techniques to the security domain entails two

technical challenges:

1. completely shielding all surfaces of critical wires,

2. and be tamper-evident.

Contrary to placement-centric defenses, which focus on preventing attack implementation,

T-TER focuses on preventing attack integration, and thus, does not require filling all the

empty space in an IC design to be effective.

I make the following contributions:

• Targeted Tamper-Evident Routing (T-TER): a routing-centric, preventative, defense

against stealthy IC fabrication-time attacks. T-TER places tamper-evident guard

wires alongside security-critical wires, making fabrication-time modifications to such

wires infeasible and/or detectable post-fabrication.

• Characterization of possible guard wire bypass attacks.

• Attack-driven design of designed-in guard wires. Designed-in guard wires are added

during the place-and-route phase of the IC design process for the sole purpose of

defending security-critical wires. They have minimal routing constraints and can

guard all surfaces of designer-targeted wires.

• Automated routing toolchain for deploying guard wires within an IC layout that in-

tegrates with commercial and open-source VLSI CAD tools.

• Evaluation of the effectiveness of T-TER compared to previous defenses against both

digital and analog A2 Trojans embedded in a System-on-Chip intended to be a sur-

53

rogate for DoD systems of interest [108], using a recently published fabrication-time

threat assessment tool [169]. The results indicate T-TER is more effective than ex-

isting placement-centric defenses [9, 10, 195], and is capable of thwarting even the

stealthiest additive hardware Trojans, including A2 [196].2

4.2 Background

4.2.1 Fabrication-Time Attack Steps

As described in §3.2.2, implanting a hardware Trojan into an IC layout at fabrication-

time requires three steps [169]:

1. Trojan Placement,

2. Victim/Trojan Integration, and

3. Intra-Trojan Routing.

Trojan Placement is the process of finding empty space on the IC’s device layer (Fig. 4.2)

to add additional circuit components, e.g., logic gates, to construct the Trojan trigger and

payload. Victim/Trojan Integration requires attaching a rogue Trojan wire, or routing it

directly adjacent, to an unblocked surface on a security-critical wire(s). Lastly, Intra-Trojan

Routing involves routing the Trojan circuit components to the Victim/Trojan integration

point—the unblocked security-critical wire segment.

4.2.2 Layout-Level Defenses.

Prior work attempts to thwart fabrication-time attacks by increasing the difficulty of

Trojan Placement: filling empty space on the IC’s device layer with temper-evident func-

tional logic gates [9, 10, 195]. As shown in [169], this approach is only effective for Trojans

2It is important to note that routing-centric and placement-centric defenses are compatible (belt and sus-
penders). A designer would first apply T-TER, then fill open placement sites in a targeted manner.

54

Device Layer

Dielectric
Routing Layer

Routing LayerDielectricRouting LayerDielectric

Integrated Circuit
(Side View)

Device Layer

I/O Pads

I/O Pads

I/
O

Pa
ds

I/
O

Pa
dsPlacement

Grid

Core

(Top View)

Figure 4.2: Three Dimensional IC Layout. Typical 3D physical IC layout designed dur-
ing the place-and-route IC design phase (Fig. 2.1). On the bottom is a device
layer, and stacked above are several routing layers.

with large footprints, as filling all placement sites is infeasible [10], and even targeting fill

around security-critical logic [9] leaves the IC layout vulnerable to Trojans with small foot-

prints [196]. Orthogonally, T-TER targets Victim/Trojan Integration by directing protection,

at the routing level, around wires Trojans want to attach to.

4.2.3 Time-Domain Reflectometry (TDR)

Time-domain reflectometry (TDR) is an electrical analysis technique used to measure

physical characteristics about a transmission line (i.e., a wire) such as length, number and

distance between impedance discontinuities (e.g., bends), propagation delay, dielectric con-

stant, etc. [56, 64]. Foundries already use TDR to perform root cause analysis on chips that

fail post-fabrication testing—often during bring-up of a new process node. TDR works by

characterizing a wire within a circuit by injecting a single rising pulse down that wire and

analyzing its reflection(s).

4.2.4 IC Interconnect Models

There are two ways to model IC wires (interconnect): lumped and transmission-line

models [12]. Lumped interconnect models approximate interconnects using networks of

resistors and capacitors. Transmission-line models approximate interconnects as transmis-

sion lines with a characteristic impedance and propagation delay.

55

The choice of interconnect model is a function of maximum frequency component to

wire length [153]. A common rule of thumb for IC interconnects is: a wire is considered

a transmission line if its length is greater than ≈10% of the wavelength of the maximum

frequency component it transmits [153]. In digital electronics, it is common to think of

signals in terms of rise and fall times, rather than maximum frequency component. Thus,

one can modify the prior rule of thumb to: a wire is considered as a transmission line if the

transmitted signal rise time, Trise, is less than twice the wire’s propagation delay, Tpd [153].

Eq. (4.1) captures this rule of thumb.

Model =


Transmission Line, Trise < 2Tpd

Lumped RC, otherwise
(4.1)

Choosing the right model is vital to understanding operational limitations and ensuring

signal integrity within an IC layout. For example, an interconnect that carries a high-speed

signal transitions will observe signal reflections from impedance discontinuities that are

destructive to the signal integrity of the overall system. Modeling such interconnects using

a lumped RC model can hide these destructive effects, while a transmission-line model

would not.

4.2.5 TDR for IC Fault Analysis

By Eq. (4.1), the faster the rising edge of TDR’s incident pulse, the finer-grain of propa-

gation delay changes are detectable. TDR was first developed as a fault-analysis technique

for long transmission lines, such as telephone or optical communication lines [129, 146].

As commercial TDR systems became more advanced, TDR became a standard IC packag-

ing fault analysis tool [36, 119, 144]. Researchers have now demonstrated terahertz- level

TDR systems capable of locating faults in IC interconnects to nanometer-scale accuracies

[30, 115, 160, 164]. With such fine-grain resolution, TDR is an ideal tamper-analysis

technique for ensuring the integrity of the guard wires used in T-TER (§4.6.4).

56

4.3 Threat Model

Again, in this chapter, I adopt the threat model for fabrication-time attacks—§2.3.1 and

Figure 2.3A. While there are many types of hardware Trojans [135] (§2.2), in this chapter,

I again focus on additive Trojans, rather than subtractive or substitution Trojans. Additive

Trojans require implanting additional circuit components and wiring into the IC design. I

focus on additive Trojans as there are no documented stealthy and controllable examples of

subtractive or substitution Trojans that I are aware of. The closest example of such Trojans

are dopant-level Trojans [17, 90, 142], all of which have limited controllability and are

detectable with optical microscopy [152].

Previous work shows that to successfully implement an additive hardware Trojan, the

adversary must complete the three steps—Trojan Placement, Victim/Trojan Integration,

and Intra-Trojan Routing [169]—without being exposed. Namely, they must 1) find empty

space on the device layer to insert the Trojan’s components (logic gates/cells), 2) locate an

unblocked segment on a security-critical wire to attach the Trojan to, and 3) route the Tro-

jan components to that unblocked wire segment. They are restricted from modifying the

dimensions of the chip and/or violating manufacturing design rules that would risk their

exposure. They are allowed to move components and/or existing wiring around, but are

constrained by available resources (e.g., time) and correctness from making mass pertur-

bations to the layout. As process technologies scale, manufacturing design rules become

increasingly complex [147]. Thus, rearranging components and/or existing wiring comes

at a substantial cost. The time to complete any layout modifications, and verify such mod-

ifications have not violated design correctness, cannot disrupt the fabrication turn-around

time expected by their customers.3 Additionally, the attacker avoids any modifications that

are detectable using existing test-case or side-channel based defenses. While it would be

trivial for an attacker with infinite time and resources to reverse-engineer the physical lay-

out into HDL, add a Trojan, and re-run the design through the entire IC design process

3Typically, fabrication turn-around times are ≈3 months [93, 173].

57

(Fig. 2.1) thus generating an entirely new layout, such an attack will be infeasible within

the hard time limits of fabrication contracts, thus outside the scope of our threat model.

4.4 Targeted Tamper-Evident Routing (T-TER)

T-TER aims to make the second step of Trojan insertion—Victim/Trojan Integration

(§4.2.1)—intractable by shielding the surfaces of targeted wires (interconnects) with tamper-

evident guard wires (§4.2.2), creating an additional obstacle for adversaries to overcome.

Similar to prior work [9, 10, 102, 169], T-TER is made practical by leveraging the obser-

vation that, for most hardware designs, only a subset of the IC is security-critical [59, 74,

102, 167, 205, 207], or the target of a hardware Trojan. In designing T-TER, I pose three

questions:

1. Which wires in the design are security-critical (should be guarded)?

2. How can an attacker bypass T-TER guard wires?

3. How do I design guard wires that are tamper-evident with respect to bypass attacks?

4.4.1 Identifying Security-Critical Nets to Guard

While identifying security-critical features in a design is an orthogonal problem—and

an ongoing area of research [59, 74, 102, 167, 205, 207]— identifying the nets (wires)

that comprise said features is the first step in deploying T-TER. Currently, there exist

two techniques for identifying security-critical nets: 1) manual [59, 74, 102] or 2) semi-

autonomous [205, 207]. In manual identification, a human expert analyzes the design’s

specification, and the corresponding HDL, and flags nets that implement features critical

to the security of software or other hardware that interface to the design [59, 74, 102]. Al-

ternatively, in semi-autonomous identification, a set of security-critical nets for a specific

design are first manually identified [59, 74], or mined from a list of published errata [205],

and either: 1) used to train a classifier that identifies similar nets in other designs [205],

2) expanded using information flow [167] or fan-in analyses [169], or 3) translated to an

58

entirely different design [207]. In this chapter, I adopt the most common approach in this

area of semi-autonomous identification [9, 169].

4.4.2 Guard Wire Bypass Attacks

With T-TER deployed, attackers must bypass guard wires—by exposing the surface

of a security-critical wire(s)—to complete Victim/Trojan Integration, i.e., connect a rogue

Trojan wire to a security-critical wire(s) (§4.2.1). Given a set of interconnected guard wires

(Fig. 4.1), there are three ways an attacker can bypass them, color-coded by attacker dif-

ficulty (Fig. 4.3): A) delete, B) move, or C) jog attacks. In a deletion attack (Fig. 4.3A),

entire guard wire(s) are removed from the layout. While this attack is easy to implement, it

is also easy to defend. A post-fabrication continuity check of a connected set of guard wires

will detect a deletion attack. In a move attack (Fig. 4.3B), all interconnected guard wires

are left intact, but translated to another location on the chip. Move attacks are the most

difficult to implement: an attacker must find a contiguous group of unused routing tracks

to translate each set of guard wires too. Even then, a post-fabrication cross-talk analysis

between security-critical and guard wires would expose this attack [60, 131]. Lastly, in a

jog attack, guard wires are lengthened to make room for a rogue Trojan wire to connect to

a security-critical wire using a via. Jog attacks strike a compromise in terms of implemen-

tation difficulty, and are the stealthiest of all bypass attacks. They are easier to implement

than move attacks, and are undetectable with post-fabrication continuity tests or cross-talk

analyses. The only artifacts of a jog attack are: 1) a change in the number of bends in the

guard wire, i.e. number of impedance discontinuities, and/or 2) an increase in the guard

wire’s length. However, nanometer scale TDR [115, 160] detects these changes (§4.6.4).

4.4.3 Tamper-Evident Guard Wires

While techniques for detecting all three bypass attacks exist, each of them requires the

ability to measure physical characteristics (e.g., continuity, cross-talk, and length) about a

59

A) Delete B) Move C) Jog

Security-Critical Wires Guard Wires Attack Point

Figure 4.3: There are three ways an attacker could bypass T-TER guard wires to connect
a Trojan wire to a security-critical wire, color-coded by attacker difficulty: A)
delete guard wire(s), B) move an intact set of guard wires, or C) jog guard wires
out of the way. I study the jog attack to assess defensive sensitivity, as it strikes
a balance in attacker difficulty, and is the most difficult to detect.

guard wire post-fabrication. How do I design guard wires whose physical characteristics

are tamper-evident post-fabrication? Based on these considerations, I take a straw-man

approach in designing guard wires capable of preventing even the stealthiest of attacks.

4.4.3.1 Naı̈ve Approach: Re-purpose Existing Wires

One idea for constructing guard wires is to re-purpose existing non-security-critical

wires, inherent to the host IC design, as guard wires. Such an approach creates hyper-local

routing densities nearby security-critical wires, thus limiting or eliminating the locations

where an attacker can attach rogue Trojan wires. By re-purposing pre-existing wires as

guard wires, the guard wires incur no hardware overhead. Unfortunately, there are addi-

tional routing constraints (e.g., toggle frequency, length, layer, location, timing sensitive,

and spacing) that limit the pool of candidate guard wires. Even when such constraints are

met, the guard wires are only tamper-evident with respect to deletion and move attacks.

For an existing wire to also be tamper-evident with respect to the more stealthy jog and

bypass attacks, it must be timing-critical (i.e., if it is made longer, then it will cause timing

60

violations that manifest as run-time errors). As Fig. 4.5 shows, deployment using existing

guard wires is challenging. Namely, the lack of suitable wires in many designs makes it

infeasible to block all surfaces of all security-critical wires.

4.4.3.2 Designed-in Guard Wires

To fill the gaps of existing wires, I propose designed-in guard wires. Designed-in guard

wires are not inherent to the host IC design. Rather, they are added to the design during the

place-and-route IC design phase (Fig. 2.1). Since they do not implement any circuit func-

tionality, they have fewer routing constraints. As I show in Fig. 4.5, completely blocking

the accessible surface area of all security-critical wires is trivial. While designed-in guard

wires incur hardware overhead, i.e., additional wires, they completely block an attacker

from attaching a Trojan wire at fabrication time (Victim/Trojan Integration, §4.2.1), as

shown in Fig. 4.6. Additionally, designed-in guard wires are tamper-evident with respect

to all bypass attacks, when coupled with post-fabrication analysis techniques like con-

tinuity checking, cross-talk analysis, and time-domain reflectometry (§4.2.3 and §4.6.4),

respectively.

There are several designed-in guard wire architectures that may be deployed, listed

in order of increasing difficulty of deployment: 1) fully-disjoint, 2) partially-connected,

and 3) fully-connected. Fully-disjoint designed-in guard wires are not connected between

sides, i.e., the guard wires on each side of a security-critical wire are never connected to

one another. Partially-connected guard wires allow for a single guard wire to be utilized on

multiple sides. For example, a security-critical wire could be guarded on the north, east,

and west sides by a single guard wire that wraps around the security-critical wire. Lastly,

fully-connected guard wires are formed when a single guard wire is routed around all sides

of all security-critical wires, as shown in Fig. 4.1.

To detect tampering of designed-in guard wires post-fabrication, their analog charac-

teristics of must be observable. This can be implemented either on-chip, e.g., with internal

61

sensors [82] or ring oscillators [208], or off-chip, e.g., with two I/O pins and a one-time

programmable fabric [102]. If fully-joint or partially-connected designed-in guard-wires

are deployed, the one-time programmable fabric could be randomly programmed to route

both ends of a single (fully-disjoint) or single-set (partially-connected) of guard wire(s) to

the two pins. If fully-connected designed-in guard wires are deployed, the one-time pro-

grammable fabric is not needed, as both ends of the guard wires set can be routed to the

two pins.

4.5 Implementation

I develop an automated toolchain for deploying T-TER in modern IC designs. My

toolchain integrates with existing IC design flows (Fig. 2.1) that utilize commercial VLSI

CAD tools. Specifically, I implement the T-TER toolchain around the Cadence Innovus Im-

plementation System [25], a commercial place-and-route (PaR) CAD tool. The toolchain

is invoked by modifying a place-and-route TCL script,4 as shown in Fig. 4.4.

4.5.1 Place-&-Route Process

The PaR design phase (Fig. 2.1) is typically automated by a CAD tool, programmat-

ically driven by TCL script(s). There are several steps to PaR that are performed in the

following order: 1) floor-planning, 2) placement, 3) clock tree synthesis, 4) routing, and

5) filling. To ensure that all guard-wires are routed optimally, I modify the order of these

PaR steps. Specifically, after floor-planning (1), I use my automated toolchain to place

identified components and route identified wires and their guard wires. My toolchain then

permanently fixes the locations of these components and wires to prevent the PaR CAD tool

from modifying their positions and/or shapes throughout the remainder of the PaR process.

Lastly, I utilize the PaR CAD tool to place all other components (2), synthesize the clock

4Tool Command Language (TCL) scripts are the standard programmatic interface to commercial VLSI
CAD tools. IC designers often develop a set of scripts for driving the CAD tools that automate most of the
IC design process (Fig. 2.1).

62

B.

A.

C.

T-TER Toolchain

Place-&-Route
(TCL Script)

Netlist

GDSII

1

2

3

4

(Front End Design)

(Fabrication)

ID Security-Critical Nets

ID Unblocked Wire Surfaces

Guard Unblocked Wire Surfaces

Figure 4.4: T-TER is an automated toolchain consisting of three phases. My toolchain first
identifies which wires are security-critical, determines potential (unblocked) at-
tachment points, and routes guard wires to block all attachment points. Identi-
fied components & wires are placed & routed before phase (A) of my toolchain
is invoked. Before continuing with the traditional PaR flow, the protected nets
and their guard wires are locked in-place to ensure they are untouched through-
out the remainder of the layout process.

tree (3), route remaining wires(4) and fill the design with filler (capacitor) cells.

4.5.2 Automated Toolchain

The T-TER toolchain automates the insertion of either existing or designed-in guard

wires around wires in need of protection. The toolchain consists of three main phases

(Fig. 4.4). The first phase (A) identifies security-critical nets. The second phase (B) iden-

tifies the unblocked surfaces of all of these nets within a GDSII-encoded layout. The last

phase (C) guards the nets and their influencer nets by routing guard wires nearby. I provide

additional implementation details on all three stages of the T-TER toolchain below.

4.5.2.1 Identifying Nets.

The first phase of T-TER requires identifying nets in the design to guard, i.e., nets that

are security-critical. Phase A of my toolchain (Fig. 4.4A) utilizes a semi-autonomous ap-

proach to identifying such nets (§4.4.1). Specifically, my toolchain assumes the designer

has manually flagged a set of root security-critical nets in the behavioral-level HDL by ap-

63

pending a unique prefix—secure —to each signal (net) name. During PaR, my toolchain

performs a data-flow analysis of the circuit netlist to locate the direct fan-in—to a con-

figurable depth—of each root net. Since the netlist is often modified by PaR CAD tools

to meet various design constraints (e.g., power, performance, and area), I disable the op-

timization of all root nets during PaR. Given the interconnected nature of nets within an

IC design, an adversary may elect to target a net that influences a root net, rather than the

root net itself. My toolchain addresses this indirection, using an autonomous approach that

widens the set of targeted nets to the root nets and those that influence root nets (to a de-

signer configurable degree). The remainder of my tool flow focuses on protecting this set

of targeted nets.

My fan-in analysis tool is a custom-backend to the Icarus Verilog (IVL) front-end Ver-

ilog compiler [192], and is implemented in C++. It performs a breadth-first search over the

circuit-level data-flow graph generated by IVL. I release my fan-in analysis tool under an

open-source license.

4.5.2.2 Identifying Unblocked Wire Surfaces.

The second phase of T-TER is identifying the unblocked surfaces of targeted nets in a

physical IC layout, i.e., potential locations of Trojan wire attachment. To do so, I imple-

ment, and open-source, a Python tool that analyzes the GDSII layout file containing only

the placed-and-routed targeted components and wires. My tool implements a 3-D scanning

window approach to search the 3-D boundary surrounding each targeted wire, and compute

the areas on each wire’s surfaces that are not blocked by other wires or circuit components.

While it is traditional for designers to only route wires on defined routing tracks, i.e., on

a pre-defined routing grid, it may be possible for an attacker to route Trojan wires off this

grid, so long as they maintain the minimum spacing requirements dictated by the manu-

facturing design rules. Thus, my tool takes a conservative approach when scanning for

unblocked wire surfaces, only scanning the 3-D boundary surrounding each targeted wire

64

that extends up to the minimum-spacing requirements defined for the given, and adjacent

(top/bottom), routing layers. If and only if another component or wire overlaps a region

of the 3-D boundary surrounding a targeted wire, that surface region will be considered

blocked. The output of this stage of my toolchain is a list of coordinates within the 3-D

place-and-route grid that must be filled with guard wires during the next phase in the T-TER

toolchain.

4.5.2.3 Guard Unblocked Wire Surfaces.

The last stage of the T-TER toolchain (Fig. 4.4) is a custom guard wire routing tool,

also implemented in Python. It takes as input exact locations of targeted wires and their

unblocked sides (output from Phase B, §4.5.2.2) and generates a TCL script that integrates

with the Cadence Innovus Digital Implementation platform [25] to automatically route

the guard wires. This TCL script is executed immediately after the targeted wires have

been routed, but before placing the remaining components. Depending on the guard wires

being deployed, existing or designed-in, different guard wire TCL scripts are generated

(described below).5 Note, in either case, my toolchain routes guard wires that are compliant

with all manufacturing design rules.

There are numerous ways existing guard wires can be implemented. Since commercial

PaR CAD tools do not offer an interface to enable fine-grain constraints between two un-

related signal wires, I develop an indirect method for implementing existing guard wires.

I implement existing guard wires by constraining placement and routing resources nearby

targeted wires. First, I identify all circuit components (i.e., logic gates) connected to all

targeted wires, i.e., targeted components. Next, I draw a bounding box around these com-

ponents and extend this boundary vertically by Y% of the overall box height, and horizon-

tally by X% of the overall box width. Then, I set placement and routing density screens in

5While existing guard wires fail to defend against all types of guard wire attacks (§4.4.3.1), I implement
a tool to deploy them in order to empirically show they are also inferior to designed-in guard wires in terms
of surface-are coverage (Figs. 4.5 & 4.6), and thus should not be used in a security context.

65

the portion of the IC layout that lies outside the bounding box. These constraints limit the

placement and routing resources outside the bounding box, thus forcing more components

and wiring within the bounding box. With increased routing density nearby targeted wires,

they are less accessible by Trojan payload delivery wires. The values of X, Y, and density

screen configuration settings are optimized to maximize the net blockage metric computed

by the GDS2Score metric.

Designed-in guard wires are more straightforward to implement. The automated guard

wire deployment toolchain locates all unblocked surfaces (north, south, east, west, top, and

bottom) of all targeted wires and routes guard wires in these regions. After all guard wire

segments are routed, they are connected according to the architecture chosen (§4.4.3.2).

4.6 Evaluation

I evaluate T-TER in three areas. First, I explore the effectiveness of T-TER at closing

the fabrication-time attack surface of three security-critical features within an open-source

System-on-Chip (SoC), with regard to the stealthiest additive Trojan known: the A2 Tro-

jan [196]. I compare the capabilities of T-TER with existing state-of-the-art layout-level

defenses [9, 10, 195]. Next, I demonstrate the practicality of T-TER, analyzing its power,

performance, and area overheads. Finally, I perform a threat assessment, demonstrating

how guard wires are tamper-evident.

4.6.1 Experimental Setup

4.6.1.1 Surrogate SoC

I utilize the open-source Common Evaluation Platform (CEP) SoC design [109] for my

evaluation. The CEP platform is designed as a surrogate SoC system for testing a vari-

ety of DoD-oriented IC technologies. It contains a general-purpose processor core, five

cryptographic cores, four digital signal processing cores, and a GPS core. I focus on three

66

cores from in the SoC: the processor core, the DFT core, and the AES core. The OR1200

processor6 is a 5-stage pipelined CPU that implements a 32-bit OR1K instruction set and

Wishbone bus interface [121], and is the same design used in previous fabrication-time

attack studies [169, 196]. It supports Linux via BusyBox [178]. The AES core supports

128-bit key sizes. The DFT accelerator implements a Discrete Fourier Transform algo-

rithm, a common component of radar and other sensing systems.

I target a 45 nm Silicon-On-Insulator (SOI) process technology with 10 available rout-

ing layers. I synthesize my design with Cadence Genus (v16.23), and placed-and-route it

using Cadence Innovus (v17.1). All layout variations of my SoC target a 100 MHz clock

frequency and a core density of 60–80%. All CAD tools are run on a server with 2.5 GHz

Intel Xeon E5-2640 CPU and 64GB of memory, running Red Hat Enterprise Linux (v6.9).

4.6.1.2 A2 Trojan

The goal of T-TER is to protect security-critical features within SoCs from the stealth-

iest additive Trojan currently known, the A2 Trojan [196]. The A2 Trojan is stealthy, i.e.,

evades current prevention and detection defenses, due to its small size and complex trig-

gering mechanism. When implemented within my surrogate SoC, in a 45 nm process, the

analog variant of the A2 Trojan [196] requires only two additional cells that occupy 20

placements sites, while the entirely digital variant of the same attack requires 91 additional

cells that occupy 1,444 placement sites. The analog A2 attack is not timing critical: the

Trojan components may be placed anywhere on the placement grid, at any distance from

the Victim/Trojan integration point. Conversely, the digital A2 attack is timing-critical:

the length of the interconnect between the Trojan components and the Victim/Trojan in-

tegration point must be within three standard deviations from the mean net length in the

6I use the OR1200 version of the CEP rather RISC-V version since the OR1200 is the processor used in
the A2 Trojan [196]. I are not aware of similar Trojans available in the RISC-V. I expect similar results for
the RISC-V version of the CEP since both processors are RISC-based, in-order, scalar, pipelined, capable
of running Linux, and operate at similar clock frequencies. Thus, from an IC layout perspective, they have
similar features (e.g., wire lengths) and will have similar hardware overheads.

67

Table 4.1: A2 Trojans used in T-TER effectiveness assessment.

Trojan # Std
Cells

Placement
Sites

Timing
Critical?

A2 Analog [196] 2 20 7

A2 Digital [196] 91 1444 3

overall SoC (this is an entirely worst-case estimate borrowed from [169]). I summarize

the placement and routing resource requirements for the two variants of the A2 Trojan in

Table 4.1.

4.6.1.3 Exemplar Nets of Interest

For this evaluation, I need to protect nets that my example Trojan might want to use as

integration points. Leveraging existing hardware Trojan payloads, I select three reference

integration targets within my SoC design to protect with T-TER:

1. processor supervisor bit (supv),

2. DFT computation ready interrupt (next out),

3. cryptographic key bits (key [0:127]).

The most popular hardware Trojans leverage the supervisor (supv) net as part of privilege

escalation attacks [58, 85, 196]. Alternatively, hardware Trojans can also hide specific

computations or state transitions, e.g., a Trojan that disables the DFT computation-ready

interrupt signal (or next out signal) that informs the CPU when a DFT computation is

ready. Lastly, another popular hardware Trojan seeks to leak cryptographic key bits via

side channels [101]. The A2 trigger can be attached to any of the nets that carry these

signals to mount an attack, so I protect the interconnects that comprise these nets.

The initial stage (Fig. 4.4A) of my automated T-TER toolchain assumes the designer

has manually annotated the root nets they have chosen to target with T-TER (§4.5.2.1).

Thus, I manually annotate the above net (signal) definitions with the prefix secure within

my SoC design’s RTL. I then synthesize and place-and-route my design prior to generating

a final, optimized, netlist for which my toolchain computes the fan-in to each manually

68

annotated net—to a depth of two layers of logic gates—thereby expanding the final set

of all targeted nets (i.e., those guarded by T-TER). Fig. 4.7 (far right) shows the number

of interconnect wires that comprise each set of nets that implement the aforementioned

features within my surrogate SoC.

4.6.2 Effectiveness

I first evaluate the effectiveness of T-TER in thwarting the insertion of hardware Tro-

jans at fabrication time. I compare the degree of protection provided by T-TER with that

provided by deploying the current state-of-the-art preventive defense suggested by Ba et

al. [9, 10]. This placement-based defense involves filling as many empty placement sites

as possible (they show filling 95% of all placement sites is the max feasible), prioritizing

empty sites nearest security-critical nets. I use my automated toolchain (§4.5.2) to deploy

both types of guard wires (existing and designed-in). I assume the best case scenario for Ba

et al.’s placement defense [9, 10] by filling 95% of the device layer with inverter cells—the

smallest cells in my 45 nm cell library, for fine grain filling.

I use the ICAS framework [169] to quantify the effectiveness of each defense. ICAS

analyzes the physical layout of an IC (encoded in a GSDII file), and computes security

metrics detailing the IC layout’s fabrication-time attack surface. Namely, it computes three

metrics: 1) trigger space, 2) net blockage, and 3) route distance. The trigger space met-

ric characterizes the open space on the device layer (empty placement sites) available for

an attacker to add their Trojan components. The net blockage metric computes the per-

centage of surface area of identified nets that are blocked by other circuit components

or wiring. Lastly, the route distance metric computes the minimal distance between un-

blocked identified nets and unused placement sites that an adversary would have to route

a rogue Trojan wire to “connect” the hardware Trojan to the host IC. The trigger space

metric quantifies the difficulty of performing Trojan Placement, the net blockage quantifies

the difficulty of performing Trojan/Victim Integration, and the route distance metric quan-

69

key next_out supv

None
Existing
Designed-In

Figure 4.5: Plot of the net blockage [169] computed across three different sets of targeted
nets within my SoC layout, with and without guard wires.

tifies the difficulty of performing Intra-Trojan Routing (§4.2.1). Of the three ICAS metrics,

the net blockage metric is most adept to quantifying the deployability of each guard wire

type (existing and designed-in), i.e., how effective each guard wire type is at shielding all

targeted nets. Alternatively, the route distance metric is the adept at comparing T-TER

with Ba et al.’s placement defense, as it is essentially a combination of the trigger space

metric—an entirely placement-focused metric—and the net-blockage metric—an entirely

routing-focused metric. Therefore, I utilize these two ICAS metrics in the following eval-

uation.

4.6.2.1 Net Blockage Results

Both existing and designed-in guard wires attempt to block targeted nets to prevent

attackers from attaching rogue wires to them, thus minimizing/eliminating possible Vic-

tim/Trojan Integration points (§4.2.1). I use the net blockage metric to compute the surface-

area-coverage differences between existing and designed-in guard wires. Fig. 4.5 compares

the net blockage computed across three total IC layouts of the same SoC design, includ-

ing: three guard wires variations—without guard wires, with existing guard wires, and with

designed-in guard wires—across three different sets of targeted nets. All net-blockage re-

70

sults are with respect to each set of targeted nets in the SoC.

Across all three sets of targeted nets, designed-in guard wire provide more protection

than existing guard wires, as expected. Specifically, for all nets, designed-in guard wires

achieve 100% net blockage. This means that there is no place on any targeted net within the

SoC where an attacker can attach a rogue wire. Existing guard wires are unable to achieve

100% coverage due mainly to having to meet their own routing constraints which prevents

my tool from locating enough nets to block all surfaces of all targeted nets, making them

ineffective at thwarting attacks.

4.6.2.2 Route Distance Results

Since T-TER only limits the routing resources needed to insert a Trojan at fabrication

time, it is vital to understand how T-TER reduces the overall fabrication-time attack surface,

i.e., both Trojan routing and placement resources. I use the route distance metric to locate

all possible combinations of unused placement sites and unblocked targeted nets—i.e., all

possible Trojan attack configurations [169]. I use the route distance metric to illustrate the

attack surface across each core within my SoC where that contains the root net of interest.

I analyze the route distance metric with respect to each containing core, as it is common

practice for IC layout engineers to lay out each core separately, before integrating them,

plus this increases the clarity of presentation.

Fig. 4.6 shows the route distance metric as computed across all three containing cores,

with and without layout-level defenses including: 1) T-TER (both existing and designed-

in guard wires) and 2) defensive placement. Each heatmap is intended to be analyzed

column-wise, where each column is a histogram of the distances between unblocked tar-

geted nets and trigger-spaces7 within a size range. Namely, each heatmap illustrates the

fabrication-time attack surface of each IC layout. If a circuit has no attack configurations,

i.e., all targeted nets are blocked or there are no trigger-spaces, the route distance heatmap

7Trigger spaces are contiguous groups of placement sites that are empty, or contain (removable) capacitive
fill cells [169]

71

Figure 4.6: Plot of the ICAS route distance metric [169] computed across four different lay-
outs of each core within my surrogate SoC, with and without guard wires and
Ba et al.’s defensive placement [9, 10]. Each heatmap illustrates the percentage
of (targeted net, trigger-space) pairs (possible Trojan layout implementations)
of varying distances apart. The heatmaps are intended to be analyzed by col-
umn, as each column encodes a histogram of possible attack configurations
with trigger-spaces of a given size range (X-axis). Route distances (Y-axis)
are displayed in terms of standard deviations from mean net length in each re-
spective design. Heatmaps that are completely dark indicate no possible attack
configurations exist, i.e., no placement/routing resources to insert any Trojan.
Overlaid on each heatmap are rectangles indicating regions on the heatmap a
given A2 Trojan (Tab. 4.1) may exploit, and markers (checks and x-marks) in-
dicating if a non-zero number of specific Trojan layout implementations are
possible.

72

is completely dark (column ratios of 0). If it is impossible to eradicate all attack configu-

rations, the most secure layout for such a circuit would have maximum distances between

unblocked targeted net and trigger-spaces, i.e., a heatmap with the top row the lightest color

(top row ratios of 1). This is because larger distances increase the signal delay for the hard-

ware Trojan; increasing the challenge of the attacker to meet timing constraints for their

attack. Overlaid on each heatmap are rectangles indicating the region of the attack surface

that is exploitable by the color-coded Trojan, and check- or x-marks indicating whether any

possible attack configurations exist for that attack. A check-mark indicates there are zero

possible Trojan layouts (success)), where an x-mark indicates the opposite (vulnerable).

Designed-in guard wires outperform existing guard wires and placement-centric de-

fenses. For all three example attack payloads, designed-in guard wires were able to close

the fabrication-time attack-surface by completely blocking all targeted nets (Fig. 4.5). There-

fore, even the stealthiest A2 Trojan [196] cannot be utilized to attack the features-of-interest

within my SoC.

4.6.3 Practicality

T-TER is effective, but is it practical? I evaluate the cost of deploying T-TER across

three exemplar security-critical features within my SoC that have been subject to attack.

Specifically, I analyze the power, route density, and performance (timing) overheads in-

curred by deploying both existing and designed-in guard wires from §4.6.2. Note, while

T-TER guard-wires can be deployed on any routing layer, I chose to prioritize routing

security-critical nets on metal layers three and four (out of 10 total layers) to measure over-

heads in the worst case, i.e., guard wires routed on layers 2–5. Measurements are taken

with respect to each feature’s containing core, similar to the route distance measurement.

While it is common to analyze power, performance, and area, of an IC design, I instead an-

alyze power, performance and route density. Area measurements refer to the device-layer

area, i.e., width and length, since the height (number of routing layers) is fixed for a given

73

keynext_outsupv keynext_outsupv keynext_outsupv keynext_outsupv

of Targeted NetsPower Route Density Timing

#
 o

f
N

et
s

None
Existing
Designed-In

None
Existing
Designed-In

None
Existing
Designed-In

Figure 4.7: T-TER hardware overheads. The far right plot shows the number of wire (route)
segments that implement the labeled security-critical feature (set of nets) in my
surrogate SoC.

process technology. Since T-TER does not require additional logic gates, I do not increase

the width and height (area) of the core area, rather T-TER alters the total wire length in the

design. Thus, measuring routing density overhead is more meaningful. I use the built-in

features of Cadence tools to compute these overheads.

Fig. 4.7 shows my results. Power and timing overheads were both less than 1%. In

some cases, the timing was better for the guard wire designs. This is expected as T-TER

does not require any additional logic gates, nor lengthen existing wires. Rather, the guard

wires increase routing constraints that can push the PaR CAD tool to produce more optimal

routing solutions. The route density overhead was less than 1% for all existing guard wires,

and similar for designed-in guard wires when the number of targeted nets to guard is small,

namely the supv and next out nets. Intuitively, the more guard wires inserted, the higher

the routing density increase. Keeping route density low is important to ensure automated

CAD tools can route each design. However, even though all layouts targeted a placement

density (density of logic gates on the device layer) of 60–80%, route density was relatively

low even with guard wires. This was due to the characteristics of the designs and process

technology (i.e., back-end-of-line metal stack option).

It is worth noting that in addition to low power, performance, and area overheads,

deploying T-TER guard wires has minimal impact on the run-time of layout CAD tools.

Without DR, the tools lay out each SoC core in less than 10 minutes, and with DR they lay

out each core in less than 11 minutes. Tool run-time overheads are more impacted by the

74

magnitude of features requiring protection than on circuit complexity.

4.6.4 Threat Analysis of Bypass Attacks

Lastly, I provide a threat analysis of T-TER. Recall, of the three ways an attacker can

bypass T-TER guard wires to carry out a fabrication-time attack (Fig. 4.3 and §4.4.2), the

jog attack is the stealthiest. An attacker mounts a jog attack by jogging, or moving, a

portion of a guard wire to a nearby routing track, in order to make room for a rogue Trojan

wire to attach to a targeted net (Fig. 4.3C). In such an attack, the guard wire is lengthened,

or bends are added/removed. To evaluate the detectability of such an attack, I ask three

questions:

1. What is the smallest jog attack, i.e., the minimum alteration in a guard wire’s length

and/or number of bends?

2. Is the smallest jog attack masked by process variation?

3. Can modern TDR detect the smallest jog attacks?

4.6.4.1 Smallest Jog Attack

The minimum jog attack is to jog a top (or bottom) guard wire to an adjacent rout-

ing track, and attach to the targeted net from above (or below) with a via, as illustrated

in Fig. 4.3C. This edit either increases the length of the guard wire, or adds/removes

bends—impedance discontinuities—in the guard wire to keep its overall length unchanged.

This edit is minimal because the minimal metal pitch (MMP), or (horizontal) distance be-

tween the centers of adjacent routing tracks on the same routing layer, is much smaller

than the (vertical) distance between overlapping routing tracks on adjacent routing layers.

Specifically, the smallest jog attack would either: 1) increase a guard wire’s length by:

Lattack = 2∗MMPr, where MMPr is the MMP on layer r, as defined in the design rules of

a given process technology, or 2) add/remove bend(s) in the guard wire that are at least a

75

Table 4.2: Minimum guard wire jog attack (Fig. 4.3C) edit–distances for each routing layer
in the IBM 45 nm SOI process technology.
Routing Min Wire Min Metal Min Attack TDR
Layer Spacing (um) Pitch (um) Edit (um) Detectable?

1 0.07 0.14 0.28 3

2 0.07 0.14 0.28 3

3 0.07 0.14 0.28 3

4 0.09 0.19 0.38 3

5 0.09 0.19 0.38 3

6 0.14 0.28 0.56 3

7 0.14 0.28 0.56 3

8 0.80 1.60 3.20 3

9 0.80 1.60 3.20 3

10 2.00 4.00 8.00 3

distance of Lattack apart from existing bends. In either case, a feature resolution—of overall

length or length between bends—of Lattack is required to detect the smallest jog attack. Ta-

ble 4.2 summarizes the minimal-attack-edits (Lattack distances), to a guard wire’s features

an attacker must make to bypass T-TER, according to the 45 nm process technology I target

in this study.

4.6.4.2 Process Variation vs. Smallest Jog Attack

Assume for a moment that I can measure the of overall length, or length between bends,

of a guard wire to infinite accuracy. Even then, detecting the smallest jog attack requires

the minimal attack edit distance, Lattack, be discernable from deviations between simulated

and fabricated guard wire lengths due to process variation. Fortunately, Lattack is larger

than the worst-case manufacturing process variation in a guard wire’s length. Namely,

with Ldesign as the designed length of the guard wire, and Lwc error, as the worst-case man-

ufacturing error in the actual guard wire’s length (+ or -):

Ldesign−Lwc error +Lattack > Ldesign +Lwc error (4.2)

For a guard wire on routing layer r, the worst-case manufacturing error, Lwc error, can

76

106

107

108 Guard Wires
Unmodified
Attacked

1 2 3 4 5 6 7 8 9 10
Routing Layer

100

101

G
ua

rd
 W

ir
e

Le
ng

th
 (

um
)

Figure 4.8: Worst-case manufacturing process variation (error bars) effect on unmodified
and minimal jog attacks on 100-micron guard-wires.

be deduced from the manufacturing design rules as:

Lwc error = 2∗ min spacingr

2
= min spacingr (4.3)

where min spacingr is the minimum required spacing surrounding a wire routed on metal

layer, r.

I illustrate this in Fig. 4.8, where I plot the minimum length differences between un-

modified (un-attacked) and minimally-jogged (attacked) guard wires, overlaid with error

bars indicating the worst-case range of variation in a guard wires fabricated length caused

by process variation. Even in the worst case, across all routing layers, unmodified vs at-

tacked guard wires are discernible.

4.6.4.3 Attack Detection with TDR

When IC interconnects are injected with a pulsed waveform with a rise time less than

twice the propagation delay of the interconnect, they behave like transmission lines (Eq. (4.1)).

Hence, time-domain reflectometry (TDR) can be used to measure several characteristics of

77

designed-in guard wires to ensure they have not been tampered with (§4.2.3). Specifically,

the lengths of each guard wire, or lengths between bends on each guard wire, are computed

by measuring the reflection time(s) of a single incident rising pulse applied to the guard

wires under test. Once measured, the lengths can be compared with that predicted by a 3D

electromagnetic field solver [100] to detect if they have been altered. While modeling all

interconnects within a large complex IC using a field solver is computationally impractical,

it is practical to analyze only a small subset of interconnects, e.g., the guard wires and

surrounding circuit structures [115].

Prior work demonstrates terahertz TDR systems [30, 115, 160, 164] capable of measur-

ing the propagation delay of an interconnect to a resolution of ±2.6 femptoseconds (f s).

Such systems utilize laser-driven optoelectronic measurement techniques to achieve such

high resolutions. According to the ideal transmission line model [153], the propagation

delay, Tpd , is a function of the dielectric constant, Dk, speed of light, C, and length of the

transmission line (guard wire), Lgw, as shown in Eq. (4.4).

Tpd = Lgw ∗
√

Dk

C
(4.4)

TDR is the ideal tamper detection tool as process variation has no impact on its accuracy.

Knowing the dielectric constant, Dk, of the insulating material surrounding the guard wires—

the inter-layer dielectric (ILD)—is all that is required to compute their lengths, or the

lengths between their bends (Eq. (4.4)). Since, the dielectric constant of the ILD is not

dependent on its geometric properties, it is well controlled [21].

Using the TDR propagation delay model described in Eq. (4.4), and the previously stud-

ied resolution of optoelectrical terahertz TDR [30, 115, 160, 164], I simulate the detection

of the smallest jog attacks on guard wires across every routing layer in my target 45 nm

process. Namely, I simulate the difference in reflection times observed for single pulse

TDR waveforms applied to (unmodified) guard wires that are 100 microns long, compared

to the reflection time observed from similar guard wires that have been lengthened by the

78

1 2 3 4 5 6 7 8 9 10
Metal (Routing) Layer

0

5

10

15

20

25

#
 M

ea
su

re
m

en
ts

Confidence Level
95%
99%

Figure 4.9: Number of TDR measurements required to detect the smallest jog attacks (Ta-
ble 4.2) with 95% and 99% confidence, per layer.

minimal attack edit distances, Lattack, across each routing layer (Table 4.2). I assume a

dielectric constant of 3.9, the nominal dielectric constant of silicon dioxide [86]. Taking

into account a (Gaussian) standard error (across reflection time measurements) of±2.6 f s,

as reported by [115], I compute the minimum number of TDR measurements required to

discriminate an unmodified guard wire from an attacked guard wire with confidence levels

of 95% and 99%. I plot these results in Figure 4.9. My results demonstrate that existing

terahertz TDR systems are capable of detecting the smallest jog attacks across all routing

layers (Table 4.2) in my target 45 nm process, requiring at most 14 and 24 TDR measure-

ments to achieve confidence levels of 95% and 99%, respectively.

4.7 Discussion

T-TER aims to prevent fabrication-time Trojan attacks that target specific security-

critical features in an IC design. Experiments on real circuit layouts of a SoC containing

show that T-TER is effective, deployable, and tamper-evident. Discussed below are the

limitations, scalability, signal integrity impact, flexibility, and extensibility of T-TER.

79

4.7.1 Limitations

T-TER is a mitigation strategy for hardware designs where only a subset of the design

is security-critical [59, 167]. As my evaluation results show, the deployability and per-

formance overhead of T-TER is low when the overall security-critical wire length is low.

If every wire in a design is security-critical, then T-TER is not a good defensive strategy;

in fact, the motive for outsourcing fabrication in such scenarios is tenuous. If fabrication

must be outsourced, I recommend alternative mitigation strategies such as those proposed

in [9, 10, 68, 102, 195]. The tradeoff is that these strategies have limited deployability, and

a large, fixed, performance overhead that make them impractical for designs that require

only a subset of security-critical functionality be protected.

4.7.2 Scalability

There are two notions of scalability to address. The first is scalability with regard to

routability. Routing guard wires alongside security-critical wires can impact the routability

of a layout, if the 1) percentage of overall wire length to guard, and 2) route-density with-

out guard wires are both large. By placing and routing security-critical components and

wires first, before any other portions of the circuit (§4.5.1), I are able to minimize security-

critical wire length. This makes security-critical wire length scale with the total length of

security-critical wires, as opposed to the size of the overall design. As I see when going

from OR1200 and RISC-V class processor to modern x86-64 processors, the proportion

of security-critical functionality (hence wires) decreases as relatively more transistors are

spent on performance. Moreover, by deploying T-TER within advanced process nodes—

which is the motivating threat model—route density is minimized since these nodes pro-

vide multiple metallization options8 with 10 (or more) routing layers. To demonstrate this

empirically, I highlight the AES core (Fig. 4.7–Route Density), where I guard over 1000

8The metallization option defines the total number (and physical characteristics) of available routing
(metal) layers defined within an IC’s process technology.

80

nets with little impact on power or performance. In fact, the reason I select the AES as

a benchmark—even though it is arguably entirely security-critical—is because its key-bit

nets exhibit a unique quality that stress tests T-TER. Specifically, they are global, highly-

connected routes that are orders-of-magnitude longer than any other nets in the layout.

The second notion of scalability is with regard to the detection of bypass attacks. Al-

though Moore’s law is near its limit, transistors continue to shrink. Only three companies

in the world are capable of manufacturing 7–10 nm transistors [95]. It is, therefore, vital

for T-TER to scale with process technology. With respect to deletion attacks (Fig. 4.3A),

T-TER scales with process technology advances as measuring interconnect continuity does

not differ across process technologies. With respect to move attacks (Fig. 4.3B), T-TER

scales with process technology advances as cross-talk is amplified when interconnects are

smaller and more densely packed. Lastly, with respect to jog attacks, T-TER also scales,

as TDR capabilities directly scale with microelectronic feature sizes, i.e., faster transistors

translates to faster TDR rise times.

4.7.3 Signal Integrity Impact

Routing long wires parallel to targeted nets increases coupling capacitance, thus cre-

ating cross-talk between the guard wires and the targeted nets they protect. However,

designed-in guard wires are not actively driven during normal chip operation, and can be

permanently grounded (using a one-time programmable fabric) after TDR analysis. Thus,

cross-talk is not an issue—in fact, designed-in guard wires decrease cross-talk by acting as

shields between targeted nets and the rest of the circuit.

4.7.4 Defense-in-Depth

While T-TER alone can thwart even the stealthiest fabrication-time attacks, its low

deployment costs also enable defense-in-depth. Layering T-TER with other preventive

measures, such as Ba et al.’s defensive placement [9, 10], provides an additional layer of

81

protection.

4.7.5 Extensibility of CAD Tools

My T-TER deployment framework (§4.5) is built on top of a commercial IC CAD

tool [25] and an open-source VLSI analysis tool [169]. Extending T-TER to work across

other commercial IC layout CAD tools involves incorporating support for each vendor’s

CAD tool APIs. I foresee T-TER deployed as an integrated component of commercial

VLSI CAD tools as they focus more on IC security.

4.8 Related Work

Fabrication-time attacks and defenses have been extensively studied. Attacks have

spanned the trade-space of footprint size, stealth, and controllability. Specifically, some

attacks have demonstrated stealth and controllability, at the cost of large footprints [17,

85, 101], while others have demonstrated small (or non-existent) footprints, at the cost of

controllability and stealth [90, 142]. The most formidable attack—the A2 attack [196]—

has demonstrated all three: small footprint, stealth, and controllability. I highlight a few

notable attacks and defenses below.

On the defensive side, there are two main strategies: detective or preventive. Most

prior work has focused on detective strategies, while few works have focused on preven-

tive strategies. Detective strategies involve side-channel analysis [3, 13, 75, 117], imag-

ing [2, 209], and on-chip sensors [48, 62, 97]. Until T-TER, preventive measures have been

placement-focused [9, 10, 195].

Fabrication-time Attacks. The first fabrication-time insertion of a hardware Trojan

was developed by Lin et al. [101] who proposed a Trojan designed to leak information

over a deliberately created side channel. Specifically, they designed and implemented a

hardware Trojan, with a footprint of approximately 100 logic gates, to create an artificial

power side channel for leaking cryptographic keys. Albeit unique at the time, today such a

82

large footprint makes the attack detectable via side channel defenses [3, 13, 48].

The most lethal fabrication-time attack is the A2 Trojan, developed by Yang et al. [196].

The A2 Trojan utilizes analog components to build a counter-based trigger circuit with a

footprint of less than the size of one flip-flop. Its complex triggering mechanism makes it

stealthy, i.e., unlikely to accidentally deploy during post-fabrication functional testing or

under normal chip operation, yet is controllable from user-level software. Its unique design

makes it the only Trojan to evade all detection schemes, except T-TER.

Fabrication-time Defenses. The first side-channel detection scheme was proposed by

Agrawal et al. [3]. They used power, temperature, and electromagnetic (EM) side-channel

measurements to record a fingerprint of a “golden” IC during normal, and compared this

fingerprint to one acquired from an untrusted IC. Similarly, Jin et al. [75] create a timing-

based fingerprint obtained by measuring the output delays resulting from applying vari-

ous input combinations to a given IC. While side-channel detection schemes are effective

against hardware Trojans with large footprints, they fail at detecting Trojans like A2 [196],

whose side-channel signatures are well below operational noise margins.

Of all fabrication-time Trojan defenses, R2D2 [62] is the only one that claims to detect

the A2 Trojan. R2D2 works by using on-chip sensors to monitor the toggling frequency of

a select few security-critical signals within the design. If the toggling rate of any security-

critical signals exceed a pre-determined threshold, then an alarm signal is activated to indi-

cate an A2 Trojan may have been triggered. The crux of this approach is that, unlike T-TER

guard wires, the hardware used to construct the toggle frequency monitors is not tamper-

evident. There is no way to tell if a foundry-side attacker disabled the R2D2 hardware

while inserting her Trojan.

4.9 Conclusion

T-TER is a routing-centric preventive defense against additive fabrication -time Trojans

that target security-critical hardware features. It makes routing Trojan wires to, or directly

83

adjacent to, attacker-targeted wires in a victim IC intractable by surrounding their surfaces

with tamper-evident guard wires. I propose the use of designed-in guard wires in conjunc-

tion with post-fabrication terahertz time-domain reflectometry (TDR) analysis to detect

all bypass attacks I contrive (deletion, move, and jog attacks). I develop an automated

toolchain for deploying T-TER guard wire. Lastly, I evaluate the effectiveness, deployabil-

ity, and tamper-evidence of T-TER at securing multiple security-critical features within an

SoC that have been subject to attack by existing hardware Trojans. My results show that

T-TER thwarts the insertion of even the stealthiest known additive hardware Trojan—the

A2 Trojan—with power, timing, and area overheads of ≈ 1%.

4.10 Citation

Work from this chapter was partially completed while interning at MIT Lincoln Labo-

ratory, and is co-authored by Kang G. Shin, Kevin B. Bush, and Matthew Hicks. This work

can be cited as [170].

84

CHAPTER V

Bomberman

5.1 Introduction

As microelectronic hardware continues to scale, so too have design complexities. To

design an IC of modern complexity targeting a 7 nm process requires 500 engineering

years [53, 92]. Because it is impractical to take 500 years to create a chip, semicon-

ductor companies reduce time-to-market by adding engineers: increasing both the size of

their design teams and their reliance on 3rd-party IP. Namely, they purchase pre-designed

blocks for inclusion in their designs, such as CPU cores and cryptographic accelerators

(e.g., AES). This year, analysts estimate that a typical System-on-Chip (SoC) will contain

over 90 IP blocks [19]. From a security perspective, this reduces trust in the final chip: with

an increased number of (both in-house and external) designers molding the design, there is

increased opportunity for an attacker to insert a hardware Trojan.

Hardware Trojans inserted during design time are both permanent and powerful. Un-

like software, hardware cannot be patched in a general-purpose manner; repercussions of

hardware flaws echo throughout the chip’s lifetime. As hardware vulnerabilities like Melt-

down [103], Spectre [88], and Foreshadow [174] show, replacement is the only compre-

hensive mitigation, which is both costly and reputationally damaging. Moreover, vulnera-

bilities in hardware cripple otherwise secure software that runs on top [85]. Thus, it is vital

that hardware designers verify their designs are Trojan-free.

85

Prior work attempts to detect hardware Trojans at both design and run time. At de-

sign time, researchers propose static (FANCI [184]) and dynamic (VeriTrust [202] and

UCI [58]) analyses of the RTL design and gate-level netlists to search for rarely-used

circuitry, i.e., potential Trojan circuitry. At run time, researchers: 1) employ hardware-

implemented invariant monitors that dynamically verify design behavior matches specifi-

cation [59, 182], and 2) scramble inputs and outputs between trusted and untrusted com-

ponents [183] to make integration of a hardware Trojan into an existing design intractable.

These attempts to develop general, “one-size-fits-all”, approaches inevitably leave chips

vulnerable to attack [150, 181, 203].

Verifying a hardware design is Trojan-free poses two technical challenges. First, hard-

ware Trojan designs use the same digital circuit building blocks as non-malicious circuitry,

making it difficult to differentiate Trojan circuitry from non-malicious circuitry. Second,

it is infeasible to exhaustively verify, manually or automatically, even small hardware de-

signs [125], let alone designs of moderate complexity. These challenges are the reason why

“one-size-fits-all” approaches are incomplete and akin to proving a design is bug-free.

Instead of verifying a design is free of all Trojan classes, I advocate for a divide-and-

conquer approach, breaking down the RTL Trojan design space and systematically ruling

out each Trojan class. I begin this journey by eliminating the most pernicious RTL hard-

ware Trojan threat: the TTT. As Waksman et al. state [182, 183], when compared with

other stealthy design-time Trojans (i.e., data-based Trojans), TTTs provide “the biggest

bang for the buck [to the attacker] ... [because] they can be implemented with very little

logic, are not dependent on software or instruction sequences, and can run to completion

unnoticed by users.” Moreover, TTTs are a flexible Trojan design in terms of deploy-

ment scenarios. An attacker looking to deploy a TTT does not require any a priori

knowledge of how the victim circuit will be deployed at the system level, nor post-

deployment (physical or remote) access to the victim circuit [182, 183]. By eliminating

the threat of TTTs, I mimic the attack-specific nature of system-level software defenses

86

Ticking Timebomb Trojan

Ticking Timebomb Trigger

Event

Increment

+
0 1 0 1

Payload

0101

==

Activation

Signal

Comparator

Figure 5.1: Ticking Timebomb Trojan (TTT). A TTT is a hardware Trojan that imple-
ments a ticking timebomb trigger. Ticking timebomb triggers monotonically
move closer to activating as the system runs longer. In hardware, ticking time-
bomb triggers maintain a non-repeating sequence counter that increments upon
receiving an event signal.

like Data Execution Prevention (DEP) and Address Space Layout Randomization (ASLR)

in hardware, i.e., I force RTL attackers to implement Trojan designs that require post-

deployment attacker interaction. This is the hardware analog to defending against data

injection attacks in software, forcing attackers to employ more complex data reuse attacks;

a necessary part of a comprehensive, layered defense.

To ensure my defense is systematic and avoids implicit assumptions based on existing

TTTs, I first define an abstract TTT based on its behavior. At the heart of any TTT is a trig-

ger that tracks the progression of values that form some arbitrary sequence. The simplest

concrete example is a down-counter that releases the attack payload when it reaches zero.

Thus, I define TTTs as devices that track an arbitrary sequence of values constrained by

only two properties:

• the sequence never repeats a value,

• the sequence is incomplete.

Fig. 5.1 shows the basic hardware components required to implement such a sequence

counter in hardware. It has three building blocks: 1) SSCs, 2) an increment value, and 3)

an increment event.

To understand the power my definition gives to attackers, I use it to enumerate the space

of all possible TTT triggers. I define a total of six TTT variants, including distributed TTTs

87

that couple together SSCs scattered across the design to form a sequence counter and non-

uniform TTTs that conceal their behavior by incrementing with inconsistent values, i.e.,

expressing what looks like a random sequence.

I leverage my definition of TTTs to locate SSCs in a design that behave like TTT trig-

gers during functional verification. Specifically, I reduce the Trojan search space of the

DUT by analyzing only the progression of values expressed by SSCs of potential TTT trig-

gers. I design and implement an automated extension to existing functional verification

toolchains, called Bomberman, for identifying the presence of TTTs in hardware designs.

Bomberman computes a DFG from a design’s HDL (either pre- or post- synthesis) to iden-

tify the set of all combinations of SSCs that could construct a TTT. Initially, Bomberman

assumes all SSCs are suspicious. As Bomberman analyzes the results obtained from func-

tional verification, it marks any SSCs that violate my definition as benign. Bomberman

reports any remaining suspicious SSCs to designers, who use this information to create a

new test case for verification, or manually inspect connected logic for malice.

I demonstrate the effectiveness of Bomberman by implanting all six TTT variants into

four different open-source hardware designs: a RISC-V CPU [193], an OR1200 CPU [121],

a UART [121] module, and an AES accelerator [136]. Even with verification simulations

lasting less than one million cycles,1 Bomberman detects the presence of all TTT variants

across all circuit designs with a false positive rate of less than 1.2%.

This chapter makes the following contributions:

• An abstract definition and component-level breakdown of TTTs.

• Design of six TTT variants, including new variants that evade existing defenses.

• Design and implementation of an automated verification extension, Bomberman, that

identifies TTTs implanted in RTL hardware designs.

• Evaluation of Bomberman’s false positive rate and a comparative security analy-

sis against a range of both TTT-focused and “one-size-fits-all” design-time hard-

1Typical verification simulations last ≈millions of cycles [182].

88

ware Trojan defenses; Bomberman is the only approach capable of detecting all TTT

variants, including state-of-the-art pseudo-random [191] and non-deterministic [69]

TTTs.

• Algorithmic complexity analysis of Bomberman’s SSC Enumeration and SSC Clas-

sification stages.

• Open-source release of Bomberman and TTTs [168].

5.2 Background

5.2.1 Design-Time Hardware Trojans

In this chapter I shift my focus to design-time attacks (§2.3.2), i.e., detecting hard-

ware Trojans that are inserted at design-time [85, 101, 182, 183]. In Figure 5.2, I refine

the hardware Trojan taxonomy previously presented in Figure 2.2 to make characteriza-

tions according to 1) where in the IC design process they are inserted, and 2) their trigger

architectures [81, 162].

There are two main types of triggers: always-on and initially dormant. As their names

suggest, always-on triggers indicate a triggerless Trojan that is always activated, and are

thus trivial to detect during testing. Always-on triggers represent an extreme in a trig-

ger design trade-space—not implementing a trigger reduces the overall Trojan footprint

at the cost of sacrificing stealth. Alternatively, initially dormant triggers activate when a

signal within the design, or an input to the design, changes as a function of normal, yet

rare, operation, ideally influenced by an attacker. initially dormant triggers enable stealthy,

controllable, and generalizable hardware Trojans. As prior work shows, it is most advanta-

geous for attackers to be able to construct triggers that hide their Trojan payloads to evade

detection during testing [58, 69, 183, 184, 202], so I focus on initially dormant triggers.

Initially dormant triggers consist of two sub-categories: data-based and time-based [69,

182, 183]. Data-based triggers, or cheat codes, wait to recognize a single data value (single-

89

Malicious Hardware

Design TimeFabrication Time Packaging

Trigger Payload

Always On Initially Dormant

Data-Based Time-Based

DistributedCoalesced
Homogeneous
Heterogeneous

Uniform/Periodic
Uniform/Sporadic

Non-uniform/Sporadic
Non-uniform/Periodic

Figure 5.2: Taxonomy of Hardware Trojans. Hardware Trojans are malicious modifica-
tions to a hardware design that alter its functionality. I focus on time-based
Trojans (TTTs) and categorize them by design and behavior.

shot) or a sequence of data values to activate. Alternatively, time-based triggers, or ticking

timebombs, become increasingly more likely to activate the more time has passed since

a system reset. While, ticking timebombs can implement an indirect and probabalistic

notion of time (§5.4), a simple ticking timebomb trigger is a periodic up-counter, where

every clock cycle the counter increments, as shown in Fig. 5.3A. In this work, I eliminate

the threat of TTTs to force attackers to implement data-based Trojans that require post-

deployment attacker interaction to trigger [182].

5.3 Threat Model

In this chapter, I focus on the design-time attack threat model (§2.3.2). Additionally I

further constrict this threat model, focusing on identifying TTTs, as I define them (§5.4),

and leave the identification of other Trojan types to existing heuristics-based [58, 184, 202],

and future design-specific defenses. My defense can be deployed at any point throughout

90

the front-end design process—i.e., directly verifying 3rd party IP, after RTL design, or after

synthesis—after which the design is trusted to be free of TTTs.

5.4 Ticking Timebomb Triggers

First, I define TTTs by their behavior. Based on this definition, I synthesize the fun-

damental components required to implement a TTT in hardware. Finally, using these fun-

damental components I enumerate six total TTT variants, including previously contrived

TTTs that resemble contiguous time counters [182, 183], to more complex, distributed,

non-uniform, and sporadic [69, 191] designs.

5.4.1 Definition

I define TTTs as the set of hardware Trojans that implement a time-based trigger that

monotonically approaches activation as the victim circuit continuously operates without

reset. More succinctly, I define a ticking timebomb trigger based on two properties of the

values it exhibits while still dormant yet monotonically approaching activation:

Property 1: The TTT does NOT repeat a value without a system reset.

Property 2: The TTT does NOT enumerate all possible values without activating.

Property 1 holds by definition, since, if a TTT trigger repeats a value in its sequence, it

is no longer a ticking timebomb, but rather a data-based “cheat code” trigger [182, 183].

Property 2 holds by contradiction in that, if a TTT trigger enumerates all possible values

without triggering, i.e., no malicious circuit behavior is observed, then the device is not

malicious, and therefore not part of a TTT. Upon these two properties, I derive the funda-

mental hardware building blocks of a TTT.

Figs. 5.3A–D illustrate example ticking timebomb behaviors that are captured by my

definition, in order of increasing complexity. The most naive example of a ticking time-

bomb trigger is a simple periodic up-counter. While effective, a clever attacker may choose

91

Periodic Sporadic

U
ni
fo
rm

N
on

-u
ni
fo
rm

0 1 2 3
…

X

9 3 5 8
…

5ns

AES

A

B

X’

0 1 2 3 … X

…
7ns 2ns 3ns

9 3 5 8

AES

C

D

X’

5ns 5ns

Figure 5.3: Ticking Timebomb Trigger Behaviors. There are four primitive ticking time-
bomb trigger counting behaviors, in order of increasing complexity, captured
by my definition (Properties 1 & 2 in §5.4.1). A) The simplest counting behav-
ior is both periodic and uniform. Alternatively, more sophisticated counting
behaviors are achieved by: B) encrypting the count to make the sequence non-
uniform, C) incrementing it sporadically, or D) both.

to hide the monotonically increasing behavior of a periodic up-counter by either 1) ob-

scuring the relationship between successive counter values (e.g., AES counter mode se-

quence, Fig. 5.3B), or 2) sporadically incrementing the counter (e.g., a non-deterministic

TTTs [69], Fig. 5.3). Even more sophisticated, the attacker may choose to do both (Fig. 5.3D).

5.4.2 TTT Components

From my definition, I derive the fundamental components required to implement a TTT

in hardware. Fig. 5.1 depicts these components. For TTTs to exhibit the behaviors sum-

marized in Fig. 5.3, they must implement the notion of an abstract time counter. TTT time

counters require three components to be realized in hardware: 1) State-Saving Compo-

nents (SSCs), 2) increment value, and 3) increment event.

The SSC defines how the TTT saves and tracks the triggering state of the time counter.

SSCs can be either coalesced or distributed. Coalesced SSCs are comprised of one N-

bit register, while distributed SSCs are comprised of M, N-bit registers declared across the

design. Distributed SSCs have the advantage of increasing stealth by combining a subset of

one or multiple coalesced SSCs whose count behaviors individually violate the definition of

92

a TTT trigger (i.e., Properties 1 and 2), but when considered together comprise a valid TTT.

Distributed SSCs can also reduce hardware overhead through reuse of existing registers.

The TTT increment value defines how the time counter is incremented upon an incre-

ment event. The increment value can be uniform or non-uniform. Uniform increments are

hard-coded values in the design that do not change over time, e.g., incrementing by one at

every increment event. Non-uniform increments change depending on device state and op-

eration, e.g., incrementing by the least-significant four bits of the program counter at every

increment event.

Lastly, the TTT increment event determines when the time counter’s value is incre-

mented. Increment events may be periodic or sporadic. For example, the rising edge of the

clock is periodic, while the rising edge of an interrupt is sporadic.

5.4.3 TTT Variants

From the behavior of the fundamental TTT components, I extrapolate six TTT variants

that represent the TTT design space as I define. I start by grouping TTTs according to

their SSC construction. Depending on their sophistication level, the attacker may choose

to implement a simplistic coalesced TTT, or construct a larger, more complex, distributed

TTT. If the attacker chooses to implement a coalesced TTT, they have four variants to

choose from, with respect to increment uniformity and periodicity. The most naive attacker

may choose to implement a coalesced TTT with uniform increment values and periodic

increment events. To make the coalesced TTT more difficult to identify, the attacker may

choose to implement non-uniform increment values and/or sporadic increment events.

To increase stealth, an attacker may choose to combine two or more coalesced TTTs,

that alone violate the definition of being a TTT trigger, but combined construct a valid

distributed TTT. An attacker has two design choices for distributed TTTs. Seeking to

maximize stealth, the attacker may choose to combine several copies of the same coalesced

TTT with non-uniform increment values and sporadic increment events, thus implementing

93

a homogeneous distributed TTT. Alternatively, the attacker may seek integration flexibility,

and choose to combine various coalesced TTTs to implement a heterogeneous distributed

TTT. For homogeneous distributed TTTs, an attacker has the same four design choices

as in coalesced TTTs. However, for heterogeneous distributed TTTs, the design space is

much larger. Specifically, the number of sub-categories of heterogeneous distributed TTTs

can be computed using the binomial expansion,
(n

k

)
, with n, the number of coalesced sub-

triggers, and k, the number of unique sub-trigger types. I summarize all six TTT variants

and their behaviors in Figs. 5.2 and 5.3, respectively, and provide example implementations

in Verilog below.

In the following Verilog examples of TTT triggers, I use a three letter naming conven-

tion to describe their building blocks: SSC type (C or D), increment value (U or N), and

increment event (P or S). For example, a CNS TTT indicates a Coalesced (C) SSC, with

a Non-uniform (N) increment value, and a Sporadic (S) increment event. For TTTs com-

prised of distributed SSCs I use the “D-<type>” naming convention to indicate the type:

homogeneous or heterogeneous. This list is not comprehensive, but rather a representative

sampling of the TTT design space. Note, all examples assume a processor victim circuit,

with a pageFault flag, overflow flag, and a 32-bit program counter (PC) register.

1 // 1. CUP = Coalesced SSC, Uniform increment, Periodic event
2 reg [31:0] ssc ;
3 always @posedge(clock) begin
4 if (reset)
5 ssc <= 0;
6 else
7 ssc <= ssc + 1;
8 end
9 assign doAttack = (ssc == 32’hDEAD BEEF);

1 // 2. CUS = Coalesced SSC, Uniform increment, Sporadic event
2 reg [31:0] ssc ;
3 always @posedge(pageFault) begin
4 if (reset)
5 ssc <= 0;
6 else
7 ssc <= ssc + 1;
8 end
9 assign doAttack = (ssc == 32’hDEAD BEEF);

94

1 // 3. CNP = Coalesced SSC, Non−uniform increment, Periodic event
2 reg [31:0] ssc ;
3 always @posedge(clock) begin
4 if (reset)
5 ssc <= 1;
6 else
7 ssc <= ssc << PC[3:2];
8 end
9 assign doAttack = (ssc == 32’hDEAD BEEF);

1 // 4. CNS = Coalesced SSC, Non−uniform increment, Sporadic event
2 reg [31:0] ssc ;
3 always @posedge(pageFault) begin
4 if (reset)
5 ssc <= 0;
6 else
7 ssc <= ssc + PC[3:0];
8 end
9 assign doAttack = (ssc == 32’hDEAD BEEF);

1 // 5. D−Homogeneous = Distributed SSC, same sub−components
2 wire [31:0] ssc wire ;
3 reg [15:0] lower half ssc ;
4 reg [15:0] upper half ssc ;
5 assign ssc wire = { upper half ssc , lower half ssc };
6

7 // Two CUP sub−counters
8 always @posedge(clock) begin
9 if (reset) begin

10 lower half ssc <= 0;
11 upper half ssc <= 0;
12 end
13 else begin
14 lower half ssc <= lower half ssc + 1;
15 upper half ssc <= upper half ssc + 1;
16 end
17 end
18 assign doAttack = (ssc wire == 32’hDEAD BEEF);

1 // 6. D−Heterogeneous = Distributed SSC, different sub−components
2 wire [31:0] ssc wire ;
3 reg [15:0] lower half ssc ;
4 reg [15:0] upper half ssc ;
5 assign ssc wire = { upper half ssc , lower half ssc };
6

7 // CUS sub−counter
8 always @posedge(pageFault) begin
9 if (reset)

10 lower half ssc <= 0;
11 else
12 lower half ssc <= lower half ssc + 1;
13 end

95

14

15 // CNP sub−counter
16 always @posedge(clock) begin
17 if (reset)
18 upper half ssc <= 0;
19 else
20 upper half ssc <= upper half ssc + PC[3:0];
21 end
22 assign doAttack = (ssc wire == 32’hDEAD BEEF);

5.5 Bomberman

Now that I have defined what a TTT is, and how it behaves, how do we automatically

locate them within complex RTL designs? To address this question, I design and imple-

ment Bomberman, a dynamic Trojan verification framework.2 To summarize, Bomberman

locates potential TTTs by tracking the sequences expressed by all SSCs in a design, as

SSCs are one of the fundamental building blocks of TTTs. Initially, Bomberman classi-

fies all SSCs as suspicious. Then, any SSCs whose sequence progressions, recorded during

simulation, violate either Properties in §5.4.1, are marked benign.

Bomberman takes as input 1) a design’s HDL, and 2) verification simulation results,

and automatically flags suspicious SSCs that could be part of a TTT. The Bomberman

dynamic analysis framework is broken into two phases:

1. SSC Identification, and

2. SSC Classification.

During the SSC Identification phase, Bomberman identifies all coalesced and distributed

SSCs within the design. During the SSC Classification phase, Bomberman analyzes the

value progressions of all SSCs to identify suspicious SSCs that may comprise a TTT.

Fig. 5.4 illustrates the Bomberman architecture.

2Unfortunately, no commercial verification tool exists to track complex state that defines TTT invari-
ants, i.e., asserting no repeated values or distributed state exhaustion. Moreover, the closest such tools—
JasperGold [26] and VC Formal [156]—deploy bounded static analysis approaches that suffer from state-
explosion when applied to such invariants.

96

Bomberman

A) SSC Identification

IVL
Front-End

Data-Flow
Graph

Generator
(C++)

C+
+

A
PI

Suspicious
SSCs

SSC
Enumeration

(Python)

.dot

B) SSC
Classification

(Python)

.json

Verification (HDL Simulator)
Random Input

Generator Output Checking

.vcd

.vcd

Verilo
g

Hardware Design (DUT)

Figure 5.4: Bomberman Architecture. Bomberman is comprised of two stages: A) SSC
Identification, and B) SSC Classification. The first stage (A) identifies all co-
alesced and distributed SSCs in the design. The second stage (B) starts by
assuming all SSCs are suspicious, and marks SSCs as benign as it processes
the values expressed by each SSC during verification simulations.

5.5.1 SSC Identification

The first step in locating TTTs, is identifying all SSCs in the design. Identifying coa-

lesced SSCs is straightforward: any component in the HDL that may be synthesized into a

coalesced collection of flip-flops (or latches §5.7.2) is considered a coalesced SSC. Enu-

merating distributed SSCs is more challenging. Since distributed SSCs are comprised of

various combinations of coalesced SSCs that are interconnected to the host circuit, a naive

approach would be to enumerate the power set of all coalesced SSCs in the design. How-

ever, this creates an obvious state-explosion problem, and is unnecessary. Instead, I take

advantage of the fact that not every component in a circuit is connected to every other

component. Moreover, the structure of the circuit itself tells us what connections between

coalesced SSCs are possible, and thus the distributed SSCs Bomberman must track.

Therefore, I break the SSC Identification phase into two sub-stages: 1) Data-Flow

Graph (DFG) Generation, and 2) SSC Enumeration (Fig. 5.4A). First, I generate a DFG

from a circuit’s HDL, where each node in the graph represents a signal, and each edge rep-

resents connections between signals facilitated by intermediate combinational or sequential

logic. Then, I systematically traverse the graph to enumerate: 1) the set of all coalesced

97

SSCs, and 2) the set of all connected coalesced SSCs, or distributed SSCs.

5.5.1.1 DFG Generation

I implement the DFG Generation stage of the SSC Identification phase using the open-

source Icarus Verilog (IVL) [192] compiler front-end with a custom back-end written in

C++. My custom IVL back-end traverses the intermediate HDL code representation gen-

erated by the IVL front-end, to piece together a bit-level signal dependency, or data-flow,

graph. In doing so, it distinguishes between state-saving signals (i.e., signals gated by flip-

flops) and intermediate signals output from combinational logic. Continuous assignment

expressions are the most straightforward to capture as the IVL front-end already creates

an intermediate graph-like representation of such expressions. However, procedural as-

signments are more challenging. Specifically, at the RTL level, it is up to the compiler to

infer what HDL signals will synthesize into SSCs. To address this challenge, I use a sim-

ilar template-matching technique used by modern HDL compilers [73, 87]. The data-flow

graph is expressed using the Graphviz .dot format. Fig. 5.5 shows an example data-flow

graph generated by Bomberman.

5.5.1.2 SSC Enumeration

I implement the SSC Enumeration stage of the SSC Identification phase using a script

written in Python. First, my SSC Enumeration script iterates over every node in the cir-

cuit DFG, and identifies nodes (signals) that are outputs of registers (flip-flops). The

script marks these nodes as coalesced SSCs. Next, the script performs a Depth-First

Search (DFS), starting from each non-coalesced SSC signal node, to piece together dis-

tributed SSCs. The DFS backtracks when an input or coalesced SSC signal is reached.

When piecing together distributed SSCs, Bomberman does not take into account word-

level orderings between root coalesced SSCs. The order of the words, and thus the bits,

of the distributed SSC does not affect whether it satisfies or violates the properties of my

98

or1200_fpu_div.coal_counter_1[31:0] [31:0]->[31:0]

or1200_fpu_div.dist_counter[63:0]

[31:0]->[31:0]

or1200_fpu_div.coal_counter_2[31:0]

[31:0]->[63:32]

[31:0]->[31:0]

or1200_fpu_div.s_div_zero_o[0:0]

or1200_fpu_div.div_zero_o[0:0]

[0:0]->[0:0]

or1200_fpu_div.s_qutnt_o[26:0]

[3:0]->[31:0]

or1200_fpu_div.qutnt_o[26:0]

[26:0]->[26:0]

or1200_fpu_div.s_ready_o[0:0]

or1200_fpu_div.ready_o[0:0]

[0:0]->[0:0]

or1200_fpu_div.s_rmndr_o[26:0]

[3:0]->[31:0]

or1200_fpu_div.rmndr_o[26:0]

[26:0]->[26:0]

or1200_fpu_div.s_dvsor_i[26:0]

[26:0]->[0:0]

[26:0]->[26:0]

or1200_fpu_div.s_dvd[26:0]

[26:0]->[26:0]

or1200_fpu_div.v_div_minus_s_dvsor_i[26:0]

[26:0]->[26:0]

or1200_fpu_div.s_dvdnd_i[49:0]

[49:0]->[0:0]

or1200_fpu_div.v_div[26:0]

[49:26]->[23:0]

or1200_fpu_div.sign_dvd_i[0:0]

or1200_fpu_div.s_sign_o[0:0]

[0:0]->[0:0]

or1200_fpu_div.s_sign_dvd_i[0:0]

[0:0]->[0:0]

or1200_fpu_div.sign_o[0:0]

[0:0]->[0:0]

or1200_fpu_div.sign_div_i[0:0]

[0:0]->[0:0]

or1200_fpu_div.s_sign_div_i[0:0]

[0:0]->[0:0]

or1200_fpu_div.s_count[4:0]

[4:0]->[0:0]

[4:0]->[4:0]

[4:0]->[4:0]

or1200_fpu_div.s_state[0:0]

[4:0]->[0:0]

[26:0]->[26:0] [26:0]->[26:0]

[25:0]->[26:1] [26:0]->[26:0]

[26:0]->[26:0]

[26:0]->[31:5]

[25:0]->[26:1]

or1200_fpu_div.clk_i[0:0]

[0:0]->[31:0][0:0]->[31:0]

[0:0]->[26:0]

[0:0]->[0:0]

[0:0]->[26:0]

[0:0]->[26:0] [0:0]->[49:0]

[0:0]->[4:0]

[0:0]->[26:0]

[0:0]->[0:0] [0:0]->[0:0]

or1200_fpu_div.s_start_i[0:0]

[0:0]->[0:0]

[0:0]->[0:0]

or1200_fpu_div.dvdnd_i[49:0]

[49:0]->[49:0]

or1200_fpu_div.dvsor_i[26:0]

[26:0]->[26:0]

or1200_fpu_div.start_i[0:0]

[0:0]->[0:0]

[0:0]->[26:0]

[0:0]->[0:0]

[0:0]->[26:0]

[0:0]->[4:0]

[0:0]->[26:0]

[0:0]->[0:0]

[0:0]->[26:0]

[0:0]->[0:0]

[0:0]->[26:0]

[0:0]->[4:0]

[0:0]->[26:0]

[0:0]->[0:0]

Figure 5.5: Hardware Data-Flow Graph. Example data-flow graph, generated by
Bomberman, of an open-source floating-point division unit [121]. Bomberman
cross-references this graph with verification simulation results to identify SSCs
(red). In the graph, rectangles represent registers, or flip-flops, and ellipses rep-
resent intermediate signals, i.e., outputs from combinational logic. Red rectan-
gles indicate coalesced SSCs, while red ellipses represent distributed SSCs.

definition of a TTT trigger (§5.4.1). My definition does not care about the progression of

values expressed by the SSC(s), but only cares if all values are not expressed and individ-

ual values are not repeated. Note, a clever attacker may try to avoid detection by selecting

a slice of a single coalesced SSC to construct a ticking timebomb trigger. However, my im-

plementation of Bomberman classifies a single sliced coalesced SSC as a distributed SSC

with a single root coalesced SSC.

5.5.2 SSC Classification

After all SSCs have been enumerated, Bomberman analyzes the values expressed by ev-

ery SSC during verification simulations to classify whether each SSC is either suspicious—

meaning it could construct a TTT—or benign. Bomberman begins by assuming all SSCs

within the design are suspicious. At every update time within the simulation, Bomberman

checks to see if any SSC expresses a value that causes it to violate either property of my def-

inition (§5.4.1). If a property is violated, the SSC no longer meets the specifications to be

99

Algorithm 1: SSC Classification Algorithm
Input: Set, P, of all possible SSCs
Output: Set, S, of all suspicious SSCs

1 S← P;
2 foreach p ∈ P do
3 n← SizeO f (p);
4 Vp← /0; /* previous values of p */

5 foreach t ∈ T do
6 value←ValueAtTime(p, t);
7 if value ∈Vp then
8 Remove p from S;
9 Break;

10 else
11 Add value to Vp;
12 end
13 end
14 if ‖Vp‖== 2n then
15 Remove p from S;
16 end
17 end

part of a TTT, and Bomberman classifies it benign. Bomberman does not care how, when,

what, or the amount an SSC’s value is incremented; rather, Bomberman only monitors

if an SSC repeats a value, or enumerates all possible values. Lastly, Bomberman reports

any remaining suspicious SSCs for manual analysis by verification engineers.

I implement the SSC Classification algorithm—Algorithm 1—using Python. My clas-

sification program (Fig. 5.4B) takes as input a Value Change Dump (VCD) file, encoding

the verification simulation results, and cross-references the simulation results with the set

of suspicious SSCs, initially generated by the SSC Identification stage (Fig. 5.4A). For coa-

lesced SSCs, this is trivial: my analysis program iterates over the values expressed by each

coalesced SSC during simulation, and tests if either property from my definition (§5.4.1) is

violated. SSCs that break my definition of a TTT are marked benign. However, distributed

SSCs are more challenging. To optimize file sizes, the VCD format only records signal

values when they change, not every clock cycle. This detail is important when analyzing

distributed SSCs, whose root coalesced SSCs may update at different times. I address this

100

A) AES B) UART C) RISC-V D) OR1200

Test Bench Controller

AES (DUT)

Plaintext LFSR

ciphertext

Key LFSR Verify

Test Bench Controller

Wishbone Bus

UART
Encoder

UART
Decoder

UART (DUT)

Data LFSR

RX TX

Verify

RISC-V CPU
(DUT) Memory

Test Bench Controller

.exe

AXI-4 Lite Bus

Execution Monitor
Verify

Test Bench Controller

OR1200 CPU
(DUT)UART Memory

UART
Decoder

.exe

Wishbone Bus

Verify

Execution Monitor

TX

Verify

Figure 5.6: Hardware Testbenches. Testbench architectures for each DUT (outlined in
red). For the AES and UART designs, LFSRs generate random inputs for test-
ing. For the RISC-V and OR1200 CPUs, I compile ISA-specific assembly
programs [122, 193] into executables to exercise each design.

detail by time-aligning the root coalesced SSC values with respect to each other to ensure

the recording of all possible distributed SSC values expressed during simulation. Finally,

any remaining suspicious SSCs are compiled into a JSON file, and output for verification

engineers to inspect and make a final determination on whether or not the design contains

TTTs.

5.6 Evaluation

By construction Bomberman cannot produce false negatives since it initially assumes

all SSCs are suspicious, and only marks SSCs as benign if they express values during

simulation that violate the definition of TTT SSC behavior. However, false positives are

possible. To quantify Bomberman’s false positives rate, I evaluate Bomberman against

four real-world hardware designs with TTTs implanted in them. To model a production

simulation-based verification flow, I use a mix of existing test vectors (from each core’s

repository), random test vectors (commonly used to improve coverage), and custom test

vectors (to fill coverage gaps). To contextualize Bomberman’s effectiveness compared to

state-of-the-art TTT defenses, I build an End-to-End (E2E) TTT—that uses a pseudoran-

dom sequence to trigger a privilege escalation within a processor—that evades all defenses

except Bomberman. Lastly, I provide an asymptotic complexity analysis of the Bomberman

framework, and characterize Bomberman’s performance in practice.

101

1 8 16 32 64 128
Register Size (# bits)

0

100

200

300

400

R

eg
is

te
rs

0

91

144

61

344

40

1 0 0 2 1 4
40

2

68 79

0 0 8 2
22

0 0 0

AES
UART
RISC-V
OR1200

Figure 5.7: Hardware Design Complexities. Histograms of the (coalesced) registers in
each hardware design.

5.6.1 Experimental Setup

5.6.1.1 Hardware Designs

I evaluate Bomberman against four open-source hardware designs: 1) an AES accelera-

tor [136], 2) a UART module [121], 3) a RISC-V CPU [193], and 4) an OR1200 CPU [121].

Fig. 5.6 provides details on the testing architectures I deployed to simulate each IP core. I

also summarize the size and complexity of each hardware design in terms of the number

of registers (i.e., potential SSCs) in Fig. 5.7. The AES, RISC-V, and OR1200 designs are

shown to be the most computationally-intensive designs for Bomberman to analyze, since

they have large registers (≥32-bits), i.e., potentially suspicious SSCs that can increment

almost indefinitely.

AES Accelerator. The AES core operates solely in 128-bit counter (CTR) mode. It

takes a 128-bit key and 128-bits of plaintext (i.e., a counter initialized to a random seed)

as input, and 22 clock cycles later produces the ciphertext. Note, the design is pipelined,

so only the first encryption takes 22 clock cycles, and subsequent encryptions are ready

every following clock cycle. I interface two Linear Feedback Shift Registers (LFSRs) to

the DUT to generate random keys and plaintexts to exercise the core (Fig. 5.6A). Upon

testing initialization, the testbench controller resets and initializes both LFSRs (to different

102

random starting values) and the DUT. It then initiates the encryption process, and verifies

the functionality of the DUT is correct, i.e., each encryption is valid.

UART Module. The UART module interfaces with a Wishbone bus and contains both

a transmit (TX) and receive (RX) FIFO connected to two separate 8-bit TX and RX shift

registers. Each FIFO holds a maximum of sixteen 8-bit words. The core also has several

CSRs, one of which configures the baud rate, which I set to 3.125 MHz. I instantiate a

Wishbone bus arbiter to communicate with the DUT, and an LFSR to generate random

data bytes to TX/RX (Fig. 5.6B). I also instantiate a UART encoder/decoder to receive,

and echo back, any bytes transmitted from the DUT. Upon initialization, the testbench

controller resets and initializes the Wishbone bus arbiter, LFSR, and DUT, and begins

testing.

RISC-V CPU. The RISC-V CPU contains 32 general-purpose registers, a built-in in-

terrupt handler, and interfaces with other on-chip peripherals through a 32-bit AXI-4 Lite

or Wishbone bus interface. I instantiate an AXI-4 Lite bus arbiter to connect the DUT

with a simulated main memory block to support standard memory-mapped I/O functions

(Fig. 5.6C). The testbench controller has two main jobs after it initializes and resets all

components within. First, it initializes main memory with an executable to be run on the

bare metal CPU. These programs are in the form of .hex files that are compiled and linked

from RISC-V assembly or C programs using the RISC-V cross-compiler toolchain [120].

Second, it monitors the progress of each program execution and receives any output from

an executing program from specific memory addresses. I configure the testbench controller

to run multiple programs sequentially, without resetting the device.

OR1200 CPU. The OR1200 CPU implements the OR1K RISC ISA. It contains a 5-

stage pipeline, instruction and data caches, and interfaces with other peripherals through

a 32-bit Wishbone bus interface. I instantiate a Wishbone bus arbiter to connect the DUT

with a simulated main memory block and a UART module to support standard I/O func-

tions (Fig. 5.6D). The testbench controller has two jobs after it initializes and resets all

103

components within. First, it initializes main memory with an executable to be run on the

bare metal CPU. These programs are in the form of .vmem files that are compiled and linked

from OR1K assembly or C programs using the OR1K cross-compiler toolchain [123]. Sec-

ond, it monitors the progress of each program execution and receives any program output

from the UART decoder. Like the RISC-V, I configure the OR1200 testbench controller to

run multiple programs sequentially, without resets in between.

5.6.1.2 System Setup

As described in §5.5, Bomberman interfaces with Icarus Verilog (IVL). IVL is also used

to perform all verification simulations of my four hardware designs. In both cases, I use

version 10.1 of IVL. Both IVL and Bomberman were compiled with the Clang compiler

(version 10.0.1) on a MacBook Pro with a 3.1 GHz Intel Core i7 processor and 16 GB

DDR3 RAM. All RTL simulations and Bomberman analyses were also run on the same

machine.

5.6.2 False Positives

I empirically quantify Bomberman’s false positive rate by analyzing four real world

hardware designs (§5.6.1.1). Additionally, I verify my implementation of Bomberman

does not produce false negatives—as this should be impossible—by implanting all six

TTT variants (§5.4.3) within each design. For each design, I plot the number of suspicious

SSCs flagged by Bomberman over a specific simulation timeline. Based on the TTT trigger

definitions provided in §5.4.1, I categorize SSCs within each plot as follows:

1. Suspicious: a (coalesced or distributed) SSC for which all possible values have not

yet been expressed and no value has been repeated;

2. Constant: a (coalesced or distributed) SSC for which only a single value has been

expressed.

Note coalesced and distributed classifications are mutually exclusive, as they are SSC

104

A) AES

C) RISC-V

B) UART

D) OR1200

Repeat 75 Encryptions75 Random Encryptions

Found
6 SSCs

Er
ro

r T
es

tin
g

TX
 1

6
By

te
s

RX
 1

6
By

te
s

Re
pe

at
 T

X
16

 B
yt

es

Re
pe

at
 R

X
16

 B
yt

es

Found 6 SSCs

ds
x

in
sn

fe
tc

he
rr

or ov

shortjump

tic
ks

ys
ca

ll

ds
x

in
sn

fe
tc

he
rr

or ov

shortjump tic
ks

ys
ca

ll

custom*

Fo
un

d
9

SS
Cs

custom*

lsu lsu

lw
jr

lw
jr

Ju
m

p
In

s.

Br
an

ch
 In

s.

Lo
ad

 In
s.

St
or

e
In

s.

In
t.

Re
g.

-Im
m

ed
. I

ns
.

In
t.

Re
g.

-R
eg

. I
ns

.

M
ul

tip
ly

 In
s.

Di
vi

de
 In

s.

Found 19 SSCs

De
bu

g
In

s.

Figure 5.8: False Positives. Reduction in SSCs classified as suspicious across all four hard-
ware designs over their simulation timelines. A) AES. Bomberman identifies
the SSCs of all six TTT variants implanted with zero false positives. B) UART.
(Same as AES). C) RISC-V. Bomberman flags 19 SSCs as suspicious, six from
implanted TTTs, three from benign performance counters, and ten benign con-
stants resulting from on-chip CSRs. D) OR1200. Bomberman flags nine SSCs
as suspicious, six from implanted TTTs, and three benign constants.

design characteristics. However, suspicious and constant classifications are not mutually

exclusive. By definition (§5.4.1), an SSC that has only expressed a single value during

simulation is suspicious. While constants SSCs are also suspicious, I plot both to enable

Bomberman users to distinguish between SSCs that store configuration settings (commonly

used in larger designs) from SSCs that store sequence progressions (e.g., TTTs or perfor-

mance counters).

AES Accelerator. I configure the AES testbench to execute 75 random encryptions,

i.e., 75 random 128-bit values with 75 (random and different) 128-bit keys, and subse-

quently repeat the same 75 encryptions. I simulate the AES core at 100 MHz. In Fig. 5.8A

I plot the number of suspicious SSCs tracked by Bomberman over the simulation timeline.

During the first 250 clock cycles of simulation, as registers cycle through more than

one value, they are removed from the sets of constants. During the initial 75 random

encryptions, after ≈ 750 clock cycles, the 8-bit registers toggle through all 256 possible

105

values, and thus are also eliminated from the sets of suspicious SSCs. However, after the

initial 75 encryptions, the number of false positives is still quite high, as the 32- and 128-

bit registers have yet to toggle through all possible values, or repeat a value. Since these

registers are quite large, toggling through all possible values is infeasible. Driven by the

observation that the data-path of a TTT-free design tracks state from test inputs, not since

the last system reset, I take an alternative approach to eradicate large SSC false positives.

Formally, I repeat the same test case(s) without an intermediate system reset to cause only

non-suspicious SSCs to repeat values (violating Property 1 in §5.4.1). I use this insight to

efficiently minimize suspicious SSC false positives. Since the AES core is a deterministic

state machine with no control-path logic, I simply reset the LFSRs, and repeat the same

75 encryptions. After ≈ 1200 clock cycles, I achieve a false positive rate of 0% while

detecting 100% of the TTT variants implanted in the core.

UART Module. I configure the UART testbench to perform configuration, error, and

TX/RX testing. During the configuration and error testing phases, configuration registers

are toggled between values, and incorrect UART transactions are generated to raise error

statuses. During the TX/RX testing, 16 random bytes are transmitted by the DUT, and

upon being received by the UART decoder, are immediately echoed back, and received by

the DUT. Following my insights from the AES experiments, I transmit and receive the

same set of 16 bytes again, to induce truly non-suspicious SSCs to repeat values. I plot

the number of suspicious SSCs identified by Bomberman over the simulation timeline in

Fig. 5.8B.

During the first ≈ 80k clock cycles (error testing phase), Bomberman eliminates over

50% of all potentially suspicious (coalesced) SSCs, as many of the UART’s registers are

either single-bit CSRs that, once toggled on and off, both: 1) cycle through all possible

values, and 2) repeat a value. Subsequently, during the first TX testing phase, the 16-

byte TX FIFO is saturated causing another 50% reduction in the number of coalesced

constants. Likewise, once the DUT transmits all 16 bytes to the UART decoder, and the

106

UART encoder echos them all back, the 16-byte RX FIFO is saturated causing another

reduction in the number of coalesced constants.

After the initial TX/RX testing phase, I are still left with several (suspicious) false

positives. This is because the TX and RX FIFO registers have yet to cycle through all

possible values, nor have they repeated a value. While these registers are small (8-bits),

and continued random testing would eventually exhaustively exercise them, I leverage my

observations from the prior AES simulation: I repeat the previous TX/RX test sequence

causing data-path registers to repeat values, eliminating all false positives. Again, Bomber-

man successfully identifies all TTT variants with zero false positives.

RISC-V CPU. I configure the RISC-V CPU testbench to run a single RISC-V assembly

program that exercises all eight instruction types. The assembly test program was selected

from the open-source RISC-V design repository [193]. These instructions include jumps,

branches, loads, stores, arithmetic register-immediate and register-register, multiplies, and

divides. I simulate the RISC-V core and again plot the number of suspicious SSCs identi-

fied by Bomberman (Fig. 5.8C).

During the execution of the first set of instructions (jumps), Bomberman largely reduces

potential constant and suspicious SSCs. This is because, like the UART module, most

of the registers within the RISC-V CPU are 1-bit CSRs for which enumerating all (2)

possible values is trivial. The remaining 90 suspicious SSCs are slowly eradicated as more

instructions execute, causing the remaining control-path signals to enumerate all possible

values. Similar to repeating the same encryptions during the AES simulation, the assembly

programs were designed to load and store repeated values in the large (≥ 32-bit) registers,

causing them to violate Property 1 (§5.4.1).

In the end, Bomberman identifies 19 suspicious SSCs: 16 coalesced and three dis-

tributed. Upon manual inspection, I identify four of the 16 coalesced SSCs, and two of the

three distributed SSCs, as components of the six implanted (malicious) TTTs. Of the 12

remaining coalesced SSCs, I identify three as benign timeout and performance counters,

107

and nine as benign constants that stem from unused CPU features, the hard-coded zero reg-

ister, and the interrupt mask register. Lastly, I identify the single remaining distributed SSC

as a combination of some of the benign coalesced constants. In a real world deployment

scenario, I imagine verification engineers using Bomberman’s insights to tailor their test

cases to maximize threat-specific testing coverage, similar to how verification engineers

today use coverage metrics to inform them of gaps in their current test vectors.

Recall, Bomberman only flags SSCs whose value progressions do not violate the prop-

erties of a TTT (§5.4.1). At most, Bomberman will only flag SSCs as suspicious. It is up to

the designer or verification engineer to make the final determination on whether or not an

SSC is malicious. By locating all (malicious) implanted TTTs and (benign) performance

counters, I validate Bomberman’s correctness.

OR1200 CPU. Lastly, I configure the OR1200 testbench to run eight different OR1K

assembly programs. Like the AES and UART simulations, I configure the testbench to

perform repeated testing, i.e., execute each program twice, consecutively, without an inter-

mediate device reset. The first seven test programs are selected from the open-source OR1K

testing suite [122], while the last program is custom written to exercise specific configura-

tion registers not exercised by the testing suite. I simulate the OR1200 at 50 MHz, and plot

the number of suspicious SSCs identified by Bomberman over the simulation timeline in

Fig. 5.8D.

In the end, Bomberman identifies nine suspicious SSCs, seven coalesced and two dis-

tributed. Four of the seven coalesced SSCs, and both distributed SSCs, are components

of the six implanted TTTs. The remaining three coalesced SSCs are constants, and false

positives. I manually identify these false positives as shadow registers only used when an

exception is thrown during a multi-operand arithmetic instruction sequence.

108

5.6.3 Constrained Randomized Verification

Given the size and complexity of modern hardware designs, verification engineers typi-

cally use randomly-generated test vectors to maximize verification coverage. Similarly, for

two of the four designs I study (AES and UART), I use LFSRs to generate random data-

path inputs for test vectors. Thus, I ask the question: does contrained random verification

degrade Bomberman’s performance? To demonstrate Bomberman is test-case agnostic, I

generate 25 random test sequences for both the AES and UART designs by randomly seed-

ing the LFSR(s) in each design’s respective test bench (Fig. 5.6). Note, I do not experiment

with constrained random verification of the RISC-V and OR1200 designs as these require

random instruction stream generators, for which (to the best of my knowledge) none exist

in the open-source community that are compatible with open-source RTL simulators like

IVL or Verilator.3

For the AES design, I generate 25 random sequences of seventy-five 128-bit keys and

plaintexts. For the UART design, I generate 25 random sequences of 16 bytes (to TX/RX).

Similar to the false positive experiments (§5.6.2), each test sequence for each design was

repeated twice, without a system reset in between. Given Bomberman’s inability to pro-

duce false negatives, I only study the effects of randomness on Bomberman’s false positive

rate. Thus, unlike the false positive experiments, no TTT variants were implanted in either

design. In Fig. 5.9, I plot the suspicious SSC traces produced by Bomberman across all

randomly generated test vectors. Across both designs, zero suspicious SSCs (false pos-

itives) are observed at the end of all 25 simulations, and each simulation trace is nearly

identical. Thus, Bomberman’s performance is not test-case specific, rather, it is dependent

on verification coverage, with respect to TTT invariants,4 i.e. Properties 1 & 2 in §5.4.1.

3Google’s RISCV-DV open-source random instruction stream generator is not compatible with either IVL
or Verilator [52].

4Verification coverage with respect to TTT invariants, is not to be confused with generic verification
coverage such as functional, statement, condition, toggle, branch, and FSM coverage. The former entails
exercising SSCs such that they violate TTT invariants (Properties 1–2 in §5.4.1).

109

Distributed SSCs

Coalesced SSCs

Distributed SSCs

Coalesced SSCs

A) AES

B) UART

Figure 5.9: Randomized Testing. Randomly generated verification test vectors do not af-
fect Bomberman’s performance. Rather, Bomberman’s performance is depen-
dent on verification coverage with respect to SSC Properties 1 & 2 (§5.4.1) that
define the behavior of a TTT. Namely, tests that cause more SSCs to cycle
through all possible values, or repeat a value, reduce false positives.

5.6.4 Comparative Analysis of Prior Work

To demonstrate the need for Trojan-specific verification tools like Bomberman, I pro-

vide a two-fold comparative analysis between Bomberman and existing design-time Trojan

defenses. First, I study the capabilities of each defense in defeating all six TTT variants

described in §5.4.3. I summarize each defense and its effectiveness in Tab. 5.1, and describ-

ing why some defenses fail to defeat all TTT variants below. Armed with this knowledge, I

construct an E2E TTT in Verilog—targeting the OR1200 [121] processor—that is capable

of bypassing all existing defenses except Bomberman. I describe the fundamental building

blocks of my TTT—and the corresponding Verilog components in my implementation—

that enable it to defeat prior defenses.

110

Table 5.1: Comparative Security Analysis of TTT Defenses and Bomberman.
Defense UCI [58] FANCI [184] VeriTrust [202] WordRev [99] Power Resets [183] Bomberman

Type Trojan-Agnostic Trojan-Agnostic Trojan-Agnostic TTT-Specific TTT-Specific TTT-Specific
Analysis Dynamic Static Dynamic Static N/A† Dynamic
Target Activation Signals Comparator Inputs Activation Signals Increment Logic SSCs SSCs

T
T

T
Ty

pe

CUP 3 7 7 3 3 3

CUS 3 7 7 3 7 3

CNP 3 7 7 7 7 3

CNS 3 7 7 7 7 3

D-HMG 7 7 7 7 7* 3

D-HTG 7 7 7 7 7 3

XXX: Coalesced or Distributed SSC
XXX: Uniform or Non-uniform Increment Value
XXX: Periodic or Sporadic Increment Event

† Power Resets [183] are a runtime mechanism, not a verification technique.
* Power resets only defend against homogeneous distributed TTTs compromised of CUP sub-components.

5.6.4.1 Security Analysis of Existing Defenses

There are two approaches for defending against TTTs: 1) Trojan-agnostic, 2) TTT-

specific. Trojan-agnostic techniques are primarily verification focused, and include: FANCI

[184], UCI [58] and VeriTrust [202]. While these approaches differ in implementation

(static vs. dynamic), from above they are similar. All three locate rarely used logic that

comprise most generic Trojan circuits. Unfortunately, researchers have demonstrated sys-

tematic approaches to transform almost any Trojan circuit to evade these techniques, while

maintaining logical equivalence [150, 203]. Alternatively, TTT-specific approaches such

as WordRev [99, 151] and Waksman et al.’s Power Resets [183], attempt to counter only

TTTs. While these approaches work against known TTTs at the time of their respective

publications, they fail to recognize the behavior of all TTT variants presented in this work.

In Tab. 5.1, I summarize each defense, and the TTT variants (§5.4.3 and §5.4.3) they can

defeat. Below, I provide a security analysis of each defense, describing how and what TTT

variants are defeated.

UCI. UCI [58] is a Trojan-agnostic dynamic verification tool that searches HDL for

intermediate combinational logic that does not affect signal values from source to sink dur-

ing verification simulations. Since TTT trigger components—SSCs, increment event, in-

111

crement amount—remain active during simulation, UCI would not flag them as suspicious.

However, TTTs also have a comparator that checks if the SSC’s count has reached its acti-

vation state. Since the output of this comparator—the trigger activation signal (Fig. 5.1)—

would remain unchanged during simulation, UCI would flag it. Unfortunately, as Sturton

et al. show [150], having two activation signals—e.g., a distributed TTT—that each ex-

press their activation states under simulation, but never simultaneously, would evade UCI.

As I show in my E2E TTT below (§5.6.4.2), this can be achieved using a distributed SSC

constructed of fast and slow (coalesced) counters that wrap around (repeat values individu-

ally). Since the overall distributed SSC would not violate TTT properties (§5.4.1), it would

still be flagged by Bomberman.

FANCI. FANCI [184] is a Trojan-agnostic static verification framework that locates

potential Trojan logic by computing “control values” for inputs to intermediate combina-

tional logic in a design. Inputs with low control values are weakly-affecting [184], and

most likely Trojan comparator inputs (Fig. 5.1) that indicate the current state of the trig-

ger, e.g. a specific time counter value. Control values can be approximated by randomly

sampling the truth tables of intermediate logic across the design. Unfortunately, Zhang et

al. construct a systematic framework—DeTrust [203]—that distributes trigger comparator

inputs across layers of sequential logic to increase their control values, hiding them from

FANCI. Since any TTT variant can be used with DeTrust-transformed comparator logic,

FANCI cannot identify any TTTs.

VeriTrust. Similar to UCI, VeriTrust [202] is a Trojan-agnostic dynamic verification

framework that locates (unused) Trojan trigger activation signals (Fig. 5.1) in combina-

tional logic cones that drive sequential logic. However, unlike UCI, VeriTrust locates ac-

tivation signals by locating unused inputs—not logic—to the victim logic encapsulating a

Trojan’s payload. This semantic difference enables VeriTrust to detect Trojans irrespective

of their implementations. Unfortunately, using their DeTrust framework [203], Zhang et

al. illustrate how splitting the activation signals of any TTT design across multiple combi-

112

national logic cones, separated by layers of sequential logic, evades VeriTrust.

WordRev. WordRev [99, 151] is TTT-specific static analysis tool that identifies SSCs

that behave like counters. WordRev leverages the notion that the carry bit propagates from

the least-significant position to the most-significant position in counter registers. Thus, the

increment logic connecting SSCs must be configured to allow such propagation. However,

this operating assumption causes WordRev to miss distributed TTTs, and TTTs with non-

uniform increment values.

Power Resets. Waksman et al. [183] suggest intermittent power resets as a TTT-

specific defense. Intermittent power resets prevent potential TTT SSCs from reaching their

activation states. This approach requires formally verifying/validating the correct operation

of the DUT for a set amount of time, denoted the validation epoch. Once they guarantee

no TTT is triggered within the validation epoch, the chip can safely operate as long as its

power is cycled in time intervals less than the validation epoch. Unfortunately, as Imeson et

al. [69] point out, this type of defense only works against TTTs with uniform increment val-

ues and periodic increment events, as it is impractical to formally verify non-deterministic

(sporadic and/or non-uniform) designs.

5.6.4.2 End-to-End Supervisor Transition TTT

Using the approaches for defeating each Trojan-agnostic and TTT-specific defense de-

scribed above [150, 203], I systematically construct an E2E TTT (List. V.2) that evades

all defenses, except Bomberman. My Trojan provides a supervisor transition foothold that

enables attackers to bypass system authentication mechanisms and obtain root-level privi-

leges.

Attack Target. My TTT (List. V.2) is based on a supervisor transition foothold Trojan

first described by Sturton et al. in [150]. This Trojan targets a microprocessor circuit, and

enables an attacker to arbitrarily escalate the privilege mode of the processor to supervisor

mode. In List. V.1, I provide a simplified version of the un-attacked processor HDL that

113

updates the processor’s supervisor mode register. Under non-trigger conditions, the super-

visor signal—super—is either updated via an input signal—in.super—on the following

clock edge, if the holdn bit is 1 (holdn is active low), otherwise the super signal holds

the same value from the previous clock period. Additionally, the super signal is reset to 1

(supervisor mode) when the processor is reset via the active-low resetn signal.

Listing V.1: Unmodified HDL of the processor’s supervisor-mode update logic. The super-
visor bit (super) is set when either: 1) the processor is put into reset, 2) the
processor was already in supervisor-mode (it stays in the mode), or 3) external
logic (in.super) has triggered the processor to switch to supervisor-mode.

1 always @(posedge clk) begin
2 super <= ∼resetn | (∼holdn & super) | (holdn & in. super) ;
3 end

Listing V.2: Verilog HDL of a TTT that evades all existing design-time Trojan detection
techniques—including UCI [58], FANCI [184], VeriTrust [202], WordRev [99,
151], and power resets [183]—except Bomberman. This TTT alters logic
(List. V.1) that updates the supervisor-mode bit register.

1 // Distributed TTT SSCs to evade UCI
2 reg [15:0] count 1 ; // Assume reset to 16’h0000
3 reg [15:0] count 2 ; // Assume reset to 16’h0000
4

5 // TTT Trigger Deployment Signal
6 reg [6:0] deploy 1; // Assume reset to 7’b0000000
7 reg [6:0] deploy 2; // Assume reset to 7’b0000000
8

9 // Update SSCs non−uniformly and sporadically
10 // to defeat WordRev and Power Resets
11 always @posedge(pageFault) begin
12 count 1 <= count 1 + PC[3:0];
13 count 2 <= count 2 + PC[5:2];
14 end
15

16 // Distribute trigger activation input signal (count 1)
17 // across layers of sequential logic to defeat FANCI.
18 always @(posedge clk) begin
19 if (count 1 [3:0] == ‘DEPLOY 0)
20 deploy 1[0] <= 1;
21 else
22 deploy 1[0] <= 0;

23
...

...
...

24 if (count 1 [15:12] == ‘DEPLOY 3)

114

25 deploy 1[3] <= 1;
26 else
27 deploy 1[3] <= 0;
28 end
29

30 always @(posedge clk) begin
31 if (deploy 1 [2:0] == 2’b11)
32 deploy 1[4] <= 1;
33 else deploy 1[4] <= 0;
34 if (deploy 1 [3:2] == 2’b11)
35 deploy 1[5] <= 1;
36 else deploy 1[5] <= 0;
37 if (deploy 1 [5:4] == 2’b11)
38 deploy 1[6] <= 1;
39 else deploy 1[6] <= 0;
40 end
41

42 // Repeat lines 16−−40, but with count 2 and deploy 2
43

44 // Hide trigger activation signals (deploy 1 and deploy 2)
45 // inside fan−in logic cone of three additional signals
46 // (h 1, h 2, and h 3) to evade VeriTrust . Note, holdn prev
47 // and in . super prev are values of holdn and in . super from
48 // previous clock cycles , added to maintain timing .
49 always @(posedge clk) begin
50 holdn <= holdn prev;
51 in . super <= in. super prev ;
52 h 1 <= deploy 1[6];
53 h 2 <= ∼deploy 2[6] & holdn prev & in. super prev | deploy 2 [6];
54 h 3 <= (∼deploy 1[6] | deploy 2 [6]) & (holdn prev & in. super prev) ;
55 end
56

57 always @(posedge clk) begin
58 super <= ∼resetn | (∼holdn & super) | (h 1 & h 2) | h 3;
59 end

Stealth Characteristics. I systematically construct my TTT (shown in List. V.2) with

several characteristics that enable it to evade all existing Trojan defenses except Bomber-

man. First, armed with Sturton et al.’s insights [150], I deploy a distributed SSC archi-

tecture to evade detection by UCI. Distributed SSCs enable the TTT’s activation signals

to bypass UCI since each coalesced SSC sub-component—count1 and count2—can ex-

press their individual triggered states during verification testing–defined by the ‘DEPLOYX

constants—while the overall distributed SSC does not express its triggered state. Next, I

increment my TTT’s SSCs non-uniformly, to evade WordRev [99, 151] and power re-

sets [183]. Lastly, I deploy DeTrust transformations [203] on the Trojan’s: 1) comparator

115

inputs (count1 and count2)—splitting them amongst several layers of sequential logic—

and 2) trigger activation signals (deploy1[6] and deploy2[6])—hiding them inside a logic

cone of three additional signals: h 1, h 2, and h 3. This hides my TTT from FANCI [184]

and VeriTrust [202], respectively. Since Bomberman: 1) is TTT-specific, 2) considers dis-

tributed SSC architectures, and 3) is agnostic of how or when SSCs are incremented, it is

the only defense that can detect this TTT.

5.6.5 Run Time and Complexity Analysis

Since Bomberman is a dynamic verification framework, its run time is roughly pro-

portional to the size of the DUT (number of SSCs and wires, see Fig. 5.7) and simulation

time (number of time steps). Across all designs I study, the run time of Bomberman did

not exceed 11 minutes on a commodity laptop. Compared with other Trojan verification

frameworks [58, 99, 151, 184, 202], Bomberman is two orders of magnitude faster when

analyzing the same circuits; this is due, in part, to Bomberman’s targeted nature. As I show

in Tab. 5.2, Bomberman’s run time on real-world hardware designs scales proportionally

with respect to the number of SSCs and number simulation test cases.

Table 5.2: Bomberman scalability comparison for circuit DFGs with n signals simulated
over c clock cycles.

Analysis Time Space Average
Framework Type Complexity Complexity Run Time

Bomberman Dynamic O(nc) O(nc) 1x Minutes
FANCI [184] Static O(n) O(n) 10x Hours
UCI [58] Dynamic O(n2c) O(nc) 1x Hours
VeriTrust [202] Dynamic O(n2n) O(nc) 10x Hours
WordRev [99] Static Not Reported Not Reported 1x Hours

The Bomberman framework consists of two main components that contribute to its

overall time and space complexities (Fig. 5.4): 1) SSC Enumeration, and 2) SSC Classifi-

cation.5 Below, I provide an in-depth complexity analysis for each stage, and Bomberman

5In my experiments, I did not observe the DFG Generation stage to be computationally dominant.

116

as a whole.

5.6.5.1 SSC Enumeration

During the SSC Enumeration stage, Bomberman locates signals that are the direct out-

puts of coalesced SSCs, and signals that form distributed SSCs (§5.5.1). For a circuit DFG

with n nodes (each node representing a signal), a maximum fan-in of f for signal nodes,

a maximum logic depth per pipeline stage6 of d, the asymptotic time complexity for enu-

merating SSCs is O(n f d). Since most hardware designs are optimized for either power,

performance (clock speed), and/or area, the maximum logic depth, d, is usually small and

bounded. Therefore, the time complexity is polynomial. To show this, I plot (Fig. 5.10) the

distributions of logic depths within pipeline stages—and the corresponding Bomberman

run time—across the four designs I study, representing both mid-to-high performance and

mid-to-large designs. Additionally, to stress-test Bomberman, I measure its run time in

the worst-case scenario: analyzing the flattened and obfuscated functionally-equivalent

logic model of the most low-performant and low-power Arm processor available [6]. For

all designs, the logic depths were less than 25 across all pipeline stages.7 Additionally, the

maximum fan-in for a signal node is often small—less than 10—and bounded [184], fur-

ther reducing the time complexity to O(n). By extension, the asymptotic space complexity

reduces from O(n+n f) to O(n), to store the DFG.

While Bomberman’s SSC Enumeration time complexity is bounded by conventional

circuit size and performance constraints, from a security perspective it is important to un-

derstand how an attacker might manipulate these bounds. Fortunately, while an attacker

can control the maximum logic depth in a pipeline stage, d, and the maximum fan-in of

a signal node, f , choosing large values for either in hopes of rendering Bomberman anal-

6The logic depth in a pipeline stage is the number of stages of combinational logic between layers of
sequential logic.

7If I could plot the logic depths within commercial x86 processors in Fig. 5.10, I would expect them to
be smaller than the OR1200, RISC-V, and Arm designs, as the maximum depth of logic per pipeline stage of
GHz processors must be less than eight [63].

117

0 10 20 30 40 50
Pipeline Logic Depth

AES

UART

OR1200

RISC-V

ARM CORTEX-M0

D
es

ig
n

Bomberman RT: 5.457s

Bomberman RT: 4.912s

Bomberman RT: 22.570s

Bomberman RT: 10.840s

Bomberman RT: 643.568s

Figure 5.10: Distributions of Logic Depths per Pipeline Stage. The length of combina-
tional logic chains between any two sequential components in most hardware
designs is bounded to optimize for performance, power, and/or area. High
performance designs have the shortest depths (less than 8 [63]), while even
the flattened and obfuscated logic model of the lowest-performance Arm pro-
cessor available [6] (worst case scenario) has a depth <25. Even in the worst
case, Bomberman’s run time (overlaid for each core), is <11 min. on a com-
modity laptop.

yses computationally infeasible would reveal them: the victim design would be rendered

unusable—either too large or too slow—by its intended customers and the tools would

direct the designer to inspect the Trojan logic.

5.6.5.2 SSC Classification

In the SSC Classification stage, Bomberman analyzes verification simulation traces to

determine if an SSC is suspicious—potentially part of a TTT (Algo. 1). For a circuit DFG

with n nodes (each node representing a signal), and c simulation clock cycles, the asymp-

totic time and space complexities are both O(nc). This accounts for tracking the values

expressed by each SSC over each simulation clock cycle. Since the time and space com-

plexities of the SSC Classification stage dominate, compared with the SSC Enumeration

stage, they represent the time and space complexities for the entire Bomberman frame-

work.

118

5.7 Discussion

5.7.1 Test Vector Selection

During the AES and UART false positive evaluations, I witnessed a plateauing reduc-

tion in false positives after executing initial verification tests (Figs. 5.8A–B). Upon a closer

look, I find this initial reduction is a result of test vectors exhaustively exercising small

registers—1- to 16-bit—violating Property 2 in §5.4.1. For large registers—32-bit and

larger—cycling through all register values is not computationally feasible. Thus, to quickly

reduce the number of false positives across both designs, I deploy a repeat testing strategy

(§5.6.2). For most circuit designs, I observe: the state of most benign SSCs is a function

of design inputs. By repeating tests, I induce benign SSCs to repeat a value, violating

Property 1 (§5.4.1).

How do I know which test cases to repeat in order to induce repeated values in benign

SSCs? For designs with unstructured, data-path-only inputs—like the AES design—

repeating any test vector will suffice. Alternatively, for designs that require structured

control-path inputs, inducing repeated SSC values requires activating the same control-

path multiple times while also repeating data-path inputs. Determining which control-

paths to activate, i.e., control-paths that influence specific SSCs, is tantamount to crafting

test vectors with high SSC coverage. Fortunately, Bomberman provides verification engi-

neers with two channels of information to aid in this process: 1) the circuit DFG (Fig. 5.5)

illustrates the control-path that exercises a specific SSC, and 2) the SSC Classification out-

put indicates the extent suspicious SSCs have/have-not been exercised. Together, these

Bomberman insights guide verification engineers in creating test vectors that achieve high

coverage, with respect to Bomberman invariants (Properties 1 and 2 in §5.4.1), therefore

minimizing false positives. For example, in §5.6.2, when analyzing the OR1200 processor,

I noticed designer-provided test vectors [122] did not exercise several CSRs. By referenc-

ing Bomberman’s output, I located the (non-) suspicious SSCs and crafted test vectors to

119

exercise them.

5.7.2 Latches

For Bomberman to locate TTTs in a hardware design, it first locates all SSCs by iden-

tifying signals in the design’s HDL that are inferred as flip-flops during synthesis (§5.5.1).

However, flip-flops are not the only circuit components that store state. SSCs can also

be implemented with latches. However, it is typically considered bad practice to include

latches in sequential hardware designs as they often induce unwanted timing errors. As

a result, HDL compilers in synthesis CAD tools issue warnings when they infer latches

in a design—highlighting the TTT. Nonetheless, to support such (bad) design practices,

I design Bomberman’s data-flow graph generation compiler back-end to also recognize

latches.

5.7.3 TTT Identification in Physical Layouts

Bomberman is designed as an extension into existing front-end verification tool-chains

that process hardware designs (Fig. 2.3B). Under a different threat model—one encapsu-

lating untrusted back-end designers—it may be necessary to analyze physical layouts for

the presence of TTTs. Bomberman can analyze physical layouts for TTTs, provided the

layout (GDSII) file is first reverse-engineered into a gate-level netlist. As noted by Yang et

al. [196], there are several reverse-engineering tools for carrying out this task. Bomberman

also requires HDL device models for all devices in the netlist (e.g., NAND gate). This

informs Bomberman of a device’s input and output signals, which is required to create

a DFG. Fortunately, HDL device models are typically provided as a part of the process

technology IP portfolio purchased by front-end designers.

120

5.7.3.1 Memories

Bomberman is designed to handle memories, or large arrays of SSCs, in the same fash-

ion that it handles flip-flop-based SSCs. Namely, Bomberman creates a DFG of the ad-

dressable words within a memory block to curb state-explosion when locating distributed

SSCs. For memories that mandate word-aligned accesses, Bomberman generates a coa-

lesced SSC for every word. For memories that allow unaligned accesses—which represent

a minority, i.e., part of two adjacent words could be addressed simultaneously, Bomber-

man generates a coalesced SSC for every word, and multiple word-sized distributed SSCs

created by sliding a word-sized window across every adjacent memory word pair. In either

case, Bomberman’s DFG filtering mechanism greatly reduces the overall set of potentially

suspicious SSCs.

5.7.3.2 Limitations

Bomberman is capable of detecting all TTTs with zero false negatives, within the con-

straints of my definition (§5.4.1). However, these constraints impose limitations. First,

if an attacker knows Bomberman is in use, they may alter their Trojan to repeat a value

to avoid detection. There are two ways they may do this: 1) add an extra state bit to the

SSC(s) that does not repeat a value, or 2) add additional logic that resets the SSC(s) upon

recognizing specific circuit behavior. The first design would be detected by Bomberman

since, by definition, describes a distributed SSC. However, the second scenario describes a

Trojan that, by definition, is a data-based (cheat code) Trojan [183] not a TTT. Therefore,

it would not be detected by Bomberman. Data-based Trojans [183] are better addressed by

techniques that target rarely used activation signals [58, 202] or comparator inputs [184]

(Tab. 5.1). Second, Bomberman is incapable of detecting TTTs that use analog SSCs, like

the A2 Trojan [196], as there is no notion of analog SSCs in front-end designs.8 Detect-

8While the non-deterministic (sporadic) TTTs proposed by Imeson et al. [69] do use non-simulatable
analog behavior (i.e., phase noise) as an entropy source for the increment event, they do not use analog SSCs.
Thus, they are detectable by Bomberman.

121

ing Trojans like A2 require knowledge of the physical layout of the circuit, and are best

addressed during circuit layout [169].

5.8 Related Work

The implantation, detection, and prevention of hardware Trojans across hardware de-

sign phases have been widely studied. Attacks range from design-time attacks [18, 69,

85, 101], to layout-level modifications at fabrication time [17, 90, 196]. On the defensive

side, most work focuses on post-fabrication Trojan detection [3, 13–15, 48, 82, 97, 117,

131, 169], given that most hardware design houses are fab-less, and therefore must out-

source their designs for fabrication. However, as hardware complexity increases, reliance

on 3rd-party IP [19] brings the trustworthiness of the design process into question. Thus,

there is active work in both detection [58, 99, 151, 184, 202] and preventation [182, 183]

of design-time Trojans.

On the attack side, King et al. [85] demonstrate embedding hardware Trojans in a pro-

cessor for the purpose of planting footholds for high-level exploitation in software. They

demonstrate how small perturbations in a microprocessor’s hardware can be exploited to

mount wide varieties of software-level attacks. Lin et al. [101] propose a different class of

hardware Trojans, designed to expose a side-channel for leaking information. Specifically,

they add flip-flops to an AES core to create a power side channel large enough to exfiltrate

key bytes, but small enough that it resides below the device’s power noise margin. While

both attacks demonstrate different payloads, they both require triggering mechanisms to

remain dormant during verification and post-fabrication testing. Thankfully, my defense

is payload-agnostic and trigger-specific. I focus on detecting hardware Trojans by their

trigger. As a byproduct, I can identify any payloads by inspecting portions of the design

that the trigger output influences.

Wang et al. [191] propose the first variant of sporadic TTTs, called Asynchronous

Counter Trojans. Asynchronous Counter Trojans increment pseudo-randomly from a non-

122

periodic internal event signal (e.g., Fig. 5.3C and D). Similarly, Imeson et al. [69] propose

non-deterministic TTTs. Non-deterministic TTTs are also sporadic, but they differ from

pseudo-random TTTs in that their event signals are not a function of the state of the victim

device, rather, they are a function of a true source of entropy. Unlike, Waksman et al.’s

power reset defense [183], this nuance is irrelevant to Bomberman, who identifies TTTs by

the values expressed by their SSCs, not the source or predictability of their event signals.

On the defensive side, both design- and run-time approaches have been proposed. At

design-time, Hicks et al. [58] propose a dynamic analysis technique for Unused Circuit

Identification (UCI) to locate potential trigger logic. After verification testing, they replace

all unused logic with logic to raise exceptions at run-time to be handled in software. Simi-

larly, Zhang et al. [202] propose VeriTrust, a dynamic analysis technique focused on the be-

havioral functionality, rather than implementation, of the hardware. Conversely, Waksman

et al. [184] propose FANCI, a static analysis technique for locating rarely used logic based

on computing control values between inputs and outputs. Lastly, Li and Subramanyan et

al. [99, 151] propose WordRev, a different static analysis approach, whereby they search

for counters in a gate-level netlist by identifying groups of latches that toggle when low

order bits are 1 (up-counter), or low order bits are 0 (down-counter). As static analysis

approaches, FANCI and WordRev have the advantage of not requiring verification simula-

tion results. In §5.6.4.2 I leverage prior work on defeating such defenses [150, 181, 203]

to construct a TTT that bypasses these defenses—but Bomberman detects. At run-time,

Waksman et al. [183] thwart TTTs, using intermittent power resets. As shown in §5.6.4.1,

power-resets are also incapable of thwarting all TTT variants.

5.9 Conclusion

Bomberman is an effective example of a threat-specific defense against TTTs. Unlike

prior work, I do not attempt to provide a panacea against all design-time Trojans. Instead,

I define the behavioral characteristics of a specific but important threat, TTTs, and develop

123

a complete defense capable of identifying all TTT variants as I define them. Across four

open-source hardware designs, Bomberman detects all six TTT variants, with less than

1.2% false positives.

Bomberman demonstrates the power of threat-specific verification, and seeks to inspire

future threat-specific defenses against hardware Trojans and common hardware bugs. I

believe that no one defense will ever provide the level of security achievable by defense-

in-depth strategies. Thus, by combining Bomberman with existing design-time Trojan de-

fenses [58, 183, 184, 202], along with future threat-specific defenses, I aim to create an

insurmountable barrier for design-time attackers.

5.10 Citation

Work from this chapter was partially completed while interning at MIT Lincoln Labo-

ratory, and is co-authored by Kang G. Shin, Kevin B. Bush, and Matthew Hicks. This work

appeared in the 2021 IEEE Symposium on Security and Privacy, and can be cited as [171].

This work is scheduled to appear in the 2021 IEEE Symposium on Security and Privacy,

and can be cited as [171].

124

CHAPTER VI

Fuzzing Hardware Like Software

6.1 Introduction

As Moore’s Law [113] and Dennard scaling [44] come to a crawl, hardware engineers

must tailor their designs for specific applications in search of performance gains [37, 55,

78, 106, 118]. As a result, hardware designs become increasingly unique and complex.

For example, the Apple A11 Bionic SoC, released over three years ago in the iPhone 8,

contains over 40 specialized IP blocks, a number that doubles every four years [141]. Un-

fortunately, due to the state-explosion problem, increasing design complexity increases

Design Verification (DV) complexity, and therefore, the probability for design flaws to

percolate into products. Since 1999, 247 total Common Vulnerability Exposures (CVEs)

have been reported for Intel products, and of those, over 77% (or 191) have been reported

in the last four years [42]. While this may come as no surprise, given the onslaught of

speculative execution attacks over the past few years [32, 88, 103, 175, 176], it highlights

the correlation between hardware complexity and design flaws.

Even worse, hardware flaws are permanent and potent. Unlike software, there is no

general-purpose patching mechanism for hardware. Repairing hardware is both costly,

and reputationally damaging [84]. Moreover, hardware flaws subvert even formally ver-

ified software that sits above [196]. Therefore, detecting flaws in hardware designs be-

fore fabrication and deployment is vital. Given these incentives, it is no surprise that

125

Pr
io

r W
or

k

Software

Test
Generator

Software
Fuzzer

Hardware

HW
 F

uz
zin

g

HW
 à

SW

DUT Model DUT

DUT

=Inject Coverage Tracing Instrumentation
Ge

ne
ric

 T
B

Custom
Coverage
Tracing TB

Figure 6.1: Fuzzing Hardware Like Software. Unlike prior Coverage Directed Test Gen-
eration (CDG) techniques [22, 49, 91, 148], we advocate for fuzzing software
models of hardware directly, with a generic harness (testbench) and feature rich
software fuzzers. In doing so, we address the barriers to realizing widespread
adoption of CDG in hardware DV: 1) efficient coverage tracing, and 2) design-
agnostic testing.

hardware engineers often spend more time verifying their designs, than implementing

them [47, 188].1 Unfortunately, the multitude of recently-reported hardware vulnerabil-

ities [32, 88, 103, 112, 175, 176] suggests current efforts are insufficient.

To address the threat of design flaws in hardware, engineers deploy two main DV strate-

gies: 1) dynamic and 2) formal. At one extreme, dynamic verification involves driving con-

crete input sequences into a DUT during simulation, and comparing the DUT’s behavior

to a set of invariants, or golden model. The most popular dynamic verification technique

in practice today is known as Constrained Random Verification (CRV) [1, 39, 72, 198].

CRV attempts to decrease the manual effort required to develop simulation test cases by

randomizing input sequences in the hopes of automatically maximizing exploration of the

DUT state-space. At the opposite extreme, formal verification involves proving/disprov-

ing properties of a DUT using mathematical reasoning like (bounded) model checking

and/or deductive reasoning. While (random) dynamic verification is effective at identifying

1It is estimated that up to 70% of hardware development time is spent verifying design correctness [47].

126

surface flaws in even complex designs, it struggles to penetrate deep into the design state-

space. In contrast, formal verification is effective at mitigating even deep flaws in small

hardware designs, but fails, in practice, against larger designs.

In search of a hybrid approach to bridge these DV extremes, researchers have ported

software testing techniques to the hardware domain in hopes of improving hardware test

generation to maximize coverage. In the hardware domain, these approaches are referred to

as CDG [22, 39, 47, 54, 72, 91, 163, 185, 204, 206]. Like their software counterparts, CDG

techniques deploy coverage metrics—e.g., HDL line, FSM, functional, etc.—in a feedback

loop to generate tests that further increase state exploration.

While promising, why has CDG not seen widespread adoption in hardware DV? As

Laeufer et al. point out [91], this is likely fueled by several key technical challenges,

resulting from dissimilarities between software and hardware execution models. First,

unlike software, RTL hardware is not inherently executable. Hardware designs must be

simulated, after being translated to a software model and combined with a design-specific

testbench and simulation engine, to form a Hardware Simulation Binary (HSB) (Fig. 6.2).

This level of indirection, increases both the complexity and computational effort in tracing

test coverage of the hardware. Second, unlike most software, hardware requires sequences

of structured inputs to drive meaningful state transitions, that must be tailored to each DUT.

For example, while most software often accepts input in the form of a fixed set of file(s)

that contain a loosely-structured set of bytes (e.g., a JPEG or PDF), hardware often accepts

input from an ongoing stream of bus transactions. Together, these challenges have resulted

in CDG approaches that implement custom: 1) coverage-tracing techniques that still suffer

from poor scalability [72, 91], and 2) test generators that have limited compatibility to a

small class of DUTs, e.g., processors [22, 148, 204].

To supplement traditional dynamic verification methods, I propose an alternative CDG

technique I call Hardware Fuzzing. Rather than translating software testing methods to

the hardware domain, I advocate for translating hardware designs to software mod-

127

els and fuzzing those models directly (Fig. 6.1). While fuzzing hardware in the software

domain eliminates coverage-tracing bottlenecks of prior CDG techniques [72, 91, 148],

since software can be instrumented at compile time to trace coverage, it does not inherently

solve the design compatibility issue. Moreover, it creates other challenges I must address.

Specifically, to fuzz hardware like software, I must adapt software fuzzers to:

1. interface with HSBs that: a) contain other components besides the DUT, and b)

require unique initialization.

2. account for differences between how hardware and software process inputs, and its

impact on exploration depth.

3. design a general-purpose fuzzing harness and a suitable grammar that ensures mean-

ingful mutation.

To address these challenges, I first propose and evaluate strategies for interfacing soft-

ware fuzzers with HSBs that optimize performance and trigger the HSB to crash upon

detection of incorrect hardware behavior. Second, I show that maximizing code cover-

age of the DUT’s software model, by construction, maximizes hardware code coverage.

Third, I design an interface to map fuzzer-generated test-cases to hardware input ports. My

interface is built on the observation that unlike most software, hardware requires piecing

together a sequence of inputs to effect meaningful state transitions. Lastly, I propose a new

interface for fuzzing hardware in a design-agnostic manner: the bus interface. Moreover, I

design and implement a generic harness, and create a corresponding grammar that ensures

meaningful mutations to fuzz bus transactions. Fuzzing at the bus interface solves the fi-

nal hurdle to realizing widespread deployability of CDG in hardware DV, as it enables us

to reuse the same testbench harness to fuzz any RTL hardware that speaks the same bus

protocol, irrespective of the DUT’s design or implementation.

To demonstrate the effectiveness of my approach, I design, implement, and open-source

a Hardware Fuzzing Pipeline (HWFP), inspired by Google’s OSS-Fuzz [140], capable

128

of fuzzing RTL hardware at scale (Fig. 6.5). Using my HWFP I: 1) compare Hardware

Fuzzing against a conventional CRV technique when verifying over 480 variations of a

sequential FSM circuit, 2) compare Hardware Fuzzing against RFUZZ [91] when fuzzing

four SiFive TileLink peripherals [143], three RISC-V CPUs [134], and an FFT accelera-

tor [133], and 3) detect four bugs across four commercial IP cores from Google’s OpenTitan

silicon Root-of-Trust [105].

My main results are summarized as follows. I

• propose deployment of feature-rich software fuzzers as a CDG approach to address

inefficiencies in hardware DV (§6.4);

• provide empirically-backed guidance on how to: 1) isolate the DUT portion of HSBs,

and 2) minimize overhead of persistent hardware resets, for fuzzing (§6.4.2.1 &

§6.6.3);

• design and implement a bus-specific Hardware Fuzzing harness and grammar to fa-

cilitate fuzzing all bus-based hardware cores (§6.4.2.3, §6.4.2.4 & §C);

• design, implement, and open-source a HWFP that continuously fuzzes RTL hardware

at scale on Google Cloud Platform (GCP) (§6.5);

• demonstrate Hardware Fuzzing provides two orders-of-magnitude reduction in run

time and achieves better FSM coverage than current state-of-the-art CRV schemes

(§6.6.4);

• demonstrate Hardware Fuzzing achieves 24.76% better HDL line coverage (on aver-

age) after 24 hours of fuzzing compared with existing hardware fuzzing approaches,

i.e., RFUZZ [91] (§6.7.1),

• demonstrate Hardware Fuzzing identify all four RTL bugs in OpenTitan cores faster

than alternative approaches (§6.7.2).

129

6.2 Background

There are two main hardware verification methods: 1) dynamic and 2) formal. While

there have been significant advancements in deploying formal methods in DV workflows [80,

105, 204], dynamic verification remains the gold standard due to its scalability towards

complex designs [91]. Therefore, I focus on improving dynamic verification by leveraging

advancements in the software fuzzing community. Below, I provide a brief overview of the

current state-of-the-art in dynamic hardware verification, and software fuzzing.

6.2.1 Dynamic Verification of Hardware

Dynamic verification of hardware typically involves three steps:

1. test generation,

2. hardware simulation, and

3. test evaluation.

First, during test generation, a sequence of inputs are crafted to stimulate the DUT. Next,

the DUT’s behavior—in response to the input sequence—is simulated during hardware

simulation. Lastly, during test evaluation, the DUT’s simulation behavior is checked for

correctness. These three steps are repeated until all interesting DUT behaviors have been

explored. How do I know when I have explored all interesting behaviors? To answer this

question, verification engineers measure coverage of both: 1) manually defined functional

behaviors (functional coverage) [171] and 2) the HDL implementation of the design (code

coverage) [77, 130, 159].

6.2.1.1 Test Generation

To maximize efficiency, DV engineers aim to generate as few test vectors as possible

that still close coverage. To achieve this goal, they deploy two main test generation strate-

gies: 1) constrained-random and 2) coverage-directed. The former is typically referred to

130

holistically as Constrained Random Verification (CRV), and the latter as Coverage Directed

Test Generation (CDG). CRV is a partially automated test generation technique where

manually-defined input sets are randomly combined into transaction sequences [1, 198].

While better than an entirely manual approach, CRV still requires some degree of manual

tuning to avoid inefficiencies, since the test generator has no knowledge of test coverage.

Regardless, CRV remains a popular dynamic verification technique today, and its principles

are implemented in two widely deployed (both commercially and academically) hardware

DV frameworks: 1) Accellera’s Universal Verification Methodology (UVM) framework

(SystemVerilog) [1] and 2) the open-source cocotb (Python) framework [177].

To overcome CRV shortcomings, researchers have proposed CDG [22, 39, 47, 49, 54,

72, 91, 148, 163, 185, 204, 206], or using test coverage feedback to drive future test gen-

eration. Unlike CRV, CDG does not randomly piece input sequences together in hopes of

exploring new design state. Rather, it mutates prior input sequences that explore uncovered

regions of the design to iteratively expand the coverage boundary. Unfortunately, due to

deployability challenges, e.g., slow coverage tracing and limited applicability to a small set

of DUTs, CDG has not seen widespread adoption in practice [91]. In this paper, I recognize

that existing software fuzzers provide a solution to many of these deployability challenges,

and therefore advocate for verifying hardware using software verification tools. The cen-

tral challenges in making this possible are adapting software fuzzers to verify hardware,

widening the scope of supported designs, and increasing automation of verification.

6.2.1.2 Hardware Simulation

While there are several commercial [28, 107, 157] and open-source [145, 192] hard-

ware simulators, most work in the same general manner, as shown in Fig. 6.2. First, they

translate hardware implementations (described in HDL) into a software model, usually in

C/C++. Next, they compile the software model and a testbench—either translated from

HDL, or implemented in software (C/C++)—and link them with a simulation engine. To-

131

HDL à SW

Clang++

DUT

Hardware Simulation Binary (HSB)

HDL

SW

Testbench Simulation

Engine

main()

Figure 6.2: Hardware Simulation Binary (HSB). To simulate hardware, the DUT’s HDL
is first translated to a software model, and then compiled/linked with a test-
bench (written in HDL or software) and simulation engine to form a Hardware
Simulation Binary (HSB). Executing this binary with a sequence of test inputs
simulates the behavior of the DUT.

HW à SW

Mutate Tests Test

Save Coverage
Increasing Tests

Execute

Test

Save Crashes

Discard Un-
interesting Tests

Compile / Instrument
Hardware Simulation Model

Input Seeds

Input Queue

Sim. Engine

DUT

HSBDUT Model

1

2

3 4

6

5

Coverage-Guided
Greybox Fuzzer

HDL
Compiler

Generic
Testbench

HW Simulation Model

Figure 6.3: Hardware Fuzzing. Fuzzing hardware in the software domain involves: trans-
lating the hardware DUT to a functionally equivalent software model (1) us-
ing a SystemVerilog compiler [145], compiling and instrumenting a Hardware
Simulation Binary (HSB) to trace coverage (2), crafting a set of seed input files
(3) using our design-agnostic grammar (§ 6.4.2.4), and fuzzing the HSB with a
coverage-guided greybox software fuzzer [104, 155, 201] (4–6).

132

gether, all three components form an Hardware Simulation Binary (HSB) (Fig. 6.2) that can

be executed to simulate the design. Lastly, the HSB is executed with the inputs from the

testbench to capture the design’s behavior. Ironically, even though commercial simulators

convert the hardware to software, they still rely on hardware-specific verification tools,

likely because software-oriented tools fail to work on hardware models—without the

lessons in this paper. To fuzz hardware in the software domain, I take advantage of the

transparency in how an open-source hardware simulator, Verilator [145], generates an HSB.

Namely, I intercept the software model of the hardware after translation, and instrument/-

compile it for coverage-guided fuzzing (Fig. 6.3).

6.2.1.3 Test Evaluation

After simulating a sequence of test inputs, the state of the hardware (both internally

and its outputs) are evaluated for correctness. There are two main approaches for verify-

ing design correctness: 1) invariant checking and 2) (gold) model checking. In invariant

checking, a set of assertions (e.g., SVAs or software side C/C++ assertions) are used to

check properties of the design have not been violated. In model checking, a separate model

of the DUT’s correct behavior is emulated in software, and compared to the DUT’s sim-

ulated behavior. I support such features and adopt both invariant violations and golden

model mismatches as an analog for software crashes in my hardware fuzzer.

6.2.2 Software Fuzzing

Software fuzzing is an automated testing technique designed to identify security vulner-

abilities in software [154]. Thanks to its success, it has seen widespread adoption in both

industry [23] and open-source [140] projects. In principle, fuzzing typically involves the

following three main steps [116]: 1) test generation, 2) monitoring test execution, and 3)

crash triaging. During test generation, program inputs are synthesized to exercise the target

binary. Next, these inputs are fed to the program under test, and its execution is monitored.

133

Lastly, if a specific test causes a crash, that test is further analyzed to find the root cause.

This process is repeated until all, or most, of the target binary has been explored. Below I

categorize fuzzers by how they implement the first two steps.

6.2.2.1 Test Generation

Most fuzzers generate test cases in one of two ways, using: 1) a grammar, or 2) mu-

tations. Grammar-based fuzzers [7, 76, 114, 127, 186, 187] use a human-crafted grammar

to constrain tests to comply with structural requirements of a specific target application.

Alternatively, mutational fuzzers take a correctly formatted test as a seed, and apply muta-

tions to the seed to create new tests. Moreover, mutational fuzzers are tuned to be either: 1)

directed, or 2) coverage-guided. Directed mutational fuzzers [8, 20, 35, 124, 189, 197, 210]

favor mutations that explore specific region within the target binary, i.e., prioritizing explo-

ration location. Conversely, coverage-guided mutational fuzzers [104, 132, 139, 155, 180,

201] favor mutations that explore as much of the target binary as possible, i.e., prioritizing

exploration completeness. For this work, I favor the use of mutational, coverage-guided

fuzzers, as they are both design-agnostic, and regionally generic.

6.2.2.2 Test Execution Monitoring

Fuzzers monitor test execution using one of three approaches: 1) blackbox, 2) white-

box, or 3) greybox. Fuzzers that only monitor program inputs and outputs are classified

as blackbox fuzzers [114, 127, 179]. Alternatively, fuzzers that track detailed execution

paths through programs with fine-grain program analysis (source code required) and con-

straint solving are known as whitebox fuzzers [24, 33, 38, 50, 65, 149, 189, 199]. Lastly,

greybox fuzzers [7, 20, 57, 124, 128, 132, 139, 155, 180, 186, 187, 197, 201, 210] offer a

trade-off between black- and whitebox fuzzers by deploying lightweight program analysis

techniques, such as code-coverage tracing. Since Verilator [145] produces raw C++ source

code from RTL hardware, my approach can leverage any software fuzzing technique—

134

white, grey, or blackbox. In my current implementation, I deploy greybox fuzzing, due to

its popularity in the software testing community.

6.3 Threat Model

Like Chapter V, I again focus on the design-time attack threat model (§2.3.2). My

HWFP can fuzz any hardware design produced from any of the first three steps in the

hardware design process (Fig. 2.1), provided the design is described in valid HDL, like

VHDL or Verilog. I assume the design is not provided in any encrypted format–e.g., an

encrypted third party IP block—or if it is, an un-encrypted physical layout of the design is

provided in the form of a GDSII file, such that netlist HDL can be reverse engineered from

the layout [165]. I do not assume the verification engineer utilizing the HWFP has any

knowledge regarding the implementation of the design, except for knowledge pertaining to

example inputs and (correct) corresponding outputs of the DUT.

6.4 Hardware Fuzzing

To take advantage of advances in software fuzzing for hardware DV, I propose trans-

lating hardware designs to software models, and fuzzing the model directly. I call this

approach, Hardware Fuzzing, and illustrate the process in Fig. 6.3. Below, I first moti-

vate my approach by describing how hardware is already translated to the software domain

for simulation, and that software fuzzers provide a solution to a key technical challenge

in CDG: scalable coverage tracing. Then, I pose several challenges in adapting software

fuzzers to fuzz HSBs (in a design-agnostic fashion), and present solutions to overcome

these challenges.

135

6.4.1 Why Fuzz Hardware like Software?

I observe two key benefits of fuzzing hardware in the software domain. First, hardware

is already translated to a software model for simulation purposes (§6.2.1.2). Second, un-

like prior CDG approaches [91, 148], I recognize that software fuzzers already provide an

efficient solution for tracing coverage. Below I explain how RTL hardware is translated to

executable software, and why software fuzzers implicitly maximize hardware coverage by

generating tests that maximize coverage of the HSB.

6.4.1.1 Translating HDL to Software

Today, simulating RTL hardware involves translating HDL into a functionally equiva-

lent software (C/C++) model that can be compiled and executed (§6.2.1.2). To accomplish

this, most hardware simulators [145, 192] contain an RTL compiler to perform the trans-

lation. Therefore, I leverage a popular open-source hardware simulator, Verilator [145], to

translate SystemVerilog HDL into a cycle-accurate C++ model for fuzzing.

Like many compilers, Verilator first performs lexical analysis and parsing (of the HDL)

with the help of Flex [126] and Bison [166], to generate an Abstract Syntax Tree (AST).

Then, it performs a series of passes over the AST to resolve parameters, propagate con-

stants, replace don’t cares (Xs) with random values, eliminate dead code, unroll loops/gen-

erate statements, and perform several other optimizations. Finally, Verilator generates C++

(or SystemC) code representing a cycle-accurate model of the hardware. It creates a C++

class for each Verilog module, and organizes classes according to the original HDL module

hierarchy [204].

To interface with the model, Verilator exposes public member variables for each in-

put/output to the top-level module, and a public eval() method (to be called in a loop) in

the top C++ class. Each input/output member variable is mapped to single/arrayed bool,

uint32_t, or uint64_t data types, depending on the width of each signal. Each call to

eval() updates the model based on the current values assigned to top-level inputs and in-

136

ternal states variables. Two calls represent a single clock cycle (one call for each rising and

falling clock edges).

6.4.1.2 Tracing Hardware Coverage in Software

To efficiently explore a DUT’s state space, CDG techniques rely on tracing coverage

of past test cases to generate future test cases. There are two main categories of cover-

age metrics used in hardware verification [77, 130, 159]: 1) code coverage, and 2) func-

tional coverage. The coarsest, and most used, code coverage metric is line coverage. Line

coverage measures the percentage of HDL lines that have been exercised during simula-

tion. Alternatively, functional coverage measures the percentage of various high-level de-

sign functionalities—defined using special HDL constructs like SystemVerilog Coverage

Points/Groups—that are exercised during simulation. Regardless of the coverage metric

used, tracing HDL coverage during simulation is often slow, since coverage traced in the

software (simulation) domain must be mapped back to the hardware domain [77].

In an effort to compute DUT coverage efficiently, and in an HDL-agnostic manner,

prior CDG techniques develop custom coverage metrics, e.g., multiplexer coverage [91],

that can be monitored by instrumenting the RTL directly. However, this approach has two

drawbacks. First, the hardware must be simulated on an FPGA (simulating within software

is just as slow). Second, the authors provide no indication that their custom coverage

metrics actually translate to coverage metrics DV engineers care about.

Rather than make incremental improvements to existing CDG techniques, I recognize

that: 1) software fuzzers provide an efficient mechanism—e.g., binary instrumentation—

to trace coverage of compiled C++ hardware models (HSBs), and 2) characteristics of

how Verilator translates RTL hardware to software makes mapping software coverage to

hardware coverage implicit. On the software side, there are three main code coverage met-

rics of increasing granularity: 1) basic block, 2) basic block edges, and 3) basic block

paths [116]. The most popular coverage-guided fuzzers—AFL [201], libFuzzer [104], and

137

honggfuzz [155]—all trace edge coverage. On the hardware side, Verilator conveniently

generates straight-line C++ code for both blocking and non-blocking2 SystemVerilog state-

ments [204], and injects conditional code blocks (basic blocks) for SystemVerilog Asser-

tions and Coverage Points. Therefore, optimizing test-generation for edge coverage of

the software model of the hardware during simulation, translates to optimizing for

code, FSM, and functional coverage of the RTL hardware itself. I demonstrate this

artifact in §6.6.4, §6.7.1–6.7.2, and Appendix C.

6.4.2 Driving Hardware with Software Fuzzers

While software fuzzers contain efficient mechanisms for tracing coverage of HSBs—

e.g., binary instrumentation—interfacing them with HSBs, in a design-agnostic manner is

non-trivial. Below, I highlight several challenges in fuzzing HSBs with software fuzzers,

and propose solutions to overcome them.

6.4.2.1 Interfacing Software Fuzzers with HSBs

Naı̈vely, a DV engineer may interface the HSB directly with a software fuzzer (like [104,

155, 201]) by compiling the HSB source code alongside the testbench harness (Algo. 2)

and simulation engine with one of the fuzzer-provided wrappers for Clang. However, they

would be ignoring two key differences between typical software applications and HSBs

that may degrade fuzzer performance. First, HSBs have other components—a testbench

and simulation engine (Fig. 6.2)—that are not part of the DUT. While the DUT is manip-

ulated through the testbench and simulation engine, instrumenting all components HSBs

actually degrades fuzzer performance (§6.6.3.1). Additionally, unlike software, the DUT

software model must be reset and initialized, prior to processing any inputs. Depending on

the size of the DUT, this process can require special configuration of the testbench, i.e., ini-

tializing the fuzzer to snapshot the hardware simulation process after reset and initialization

2Verilator imposes an order on the non-blocking assignments since C++ does not have a semantically
equivalent assignment operator [145, 204]. Regardless, this ordering does not effect code coverage.

138

of the DUT (§6.6.3.2).

6.4.2.2 Interpreting Fuzzer-Generated Tests

For most software, a single input often activates an entire set of state transitions within

the program. Consequently, the most popular software fuzzers assume the target binary

reads a single dimensional input—e.g., a single image or document—from either a file,

stdin, or a byte array [104, 155, 201]. As Laeufer et al. point out [91], the execution

model of hardware is different. In an HSB, a sequence of inputs is required to activate

state transitions within the DUT. For example, a 4-digit lock (with a keypad) only has a

chance of unlocking if a sequence of four inputs (test cases) are provided. Fuzzing this

lock with single test cases (digits), will fail. Likewise, fuzzing HSBs with software fuzzers

that employ a single-test-case-per-file model will also fail. Therefore, to stimulate hard-

ware with software fuzzers, I interpret single dimensional fuzzer-generated tests in two

dimensions: space and time. I implement this interface in the form of a generic fuzzing

harness (testbench)—shown in Algo. 2—that continuously: 1) reads byte-level portions of

fuzzer-generated test files, 2) maps these bytes to hardware input ports, and 3) advances the

simulation clock by calling the model’s eval() method twice, until there are no remaining

bytes to process. With my fuzzing harness, I transform one-dimensional test inputs, into a

two-dimensional sequence of inputs.

6.4.2.3 Bus-Centric Harness

While the multi-dimensional fuzzing interface I develop enables fuzzer-generated tests

to effect state transitions in hardware, it is not design-agnostic. Specifically, the ports of a

hardware model are not iterable (Algo. 2: line 4). A DV engineer would have to create a

unique fuzz harness (testbench) for each DUT they verify. To facilitate DUT portability,

I take inspiration from how hardware engineers interface IP cores within an SoC [41].

Specifically, I propose fuzzing IP cores at the bus interface using a bus-centric harness.

139

Algorithm 2: Generic Hardware Fuzzing harness (testbench) that maps one-
dimensional fuzzer-generated test files to both spatial and temporal dimensions.

Input: fuzz test file.hwf
1 dut←Vtop();
2 t f ← open(f uzz test f ile.hw f);
3 while tf not empty do
4 foreach port ∈ dut.inputs do
5 tf.read((uint 8t*) port, sizeo f (port));
6 for k← 1 to 2 do
7 clock← (clock + 1)%2;
8 dut.eval();
9 end

10 end
11 end

To implement this harness, I could alter my prior harness (Algo. 2) by mapping bytes

from fuzzer-generated test files to temporal values for specific signals of a bus-protocol

of my choice. However, this would create an exploration barrier since bus-protocols re-

quire structured syntax, and most mutational fuzzers lack syntax awareness [200]. In other

words, the fuzzer would likely get stuck trying to synthesize a test file, that when mapped

to spatio-temporal bus signal values, produces a valid bus-transaction. Instead, I implement

a harness that decodes fuzzer-generated test files into sequences of properly structured bus

transactions using a bus-centric grammar I describe below. My current bus-centric harness

is implemented around the TL-UL bus protocol [70] with a 32-bit data bus, and illustrated

in Fig. 6.13.

6.4.2.4 Bus-Centric Grammar

To translate fuzzer-generated test files into valid bus transactions I construct a Hardware

Fuzzing grammar. I format my grammar in a compact binary representation to facilitate

integration with popular greybox fuzzers that produce similar formats [104, 155, 201].

To match my bus-centric harness, I implement my grammar around the same TL-UL bus

protocol [70]. My grammar consists of Hardware Fuzzing instructions (Fig. 6.4), that

140

Opcode Address Data

32-bits 32-bits8-bits
Figure 6.4: Hardware Fuzzing Instruction. A bus-centric harness (testbench) reads bi-

nary Hardware Fuzzing Instructions from a fuzzer-generated test file, decodes
them, and performs TL-UL bus transactions to drive the DUT (Fig.6.13). Our
Hardware Fuzzing Instructions comprise a grammar (Tbl. 6.1) that aid syntax-
blind coverage-guided greybox fuzzers in generating valid bus-transactions to
fuzz hardware.

contain: 1) an 8-bit opcode, 2) 32-bit address field, and 3) 32-bit data field. The opcode

within each instruction determines the bus transaction the harness performs. I describe the

mappings between opcodes and TL-UL bus transactions in Table 6.1.

Note, there are two properties of my grammar that leave room for various harness (test-

bench) implementations, which I study in Appendix C. First, while I define only three

opcodes in my grammar, I represent the opcode with an entire byte, leaving it up to the

harness to decide how to map Hardware Fuzzing opcode values to testbench actions. I do

this for two reasons: 1) a byte is the smallest addressable unit in most software, facilitating

the development of utilities to automate generating compact binary seed files (that comply

with my grammar) from high-level markdown languages, and 2) choosing a larger opcode

field enables adding more opcodes in the future, should I need to support additional op-

erations in the TileLink bus protocol[70]. Second, of the three opcodes I include, not all

require address and data fields. Therefore, it is up to the harness to decide how it should

process Hardware Fuzzing instructions. While different implementations may choose to

read fixed size instruction frames, from my empirical analysis in Appendix C, I decide

to implement a harness that processes variable size instructions frames, depending on the

opcode (Table 6.1).

141

Table 6.1: Hardware Fuzzing Grammar.

Opcode Address
Required?

Data
Required? Testbench Action

wait no no advance the clock one period
read yes no TL-UL Get (read)
write yes yes TL-UL PutFullData (write)

Translate HW à SW
Compile/Instrument HSB

Fuzz HSB
Extract Final HDL Coverage

Save Data to GCS
Teardown VM

GCP VM

Fuzzing Container

Figure 6.5: Hardware Fuzzing Pipeline (HWFP). We design, implement, and open-
source a HWFP that is modeled after Google’s OSS-Fuzz [140]. Our HWFP
enables us to verify RTL hardware at scale using only open-source tools, a
rarity in hardware DV.

6.5 Hardware Fuzzing Pipeline

To fuzz hardware at scale I design, implement, and open-source a Hardware Fuzzing

Pipeline (HWFP) modeled after Google’s OSS-Fuzz (Fig. 6.5). First, my pipeline builds a

Docker image (from the Ubuntu 20.04 base image) containing a compiler (LLVM version

12.0.0), RTL simulator (Verilator [145] version 4.0.4), software fuzzer, the target RTL hard-

ware, and a generic fuzzing harness (§6.4.2.3). From the image, a container is instantiated

on a GCP VM that:

1. translates the DUT’s RTL to a software model with Verilator [145],

2. compiles/instruments the DUT model, and links it with the generic fuzzing harness

(§6.4.2.3) and simulation engine to create an HSB (Fig. 6.2),

142

3. launches the fuzzer for a set period of time, using the timeout utility,

4. traces final HDL coverage of fuzzer-generated tests with Verilator [145],

5. saves fuzzing and coverage data to a Google Cloud Storage (GCS) bucket, and lastly

6. tears down the VM.

Note, for benchmarking, all containers are instantiated on their own GCP n1-standard-2

VM with two vCPUs, 7.5 GB of memory, 50 GB of disk, running Google’s Container-

Optimized OS. In my current implementation, I use AFL [201] (version 2.57b) as my

fuzzer, but my HWFP is designed to be fuzzer-agnostic.

Unlike traditional hardware verification toolchains, my HWFP uses only open-source

tools, allowing DV engineers to save money on licenses, and spend it on compute. This not

only enhances the deployability of my approach, but makes it ideal for adopting alongside

existing hardware DV workflows. This is important because rarely are new DV approaches

adopted without some overlap with prior (proven) techniques, since mistakes during hard-

ware verification have costly repercussions.

6.6 Feasibility Evaluation

In the first part of my evaluation, I address two technical questions around fuzzing

software models of RTL hardware with software fuzzers. First, how should I interface

coverage-guided software fuzzers with HSBs? Unlike most software, HSBs contain other

components—a testbench and simulation engine (Fig. 6.2)—that are not the target of test-

ing, yet the fuzzer must learn to manipulate in order to drive the DUT. Second, how does

Hardware Fuzzing compare with traditional dynamic verification methods, i.e., CRV, in

terms of time to coverage convergence? To address this first set of questions, I perform

several E2E fuzzing analyses on over 480 digital lock hardware designs with varying state-

space complexities.

143

1

Locked

2

Locked Unlocked

code == correct1 code == correct2

...
reset_n ||

code != correct2

~reset_n
~reset_n

code == correctn

m

log2(n)Lock
reset_n
clk

code

state

unlocked

reset_n ||
code != correct1

Lock (DUT)

unlockedcode

/dev/urandom assert(!unlocked)

Testbench (cocotb)

Lock (DUT)

unlockedcode

STDIN assert(!unlocked)
Testbench (C++)

AFL Seed (empty file)

co
ve

ra
ge

A) Constrained Random Verification B) Hardware Fuzzing

n

Figure 6.6: Digital Lock FSM. We use a configurable digital lock (FSM shown here) to
demonstrate: 1) how to interface software fuzzers with hardware simulation
binaries, and 2) the advantages of Hardware Fuzzing (vs. traditional CRV).
The digital lock FSM can be configured in two dimensions: 1) total number of
states and 2) width (in bits) of input codes.

6.6.1 Digital Lock Hardware

In this half of my evaluation, I fuzz various configurations of a digital lock, whose FSM

and HDL are shown in Fig. 6.6 and List. VI.1, respectively. I choose to study this design

since the complexity of its state space is configurable, and therefore, ideal for stress testing

various DV methodologies. Specifically, the complexity is configurable in two dimensions:

1) the total number of states is configurable by tuning the size, N, of the single state register,

and 2) the probability of choosing the correct unlocking code sequence is adjustable by

altering the size, M, of the comparator/mux that checks input codes against hard-coded

(random) values (List. VI.1). I develop a utility in Rust, using the kaze crate [161], to auto-

generate 480 different lock state machines of various complexities, i.e., different values of

N, M, and random correct code sequences.

Listing VI.1: SystemVerilog of Lock with N=log2(#states) and M-bit secret codes set to
random values.

1 module lock(
2 input reset n ,
3 input clk ,
4 input [M−1:0] code,
5 output unlocked
6) ;
7 logic [N−1:0] state ;
8 logic [M−1:0] correct codes [N];
9

10 // Secret codes set to random values
11 for (genvar i = 0; i < N; i++) begin : secret codes
12 assign correct codes [i] = <random value>;

144

13 end
14

15 assign unlocked = (state == ’1) ? 1’b1 : 1’b0;
16

17 always @(posedge clk) begin
18 if (! reset n) begin
19 state <= ’0;
20 end else if (!unlocked && code == correct codes[state]) begin
21 state <= state + 1’b1;
22 end else begin
23 state <= state ;
24 end
25 end
26 endmodule

6.6.2 Digital Lock HSB Architectures

To study these designs, I construct two HSB architectures (Fig. 6.7) using two hard-

ware DV methodologies: CRV and Hardware Fuzzing. The CRV architecture (Fig. 6.7A)

attempts to unlock the lock through a brute-force approach, where random code sequences

are driven into the DUT until the unlocked state is reached. If the random sequence fails

to unlock the lock, the DUT is reset, and a new random sequence is supplied. If the se-

quence succeeds, an SVA is violated, which terminates the simulation. The random code

sequences are constrained in the sense that only valid code sequences are driven into the

DUT, i.e., 1) each code in the sequence is in the range [0,2M) for locks with M-bit code

comparators, and 2) sequences contain exactly 2N−1 input codes for locks with 2N states.

The CRV testbench is implemented with the cocotb [177] framework and simulations are

run with Verilator [145].

Alternatively, the Hardware Fuzzing HSB (Fig. 6.7B) takes input from a software fuzzer

that generates code sequences for the DUT. The fuzzer initializes and checkpoints, a pro-

cess running the HSB (Fig. 6.2), and repeatedly forks this process and tries various code

sequence inputs. If an incorrect code sequence is supplied, the fuzzer forks a new process

(equivalent to resetting the DUT) and tries again. If the correct code sequence is provided,

an SVA is violated, which the fuzzer registers as a program crash. The difference between

145

Lock (DUT)

unlockedcode

/dev/urandom assert(!unlocked)

Testbench (cocotb)

Lock (DUT)

unlockedcode

STDIN assert(!unlocked)
Testbench (C++)

AFL Seed (empty file)

co
ve

ra
ge

A) Constrained Random Verification B) Hardware Fuzzing

Hardware Simulation Binary Hardware Simulation Binary

Sim.
Engine Sim.

Engine

Figure 6.7: Digital Lock HSB Architectures. (A) A traditional CRV architecture: ran-
dom input code sequences are driven into the DUT until the unlocked state is
reached. (B) A software fuzzer generates tests to drive the DUT. The fuzzer
monitors coverage of the DUT during test execution and uses this information
to generate future tests. Both HSBs are configured to terminate execution upon
unlocking the lock using an SVA in the testbench that signals the simulation
engine (Fig. 6.2) to abort.

CRV and Hardware Fuzzing is that the fuzzer traces coverage during hardware simulation,

and will save past code sequences that get closer to unlocking the lock. These past se-

quences are then mutated to generate future sequences. Thus, past inputs are used to craft

more intelligent inputs in the future. To interface the software fuzzer with the HSB, I:

1. implement a C++ testbench harness from Algo. 2 that reads fuzzer-generated bytes

from stdin and feeds them directly to the code input of the lock.

2. instrument the HSB containing the DUT by compiling it with afl-clang-fast++.

6.6.3 Interfacing Software Fuzzers with Hardware

There are two questions that arise when interfacing software fuzzers with HSBs. First,

unlike most software applications, software models of hardware are not standalone binaries.

They must be combined—typically by either static or dynamic linking—with a testbench

and simulation engine to form an HSB (§6.2.1.2). Of these three components—DUT, test-

bench, and simulation engine—I seek to maximize coverage of only the DUT. I do not want

146

to waste fuzzing cycles on the testbench or simulation engine. Since coverage tracing in-

strumentation provides an indirect method to coarsely steer the fuzzer towards components

of interest [20], it would be considered good practice to instrument just the DUT portion

of the HSB. However, while the DUT is ultimately what I want to fuzz, the fuzzer must

learn to use the testbench and simulation engine to manipulate the DUT. Therefore, what

components of the HSB should I instrument to maximize fuzzer performance, yet ensure

coverage convergence?

Second, when simulating hardware, the DUT must be reset to a clean state before it

can start processing inputs. Traditionally, the testbench portion of the HSB performs this

reset by asserting the DUT’s global reset signal for a set number of clock cycles. Since the

fuzzer instantiates, and repeatedly forks the process executing the HSB, this reset process

will happen hundreds, or (potentially) thousands of times per second as each test execution

is processed. While some software fuzzers [104, 201] enable users to perform initializa-

tion operations before the program under test is forked—meaning the DUT reset could be

performed once, as each forking operation essentially sets the HSB back to a clean state—

-this may not always the case. Moreover, it complicates fuzzer–HSB integration, which

contradicts the whole premise of my approach, i.e., low-overhead, design-agnostic CDG.

Therefore, I ask: is this fuzzing initialization feature required to fuzz HSBs?

6.6.3.1 Instrumenting HSBs for Fuzzing

To determine the components of the HSB I should instrument, I measure the fuzzing run

times to achieve approximate full FSM coverage3 of several lock designs, i.e., the time it

takes the fuzzer to generate a sequence of input codes that unlocks each lock. I measure this

by modifying the fuzzer to terminate upon detecting the first crash, which I produce using

a single SVA that monitors the condition of the unlocked signal (List. VI.1). Specifically,

using lock designs with 16, 32, and 64 states, and input codes widths of four bits, I construct

3I use the term approximate when referring to full FSM coverage, since I are not excising the lock’s reset
state transitions (Fig. 6.6) in these experiments.

147

8 16 32 64
states

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
to

 F
ul

l F
S

M
 C

ov
er

ag
e

(R
el

at
iv

e)

Components Instrumented
All
DUT only

Figure 6.8: Instrumentation Level vs. Coverage Convergence Rate. Distribution of
fuzzer run times required to unlock various sized digital locks (code widths
are fixed at four bits), i.e., achieve ≈ full FSM coverage. For each HSB, we
vary the components we instrument for coverage tracing. Run times are nor-
malized to the median DUT-only instrumentation level (orange) across each
lock size (red line). While the fuzzer uses the testbench and simulation engine
to manipulate the DUT, instrumenting only the DUT does not hinder the cov-
erage convergence rate of the fuzzer. Rather, it improves it when DUT sizes are
small, compared to the simulation engine and testbench (Fig. 6.9).

148

HSBs following the architecture shown in Fig. 6.7B. For each HSB, I vary the components

I instrument by using different compiler settings for each component. First, I (naı̈vely)

instrument all components, then only the DUT. Next, I fuzz each HSB 50 times, seeding

the fuzzer with an empty file in each experiment.

I plot the distribution of fuzzing run times in Fig. 6.8. Since fuzzing is an inherently

random process, I plot only the middle third of run times across all instrumentation levels

and lock sizes. Moreover, all run times are normalized to the median DUT-only instrumen-

tation run times (orange) across each lock size. In addition to plotting fuzzing run times,

I plot the number of basic blocks within each component of the HSB in Fig. 6.9. Across

all lock sizes, I observe that only instrumenting the DUT does not handicap the fuzzer,

but rather improves the rate of coverage convergence! In fact, I perform a Mann-Whitney

U test, with a 0.05 significance level, and find all the run-time improvements to be statis-

tically significant. Moreover, I observe that even though the run-time improvements are

less significant as the DUT size increases compared to the simulation engine and testbench

(Fig. 6.9), instrumenting only the DUT never handicaps the fuzzer performance.

Key Insight: Instrumenting only the DUT portion of the HSB does not impair the

fuzzer’s ability to drive the DUT, rather, it improves fuzzing speed.

6.6.3.2 Hardware Resets vs. Fuzzer Performance

To determine if DUT resets present a performance bottleneck, I measure the degradation

in fuzzing performance due to the repeated simulation of DUT resets. I take advantage

of a unique feature of a popular greybox fuzzer [201] that enables configuring the exact

location of initializing the fork server.4 This enables the fuzzer to perform any program-

specific initialization operations once, prior to forking children processes to fuzz. Using

this feature, I repeat the same fuzzing run time analysis performed in §6.6.3.1, except I

4By default, AFL [201] instantiates a process from the binary under test, pauses it, and repeatedly forks
it to create identical processes to feed test inputs to. The component of AFL that performs process forking is
known as the fork server.

149

Figure 6.9: Basic Blocks per Simulation Binary Component. We break down the number
of basic blocks that comprise the three components within HSBs of different
size locks (Fig. 6.6 & List. VI.1), generated by Verilator [145]: simulation
engine and testbench (TB), and DUT. As locks increase in size, defined by the
number of FSM states (code widths are fixed to 4 bits), so do the number of
basic blocks in their software model.

instrument all simulation binary components, and compare two variations of the digital

lock HSB shown in Fig. 6.7B. In one testbench, I use the default fork server initialization

location: at the start of main(). In the other testbench, I initialize the fork server after the

point where the DUT has been reset.

Fig. 6.10 shows my results. Again, I drop outliers by plotting only the middle third of

run times across all lock sizes and fork server initialization points. Additionally, I normalize

all run times to the median “after DUT reset” run times (orange) across each lock size.

From these results, I apply the Mann-Whitney U test (with 0.05 significance level) between

run times. This time, only locks with 8 and 16 states yield p-values less than 0.05. This

indicates the overhead of continuously resetting the DUT during fuzzing diminishes as the

DUT increases in complexity. Additionally, I note that even the largest digital locks I study

(64 states), are smaller than the smallest OpenTitan core, the RISC-V Timer, in terms of

number of basic blocks in the software model (Fig. 6.9 & Table 6.2).

150

8 16 32 64
states

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ti
m

e
to

 F
ul

l F
S

M
 C

ov
er

ag
e

(R
el

at
iv

e)

Fork Server Init.
TB Entrypoint
After DUT Reset

Figure 6.10: Hardware Resets vs. Fuzzer Performance. Fuzzing run times across across
digital locks (similar to Fig. 6.8) with different fork server initialization loca-
tions in the testbench to eliminate overhead due to the repeated simulation of
hardware DUT resets. DUT resets are only a fuzzing bottleneck when DUTs
are small, reducing fuzzer–HSB integration complexity.

Figure 6.11: Hardware Fuzzing vs. CRV. Run times for both Hardware Fuzzing (A) and
CRV (B) to achieve ≈ full FSM coverage of various digital lock (Fig. 6.6)
designs—i.e., time to unlock the lock—using the testbench architectures
shown in Fig. 6.7. Run times are averaged across 20 trials for each lock
design—defined by a (# states, code width) pair—and DV method combi-
nation. Across these designs, Hardware Fuzzing achieves full FSM coverage
faster than traditional CRV approaches, by over two orders of magnitude.

151

Key Insight: Overhead from simulating hardware resets while fuzzing is minimal,

especially in large designs, further reducing fuzzer–HSB integration efforts.

6.6.4 Hardware Fuzzing vs. CRV

Using the techniques I learned from above, I perform a run-time comparison analysis

between Hardware Fuzzing and CRV,5 the current state-of-the-art hardware dynamic veri-

fication technique. I perform these experiments using digital locks of various complexities,

from 2 to 64 states, and code widths of 1 to 8 bits. The two HSB architectures I compare

are shown in Fig. 6.7, and discussed in §6.6.2. Note, the fuzzer was again seeded with an

empty file to align its starting state with the CRV tests.

Similar to my instrumentation and reset experiments (§6.6.3) I measure the fuzzing run

times required to achieve ≈ full FSM coverage of each lock design, i.e., the time to unlock

each lock. I illustrate these run times in heatmaps shown in Fig. 6.11. I perform 20 trials

for each experiment and average these run times in each square of a heatmap. While the

difference between the two approaches is indistinguishable for extremely small designs,

the advantages of Hardware Fuzzing become apparent as designs increase in complexity.

For medium to larger lock designs, Hardware Fuzzing achieves full FSM coverage faster

than CRV by over two orders-of-magnitude, even when the fuzzer is seeded with an empty

file. Moreover, many CRV experiments were terminated early (after running for five days)

to save money on GCP instances.

Key Insight: Hardware Fuzzing is a low-cost, low-overhead CDG approach for hard-

ware DV.

5CRV is widely deployed in any DV testbenches built around the cocotb [177] or UVM [1] frameworks,
e.g., all OpenTitan [105] IP core testbenches.

152

0 5 10 15 20 25
Time (hours)

0

20

40

60

80

H
D

L
Li

ne
 C

ov
. (

%
)

Core
FFTSmall
Sodor1Stage
Sodor3Stage
Sodor5Stage
TLI2C
TLPWM
TLSPI
TLUART
Fuzzer
HWF
RFUZZ

Figure 6.12: Hardware Fuzzing vs. RFUZZ. Fuzzing eight different hardware designs,
including an FFT accelerator, RISC-V CPUs, and TileLink communication
peripherals, with my Hardware Fuzzing approach vs. RFUZZ [91] (Fig. 6.1),
yields 24.76% better HDL coverage (on average) after 24 hours, across all
cores.

6.7 Practicality Evaluation

In the second part of my evaluation, I address two remaining questions. First, how does

Hardware Fuzzing compare with prior RTL fuzzing schemes, e.g., RFUZZ [91], in terms

of HDL code coverage? While Laeufer et al. were the first to demonstrate fuzzing RTL

with RFUZZ [91], I argue for an entirely different approach (Fig. 6.1), fuzzing software

models of RTL hardware, rather than the RTL hardware itself. Lastly, how does Hardware

Fuzzing perform in practice commercial-grade hardware IP? To address these questions,

I perform E2E fuzzing analyses on several open-source hardware designs, including four

commercial-grade cores from Google’s OpenTitan [105] SoC, four SiFive TileLink periph-

erals, three RISC-V CPUs, and an FFT accelerator.

153

6.7.1 Hardware Fuzzing vs. RFUZZ

Unlike my approach, RFUZZ instruments RTL hardware directly by injecting coverage-

tracing hardware into the RTL when it is compiled from a high-level HDL, like FIRRTL,

to Verilog. As a result, RFUZZ is only compatible with hardware designs described using

high-level HDLs, like Chisel [11] or FIRRTL [98]. Unfortunately, most industry hardware

designs are still written in (System)Verilog. Moreover, RFUZZ does not exploit any bus-

specific harnesses, rather, it requires design-specific harnesses that are fed fuzzer-generated

bit-vectors to hardware input ports, as described in Algo. 2 and demonstrated in the fuzzing

harness built for the digital lock in Fig. 6.7b.

To demonstrate the benefits of my approach vs. RFUZZ, I compare the HDL line cov-

erage achieved by both approaches over the course of fuzzing eight different hardware

designs for 24 hours. Specifically, I fuzz the same eight hardware designs in the original

RFUZZ [91], including the I2C, SPI, PWM, and UART SiFive TileLink IP blocks [143],

three RISC-V Sodor CPUs [134], and an FFT accelerator [133]. For each core, I use the

same RFUZZ-generated test harness across both approaches, but use different fuzzing mech-

anisms, as highlighted in Fig. 6.1. Specifically, RFUZZ uses a custom fuzzer that directly

measures RTL coverage using Verilog-level instrumentation, while my (Hardware Fuzzing)

approach uses a software fuzzer (i.e., AFL) that measures RTL coverage using HSB-level

instrumentation. For each core, I perform 10 trials with both fuzzing techniques, using

empty seed files, and compare the best case results (i.e., highest coverage) using RFUZZ,

with the worst case results (i.e., lowest coverage) using my Hardware Fuzzing approach.

In Fig. 6.12, I plot my results. After 24 hours of fuzzing, across all cores, the average

HDL line coverage improvement using my Hardware Fuzzing approach over RFUZZ was

24.76%, while the minimum and maximum improvements I 13.90% and 37.41%, respec-

tively. Lastly, I apply the Mann-Whitney U test (with 0.05 significance level) between all

fuzzing trials across all cores, and observe p-values less than 0.05. This further confirms

my approach yields better coverage than RFUZZ.

154

IP core (DUT)

STDIN Decode

Generic Testbench (C++)

AFL TileLink

Seeds*

co
ve

ra
g

e Fetch

TileLink DriverSVAs

TileLink Bus

Provided by OpenTitan Our Design

.hwf

Ha
rd

w
ar

e
Si

m
ul

at
io

n
Bi

na
ry

Figure 6.13: OpenTitan HSB Architecture. A software fuzzer learns to generate fuzzing
instructions (Fig. 6.4)—from .hwf seed files—based on a hardware fuzzing
grammar (§6.4.2.4). It pipes these instructions to stdin where a generic
C++ fuzzing harness fetches/decodes them, and performs the corresponding
TileLink bus operations to drive the DUT. SVAs are evaluated during execu-
tion of the HSB, and produce a program crash (if violated), that is caught and
reported by the software fuzzer.

Key Insight: Fuzzing hardware in the software domain yields better HDL coverage

than prior techniques, i.e. RFUZZ [91].

6.7.2 Fuzzing OpenTitan IP

To address the last question—How does Hardware Fuzzing perform in practice on

commercial-grade hardware?—I fuzz four IP blocks from Google’s OpenTitan silicon

root-of-trust SoC[105], including the: AES, HMAC, KMAC, and RISC-V Timer cores.

While each core performs different functions,6 they all conform to the OpenTitan Com-

portability Specification [41], implying they are all controlled via reads and writes to

memory-mapped registers over a TL-UL bus. By adhering to a uniform bus protocol, I

are able to re-use a generic fuzzing harness (Fig. 6.13), facilitating the deployability of my

6For more information on the functionalities of each IP block, see Appendix B.

155

Table 6.2: OpenTitan IP Core Complexity in HW and SW Domains.
IP Core HW LOC SW LOC # Basic Blocks* # SVAs†
AES 4,562 38,036 3,414 53
HMAC 2,695 18,005 1,764 30
KMAC 4,585 119,297 6,996 44
RV Timer 677 3,111 290 8

* Number of basic blocks in compiled software model with O3 opti-
mization.
† Number of SystemVerilog Assertions included in IP HDL at time
of writing.

approach. Below, I highlight the functionality of each IP core. Additionally, in Table 6.2, I

report the complexity of each IP core in both the hardware and software domains, in terms

of Lines of Code (LOC), number of basic blocks, and number of SVAs provided in each

core’s HDL. Software models of each hardware design are produced using Verilator, as I

describe in §6.4.1.1.

6.7.2.1 Fuzzing OpenTitan IP with Empty Seeds

Unlike most software applications that are fuzzed [140], I observe that software models

of hardware are quite small (Table 6.2). So, like the RFUZZ experiments, I decided to

experiment fuzzing each OpenTitan core using a single empty seed file as starting input,

this time for only one hour. I plot the results of this experiment in Fig. 6.14. After only

one hour of fuzzing with no proper starting seeds, I achieve over 88% HDL line coverage

across three of the four OpenTitan IP cores I study, and over 65% coverage of the remaining

design.

6.7.2.2 Fuzzing for Bugs in OpenTitan IP

While coverage is an important metric, the ultimate goal of fuzzing hardware is to

automatically uncover bugs, before they percolate into fabricated silicon. Therefore, in

my final evaluation, I demonstrate the effectiveness of Hardware Fuzzing at finding four

RTL bugs, one in each OpenTitan IP block I study. Specifically, in the AES, HMAC, and

156

0 10 20 30 40 50 60
Time (min.)

0

20

40

60

80

H
D

L
Li

ne
 C

ov
. (

%
)

Core
aes
hmac

kmac
rv_timer

Figure 6.14: Coverage vs. Time Fuzzing with Empty Seeds. Fuzzing four OpenTi-
tan [105] IP cores for one hour, seeding the fuzzer with an empty file in each
case, yields over 88% HDL line coverage in three out of four designs.

Table 6.3: Hardware Fuzzing RTL Bug Discovery Times.
Core Bug Type Time-to-Bug-Discovery (s)

AES FSM 27
HMAC Padding 30
KMAC FSM 35548
RV Timer Comparison 4.4

RV Timer cores, I implant artificial FSM, padding, and comparison bugs, respectively, and

craft corresponding SVAs to produce HSB crashes upon encountering incorrect hardware

behaviors. Additionally, for the KMAC core, I craft an SVA to detect an FSM bug that

was reported on the OpenTitan public GitHub (Issue #6408) by OpenTitan DV engineers.7

In Table 6.3, I plot the time it took my HWFP to detect each bug when seeded with a

set of inputs that simply resets and initializes each DUT to perform its prescribed tasks.

Namely, for the AES core, my seed configures the device to operate in CTR mode. For

the HMAC core, my seed configures the device to perform SHA256 hashes. For the RV

Timer core, my seed arms the timer. Lastly, for the KMAC core, my seed configures the

device to perform KMAC operations in cSHAKE hashing mode. Across each core I study,

I are able to detect all implanted bugs in less than 10 hours, with initialization seeds that

are orders-of-magnitude less complex than conventional dynamic verification testbenches.

7https://github.com/lowRISC/opentitan/issues/6408

157

Key Insight: Hardware Fuzzing detects bugs in commercial-grade hardware IP.

6.8 Discussion

6.8.1 Detecting Bugs During Fuzzing

The focus of Hardware Fuzzing is to provide a scalable yet flexible solution for inte-

grating CDG with hardware simulation. However, test generation and hardware simulation

comprise only two-thirds of the hardware verification process (§6.2.1). The final, and ar-

guably most important, step is detecting incorrect hardware behavior, i.e., test evaluation

in §6.2.1.3. For this there are two approaches: 1) invariant checking and 2) (gold) model

checking. In both cases, I trigger HSB crashes upon detecting incorrect hardware behavior,

which software fuzzers log. For invariant checks, I use SVAs that send the HSB process the

SIGABRT signal upon assertion violation. Likewise, for gold model checking testbenches

any mismatches between models results in a SIGABRT.

6.8.2 Additional Bus Protocols

To provide a design-agnostic interface to fuzz RTL hardware, I develop a design-

agnostic testbench harness (Fig. 6.13). My harness decodes fuzzer-generated tests using

a bus-specific grammar (§6.4.2.4), and produces corresponding TL-UL bus transactions

that drive a DUT. In my current implementation, my generic testbench harness conforms

to the TL-UL bus protocol [70]. As a result, I can fuzz any IP core that speaks the same

bus protocol (e.g., all OpenTitan cores [105]). To fuzz cores that speak other bus protocols

(e.g., Wishbone, AMBA, Avalon, etc.), users can simply write a new harness for the bus

they wish to support.

158

6.8.3 Hardware without a Bus Interface

For hardware cores that perform I/O over a generic set of ports that do not conform to

any bus protocol, I provide a generic testbench harness that maps fuzzer-generated input

files across spatial and temporal domains by interpreting each fuzzer-generated file as a

sequence of DUT inputs (Algo. 2). I demonstrate this Hardware Fuzzing configuration

when fuzzing various digital locks (Fig. 6.7B). However, if inputs require any structural

dependencies, I advise developing a grammar and corresponding testbench—similar to my

bus-specific grammar (§6.4.2.4)—to aid the fuzzer in generating valid test cases. Designers

can use the lessons in this paper to guide their core-specific grammar designs.

6.8.4 Limitations

While Hardware Fuzzing is both efficient and design-agnostic, there are some limita-

tions. First, unlike software there is no notion of a hardware sanitizer, that can add safe-

guards against generic classes of hardware bugs for the fuzzer to sniff out. While I envision

hardware sanitizers being a future active research area, for now, DV engineers must create

invariants or gold models to check design behavior against for the fuzzer to find crashing

inputs. Second, there is notion of analog behavior in RTL hardware, let along in trans-

lated software models. In its current implementation, Hardware Fuzzing is not effective

against detecting side-channel vulnerabilities that rely on information transmission/leak-

age through analog domains.

6.9 Related Work

There are two categories of prior CDG approaches: 1) design-agnostic and 2) design-

specific.

159

6.9.1 Design-Agnostic

Laeufer et al. ’s RFUZZ [91] is the most relevant prior work, which attempts to build a

full-fledged design-agnostic RTL fuzzer. To achieve their goal, they propose a new RTL

coverage metric—mux toggle coverage—that measures if the control signal to a 2:1 multi-

plexer expresses both states (0 and 1). Unlike Hardware Fuzzing, they instrument the RTL

directly, by injecting additional HDL into the design, and develop their own custom RTL

fuzzer (Fig. 6.1). Unfortunately, this has three drawbacks. First, RFUZZ is only compatible

with hardware written in high-level HDLs, like Chisel [11] or FIRRTL [98], that can instru-

mented when compiled to Verilog. Second, RFUZZ requires some designs be modified to

have reset times on the order of one to two clock cycles. Third, it is unclear how their mux

toggle coverage maps to other RTL coverage metrics that DV engineers also care about,

e.g., FSM and functional coverage [77, 159]. Gent et al. [49] also propose an automatic

test pattern generator based on custom coverage metrics, for which they too instrument the

RTL directly to trace. Unfortunately, like RFUZZ, the deployability and scalability of their

approach remains in question, given their coverage tracing method.

6.9.2 Design-Specific

Unlike the design-agnostic approaches, several researchers propose CDG techniques

exclusively for processors. Zhang et al. [204] propose Coppelia, a tool that uses a cus-

tom symbolic execution engine (built on top of KLEE [24]) on software models of the

RTL. Coppelia’s goal is to target specific security-critical properties of processors; Hard-

ware Fuzzing enables combining such static methods with fuzzing (i.e., concolic execu-

tion [149]) for free, overcoming the limits of symbolic execution alone. Hur et al. [67] pro-

pose DIFUZZRTL that combines RFUZZ with golden model checking to find bugs in CPUs.

However, Hardware Fuzzing produces better coverage than RFUZZ (§6.7.1), and can be

combined with invariant or with golden model checking to detect bugs. Lastly, two other

processor-specific CDG approaches are Squillero’s MicroGP [148] and Bose et al. ’s [22]

160

that use a genetic algorithms to generate random assembly programs that maximize RTL

code coverage of a processor. Unlike Hardware Fuzzing, these approaches require custom

DUT-specific grammars to build assembly programs from.

6.10 Conclusion

Hardware Fuzzing is an effective solution to CDG for hardware DV. Unlike prior work,

I take advantage of feature-rich software testing methodologies and tools, to solve a long-

standing problem in hardware DV. To make my approach attractive to DV practitioners, I

solve several key deployability challenges, including developing generic interfaces (gram-

mar & testbench) to fuzz RTL in a design-agnostic manner. Using my generic grammar

and testbench, I show that my Hardware Fuzzing approach can achieve over 88% HDL

code coverage of three out of four commercial-grade hardware designs I study in only one

hour, with no knowledge of the DUT design or implementation. Moreover, I demonstrate

that approach can also detect various implanted bugs in the same designs, in less than 10

hours. Finally, compared to standard dynamic verification practices and prior RTL fuzzing

techniques, with Hardware Fuzzing, I achieve over two orders-of-magnitude and 13.90%

coverage convergence improvements, respectively.

6.11 Citation

Work from this chapter was partially completed while interning at Google, and is

co-authored by Kang G. Shin, Alex Chernyakovsky, Garret Kelly, Dominic Rizzo, and

Matthew Hicks. This work can be cited as [172].

161

CHAPTER VII

Conclusion & Future Directions

7.1 Conclusion

The ultimate goal of this research is to make security a first class optimization objective—

alongside power, performance, and area—throughout the hardware development life cycle.

In this dissertation, I developed four techniques to aid in the design and verification of

secure hardware. Specifically, I addressed two security threats related to: 1) fabricating sil-

icon at untrusted foundries, and 2) integrating untrusted third-party IP into larger (trusted)

designs. Unlike software, hardware cannot be patched once deployed. Any flaws or se-

curity vulnerabilities in hardware have detrimental financial repercussions to companies

that experience them. As hardware becomes increasingly sophisticated and application-

specific, it is more important than ever to root out hardware flaws before fabrication, and to

prevent malicious tampering of designs at untrusted foundries.

To summarize my contributions to the field, I take a bottom-up approach to securing IC

hardware: starting at the layout-level, before moving to the behavioral (RTL) level. First, I

presented a framework to compute metrics that quantify the overall security of an IC layout

to fabrication-time modification. The goal of this framework is to provide an optimization

feedback mechanism to Electronic Design Automation (EDA) tools to enhance the security

of IC layouts. Using this measurement framework, I developed the first routing-based

preventative defense against foundry-side attacks, called T-TER (Chapter IV). Unlike prior

162

defenses, T-TER does not require hard layout constraints that make deployment intractable

in real-world designs.

At the behavioral (RTL) level, I developed verification solutions to vet untrusted third-

party IP for hardware Trojans. In Chapter V, I presented the first dynamic verification

technique—Bomberman—capable of detecting TTTs with zero false negatives. Lastly, us-

ing Bomberman’s insights, I developed a design-agnostic technique to fuzz hardware like

software to automatically identify specific RTL hardware vulnerabilities, using feature-rich

coverage-guided software fuzzers (Chapter VI). Hardware fuzzing is an exciting research

domain as it brings together several recent advancements in coverage-guided software test-

ing to solve stagnant hardware verification problems.

7.2 Future Directions

While my research has made strides towards securing hardware, it has only scratched

the surface in what I believe to be the future of computer security research. Specifically,

my work has brought to light several new challenges that I summarize here.

7.2.1 Security as an Optimization Objective during IC Layout

In Chapter III, I presented a framework for computing security metrics of an IC lay-

out. While these metrics provide IC layout engineers with concrete insights into how their

designs might be vulnerable to fabrication-time attacks, they do not provide an automated

mechanism to address any issues that may come to light. Ultimately, the goal of this frame-

work is to be tightly integrated into PaR EDA tools, such that the tools themselves can

optimize IC layouts for security. I envision future work performing this integration to de-

velop an E2E solution for hardening IC layouts against fabrication-time modifications.

163

7.2.2 Directed Fuzzing for Trojan Detection

The Bomberman toolchain presented in Chapter V demonstrates the effectiveness of

Trojan-specific verification at eliminating the possibility of false negatives when vetting un-

trusted third-party IP for Trojans. Unfortunately, as my results show, the false positive rate

of this technique is largely dependent on the verification test coverage of TTT invariants—

e.g., repeated or exhausted counter values—Bomberman monitors. While Bomberman

itself provides insight into how to improve the said test coverage, it requires manual effort

on behalf of the design verification engineer. Moreover, it assumes design verification en-

gineer’s have intimate knowledge of the implementation of the DUT, which is not the case

when vetting third-party IP for Trojans. To address this issue, I foresee future work deploy-

ing security-critical invariant monitors, like [59], with hardware fuzzing (Chapter VI), to

automatically optimize Trojan-specific detection schemes like Bomberman.

7.2.3 Fuzzing Hardware with Sparse Memories

In Chapter VI, I demonstrated the advantage of deploying software fuzzing tools to

the hardware verification domain. Using this technique, I fuzzed several cores from the

OpenTitan root-of-trust SoC, including the AES, HMAC, KMAC, and timer cores. One

thing all of these cores have in common is they are all loosely-coupled accelerators. In

other words, unlike a processor, they do not interface with sparse memories. Rather, they

accept control- and data-path inputs directly from a bus interface, process these inputs, and

produce outputs over the same interface. To tailor my approach to such designs, I create a

bus-specific grammar and harness to interpret fuzzer-generated inputs as a sequence of bus

transactions to drive these DUTs.

Now, consider the scenario where the DUT is a CPU that processes control- and data-

path inputs from a large, sparse memory. To adapt software fuzzers to such a DUT, I

envision creating an ISA-specific grammar and harness to interpret fuzzer-generated in-

puts as a valid executable program. However, assuming memory is initialized to a clean

164

state prior to loading a fuzzer-generated program, most program memory accesses would

go to empty memory regions, resulting in fewer interesting state transitions. To increase

the probability of the fuzzer exploring interesting hardware states, we need to develop a

CPU-specific test mutator that constrains program memory accesses to small, yet random,

memory regions.

7.2.4 Hardware Sanitizers

Another key challenge in my hardware fuzzing work was developing a mechanism to

signal to the software fuzzer that a hardware bug was found. Traditionally, when fuzzing

software, this is accomplished using software sanitizers that instrument the program under

test such that it crashes when common abnormal behavior is observed, such as a buffer

overflow, use-after-return, or memory leak error. Unfortunately, there is no such construct

in the hardware domain, as hardware flaws have not been well categorized. To detect

incorrect hardware behavior during simulations, hardware verification engineers use golden

models or invariant (e.g., SystemVerilog Assertions) checks. In my hardware fuzzing work,

I translated these checks to software-level assertions so the fuzzer could detect incorrect

hardware behavior. Unfortunately, defining golden models or invariant checks is tedious

and requires DUT implementation knowledge. My vision going forward is to develop

a hardware sanitizer to automate instrumenting software models of RTL hardware with

invariant checks that detect the most common RTL bugs found in open-source hardware,

e.g., [59].

165

APPENDICES

166

APPENDIX A

Route Distances of OR1200 Layouts

A target density of 50–90% was held across each layout, while target clock frequency

and max transition time parameters were varied from 100 MHz to 1000 MHz and 100 ps to

300 ps respectively. Each heatmap in Figures A.1–A.3 is intended to be read column-wise,

where each column is a histogram. The color intensity within a heatmap column indicates

the percentage of (critical-net, trigger-space) pairs, within that column, that are within a

range of distance away. The y-axis reports the distance in terms of standard deviations

from the overall mean net-length in each design. The x-axis reports the trigger space sizes

in number of contiguous placement sites. Designs with smaller trigger-spaces and long

route distances are more resistant to fabrication-time attacks. Namely, a heatmap column

that is completely dark indicates no (critical-net, trigger-space) pairs, or attack points, and

a column that is completely dark except for the top-most cell is the second most secure.

167

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

50%-100Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

50%-100Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

50%-100Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-150Trans
1e

1
5e

1
1e

2
5e

2
1e

3
5e

3
1e

4
1e

5
1
2
3
4
5
6
7

50%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

50%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

50%-100Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

50%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

50%-200Trans
1e

1
5e

1
1e

2
5e

2
1e

3
5e

3
1e

4
1e

5

Trigger Space
Sizes

1
2
3
4
5
6
7

50%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

50%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.1: Route Distance Results for OR1200 at 50% Density.

168

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

70%-100Trans
1e

1
5e

1
1e

2
5e

2
1e

3
5e

3
1e

4
1e

5
1
2
3
4
5
6
7

70%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

70%-100Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

70%-100Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

70%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

70%-100Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

70%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

70%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

70%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

70%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.2: Route Distance Results for OR1200 at 70% Density.

169

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

90%-100Trans
1e

1
5e

1
1e

2
5e

2
1e

3
5e

3
1e

4
1e

5
1
2
3
4
5
6
7

90%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

90%-100Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

90%-100Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

1
2
3
4
5
6
7

90%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

St
de

v
fr

om
 M

ea
n

N
et

 L
en

gt
h

90%-100Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

90%-150Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

90%-200Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

90%-250Trans

1e
1

5e
1

1e
2

5e
2

1e
3

5e
3

1e
4

1e
5

Trigger Space
Sizes

1
2
3
4
5
6
7

90%-300Trans

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.3: Route Distance Results for OR1200 at 90% Density.

170

APPENDIX B

Descriptions of OpenTitan IP Blocks

AES

The OpenTitan AES core implements the Advanced Encryption Standard with key sizes

of 128, 192, and 256 bits, and with the following cipher block modes: ECB, CBC, CFB,

OFB, and CTR. Configuration settings, keys, and plaintext are delivered to the core through

TileLink write operations to memory-mapped registers in a documented address range.

Likewise, ciphertext is retrieved from the core through TileLink read operations. The core

targets medium performance (one clock cycle per round of encryption). It implements a

128-bit wide data path—shared by encryption and decryption operations—that translates to

encryption/decryption latencies of 12, 14, and 16 clock cycles per 128-bit plaintext block,

in 128, 192, and 256 bit key modes, respectively. Of the cores I study, it is the second most

complex in terms of LOC in both the hardware (HDL) and software domains (Table 6.2).

HMAC

The OpenTitan HMAC implements a SHA-256 hash message authentication code gen-

erator for the purpose of checking the integrity of incoming messages. The HMAC core

171

can operate in two modes: 1) SHA-256 mode only, or 2) HMAC mode. In the former

mode, the core simply computes the SHA-256 hash of a provided message. In the latter

mode, the core computes the HMAC (defined in RFC 2104 [89]) of a message using the

SHA-256 hashing algorithm and a provided secret key. Regardless of mode, the SHA-256

engine operates on 512-bit message chunks at any given time, provided to the core through

a message FIFO. Input messages can be read little- or big-endian and likewise, message

digests can be stored in output registers either little- or big-endian. Configuration settings,

input messages, HMAC keys, and operation commands are delivered to the core through

TileLink write operations to memory-mapped registers. Likewise, message digests are re-

trieved from the core through TileLink read operations. In its current state, the core can

hash a single 512-bit message in 80 clock cycles, and can compute its HMAC in 340 clock

cycles. Of the cores I study, it is approximately half as complex as the AES core, in terms

of LOC in both the hardware and software domains (Table 6.2).

KMAC

The OpenTitan KMAC core is similar to the HMAC core, except it implements a Kec-

cak Message Authentication Code [83] and SHA-3 hashing algorithms. However, com-

pared to the HMAC core, the KMAC core is more complex, as there are several more

configurations. Specifically, there are many SHA-3 hashing functions that are supported—

SHA3-224/256/384/512, SHAKE128/256, and cSHAKE128/256—and the Keccak− f func-

tion (by default) operates on 1600 bits of internal state. Like the HMAC core, the KMAC

core can simply compute hashes or message authentication codes depending on operation

mode, and input messages/output digests can be configured to be read/stored in little- or

big-endian. The time to process a single input message block is dominated by computing

the Keccak− f function, which takes 72 clock cycles for 1600 bits of internal state, in the

current implementation of the core. Configuration settings, input messages, output digests,

keys, and operation commands are all communicated to/from the core through TileLink

172

writes/reads to memory-mapped registers.

Of the cores I study, the KMAC core is the most complex, especially in the software

domain (Table 6.2). The software model of the KMAC core contains almost 120k lines of

C++ code. This is mostly an artifact of how Verilator maps dependencies between large

registers and vectored signals: it creates large multidimensional arrays and maps each cor-

responding index at the word granularity. Fortunately, this artifact is optimized away during

compilation, and the number of basic blocks in the DUT portion of the HSB is reduced.

RV-Timer

The OpenTitan RISC-V timer core is the simplest core I fuzz. It consists of a single

64-bit timer with 12-bit prescaler and an 8-bit step configurations. It can also generate

system interrupts upon reaching a pre-configured time value. Like the other OpenTitan

cores, the RV-Timer core is configured, activated, and deactivated via TileLink writes to

memory-mapped registers.

173

APPENDIX C

Optimizing the Hardware Fuzzing Grammar

Recall, to facilitate widespread adoption of Hardware Fuzzing I design a generic test-

bench fuzzing harness that decodes a grammar and performs corresponding TL-UL bus

transactions to exercise the DUT (Fig. 6.13). However, there are implementation questions

surrounding how the grammar should be decoded (§6.4.2.4):

1. How should I decode 8-bit opcodes when the opcode space defines less than 28 valid

testbench actions?

2. How should I pack Hardware Fuzzing instruction frames that conform to my gram-

mar?

Opcode Formats

In its current state, I define three opcodes in my grammar that correspond to three

actions my generic testbench can perform (Table 6.1): 1) wait one clock cycle, 2) TL-UL

read, and 3) TL-UL write. However, I chose to represent these opcodes with a single byte

(Fig. 6.4). Choosing a larger field than necessary has implications regarding the fuzzability

of my grammar. In its current state, 253 of the 256 possible opcode values may be useless

174

depending on how they are decoded by the testbench. Therefore I propose, and empirically

study, two design choices for decoding Hardware Fuzzing opcodes into testbench actions:

• Constant: constant values are used to represent each opcode corresponding to a sin-

gle testbench action. Remaining opcode values are decoded as invalid, and ignored.

• Mapped: equal sized ranges of opcode values are mapped to valid testbench actions.

No invalid opcode values exist.

Instruction Frame Formats

Of the three actions my testbench can perform—wait, read, and write—some require

additional information. Namely, the TL-UL read action requires a 32-bit address field, and

the TL-UL write action requires 32-bit data and address fields. Given this, there are two

natural ways to decode Hardware Fuzzing instructions (Fig. 6.4):

• Fixed: a fixed instruction frame size is decoded regardless of the opcode. Address

and data fields could go unused depending on the opcode.

• Variable: a variable instruction frame size is decoded. Address and data fields are

only appended to opcodes that correspond to TL-UL read and write testbench actions.

No address/data information goes unused.

Results

To determine the optimal Hardware Fuzzing grammar, I fuzz four OpenTitan IP blocks—

the AES, HMAC, KMAC, and RV-Timer—for 24 hours using all combinations of opcode

and instruction frame formats mentioned above. For each core I seed the fuzzer with 8–

12 binary Hardware Fuzzing seed files (in the corresponding Hardware Fuzzing grammar)

that correctly drive each core, with the exception of the RV-Timer core, which I seed with

175

89

90

91

C
ov

. (
%

)

aes | SW Line (kcov)

86

88

C
ov

. (
%

)

hmac | SW Line (kcov)

94

95

96

C
ov

. (
%

)

kmac | SW Line (kcov)

85

90

C
ov

. (
%

)

rv_timer | SW Line (kcov)

58

60

62

C
ov

. (
%

)

aes | SW Basic Block (LLVM)

64

66

68

C
ov

. (
%

)

hmac | SW Basic Block (LLVM)

68

70

C
ov

. (
%

)

kmac | SW Basic Block (LLVM)

65

70

C
ov

. (
%

)

rv_timer | SW Basic Block (LLVM)

0 10 20
Time (hours)

85

90

C
ov

. (
%

)

aes | HW Line (VLT)

0 10 20
Time (hours)

60

80

C
ov

. (
%

)

hmac | HW Line (VLT)

0 10 20
Time (hours)

60

80

C
ov

. (
%

)
kmac | HW Line (VLT)

0.000 0.025 0.050 0.075 0.100
Time (hours)

25

50

75

C
ov

. (
%

)

rv_timer | HW Line (VLT)

Grammar (Opcode Format | Frame Format)
Constant | Variable Constant | Fixed Mapped | Variable Mapped | Fixed

Figure C.1: Coverage Convergence vs. Hardware Fuzzing Grammar. Various software
and hardware coverage metrics over fuzzing time across four OpenTitan [105]
IP cores and hardware fuzzing grammar variations (§C). In the first row, we
plot line coverage of the software models of each hardware core computed
using kcov. In the second row, we plot basic block coverage computed using
LLVM. In last row, we plot HDL line coverage (of the hardware itself) computed
using Verilator [145]. From these results we formulate two conclusions: 1)
coverage in the software domain correlates to coverage in the hardware do-
main, and 2) the Hardware Fuzzing grammar with variable instruction frames
is best for greybox fuzzers that prioritize small test files.

176

a single wait operation instruction due to its simplicity. For each experiment, I extract and

plot three DUT coverage metrics over fuzz times in Fig. C.1. These metrics include: 1) line

coverage of the DUT software model, 2) basic block coverage of the same, and 3) line cov-

erage of the DUT’s HDL. Software line coverage is computed using kcov [79], software

basic block coverage is computed using LLVM [96], and hardware line coverage is com-

puted using Verilator [145]. Since I perform 10 repetitions of each fuzzing experiment,

I average and consolidate each coverage time series into a single trace.

From these results I draw two conclusions. First, variable instruction frames seem to

perform better than fixed frames, especially early in the fuzzing exploration. Since AFL

prioritizes keeping test files small, I expect variable sized instruction frames to produce

better results, since this translates to longer hardware test sequences, and therefore deeper

possible explorations of the (sequential) state space. Second, the opcode type seems to

make little difference, for most experiments, since there are only 256 possible values, a

search space AFL can explore very quickly. Lastly, I point out that for simple cores, like

the RV-Timer, Hardware Fuzzing is able to achieve ≈85% HDL line coverage in less than

a minute (hence I do not plot the full 24-hour trace).

Key Insights:

1. Hardware Fuzzing instructions with variable frames are optimal for fuzzers that

prioritize small input files, therefore resulting in longer temporal test sequences.

2. Increasing coverage in the software domain, translates to the hardware domain.

177

BIBLIOGRAPHY

178

BIBLIOGRAPHY

[1] Accellera. Universal Verification Methodology (UVM). https://www.

accellera.org/downloads/standards/uvm.

[2] Ronen Adato, Aydan Uyar, Mahmoud Zangeneh, Boyou Zhou, Ajay Joshi, Bennett
Goldberg, and M Selim Unlu. Rapid mapping of digital integrated circuit logic gates
via multi-spectral backside imaging. arXiv:1605.09306, 2016.

[3] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and Berk
Sunar. Trojan detection using IC fingerprinting. In IEEE Symposium on Security
and Privacy (SP), 2007.

[4] Paul Alcorn. Ice lake might arrive in june, according to leaked
lenovo documents. https://www.tomshardware.com/news/

lenovo-laptop-intel-ice-lake-10nm,38674.html.

[5] Yousra Alkabani and Farinaz Koushanfar. Designer’s hardware trojan horse. In
IEEE International Workshop on Hardware-Oriented Security and Trust (HOST),
2008.

[6] Arm. Arm Cortex-M0. https://developer.arm.com/ip-products/

processors/cortex-m/cortex-m0.

[7] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. NAUTILUS: Fishing for deep bugs
with grammars. In Network and Distributed Systems Security Symposium (NDSS),
2019.

[8] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. Ijon: Ex-
ploring deep state spaces via fuzzing. In IEEE Symposium on Security and Privacy
(S&P), 2020.

[9] Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Giorgio Di Natale, Bruno
Rouzeyre, et al. Hardware trust through layout filling: a hardware trojan prevention
technique. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2016.

[10] Papa-Sidy Ba, Manikandan Palanichamy, Sophie Dupuis, Marie-Lise Flottes, Gior-
gio Di Natale, and Bruno Rouzeyre. Hardware trojan prevention using layout-level
design approach. In European Conference on Circuit Theory and Design (ECCTD),
2015.

179

https://www.accellera.org/downloads/standards/uvm
https://www.accellera.org/downloads/standards/uvm
https://www.tomshardware.com/news/lenovo-laptop-intel-ice-lake-10nm,38674.html
https://www.tomshardware.com/news/lenovo-laptop-intel-ice-lake-10nm,38674.html
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0

[11] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas
Avižienis, John Wawrzynek, and Krste Asanović. Chisel: constructing hardware in
a scala embedded language. In Design Automation Conference (DAC). IEEE, 2012.

[12] Halil B Bakoglu. Circuits, interconnections, and packaging for vlsi., 1990.

[13] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. Electromagnetic cir-
cuit fingerprints for hardware Trojan detection. In IEEE International Symposium
on Electromagnetic Compatibility (EMC), 2015.

[14] Mainak Banga, Maheshwar Chandrasekar, Lei Fang, and Michael S Hsiao. Guided
test generation for isolation and detection of embedded trojans in ics. In Proceedings
of the 18th ACM Great Lakes symposium on VLSI, 2008.

[15] Mainak Banga and Michael S Hsiao. A region based approach for the identifica-
tion of hardware trojans. In IEEE International Workshop on Hardware-Oriented
Security and Trust (HOST), 2008.

[16] Mark Beaumont, Bradley Hopkins, and Tristan Newby. Hardware trojans-
prevention, detection, countermeasures (a literature review). Technical report, De-
fence Science and Technology Organization Edinburgh (Australia), 2011.

[17] Georg T Becker, Francesco Regazzoni, Christof Paar, and Wayne P Burleson.
Stealthy dopant-level hardware trojans. In International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), 2013.

[18] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug attacks. In Annual International
Cryptology Conference, 2008.

[19] John Blyler. Trends driving ip reuse through 2020, November 2017. http:

//jbsystech.com/trends-driving-ip-reuse-2020/.

[20] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based grey-
box fuzzing as markov chain. IEEE Transactions on Software Engineering, 2017.

[21] Duane Boning and Sani Nassif. Models of process variations in device and inter-
connect. Design of high performance microprocessor circuits, 2000.

[22] Mrinal Bose, Jongshin Shin, Elizabeth M Rudnick, Todd Dukes, and Magdy Abadir.
A genetic approach to automatic bias generation for biased random instruction gen-
eration. In Proceedings of the Congress on Evolutionary Computation. IEEE, 2001.

[23] Ella Bounimova, Patrice Godefroid, and David Molnar. Billions and billions of
constraints: Whitebox fuzz testing in production. In 2013 35th International Con-
ference on Software Engineering (ICSE). IEEE, 2013.

[24] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2008.

180

http://jbsystech.com/trends-driving-ip-reuse-2020/
http://jbsystech.com/trends-driving-ip-reuse-2020/

[25] Cadence Design Systems. Innovus implementation system. https://www.

cadence.com/content/cadence-www/global/en_US/home.html.

[26] Cadence Design Systems. JasperGold. https://www.cadence.

com/en_US/home/tools/system-design-and-verification/

formal-and-static-verification/jasper-gold-verification-platform.

html.

[27] Cadence Design Systems. Layer Map Files. http://www-bsac.eecs.berkeley.
edu/~cadence/tools/layermap.html.

[28] Cadence Design Systems. Xcelium Logic Simulation. https://www.

cadence.com/en_US/home/tools/system-design-and-verification/

simulation-and-testbench-verification/xcelium-simulator.html.

[29] Cadence Design Systems. LEF/DEF Language Reference, 2009. http://www.

ispd.cc/contests/14/web/doc/lefdefref.pdf.

[30] Yongming Cai, Zhiyong Wang, Rajen Dias, and Deepak Goyal. Electro optical
terahertz pulse reflectometry—an innovative fault isolation tool. In Electronic Com-
ponents and Technology Conference (ECTC), 2010 Proceedings 60th, 2010.

[31] Calma Company. GDSII Stream Format Manual, February 1987.

[32] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-
rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking data on meltdown-resistant CPUs.
In ACM SIGSAC Conference on Computer and Communications Security (CCS),
2019.

[33] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. Un-
leashing mayhem on binary code. In IEEE Symposium on Security and Privacy
(S&P), 2012.

[34] Rajat Subhra Chakraborty, Seetharam Narasimhan, and Swarup Bhunia. Hardware
trojan: Threats and emerging solutions. In IEEE High Level Design Validation and
Test Workshop (HLDVT), 2009.

[35] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. Hawkeye: Towards a desired directed grey-box fuzzer. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2018.

[36] Ming-Kun Chen, Cheng-Chi Tai, and Yu-Jung Huang. Nondestructive analysis of
interconnection in two-die bga using tdr. IEEE Transactions on Instrumentation and
Measurement, 2006.

[37] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning. ACM SIGARCH Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2014.

181

https://www.cadence.com/content/cadence-www/global/en_US/home.html
https://www.cadence.com/content/cadence-www/global/en_US/home.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
http://www-bsac.eecs.berkeley.edu/~cadence/tools/layermap.html
http://www-bsac.eecs.berkeley.edu/~cadence/tools/layermap.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
http://www.ispd.cc/contests/14/web/doc/lefdefref.pdf
http://www.ispd.cc/contests/14/web/doc/lefdefref.pdf

[38] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: A platform
for in-vivo multi-path analysis of software systems. ACM SIGPLAN International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2011.

[39] Marek Cieplucha. Metric-driven verification methodology with regression manage-
ment. Journal of Electronic Testing, 2019.

[40] Ronald P Cocchi, James P Baukus, Lap Wai Chow, and Bryan J Wang. Circuit cam-
ouflage integration for hardware IP protection. In ACM Design Automation Confer-
ence (DAC), 2014.

[41] lowRISC Contributors. OpenTitan: Comportability Definition and Specification,
November 2020. https://docs.opentitan.org/doc/rm/comportability_

specification/.

[42] MITRE Corporation. Cve details: Intel: Vulnerability statistics, August 2019.
https://www.cvedetails.com/vendor/238/Intel.html.

[43] Jason Cross. Inside apple’s A13 bionic system-on-chip, Oc-
tober 2019. https://www.macworld.com/article/3442716/

inside-apples-a13-bionic-system-on-chip.html.

[44] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R
LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions.
IEEE Journal of Solid-State Circuits, 1974.

[45] William C Elmore. The transient response of damped linear networks with particular
regard to wideband amplifiers. Journal of Applied Physics, 1948.

[46] Keoni Everington. TSMC starts work on US$19.6 billion 3nm fab in s. taiwan,
October 2019. https://www.taiwannews.com.tw/en/news/3805032.

[47] Shai Fine and Avi Ziv. Coverage directed test generation for functional verification
using bayesian networks. In the 40th annual Design Automation Conference (DAC),
2003.

[48] Domenic Forte, Chongxi Bao, and Ankur Srivastava. Temperature tracking: An
innovative run-time approach for hardware trojan detection. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), 2013.

[49] Kelson Gent and Michael S Hsiao. Fast multi-level test generation at the rtl. In 2016
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2016.

[50] Patrice Godefroid, Michael Y Levin, and David Molnar. SAGE: whitebox fuzzing
for security testing. Queue, 2012.

[51] Lawrence H Goldstein and Evelyn L Thigpen. SCOAP: Sandia controllability/ob-
servability analysis program. In ACM Design Automation Conference (DAC), 1980.

182

https://docs.opentitan.org/doc/rm/comportability_specification/
https://docs.opentitan.org/doc/rm/comportability_specification/
https://www.cvedetails.com/vendor/238/Intel.html
https://www.macworld.com/article/3442716/inside-apples-a13-bionic-system-on-chip.html
https://www.macworld.com/article/3442716/inside-apples-a13-bionic-system-on-chip.html
https://www.taiwannews.com.tw/en/news/3805032

[52] Google LLC. RISCV-DV. https://github.com/google/riscv-dv.

[53] Preeti Gupta. 7nm power issues and solutions, November 2016. https://

semiengineering.com/7nm-power-issues-and-solutions/.

[54] Onur Guzey and Li-C Wang. Coverage-directed test generation through automatic
constraint extraction. In IEEE International High Level Design Validation and Test
Workshop (HLDVT), 2007.

[55] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz. Un-
derstanding sources of inefficiency in general-purpose chips. In the 37th annual
International Symposium on Computer Architecture (ISCA), 2010.

[56] Leonard A Hayden and Vijai K Tripathi. Characterization and modeling of multi-
ple line interconnections from time domain measurements. IEEE Transactions on
Microwave Theory and Techniques, 1994.

[57] Jesse Hertz and Tim Newsham. ProjectTriforce: AFL/QEMU fuzzing with full-
system emulation. https://github.com/nccgroup/TriforceAFL.

[58] Matthew Hicks, Murph Finnicum, Samuel T. King, Milo M. K. Martin, and
Jonathan M. Smith. Overcoming an untrusted computing base: Detecting and re-
moving malicious hardware automatically. In IEEE Symposium on Security and
Privacy (SP), 2010.

[59] Matthew Hicks, Cynthia Sturton, Samuel T. King, and Jonathan M. Smith. SPECS:
A lightweight runtime mechanism for protecting software from security-critical pro-
cessor bugs. In ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2015.

[60] Simon Hollis and Simon W Moore. Rasp: an area-efficient, on-chip network. In
2006 International Conference on Computer Design, pages 63–69. IEEE, 2006.

[61] Simon J Hollis. Pulse generation for on-chip data transmission. In 2009 12th Eu-
romicro Conference on Digital System Design, Architectures, Methods and Tools,
pages 303–310. IEEE, 2009.

[62] Yumin Hou, Hu He, Kaveh Shamsi, Yier Jin, Dong Wu, and Huaqiang Wu. R2D2:
Runtime reassurance and detection of A2 trojan. In International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 2018.

[63] MS Hrishikesh, Norman P Jouppi, Keith I Farkas, Doug Burger, Stephen W Keckler,
and Premkishore Shivakumar. The optimal logic depth per pipeline stage is 6 to 8
FO4 inverter delays. In IEEE International Symposium on Computer Architecture
(ISCA), 2002.

183

https://github.com/google/riscv-dv
https://semiengineering.com/7nm-power-issues-and-solutions/
https://semiengineering.com/7nm-power-issues-and-solutions/
https://github.com/nccgroup/TriforceAFL

[64] Ching-Wen Hsue and Te-Wen Pan. Reconstruction of nonuniform transmission
lines from time-domain reflectometry. IEEE Transactions on Microwave Theory
and Techniques, 1997.

[65] Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang. PAN-
GOLIN: Incremental hybrid fuzzing with polyhedral path abstraction. In IEEE Sym-
posium on Security and Privacy (S&P), 2020.

[66] John F Hughes and James D Foley. Computer graphics: principles and practice.
Pearson Education, 2014.

[67] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim, and By-
oungyoung Lee. DIFUZZRTL: Differential fuzz testing to find cpu bugs. In IEEE
Symposium on Security and Privacy (S&P), 2021.

[68] Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh Tripunitara. Securing
computer hardware using 3D integrated circuit (IC) technology and split manufac-
turing for obfuscation. In USENIX Security Symposium, 2013.

[69] Frank Imeson, Saeed Nejati, Siddharth Garg, and Mahesh Tripunitara. Non-
deterministic timers for hardware trojan activation (or how a little randomness can
go the wrong way). In 10th USENIX Workshop on Offensive Technologies (WOOT
16), 2016.

[70] SiFive Inc. SiFive: TileLink Specification, November 2020. Version 1.8.0.

[71] Intel Corporation. Microprocessor quick reference guide. https://www.intel.

com/pressroom/kits/quickreffam.htm#i486.

[72] Charalambos Ioannides, Geoff Barrett, and Kerstin Eder. Introducing xcs to cover-
age directed test generation. In IEEE International High Level Design Validation
and Test Workshop (HLDVT), 2011.

[73] Peter Jamieson, Kenneth B Kent, Farnaz Gharibian, and Lesley Shannon. Odin II-
an open-source verilog HDL synthesis tool for CAD research. In 2010 18th IEEE
Annual International Symposium on Field-Programmable Custom Computing Ma-
chines. IEEE, 2010.

[74] Yier Jin, Nathan Kupp, and Yiorgos Makris. DFTT: Design for trojan test. In IEEE
International Conference on Electronics, Circuits, and Systems (ICECS), 2010.

[75] Yier Jin and Yiorgos Makris. Hardware trojan detection using path delay fingerprint.
In IEEE Workshop on Hardware-Oriented Security and Trust (HOST), 2008.

[76] James Johnson. gramfuzz. https://github.com/d0c-s4vage/gramfuzz.

[77] Jing-Yang Jou and Chien-Nan Jimmy Liu. Coverage analysis techniques for hdl
design validation. Proceedings of Asia Pacific CHip Design Languages, 1999.

184

https://www.intel.com/pressroom/kits/quickreffam.htm#i486
https://www.intel.com/pressroom/kits/quickreffam.htm#i486
https://github.com/d0c-s4vage/gramfuzz

[78] Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. Motivation for and
evaluation of the first tensor processing unit. IEEE Micro, 2018.

[79] Simon Kagstrom. kcov. https://github.com/SimonKagstrom/kcov.

[80] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whit-
temore, Sudhindra Pandav, Anna Slobodová, Christopher Taylor, Vladimir Frolov,
Erik Reeber, et al. Replacing testing with formal verification in intel core i7 pro-
cessor execution engine validation. In International Conference on Computer Aided
Verification (CAV). Springer, 2009.

[81] Ramesh Karri, Jeyavijayan Rajendran, Kurt Rosenfeld, and Mohammad Tehra-
nipoor. Trustworthy hardware: Identifying and classifying hardware trojans. Com-
puter, 2010.

[82] Shane Kelly, Xuehui Zhang, Mohammed Tehranipoor, and Andrew Ferraiuolo. De-
tecting hardware trojans using on-chip sensors in an asic design. Journal of Elec-
tronic Testing, 31(1):11–26, 2015.

[83] John Kelsey, Shu-jen Chang, and Ray Perlner. SHA-3 derived functions: cSHAKE,
KMAC, TupleHash, and ParallelHash. Technical report, National Institute of Stan-
dards and Technology, 2016.

[84] Tae Kim. Intel’s alleged security flaw could cost chipmaker a lot
of money, Bernstein says. https://www.cnbc.com/2018/01/03/

intels-alleged-security-flaw-could-cost-chipmaker-a-lot-of-money-bernstein.

html.

[85] Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and
Yuanyuan Zhou. Designing and implementing malicious hardware. In Usenix Work-
shop on Large-Scale Exploits and Emergent Threats (LEET), 2008.

[86] Angus I Kingon, Jon-Paul Maria, and SK Streiffer. Alternative dielectrics to silicon
dioxide for memory and logic devices. Nature, 2000.

[87] Christopher H Kingsley and Balmukund K Sharma. Method and apparatus for iden-
tifying flip-flops in hdl descriptions of circuits without specific templates, 1998. US
Patent 5,854,926.

[88] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In 40th IEEE
Symposium on Security and Privacy (S&P), 2019.

[89] H. Krawczyk, M. Bellare, and M. Bellare. HMAC: Keyed-hashing for message
authentication. RFC 2104, RFC Editor, February 1997.

185

https://github.com/SimonKagstrom/kcov
https://www.cnbc.com/2018/01/03/intels-alleged-security-flaw-could-cost-chipmaker-a-lot-of-money-bernstein.html
https://www.cnbc.com/2018/01/03/intels-alleged-security-flaw-could-cost-chipmaker-a-lot-of-money-bernstein.html
https://www.cnbc.com/2018/01/03/intels-alleged-security-flaw-could-cost-chipmaker-a-lot-of-money-bernstein.html

[90] Raghavan Kumar, Philipp Jovanovic, Wayne Burleson, and Ilia Polian. Parametric
trojans for fault-injection attacks on cryptographic hardware. In Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2014.

[91] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.
RFUZZ: coverage-directed fuzz testing of RTL on FPGAs. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). IEEE, 2018.

[92] Mark Lapedus. 10nm versus 7nm, April 2016. https://semiengineering.com/
10nm-versus-7nm/.

[93] Mark Lapedus. Battling fab cycle times, February 2017. https://

semiengineering.com/battling-fab-cycle-times/.

[94] Mark Lapedus. Big trouble at 3nm, June 2018. https://semiengineering.com/
big-trouble-at-3nm/.

[95] Mark Lapedus. GF puts 7nm on hold, August 2018. https://semiengineering.
com/gf-puts-7nm-on-hold/.

[96] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis and transformation. In International Symposium on Code Generation
and Optimization (CGO), San Jose, CA, USA, 2004.

[97] Jie Li and John Lach. At-speed delay characterization for IC authentication and
trojan horse detection. In IEEE Workshop on Hardware-Oriented Security and Trust
(HOST), 2008.

[98] Patrick S Li, Adam M Izraelevitz, and Jonathan Bachrach. Specification for the
FIRRTL language. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-9, 2016.

[99] Wenchao Li, A. Gascon, P. Subramanyan, Wei Yang Tan, A. Tiwari, S. Malik,
N. Shankar, and S.A. Seshia. Wordrev: Finding word-level structures in a sea of
bit-level gates. In IEEE International Workshop on Hardware-Oriented Security
and Trust (HOST), 2013.

[100] Jun Jun Lim, Nor Adila Johari, Subhash C Rustagi, and Narain D Arora. Character-
ization of interconnect process variation in cmos using electrical measurements and
field solver. IEEE Transactions on Electron Devices, 2014.

[101] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson. Tro-
jan side-channels: Lightweight hardware trojans through side-channel engineer-
ing. In International Workshop on Cryptographic Hardware and Embedded Systems
(CHES), 2009.

[102] Timothy Linscott, Pete Ehrett, Valeria Bertacco, and Todd Austin. SWAN: mitigat-
ing hardware trojans with design ambiguity. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2018.

186

https://semiengineering.com/10nm-versus-7nm/
https://semiengineering.com/10nm-versus-7nm/
https://semiengineering.com/battling-fab-cycle-times/
https://semiengineering.com/battling-fab-cycle-times/
https://semiengineering.com/big-trouble-at-3nm/
https://semiengineering.com/big-trouble-at-3nm/
https://semiengineering.com/gf-puts-7nm-on-hold/
https://semiengineering.com/gf-puts-7nm-on-hold/

[103] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-
ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. Melt-
down: Reading kernel memory from user space. In 27th USENIX Security Sympo-
sium (USENIX Security), 2018.

[104] LLVM Project. libFuzzer – a library for coverage-guided fuzz testing. https:

//llvm.org/docs/LibFuzzer.html.

[105] lowRISC. Opentitan. https://opentitan.org/.

[106] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bedford Taylor.
ASIC clouds: Specializing the datacenter. In 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 178–190. IEEE, 2016.

[107] Mentor Graphics. ModelSim. https://www.mentor.com/products/fv/

modelsim/.

[108] MIT Lincoln Laboratory. Common evaluation platform. https://github.com/

mit-ll/CEP.

[109] MIT Lincoln Laboratory. Common evaluation platform. https://github.com/

mit-ll/CEP/tree/d19a5de3dc32d58b535f52fc9aa2cd70f95107e1.

[110] MIT Lincoln Laboratory. GDS2-Score. https://github.com/mit-ll/

gds2-score.

[111] MIT Lincoln Laboratory. Nemo. https://github.com/mit-ll/nemo.

[112] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. TPM-FAIL:
TPM meets Timing and Lattice Attacks. In 29th USENIX Security Symposium
(USENIX Security’20), 2020.

[113] Gordon E Moore. Cramming more components onto integrated circuits, 1965.

[114] Mozilla Security. Dharma: A generation-based, context-free grammar fuzzer.
https://www.overleaf.com/project/5e163844e63c070001079faa.

[115] Michael Nagel, Alexander Michalski, and Heinrich Kurz. Contact-free fault loca-
tion and imaging with on-chip terahertz time-domain reflectometry. Optics Express,
2011.

[116] Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing fuzzing overhead
through coverage-guided tracing. In Symposium on Security and Privacy (S&P).
IEEE, 2019.

[117] Seetharam Narasimhan, Xinmu Wang, Dongdong Du, Rajat Subhra Chakraborty,
and Swarup Bhunia. TeSR: A robust temporal self-referencing approach for hard-
ware trojan detection. In IEEE Symposium on Hardware-Oriented Security and
Trust (HOST), 2011.

187

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://opentitan.org/
https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/
https://github.com/mit-ll/CEP
https://github.com/mit-ll/CEP
https://github.com/mit-ll/CEP/tree/d19a5de3dc32d58b535f52fc9aa2cd70f95107e1
https://github.com/mit-ll/CEP/tree/d19a5de3dc32d58b535f52fc9aa2cd70f95107e1
https://github.com/mit-ll/gds2-score
https://github.com/mit-ll/gds2-score
https://github.com/mit-ll/nemo
https://www.overleaf.com/project/5e163844e63c070001079faa

[118] Tony Nowatzki, Vinay Gangadhan, Karthikeyan Sankaralingam, and Greg Wright.
Pushing the limits of accelerator efficiency while retaining programmability.
In IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2016.

[119] C Odegard and C Lambert. Comparative tdr analysis as a packaging fa tool. In
ISTFA 1999: 25 th International Symposium for Testing and Failure Analysis, 1999.

[120] University of California. Risc-v gnu compiler toolchain. https://github.com/

riscv/riscv-gnu-toolchain.

[121] OpenCores.org. OpenRISC OR1200 processor. https://github.com/

openrisc/or1200.

[122] OpenCores.org. Openrisc or1k tests. https://github.com/openrisc/

or1k-tests/tree/master/native/or1200.

[123] OpenCores.org. Or1k-elf toolchain. https://openrisc.io/newlib/.

[124] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Parme-
San: Sanitizer-guided greybox fuzzing. In USENIX Security Symposium, 2020.

[125] V.A. Patankar, A. Jain, and R.E. Bryant. Formal verification of an ARM processor.
In VLSI Design, 1999. Proceedings. Twelfth International Conference On, pages
282–287, 1999.

[126] Vern Paxson, Will Estes, and John Millaway. Lexical analysis with flex. University
of California, 2007.

[127] Peach Tech. Peach Fuzzing Platform. https://www.peach.tech/products/

peach-fuzzer/.

[128] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by program
transformation. In IEEE Symposium on Security and Privacy (S&P), 2018.

[129] Dan L Philen, Ian A White, Jane F Kuhl, and Stephen C Mettler. Single-mode
fiber otdr: Experiment and theory. IEEE Transactions on Microwave Theory and
Techniques, 1982.

[130] Andrew Piziali. Functional verification coverage measurement and analysis.
Springer Science & Business Media, 2007.

[131] Miodrag Potkonjak, Ani Nahapetian, Michael Nelson, and Tammara Massey. Hard-
ware trojan horse detection using gate-level characterization. In ACM/IEEE Design
Automation Conference (DAC), 2009.

[132] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing. In Network and
Distributed Systems Security Symposium (NDSS), 2017.

188

https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/openrisc/or1200
https://github.com/openrisc/or1200
https://github.com/openrisc/or1k-tests/tree/master/native/or1200
https://github.com/openrisc/or1k-tests/tree/master/native/or1200
https://openrisc.io/newlib/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/

[133] UC Berkeley Architecture Research. Pipelined FFT. https://github.com/

ucb-art/fft.

[134] UC Berkeley Architecture Research. RISC-V Sodor. https://github.com/

ucb-bar/riscv-sodor.

[135] Masoud Rostami, Farinaz Koushanfar, Jeyavijayan Rajendran, and Ramesh Karri.
Hardware security: Threat models and metrics. In IEEE International Conference
on Computer-Aided Design (ICCD), 2013.

[136] H. Salmani, M. Tehranipoor, and R. Karri. On design vulnerability analysis and trust
benchmarks development. In IEEE International Conference on Computer Design
(ICCD), 2013.

[137] Hassan Salmani. COTD: Reference-free hardware trojan detection and recovery
based on controllability and observability in gate-level netlist. IEEE Transactions
on Information Forensics and Security, 2017.

[138] Hassan Salmani and Mohammed Tehranipoor. Analyzing circuit vulnerability to
hardware trojan insertion at the behavioral level. In IEEE Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2013.

[139] Kosta Serebryany. Continuous fuzzing with libfuzzer and addresssanitizer. In Cy-
bersecurity Development (SecDev). IEEE, 2016.

[140] Kostya Serebryany. OSS-Fuzz - google’s continuous fuzzing service for open source
software. In USENIX Security Symposium, 2017.

[141] Sophia Shao and Emma Wang. Die photo analysis. http://vlsiarch.eecs.

harvard.edu/research/accelerators/die-photo-analysis/.

[142] Yuriy Shiyanovskii, F Wolff, Aravind Rajendran, C Papachristou, D Weyer, and
W Clay. Process reliability based trojans through NBTI and HCI effects. In
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2010.

[143] SiFive. SiFive Blocks. https://github.com/sifive/sifive-blocks.

[144] D Smolyansky. Electronic package fault isolation using tdr. ASM International,
2004.

[145] Wilson Snyder. verilator. https://www.veripool.org/wiki/verilator.

[146] PI Somlo and DL Hollway. Microwave locating reflectometer. Electronics Letters,
1969.

[147] Ed Sperling. Design rule complexity rising, April 2018. https://

semiengineering.com/design-rule-complexity-rising/.

[148] Giovanni Squillero. Microgp—an evolutionary assembly program generator. Ge-
netic Programming and Evolvable Machines, 2005.

189

https://github.com/ucb-art/fft
https://github.com/ucb-art/fft
https://github.com/ucb-bar/riscv-sodor
https://github.com/ucb-bar/riscv-sodor
http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/
http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/
https://github.com/sifive/sifive-blocks
https://www.veripool.org/wiki/verilator
https://semiengineering.com/design-rule-complexity-rising/
https://semiengineering.com/design-rule-complexity-rising/

[149] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic execution. In Network and
Distributed Systems Security Symposium (NDSS), 2016.

[150] Cynthia Sturton, Matthew Hicks, David Wagner, and Samuel T King. Defeating uci:
Building stealthy and malicious hardware. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2011.

[151] Pramod Subramanyan, Nestan Tsiskaridze, Kanika Pasricha, Dillon Reisman, Adri-
ana Susnea, and Sharad Malik. Reverse engineering digital circuits using functional
analysis. In Proceedings of the ACM Conference on Design, Automation and Test in
Europe (DATE), 2013.

[152] Takeshi Sugawara, Daisuke Suzuki, Ryoichi Fujii, Shigeaki Tawa, Ryohei Hori, Mit-
suru Shiozaki, and Takeshi Fujino. Reversing stealthy dopant-level circuits. In In-
ternational Workshop on Cryptographic Hardware and Embedded Systems (CHES),
2014.

[153] James Sutherland. As edge speeds increase, wires become transmission lines. EDN,
1999.

[154] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnera-
bility discovery. Pearson Education, 2007.

[155] Robert Swiecki. honggfuzz. https://honggfuzz.dev/.

[156] Synopsys. VC Formal. https://www.synopsys.com/verification/

static-and-formal-verification/vc-formal.html.

[157] Synopsys. VCS. https://www.synopsys.com/verification/simulation/

vcs.html.

[158] Dean Takahashi. Intel will invest in factories and manufacture chips
for other companies. https://venturebeat.com/2021/03/23/

intel-will-invest-in-factories-and-manufacture-chips-for-other-companies/.

[159] Serdar Tasiran and Kurt Keutzer. Coverage metrics for functional validation of hard-
ware designs. IEEE Design & Test of Computers, 2001.

[160] MY Tay, L Cao, M Venkata, L Tran, W Donna, W Qiu, J Alton, PF Taday, and
M Lin. Advanced fault isolation technique using electro-optical terahertz pulse re-
flectometry. In Physical and Failure Analysis of Integrated Circuits (IPFA), 2012
19th IEEE International Symposium on the, 2012.

[161] Jake Taylor. Kaze: an HDL embedded in Rust, November 2020. https://docs.

rs/kaze/0.1.13/kaze/.

190

https://honggfuzz.dev/
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal.html
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://venturebeat.com/2021/03/23/intel-will-invest-in-factories-and-manufacture-chips-for-other-companies/
https://venturebeat.com/2021/03/23/intel-will-invest-in-factories-and-manufacture-chips-for-other-companies/
https://docs.rs/kaze/0.1.13/kaze/
https://docs.rs/kaze/0.1.13/kaze/

[162] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware trojan tax-
onomy and detection. IEEE Design & Test of Computers, 2010.

[163] Marat Teplitsky, Amit Metodi, and Raz Azaria. Coverage driven distribution of con-
strained random stimuli. In Proceedings of the Design and Verification Conference
(DVCon), 2015.

[164] TeraView. Electro Optical Terahertz Pulse Reflectometry: The world’s fastest and
most accurate fault isolation system. https://teraview.com/eotpr/.

[165] Texplained. ChipJuice. https://www.texplained.com/about-us/

chipjuice-software.

[166] The GNU Project. Bison. https://www.gnu.org/software/bison/.

[167] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.
Chong, and Timothy Sherwood. Complete information flow tracking from the gates
up. In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS, pages 109–120, 2009.

[168] Timothy Trippel. Bomberman, December 2020. https://github.com/

timothytrippel/bomberman.

[169] Timothy Trippel, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. ICAS: an ex-
tensible framework for estimating the susceptibility of ic layouts to additive trojans.
In IEEE Symposium on Security and Privacy (S&P), 2020.

[170] Timothy Trippel, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. T-TER: De-
feating A2 Trojans with Targeted Tamper-Evident Routing. ArXiv, 2020.

[171] Timothy Trippel, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. Bomberman:
Defining and Defeating Hardware Ticking Timebombs at Design-time. In IEEE
Symposium on Security and Privacy (S&P), 2021.

[172] Timothy Trippel, Kang G. Shin, Alex Chernyakhovsky, Garret Kelly, Dominic
Rizzo, and Matthew Hicks. Fuzzing Hardware Like Software. ArXiv, 2021.

[173] TSMC. Tsmc fabrication schedule — 2019, April 2019. https://www.mosis.

com/db/pubf/fsched?ORG=TSMC.

[174] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-
order execution. In 27th USENIX Security Symposium (USENIX Security), 2018.

[175] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-
order execution. In 27th USENIX Security Symposium (USENIX Security’18), 2018.

191

https://teraview.com/eotpr/
https://www.texplained.com/about-us/chipjuice-software
https://www.texplained.com/about-us/chipjuice-software
https://www.gnu.org/software/bison/
https://github.com/timothytrippel/bomberman
https://github.com/timothytrippel/bomberman
https://www.mosis.com/db/pubf/fsched?ORG=TSMC
https://www.mosis.com/db/pubf/fsched?ORG=TSMC

[176] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In 40th IEEE Symposium on Security and Privacy (S&P’19),
2019.

[177] Potential Ventures. cocotb. https://github.com/cocotb/cocotb.

[178] Denys Vlasenko. Busybox. https://www.busybox.net/.

[179] Martin Vuagnoux. Autodaf´e: an act of software torture. http://autodafe.

sourceforge.net/tutorial/index.html.

[180] Dmitry Vyukov. syzkaller. https://github.com/google/syzkaller.

[181] Adam Waksman, Jeyavijayan Rajendran, Matthew Suozzo, and Simha Sethumadha-
van. A red team/blue team assessment of functional analysis methods for malicious
circuit identification. In ACM/EDAC/IEEE Design Automation Conference (DAC),
2014.

[182] Adam Waksman and Simha Sethumadhavan. Tamper evident microprocessors. In
IEEE Symposium on Security and Privacy (S&P), 2010.

[183] Adam Waksman and Simha Sethumadhavan. Silencing hardware backdoors. In
IEEE Symposium on Security and Privacy (S&P), 2011.

[184] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. FANCI: identifica-
tion of stealthy malicious logic using boolean functional analysis. In ACM SIGSAC
Conference on Computer & Communications Security (CCS), 2013.

[185] Fanchao Wang, Hanbin Zhu, Pranjay Popli, Yao Xiao, Paul Bodgan, and Shahin
Nazarian. Accelerating coverage directed test generation for functional verification:
A neural network-based framework. In Proceedings of the Great Lakes Symposium
on VLSI, 2018.

[186] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire: Data-driven seed gen-
eration for fuzzing. In IEEE Symposium on Security and Privacy (S&P), 2017.

[187] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: Grammar-aware
greybox fuzzing. In IEEE/ACM International Conference on Software Engineering
(ICSE), 2019.

[188] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Tim Cheng. Electronic de-
sign automation: synthesis, verification, and test. Morgan Kaufmann, 2009.

[189] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In IEEE Sym-
posium on Security and Privacy (S&P), 2010.

192

https://github.com/cocotb/cocotb
https://www.busybox.net/
http://autodafe.sourceforge.net/tutorial/index.html
http://autodafe.sourceforge.net/tutorial/index.html
https://github.com/google/syzkaller

[190] Xiaoxiao Wang, Mohammad Tehranipoor, and Jim Plusquellic. Detecting malicious
inclusions in secure hardware: Challenges and solutions. In IEEE Workshop on
Hardware-Oriented Security and Trust (HOST), 2008.

[191] Xinmu Wang, Seetharam Narasimhan, Aswin Krishna, Tatini Mal-Sarkar, and
Swarup Bhunia. Sequential hardware trojan: Side-channel aware design and place-
ment. In 2011 IEEE 29th International Conference on Computer Design (ICCD),
2011.

[192] Stephen Williams. Icarus Verilog. http://iverilog.icarus.com/.

[193] Clifford Wolf. Picorv32. https://github.com/cliffordwolf/picorv32#

cycles-per-instruction-performance.

[194] Francis Wolff, Chris Papachristou, Swarup Bhunia, and Rajat S Chakraborty. To-
wards trojan-free trusted ICs: Problem analysis and detection scheme. In ACM
Conference on Design, Automation and Test in Europe (DATE), 2008.

[195] Kan Xiao and Mohammed Tehranipoor. BISA: Built-in self-authentication for pre-
venting hardware trojan insertion. In IEEE Symposium on Hardware-Oriented Se-
curity and Trust (HOST), 2013.

[196] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis Sylvester.
A2: Analog malicious hardware. In IEEE Symposium on Security and Privacy (SP),
2016.

[197] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian, and
Bin Liang. Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2017.

[198] Jun Yuan, Carl Pixley, Adnan Aziz, and Ken Albin. A framework for constrained
functional verification. In International Conference on Computer Aided Design (IC-
CAD). IEEE, 2003.

[199] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. {QSYM}: A
practical concolic execution engine tailored for hybrid fuzzing. In {USENIX} Secu-
rity Symposium, 2018.

[200] Michael Zalewski. afl-fuzz: making up grammar with a dictionary in hand. https:
//lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.

html.

[201] Michael Zalewski. American fuzzy lop. https://lcamtuf.coredump.cx/afl/.

[202] Jie Zhang, Feng Yuan, Linxiao Wei, Yannan Liu, and Qiang Xu. VeriTrust: Verifica-
tion for hardware trust. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2015.

193

http://iverilog.icarus.com/
https://github.com/cliffordwolf/picorv32#cycles-per-instruction-performance
https://github.com/cliffordwolf/picorv32#cycles-per-instruction-performance
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.coredump.cx/afl/

[203] Jie Zhang, Feng Yuan, and Qiang Xu. DeTrust: Defeating hardware trust verifica-
tion with stealthy implicitly-triggered hardware trojans. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2014.

[204] Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton. End-to-end
automated exploit generation for validating the security of processor designs. In
51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018.

[205] Rui Zhang, Natalie Stanley, Christopher Griggs, Andrew Chi, and Cynthia Sturton.
Identifying security critical properties for the dynamic verification of a processor. In
ACM Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), 2017.

[206] Rui Zhang and Cynthia Sturton. A recursive strategy for symbolic execution to find
exploits in hardware designs. In ACM SIGPLAN International Workshop on Formal
Methods and Security (FSM), 2018.

[207] Rui Zhang and Cynthia Sturton. Transys: Leveraging common security properties
across hardware designs. In IEEE Symposium on Security and Privacy (S&P), 2020.

[208] Xuehui Zhang and Mohammad Tehranipoor. Ron: An on-chip ring oscillator net-
work for hardware trojan detection. In 2011 Design, Automation & Test in Europe,
pages 1–6. IEEE, 2011.

[209] Boyou Zhou, Ronen Adato, Mahmoud Zangeneh, Tianyu Yang, Aydan Uyar, Ben-
nett Goldberg, Selim Unlu, and Ajay Joshi. Detecting hardware trojans using back-
side optical imaging of embedded watermarks. In ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), 2015.

[210] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai Chen.
FuzzGuard: Filtering out unreachable inputs in directed grey-box fuzzing through
deep learning. In USENIX Security Symposium, 2020.

194

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	Motivation
	Hardware Development Trends
	Research Challenges & Thesis Statement
	Dissertation Contributions
	Security-Driven (Layout) Design
	Security-Driven (RTL) Verification

	Road Map

	Background
	IC Design Process
	Hardware Trojans
	Trojan Trigger
	Trojan Payload

	Threat Models
	Fabrication-Time Attacks
	Design-Time Attacks

	ICAS
	Introduction
	Background
	IC Layouts
	Fabrication-Time Trojan Implementations

	Threat Model
	Untrusted Foundry Defenses
	Undirected
	Directed

	Unified Attack Metrics
	Challenges of Trojan Placement
	Challenges of Victim/Trojan Integration
	Challenges of Intra-Trojan Routing
	Complying with Design Rules
	Meeting Timing Requirements

	Extensible Coverage Assessment Framework
	Nemo
	Annotating Security-Critical Signals in the RTL Netlist
	Identifying Security-Critical Signals in the PaR Netlist
	Implementation

	GDSII-Score
	Metric 1: Trigger Space
	Metric 2: Net Blockage
	Metric 3: Route Distance

	Evaluation
	Experimental Setup
	Security-critical Signals
	Hardware Trojans
	Build Environment

	Undirected Defense Coverage
	Trigger Space Analysis
	Net Blockage Analysis
	Route Distance Analysis
	Cost of Varying Layout Parameters

	Directed Defense Coverage

	Discussion
	ICAS-Driven Defensive Layout
	Constrained Security Metrics
	Extensibility of Security Metrics
	Extensibility of CAD Tools
	Extensibility of Process Technologies
	Limitations
	Justification for Metrics

	Related Work
	Untrusted-foundry Attacks
	Untrusted-foundry Defenses

	Conclusion
	Citation

	T-TER
	Introduction
	Background
	Fabrication-Time Attack Steps
	Layout-Level Defenses.
	Time-Domain Reflectometry (TDR)
	IC Interconnect Models
	TDR for IC Fault Analysis

	Threat Model
	Targeted Tamper-Evident Routing (T-TER)
	Identifying Security-Critical Nets to Guard
	Guard Wire Bypass Attacks
	Tamper-Evident Guard Wires
	Naïve Approach: Re-purpose Existing Wires
	Designed-in Guard Wires

	Implementation
	Place-&-Route Process
	Automated Toolchain
	Identifying Nets.
	Identifying Unblocked Wire Surfaces.
	Guard Unblocked Wire Surfaces.

	Evaluation
	Experimental Setup
	Surrogate SoC
	A2 Trojan
	Exemplar Nets of Interest

	Effectiveness
	Net Blockage Results
	Route Distance Results

	Practicality
	Threat Analysis of Bypass Attacks
	Smallest Jog Attack
	Process Variation vs. Smallest Jog Attack
	Attack Detection with TDR

	Discussion
	Limitations
	Scalability
	Signal Integrity Impact
	Defense-in-Depth
	Extensibility of CAD Tools

	Related Work
	Conclusion
	Citation

	Bomberman
	Introduction
	Background
	Design-Time Hardware Trojans

	Threat Model
	Ticking Timebomb Triggers
	Definition
	TTT Components
	TTT Variants

	Bomberman
	SSC Identification
	DFG Generation
	SSC Enumeration

	SSC Classification

	Evaluation
	Experimental Setup
	Hardware Designs
	System Setup

	False Positives
	Constrained Randomized Verification
	Comparative Analysis of Prior Work
	Security Analysis of Existing Defenses
	End-to-End Supervisor Transition TTT

	Run Time and Complexity Analysis
	SSC Enumeration
	SSC Classification

	Discussion
	Test Vector Selection
	Latches
	TTT Identification in Physical Layouts
	Memories
	Limitations

	Related Work
	Conclusion
	Citation

	Fuzzing Hardware Like Software
	Introduction
	Background
	Dynamic Verification of Hardware
	Test Generation
	Hardware Simulation
	Test Evaluation

	Software Fuzzing
	Test Generation
	Test Execution Monitoring

	Threat Model
	Hardware Fuzzing
	Why Fuzz Hardware like Software?
	Translating HDL to Software
	Tracing Hardware Coverage in Software

	Driving Hardware with Software Fuzzers
	Interfacing Software Fuzzers with HSBs
	Interpreting Fuzzer-Generated Tests
	Bus-Centric Harness
	Bus-Centric Grammar

	Hardware Fuzzing Pipeline
	Feasibility Evaluation
	Digital Lock Hardware
	Digital Lock HSB Architectures
	Interfacing Software Fuzzers with Hardware
	Instrumenting HSBs for Fuzzing
	Hardware Resets vs. Fuzzer Performance

	Hardware Fuzzing vs. CRV

	Practicality Evaluation
	Hardware Fuzzing vs. RFUZZ
	Fuzzing OpenTitan IP
	Fuzzing OpenTitan IP with Empty Seeds
	Fuzzing for Bugs in OpenTitan IP

	Discussion
	Detecting Bugs During Fuzzing
	Additional Bus Protocols
	Hardware without a Bus Interface
	Limitations

	Related Work
	Design-Agnostic
	Design-Specific

	Conclusion
	Citation

	Conclusion & Future Directions
	Conclusion
	Future Directions
	Security as an Optimization Objective during IC Layout
	Directed Fuzzing for Trojan Detection
	Fuzzing Hardware with Sparse Memories
	Hardware Sanitizers

	APPENDICES
	BIBLIOGRAPHY

