
Seamless Interactions Between
Humans and Mobility Systems

by

Dongyao Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2020

Doctoral Committee:

Professor Kang G. Shin, Chair
Associate Professor Chad Jenkins
Professor Huei Peng
Associate Professor Alanson Sample

Dongyao Chen

chendy@umich.edu

ORCID iD: 0000-0002-5223-7304

© Dongyao Chen 2020

All Rights Reserved

To my wife and my parents

For their unconditional love and support

And to Anxin

Your arrival is the best gift we could ever have

ii

ACKNOWLEDGEMENTS

Words can not express my gratitude enough for my advisor, Kang G. Shin. His patience

and guidance not only grant me the freedom to follow my passion in research but also

guide me to become an independent thinker. Prof. Shin exceeds all my expectations for an

advisor from all perspectives — his style of mentorship is the true embodiment of how a

Jedi Master would nurture and train his fellow apprentices.

I would like to thank my committee members Alanson Sample, Chad Jenkins, and Huei

Peng for their constructive questions and comments that help improve this dissertation. I

am grateful to Kyu-Han Kim and Yurong Jiang for their mentorship at the HP Labs —

I remember these inspiring conversations with them on making impactful research works

that also scale in the real-world. I thank my undergraduate advisor, Xinbing Wang, for

encouraging me to pursue excellence.

I am fortunate to have the companion of all the fellow RTCLers during my PhD journey.

In particular, I would like to thank Kyong-Tak Cho, together we have had tackled many

uncharted challenges not only in conducting research projects but also in sketching future

blueprints. I would like to thank Mert, Arun, Liang, Chun-Yu, and Youngmoon: your

commitment and enthusiasm for life and work are contagious. I thank Huan, Yu-Chih,

Xiaoen, and Sihui for our brainstorming sessions and helping me fit in our lab. On my first

day, Prof. Shin assigned me a seat and told me “Dongyao, when you are confused, perhaps

you can get inspired by the people around you.” For that, I would like to thank Taeju,

Kassem, Juncheng, Karen, Tim, Hsun-Wei, Youssef, Eric, Yuanchao, Kyusuk, Suining,

Xiufeng, HoonSung, Haichuan, Jinkyu, DaeHan, Sunhyun, Zhao, Xiaoyan, Chaocan, and

iii

Jiaqing. I couldn’t even imagine having this journey without the collective wisdom and

warmth from the big RTCL family.

I would like to thank my father Jiansheng Chen, my mother Cuilian Zhang, my

parents-in-law, and my grandfather Zhenqing Zhang for their unconditional love and

support. My parents have been my role models for demonstrating the level of happiness

one could achieve by persistently pursuing his/her dream career. I would like to thank my

wife, Sai Zhang. She crossed half the globe from Singapore to Ann Arbor to build our

own family and pursue her career goals. Her kindness and trust have been supporting me

to overcome numerous hardships for the past few years. For that, I am eternally grateful,

and I can’t wait to start our next endeavor.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiv

ABSTRACT . xv

CHAPTER

I. Introduction . 1

1.1 Background in Ubiquitous Sensing 5
1.1.1 Pervasiveness . 5
1.1.2 Versatility . 6
1.1.3 Connectivity . 6

1.2 Limitations of Ubiquitous Sensing 7
1.2.1 Energy Capacity . 7
1.2.2 Sensing Modality and Fidelity 7
1.2.3 Diversity of Device Configurations 8

1.3 State of the Art . 8
1.3.1 Image Data . 8
1.3.2 Location Data . 9
1.3.3 Motion Data. 9
1.3.4 Related Work . 10

1.4 Thesis Contribution . 11
1.4.1 From the Vehicle’s Perspective: V-Sense 11
1.4.2 From Driver’s Perspective 1: Dri-Fi 12
1.4.3 From Traffic’s Perspective: TurnsMap 12
1.4.4 From the Driver’s Perspective 2: TurnsGuard 13

1.5 Thesis Structure . 14

v

II. V-Sense: Invisible Sensing of Vehicle Steering on Smartphones 15

2.1 Introduction . 16
2.2 Motivation . 18
2.3 System Design . 20

2.3.1 Coordinate Alignment 20
2.3.2 Bump Detection . 21
2.3.3 Differentiating Steering Maneuvers 25
2.3.4 Horizontal Displacement 26
2.3.5 Change in Vehicle’s Heading Angle 28
2.3.6 Velocity Estimation . 28
2.3.7 Parameter Setting . 30

2.4 Evaluation . 32
2.4.1 Accuracy of Estimating Angle Change and Displacement 32
2.4.2 Accuracy of Maneuver Classification 33
2.4.3 V-Sense vs. Camera-Based Approach 35
2.4.4 Computational Cost of V-Sense 37

2.5 Application I: Detection of Careless Steering 38
2.5.1 Overview . 38
2.5.2 Detection of Turn Signal 39
2.5.3 Performance of Sound Detection 41

2.6 Application II: Fine-Grained Lane Guidance 42
2.6.1 Achieving Fine-Grained Lane Guidance 42
2.6.2 Performance of InterHelper 44

2.7 Related Work . 45
2.8 Conclusion . 46

III. Dri-Fi: Verify Drivers Using Turning-Behavior Biometrics 48

3.1 Introduction . 49
3.2 Motivation and Background . 52

3.2.1 The Notorious Fake Driver Problem 52
3.2.2 Existing Approaches 53
3.2.3 Behavioral-based Driver Authentication 53
3.2.4 Driver Authentication with Dri-Fi 54

3.3 Overview of Dri-Fi . 55
3.4 Characterizing Turning Maneuvers 56

3.4.1 Data Pre-processing 56
3.4.2 Extraction of Left/Right Turns 57
3.4.3 Formulating the Feature Vector 61

3.5 Detection of Impostor & Predetor Attacks 65
3.6 Setup and Design of Experiments 69

3.6.1 Data Collection . 69
3.6.2 Design of Experiment 69

3.7 Evaluation . 72

vi

3.7.1 Pilot Study Result . 72
3.7.2 Car-invariance . 73
3.7.3 Posture-invariance . 74
3.7.4 Route-invariance . 74
3.7.5 Large-scale Test . 75
3.7.6 User Study . 77
3.7.7 System Performance of Dri-Fi 79

3.8 Related Work . 80
3.9 Limitation and Scalability of Dri-Fi 81

3.9.1 Limitation . 82
3.9.2 Scalability . 82

3.10 Conclusion . 83

IV. TurnsMap: Uncovering Unprotected Left Turns via Crowdsensing . . . 84

4.1 Introduction . 85
4.2 Motivation . 88

4.2.1 How Does Classifying Left-Turn Settings Enhance
Driving Safety? . 88

4.2.2 Why Mobile Sensing for Classifying Protected/Unprotected
Left Turns? . 89

4.3 Overview of TurnsMap . 91
4.4 Collection of Driving Data . 92
4.5 Mining the Driving Data . 94

4.5.1 Differentiating Left-Turn Enforcements from IMU
Sensor Readings . 95

4.5.2 Extraction of Left Turns from Mobile Sensing Data . . . 97
4.5.3 Construction of Left-turn Hotspots 100

4.6 Deep Learning Framework . 102
4.6.1 Collection of the Ground Truth 102
4.6.2 Formulation of the Learning Problem 106
4.6.3 Deep Learning Pipeline 107

4.7 Evaluation . 110
4.7.1 Performance Metrics of TurnsMap 110
4.7.2 Overhead of the Data-collection App 113
4.7.3 Real-world Insights from TurnsMap 114

4.8 Use Case and User Study . 115
4.9 Limitation and Future Extension 118

4.9.1 Adapting TurnsMap to the Time-of-day 118
4.9.2 Scalability of TurnsMap 119

4.10 Related Work . 119
4.10.1 Detecting the Driving Behavior 119
4.10.2 Inferring the Road Information 120

4.11 Conclusion . 121

vii

V. TurnsGuard: Smartphone-based Profiling of Driver’s Attentiveness to
Turn-Signal Usage . 122

5.1 Introduction . 123
5.2 Related Work . 126

5.2.1 Driving Behavior Analysis 126
5.2.2 Monitoring Driving Behavior with Mobile Devices . . . 127
5.2.3 Improving Driving Safety 128

5.3 System Design of TurnsGuard 129
5.3.1 Usage Model of TurnsGuard 130
5.3.2 Front-end Design . 132
5.3.3 Detection of Steering Maneuvers 133
5.3.4 Detection of Turn Signals 135
5.3.5 Performance of Clicking Sound Detection 140

5.4 Evaluation . 141
5.4.1 Benchmark Test . 141
5.4.2 Large-scale Field Test 142

5.5 Use TurnsGuard for Profiling Driving Maneuvers 145
5.5.1 Design of a User Study 145
5.5.2 Results and Insights 148
5.5.3 Limitations . 150

5.6 Discussion . 150
5.6.1 Beyond Detection of Turn Signals 150

5.7 Conclusion . 152

VI. Conclusion and Future Directions . 153

6.1 Conclusion . 153
6.1.1 Accessibility . 153
6.1.2 Reliability . 154
6.1.3 Usability . 154

6.2 Future Directions . 155
6.2.1 Exploring New Sensor Types 155
6.2.2 Usable Privacy Model 156

APPENDICES . 158
.1 The Tutorial Page of TurnsMap 158

BIBLIOGRAPHY . 160

viii

LIST OF FIGURES

Figure

1.1 Block diagram of a feedback control system for analyzing the interaction
between transportation stakeholders (e.g., human users) and mobility
systems. 3

2.1 Visibility distortion under different conditions 16

2.2 Align the phone coordinate system with the geo-frame coordinate system.
This figure was borrowed from [181]. 20

2.3 Gyroscope readings when the vehicle makes a left/right turn or left/right
lane changing. 21

2.4 Statistical features of bumps in gyroscope reading during different
steering maneuvers . 22

2.5 The same vehicle trajectory shape for four different scenarios: (a) lane
change, (b) driving on an S-shaped curvy road, (c) turning, and (d) driving
on an L-shaped curvy road. 24

2.6 Deriving the horizontal displacement based on gyroscope readings and
estimated velocity . 26

2.7 State diagram of maneuver classification in V-Sense. 29

2.8 The accuracy of velocity estimation by fusing sensor readings 31

2.9 Error of the determined values compared with the ground truth. 32

2.10 Real road testing routes used for evaluation in Ann Arbor, MI. Here
testing route #1 is around campus, milage is 3.3 miles; testing route #2 is
freeway, milage is 8.3 miles. 34

ix

2.11 Performance of recognizing different steering patterns on both route #1
and #2 . 35

2.12 Comparison of V-Sense, iOnRoad, BlackSensor, Drivea, and
Augmented Driving in lane-change detection. 36

2.13 Non-functional environments for the camera-based driving assistant
application in the experiment. 37

2.14 Comparison of CPU usage between V-Sense and lane detector 38

2.15 Information flow of careless steering detection by combining V-Sense

and sound detection module. 39

2.16 Turn signal samples and the filtered result by using a matched filter, (a)
turn signal sample from a 2006 HONDA Accord and MINI Countryman;
(b) matched result from the filter with the existence of background noises
inside the car. 40

2.17 Information flow of fine-grained lane guidance by incorporating
navigation system and V-Sense. 43

2.18 Turns and the corresponding turning radius at a 4-lane single carriageway
intersection. 44

2.19 Performance of InterHelper. 45

3.1 How impostor and predator approach the victim. 50

3.2 The system overview of Dri-Fi. The black and red lines presents data
flows for enrollment and authentication stages, respectively. 55

3.3 Accelerations and headings of a turn. 58

3.4 Turn extraction from gyroscope readings. 58

3.5 Interpolated gyroscope readings of left and right turns from 12 different
drivers. 60

3.6 Dri-Fi’s construction of feature vector. 63

3.7 Different autocorrelations depending on the driver’s turning style. 64

3.8 Correlogram of feature F1 for two drivers. 66

x

3.9 The workflow of Dri-Fi’s authentication process. 67

3.10 The impact of different placement on the raw and filtered sensor readings. 68

3.11 Performance of the pilot study. 72

3.12 The impact of changing cars. 73

3.13 The impact of different postures. 74

3.14 The impact of different routes. 75

3.15 Performance with the increasing observation set. 76

3.16 Classification accuracy with perr % erroneous training dataset. 77

3.17 Illustration of Dri-Fi app. Training and usage phases have different
phone postures. 78

4.1 Different left-turn settings. 86

4.2 An overview of TurnsMap . 91

4.3 The snapshot of the data the app collected. 93

4.4 Suburban driving trace. 94

4.5 Histogram of the averaged driving velocity. 94

4.6 (a) Possible conflicts at an unprotected left-turn. The gyroscope readings
shows (b) no interruption, (c) an interruption occurs at the middle of
intersection, and (d) an interruption occurs at a crosswalk, respectively. . . 97

4.7 Clustering result of DBSCAN. Each cluster of left-turn traces is a
left-turn hotspot. 101

4.8 Online annotating system of TurnsMap. The left figure is a screenshot of
its interface (the instruction section is omitted due to space limit). The
right table shows the options available to the annotators. 103

4.9 Inter-annotator reliability of each type of left-turn protection. 103

xi

4.10 The machine learning pipeline. The left frame shows the gyroscope and
accelerometer traces in a left-turn hotspot x; the middle frame shows
RPCat permutation and concatenation of IMU data in x; the right-hand
side network shows the LSTM-based network architecture. 105

4.11 Efficacy of RPCat on training with LSTM. 109

4.12 The normalized onfusion matrix for analyzing TurnsMap’s performance. . 111

4.13 Performance metrics of the LSTM-based pipeline. 111

4.14 ROC curve. 112

4.15 Precision-recall (PR) curve. 112

4.16 Comparison between LSTM and other machine learning algorithms. . . . 113

4.17 CPU usage of TurnsMap app. 113

4.18 Real-world insights from TurnsMap result. 114

4.19 Exemplary application. Here, (a) and (b) compares the usage of a
navigation app w/ or w/o TurnsMap’s capability. 116

4.20 User study of the exemplary app. Here, (a), (b), and (c) show distributions
of participants’ responses to our survey questions respectively. 117

4.21 Illustration of formulating TurnsMap for different time-of-day. 119

5.1 We designed, implemented and tested a smartphone-based tool
(TurnsGuard) for profiling a driver’s inattentive steering maneuvers,
i.e., turning or changing lanes without giving turn signals. A, B, and C
demonstrate TurnsGuard’s robust performance under different usage
contexts — mounted, cupholder, and under background noises (e.g.,
music), respectively. Please refer to our Video Figure to see how
TurnsGuard works in the real-world. D shows the online feedback panel
(elaborated in Sec. 5.4) for contextualizing the detection results and
arousing the driver’s attention. 123

5.2 The front-end and back-end design of TurnsGuard. 128

5.3 The workflow of TurnsGuard’s front-end. 132

5.4 Correlation between steering maneuver and IMU sensor. 134

xii

5.5 Spectrograms of Lincoln MKZ (upper) and Ford Explorer. 135

5.6 The spectrograms of the extracted templates of different cars’ turn signal
sounds. 137

5.7 Statistical results: precision and recall of the sound detection module on
different types of vehicle. 140

5.8 (a) and (b) show the test routes. We blurred the map and street names to
protect the anonymity. (c) Shows the performance metric. 141

5.9 (a) shows the test routes. (b) and (c) show the performance metric. 143

5.10 Screen shots of TurnsGuard from a Google Pixel XL phone. In (a),
block #1 shows the vehicle’s current speed; #2 shows the debug message
for the sound detection; #3 and #4 show the debug message for steering
detection; #5 is the button for users to upload their collected data; #6
presents the link of our online analysis portal. We blurred the URL bar
and the map view for the purpose of anonymity. 145

5.11 Distribution of users’ turn signal usage pattern. 148

5.12 Statistical change of the turn-signal usage over time. 149

.1 The tutorial for annotators to read before start labeling. 159

xiii

LIST OF TABLES

Table

2.1 Determined horizontal displacement and angle change of heading for lane
changes/U-turns. 31

2.2 Summary of different road features in testing routes. 34

3.1 Summary of evaluations. 70

3.2 The averaged time delay, CPU usage, and battery usage of Dri-Fi in
different working modes. 80

xiv

ABSTRACT

As mobility systems, including vehicles and roadside infrastructure, enter a period of

rapid and profound change, it is important to enhance interactions between people and

mobility systems. Seamless human—mobility system interactions can promote widespread

deployment of engaging applications, which are crucial for driving safety and efficiency.

The ever-increasing penetration rate of ubiquitous computing devices, such as

smartphones and wearable devices, can facilitate realization of this goal. Although

researchers and developers have attempted to adapt ubiquitous sensors for mobility

applications (e.g., navigation apps), these solutions often suffer from limited usability and

can be risk-prone. The root causes of these limitations include the low sensing modality

and limited computational power available in ubiquitous computing devices.

We address these challenges by developing and demonstrating that novel sensing

techniques and machine learning can be applied to extract essential, safety-critical

information from drivers natural driving behavior, even actions as subtle as steering

maneuvers (e.g., left-/righthand turns and lane changes). We first show how ubiquitous

sensors can be used to detect steering maneuvers regardless of disturbances to sensing

devices. Next, by focusing on turning maneuvers, we characterize drivers driving

patterns using a quantifiable metric. Then, we demonstrate how microscopic analyses of

crowdsourced ubiquitous sensory data can be used to infer critical macroscopic contextual

information, such as risks present at road intersections. Finally, we use ubiquitous sensors

to profile a driver’s behavioral patterns on a large scale; such sensors are found to be

essential to the analysis and improvement of drivers driving behavior.

xv

CHAPTER I

Introduction

Many novel mobility technologies have been proposed in recent years. For example,

newer high-end vehicles are equipped with dedicated sensing modules (e.g., cameras and

radar) to realize advanced driving assistance systems (ADAS) that include several safety

features (e.g., lane departure warning [95] and facial-based drowsy driver detection [39])

to enhance driving safety. High-definition roadmap service providers, including Google

StreetView [9], TomTom [42], and Here [20], have recently deployed specialized

sensor-rich mapping vehicles to collect roadside images and build a comprehensive dataset

to provide more accurate car-based navigation services.

Although existing technologies have proven effective in enhancing the safety and

efficiency of on-road transportation, they are often expensive. Associated costs contribute

to a bottleneck that hinders widespread application of these advances. For example, many

of the latest safety features are available for purchase as additional bundles rather than

being included in the basic price of a car. This bottleneck will presumably continue to

narrow as mobility technology becomes more sophisticated. Approximately 1,400 [34]

self-driving cars are being tested on U.S. roads; by comparison, the number of operational

legacy cars in the U.S. (i.e., those with an automation level of 2 or lower based on the SAE

J3016 [55] standard) has reached 276 million [32].

The disproportionate ratio between smart and legacy mobility systems is problematic

1

for two reasons.

• Protecting individuals well-being on the road. Democratizing advanced

technology cross-mobility systems would decrease accidents, thus improving road

safety and efficiency. For example, the anti-lock braking system (ABS), which

prevents wheels from locking up while braking, was introduced in the 1970s [4]

as a safety feature exclusive to high-end cars given its high manufacturing costs.

Real-world data and statistics have confirmed the effectiveness of ABS in decreasing

fatal accidents: the collision rate has “fallen substantially” by at least 6% for

passenger cars according to a National Highway Traffic Safety Administration

study (Chapter 3 of Study DOT-HS-811-182 [137]). In the United States, however,

ABS did not become a popular feature (i.e., more than 50% of new passenger cars

were equipped with the system) until 1994 (Chapter 1.3 of [137]). Thanks to a

notable decline (Chapter 4.4 of [137]) in manufacturing costs, ABS only became a

mandatory feature of all new cars in the United States beginning in 2013 — more

than four decades after its debut.

• Discovering insights. A large number of users/participants are often necessary to

reveal accurate real-world insights. For instance, Google Maps live traffic alerts [24],

which highlight congested road areas in red, are derived from travel-speed data

(from smartphones GPS readings) from various app users. Collecting data from

a small number of users could return inaccurate results; users who upload data

may be traveling at particularly fast/slow speeds, rendering the collected data

unrepresentative of actual driving conditions.

A “silver bullet” to drastically lower the costs of existing mobility technologies may

not yet exist; therefore, we focus on democratizing novel mobility technologies by using

more accessible sensing platforms and new data analytics schemes. Our goal is to develop

practical systems that can seamlessly facilitate human users interactions with mobility

systems.

2

Controller
(Driver, transportation

dept., insurer, etc.)

Data Analytics
(Feature engineering,
machine learning, etc.)

(A) Reference input
(desired output)

(C) Control
input Targeted Systems

(Cars, road infrastructure,
etc.)

Data Collector
(Sensing modules)

(D) Output(B) Control
error

(E) Raw data(F) Feedback

Figure 1.1: Block diagram of a feedback control system for analyzing the interaction
between transportation stakeholders (e.g., human users) and mobility systems.

To systematically explore why seamless interaction may be especially advantageous in

mobility ecosystems, we have adapted the concept of classic closed-loop feedback control.

As noted by Karl Astrom [96], one of the early pioneers in control theory, the “magic” of

this feedback control system is rooted in fashioning working systems from components that

otherwise perform poorly. Fig. 1.1 depicts a control system in which the blocks and arrows

denote components and signals, respectively. Based on classic feedback control, reference

input A is often the desired output; control error B represents the difference between the

reference input and measured output. The control error is sent to the controller to generate

control input C for the targeted system (e.g., a mobility system). The data collector can then

collect/measure system output D. Generated raw data E is next fed into the data analytics

module to generate feedback F. The objective of a feedback control system is to easily

reduce the difference between output and reference input, namely through fast-converging,

minimal oscillations. This concept can be applied to complex real-world systems [93]. The

goal of navigation apps, such as Google Maps and Waze, is to help drivers arrive at their

destinations in a timely manner. Based on a drivers current location and planned destination

(desired output A), these apps first derive a path and provide guidance (control error B) to

the driver (controller), who operates (control input C) the car (targeted system). Given the

frequency with which users follow the wrong path (e.g., miss a highway exit), navigation

apps must continuously monitor a drivers current location (i.e., system output D), which

the path-planning algorithm needs in order to update the path (i.e., feedback F) for the

3

driver. After the driver arrives at their destination, navigation is terminated as guidance is

no longer needed (i.e., the system has minimal control error).

A seamless interaction channel is pivotal to this process; the channel harvests the

feedback loop (purple components in Fig. 1.1) using novel mobility technologies to (a)

recognize real-world disturbances in a timely manner and (b) enable a non-obstructive

channel to feed useful information back to the controller, thus facilitating the desired

goal. In this thesis, we refer to our proposed technologies as seamless human—mobility

interaction (HMI).

Herein, we propose systems that can seamlessly facilitate HMI by harvesting

ubiquitous computing devices (e.g., smartphones and wearables) [171] that possess three

key features: (1) low costs; (2) a pair-wise connection and Internet connection; and (3) the

ability to support versatile applications via software development. Although researchers

have attempted to adapt ubiquitous sensors for mobility applications, such as navigation

apps, these efforts are often plagued by limited usability and may be risk-prone. As we

explain in Sec. 1.2, the root causes of these limitations include the limited sensing modality

and computational power supported by ubiquitous computing devices.

Accordingly, the statement of this thesis is twofold:

(a) explore the methodology to effectively harvest ubiquitous sensing and

realize seamless HMI and (b) discover novel applications from real-world

mobility systems that can be enabled/improved by our proposed technologies.

As described in Sec. 1.3, seamless HMI enabled by ubiquitous sensing is unlikely to be

a feasible standalone platform (e.g., to replace vehicle cameras, radar, and so forth) for all

mobility applications. Rather, we will demonstrate how our proposed approaches can serve

as the primary sensing interface for certain tasks; for other tasks, our methods represent

secondary/complementary sensing modalities to promote the robustness and versatility of

relevant applications.

We summarize the general background and constraints of ubiquitous sensing in

4

Sec. 1.1 and 1.2, respectively. In Sec. 1.3, we discuss the promise and challenges of the

state-of-the-art ubiquitous sensing techniques in achieving seamless HMI. We summarize

the contributions of this thesis in Sec. 1.4, and Sec. 1.5 outlines the structure of the

remainder of the thesis.

1.1 Background in Ubiquitous Sensing

Ubiquitous sensing [171] represents a category of accessible sensing technologies that

leverage sensory data from low-cost computing platforms. This area is experiencing rapid

technological and commercial growth due to the quickly evolving capabilities of mobile

devices (e.g., smartphones, wearable devices, and the Internet of Things) as such devices

shift from pure communication devices (e.g., cell phones) to smart devices. Mobile devices

are practical platforms for enabling seamless HMI at scale thanks to their pervasiveness,

versatility, and connectivity.

1.1.1 Pervasiveness

The relatively low costs associated with mobile devices have led to worldwide

deployment and popularity, providing a significant advantage over other computational

platforms. According to recent surveys [35, 40], consumers collectively owned more than

2.1 billion smartphones in 2016; the ownership rate of smartphones in developed areas is

well over 87%, and proportions are expanding rapidly in developing regions of Asia and

Africa, having increased from a median of 21% in 2013 to 37% in 2015.

The immense popularity of mobile platforms presents a unique opportunity for

achieving large-scale sensing. Mobile devices can easily cover remote and/or developing

regions. Furthermore, they can collect data as many times as needed within a given area of

interest (e.g., a road segment) selected by the data collection entity, which is essential for

building a comprehensive dataset.

5

1.1.2 Versatility

Mobile devices are capable of various lightweight tasks (i.e., those requiring less

energy and computational overhead than larger tasks) thanks to embedded sensors such as

cameras and motion sensors. For example, dual-camera systems have become the default

configuration to capture detailed image data via smartphone. An inertial measurement

unit (IMU), a type of highly integrated micro-electro-mechanical system (MEMS) chip,

is also used to accurately capture the motion of an ego-mobile device with respect to

angular speed, acceleration, and magnetic fields via a gyroscope, accelerometer, and

magnetometer, respectively.

1.1.3 Connectivity

Mobile devices have flexible Internet connectivity; owners of smartphones and/or

smartwatches [8] can use either cellular or WLAN (e.g., WiFi) networks to access the

Internet. This flexibility endows mobile devices with unique advantages over other sensing

platforms for collaborative mobility applications.

Internet Access. Internet access enables acquisition of information beyond the ego-cars

perception range. For example, when a weather application broadcasts a tornado alert in

a certain area, smartphone navigation apps can gather and process this information to plan

alternate routes and minimize the effects of weather on drivers travel.

Crowdsensing. Crowdsensing [119] refers to crowdsourcing sensor data from numerous

sensory devices. Crowdsensing has two key advantages: (1) rapid data collection when

the user base is large and (2) greater diversity of data. For mobility applications that use

mobile crowdsensing, each data collector is a mobile device that resides at, or is carried by

an on-road entity (e.g., a passenger car). Sensor data can thus be gathered from the crowd

to help construct a large-scale dataset, which is a valuable resource for data mining and

machine learning tasks.

6

1.2 Limitations of Ubiquitous Sensing

Although mobile devices can play versatile roles in various sensing tasks, two

fundamental obstacles complicate their adoption for mobility scenarios.

1.2.1 Energy Capacity

Most mobile devices have limited energy capacity because they were originally

designed and manufactured for lightweight tasks (e.g., phone calls, web browsing, and

gaming). As discussed throughout the ensuing subsections, limited battery life is a primary

bottleneck to mobile devices hardware and software design.

1.2.2 Sensing Modality and Fidelity

Due to limited energy capacity and manufacturing costs, few sensor modalities are

currently supported across mobile devices. For instance, to detect driving motion (e.g.,

acceleration or braking), devices with access to an in-vehicle network (i.e., controller-area

network [27]) can easily incorporate at least 18 types of data, including throttling, gas/brake

pedal position, and tire pressure. In contrast, mobile devices only support two types of

sensory data (i.e., from a gyroscope and accelerometer) to capture vehicle movement.

To lower manufacturing costs, mobile sensors tend to be built with relatively

lower-quality components than other sensing platforms (e.g., in-vehicle embedded

modules). The most popular mobile IMU sensor chip, Bosch BMI160 [7] — available

in the Pixel XL, Pixel 2, iPhone 8, and iPhone Xhas a unit price of less than $2 and a

zero-drifting problem caused by operating temperature. In self-driving cars, IMU sensor

data are generated through fiberoptic IMU modules, which exhibit much less zero drifting

but cost more than $12,000; this price is prohibitive for large-scale production. Although

embedded sensors are expected to continue to improve (e.g., BMI160s accuracy is 40%

better than its predecessors), overcoming imperfect data (e.g., noise) from error-prone

7

hardware continues to hinder the integration of mobile devices into smart transportation

application(s).

1.2.3 Diversity of Device Configurations

The rapid growth of mobile devices has yielded an array of hardware and/or software

configurations. Such product diversity may create compatibility issues. From the hardware

perspective, different device models may contain distinct sensory modules, which can cause

sensory data to vary in quality (e.g., sample rate or zero-drift error). A recent market

survey [3] showed that Android devices were affiliated with more than 1,000 brands and

24,000 device models as of 2015. On the software side, operating systems (OSs) and

software versions may also generate inconsistent sensory data across platforms.

1.3 State of the Art

The prospect of using mobile devices in mobility applications has attracted widespread

attention from academia and industry. Industry professionals are intrigued by the business

potential of integrating mobile devices into smart transportation technology. Despite being

in its infancy, the topic has also piqued the interest of auto insurance companies, ADAS

developers, and navigation service providers. Research efforts have revolved around the

development of new application models by leveraging mobile devices sensing capabilities.

In what follows, we have categorized such efforts by the type of sensory data used.

1.3.1 Image Data

Camera-based mobile apps are powered by the enhanced camera systems and

computational power of mobile devices. ADAS developers (e.g., the Drivea app [12],

available on Google Play and the App Store) have introduced mobile apps that use

smartphone cameras to enhance driving safety. Specifically, if a smartphone is mounted in

a car (e.g., on the windshield with a mount), the camera-captured video stream can warn

8

the driver of tailgating if the distance between the front car and ego-car is too close. In

a related vein, the research project CarSafe [178] uses an embedded dual-camera system

to monitor activity in front of the car along with the drivers facial expression to detect

drowsy driving. However, performing computer vision tasks locally on mobile platforms

can incur considerable overhead. The strictly enforced privacy protection on smartphones

also means that if a mobile OS detects camera usage, then other running apps will be

interrupted by the display of a captured image/video on-screen; this interruption can

severely undermine the apps usability.

1.3.2 Location Data

Location data (e.g., GPS data) consist of geolocation information collected while a

user is driving. Navigation services use this information to infer the degree of traffic

congestion by calculating drivers average moving speed based on a series of location data.

A recent study [172] indicated the feasibility of constructing a users driving-style profile

(i.e., acceleration and braking behavior) on the basis of long-term (i.e., at least 2 months

worth) location data.

1.3.3 Motion Data.

Motion data refers to time-series IMU sensor data that capture an ego-smartphones

movement; the gyroscope and accelerometer in an IMU sensor can capture the vehicles

steering and acceleration/braking maneuvers if the smartphones positioning is fixed with

respect to the car. For example, some auto insurance companies [57, 61] allow users to

enroll in a usage-based insurance (UBI) program: drivers install a dedicated smartphone

app, after which insurance companies can adjust users premiums and/or deductibles based

on their driving performance.

9

1.3.4 Related Work

A technological ecosystem capable of facilitating a mobility ecosystem with ubiquitous

sensing is still in its infancy. The extant literature has identified two main issues in this

regard.

Limited usability. Many studies have fallen short in terms of using mobile devices in a

versatile and non-obtrusive manner. IMU sensor data on mobile devices appear severely

underutilized in mobility applications; at present, such data have mainly been explored

for lightweight tasks given the limited contextual information IMU sensors can provide

compared to other types of sensory data (e.g., images). In fact, IMU data can only be

used to detect abrupt braking and acceleration behavior based on statistical patterns of

time-series accelerometer data. More sophisticated tasks, such as determining a drivers

identity, were originally thought to only be achievable with context-rich sensor data. For

instance, Uber and Lyft ask drivers to take weekly selfies as a way to detect fraudulent

drivers and/or criminals. Yet this strategy has technical limitations related to photo quality

(e.g., insufficient lighting when taking a picture). This method may also fail in practice

because it is not continuous; a “fake” driver could impersonate a legitimate driver between

two check-ins.

Risk-prone. Most mobility applications on mobile devices cannot yet incorporate

safety features for two reasons: (1) the sensing modalities of mobile devices are

limited, and (2) the safety information is often implicit. For example, legacy navigation

apps such as Google Maps have been using the estimated time of arrival as the sole

route-planning criterion; however, this mechanism may generate risky routes (e.g.,

consecutive unprotected left turns). Such routes could be risky for drivers, especially

novices. Recently, navigation apps such as Waze have begun to display road-context

information, such as construction and speed traps, based on users manual map annotations.

Although these types of supplementary information might be useful to drivers, this usage

paradigm remains to fall short in terms of providing safety information. The paradigm also

10

requires users attention, which could endanger them while driving.

1.4 Thesis Contribution

In this thesis, we address limitations of mobile devices by demonstrating that

a combination of novel ubiquitous sensing and machine learning can extract useful

information and build new applications to promote seamless safety and efficiency in

mobility systems. As shown in Fig. 1.1, we focus on designing effective feedback loops

for various mobility tasks. Our findings contribute to the mobility ecosystem from the

perspectives of vehicles, traffic, and drivers.

1.4.1 From the Vehicle’s Perspective: V-Sense

Detecting how a vehicle is steered and then alerting drivers in real time is paramount

to vehicle and driver safety, as fatal accidents are often caused by dangerous steering.

Solutions for detecting dangerous maneuvers tend to be available either exclusively in

high-end vehicles or on smartphones as mobile applications. However, most solutions rely

on the use of cameras, the performance of which is seriously constrained by high visibility

requirements. Moreover, a sole or overreliance on cameras may distract drivers.

To address these problems, we have developed a vehicle-steering detection middleware

called V-Sense that can run on commodity smartphones without additional sensors or

infrastructure support. Rather than using cameras, the core of V-Sense “observes” a

vehicles steering via non-vision smartphone sensors. We have designed and evaluated

algorithms to detect and differentiate vehicle maneuvers such as lane changes, turns, and

driving on winding roads. Because V-Sense does not rely on cameras, its vehicle-steering

detection is not affected by the (in)visibility of road objects or other vehicles. We first

detail the design, implementation, and evaluation of V-Sense and then demonstrate

its practicality through two prevalent use cases: camera-free steering detection and

fine-grained lane guidance. Our extensive evaluation results indicate that V-Sense can

11

accurately determine and distinguish between various steering maneuvers, highlighting

the middlewares utility for a range of safety-assistance applications without the need for

additional sensors or infrastructure.

1.4.2 From Driver’s Perspective 1: Dri-Fi

Our next project explores drivervehicle interactions and presents Dri-Fi, a solution

that enables automotive apps to verify the person behind the wheel on the basis of mobile

sensors. Driver identification is essential to personalized service/assistance for a driver

and his/her designated parties. Many automotive apps can benefit from this capability:

usage-based auto insurers; Apple CarPlay and Android Car, both of which connect

smartphones with cars infotainment systems; and ridesharing services such as Uber and

Lyft.

Dri-Fi contains several novel characteristics and achieves driver identification solely

based on embedded IMUs on mobile devices. The core algorithm of Dri-Fi analyzes IMU

data containing vehicles turning maneuver(s). It extracts three new features from raw IMU

data and feeds them to train a machine learning model for driver identification. Various

automotive apps can benefit from the information unearthed by Dri-Fi.

1.4.3 From Traffic’s Perspective: TurnsMap

To explore mobile devices potential to understand traffic, we investigate the use of

crowdsensing mobile data in transportation systems. Specifically, left turns are known

to be the most dangerous driving maneuver at intersections due to oncoming traffic and

pedestrian crossings. The danger of left turns can be reduced by implementing protected

traffic phases exclusively for left turns, such as left-turn lights and 4-way stop signs.

Although protected left turns are much safer, corresponding detailed information (e.g.,

whether an intersection has a protected left-turn phase) is not yet available to the public

and/or automotive apps, such as navigation systems.

12

To extract such safety-critical information, we present TurnsMap, a framework

for inferring left-turn information powered by two main components: (1) a mobile

crowdsensing front end, which collects IMU sensor data (e.g., via gyroscope and

accelerometer) from mobile devices carried by the driver/passengers in a moving car; and

(2) the data analytics back end, used to infer left-turn information from IMU data collected

via mobile crowdsensing. We also demonstrate that an array of apps in the automotive

ecosystem can benefit from left-turn information provided by TurnsMap (e.g., to enhance

traffic safety). We have evaluated this framework using large-scale real-world driving data,

thereby demonstrating its ability to identify left-turn information with high accuracy at

low cost.

1.4.4 From the Driver’s Perspective 2: TurnsGuard

TurnsGuard explores mobile sensing to help drivers develop safer driving habits. In

this case, we focus on raising peoples awareness of poor driving behavior, namely turning

and/or changing lane(s) without using a turn signal, which is a leading cause of traffic

accidents.

We have therefore developed TurnsGuard, an automatic unsignaled vehicle turn

detection system that can be implemented on off-the-shelf devices. TurnsGuard can

sense a drivers steering maneuvers and turn signal usage, which can then be used to

determine the drivers driving pattern. Several sensing challenges must be addressed to

detect unsignaled vehicle steering. To achieve ubiquitous turn detection, TurnsGuard

uses motion sensors (i.e., a gyroscope and accelerometer) to detect turning and steering

maneuvers. To detect turn signal usage without seeing the turn signal light, we will

leverage microphones to identify periodic clicking (i.e., the tick-tock of the turn signal that

is audible inside of the car). These design principles enable TurnsGuard to run locally on

various sensing platforms. For example, TurnsGuard can operate on a drivers smartphone

after the user installs an app. Design features also enable detection of an absent turn signal

13

with minimal constraints; the driver does not have to fix the phones position, such as by

using a dedicated phone mount.

1.5 Thesis Structure

Chapter II of this thesis presents how ubiquitous sensors can be used to detect

steering maneuvers regardless of disturbances to sensing devices (V-Sense). Chapter III

demonstrates how, by focusing on turning maneuvers, we can characterize drivers driving

patterns using a quantifiable metric (Dri-Fi). In Chapter IV, we show how microscopic

analyses of crowdsourced ubiquitous sensory data can be used to infer critical macroscopic

contextual information, such as risks present at road intersections (TurnsMap). Chapter V

presents ubiquitous sensors to profile a drivers behavioral patterns on a large scale, which

is crucial for analyzing and improving drivers driving behavior (TurnGuard). Finally, we

discuss future research directions and conclude this thesis in Chapter VI.

14

CHAPTER II

V-Sense: Invisible Sensing of Vehicle Steering on

Smartphones

Detecting how a vehicle is steered and then alarming drivers in real time is of utmost

importance to the vehicle and the driver’s safety, since fatal accidents are often caused by

dangerous steering. Existing solutions for detecting dangerous maneuvers are implemented

either in only high-end vehicles or on smartphones as mobile applications. However, most

of them rely on the use of cameras, the performance of which is seriously constrained

by their high visibility requirement. Moreover, such an over/sole-reliance on the use of

cameras can be a distraction to the driver.

To alleviate these problems, we develop a vehicle steering detection middleware

called V-Sense which can run on commodity smartphones without additional sensors

or infrastructure support. Instead of using cameras, the core of V-Sense senses a

vehicle’s steering by only utilizing non-vision sensors on the smartphone. We design and

evaluate algorithms for detecting and differentiating various vehicle maneuvers, including

lane-changes, turns, and driving on curvy roads. Since V-Sense does not rely on use of

cameras, its detection of vehicle steering is not affected by the (in)visibility of road objects

or other vehicles. We first detail the design, implementation and evaluation of V-Sense

and then demonstrate its practicality with two prevalent use cases: camera-free steering

detection and fine-grained lane guidance. Our extensive evaluation results show that

15

(a) Lighting (b) Weather (c) Pavement (d) Placement

Figure 2.1: Visibility distortion under different conditions

V-Sense is accurate in determining and differentiating various steering maneuvers, and is

thus useful for a wide range of safety-assistance applications without additional sensors or

infrastructure.

2.1 Introduction

Automobiles bring a wide range of conveniences as well as fatalities. In 2012, the

reported number of fatalities from road accidents was 30,800 in the U.S. alone [13]. Of

these fatalities, 23.1% involved lane control — i.e., merging or changing lanes or driving

on curvy roads — and 7.7% involved turning maneuvers, i.e., turning left/right or making

U-turns. In total, 30.8% of the fatalities were related to vehicle steering maneuvers.1

As most of these fatalities had resulted from the driver’s careless or erroneous steering,

those accidents could have been minimized or prevented if effective safety mechanisms

had been deployed in the vehicles. There has been an on-going push for incorporating

electronic safety features in the vehicles to assist drivers’ steering.

Steering-assistance systems, such as lane-departure warning or lane-keeping assistance,

are the typical examples. They all exploit the advanced built-in sensors (e.g., cameras,

radars, and infrared sensors) to detect the lane for driving assistance [46]. However, since

they require special sensors which are only available on recent high-end cars, such safety

solutions cannot be applied to a wide range of type/year models of cars.

To overcome such limitations, instead of using built-in vehicle sensors, efforts are being

1We refer to steering maneuvers as either changing lanes, turning left/right, or driving on curvy roads.

16

made to exploit the sensors in smartphones to assist drivers in their steering maneuvers.

At one end of the spectrum of such applications, cameras have been used widely. The

front/rear cameras of a smartphone are exploited to capture the images of road objects

(e.g., traffic lanes, curb, and the preceding vehicle) which are then analyzed with image

processing [28, 107, 178]. Although such systems claim that smartphone cameras are

sufficient in assisting the driver, they have limitations in terms of computational overhead

and inaccuracy. The accuracy of camera-based approaches depends on visibility and can

thus be infeasible, depending on the conditions listed below and shown in Fig. 2.1.

• Lighting: The functionality of camera-based approaches cannot be guaranteed in

case of insufficient light, especially at night time.

• Weather: Rainy or snowy weather will make roads waterly or icy, and will thus

distort the light reflection, rendering it difficult to identify road objects.

• Pavement: Bad pavement conditions will distort the shape of road objects and will

thus cause false or miss detections.

• Camera placement: Placing the phone at a location where the camera cannot

capture the road objects (e.g., in the driver’s pocket), will diminish the feasibility of

the camera-based approach.

The other end of the spectrum is to not use cameras. Smartphone sensors, such as

gyroscope, accelerometer, magnetometer, etc., can be exploited to detect the vehicle

steering maneuvers and thus perform the same steering-assistance functionalities that

would have been achieved with use of cameras [136, 170]. These approaches have

advantages of requiring much less computational resources and power, and also being

immune to visibility distortions. However, it is known to be very difficult to differentiate

the steering maneuvers, which is one of the main reasons for camera-based approaches

being most prevalent.

In this project, we propose V-Sense, a novel vehicle steering sensing middleware

on smartphones, which overcomes the limitations and difficulties inherent in the existing

17

camera-based and camera-free approaches. V-Sense is a camera-free middleware that can

be utilized for various applications. It utilizes built-in Inertial Measurement Units (IMUs)

on smartphones to detect various steering maneuvers of a vehicle. Specifically, V-Sense

determines the changes in the angle of vehicle heading (i.e., steering) and the corresponding

displacement during a steering maneuver. V-Sense classifies steering maneuvers into

different types, such as turn, lane change, driving on curvy roads, etc., and exploits the

classified results for various applications. We will elaborate on these applications in the

following sections.

The contributions of this project are three-fold:

• Design of V-Sense, an all-time vehicle steering sensing middleware which does not

rely on use of cameras;

• Detection and differentiation of various steering maneuvers by only utilizing a

smartphone’s built-in sensors; and

• Proposal of two driving-assistance applications — i.e., careless steering detection

and fine-grained lane guidance — which are based on V-Sense functionalities.

The remainder of this chapter is organized as follows. Sec. 2.2 describes the motivation

behind the design of V-Sense. Sec. 2.3 details the overall system and functionalities of

V-Sense. We first evaluate the performance of V-Sense in Sec. 2.4 and then show two

different applications of V-Sense in Sec. 2.5 and Sec. 2.6. After reviewing the related

work in Sec. 2.7, we finally conclude this chapter in Sec. 2.8.

2.2 Motivation

Without relying on use of cameras and by only utilizing non-vision sensors on

commodity smartphones, V-Sense can detect various steering maneuvers, such as

left/right turns, changing lanes, or driving on curvy roads. How could such functionalities

of V-Sense without using cameras at all, assist the driver in terms of both convenience and

safety? Can it actually help in reducing fatalities from road accidents? Given below are

18

two proof-of-concept applications of V-Sense that enhance safety and convenience of the

driver’s steering.

Careless steering detection Careless steering — changing lanes or making turns without

using the turn signal on the car — is one of the main reasons for steering-related fatalities.

A study from the Society of Automotive Engineers (SAE) unveiled that people in the U.S.

forget to use their turn signals 2 billion times each day in total, or roughly 750 billion times

per year. Based on such figures, SAE argued that about 2 millions of accidents can be

prevented by eliminating turn signal neglects or careless steering [156]. In this application,

V-Sense provides the functionalities required for detecting such careless maneuver. By

combining lane-change detection via V-Sense and turn signal sound detection — which

is designed based on a matched filter — the application determines whether the steering

maneuver was accompanied with a turn signal, i.e., detecting whether the steering was

careless or not.

Fine-grained lane guidance Existing navigation applications (e.g., Google map) provide

information on which lane to stay on for preparing the next maneuver, i.e., indicating the

correct lane. However, they lack functionalities of telling whether the vehicle is actually

on that lane. If the driver fails to stay on the correct lane before its next maneuver, s/he

would have to reroute or, in the worst case, take abrupt and thus dangerous lane changes

to that lane. In order to provide assist the driver to determine whether the vehicle is on

the correct lane, V-Sense provides the functionalities for fine-grained lane guidance. By

integrating V-Sense and existing navigation systems, one can determine which lane the

driver is currently on, and whether the lane is correct or not, without using cameras.

19

Ze

Ye
(North)

Xe

Y’

Yp

θ

Zp

Xp

Figure 2.2: Align the phone coordinate system with the geo-frame coordinate system. This
figure was borrowed from [181].

2.3 System Design

This section details the design and functionalities of V-Sense. First, we describe

how IMUs on smartphones are utilized to determine whether the vehicle is making turn,

changing lane, or driving on a curvy road. Then, we show how V-Sense classifies such

different vehicle steering maneuvers based on the detection results.

2.3.1 Coordinate Alignment

Since the phone’s coordinate changes over time, in order to maintain the consistency of

analysis, we align the smartphone coordinate ({Xp,Yp,Zp}) with the geo-frame coordinate

({Xe,Ye,Ze}), as shown in Fig. 2.2. This allows us to simplify the change of the readings

from 3 degrees of freedom (DoFs) to 1 DoF. The key idea is that with the measurements

of the direction of the applied gravity to the smartphone (Y), the smartphone coordinate

can be fixed within a cone. Then, combining the result with the angle (θ) derived from the

magnetometer readings and the thus-determined rotation matrix, the smartphone coordinate

can be aligned with the geo-frame coordinate. We refer interested readers to [181] for

detailed formulation of the rotation matrix.

20

100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

Samples

A
n

g
u

la
r

S
p

e
e

d
(r

a
d

/s
)

Raw data

Filtered data

Make a Left Turn

(a) Make a left turn

0 100 200 300 400 500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Samples

A
n

g
u

la
r

S
p

e
e

d
(r

a
d

/s
)

Raw data

Filtered data

Make a Right Turn

(b) Make a right turn

800 900 1000 1100 1200 1300 1400

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Samples

A
n

g
u

la
r

S
p

e
e

d
(r

a
d

/s
)

Raw data

Filtered data

Change to a Left Lane

(c) Change to a left lane

100 200 300 400 500 600 700

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Samples
A

n
g

u
la

r
S

p
e

e
d

(r
a

d
/s

)

Raw data

Filtered data

Change to a Right Lane

(d) Change to a right lane

Figure 2.3: Gyroscope readings when the vehicle makes a left/right turn or left/right lane
changing.

2.3.2 Bump Detection

When a car changes its direction via steering (e.g., changing lanes, making turns, and

driving on curvy roads), the Z-axis gyroscope reading (i.e., yaw rate reading) on the phone

can be utilized to represent the vehicle angular speed of that change of direction. Fig. 2.3

illustrates the Z-axis gyroscope measurements from the phone during a right/left turn,

and changing to a right/left lane, respectively. During a left turn, a counter-clockwise

rotation around the Z-axis occurs and thus generates positive readings (i.e., a positive

bump), whereas during a right turn, a clockwise rotation occurs and thus generates negative

readings (i.e., a negative bump).2 Similarly, during a left lane change, a positive bump is

followed by a negative bump, whereas during a right lane change, the opposite occurs.

Based on this observation, we can infer that by detecting bumps in the Z-axis gyroscope

readings, we can determine whether the vehicle has made a turn or has changed a lane. The

2We refer to such a temporal rise/drop, or vice versa, of the yaw rate as bumps.

21

1150 1200 1250 1300 1350 1400 1450
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Samples

A
n

g
u

la
r

S
p

e
e

d
(r

a
d

/s
)

Raw data

Filtered data

δ
s

δ
h

δ
s

T
BUMP

T
NEXT_DELAY

(a) One bump: a turn

100 200 300 400 500 600 700

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Samples

A
n

g
u

la
r

S
p

e
e

d
(r

a
d

/s
)

Raw data

Filtered data

δ
h

δ
s

δ
s

δ
s

T
BUMP

T
NEXT_DELAY

(b) Two consecutive bumps: lane change

Figure 2.4: Statistical features of bumps in gyroscope reading during different steering
maneuvers

other steering maneuver, i.e., driving on a curvy road, will show a similar shape but with a

different size in terms of width and height of the bumps. We will elaborate on how V-Sense

differentiates such steering maneuvers in Section 2.3.3.

We adopt a moving average filter to remove noise from the raw gyroscope readings.

The delay parameter of the filter is set to 60 samples which correspond to 0.05 second in

the time domain. Such a decision was made based on our experimental observation: it is

short but good enough to extract the waveform of the bumps.

As shown in Fig. 2.4, we define four system parameters: δs,δh, TBUMP, and

TNEXT DELAY . To reduce false positives and differentiate the bumps from jitters, a bump

should satisfy the following three constraints for its validity: (1) all the readings during a

bump should be larger than δs, (2) the largest value of a bump should be no less than δh,

and (3) the duration of a bump should be no less than TBUMP.

Based on these constraints of a valid bump, we designed an algorithm as shown in

Algorithm 1, which keeps running when V-Sense operates. There are three states in the

bump detection algorithm: No-Bump, One-Bump, and Waiting-for-Bump.

In No-Bump state, we continuously monitor the Z-axis gyroscope readings, i.e., yaw

rate. When the absolute value of the measured yaw rate reaches δs, we interpret this as the

start of a possible bump and the algorithm enters One-Bump state.

22

Algorithm 1 Algorithm for Detecting Bumps
1: Inputs:

State, Y (Yaw rate), System parameters
2: if State = No-Bump and —Y — ¿ δs then
3: (Start of 1st bump)
4: State← One-Bump
5: Record the start point of a possible bump
6: else if State = One-Bump and —Y — ¡ δs then
7: Record the end point of a possible bump
8: if bump is valid then
9: State← Waiting-for-Bump

10: else
11: State← No-Bump
12: end if
13: else if State = Waiting-for-Bump then
14: Tdwell ← State dwell duration
15: if Tdwell < TNEXT DELAY and —Y — ¿ δs then
16: (Start of 2nd bump)
17: if 2nd bump is valid then
18: Two valid bumps→ “Lane change”
19: else
20: One valid bump→ “Turn”
21: end if
22: State← No-Bump
23: else if Tdwell > TNEXT DELAY then
24: One valid bump→ Turn
25: State← No-Bump
26: else
27: Continue in Waiting-for-Bump state
28: end if
29: else
30: Continue in current state
31: end if

23

(a) Lane
change

(b) A S-shaped curvy road (c) Turning (d) A L-shaped curvy
road

Figure 2.5: The same vehicle trajectory shape for four different scenarios: (a) lane change,
(b) driving on an S-shaped curvy road, (c) turning, and (d) driving on an
L-shaped curvy road.

The One-Bump state terminates when the yaw rate drops back to a value below δs. If

the sojourn/dwell time in One-Bump state was larger than TBUMP and the largest measured

yaw rate was larger than δh, hence satisfying the three constraints, we consider the first

detected bump to be valid. In such a case, the algorithm enters Waiting-for-Bump state,

Otherwise, it returns to No-Bump.

In Waiting-for-Bump state, it further monitors the yaw rate readings for a maximum

dwell time TNEXT DELAY . In the meanwhile, if another bump starts, i.e., the yaw rate

reaching δs with a sign opposite to the first bump’s is detected, it goes through the same

procedure as before in validating it. If determined as valid, this would mean that two

consecutive bumps with opposite signs have been detected. Thus, the algorithm determines

the maneuver to be a lane change. Otherwise, if the second bump turns out to be invalid,

then it would mean that only a single valid bump was detected and thus the algorithm

determines the maneuver to be a turn. After making all decisions, the algorithm goes back

to the initial No-Bump state.

The bump-detection algorithm is executed iteratively for each collected sample, and

goes through a different procedure depending on the current state.

24

2.3.3 Differentiating Steering Maneuvers

When the vehicle is steered, bumps in the yaw rate readings are constructed. Based

on the bump detection algorithm, V-Sense detects such bumps and differentiates between

maneuvers of a lane change and a turn.

One possible problem in using this would be when driving on a curvy road. As

illustrated in Fig. 2.5, when driving on a curvy road, it might have the same shape of

trajectory as in lane change or a turn, and hence construct the same number and shape

of bumps. In such a case, V-Sense might misinterpret the drive on a curvy road as a

lane change or turn, thus yielding false positives/negatives. Therefore, it is imperative for

V-Sense to differentiate between lane changes, turns, and also driving on curvy roads.

We achieve this by classifying the maneuvers based on not only the number and

shape of the bumps as in Algorithm 1, but also with their horizontal displacement.3 Let

WLANE denote the horizontal displacement after a lane change. Since the average lane

width is around 3.65 meters [166], WLANE is expected to be around that value after a lane

change. In contrast, while driving on a curvy road, the horizontal displacement, denoted

as WCURVY , is usually much larger than WLANE . Based on this observation, if V-Sense

has detected two bumps — which means a possible lane change — it then derives the

horizontal displacement during that steering maneuver. If the derived value is larger than

3.65 meters, V-Sense determines the vehicle to be driving on a curvy road, rather than

making a lane change.

Also, to differentiate between turns at the intersection (i.e., a sharp turn) and driving

on a curvy road, we exploit the fact that the horizontal displacement during a turn is much

smaller than that during driving on a curvy road. Figs. 2.5(c) and 2.5(d) illustrate this,

where WTURN and WCURVY represent the horizontal displacements during a turn and driving

on a curvy road, respectively. If V-Sense detects only one bump, it further examines the

3Horizontal displacement is a value that represents the change of position in the X-axis after the steering
maneuver.

25

W4

W3

W2
W1

0 Ts 2Ts 3Ts 4Ts Time

Velocity v1 v2 v3 v4

θ1

θ2
θ3

θ4

Figure 2.6: Deriving the horizontal displacement based on gyroscope readings and
estimated velocity

horizontal displacement to distinguish between turning and driving on a curvy road.

Note that to differentiate turns from lane changes, only the number and shape of the

bumps are required, which can be met by the bump-detection algorithm.

2.3.4 Horizontal Displacement

In order to correctly distinguish between lane change, turn, and driving on a curvy

road, we must determine the horizontal displacement, in addition to the detection of bumps.

We derive the horizontal displacement from the readings of a smartphone’s gyroscope and

accelerometer.

Fig. 2.6 shows an example vehicle trajectory during a left lane change or maneuver on

a curvy road as illustrated in Figs. 2.5(a) and 2.5(b). The dotted vertical line represents the

time when the sensors are sampled with frequency of 1/Ts. Here θn denotes the angle of the

vehicle’s heading, whereas vn represents the average velocity during the sampling period.

During each sampling period Ts, the vehicle’s horizontal displacement can be expressed as:

Wn = vnTssin(θn). (2.1)

Since the yaw-rate readings from the gyroscope represent the vehicle’s angular velocity

26

around the Z-axis, θn can be expressed as:

θn = θn−1 +YavgTs

≈ θn−1 +YnTs, (2.2)

where Yavg represents the average yaw rate during the sampling period, and Yn the

instantaneous yaw rate measured at the end of the sampling period. Note that the above

approximation holds since the sampling period on smartphones can be significantly

reduced. Thus, the total horizontal displacement from time 0 to NTs can be derived as:

Wf inal =
N

∑
n=1

Wn

=
N

∑
n=1

vnTssin(θn)

=
N

∑
n=1

vnTssin(
n

∑
k=1

YkTs)

(2.3)

where Ts is a predefined parameter denoting the sampling period of the application. The

third equality comes from the fact that the initial angle of the vehicle’s heading, θ0 = 0,

since this is the reference point. Yk can be acquired from the gyroscope readings, while vn

can be derived from the accelerometer and GPS readings. We further elaborate on how to

obtain an accurate value of vn in Section 2.3.6.

We exploit the gyroscope and accelerometer readings to determine Wf inal . Then, by

analyzing the thus-determined value, V-Sense distinguishes between the cases of lane

change or turn and driving on curvy roads. Using in-depth evaluations, we will later

show that the derivation of horizontal displacement is accurate for various cases (e.g., lane

change, left/right turn, U-turn).

27

2.3.5 Change in Vehicle’s Heading Angle

Based on bump detection and horizontal displacement, V-Sense classifies various

steering maneuvers into three classes: lane change, turn, and driving on a curvy road.

To further classify different turning maneuvers (e.g., left/right turn at the intersections,

U-turn), V-Sense derives the change in the vehicle’s heading angle, i.e., the difference in

the heading angle between the start and the end of a steering maneuver.

As in Eq. (2.2), the angle of vehicle’s heading at sampling time nTs can be derived by

accumulating the n yaw-rate measurements. As an example, consider Fig. 2.6; at sampling

time 3Ts, the angle of the vehicle’s heading would be θ3 = ∑
3
n=1YnTs. In other words, the

change in the vehicle’s heading from time 0 to NTs can be expressed as:

θ f inal =
N

∑
n=1

YnTs. (2.4)

For example, after making a left/right turn at the intersection, θ f inal ≈ ±90◦, whereas

after making a U-turn, θ f inal ≈ ±180◦. Thus, by exploiting the derived values, V-Sense

can further classify the turns into a left/right turn or a U-turn.

Fig. 2.7 summarizes the overall maneuver classification in V-Sense as a state diagram.

V-Sense first determines whether the steering maneuver is a turn or a lane change by

calculating the number of bumps. If it is a turn, V-Sense will calculate the angle change to

determine whether the turn is a regular left/right turn or a sharp U-turn. Second, V-Sense

calculates the horizontal displacement to determine whether it is an curvy road or not.

2.3.6 Velocity Estimation

In order to derive the horizontal displacement and set TBUMP and TNEXT DELAY , we need

accurate measurement of the vehicle’s instantaneous velocity.

There are two ways of acquiring the velocity with a smartphone: reading the Speed

Over Ground (SOG) output from the GPS module inside the smartphone, or exploiting the

28

U-turn Le(/Right	

Turn

Lane	
 Change

Angle	
 Change	
 of	

Heading

Driving	
 on	

Curvy	
 Road

Turn

Horizontal	

Displacement

Bump	
 	

DetecAon

Horizontal	

Displacement

Figure 2.7: State diagram of maneuver classification in V-Sense.

IMU. The GPS does provide measurements of the velocity, whereas the acceleration can

be derived from IMU readings. However, the GPS output rate is very low, e.g., 1Hz on

Samsung Galaxy S4, as shown in Fig. 2.8, and hence cannot properly capture velocity

changes within a sampling period. On the other hand, the IMU has a much higher output

rate but contains lots of noise as well as some biases as shown in Fig. 2.8. Thus, just simply

using either the velocity measurement from GPS or taking an integral of the accelerator

IMU output is not sufficient. Hence, in order to exploit the distinct advantages of GPS and

IMU, we fuse the data by using a Kalman filter [101] to estimate the velocity.

We first construct a model for estimating the velocity:

v(k|k−1) = v(k−1|k−1)+(a(k)−b(k−1|k−1))Ts (2.5)

where v(k|k−1) is the estimated velocity at time k based on the optimized velocity at time

k−1; v(k−1|k−1) is the optimized velocity at time k−1; a(k) is the acceleration output

at time k; b(k− 1|k− 1) is the optimized bias of the accelerometer at time k− 1; Ts is the

sampling period of the accelerometer.

Here we treat b as a constant bias [116]:

b(k|k−1) = b(k−1|k−1). (2.6)

29

Thus, we have a matrix representation of the model as:

X(k|k−1) = AX(k−1|k−1)+BU(k) (2.7)

where X =

v

b

, A =

1 −Ts

0 1

, B =

Ts

0

, and U is the output from accelerometer. So,

the covariance matrix is estimated by:

P(k|k−1) = APAT +Q, Q =

qv 0

0 qa

 (2.8)

where P is the covariance matrix, and Q is the covariance of the process noise which can

be regarded as the Gaussian white noise. Thus, the state can be estimated as:

X(k|k) = X(k|k−1)+g(k)(S(k)−HX(k|k−1)) (2.9)

where g(k) is the matrix of Kalman gain and S(k) is the speed relative to the ground

measured by the GPS, and H = [1 0]. We refer the interested readers to [101] for more

details.

Fig. 2.8 shows velocity estimation by using such a model based on Kalman Filter. Here

we get the ground truth velocity by directly reading it from the OBD-II port, and compare

it with our estimation results. Fig. 2.8 shows that the velocity can be accurately estimated

in real time, thus yielding accurate horizontal displacements.

2.3.7 Parameter Setting

The bump-detection algorithm uses four main parameters: δs, δh, TBUMP and

TNEXT DELAY . δs determines the start/end point of a bump and thus is the smallest reading

value, whereas δh determines the largest reading value of the bump, and hence represents

its height. Based on the constraints of a valid bump, its minimum and maximum should be

30

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Time/100ms

Ve
lo

ci
ty

/m
ph

Velocity from GPS
Velocity from IMU
Kalman Filtered Result
Ground Truth

Figure 2.8: The accuracy of velocity estimation by fusing sensor readings

larger than δs and δh, respectively.

With large values of δh and δs, small bumps — which may be caused by background

noise or sensing errors — can be ignored and thus reduce the false-positive rate, whereas

the false-negative rate might increase. On the other hand, with small values of δh and δs,

the false-negative rate can be reduced but will become susceptible to background noise,

thus increasing the false-positive rate. From extensive road tests, we found that parameters

of δs = 0.05 and δh = 0.07 represent a good tradeoff, and are thus used as default values

for simplicity. However, the optimal parameter setting may slightly vary with the driving

habit. Developing an adaptive parameter selection mechanism is part of our future work.

As for the other two parameters, TBUMP represents the time duration of a valid bump,

whereas TNEXT DELAY represents the maximum waiting time for the following bump, in

case of a lane change. Since the time duration of a turn or lane change is usually several

seconds [130], we set TBUMP = 1.5 seconds and TNEXT DELAY = 3 seconds as their default

values.

Lane Change U-turn
#1 #2 #3 Average #1 #2 #3 Average

Displacement [m] 4.29 3.49 3.59 3.79 14.47 15.66 14.46 14.86
Angle Change [deg] 2.03 7.49 4.12 4.54 193.73 179.85 184.41 185.99

Table 2.1: Determined horizontal displacement and angle change of heading for lane
changes/U-turns.

31

Displacement Angle Change Displacement Angle Change
0

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

o
r

R
a
ti
o

Test 1

Test 2

Test 3

Lane Change U−turn

Figure 2.9: Error of the determined values compared with the ground truth.

2.4 Evaluation

To evaluate the performance of V-Sense, we implemented V-Sense on a Samsung

Galaxy S4 with a 1.6GHz quad-core processor running Android 4.4.1 KitKat OS. We have

conducted a total of 40 hours of test, and tried to cover different environments both in a

parking lot and real roads. First, we evaluated the accuracy of V-Sense in determining

the change of heading angle and the horizontal displacement in a short road test. Then,

we evaluate the performance of V-Sense’s classification with a longer road test containing

various road features. The cars we used for the test were a 2010 Mitsubishi Lancer and

a 2006 Mazda 6. During these experiments, the smartphones were either mounted on the

windshield, or kept in the driver’s pocket.

2.4.1 Accuracy of Estimating Angle Change and Displacement

By making several lane changes, turns, and U-turns during a short road test, we

evaluated the accuracy of V-Sense in estimating the change of heading angle and the

horizontal displacement. During the road test, we made three lane changes, one to the left

lane and the other two to the right lane, and three U-turns. We collected the horizontal

32

displacements and changes of heading angle from V-Sense to check whether the estimated

values are close to their ground truth. The results of the two separate tests are summarized

in Table 2.1. For consistency, we present all numbers as their absolute values.

During a lane change, the ground truth horizontal displacement is expected to be equal

to the actual lane width, which was around 3.7m for our experiment. However, for the

change of heading angle, it is expected to be 0◦, since this is a measure of the difference

between the initial and the final heading angles.

On the other hand, during a U-turn, the ground truth of horizontal displacement and the

change of heading angle are the road width for U-turns, which was approximately 16m in

our case, and 180◦, respectively.

Fig. 2.9 shows the error ratio — which is the ratio of the absolute deviation to the ground

truth value — in the two experiments. For all cases, the estimated horizontal displacement

and change of heading angle have a very low error ratio, i.e., V-Sense is very accurate.

The high accuracy of V-Sense in determining the two values means that it can correctly

classify various steering maneuvers, which is validated in the following subsection by

conducting long road tests.

2.4.2 Accuracy of Maneuver Classification

To evaluate how well V-Sense classifies different steering maneuvers, we performed

two long road tests. To guarantee the generality of our experiment, we carefully chose two

different test routes as shown in Figs. 2.10 (a) and (b) near our campus. The routes run

through typical urban areas and freeways, the former including residential, downtown, and

school areas. The road features are highlighted in both figures with detailed information as

follows.

• Left/right turn (LT/RT): Each turn at an intersection exemplifies a left/right turn.

• Curvy road (CR): There are several curvy roads in the chosen routes. Among

them, there are two long L-shaped curvy roads on the US#23 freeway, which are

33

Lane	
 Change Right	
 Turn Le/	
 Turn Curvy	
 Road

(a) Testing route #1

Lane	
 Change Right	
 Turn Le/	
 Turn Curvy	
 Road

(b) Testing route #2

Figure 2.10: Real road testing routes used for evaluation in Ann Arbor, MI. Here testing
route #1 is around campus, milage is 3.3 miles; testing route #2 is freeway,
milage is 8.3 miles.

challenging for our bump detection scheme alone to determine.

• Multiple traffic lanes (LC): A lane change is possible in both urban areas and on the

US#23 freeway. Specifically, there are 2 lanes in each direction in the urban road,

and 4 lanes in each direction on the US#23 freeway.

The number of features in the examined routes is summarized in Table 2.2.

Route Distance [miles] RT LT LC CR
#1 3.4 6 5 4 11
#2 8.3 5 5 15 9

Table 2.2: Summary of different road features in testing routes.

To validate the independence of V-Sense from driving habits, we had 5 volunteers

participating in our test, three male drivers and two female drivers. Each of them drove

twice on both route #1 and #2. In the first test, they mounted the phone on the windshield,

whereas in the second test, the phone was kept inside the driver’s pocket.

The on-road experimental results are plotted in Fig. 2.11, and can be highlighted as

follows.

• V-Sense achieves 100% accuracy in detecting both right and left turns, regardless of

the phone’s placement and road condition. This is because when turning, the heights

of the bumps in the readings tend to be high enough to be accurately detected and

classified.

34

Right Turn Left Turn Lane Change Curvy Road
0

50

100

150

200

250

N
um

be
r o

f D
et

ec
tio

ns

Ground Truth
Mounted
In Pocket

Figure 2.11: Performance of recognizing different steering patterns on both route #1 and
#2

• For lane changes, V-Sense achieves 93% accuracy when the phone is mounted

on the windshield, and 85% accuracy when the phone is in the driver’s pocket.

The false-negative results are mostly due to the fact that V-Sense occasionally

misinterprets a lane change as driving on a curvy road, because a few of the

lane changes in our test took longer than expected, especially on the freeway

where drivers tend to take extra caution, thus making slower lane changes. The

accumulated error in the gyroscope reading can also degrade the performance in

such a case [181]. However, its occurrence is expected to be rare considering the

average elapsed time for lane changing, i.e., less than 6 seconds.

• V-Sense achieves nearly 97% accuracy in detecting curvy roads with the phone

mounted on the windshield, and nearly 92% accuracy with the phone kept in the

driver’s pocket. These results also reflect the accuracy of the coordinate alignment

mentioned in Section 3.1. Also, note that V-Sense was able to detect the two long

L-shaped curvy roads on the US#23 freeway using bump detection and horizontal

displacement derivation.

2.4.3 V-Sense vs. Camera-Based Approach

We also compare the performance of V-Sense, a camera-free approach, with existing

camera-based approaches. Since most of the existing driving assistant applications can

35

V−Sense iOnRoad BlackSensor Drivea Augmented Driving0

10

20

30

40

50

60

70

Ground Truth
Test Result

Figure 2.12: Comparison of V-Sense, iOnRoad, BlackSensor, Drivea, and Augmented
Driving in lane-change detection.

only detect lane changes, not turns or driving on curvy roads, we do this comparison with

only the results of lane-change detection. The evaluation is based on tests of both route

#1 and route #2. We choose iOnRoad [28], BlackSensor [6], Drivea [12], and Augmented

Driving [5] for comparison with V-Sense. All of these four apps have the capability of

detecting lane departures. Of these apps, iOnRoad is the most popular one with more than

1,000,000 downloads from Google Play, and it is still under active maintenance, whereas

Drivea is the least popular, still with more than 10,000 downloads.

Since the use of cameras is almost 100% ineffective at night or under a bad weather,

we compared the performance of V-Sense with difference apps based on the camera

approach, during daytime and under a perfect weather condition. Here we used two

Samsung Galaxy S4 smartphones: phone A runs V-Sense while phone B is running either

iOnRoad, BlackSensor, Drivea, or Augemented Driving. In all experiments, phone A was

placed next to the driver’s seat, while phone B was mounted on the car’s windshield to

have a clear view of the road.

As shown in Fig. 2.12, V-Sense achieves about 3× better accuracy than iOnRoad, 5×

better than BlackSensor and Augmented Driving, and 11× better than Drivea. According

to our experiments conducted even under a perfect weather condition, the performances

of all the compared apps were still seriously constrained by the environment, while

36

(a) Heavy Shadow (b) Broken Road (c) Strong Sun Light (d) Sharp Turns

Figure 2.13: Non-functional environments for the camera-based driving assistant
application in the experiment.

V-Sense worked well, irrespective of the environment. In particular, the performance of

camera-based lane detection degraded severely in at least four cases: heavy shadow on the

road, broken road, strong sunlight, and sharp turns as shown in Fig. 2.13.

2.4.4 Computational Cost of V-Sense

The high computational requirement is always the problem for existing driver assistant

applications. For example, CarSafe [178] indicates its CPU utilization to be 64% when run

on Samsung Galaxy S3. We evaluated the computational cost of V-Sense on smartphones,

including Samsung Galaxy S3 (with 1.4GHz quad-core Cortex-A9 CPU), and Samsung

Galaxy S4 (with 1.6GHz quad-core Cortex-A15 CPU). The CPU utilization was monitored

by using adb top provided by Android SDK.

For a fair comparison with the camera-based approach, we extracted the lane change

detection functionality and implemented a simple application only with the lane-change

detection function. The techniques used in this application exploit the phone’s rear camera

to acquire the road’s image, and implement a popular lane-detection algorithm [95] to

extract the lane.

Our experimental results are plotted in Fig. 2.14. We found that, on Galaxy S4, the

average CPU utilization of V-Sense was 16.9%, whereas for the lane detector, it was

28.4%. On Galaxy S3, the average CPU utilization of V-Sense was 38.1%, whereas for

the lane detector, it was 60.6%. These results show that V-Sense uses 50% less CPU than

the camera-based approach. In other words, V-Sense not only achieves higher accuracy

37

0 50 100 150 200 250 300 350 400
10

20

30

40

50

60

70

80

90

100

Samples

C
PU

 U
sa

ge
 (%

)

V−Sense on S4
Lane Detector on S4
V−Sense on S3
Lane Detector on S3

Figure 2.14: Comparison of CPU usage between V-Sense and lane detector

but also lower computational overhead than camera-based approaches.

2.5 Application I: Detection of Careless Steering

V-Sense can be used to detect careless steering: changing lanes or making turns

without turning on the turn signal. Detecting a driver’s careless steering is important, since

it would enhance the safety of not only the driver but also people/vehicles around him.

Moreover, it can also be used by insurance companies in monitoring the driver’s driving

habit and thus determining the insurance premium accordingly, which would then motivate

the drivers to avoid careless steering.

In this section, we present and evaluate a simple proof-of-concept of careless steering

detection. We use V-Sense to detect and differentiate various steering maneuvers, such

as making turns, changing lanes, and driving on curvy roads. Furthermore, we present a

scheme to detect whether the driver has actually used the turn signal during each steering

maneuver.

2.5.1 Overview

Fig. 2.15 shows the information flow of careless steering detection using data collected

from the gyroscope, GPS, accelerometer, and microphone on a smartphone. This

38

Angle	
 Change	

in	
 Heading

Bump	

Detec4on

Matched	

Filter

Sound	

Detec4on

Horizontal	

Displacement

Decision

Microphone Gyroscope

end

start Horizontal	

Displacement

Accelerometer	

GPS

V-Sense

Figure 2.15: Information flow of careless steering detection by combining V-Sense and
sound detection module.

application is comprised of V-Sense and sound detection module. V-Sense detects

possible lane changes or turns using the gyroscope readings. Upon detecting the start point

of a lane change or turn, i.e. bump, the sound detection module activates the microphone

and starts to detect the turn signal sound. If a lane change or turn is detected without the

detection of signal sound, the application declares the driver is involved in careless driving,

and triggers alarm to notify the driver. Otherwise, the application declares it as attentive

driving.

2.5.2 Detection of Turn Signal

In order to detect whether the driver has used the turn signal, V-Sense uses the

following three steps: (i) collect training samples of the turn signal sound; (ii) eliminate

background noise with a matched filter; (iii) make a decision on whether the turn signal

was used during the turn or lane change.

2.5.2.1 Collection of Training Sample Data Set

We first collected the turn signal sounds from two different cars, 2006 Honda Accord

and MINI Countryman, which are used as sample data sets as shown in Fig. 2.16(a). The

measured steady rates of the turn signal in the 2006 Honda Accord and MINI Countryman

39

1 2 3 4 5
x 104

−0.1

−0.05

0

0.05

0.1

Sample

Am
pl

itu
de

Honda Accrod
MINI Countryman

(a) Signal sample

0 5 10 15
x 104

−0.5

0

0.5

Sample

Am
pl

itu
de

Raw data
Filtered result

Threshould

(b) Matched filter result

Figure 2.16: Turn signal samples and the filtered result by using a matched filter, (a)
turn signal sample from a 2006 HONDA Accord and MINI Countryman; (b)
matched result from the filter with the existence of background noises inside
the car.

were 161 and 163 ticks per second (shown in Fig. 2.16), respectively.

As the turn signal sounds acquired from the 2006 Honda Accord has lower amplitude,

and would thus be more difficult to detect, we studied the sound detection module using

this data set. To test the performance of our turn signal detection module in real driving

scenario, we turned on the engine and played music which acts the background noise inside

the car.

2.5.2.2 Elimination of Noise with a Matched Filter

To detect the sound emitted from the turn signals, the detection module has to

overcome two challenges: (i) it must be resilient to the variation of SNR due to

unpredictable detection conditions; (ii) the delay in detecting a single turn signal must be

low in order to be ready for detecting the subsequent signal. We utilized a matched filter

to meet these challenges.

The matched filter is used to detect the presence of a known signal in the unknown

signals [125]. The key idea behind the matched filter is to design an impulse response that

maximizes the output SNR. Due to unpredictable driving conditions, the noise inside the

car cannot be easily modeled. Thus, we model the turn signal and extract the signal sound

by using one convolution with the matched filter kernel. Since the turn (sound) signal can

40

be modeled as series of discrete signals, we use the discrete version of matched filter, in

which the output, y[n], can be expressed as:

y[n] =
∞

∑
k=−∞

h[n− k]h[k], (2.10)

where the impulse response, h[n], of the matched filter is

h[n] = g[n]⊗ v[n0−n], (2.11)

where g[n] denotes the power spectral density of background noise. We can thus acquire

the matched signal Matched by applying

Result[n] = Signal[n]⊗h[n], (2.12)

where signal[n] is the sound recorded by the smartphone’s microphone inside the car and

Result[n] is the output of the matched filter.

2.5.2.3 Making a Decision

If the amplitude of the matched filter output is larger than T , a pre-defined threshold

set to 0.35 by default, V-Sense declares the detection of a turn signal sound. If the

detected turn signal is accompanied by a lane change or turn detected by V-Sense, then

the application declares the steering maneuver as being attentive. On the other hand, if no

such turn signal sound was detected, the application declares the steering to be careless,

and then alarms the driver.

2.5.3 Performance of Sound Detection

Fig. 2.16(b) shows the performance of our sound detection module which extract signal

sound from background noise. We conducted experiments in a regular driving setting,

41

where music played inside the car and the passengers were talking occasionally. The

matched filter was able to extract and identify the sound of the turn signals from the

background noise, even when the amplitude of the noise was very high (radio played music

at the max volume).

By integrating this accurate sound detection module with V-Sense, the application

detects careless steering and thus enhances driving safety significantly.

2.6 Application II: Fine-Grained Lane Guidance

In this section, we demonstrate a proof-of-concept fine-grained lane guidance

application using V-Sense. Fine-grained lane guidance allows existing navigation systems

provide higher guidance accuracy. Specifically, fine-grained lane guidance detects whether

the driver is in the correct lane and alarms the driver if not.

Existing navigation systems on smartphones are constrained by the accuracy of the

built-in GPS sensor, which is at best 5∼10m [148]. When the line-of-sight transmission

between the satellite and the phone is blocked by obstacles, such as tunnels, bridges, and

tall buildings, the accuracy quickly drops to 20∼100m [98]. Such limitations make it

impossible for legacy navigation systems to recognize the exact traffic lane that the vehicle

is on. The latest update of Google Maps does include a lane guidance function [17], but in

a rather limited way: it can only provide information on which lane the vehicle should stay,

not whether it is actually on that lane.

We incorporate V-Sense in an existing navigation system to provide a true fine-grained

lane guidance. Fine-grained lane guidance is important, since it can reduce abrupt lane

changes, and also very helpful for drivers who have lack driving experience.

2.6.1 Achieving Fine-Grained Lane Guidance

Based on information from an on-line map, the correct lane for the next maneuver can

be easily determined, which is a function already provided by existing navigation systems.

42

Naviga&on	

System

Inter-
Helper

Fine-­‐grained	

Loca&on

Lane	
 Change	

Tracking

At	
 Inter-­‐
sec&on?

V-Sense Yes

Turning	

Radius

No

Road	
 	

Info

Figure 2.17: Information flow of fine-grained lane guidance by incorporating navigation
system and V-Sense.

Hence, the main challenge of realizing the fine-grained lane guidance application is the

determination of the current lane that the vehicle is running on. To meet this challenge,

we need to determine the vehicle’s current lane via lane change detection. The current

lane can be determined based on whether and how the vehicle has changed its lane. Thus,

by detecting and analyzing the lane changes made by the vehicle, we can determine the

vehicle’s current lane.

Lane changes may take place in two situations: (i) middle of a road or; (ii) at

intersections.4 For the first case, V-Sense can reliably detect lane changes on the road

using techniques in Section 2.3. To implement accurate lane tracking for the second case,

we develop an add-on module of V-Sense called InterHelper. In Fig. 2.17, we show

how the navigation system and V-Sense cooperate to determine the fine-grained location.

The navigation system is capable for determining whether the vehicle is at the intersection.

Once the vehicle reaches an intersection, InterHelper is triggered and starts to estimate

the turning radius, Ri. Note that Ri is equivalent to the horizontal displacement during

the turn, which can be derived by using the techniques described in Section 2.3.4. This

information enable V-Sense to finally determine the fine-grained location.

As shown in Fig. 2.18, there are four possibilities of lane change at a typical 4-lane

single carriageway intersection. That is, each car has two choices of making either right or

4Although it is illegal to change lane at intersections in some U.S. states (e.g., California [100]), we still
consider such a case for generality.

43

R1�

R2�

R3�R4�

O4� O3�

O2�

O1�

Figure 2.18: Turns and the corresponding turning radius at a 4-lane single carriageway
intersection.

left turn. Here, we assume the turning trajectory is an arc, which is a common assumption

in intersection design [25]. O1, O2, O3 and O4 are centers of turning circles. InterHelper

classifies each case by differentiating the turning radius, i.e., R1, R2, R3 and R4.

For a typical intersection, the right turn radius, R1 is 10.8m [168], the left turn radius,

R3 is 20.7m, and the width of a typical intersection is 19.2m [45]. Moreover, the lane

width is around 3.65m [130]. Based on these facts and extensive road experiments, we set

the threshold of differentiating R1 and R2 as 13.1m, and the threshold of differentiating R3

and R4 as 21.64m. Using such thresholds and the horizontal displacement obtained from

V-Sense, the application determines whether the vehicle has changed its lane during a turn

at the intersection.

2.6.2 Performance of InterHelper

In order to evaluate the performance of the fine-grained lane guidance application, we

conducted 80 left and right turns at different intersections in Ann Arbor, Michigan, U.S.,

and the results are shown in Fig. 2.19.

The application is shown to be able to detect 95% of right turns with R1, 90% with R2,

90% of left turns with R3 and 85% with R4. We can therefore conclude that by integrating

InterHelper into V-Sense, the application is capable of detecting lane changes in all

44

R1 R2 R3 R40

5

10

15

20

25

N
um

be
r o

f D
et

ec
tio

ns

Ground Truth
Experiment Result

Figure 2.19: Performance of InterHelper.

cases, thus determining the vehicle’s current lane.

2.7 Related Work

Detecting vehicle dynamics is critical for driving assistant systems and has also been

an active research area. The related efforts can be categorized into two main approaches:

camera-based or camera-free. For the camera-based approach, the vehicle or a stand-alone

device detects the vehicle’s maneuver by using its position (determined by the captured

images) with respect to the lane boundaries [22, 31, 37]. Some commercial applications,

such as iOnRoad [28] and Blacksensor [6], are capable of detecting lane departures by

processing the images taken by cameras on smartphones, and thereby recognizes turns.

However, all these methods require a mounted or built-in camera and also a clear view of

the road. So, their performance can be seriously undermined if the visibility of the road is

poor.

Camera-free systems achieve comparable (to camera-based systems) results regardless

of the visibility of the road. The authors of [170] utilized the gyroscope, accelerometer

readings of the smartphone and other direct readings from the OBD-II port to detect

left/right turns and also the vehicle’s real-time velocity. MIROAD [136] also utilized

the gyroscope and accelerometer of the smartphone to acquire necessary data to detect

vehicle motions via dynamic time wrapping (DTW). The authors of [108] utilized the

45

orientation sensor and accelerometer to detect the driving pattern, thus determining if the

driver is intoxicated. In contrast to [170], V-Sense is infrastructure-free, i.e., no additional

hardware is required. It combines the GPS and IMU readings to acquire accurate and

real-time velocity estimation. More importantly, in contrast with the existing work,

V-Sense differentiates not only between left and right turns but also between lane change,

U-turn, and driving on curvy roads. These in turn enable V-Sense to accurately handle

various scenarios, such as fine-grained lane navigation in Section 6.

Furthermore, recent research and industrial efforts have been focusing on building

driving assistant applications on smartphones. CarSafe [178] detects drowsiness by

observing the driver’s eye movement with the phone’s front camera. Commercial

applications [5,6,12,28] utilized the phone’s front camera to detect the front car and traffic

lane, alerting the driver if any dangerous scenario is detected. Most of these applications

require the user to mount the phone and use the camera to collect necessary information.

This mount-before-go feature could limit the users’ willingness, and eventually undermine

the application’s usability.

In contrast, V-Sense is a mount-free design for detecting steering maneuvers regardless

of the position of the smartphone. Besides, without image processing, V-Sense incurs

relatively lower computational cost. This mount-free design could pave s way for the

development of many various driving assistant applications. For example, a recent study

shows steering patterns could be utilized as a drowsiness indicator [41].

2.8 Conclusion

As an important and emerging subject in both research and industry communities,

several driving assistant systems have been proposed. However, the capability of many

existing work is limited by its reliance on the visibility of the road objects. Such an

approach is only effective when the phone is carefully mounted and also has good visibility,

i.e., its performance is undermined by its environment.

46

In this project, we proposed V-Sense, a camera-free middleware for driving assistant

systems. V-Sense can accurately and inexpensively detect and differentiate vehicle

steering by only utilizing built-in sensors on smartphones. By leveraging an effective

bump detection algorithm and studying the nature of steering, V-Sense is capable of

differentiating various steering patterns, such as lane change, turn, and driving on curvy

roads. Based on the camera-free feature of V-Sense, we presented two proof-of-concept

applications: careless steering detection and fine-grained lane guidance. V-Sense provides

new functionalities without relying on cameras to provide a broader range of driving

assistance.

47

CHAPTER III

Dri-Fi: Verify Drivers Using Turning-Behavior Biometrics

As transportation services, such as rideshare and on-demand delivery are migrating

to mobile devices, impersonating a legitimate driver is emerging as a serious threat to

the public. In this chapter, we first investigate two new types of attack related to this

threat: impostor and predator attacks. By using a legitimate driver’s account, the former

allows ineligible drivers to bypass the background check, commonly enforced via one-time

verification of legal documents when initializing the driver’s account. In the latter, the

fake driver simply approaches (e.g., trolling around late-night bars) careless passengers to

commit crime(s). Such a fake driver has been very difficult, if not impossible, to trace. The

most prevalent state-of-the-art countermeasure against these threats uses facial recognition,

in which the service app asks the driver to take a selfie — a distractive, hard-to-use,

and risk-prone practice. Moreover, with more obstructions such as face mask and PPE

requirements during the COVID-19 pandemic, the traditional biometric check will become

less practical.

We present Dri-Fi that enables commodity smartphones to accurately identify fake

drivers by harvesting individuals’ driving behavioral biometrics. Dri-Fi identifies drivers

based solely on IMU sensors embedded in their smartphones. In particular, it captures

and analyzes phone IMU data associated with the vehicle’s turn(s). To characterize users’

driving behavior, Dri-Fi extracts three new features from raw IMU data from their phones

48

and feeds them to train a machine learning model. The design features of Dri-Fi enable

continuous and robust detection of fake drivers using commodity smartphones without any

restriction on device postures. Our extensive evaluation shows that Dri-Fi can differentiate

drivers with the averaged balanced accuracy up to 96.3%.

3.1 Introduction

In recent years, there has been a rapid expansion of mobile transportation services,

including rideshare (Uber, Lyft), on-demand delivery (Amazon, GrubHub, Door Dash,

Uber Eats, Postmates), contactless rental cars (ZipCar, Maven), and auto insurance

(Progressive, Metromile), just to name a few. By integrating these services with pervasive

mobile platforms (smartphones), they have been reshaping the landscape of modern

transportation service with unprecedented accessibility and flexibility.

As one of the top priorities, protecting the service and rider (in rideshare) from

potential fraudulent and/or criminal acts has been enforced by examining drivers, such as

background check which is required when a driver sets up his/her account. For example,

rideshare companies commonly scrutinize their drivers and filter out ineligible drivers by

checking their driver licenses, vehicle inspection reports, historical driving violations, and

criminal records.

However, driven by financial interests and even criminal intentions [86], adversaries

try to bypass the background check. According to several news reports [77, 79, 90], these

fake drivers, if they successfully bypass the background check, can drive for transportation

companies (e.g., cruise for passengers as a rideshare driver) and/or even commit crimes

without timely notice by service providers and/or passengers. Unlike other common

information technology loopholes such as fake social network account and password theft,

this vulnerability can create even severer repercussions as it can cause not only financial

harm but also physical violent crimes [86] like kidnap, rape, and robbery, to the users.

Next, we will present two unique threat models.

49

Figure 3.1: How impostor and predator approach the victim.

Impostor attack. The first step in an adversary’s impostor attack is to get legitimate

account(s). The adversary may borrow accounts from relatives/friends, rent/buy hacked

accounts from underground markets or those are registered with compromised personal

information [66]. The fake driver can then change the profile picture and vehicle license

plate to further conceal the misconduct [79] . In practice, the adversary can receive the

victim/passenger’s order (as shown in Fig. 3.1) to achieve its goal, e.g., financial gains.

This type of fraudulent behavior has already been reported to be active and has become a

serious threat to the public. A recent investigation shows that a Uber account created (with

compromised personal information) 27 days beforehand logged 233 trips across the Bay

Area alone [85].

Predator attack. Targets of the predator attack are usually careless and vulnerable

victims (passengers). According to existing reports [86], the adversary may troll around

late-night bar and attract a victim’s attention by impersonating (e.g., wave his/her hand)

as the rideshare driver. Compared to the impostor attack, the predator attack usually

has a criminal intention [86], and hence is more “vicious.” According to a 2018 CNN

report [82], 103 Uber drivers and 18 Lyft drivers had been accused of felony crimes,

including sexual assaults or abuses.

Unfortunately, existing protection schemes (as we will elaborate in Sec. 4.2) fall

short in detecting impostor and predator attacks. In particular, common biometric check

methods such as face and/or fingerprint recognition distract driving and are thus infeasible

50

for verifying drivers in real time. Their another limitation is usability. Amazon [81], Uber

and Lyft prompt notifications and ask drivers to take selfies as a way to detect fraudulent

drivers and/or criminals. But this has technical limitations related to photo quality, e.g.,

insufficient lighting when taking a picture. It is not continuous and hence may fail in

practice — a fake driver could (1) spoof the authentication system with the presentation

attack, in which the attacker uses artificial face or fingerprint replica [118, 161] to pass the

examination, or (2) simply impersonate a legitimate driver between two check-ins.

To solve the fake driver problem for the fast-growing mobility app ecosystem, we

propose Dri-Fi, a novel system for inferring the driver’s identity based only on his/her

smartphone’s Inertial Measurement Unit (IMU) data. Specifically, Dri-Fi extracts the

behavioral feature to capture the unique driving pattern of legitimate users. By feeding

the feature to a machine learning pipeline, Dri-Fi can recognize any mismatch with the

driver’s behavioral pattern in real time, thus achieving continuous authentication.

The main challenge of Dri-Fi is how to derive a representative feature vector that

represents the user’s driving pattern by only using the smartphone IMU data. This is

particularly challenging since the IMU only provides limited types of driving data, i.e.,

gyroscope and accelerometer. Dri-Fi overcomes this challenge by constructing the driving

behavior profile based on vehicle turns, a common yet representative driving behavior.

We choose vehicle turns to capture the driving behavior for two reasons. First, turns

are behavior-rich actions that reflect how the driver accelerates/decelerates and how s/he

steers. Second, turns are less likely to be affected by road and traffic conditions than other

maneuvers. For example, a deceleration can be dictated by the preceding car, whereas turns

are not. Once Dri-Fi detects a turn, it derives three new features that reflect the driver’s

driving behavior. As shown in Sec. 3.4, the feature vector is only affected by how the driver

turns the steering wheel or how s/he presses the gas/brake pedal while making a turn. With

the featuer vector, we can train the driver’s model for authentication, even when s/he makes

just one turn.

51

Based on a controlled study and large-scale field tests, we will later show (in Sec. 5.4)

that these features vary only with drivers, but not with other factors such as smartphone

models, car types, and trip routes, i.e., our driver feature vector is device-, car-, and

route-invariant.

Our field study collected natural driving data from 30 different drivers with diverse

backgrounds. Our results show that Dri-Fi can achieve the balanced detection accuracies

up to 96.3%.

3.2 Motivation and Background

We first motivate Dri-Fi with the background information of the fake driver problem

and the limitation of the state-of-the-art solutions. Then, we briefly introduce Dri-Fi’s

unique approach to tackling the fake driver problem.

3.2.1 The Notorious Fake Driver Problem

As the cornerstone for protecting the passenger and/or delivery safety, mobility services

have been using a strict background check to ensure enrolled drivers are legitimate and

competent. However, impostor and predator attacks allow fake drivers to bypass this

background check to impersonate a legitimate driver. The fake driver problem has already

been reported to be rampant (Sec. 3.1). As the driver could be the transmission source of

an infectious disease, this problem may also harm the public health in the case of a global

pandemic like COVID-19 since it is very difficult, if not impossible, to trace fake drivers.

Mobility services have been actively enforcing their policies to tackle the fake driver

problem. Specifically, these services forbid registered drivers from sharing their account

with the un-registered [74,81] to avoid untraceable accidents or criminal acts by impostors.

However, account sharing is hard to prevent as the fake driver has the full access to the

account.

An impostor can also purchase a compromised driver’s account, which can be a

52

hacked legitimate account [85]. Specifically, legitimate accounts are attractive targets of

hackers [66] who can compromise and then monetize these accounts by selling them in the

black market (e.g., dark web [62]). An adversary with strong malicious intent may use the

predator attack that does not even require an account.

Mobility services including rideshare companies have been advocating tirelessly of

safety tips [91], e.g., reminding the rider to ask the driver to exchange names, to mitigate

fake driver problem. Unfortunately, people can easily overlook safety suggestions as there

is no practical enforcement on following these tips. Hence, it is indispensable to have an

automatic driver authentication method.

3.2.2 Existing Approaches

Biometric characteristics, such as face, retina, and fingerprint, are often used to

authenticate users. However, these methods fall short in the driving context due the

hard-to-use authentication process. For example, to use and pass the predominant selfie

check on rideshare apps, drivers are strictly required to put the phone’s front-facing camera

in a certain distance from their faces, under a moderate light condition. Such strict usage

requirements are also intrusive and even more risk-prone if an urgent check is enforced

when the driver is driving. Moreover, it is obvious that biometric authentication is not

practical for detecting the predator attack since the attacker does not even have an account.

During the evolving COVID-19 crisis, existing authentication methods are even more

ill-suited for adapting to the new normal model and helping users reopen mobility services.

Specifically, with stricter enforcement [92] of the mask, gloves, and other personal

protection equipment (PPE), checking biometrics regularly would be even harder to use.

3.2.3 Behavioral-based Driver Authentication

Most state-of-the-art behavioral-based driver authentication schemes [99, 113, 127,

138, 141, 145, 149] require access to various data from in-vehicle networks, such as the

53

Controller Area Network (CAN), via an On-Board Diagnostic (OBD-II) dongle/device

which must be plugged in the user’s car. Specifically, researchers leverage various types

(at least 48 types of data such as steering wheel angle, fuel consumption, etc.) of data

generated by on-board ECUs (that are connected via in-vehicle networks) to extract

representative features that capture people’s driving behavior. There are two limitations in

using this type of approaches in mobility apps:

• Shutting down OBD-II ports. Several recent vehicular hacks [59, 68] are making

car-makers increasingly block/restrict in-car data access via the OBD-II port except

when the vehicle is parked [69]. Thus, driver identification by accessing in-vehicle

data will become less feasible.

• Requirement of dedicated hardware. They require dedicated devices (e.g., OBD-II

dongles) for collecting the driving data, incurring an additional cost;

• High overhead or difficulty of decoding in-vehicle data. In-vehicle network

messages are encoded by car-makers and their translation is proprietary. Therefore,

unless the driver fingerprinting entity has access to such a translator, the messages

must be reverse-engineered, which is painstaking and also incomplete.

Therefore, even when the mobility service provider has abundant resources to

characterize the individual’s driving pattern, it may still be very difficult, if not impossible,

to overcome the above limitations.

3.2.4 Driver Authentication with Dri-Fi

Dri-Fi can be regarded as driver behavior biometrics (a.k.a. implicit and continuous

authentication [154, 160]) by using phone sensors only. Specifically, Dri-Fi

extracts intrinsic features directly from the phone’s IMU sensor data (i.e., gyroscope,

accelerometer) that captures distinct, measurable driving patterns. As we will present in

Sec. 4.3 and further elaborate in Sec. 3.5, Dri-Fi can detect both impostor and predator

attacks. It is worth noting that existing schemes like face recognition are unable to detect

54

the predator attack as discussed in Sec. 3.2.2.

3.3 Overview of Dri-Fi

Figure 3.2: The system overview of Dri-Fi. The black and red lines presents data flows
for enrollment and authentication stages, respectively.

The use of Dri-Fi requires enrollment and authentication. In the enrollment stage,

Dri-Fi extracts the feature vector from the driver’s smartphone data and builds the driver’s

behavioral model, which is associated with his/her account. The actual driver’s presence at

the enrollment stage can be enforced by a strict one-time facial check. Dri-Fi then enters

the authentication stage: the driver’s model and the extracted feature vector will be used

to check if the current driving pattern matches with the driver’s. In the design of Dri-Fi,

only the model building step needs the communication with the back-end server. This is

for keeping records and dispatching the trained model as we will introduce next.

Unlike many other authentication schemes, the design of Dri-Fi includes a unique

model dispatch module to link the driver’s model to the driver’s account and the rider’s

account. This new design is essential for tackling different fake-driver (e.g., predator and

impostor) attacks. As we will elaborate in Sec. 3.5, the authentication can be done on the

driver’s or the rider’s phone to detect the impostor and predator attacks.

Fig. 3.2 depicts a detailed workflow of Dri-Fi as a 4-step process where Dri-Fi

acquires the required raw IMU data ϕraw for authenticating drivers. First, Dri-Fi

55

pre-processes ϕraw to remove noises and extracts the sensor measurements only while the

driver was making a (left/right) turn, thus acquiring ϕturn (Secs. 3.4.1 — 3.4.2). Next,

based on the thus-obtained ϕturn, Dri-Fi constructs a set of features (Sec. 3.4.3), i.e.,

a feature vector γturn. The feature vector can be used for training the driver’s model or

real-time authentication.

3.4 Characterizing Turning Maneuvers

In this section, we will elaborate the system design of data pre-processing and feature

extraction.

3.4.1 Data Pre-processing

During a trip, Dri-Fi continuously collects the raw IMU data ϕraw = {gyroraw,accraw,magraw}

from the phone’s gyroscope, accelerometer, and magnetometer, respectively.

3.4.1.1 Data Calibration

To handle different postures of the mobile device inside a car, Dri-Fi aligns the

coordinate of IMU readings using the magnetometer [102]. Specifically, Dri-Fi aligns the

device’s coordinate with the geo-frame/earth coordinate so as to maintain the consistency

of analysis. This protects the data which Dri-Fi uses for driver authenticating from the

effects of the IMU’s pose, thus unneeding a fixed device’s posture.

3.4.1.2 Data Pre-processing

Once the coordinate-aligned data of the gyroscope and accelerometer sensors have

been collected, Dri-Fi smoothes and trims them to prepare for further analyses. If the

device which Dri-Fi uses is a smartphone, its handling by the user may cause high-power

noises on the gyroscope and accelerometer sensors. Abnormal road conditions (e.g.,

56

potholes) may also incur a similar level of noise. Therefore, Dri-Fi first filters out

abnormal spikes in the data. Dri-Fi then smoothes each IMU sensor (gyroscope and

accelerometer) data stream by using a low-pass filter to remove high-frequency (with

the cutoff frequency set to 20Hz) noises. This can help mitigate the impact of different

car models, as the high-frequency noises are usually induced by the varying vibration

pattern [135] of different car models and road excitations.

3.4.2 Extraction of Left/Right Turns

Dri-Fi trims the smoothed data further by retaining the IMU measurements acquired

only during a left/right turn, ϕturn = {gyroturn,accturn,magturn}, i.e., smoothed IMU data

of only left/right turning maneuvers. In other words, measurements taken when the driver

constantly drove on a straight road, or when the car stopped to wait for traffic lights or

stop signs are all discarded. Among the various maneuvers (e.g., turns, lane changes,

acceleration/deceleration), the reason for Dri-Fi’s focus on data from turns is that the

vehicle/driver’s turns are less affected by the car in front (i.e., traffic condition) than others.

For example, deceleration of a vehicle would depend on the car in front, whereas left/right

turns are less likely to depend on it.

In order to extract only data related to left/right turns, Dri-Fi uses the (coordinate-aligned)

gyroscope’s yaw rate reading as it reflects the vehicle’s angular velocity around its vertical

axis, i.e., the vehicle’s rotational inertia. Note, however, that non-zero gyroscope readings

do not necessarily represent a left/right turn, since there exist other (similar) maneuvers

such as lane changes and U-turns which incur similar results [102]. So, from the

gyroscope, Dri-Fi extracts data of only left/right turns in the following two steps:

S1. Recognizes whether or not a steering maneuver — which we refer to as maneuvers

(left/right turns, lane changes, U-turn, etc.) that suddenly change the vehicle’s

heading direction significantly — was made;

S2. Determines whether the steering maneuver was a left/right turn and, if yes, extracts

57

start-of-turn (sot) axis

end-of-turn (eot) axis

Acceleration
along eot (Aeot)
Instantaneous
acceleration (Ainst)

Acceleration
along sot (Asot)

θn

θn+1

θ The vehicle’s
heading angle

(at time Ts)

(at time 2Ts)

(at time 0)

Figure 3.3: Accelerations and headings
of a turn.

0 0.5 1.0 1.5−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time (s)

An
gu

la
r s

pe
ed

 (r
ad

/s
)

send

𝛿bump

sstart

Figure 3.4: Turn extraction from
gyroscope readings.

the sensor readings acquired during that turn.

S1. Recognizing steering maneuvers. Dri-Fi recognizes the occurrence of a steering

maneuver when the yaw rate readings from the gyroscope form a “bump-shape”. When a

car changes its direction by turning left, as shown in Fig. 3.4, the yaw rate reading from

the gyroscope first decreases, then reaches its minimum peak, and finally rises back to

approximately 0 rad/s upon completion of the left turn. For a right turn, everything would

be the opposite to a left turn; increase, reach the maximum, and decrease. Depending

on how the coordinates are aligned, a negative (positive) bump may reflect a right (left)

turn. However, in this paper, we consider the yaw rate to increase when rotated clock-wise.

Based on this observation, Dri-Fi determines that a steering maneuver has occurred if the

absolute yaw rate exceeds a certain threshold, δbump, which is empirically set to 0.15 rad/s.

Note that without the threshold (δbump), even a small movement of the steering wheel would

cause Dri-Fi to mis-detect a steering maneuver. Thus, Dri-Fi marks the start time/point

of that steering maneuver as sstart when the absolute yaw rate, |Y |, exceeded δbump for the

first time. Also, Dri-Fi marks the end point, send , when |Y | first drops back below δbump.

Since the steering would in fact have started a bit before sstart and ended a bit later than

send , where |Y | ≈ 0 as shown in Fig. 3.4, Dri-Fi moves points sstart and send backwards

58

and forwards, respectively, until |Y | ≈ 0. As a result, Dri-Fi interprets a steering maneuver

to have made within the interval s = [sstart ,send].

S2. Filtering left/right turns. The steering maneuver extracted in S1 may be

comprised of not only left/right turns but also lane changes or U-turns, since those

maneuvers yield similar bump-shaped yaw rate readings. In order to extract only left/right

turns, as in [102], Dri-Fi derives the change in the vehicle’s heading angle, which is

defined as the difference in the vehicle’s heading angle between the start and the end of a

steering maneuver. Fig. 3.3 shows an example vehicle trajectory during a right turn where

three IMU sensor readings were acquired at times t = sstart + {Ts,2Ts,3Ts}, i.e., sampled

with frequency of 1/Ts. As in step S1, let t = sstart be the time when the vehicle was

detected to have started the turn. Since the yaw rate readings from the gyroscope represent

the vehicle’s angular velocity around the vertical (Z) axis, the change in the vehicle’s

heading angle after time nTs has elapsed since sstart is:

θ [nTs]≈ θ [(n−1)Ts]+YnTs =
n

∑
k=1

YkTs (3.1)

Here Yn denotes the n-th yaw rate reading since t = sstart . Therefore, at the end of making a

right turn, the eventual change in the vehicle’s heading angle, θ f inal = θ [send−sstart] would

be approximately 90◦ whereas at the end of a left turn it would be -90◦. This change in the

vehicle’s heading angle is a good indicator for determining whether the vehicle has made a

left/right turn, since for lane changes, θ f inal ≈ 0◦, whereas for U-turns, θ f inal ≈ 180◦. Thus,

Dri-Fi calculates the θ f inal of a detected steering maneuver (made during sstart ∼ send),

and only retains it such that 70◦ ≤ |θ f inal| ≤ 110◦, i.e., approximately ±90◦. Note that

since left/right turns usually take a few seconds (<3 seconds), the drift in the gyroscope

reading during a turn [151] does not affect Dri-Fi’s performance.

As a result, whenever the driver makes a left/right turn, Dri-Fi can acquire a sensor

data streams (i.e., gyroscope and accelerometer readings) which are outputted only during

59

(a) Left turn. (b) Right turn.

Figure 3.5: Interpolated gyroscope readings of left and right turns from 12 different drivers.

the turn, i.e., during s = [sstart ,send]. However, since different road geometries may result

in different turning radii, the length of the readings may vary, which may affect Dri-Fi’s

performance. Thus, in order to make Dri-Fi’s authenticating accuracy independent of

path selection and dependent on the driver only, we interpolate the sensor data stream into

a fixed length. This also facilitates Dri-Fi to authenticate the driver even when using two

different devices that may have different sampling rates.

The effect of the interpolation step is shown in Fig. 3.5. Each subplot presents the

gyroscope readings of left/right turns performed (then extracted with our scheme) by

one of 12 different drivers. In summary, we have 682 left turns (mean: 56.8, std: 5.5)

and 511 right turns (mean: 42.6, std: 5.4); we will later in Sec. 3.6 elaborate on the

collection of this data. From Fig. 3.5, we gain two insights: (1) the near-equivalent

shapes of gyroscope readings indicate that via interpolation, the analyses can be done

from a consistent vantage point, despite turns made in different environments (e.g., road

geometries); and (2) the time-series data (e.g., gyroscope readings) of left and right turns

shows a clear morphological difference, i.e., convex vs. concave. Therefore, it is necessary

to build different classifiers for left and right turns. Our experimental results (in Sec. 3.7.1)

60

indicate that both left and right turns classifiers have similar performance. This can be

explained from the near-equivalent time durations of left and right turns — the mean and

standard deviation for left turns are 1.18 and 0.095 seconds, whereas those for right turns

are 1.12 and 0.101 seconds. Thus, one can use either the left or right-turn classifier as they

have similar performance in identifying/verifying drivers. So, we focus on using left turns

for identifying/verifying drivers. As the analysis pipeline is transferable, one may easily

adapt Dri-Fi based on right turns.

3.4.3 Formulating the Feature Vector

Whenever the driver makes a left/right turn, Dri-Fi acquires an IMU sensor data stream

ϕturn. The main challenge in authenticating the driver is determining which features to

extract from the data stream.

3.4.3.1 Feature Extraction

Dri-Fi’s feature extraction stems from both prior work and our observation of

real-world driving patterns. Prior work on driver identification [113, 180] has shown that

statistical features derived from the acceleration and vehicle steering (e.g., angular speed)

can be useful for characterizing driving patterns. We have also observed that the turning is

a behavior-rich maneuver and reflects how each driver accelerates/decelerates and steers a

car. Moreover, turns are less likely to be affected by road and traffic conditions than other

maneuvers. We, therefore, extract the following three new features from the filtered IMU

sensor data for driver authenticating:

F1. Acceleration along the end-of-turn axis (Aeot);

F2. Deviation of F1 (∆Aeot); and

F3. Deviation of the raw yaw rate (∆Yraw).

As depicted in Fig. 3.3, we define the start-of-turn (SOT) axis as the axis/direction in

which the vehicle was detected to have started its turn (direction at time sstart). In reference

61

to the SOT axis, we define the end-of-turn (EOT) axis as the one orthogonal to the SOT

axis. That is, regardless of the change in the vehicle’s heading angle after the turn (e.g., 95◦

for a right turn), by definition, the EOT axis is set perpendicular to the SOT axis.

F1. Acceleration along the EOT axis. The acceleration along the EOT axis is an

interesting yet powerful feature in Dri-Fi since it represents both 1) how much the

driver turns his/her steering wheel and 2) at that moment how hard the driver presses

the brake/acceleration pedal during the left/right turn. In other words, it reflects one’s

(unique) turning style. We will later show through extensive evaluations that the features

we use for Dri-Fi do not depend on the vehicle type or route but only on the driver’s

unique maneuvering style. Note that instantaneous acceleration, which we refer to as the

acceleration along the vehicle’s heading axis, measured during a turn would only reflect

the driver’s input/actions on the brake/acceleration pedal but not on the steering wheel.

Similarly, the instantaneous yaw rate, i.e., the angular velocity of the vehicle, measured

from the gyroscope would only reflect the driver’s steering actions.

For deriving the vehicle’s acceleration along the EOT axis when nTs seconds has

elapsed since sstart , Aeot [nTs], Dri-Fi utilizes the vehicle’s instantaneous acceleration,

A[nTs], at that moment (obtained from the accelerometer) and its change in the heading

angle, θ [nTs] (extracted from the gyroscope) as

Aeot [nTs] = A[nTs]sin(θ [nTs]) (3.2)

In addition to the acceleration along the EOT axis, the value along the SOT axis may also

be used. However, since the information Dri-Fi would obtain from the accelerations along

the SOT axis will be redundant when those along the EOT axis are already available, we

do not consider them as features in Dri-Fi; this also reduces the feature space.

As an alternative to Aeot , one can think of using centripetal/lateral acceleration, which

would be perpendicular to the vehicle’s instantaneous acceleration (A). However, since the

62

Figure 3.6: Dri-Fi’s construction of feature vector.

centripetal acceleration is affected by the turning radius (depends on road geometry, car

size, and smartphone placement), whereas the acceleration along the end-of-turn axis is

not, we do not consider this for features in Dri-Fi.

F2–F3. Deviations of Aeot and raw yaw rate. Dri-Fi derives not only Aeot but also

∆Aeot , i.e., difference between the subsequent acceleration values along the EOT axis.

Since ∆Aeot reflects how aggressively the driver concurrently changes his steering and pedal

actions during a turn, this feature captures the driver’s aggressiveness.

In addition to ∆Aeot , Dri-Fi also determines the deviations in the raw yaw rate

measurements, ∆Yraw. Note that in order to accurately extract turns, Dri-Fi pre-processed

the data with a low-pass filter. However, as the turns are already extracted, in order to

not lose the accurate understanding/interpretation of how aggressively the driver turns

his steering wheel, Dri-Fi also derives ∆Yraw; the driver’s aggressiveness shown from

the low-pass filtered data would have been reflected in F2. In addition to the driver’s

aggressiveness of turning the steering wheel, this feature also captures how stable the

63

Figure 3.7: Different autocorrelations depending on the driver’s turning style.

driver maintains an angle during the turn(s) and thus helps Dri-Fi’s driver authenticating.

3.4.3.2 Feature Vector Construction

To construct the feature vector γturn for classification and thus authenticating, Dri-Fi

transforms F1–F3 as follows:

1. Upon detection of a turn, as shown in Fig. 3.6, Dri-Fi divides the IMU

measurements (acquired during the turn) into 5 stages, each with an identical

duration.

2. For each stage, Dri-Fi determines F1 — F3.

3. For each of F1—F3, Dri-Fi selects its {10, 25, 50, 75, 90}-th percentiles and

autocorrelations at 1–10 lags due to their effectiveness evidenced by our experiment.

Then, Dri-Fi aggregates the metrics for constructing a feature vector.

Note that Dri-Fi generates an instance with such a feature vector per (detected) turn. With

the percentiles, Dri-Fi understands the distributions of F1—F3 in each stage of turn.

Meanwhile, a more powerful feature for Dri-Fi in authenticating the driver is the

autocorrelations of F1—F3 in each stage of turns. Fig. 3.7 shows an example of two

different drivers making a right turn. When making the turn, one can see that Da started

turning his steering wheel during stage 1 of the turn whereas Db started it later in stage

3. As shown in Fig. 3.7, which also illustrates the accelerations along the EOT axis (Aeot)

during stage 1, one can see that an early turn from Da incurs non-zero values of Aeot in

64

stage 1 of the turn. On the other hand, since Db drives further on a straight line along the

SOT axis, his Aeot values in stage 1 would approximately be 0. Similarly, values of F2 and

F3 would also remain 0 for Db, but not for Da. As a result, the autocorrelations of F1—F3

for Da would show significantly different values from those for Db, i.e., drivers’ different

turning styles lead to different F1—F3 autocorrelations.

Then, are these autocorrelation values of F1—F3 different enough between drivers

to be considered as a driver’s behavioral signature? Also, for a given driver, are those

values consistent across multiple left/right turns? Fig. 3.8 shows the boxplots of F1

autocorrelations for two drivers — who participated in our evaluations — during their

first stage of left turns. We will later elaborate on the evaluation settings in Sec. 5.4.

One can see that since the tendencies of drivers moving straight or turning the steering

wheel early/late at the early stages of turns were different, the autocorrelations (at different

lags) between the two drivers were obviously distinguishable. Moreover, one can see

that although the driver was making those left turns at different times and places, the

variances in some autocorrelation lags were quite low, i.e., stable. Not only the first stage

but also stages 2∼5 showed a similar distinctiveness and stability. This shows that the

autocorrelations of F1—F3 are not only distinct among drivers but also quite stable for

a given driver, i.e., drivers’ turning styles are relatively constant and distinct, so as to

function as the core for Dri-Fi in authenticating the drivers.

Using the constructed feature vector γturn as an input data for training machine

classifiers (e.g., Random Forest [153]), Dri-Fi can authenticate the driver as soon as the

driver has made only one (left/right) turn.

3.5 Detection of Impostor & Predetor Attacks

Now we elaborate the defense mechanism against impostor and predator attacks. The

workflow of Dri-Fi authentication is shown in Fig. 3.9. After a rider requested a ride,

the authentication flow starts by checking if the driver has confirmed the pickup on his/her

65

−0.5

0

0.5

1

Number of Lags
1 2 3 4 5 6 7 8 9 10

A
ut

oc
or

re
la

tio
n

F
un

ct
io

n
(A

C
F

)

Driver 1
Driver 2

Figure 3.8: Correlogram of feature F1 for two drivers.

app. Note that a predator cannot confirm this since s/he is not the assigned driver or may

not even have an account.

Detect an impostor attack. If the driver confirmed the pickup, Dri-Fi starts on the

driver’s device to check if the behavioral pattern matches the enrolled pattern. If a

mismatch is detected, a highly-suspicious impostor report will be generated and sent to the

service provider.

Detect predator attack. If the driver has not yet confirmed the pickup, the rider is either

looking/waiting for the ride or already boarded a car, i.e., a suspicious predator attack. To

verify this, the workflow first analyzes if the moving speed of the rider’s phone (detected

by using the GPS speed) exceeds a certain threshold, denoted as VT H . A reasonable

indicator of a moving car in a city can be around 30 mph [72]. If yes, Dri-Fi starts

on the rider’s device to check if the current behavioral pattern matches the enrolled pattern

of the designated driver. If a mismatch is detected, the rider’s phone generates a predator

alert to alarm the rider, and a report of this incident will also be sent to the service provider.

Further contextualization and/or action associated with the report can be taken by the

service provider, e.g., calling local law enforcement immediately and/or suspending the

66

Figure 3.9: The workflow of Dri-Fi’s authentication process.

impostor’s account. Note that this workflow can be slightly modified for other mobility

services, such as on-demand delivery. For example, if the delivery driver is an impostor,

the authentication process can start once the driver receives a delivery request.

To validate Dri-Fi’s efficacy in detecting both types of attack, it is essential to

first analyze its performance and accuracy in capturing behavioral patterns, which are

elaborated in Secs. 3.7.1 — 3.7.4. Since the riders are likely to place the phone in a back

seat of the car, we study how to deal with varying phone posture.

The key challenge in achieving accurate driver verification is how to mitigate the impact

of the varying phone posture. For example, in the case of an impostor attack, the phone is

usually mounted at or next to the driver’s seat when a driver’s account is being used by the

impostor, whereas in the case of predator attack, the phone is usually located in the back

seat with the rider. Our experiments imitate the user’s placement of the smartphone. As

shown in Fig. 3.10, the reference point indicates the windshield mount — the predominant

placement by the driver (i.e., for the impostor attack scenario). Points 1, 2, 3, and 4 are

popular placement by the rider (i.e., for the predator attack scenario) left backseat pocket,

67

Figure 3.10: The impact of different placement on the raw and filtered sensor readings.

right backseat pocket, right rear door handle, and right front door handle, respectively. We

placed one Google Pixel phone in the reference point and another Pixel phone in other

points for four short trips. The goal is to study the difference of the sensor reading induced

by device placement.

According to vehicle moving dynamics [170], different positions on car have same

angular speed, thus enabling a position-invariance feature F3 As shown in the plots in

Fig. 3.10, the gyroscope data collected from two different phones, i.e., Redmi Note8

(running Android Pi) and Galaxy S5 (running Android Marshmallow) shows identical

morphological patterns. Note that, these two data traces are not perfectly synchronized:

on average Galaxy S5 phone’s data is 0.104 seconds delay compared with Redmi Note8.

This is because two phones’ different hardware configuration and clock systems. As for

feature F1 and F2, our end-of-turn acceleration also remove the impact of the turning

radius, which may vary due to the road geometry and phone placement. Hence, the design

of Dri-Fi should be capable for addressing of the varying-posture issue. We will show

further experimental results in Sec. 5.4.

68

3.6 Setup and Design of Experiments

The goal of our experimental evaluation is to answer the following two questions.

Q1. Can Dri-Fi’s feature vector accurately capture the driver’s behavioral characteristics,

or is the feature vector invariant with other impact factors, i.e., device model, device

posture, car type, and route?

Q2. Does Dri-Fi address the driver masquerading attack in a real-world setting?

We answer these questions by first presenting the data-collection methodology, and then

elaborating on the construction of our dataset.

3.6.1 Data Collection

We implemented the data collection front-end app on Android smartphones. As we

elaborated in Sec. 4.3, the data collection app records the IMU sensor data (during driving),

which is subsequently uploaded to the server for further analysis (in Sec. 5.4). To test the

app’s performance across different platforms, we installed the app on five different Android

smartphone models (i.e., Google Pixel, Redmi Note 8, Nexus 5X, Samsung Galaxy S5, and

Samsung Note 5) which support API level from 23 to 28. We asked the drivers to turn on

the data-collection app before each trip and upload the data after completing the trip. Note

that we do not require the smartphone to be placed at a single fixed location. We instead

recommended our participants to avoid moving their smartphones too much/frequently,

which may change their phones’ postures significantly/frequently.

3.6.2 Design of Experiment

We collected the driving data in two phases, i.e., controlled study and large-scale test.

We recruited 30 drivers from our university campus for this experiment. Subjects were

assigned to different driving tasks to meet the design principles of our two-phase study.

Since our system does not require any personal information from the users, the Institutional

Review Board (IRB) of our university classified this effort as non-regulated.

69

3.6.2.1 Phase 1. Controlled Study

To understand if Dri-Fi’s feature is invariant of other factors, i.e., car and route, our

experiment objects are comprised by three sets, i.e., drivers, cars, and routes. The driver

set (D) including five different drivers recruited from our university, with average age at

29.2 (STD: 5.6). Here D = {d1,d2,d3,d4,d5}. The car set C consists of three different

cars, denoted as C= {c1,c2,c3}. Our vehicle selection includes a wide range of car types,

c1, c2, and c3 are Ford Explorer (full-size SUV, weight 2.1 ton), Lincoln MKZ (mid-size

sedan, weight 1.6 ton), and Toyota Corolla (compact-size sedan, 1.3 ton), respectively. The

posture set P = {p1, p2, p3} includes three representative placements, namely, windshield

mount, frontseat cupholder, and backseat door handle for p1, p2, and p3, respectively. Note

that, we observed that smartphone’s orientation is not always 90◦ upright (i.e., the y-axis of

the device is perpendicular to the ground) in all postures. e.g., the device may tilted some

degrees when it placed in p2 and/or p3. Our coordinate alignment process (Sec. 3.4.1),

if works properly, should calibrate the sloping position. Finally, the route set has three

different routes in a suburban area in the U.S. Here, R = {r1,r2,r3}, with average route

length at 3.4 miles (STD: 0.6). There are 15, 20, and 18 left turns and 18, 16, 14 right turns

for r1, r2, and r3, respectively.

Test Change Factor Fixed Factor Subjects

T1 Driver Car, Posture, Route D, p1, c1, r1
T2 Driver, Car Posture, Route D, C, p1, r1
T3 Driver, Posture Car, Route D, c1, P, r1
T4 Driver, Route Car, Posture D, c1, p1, R

Table 3.1: Summary of evaluations.

By controlling different factors, i.e., driver, car, and route, we designed three tests (as

shown in Table 3.1):

• Pilot test (T1): Here we test driver verification’s performance with fixed car and route.

We asked all drivers to drive c1 on r1, which resulted in |D| trips.

• Car-invariant test (T2): We asked all participants to drive all cars on route r1. This

70

test gives us |D|× |C| trips.

• Posture-invariant test (T3): We asked all participants to place their phones on three

different positions as indicated in P while driving c1 on route r1. This test gives us

|D|× |P| trips.

• Route-invariant test (T4): We finally test the impact of route choices by asking all

drivers to drive c1 on all routes. This gives us |D|× |R| trips.

As the simplest test, T1 allows us to have a initial insight of our feature’s performance

(see Sec. 3.7.1) on capturing behavioral pattern. T2 helps us learn the impact of behavioral

pattern (Sec. 3.7.2) amid changing vehicles. We also studied the consistency of our feature

when the user changes his/her car, e.g., using the trained pattern on c1 for verifying a driver

when he/she drives c2. Similary, we studied in T3 on the impact of smartphone posture. In

T4, we tested the feature’s efficacy and consistency amid changing routes in Sec. 3.7.4.

3.6.2.2 Phase 2: Large-scale Study

We further enlarged the number of drivers by adding 25 new participants to conduct

a stress test of Dri-Fi. Due to the larger search space, Dri-Fi may show degraded

performance in verifying drivers. Different from Phase 1, no factor is controlled in Phase

2. All experiments were conducted in a mid-sized city in the Midwest of the U.S. In total,

our dataset includes 30 (21 male and 9 female) drivers with an age span of 22–50; we

collected data from 25 cars of 8 different models. The timespan is over 6 months (between

9AM and 10PM) which consists of more than 201 hours of driving in urban/suburban

areas and covers trips of 3,198 miles. On average, each driver produced driving data for

approximately six hours and 106.6 miles. According to our survey after data collection,

none of the participants indicated that our data collection app affected their normal driving.

Hence, this experiment recorded each driver’s natural driving data.

With the large-scale test, we are able to (1) examine the feature’s performance under

real-world settings without constraints, and (2) analyze the feature consistency with

71

respect to changing observation set and errorneous training data. Results will be shown in

Sec. 3.7.5.

3.7 Evaluation

We first show the evaluation results in Phase 1 and 2. Then, we present the overhead

of Dri-Fi app. Finally, we demonstrate how Dri-Fi detects the impostor and predator

attacks in practice.

3.7.1 Pilot Study Result

We examine both left and right turn classifiers’ performance in our pilot study. Based

on the data collected from T1, we trained a 100-tree Random Forest (RF) classifier for both

left turns and right turns, respectively. We use 80% of the turns and leave the remaining

20% as the test set. To obtain an accurate estimate of the model prediction performance,

we used 10-fold cross validation.

d
1

d
2

d
3

d
4

d
5

Driver ID

0

0.2

0.4

0.6

0.8

1

B
al

an
ce

d
A

cc
ur

ac
y

Left turn classifier
Right turn classifier

Figure 3.11: Performance of the pilot study.

The averaged balanced accuracies (i.e., the average of recall obtained on each

class [89]) are 0.9563 (averaged STD: 0.0092) and 0.9632 (averaged STD: 0.0072) for left

turns and right turns, respectively. That is, Dri-Fi’s user (e.g., app developer) can use

72

either left or right turn classifier. The experimental results show that our feature vector can

accurately capture the behavioral pattern.

3.7.2 Car-invariance

The effect of car choices may come from two sources: (1) the high-frequency noises

induced by mechanical vibrations from the car chassis, and (2) possible behavioral

change for adapting to a different car. Our algorithm design filters out (Sec. 3.4.1) the

high-frequency noises. In T2, we focus on investigating the behavioral change amid

different car choices. For each car model, we use the corresponding data (from T2) to

train the driving model of each driver. Then we use all car choices’ data for testing the

model. For example, for c1, the training subject set is {D,c1}; the testing subject sets

include {D,c1}, {D,c2}, and {D,c3}. Similar to the pilot study, we applied 10-fold cross

validation and obtained the overall averaged balanced accuracy as shown in Fig. 3.12.

c
1

c
2

c
3

Car Type

0

0.2

0.4

0.6

0.8

1

B
al

an
ce

d
A

cc
ur

ac
y

c
1

c
2

c
3

Figure 3.12: The impact of changing cars.

As shown in Fig. 3.14, the overall accuracy and STD (combined and denoted as

{mean,ST D}) for cars c1, c2, and c3 are {0.9504,0.0053}, {0.9456,0.0143}, and

{0.9565,0.0083}, respectively.

73

3.7.3 Posture-invariance

As discussed in Sec. 3.5, for different postures, after addressing the variation in

vibration pattern, the key differences are induced by time delay and marginal longitudinal

velocity. By conducting T4, we assess the impact of postures with a similar method and the

10-fold cross validation as stated in Sec. 3.7.2. For each posture, we use its corresponding

data to train the model for every driver, and then use all postures’ data for testing the

model. Note that, if the training and testing sets are from the same trip, we leave 80% data

for training and 20% data for testing.

p
1

p
2

p
3

Postures

0

0.2

0.4

0.6

0.8

1

B
al

an
ce

d
A

cc
ur

ac
y

p
1

p
2

p
3

Figure 3.13: The impact of different postures.

As shown in Fig. 3.14, the overall accuracy and STD for route p1, p2, and p3 are

{0.9416,0.0193}, {0.9377,0.0197}, and {0.9229,0.0203}, respectively. Note that for

p1, the performance shows a relatively large degradation compared with p2 and p3. Our

speculation is, there were some movements in steering maneuvers due to the loose fixture

of the phone in p2 and p3. These movements induces low-frequency noises that undermine

the classifier performance.

3.7.4 Route-invariance

The effect of the driving route may come from three sources: (1) varying

high-frequency noises due to different road pavement conditions, (2) varying traffic

74

condition, and (3) different intersection geometries. To address the last two sources, as

emphasized in Sec. 3.4.1, we apply trimming and interpolation steps. By conducting T4,

we assess the effect of route selection with a similar method stated in Sec. 3.7.2. For each

route, we use its corresponding data to register the model for every driver, and then use all

routes’ data for testing the model. Again, a 10-fold cross validation and averaged balanced

accuracy are used.

r
1

r
2

r
3

Route ID

0

0.2

0.4

0.6

0.8

1

B
al

an
ce

d
A

cc
ur

ac
y

r
1

r
2

r
3

Figure 3.14: The impact of different routes.

As shown in Fig. 3.14, the overall accuracy and STD for route r1, r2, and r3 are

{0.9654,0.0170}, {0.9515,0.0103}, and {0.9285,0.0177}, respectively.

After validating Dri-Fi’s consistency amid varying car choices, route selections, and

varying posture we now proceed to a larger-scale test of Dri-Fi’s performance.

3.7.5 Large-scale Test

In this phase, we evaluated Dri-Fi’s performance in classifying up to 30 drivers (25

new drivers plus the 5 drivers in the first two phases) using the data collected without control

factors. All participants (including three couples) drove their own cars (six Corolla and

nine Camry) for the experiment. We focus on evaluating Dri-Fi’s performance in terms

of changing training data size, time-lapse consistency, and resistance against erroneous

training data.

75

3.7.5.1 Observation Set

To emulate an increasing search space, we examined the averaged balanced accuracies

of all drivers in this test. We apply 10-fold cross validation on the test. As shown in

Fig. 3.15, the overall trend indicates that an expanding observation set, e.g., with an

increasing number of drivers, can help the classifier to better handle diversities, thus

achieving better classification performance.

2 6 10 14 18 22 26 30
Number of subjects

0.86

0.88

0.9

0.92

0.94

0.96

0.98

B
al

an
ce

d
A

cc
ur

ac
y

Figure 3.15: Performance with the increasing observation set.

3.7.5.2 Erroneous Training Data

we emulate disturbances due to sudden behavioral changes, by applying incorrect labels

while constructing the training set. Specifically, a turn was made by d1 but we deliberately

label it as a negative sample (i.e., made by another driver). We arbitrarily picked and labeled

some turns by any of the 30 drivers. The number of arbitrarily picked turns with erroneous

labels was varied via parameter perr, which represents the percentage of such erroneous

labels.

Fig. 3.16 shows Dri-Fi’s performance with perr=0∼20%. Even when the training

dataset for Dri-Fi contains 20% of erroneous labels, Dri-Fi can still achieve 0.8717

76

0 2 4 6 8 10 12 14 16 18 20
perr: training data error rate [%]

0.7

0.75

0.8

0.85

0.9

0.95

1

B
al

an
ce

d
A

cc
ur

ac
y

Figure 3.16: Classification accuracy with perr % erroneous training dataset.
balanced accuracy accuracy with only one turn. That is, even when the training data is

imperfect, Dri-Fi can still achieve good verification accuracy, and is thus robust to training

errors.

3.7.6 User Study

So far, we have evaluated Dri-Fi’s performance with real-world driving data while

varying the control factors. To better understand Dri-Fi’s user experience, we implement

it in a fully-functioning smartphone app and demonstrate how it works in practice.

3.7.6.1 App Development and Experimental setting

We first implemented a demo app of Dri-Fi on Android. To embed the machine

learning pipeline atop of the data collection module in a smartphone (as introduced in

Sec. 3.6), we implemented an embedded machine learning (embedded ML) pipeline by

using Java predictive model markup language (PMML) Android library [84]. We then

serialized the user’s driving model into a binary file (in the .pmml.ser format) an average

size of which is only 906 KB with STD of 113 KB. The model dispatch process (as

discussed in Sec. 4.3) can be achieved by sending the serialized file to the driver’s/rider’s

smartphone.

77

We collected feedbacks from two participants in our driver pool on both the enrollment

and authentication stages of Dri-Fi. For the enrollment stage, they are asked to first

drive their cars for five minuets with their phone mounted on the windshield. For the

authentication stage, they can place their phones at different spots (as shown in Fig. 3.17).

Figure 3.17: Illustration of Dri-Fi app. Training and usage phases have different phone
postures.

3.7.6.2 Usability Comparison: Dri-Fi vs. FaceID

We also surveyed users for their experience with Dri-Fi as compared to FaceID [88],

which is the state-of-the-art facial biometric authentication method embedded in the most

recent high-end iPhones. Specifically, we investigated users’ experience in both enrollment

and authentication stages.

Enrollment stage. For setting up the user’s model, FaceID requires sufficient light and

minimal facial obstructions. In our experiment, the participants complained about the

difficulty in setting up their face model when they are wearing face masks (the smartphone

shows a “Face Obstructed” alert) during the current COVID-19 pandemic. In contrast, the

participants found the five-minute driving for training Dri-Fi is more acceptable because

of its less intrusive nature.

Authentication stage. In this stage, Dri-Fi shows two key advantages: (1) it can

authenticate the driver when the phone is placed in the backseat, i.e., the common seat for

riders, and (2) it achieves continuous authentication, which is convenient for the driver to

78

use.

3.7.7 System Performance of Dri-Fi

We have evaluated Dri-Fi’s overhead — i.e., classification time delay, CPU usage and

energy consumption — on mobile devices for its data collector and embedded ML modes.

Despite the common process of steering recognition and IMU sensor usage, different

working modes have their extra real-time workloads. Specifically, the collector mode

requires real-time I/O on the local data file; whereas the embedded ML app needs to call

the JPMML library for analyzing a data batch in real time. We didn’t evaluate the network

consumption, e.g., interaction with the server, as it is a one-time effort designed by the

specific app.

We recorded the CPU usage on Google Pixel (1.6GHz quad-core CPU) and LG

Nexus 5X phones (hexa-core CPU with four 1.4GHz Cortex-A53 and two 1.8GHz

Cortex-A57) by using the Android Developer Bridge (ADB) shell. To profile Dri-Fi’s

battery consumption, we used Google’s Battery Historian tool [122], which allows

developers to inspect the battery usage of each app/module from the bug report generated

by smartphones. Note that on average, drivers in the US drive 50.6 minutes and 31.5 miles

per day [164]. Hence, we generate the bug report from smartphones with 50-min usage

of Dri-Fi. To emulate the normal number of turns that a driver may make, we steer the

phone to generate 10 left turns and 10 right turns (each turn last 3 seconds). To evaluate

the extra overhead incurred by Dri-Fi’s embedded ML module, which requires an extra

overhead in calculating the classification result, we compared the CPU usage and battery

drain of Dri-Fi in the data collection mode and the embedded ML mode.

We report the performance (time delay, CPU usage, and battery consumption) in

Table 3.2. The extra time delays introduced by the embedded ML are 2.4 and 3.1 seconds

on Pixel and Nexus 5X, respectively. The results also indicate that the classification

process in embedded ML mode incurs more CPU overhead, i.e., 2.61% (1.72x) and 3.56%

79

Model Metric Data Collector Embedded ML

Pixel

Delay
CPU
Battery

N/A
1.52%
0.90%

2.4 s
4.13%
1.34%

Nexus 5X

Delay
CPU
Battery

N/A
1.66%
1.12%

3.1 s
5.22%
2.33%

Table 3.2: The averaged time delay, CPU usage, and battery usage of Dri-Fi in different
working modes.

(2.14x) more CPU usage on Pixel and Nexus 5X, respectively. We also see a lower

increase of battery usage: 0.44% (0.49x) and 1.21% (1.08x) extra battery consumption on

Pixel and Nexus 5X, respectively. Overall, the extra cost of Dri-Fi should be acceptable

to mobility app users.

3.8 Related Work

State-of-the-art driver authentication schemes use various in-vehicle sensor data to

identify the driver [110,113,127,141,145,149,169]. Enev et al. [113] investigated whether

one can authenticate the driver via in-vehicle CAN data. By exploiting 18 or more types of

CAN sensor data (e.g., brake pedal position, throttle position) collected through the OBD-II

port for at least 15 minutes, it was shown that the driver can be identified. Similarly, the

feasibility of driver authenticating based on CAN data was shown in [110, 138, 146, 147,

169]. Corbett et al. [106] investigated the performance of using both CAN and smartphone

data for formulating driver’s behavioral profile. Kwak et al. [141] also exploited CAN data

for driver authenticating for anti-theft.

Hallac et al. [127] exploited 12 different types of CAN data for driver authentication.

Specifically, they proposed a classification algorithm by exploiting simple to complex

features such as mean, standard deviation, and spectral components of the 12 different

CAN sensor data. That way, they were able to identify the driver with high accuracy within

one turn.

Van Ly et al. [145] also used in-car CAN data representing acceleration, brake, and turn

80

signals to identify the driver. Other relevant work includes [149] which used not only CAN

data but also additional new features including the car-following distance and the sound

information when someone speaks inside the car for driver identification.

These related studies have demonstrated the feasibility of driver authentication, but all

of them are based on in-car data. Accessing and interpreting/decoding CAN data require

are non-trivial problems and require additional hardware. Wijnands et al. [172] used neural

network for formulating a user’s driving behavior by using the acceleration derived from

GPS data alone. However, their approach requires months of data in order to learn the

user’s driving pattern.

Riener et al. [159] designed a seat mat with embedded pressure sensor array to

characterize different drivers’ sitting postures. Although this approach can also achieve

continuous driver identification, installation of the dedicated mat could be too high an

overhead for mobility apps.

Recently, researchers have also explored ways of identifying drivers based on mobile

sensor data [162, 180]. Zhang et al. [180] proposed the use of both IMU and in-vehicle

sensors for classifying a small number of drivers with high accuracy. Tahmasbi et al. [162]

described a system for differentiating drivers with smartphones’ IMUs. They collected

natural driving data from three couples who share a car. However, their approach required

strict smartphone placement and did not evaluate the effect of varying control factors.

Compared to existing approaches, Dri-Fi presents a more thorough study and has

several distinct advantages in authenticating drivers based solely on IMU readings. In

particular, Dri-Fi achieves driver authentication with high accuracy as soon as the driver

makes a single turn. Its accuracy improves significantly as the driver makes more turns.

3.9 Limitation and Scalability of Dri-Fi

We now discuss the limitation and other potential use-cases of Dri-Fi.

81

3.9.1 Limitation

With the coordinate alignment discussed in Sec. 3.4.1, Dri-Fi can analyze the data

from the geo-frame coordinate irrespective of the device’s posture. However, if the device

constantly moves during driving (e.g., the driver’s smartwatch), it may introduce noise,

thus causing Dri-Fi to be less accurate. To overcome such a limitation, Dri-Fi can be

configured to process the data only when clear turn patterns are obtained (e.g., a clear

bump-shaped gyroscope measurement as in Fig. 3.4). However, this might make Dri-Fi

acquire ‘meaningful’ turns data less frequently and thus affect its overall performance,

especially when only a few turns are made within a trip. Moreover, depending on the

driver’s emotion, sense of urgency, and physical status, Dri-Fi’s accuracy may vary as

well. So, in future we would like to conduct a detailed study of the effects of such factors

on Dri-Fi’s accuracy.

It is also possible that the driver’s behavior may exhibit a drastic change due to other

factors such as serious mental disturbance, emergency, and intoxication. It is worth noting

that driving under these influences, from the safety perspective, should be reported to the

service provider and/or the rider; the driver should also stop temporarily accepting driving

assignments.

3.9.2 Scalability

Dri-Fi has the potential for benefiting other mobility apps.

Auto insurance. Verifying the driver’s identity is essential for detecting fraudulent acts in

the fast-emerging pay-as-you-drive (PAYD) auto insurance [63, 71, 75, 87]. Current PAYD

is susceptible to the policyholders fraudulent acts. That is, the policyholders of PAYD may

fool the system to reduce their insurance premium by lending the account to drivers (e.g.,

close friends, relatives) to get a safe driver rating. Such “benign” driver-impersonating

problems also exist in car rental businesses. Dri-Fi can be integrated into the mobile app

of these services to detect such fraudulent acts.

82

Anti-theft. Beside its anti-fraud detection for businesses, Dri-Fi also has potential for

helping individual users prevent/detect car theft. The required sensing and computational

modules of Dri-Fi can be met by commodity smartphones, and/or streamlined into

an embedded device such as an energy-efficient concealable IoT device, which can be

instrumented in the car. The anti-theft system enabled by Dri-Fi has a unique advantage

by harvesting the behavioral biometrics check — it can alert (e.g., sending an SMS

message to) the vehicle owner when the user’s driving behavior does not match the

recorded/expected pattern.

To this end, Dri-Fi can be the primary means of continuous, real-time authentication.

It can also work as a user-friendly secondary authentication that supplements existing

biometrics for better usability. In future, we will explore more usage models of Dri-Fi.

3.10 Conclusion

We have presented Dri-Fi, a driving data analytic framework for verifying drivers

based on their maneuvering behavior biometrics. Dri-Fi achieves this by capturing new

representative features of a driver’s unique way of making turns. Via extensive evaluations,

Dri-Fi’s extracted features are shown to represent the driver’s unique turning style and

thus function as the key in differentiating drivers. Dri-Fi’s efficacy and usability are

essential for addressing novel attack factors, i.e., impostor and predator attacks, as we

introduced in this paper. Dri-Fi renders various use-cases in today’s mobility ecosystem.

Moreover, as the world is reopening after the COVID-19 pandemic, mobile-centric

transportation services will remain as an essential part of our lives and businesses.

83

CHAPTER IV

TurnsMap: Uncovering Unprotected Left Turns via

Crowdsensing

Left turns are known to be one of the most dangerous driving maneuvers1. An

effective way to mitigate this safety risk is to install a left-turn enforcement — e.g., a

protected left-turn signal or all-way stop signs — at every turn that preserves a traffic phase

exclusively for left turns. Although this protection scheme can significantly increase the

driving safety, information on whether or not a road segment (e.g., intersection) has such

a setting is not yet available to the public and navigation systems. This chapter presents a

system, called TurnsMap, that exploits mobile crowdsensing and deep learning to classify

the protection settings of left turns. One of our key findings is that crowdsensed IMU

sensor (i.e., gyroscope and accelerometer) data from onboard mobile devices can be used

to recognize different types of left-turn protection. TurnsMap first collects IMU sensor

data from mobile devices or smartphones carried by the driver/passenger(s) in a moving

car. It then feeds the data to an analytics engine powered by (1) a data mining engine for

extracting and clustering left turns by processing raw IMU data, and (2) a deep-learning

pipeline for learning the model from the IMU data to identify the protection type of each

left turn. We have built and used a large-scale real-world driving dataset to evaluate

TurnsMap, demonstrating its capability of identifying different left-turn enforcements
1In this work, we focus on right-hand traffic countries. Our approach can be applied for right turns in

left-hand traffic countries.

84

with 90.3% accuracy. A wide range of automotive apps can benefit (e.g., enhancing traffic

safety) from the left-turns information unearthed by TurnsMap.

4.1 Introduction

Left turns are one of the most dangerous driving maneuvers that account for a large

percentage of fatal traffic accidents [38]. For example, among the different driving

maneuvers at intersections, left-turns are reported to be the deadliest due to oncoming

(interrupting) traffic and pedestrians crossing the street the car is turning onto. According

to a survey report by the U.S. Department of Transportation, left-turns-related accidents

alone constitute 53% of all intersection-related crashes in the U.S. [38]. In fact, to mitigate

left-turns-related accidents, some companies like UPS are enforcing their delivery trucks

to avoid, if possible, all left turns [49].

There have been extensive transportation engineering efforts to enhance the safety of

left turns by deploying different left-turn regulations at intersections with high-frequency

left turns. In general, these regulations can be categorized as protected and unprotected

settings.

Protected settings. At a protected left-turn, when the left-turn signal (e.g., a green left

arrow as shown in Fig. 4.1(a)) is turned on, only left-turning vehicles are permitted. This

is the most effective way to avoid/reduce left-turn-related accidents. According to the

NHTSA report [36], an intersection that has a protected left-turn signal can effectively

reduce the left-turns-related accidents by 87%, making the intersection safer for all traffic.

Based on the traffic regulation [26], a left turn protection (e.g., a green leftward arrow in

the U.S.) reserves a traffic phase — a time period assigned to certain traffic movements —

exclusively for left turns.

Unprotected settings. At an unprotected left-turn, when vehicles are permitted to

make left turns, it is the drivers’ responsibility to stay alert and avoid interrupting

85

(a) Protected (b) Unprotected

Figure 4.1: Different left-turn settings.

traffic and/or pedestrians. For example, in Fig. 4.1(b), circular traffic lights (i.e., traffic

lights that only show round-shaped light colors) and stop signs (as shown in the first

three figures in Fig. 4.1(b)) provide less restrictive protection by halting the crossing

traffic (i.e., perpendicular to the ego-vehicle’s initial heading). The rightmost figure in

Fig. 4.1(b) shows the scenario in which no sign/signal is installed to regulate traffic.

Drivers of left-turning vehicles have to be extremely careful of, and avoid interrupting

traffic/pedestrians from all possible directions.

The information of left-turn settings is essential for drivers to enhance safety by using it

before making dangerous left turns; for example, drivers can choose to avoid less-protected

left turns when planning a trip route with Google maps.

Unfortunately, such information is not yet available to the public/drivers for two

reasons.

• Lacking public datasets. Although traffic signals and signs are installed by the

local transportation department, the corresponding specification is fragmented or

not even digitized due to the diverse development levels for different regions. For

example, Waze’s left-turn avoidance function [18] is available only in major cities of

California.

• High cost and low update-rate of road surveys. Information of traffic lights/signs

can be extracted from the images of intersections captured by a limited number

of heavily instrumented road survey vehicles (e.g., mapping cars for Google

StreetView). However, updating the road information is hampered by the prohibitive

86

road-survey cost. As a result, updating the database of on-road images may take

years even in well-developed regions. These limitations prevent a large coverage of

road survey services and timely reflection of changes of traffic lights/signs.

To narrow this gap and evaluate left-turns safety by discovering and sharing the left-turn

setting information on road segments (e.g., intersections), we have developed TurnsMap,

a novel system that can effectively differentiate protected/unprotected left turns by using

the crowdsensed data (i.e., gyroscope, accelerometer, and GPS data) collected from

mobile devices carried by drivers and passengers. In particular, TurnsMap is empowered

by mobile crowdsensing and a novel data analytics pipeline. It does not require any

additional hardware from the users but harvests the sensor data which are already being

generated by various apps (e.g., fitness and health apps) on users’ mobile devices. The low

overhead/cost of TurnsMap facilitates its timely and economical deployment.

TurnsMap’s data analytics scheme dives deep into the real-world driving behavior.

Specifically, given a large number of instances (e.g., extracted from crowdsensed data)

of left turns, for less protected left-turns (i.e., the protected setting is stricter than the

unprotected ones), the interruptions caused by on-coming vehicles and/or pedestrians

are more likely to occur. To quantify and analyze this characteristic, TurnsMap is

powered by two key components. The first component is a data mining engine; after

collecting the crowdsensed data, TurnsMap extracts left turns by analyzing the raw

sensor data. TurnsMap then clusters left turns to find left-turn hotspots (road segments

that have high-frequency left turns. This concept will be elaborated in Sec. 4.5). The

second component is a deep learning pipeline (Sec. 4.6) that can learn the features of

the underlying intersection information from the crowdsensed data. We use a novel data

augmentation to enhance the size and representativeness of the dataset, which can be

used for training with a recurrent neural network based on using long-short term memory

(LSTM) units.

The evaluation of TurnsMap is also challenging due to the lack of mobile sensing-based

87

dataset collected from drivers and ground truths of left-turns information. The mobile

driving data is collected from smartphones of 18 different drivers (14 males and 4 females),

building a 1.6GB dataset over a cumulated travel distance of more than 3,589km. To collect

ground truths, we have designed an interactive traffic-scene annotation system (Sec. 4.6).

We then recruited 231 participants on Amazon Mechanical Turk for the annotation task.

Finally, we have aggregated the annotations from the participants to construct a new dataset

which is comprised of 965 labeled left-turn hotspots. Our evaluation results show that

TurnsMap is able to differentiate left-turn settings with 90.3% accuracy.

Our proposed system makes the following main contributions:

• Building and demonstration of TurnsMap, a mobile crowdsensing system for

classifying protected/unprotected left turns;

• Design, implementation and evaluation of a novel data analytics pipeline for

large-scale time-series data classifications.

4.2 Motivation

We motivate this work by answering two questions: (1) how does TurnsMap’s

revelation of left-turns information actually help the automotive ecosystem? and (2) what

would be the advantage(s) of using mobile sensing?

4.2.1 How Does Classifying Left-Turn Settings Enhance Driving Safety?

As discussed in Sec. 5.1, the protected left-turn setting are the most effective way

to mitigate the safety risk at intersections. However, it is not feasible or even desirable

to install the protection at every left-turn hotspot, because strict protection of left turns

(Fig. 4.1(a)) degrades the overall traffic throughput. For example, since a protected left-turn

signal only allows left-turning vehicles to go through the intersection, NHTSA suggests

such a signal to be installed only at those intersections where all intersecting roads have

a similar traffic volume [30]. Since drivers (especially novice drivers with limited driving

88

experience) may choose only protected turn lefts, the information of protection settings of

left turns, if publicly available, will help them and automotive apps to enhance safety.

Navigation Systems As we will elaborate in Sec. 4.8, planning a route with a minimum

number of high-risk (i.e., un-/less-protected) left turns in navigation systems (e.g., Google

maps , Waze [18]) by utilizing left-turns enforcement information would be highly

desirable. Let us consider a typical usage scenario. If the user enables this functionality

on his/her navigation app, then it can exploit the left-turns information on all possible

routes to generate the route with the least number of risky left-turns while ensuring an

acceptable estimated arrival time (ETA) at the destination. Note that by providing its users

with safer travel paths, a navigation app can also efficiently collect data from its users to

help expand/update TurnsMap, achieving a win-win collaboration between the app and its

users.

Self-driving Cars As highlighted by self-driving car companies (e.g., Waymo [1,48] and

Zoox [14]), handling unprotected left turns is a challenging task for this rapidly emerging

technology since it requires not only human-level driving skills but also even psychological

understanding [47]. For example, some pedestrians may let left-turning cars go first,

while others may ignore or fail to see left-turning cars and cross the street without paying

attention to the approaching cars and pedestrians. In such a case, both human drivers and

pedestrians could use a body language or even eye contact to resolve this conflict, but it is

very challenging for autonomous cars to understand and resolve this type of conflict.

Hence, autonomous cars can avoid such intersections by using TurnsMap to enhance

safety for both cars and pedestrians by selecting paths with a minimum number of

unprotected left turns in the path planning process [30].

4.2.2 Why Mobile Sensing for Classifying Protected/Unprotected Left Turns?

TurnsMap outsources the data collection task to the crowd and only processes the IMU

89

sensor data, thus can enable a much larger coverage and faster update-rate than the existing

road-survey (e.g., mapping cars of Google Street View) and camera-based approaches,

which collect road images by using cameras on either dedicated mapping car or users’

smartphones. Specifically, the performance of understanding traffic scenes (i.e., classifying

left-turn enforcements) from image data — one of the most common data sources for legacy

scene perception tasks, could be hampered by both diverse real-world settings and limited

resources:

• Poor visibility of traffic signals/signs: The visibility of traffic signals/signs may

be distorted due to the weather, lighting condition and even local regulations.

Moreover, the location of traffic lights/signs may be different in different regions

— they could be located at the middle of an intersection or above a waiting line

(e.g., in European countries). In fact, determining a region-of-interest (ROI) based

on computer vision is still a challenging open problem [131]. The complexity of

accounting for real-world environments makes it even harder for a computer vision

task to function correctly on a large and diverse image dataset.

• Limited coverage: Due to the different level of development, a vast majority of

regions in the world cannot be covered by dedicated road survey services. For

example, as of 2017, only a small number of areas are fully covered by Google

StreetView [9]. In fact, many countries and regions in Asia and Africa are not yet

covered, nor planned to be covered in the near future.

• High cost/overhead of collecting road image from smartphones: Processing image

data requires high computational power and is thus expensive to run locally on the

user’s smartphone. Even if the developer chooses to upload the image(s) to the

cloud service for processing, transmission of the bulky image and/or video data

may exhaust mobile network bandwidth. Moreover, to have a clear view of an

intersection, the user has to fix the phone on the windshield, which is a stringent

and often undesirable requirement for various use-cases.

90

···

Data collection

Discovering left-turn
hotspots

Data mining

Classification of left
turns

Machine learning

Protection schemes
at left turns

Results

Figure 4.2: An overview of TurnsMap

The design of TurnsMap aims to collect and publicize the safety-critical left-turns

information at low overhead/cost and eventually enhance traffic safety at scale. TurnsMap

will be detailed in Secs. 4.5 and 4.6.

4.3 Overview of TurnsMap

As shown in Fig. 4.2, TurnsMap is comprised of three key building blocks: the data

collection module for collecting mobile data (i.e., IMU + GPS) from users, data mining

module for constructing the database of left turns, and machine learning pipeline for

differentiating left-turn protection schemes. First, TurnsMap collects IMU sensor and

GPS data from the mobile devices carried by drivers and passengers (Sec. 4.4). Next,

the data mining module (Sec. 4.5) extracts left turns from these data and identifies the

road segments, called left-turn hotspots, with high-density left-turn driving data traces.

To classify protected/unprotected left turns based on people’s driving behavior, we devise

a machine learning pipeline. For fast and accurate collection of ground truths for the

machine learning task, we take a human-in-the-loop approach by outsourcing annotation

(i.e., ground truth labeling) tasks on Amazon Mechanical Turk. These efforts together help

construct a dataset for traffic scene understanding at intersections. Finally, we propose

a recurrent neural network-based model to learn the classifier for differentiating left-turn

protection schemes. Note that TurnsMap can help enrich navigation app’s functionality

(Sec. 4.8) and enhance users’ driving safety. Allowing the TurnsMap framework to

91

intrinsically incentivizes users of automotive apps (e.g., navigation apps on smartphones)

to participate in data collection for building a continuously-expanding database. This

feature helps formulate a win-win collaboration between the user and TurnsMap.

4.4 Collection of Driving Data

TurnsMap classifies left turns using smartphone IMU sensor and GPS data (i.e., the

longitude and latitude pair). Specifically, TurnsMap needs a time series of sensor data

collected from the user’s phone while driving. A ground truth dataset of left-turn protection

settings is also needed for building and testing the machine learning algorithm. Since no

datasets are available for developing and testing TurnsMap, we collected and constructed

a dataset. Our driving data collection methodology is introduced in this section and our

approach for collecting the ground truth is highlighted in Sec. 4.6.

Collection of Real-world Driving Data from Smartphones There are three key

rationales behind the design of our mobile app for collecting the natural driving data. First,

different phone postures (e.g., sitting on a phone mount or cupholder) can affect the IMU

sensor readings. For example, if the smartphone’s screen is facing down, its yaw axis

angular speed will be the inverse of the readings with the screen facing up. Second, since

smartphones have limited resources (e.g., CPU, battery, and cellular network bandwidth),

the data collection should incur low overhead on the users’ devices — a high overhead

will likely discourage the users in adopting and/or contributing to TurnsMap. Third, a

comprehensive database should cover heterogeneous intersection setups, i.e., the dataset

should cover different drivers since different driving habits may incur diverse driving

maneuvers at left turns. This is an essential requirement for building a comprehensive

classifier that is resilient to the changing environment and users.

To handle different phone postures inside a car and achieve consistency in data

analytics, Our data collection app aligns the phone coordinate with the earth coordinate

92

loc1

Gyro. data

loc2
...

Gyroscope data patch
e.g., [-0.00939614,
0.024267083, …]Acc. data
Accelerometer data patch
e.g., [-1.33820145,	
-1.428070199, …]

Geo coordinates

Time stamp

Time stamp (In epoch frame)

Figure 4.3: The snapshot of the data the app collected.

by using the coordinate transformation as described in [102]. This capability enhances

TurnsMap’s usability by eliminating the restriction of the device’s posture, i.e., a phone

can be placed at any stable position, such as on a cupholder/phone mount, inside the car.

Lowering the overhead on the user’s smartphone is another key objective of our data

collection app. Specifically, the app samples the thus-aligned IMU sensor data and GPS

(i.e., (longitude, latitude) pair) data at 100Hz and 1Hz,2 respectively. The snapshot in

Fig. 4.3 shows the data format — one geolocation sample includes a timestamp vector,

a gyroscope data vector, and an accelerometer data vector, where each vector consists of

100 data samples. Because of the light-weight feature of IMU and GPS data, our collection

process incurs low overhead on users’ mobile devices; our on-road data collection is shown

to generate only 6.2MB data per hour. To enhance the flexibility of using their data plan, the

participants can choose to upload the data in real time, or when a free Wi-Fi connection is

available. Finally, the data collection app is shown to incur only marginal CPU and energy

overheads (Sec. 4.7.2).

We also aim to enrich the diversity (e.g., different driving behaviors and car models) of

our dataset from the participants’ perspective. To this end, we recruited 18 drivers (14 males

and 4 females of age ranging from 23 to 70) and installed our data collection app on their

smartphones. The participants are students, university professors, and company employees.

21Hz is the default sampling rate on the current location chipset embedded in smartphones.

93

14.1 km

Figure 4.4: Suburban driving trace.

0 20 40 60 80 100
Average speed (km/h)

0

5

10

15

20

25

30

N
um

be
r o

f t
rip

s

Figure 4.5: Histogram of the averaged
driving velocity.

We used 10 different car models, including coupe, sedan, SUV, and sporty cars. To collect

natural driving data, no restriction was imposed on driving route, vehicle type, smartphone

model and location, etc. That is, the participants were told to drive their own cars for daily

commute as normally as possible. To secure the participants’ privacy and data safety, we

applied and received our university’s IRB approval (registration number: IRB00100245).

The data collection app has been collected data in a region that includes both urban

and suburban environments in Ann Arbor and Detroit metropolitan area in the U.S. Our

data-collection process has thus far yielded 1.6GB mobile IMU data, covering an area

of approximately 300km2, with the accumulated travel distance of more than 3,589 km.

The data collection was conducted between 7:30 am to 6:30 pm. Each driver Here we

show a suburban area of driving data we collected in Fig. 4.4. The red traces are the

driving trajectories. The dataset includes 105 trips contributed by all participants, with

the accumulated driving time 78.3 hours. The histogram of the average driving velocity

is shown in Fig. 4.5. The majority of the trips has average speed between 20 – 45 km/h,

reflect the normal average driving speed in cities. There are a few trips have high averaged

speeds, e.g., exceed 80 km/h. These trips were collected from driving on highways.

4.5 Mining the Driving Data

TurnsMap infers left-turn protection settings by using the mobile sensor data. We need

94

to answer the following questions for this inferencing. How to differentiate intersection

settings by using the mobile sensory data and how to organize the crowdsourced data

for this purpose? To answer the first question, we elaborate how IMU sensor readings

can capture the interruptions between left-turning cars and the crossing traffic and/or

pedestrians. These interruptions are then used to differentiate left turn setups. To answer

the second question, we use data mining to extract and cluster the left-turn data snippets to

discover left-turn hotspots, road segments with many left turns. Note that a hotspot could

be an intersection and even an entrance of a popular plaza. These answers are essential for

constructing a comprehensive dataset of left turns for the subsequent machine learning.

4.5.1 Differentiating Left-Turn Enforcements from IMU Sensor Readings

The key for distinguishing protected and unprotected left turns is the fact that left turns

are likely to be interrupted on road segments without strict left-turn enforcements, such as

left-turn signals or stop signs. Based on this observation, we uncover the root causes of

interruptions which are identified by utilizing phone IMU sensor data.

The root causes of these interruptions are (i) the enforcement-free intersection setup to

increase the traffic throughput3 and (ii) pedestrians crossing the street the car is left-turning

to. Due to the low priority given to left-turning cars, their drivers need to pay full attention

to any sudden situation change and prepare to pause and/or yield to the oncoming traffic

and pedestrians crossing the street they are turning onto.

Fig. 4.6 (a) shows possible interruptions that a car may experience while turning left

at an intersection with a unprotected enforcement (i.e., circular traffic light in Fig. 4.6

(a)). The most common (as stated in the driver manual [44]) left-turn maneuver works

as follows. A left-turning car first enters the intersection after the green light comes on

and then suspends its turn if there is an oncoming car from the opposite direction. Upon

resuming the left turn, the car needs to pay attention to, and prepare to pause for, pedestrians

3Oncoming cars from the opposite direction share the same green light phase with left-turning cars.

95

crossing the street/road it is turning onto. Finally, the left-turning car completes the turn by

exiting the intersection.

Similar interruptions also occur at the intersections with stop signs. After making a full

stop at the sign, the left-turning car needs to proceed until the driver can see the approaching

traffic. In summary, interruptions are likely to happen while making unprotected left turns

at intersections.

In contrast, interruptions occur rarely at intersections with protected enforcements,

because the protected traffic signal (i.e., the left-turn traffic arrow) grants left-turning

cars an exclusive traffic phase, hence preventing pedestrians and oncoming vehicles

from crossing the intersection. In fact, as stated in the NHTSA intersection engineering

handbook [30], one of the main purposes of enforcing left-turns protection is to reduce the

left-turning cars’ conflicts with the oncoming traffic and crossing pedestrians.

TurnsMap uses the smartphone’s gyroscope to detect the interruptions. Since an

interruption is essentially a pause of steering maneuver, the coordinate-aligned gyroscope

data (i.e., angular speed) can capture the differences between normal and interrupted

left-turns. Fig. 4.6 (b)-(d) shows the gyroscope readings of three scenarios: no interruption,

interruption at the middle of an intersection (interruption 1 in Fig. 4.6 (a)), and a left turn

with an interruption at the crosswalk (interruption 2 in Fig. 4.6 (a)). When a car makes

a left turn, the gyroscope reading captures the car’s angular speed (ω). As depicted in

Fig. 4.6(b), when the driver makes a (normal) left turn without interruption, s/he first

turns the steering wheel counter-clockwise, creating a monotonic increase of the vehicle’s

angular speed ω . The driver then makes a clockwise turn of steering wheel until the car’s

orientation returns to straight, or ω returns to approximately 0. Hence, a smooth left turn

generates a single bump in the gyroscope reading. When an interruption occurs, the rise

of ω stops and returns to 0, thus creating the first bump in the gyroscope reading; after

the driver resumes the left turn, ω will first rise and then drop until the driver exits the

intersection, creating the second bump in the gyroscope reading. Figs. 4.6(c) and (d) show

96

Oncoming traffic
trajectory

Crossing pedestrian
trajectory

Left turn trajectory

Interruption

(a) Left turn interruptions

0 10 20 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
/s

2

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
An

gu
la

r s
pe

ed
 (r

ad
/s

)

Time (s)

0 500 1000 1500 2000
−1

0

1

2

3

4

5

6

7

m
/s

2

0 5 10 15 20

0

0.05

0.1

0.15

0.2

0.25

0.3

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m
/s

2
0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

m
/s

2

5 10 15 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

m
/s

2

(b) No interruption

0 10 20 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
/s

2

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−1

0

1

2

3

4

5

6

7

m
/s

2

0 5 10 15 20

0

0.05

0.1

0.15

0.2

0.25

0.3

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
m

/s
2

0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

m
/s

2

5 10 15 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

m
/s

2

(c) Interruption 1

0 10 20 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
/s

2

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−1

0

1

2

3

4

5

6

7

m
/s

2

0 5 10 15 20

0

0.05

0.1

0.15

0.2

0.25

0.3

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m
/s

2

0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

m
/s

2

5 10 15 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

An
gu

la
r s

pe
ed

 (r
ad

/s
)

Time (s)

0 500 1000 1500 2000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

m
/s

2

(d) Interruption 2

Figure 4.6: (a) Possible conflicts at an unprotected left-turn. The gyroscope readings shows
(b) no interruption, (c) an interruption occurs at the middle of intersection, and
(d) an interruption occurs at a crosswalk, respectively.

this unique pattern of the gyroscope reading.

The above finding/observation is the cornerstone of TurnsMap, showing that IMU

data collected during each left-turn contains information useful to capture the left-turn

enforcement information.

4.5.2 Extraction of Left Turns from Mobile Sensing Data

The size of the crowdsourced time-series data can be massive, and some portions of the

data may be redundant and not useful for TurnsMap, i.e., driving on straight roads. Hence,

it is necessary to extract data snippets that contain the targeted driving maneuver (i.e., left

turn).

To achieve this goal, TurnsMap extracts left turns from the IMU and GPS sensor data of

the driver’s smartphone. Specifically, we propose a novel left-turn detection scheme based

on the V-Sense algorithm [102] as detailed in Chapter II.

Let us first review how the V-Sense algorithm detects left turns from the mobile sensing

data. V-Sense detects vehicle steering maneuvers by harvesting the morphological patterns

of the sequential4 gyroscope data. First, V-Sense analyzes the gyroscope data to detect the

start and end points of a “bump”-shaped curve by using a predetermined threshold derived

from the common driving behavior. Next, to validate if the current bump is incurred by a

driving maneuver or noise (e.g., system glitch), V-Sense examines the statistical features

4In this chapter, we use the terms “sequential data” and “ time-series data” interchangably.

97

(e.g., duration, magnitude) of the bump. V-Sense also handles false detections. Specifically,

since some vehicle movements (e.g., driving on a curvy road, or up/down hill) may also

regard a bump-shaped curve as a turning maneuver. To detect these false detections,

V-Sense calculates the moving vehicle’s displacement and uses it to validate the detection

result. By performing the above steps, a turning maneuver can be detected with linear

time complexity. We refer the interested readers to Sec.3.2 of [102]. Compared to other

sequential data analytics schemes, this method has the following advantages:

• Resilience to the changing environment: although approaches based on location

information (e.g., GPS data) can detect the vehicle’s heading and thus inferring turns,

their performance depends on the received satellite signal strength (as shown in [98,

117]). So, they could result in varying performance due to the changing real-world

environment.

• Linear time complexity: V-Sense [102] uses the statistical feature in time-series

gyroscope data to detect the “bump” (as shown in Fig. 4.6) that reflects turns, thus

only incurring linear time complexity. Compared to legacy time-series classification

algorithms such as k-nearest-neighbors dynamic-time-warping (knn-DTW [29]),

which has quadratic time complexity, V-Sense is more efficient in processing

large-scale crowdsourced time-series data;

• Easy parameter setting: Unlike existing time-series data classifications, V-Sense

does not require any pre-defined pattern but uses the thresholds derived from a natural

driving model.

However, TurnsMap faces a unique challenge — one bump may not contain a complete

left turn since the turn can be interrupted (e.g., by crossing pedestrian/cars), thus generating

two or more bumps in a left turn. To overcome this challenge and accurately crop the sensor

data trace that contains a complete left turn, we examine whether or not the neighboring

bumps are geo-located adjacently. Specifically, if neighboring bumps on the same IMU

trace are adjacent in geo-distance, i.e., great-circle distance between two points on the

98

surface of the earth, then they together represent a single left-turn maneuver. In this line,

we propose a two-stage bump detection process. Upon detecting a bump by the V-Sense

algorithm, whether the bump represents a complete left turn is not yet determined. To

determine if the pending bump’s geolocation is close to the neighboring bump(s), we check

if the geo-distance between the centroids of geolocations of those bumps (let loccur and

locpend denote the centroid of the geolocation of the current bump and the pending bump,

respectively) is within a threshold θgeo.5 The centroid is derived by using FindCentroid(·),

which is the mean of latitude and longitude readings. Note that this averaging step can

also mitigate the fluctuation of GPS readings. The geo-distance is calculated by using the

haversine formula [19]. Thus, if the current and pending bumps are from the same left

turn, we merge the current bump with the pending bump(s). Otherwise, the current bump

is a complete left turn. Finally, the start and end timestamps (i.e., tcur,start , and tcur,end) of

the current bump can be used for cropping the left-turn data snippets from all necessary

time-series data traces — gyroscope, accelerometer, and geolocation data. For example, a

framed The left-turn detection algorithm is summarized in Algo. 2.

We can form the output of left-turn detection as follows. To organize the thus-extracted

heterogeneous data (e.g., IMU sensor and geolocation traces), for each left-turn maneuver,

we store its data as a tuple called left-turn tuple l:

lk = {ck,gyrok,acck, lock},

L= {l1, · · · , lk, · · · , lK}
(4.1)

where k ∈ {1, . . . ,K}, K is the total number of left turns extracted by Algo. 2; ck is the

centroid of the k-th left turn; gyro and acc are IMU sensor vectors cropped from IMU

sensor traces; loc is the geo-location data trace. L is the list that stores all left-turn tuples.

This extraction process discovered K = 68,266 left-turn maneuvers from the raw collected

IMU data.
5thetageo is derived from the diameter of road intersections. We use θgeo = 30m.

99

Algorithm 2 Left-turn detection algorithm of TurnsMap
Input gyroscope (Ω), accelerometer (Φ), and location (Γ) data traces
for ω in Ω do

Detect a valid bump based on V-Sense algorithm
Find the timestamp range of the current bump [tcur,start , tcur,end]

loccur = FindCentroid(Γtcur,end
tcur,start). Here, Γ

tcur,end
tcur,start is the cropped location data trace

based on timestamp
if Haversine(loccur, locpend)≤ θgeo then

/*Update the bump information*/
tcur,start = tpend,start

loccur = FindCentroid(Γtcur,end
tcur,start)

else
/*Range[tcur,start , tcur,end] includes a complete left turn*/
Extract IMU and location data snippets (i.e., gyro, acc, and loc) respectively.
Calculate the centroid of this left turn: ck = FindCentroid(loc)

end if
Update the timestamp range: tpend,start = tcur,start , tpend,end = tcur,end , locpend = loccur

end for

4.5.3 Construction of Left-turn Hotspots

It is not possible to capture the left-turn setting of an intersection based only on discrete

left-turn traces. There could also be false detections of left turns in the left-turn extraction

step; for example, a swerving maneuver at a parking lot could be classified as a left-turn

maneuver. To address this problem, we cluster multiple left-turn traces to form left-turn

hotspots — road segments with left turn maneuvers.

We propose a DBSCAN-based clustering [114] method to discover left-turn hotspots

from L. DBSCAN is a density-based algorithm that does not require a pre-defined number

of clusters and is proven to perform well in clustering spatial data. In our case, DBSCAN(·)

uses the centroid of each left-turn instance as the clustering criterion. The output (i.e., C)

of DBSCAN(·) is a collection of clusters, which is comprised of left-turn tuples (ls). We

only keep those clusters with “enough” left turns — any cluster with less than 5 left-turn

tuples are discarded owing to the insufficient number of traces. Finally, for each cluster,

we group its gyroscope, accelerometer and location traces, respectively, to derive left-turn

hotspots. Our clustering algorithm is summarized in Algo. 3.

100

Figure 4.7: Clustering result of DBSCAN. Each cluster of left-turn traces is a left-turn
hotspot.

Each of the thus-constructed left-turn hotspot can be represented by a data tuple x:

xi = {ci,Gyroi,Acci,Loci},

X = {x1, . . . ,xi, . . . ,xN}
(4.2)

where i ∈ {1, . . . ,N}, N is the number of left-turn clusters with more than 5 traces. Gyro,

Acc, Loc denote the thus-aggregated gyroscope, accelerometer, and location traces,

respectively. X is the list of left-turn hotspot tuples.

Algorithm 3 Cluster Left Turn Traces
Input:
C = DBSCAN(L)
for each cluster in C do

if Number of left-turn instance in this cluster is less than 5 then
/*Discard this cluster*/

else
c =FindCentroid(centroids of left-turn tuples in this cluster)
Aggregate gyro, acc, and loc of each left-turn tuple into set Gyro, Acc, and

Loc, respectively.
The data tuple of this left-turn hotspot is {c, Gyro, Acc, Loc}.

end if
end for

Fig. 4.7 shows part of our clustering result. The location traces are interpolated to show

the trajectory of a left-turning car. In the zoom-in view, one intersection is not covered due

101

to lack of driving data, but the other intersections are clustered by DBSCAN. We evaluate

the performance of our hotspot extraction in Sec. 4.6.1.

4.6 Deep Learning Framework

Thus far, we have constructed a dataset X of time-series traces at left-turn hotspots. To

enable classification of left-turn settings by using the time-series data, we first collect the

ground truth of each left-turn hotspot in X , and then use a deep learning pipeline to train

the classifier.

4.6.1 Collection of the Ground Truth

Due to the lack of the ground truth of each hotspot’s left-turn setting, we need to

collect the ground truth from sratch. A human-in-the-loop method is used to collect

this information efficiently. Specifically, we outsource annotation tasks to the crowd on

Amazon Mechanical Turk (AMT) and use Google StreetView — a large-scale image

database that includes traffic scene information collected by mapping cars — as the

accessible reference for the annotators to identify the left-turn protection setting of each

hotspot.

An easy-to-follow annotation process is essential to minimize the participants’

confusion for good quality of annotation. To meet this requirement, we design an

interactive labeling/annotation webpage as the participants’ working platform. Described

below is how to annotate each left-turn hotspot on this webpage. Before starting the

annotation, each AMT participant will be asked to read our instruction (as shown in Fig. .1

in Appendix) carefully to understand the annotation process. Next, our backend system (a

php script running on the server for hosting the webpage) will randomly pick a hotspot x

from X and then display the corresponding Google StreetView based on the centroid of x.

The annotator then needs to inspect the StreetView (i.e., by zooming in/out and changing

the viewing angle) to get a clear view of the left-turn protection setting. The annotator will

102

Map	View StreetView Option Description

1 Traffic light - protected

2 Stop sign – all-way

3 Traffic light - regular

4 Stop sign – two-way

5 Unprotected

6 None of the above
Label	options

Figure 4.8: Online annotating system of TurnsMap. The left figure is a screenshot of its
interface (the instruction section is omitted due to space limit). The right table
shows the options available to the annotators.

Figure 4.9: Inter-annotator reliability of each type of left-turn protection.

then be asked to choose one of the six options in the table of Fig. 4.8. Option 1 represents

the protected left-turn signal; options 2–5 the unprotected left turns; option 6 none of

the five aforementioned options according to the participant’s perception/judgement, e.g.,

parking lots and/or road segments without any StreetView image. Finally, our backend

system will record the annotator’s input, and a new hotspot will be displayed on the

webpage.

After publishing the annotation task on AMT, we recruited 231 annotators, and asked

each of them to independently annotate/label 30 randomly-selected hotspots from X . Each

annotator spent an average of 26.5min to complete the task, which is reasonable for a new

annotator to understand and annotate hotspots.

103

Although crowdsourcing the collection of ground truths via AMT can significantly

speed up the annotation, erroneous annotations are inevitable since the AMT participants

are not domain experts and may have different levels of perception. Thus, we try to enhance

the quality of the collected annotations as follows.

• Recruiting proficient annotators. We ensure the annotators’ competence by

only recruiting “master” workers [2] — elite workers who have demonstrated

superior performance in their previous tasks and have been acknowledged by the

corresponding requesters. We must also pay the master workers more to incentivize

their participation.

• Ensuring participants’ clear understanding of the annotation task. A thorough

and clear understanding of the annotation task can improve the participant’s

performance. To meet this goal, we only recruited drivers who reside in the U.S.,

since our driving data is collected from a US metropolitan city. Our easy-to-follow

instruction helps the annotators understand different left-turn protection mechanisms

and the annotation process.

• Aggregating the collected annotations via majority voting. Annotated data need

to be filtered and refined for accuracy. We first ensure each left-turn hotspot

received multiple annotations from the participants. Specifically, we discard any

left-turn hotspot with less than 3 annotations. Then, for each remaining hotspot,

we apply simple majority voting to determine its annotation. That is, we select the

annotation with the largest number of repetitions. Note that a similar criterion is also

commonly used in other large-scale ground truth collections, e.g., ImageNet [109]

and DeepDrive [179].

We randomly select 1,000 hotspots from X and collected 6,016 annotations — each

hotspot has an average of 5.47 annotations. We assess the quality [152] of our dataset

by inspecting the inter-annotator reliability of each left-turn protection setting, which

measures the consistency among different annotators. It is a commonly used evaluation

104

Data Augmentation (RPCat): Random permutation + concatenation

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

… …

Layer 1 Layer 2
LSTM Network

… …

Result𝐽

…

Data reshape + split

𝒙epoch1 = 1401412929

epoch23 = 1412812334

epochJ = 1503019012
…

epoch1 epoch23 epochJ

…

epochJ
epoch23epoch1

…

Acc. reading Gyro. reading

N’ hotspots

𝐽

softm
ax

Figure 4.10: The machine learning pipeline. The left frame shows the gyroscope and
accelerometer traces in a left-turn hotspot x; the middle frame shows RPCat
permutation and concatenation of IMU data in x; the right-hand side network
shows the LSTM-based network architecture.

metric for assessing the quality of annotations collected from the crowd [128]. As shown

in Fig. 4.9, the inter-annotator reliability of each category is around 85%.

Moreover, the annotation result can also help us understand the performance of our

left-turn hotspot extraction (as stated in Sec. 4.5). Since false detections of a hotspot may

be due to cars’ swerving in open areas (e.g., parking lots), we can use the annotators’

feedback on each hotspot to inspect if the hotspot is indeed a road segment that can facilitate

left turns. According to the aggregated annotation results, 96.5% (965 out of 1,000) of the

annotated hotspots are road segments that can be categorized into one of the five scenarios

as shown in Fig. 4.1. Our left-turn hotspot extractions shown to be able to accurately

identify road segments that can facilitate left turns.

Finally, we construct our dataset by using the annotated hotspots. Specifically, for

hotspot i, we denote its ground truth as yi if it has an annotation that passed our quality

control test. Thus, we can have

X = {x1, . . . ,xi, . . . ,xN′},

Y = {y1, . . . ,yi, . . . ,yN′}
(4.3)

where y ∈ {1,2,3,4,5} as shown in Fig. 4.8; i ∈ {1, . . . ,N′}, N′ is the number of valid

hotspots with valid annotations. In the current dataset, N′ = 965. Note that by associating

105

X with Y , we can have (x,y) pairs, which can be applied in supervised machine learning.

4.6.2 Formulation of the Learning Problem

Classification of protected/unprotected left turns based on mobile sensing data at

hotspots (X) can be cast as a supervised learning problem for binary classification of

time-series data. We modify Y to form a binary classification task: label 1 (as shown

in Fig. 4.8) is categorized as a protected left turn while labels 2–5 are categorized as

unprotected left turns. That is, yi ={Protected, Unprotected}, i ∈ {1, . . . ,N′}, N′ = 965.

As a result, we have 206 protected and 759 unprotected hotspots. The supervised machine

learning problem can be formally state as follows.

Problem statement. Given N′ pairs of data of the form {(x1, y1), . . ., (xN′ , yN′)}, the

objective is to learn a model X → Y , where y is an annotation, x is the measurement

represented as a tuple of several time-series traces.

The key challenge in this learning task is how to form the input data by using

the observation tuples (shown in Eq. (4.2)). The input data formation is different

from many existing time-series classification tasks, such as pattern matching [97], and

DeepSense [176] — a recent light-weighted deep learning framework which is optimized

for running on mobile devices. Specifically, in the legacy time-series classification, each

observation x is a single data trace (vector). For example, to train a classifier for the GaitID

task (identifying a user based on his/her gait traces), each observation in the training set is

a 2-dimensional vector of IMU sensor readings. However, in TurnsMap, each observation

is a tuple of data traces. As shown in Eq. (4.2), the data of each observation x is comprised

of gyro and acc, which are sets of gyroscope and accelerometer data vectors of different

lengths. Without such data formation, it is not possible to distinguish left-turn settings

based on one time-series data vector. For example, the left side frame in Fig. 4.10 illustrats

the accelerometer and gyroscope data traces collected from an unprotected left turn. Note

that not all traces exhibit the interruption pattern, i.e., some of the collected time-series

106

traces are as smooth as if they were collected from a protected left turn. Therefore, a

machine learning pipeline needs to pre-process the time-series data tuple to form data that

can be used as input for the machine learning algorithm.

4.6.3 Deep Learning Pipeline

To address these challenges, we propose a deep learning pipeline that is comprised by

a novel data augmentation process and a deep Recurrent Neural Network (RNN) based on

Long-Short Term Memory (LSTM) cells.

4.6.3.1 Data Augmentation.

The goal of the data augmentation [126] is to construct and expand the training

dataset without undermining the underlying pattern. For this purpose, we design randomly

permuted concatenation (RPCat) for each hotspot data, i.e., X . As shown in the second

frame on the left of Fig. 4.10, RPCat has two steps: (i) expand the set of observations

by permuting the sequence within x; (ii) concatenate the data traces of each permuted

observation. This approach is inspired by [139] in the area of natural language processing

(NLP), where data snippets (e.g., phrases in NLP) are concatenated together to form an

overview of the overall dataset.

Let us illustrate RPCat using an example shown in Fig. 4.10. Suppose a hotspot’s data

x is comprised of J gyroscope and J accelerometer traces (i.e., J is the number of the

clustered left-turn maneuvers at this hotspot). The sequence of data traces in x is originally

organized according to the timestamp (we use epoch time in TurnsMap) of the collected

data. Note that different left turns at this hotspot are independent of each other. That is,

P(T1, . . . ,Tj, . . . ,TJ) = P(T1) · · ·P(Tj) · · ·P(TJ), (4.4)

where Tj is the jth left-turn event and P(Tj) is the probability of Tj’s occurrence. Due to

107

the independence of different left turns, the arrival sequence of these data traces should not

affect the classification result.

RPCat reflects the this insight and reconstructs x as shown in the second frame in

Fig. 4.10. Specifically, RPCat firstly permutes the sequence of data traces in x and then

concatenates the data. After each permutation, RPCat generates a new sequence of data

traces. Finally, to unify the data size for machine learning, we resize each trace to length

FixLen. We repeat RPCat J times to obtain a J×FixLen×2 tensor for x. We execute the

above process for all N′ hotspots. Finally, after reshaping and splitting the data based on

batch size, we transfer the data into the input tensor for the LSTM network.

The parameters of the current RPCat are set as follows:

• Repetition of permutation. This parameter is to balance the dataset. For example,

unprotected hotspots constitute the majority of the current dataset due to their

prevalence in the real world. To avoid an imbalanced dataset, if x is an unprotected

hotspot, we repeat the permutation J times, whereas for each protected hotspot,

we permute 2J times. This allows us to have a more balanced dataset, which is

necessary for better performance in training the LSTM network. We do not repeat

RPCat full permutation times because permutation of J unique elements (Perm(J,J))

can be very large, e.g., Perm(10,10) = 3,628,800. Such a large dataset would be

imbalanced and can take prohibitive long time for training.

• Length of data traces. Our current implementation uses FixLen = 800. The

optimization of the unified data length is left as our future work.

It is importation to note that the permutation does not undermine the sequential

pattern of the data for TurnsMap. As highlighted in Sec. 4.5, the sequential pattern (e.g.,

interruptions) of left-turn data resides in each left-turn maneuver. Since the permutation

only shuffles the order of left turns, it does not change the sequential pattern of each

left-turn data.

Now, the remaining question is how to learn the pattern based on the augmented data.

108

Figure 4.11: Efficacy of RPCat on training with LSTM.

4.6.3.2 RNN Framework.

We use a deep RNN framework with LSTM cells to learn the underlying pattern(s)

from the augmented data. As a specific type of RNN architecture, LSTM has proven

advantages [123] over other machine learning algorithms, such as SVM, random forest,

convolutional neural network, etc., for classifying sequential data. Specifically, each LSTM

cell uses a forget gate to adjust the extent of passing the state variable to the next unit

— an important feature for capturing dependencies through time [132]. Moreover, the

forget gate design is shown to have a desirable effect on mitigating the vanishing gradient

problem [121], a common limitation for the classical RNN architecture that may restrict

the network from learning the pattern from sequential observations. We used stacked

LSTM since a deeper hierarchical structure enables the network to gain more accurate

understanding of the intrinsic pattern by disseminating the learning task to each layer [123,

129].

The hyper-parameter settings of our network are: 2 LSTM layers, 32 LSTM cells per

layer, batch size of 300, and the training rate of 0.001. We use the tanh function for updating

the cell and hidden state, whereas the sigmoid function is used for the gates in LSTM cells.

To mitigate overfitting, we applied a 0.5 dropout rate in each LSTM layer. The Adam

optimizer [140] is used for iteratively updating network weights. Finally, the network feeds

the thus-learnt feature vector (1×32) into a softmax layer for generating the classification

109

result.

Now, we first test the efficacy of our RPCat + deep LSTM pipeline by evaluating the

training loss. To obtain the test data, we randomly selected 20% of hotspots from X

and then applied RPCat to build an augmented testing set. We have implemented our

learning pipeline with TensorFlow on our lab server equipped with one Titan Xp GPU.

Fig. 4.11 shows the efficacy of RPCat and also the training and testing loss (training/testing

loss is the penalty of misclassification of training/testing set [121]) by using our learning

pipeline. Without applying RPCat, both training and testing losses converged to high

values, indicating underfitting — the LSTM network does not have enough data for learning

the underlying pattern. With RPCat, despite the fluctuation caused by the convergence

feature of Adam optimizer, both training and testing losses decrease with the increasing

number of epoch (in neural network epoch, one epoch means the number of times the entire

dataset is processed by the algorithm). Specifically, training and testing losses are stabilized

at 0.4 and 0.45, respectively, after about 900 epochs. We will evaluate the performance of

our machine learning pipeline in Sec. 5.4.

4.7 Evaluation

We first evaluate the overhead of TurnsMap, then the performance of our deep learning

pipeline, and finally present the insights gained from the evaluation.

4.7.1 Performance Metrics of TurnsMap

4.7.1.1 Evaluation Metrics of the Deep Learning Pipeline.

We evaluate our machine learning pipeline’s performance by using the cross-validated

performance metrics. Fig. 4.12 shows the confusion matrix where each row represents the

actual class; each column represents the predicted class. Fig. 4.13 shows the precision,

recall and F-1 score, where precision represents the ratio of true positive detections to the

110

Figure 4.12: The normalized onfusion
matrix for analyzing
TurnsMap’s performance.

Category Precision Recall F-1

Protected 0.90 0.86 0.88

Unprotected 0.91 0.93 0.92

Average 0.90 0.90 0.90

Figure 4.13: Performance metrics of the
LSTM-based pipeline.

total positive detections, and recall represents the classifier’s sensitivity with the ratio of

true positive detections to the total actual positive observations. Accordingly, our classifier

can identify different left-turn settings with high performance. Note that the number of

instances of unprotected settings takes a large portion in our dataset due to its popularity in

real-world, our classifier is not biased as evidenced by the performance metrics in Fig. 4.13.

This shows the model trained on the augmented (and thus balanced) dataset is not biased

and our LSTM framework successfully learns the feature(s) for differentiating left-turn

protection schemes.

TurnsMap errs on the safe side of misclassifications to mitigate the impact of erroneous

classifications. Specifically, it has a lower rate of misclassifying unprotected left turns as

protected ones than that of classifying protected left turns as unprotected ones. This means

that while identifying protected left turns with good accuracy, TurnsMap achieves better

performance in identifying the unprotected left turns.

The performance of TurnsMap is essential for many applications, such as finding the

safest left turns for novice drivers and route planning for self-driving cars, selecting a road

with the minimum number of unprotected left turns using TurnsMap.

Now, we examine our classification performance based on the unbalanced dataset. To

evaluate the classifier’s performance while varying the threshold (i.e., cut-off probability),

we first tested the performance and report the Receiver Operator Characteristic (ROC).

111

0 0.5 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC

Reference line

Figure 4.14: ROC curve.

0 0.5 1
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

PR
Reference line

Figure 4.15: Precision-recall (PR) curve.

Then, to evaluate whether performance of protected left turns detection is not dwarfed due

to the imbalance of the current dataset, we also reported the Precision-Recall (PR) curve to

examine if precision captures the number of false positives.

As shown in Figs. 4.14 and 4.15, both the ROC and PR curves show the efficacy of

our classifier. Specifically, both curves have significantly better performance than their

corresponding reference lines (i.e., random guess). Moreover, the area under curve (AUC)

for ROC and PR curves is 0.954 and 0.926, respectively.

4.7.1.2 Comparison with Other Machine Learning Algorithms

Our model’s performance is compared with the models trained by other learning

algorithms based on the augmented dataset, and the averaged performance metrics are

plotted in Fig. 4.16 where we tested a standard RNN, which is known to have good

performance for sequential data [142]. One of its key differences from LSTM is that the

standard RNN cell lacks gates (e.g., forget gate) for learning the sequential dependencies

that may have varying (e.g., short- or long-term) timespans. We also compared with

kernelized support vector machine (SVM), and random forest (RF). Specifically, the RNN

uses the same hyper-parameter setting as our LSTM network. We used 200 decision trees

for the RF algorithm. Note that we used the same training data setting for testing different

algorithms. That is, the performance of RF and SVM with feature vector optimization is

112

Figure 4.16: Comparison between
LSTM and other machine
learning algorithms.

0 20 40 60 80 100 120 140 160 180 2000

2

4

6

8

10

12

14

Data sample

C
PU

 u
sa

ge
 (%

)

TurnsMap app, 200 Hz TurnsMap app, 100 Hz Google Maps

Figure 4.17: CPU usage of TurnsMap

app.

not the focus of this work.

For TurnsMap, LSTM outperforms the others in all metrics considered. As discussed

in Sec. 4.6, the advantages of LSTM over others is its capability of capturing dependencies

through time. For example, RNN cells are susceptible to the vanishing gradient decent

problem, making it very hard to capture the dependencies in time-series data. SVM has

a low average F-1 score, because it misclassified many unprotected hotspots as protected

ones while showing good performance in detecting protected hotspots.

4.7.2 Overhead of the Data-collection App

Mobile devices are resource-limited and susceptible to power and/or computation-hungry

apps. A high overhead of the data-collection app could consume lots of the mobile device’s

resources, thus discouraging use of TurnsMap. We have highlighted the data-collection

app’s generation of low network traffic in Sec. 4.4. Here we test its additional CPU usage

and energy consumption on the users’ mobile devices.

We installed our data-collection app on a Google Pixel phone that runs Android 7.1.2

Nougat OS. We experimented with two sampling rates of IMU sensor: 200Hz and 100Hz.

We used the 100Hz sampling rate for most of time and also tested the 200Hz sample rate

to study the maximum overhead incurred to users’ smartphones.

113

(a) Isolated left lane (b) Busy market

View blocked by
roadside	vegetation

(c) Blocked view

Left-turn	direction

(d) Exit w/o prot. (e) Crossing student

Pedestrian	
island

(f) Pedestrian island

Figure 4.18: Real-world insights from TurnsMap result.

Since TurnsMap can be used as a collaborative add-on functionality for existing

navigation apps (we will elaborate on this in Sec. 4.8), we also measured the overhead of a

popular navigation app (i.e., Google Maps) and compared it with our data-collection app.

Fig. 4.17 shows the CPU usage overhead of TurnsMap. It consumes an average of 7%

and 3.7% CPU for 200Hz and 100Hz sampling rate, respectively, whereas Google Maps

consumes 11% CPU. For the energy consumption, we measured the current drawn by the

Pixel phone. It shows that the data collection app consumes only 45mA with IMU sensor

sample rate of 100Hz, whereas Google Maps consumes 727mA. That is, the extra energy

consumption is only 6.2% of the navigation app. This low overhead comes from the fact

that the data collection activity does not use any power-hungry sensors (e.g., camera) and

operates in background mode.

4.7.3 Real-world Insights from TurnsMap

TurnsMap can accurately differentiate the protection settings of different left turns. In

the testing phase of TurnsMap (i.e., classifying testing data with the thus-learnt model), we

114

have gained some interesting insights (Fig. 4.18).

4.7.3.1 Protected.

One of the left turns with protected settings is shown in Fig. 4.18(a) — an isolated

left-turn road in an urban area. The driver can use this dedicated road for left turns, a

complete isolation from other traffic and pedestrians.

4.7.3.2 Unprotected.

Fig. 4.18(b) shows a busy market in an urban area where left-turning cars are likely to

be blocked by a large crowd of people and street stalls. Fig. 4.18(c) shows an intersection

enforced by a 2-way stop sign where the view of right-hand-side road is blocked by lush

vegetation. Fig. 4.18(d) shows an intersection without any protection, which is also a

joint spot of a narrow road with a major road (with a speed limit of 45mph). Such a left

turn is very risky because the left-turning driver needs to pick up the speed quickly while

paying attention to fast-approaching cars from the right-hand side. Fig. 4.18(e) shows an

intersection with all-way stop sign located inside of a campus. Especially during inter-class

time (e.g., 10:30am on weekdays), many students travel through this intersection to get

to other classrooms, thus increasing the possibility of causing frequent conflicts between

left-turning cars and pedestrians. Fig. 4.18(f) shows a confusing layout in a suburban area,

where each entrance of the intersection is enforced by a stop sign, but there is a pedestrian

island in the middle of the street. This blockage in the middle of the road requires drivers

to be extra careful when turning left.

4.8 Use Case and User Study

Since left-turn enforcement is critical for driving safety, TurnsMap has potential for use

in various app scenarios, such as navigation systems for both human- and self-driving cars,

115

(a) w/o TurnsMap (b) w/ TurnsMap

Figure 4.19: Exemplary application. Here, (a) and (b) compares the usage of a
navigation app w/ or w/o TurnsMap’s capability.

and reporting unprotected left-turn hotspots to the local transportation department. In this

section, we focus on assessing TurnsMap’s utility in navigation systems.

In existing navigation systems (e.g., Google map), one of the key limitations is the lack

of safety assessment (as highlighted by Waze [18], finding dangerous left turns) of different

routes. In fact, route/trip planning selects the route by minimizing the estimated time of

arrival (ETA) [23]. As the result, the navigation system may generate a route with many

risky unprotected left turns, as shown in Fig. 4.19(a).

One of TurnsMap’s exemplary application is augmenting existing navigation app

with left turn setting information at intersections. That is, with the left-turn information

discovered by TurnsMap, TurnsMap can provide this information with the collaborating

navigation app to plan a route that also considers left-turn safety at intersections — which

is not yet achieved functionality by using state-of-the-art approaches. Specifically, users of

a navigation app can enable unprotected left turn avoidance in the setting of the app. Thus,

the app can suggest an alternative route, as shown in Fig. 4.19, which has safer turning

maneuvers (e.g., right turns).

To fully analyze user’s satisfaction on this functionality, we first conducted a survey

116

Yes.
96%

No.
4%

(a) Question 1

Yes.	Quite	
often
15%

Yes.	
Occasionally

45%

No
40%

(b) Question 2

Yes.	
Condition	1	

34%

Yes.	
Condition	2	

37%

No.
29%

(c) Question 3

Figure 4.20: User study of the exemplary app. Here, (a), (b), and (c) show
distributions of participants’ responses to our survey questions
respectively.

of users’ expectations of a navigation system that has the unprotected left-turn avoidance.

Specifically, we recruited 564 participants from Amazon Mechanical Turk. Each

participant needs to be a legitimate driver in the US to participate in our study. To

assess people’s expectation of this functionality, we asked the participants the following

questions:

Q1. Can you differentiate left-turn enforcements?

Q2. Have you ever experienced dangerous/difficult unprotected left turns recommended

by a navigation app?

Q3. If there is a navigation app that can help you avoid those risky left turns, would you

use it?

Fig. 4.20 summarizes the survey results. For Q1, 96% of the participants can

differentiate between protected and unprotected left-turns, indicating that most of

our participants are aware of the protected/unprotected settings. For Q2, 60% of the

participants experienced risky/difficult unprotected left turns recommended by the

navigation app. Notice that 15% of the participants often encountered such left turns

in the routes recommended by the navigation app. For Q3, 71% would like to use a

navigation app that avoids unprotected left-turns while 34% prefer this functionality only

if the alternative route has a similar ETA (Condition 1 in Fig. 4.20(c)). Surprisingly, 37%

117

indicated that if driving safety can be enhanced, they won’t mind taking an alternative

route with a prolonged ETA (Condition 2 in Fig. 4.20(c)), i.e., safety is more important

to a large portion of navigation app users. In summary, the avoidance of unprotected left

turns is highly desired for navigation systems.

4.9 Limitation and Future Extension

Although TurnsMap can achieve high accuracy in differentiating protected and

unprotected left-turn settings, there remains room for improvements, two of which are

highlighted below.

4.9.1 Adapting TurnsMap to the Time-of-day

Currently, TurnsMap is trained based on driving data that is mostly collected during

day-time (i.e., most of our training data is collected during 7:00 –18:00. Also, some

intersections are equipped with advanced traffic regulation systems [150] that change

the left-turn protection setting according to different times-of-day to accommodate the

varying traffic conditions. The intersections that allow for flexible left-turn settings need

both regular traffic light (i.e., circular light) and dedicated left-turn light (i.e., a green

left-oriented arrow). For example, to maximize the traffic throughput during the morning

rush hour, the intersection can use the regular traffic light to regulate left-turning traffic;

during hours with moderate traffic, it uses the protected traffic light to enhance safety at

the expense of traffic throughput. The detailed information (e.g., location and the specific

left-turn setting) of these flexible traffic signals would be useful for various parties (drivers,

navigation app developers). However, this information is unknown to the public.

TurnsMap can adapt to this sophisticated scenario by learning different classification

models for different times-of-day. As shown in Fig. 4.21, 4 times-of-day can be 6:00 —

10:00, 10:00 — 16:00, 16:00 — 20:00, and 20:00 — 6:00 (the next day). Note that the first

and third time segments denote the two usual daily rush hours. Based on the segmentation

118

06:00 -10:00 10:00 - 16:00 16:00 - 20:00 20:00 - 06:00

Training dataset

TurnsMap 1 TurnsMap 2 TurnsMap 3 TurnsMap 4

Figure 4.21: Illustration of formulating TurnsMap for different time-of-day.

of time, one can divide the training data using the timestamp of data collection and train

the corresponding TurnsMap for each time segment.

4.9.2 Scalability of TurnsMap

We test TurnsMap by using the driving data collected from the Detroit metropolitan

region in the U.S. that covers various on-road environments (e.g., suburban and urban

areas). Moreover, since TurnsMap harvests interruptions (as elaborated in Sec. 4.5), the

root cause of risks at intersections, TurnsMap can be used to enhance driving safety at large

scale. Specifically, TurnsMap can be used in cities/regions that have the same/similar traffic

regulations. For cities/regions with different traffic regulations, the current trained model of

TurnsMap can help facilitate data collection during the training phase. In particular, the app

developer or local transportation department could apply the transfer learning method [177]

to use the existing model as a pre-trained model.

4.10 Related Work

4.10.1 Detecting the Driving Behavior

One of the major tasks of TurnsMap is to accurately detect the driver’s maneuver

based on mobile IMU sensor readings. Recently, there have been a growing number of

research efforts to meet similar goals. For example, Yang et al. [174] used the smartphone

accelerometer to detect if the phone is at the driver’s seat. V-Sense [102] uses smartphones’

119

built-in IMU sensors to detect various steering maneuvers. BigRoad [143] extracts the

steering wheel angle from a smartphone’s gyroscope. Researchers have also investigated

the accuracy of using a mobile IMU sensor for detecting lane-change maneuvers [157].

One of TurnsMap’s novelties is to detect interruptions (e.g., caused by crossing pedestrians

and/or oncoming cars), a unique feature that can be used to derive the left-turns information

at intersections.

4.10.2 Inferring the Road Information

Left-turns information is critical to driving safety, but the traffic databases maintained

by local governments (e.g., data.gov [43], such as Open Data Portal [33]) lack this

information. The collaborative mapping database, OpenStreetMap, has recently proposed

a new feature to cover traffic light information [36] at intersections. However, this new

feature is still in its infancy (i.e., under the community’s review) and may take years to

become practical. Even after receiving an approval, it will require a long time for the

contributors (i.e., mappers) to collect the data due to the limited number of contributors.

To acquire traffic light/signal information at intersections, the corresponding industry

has been devoted to the collection of left-turns information by taking images of

intersections with heavily-instrumented mapping cars. For example, high-definition

mapping services (Google Street View, here [20], TomTom [42]) use dedicated mapping

cars to collect street images and derive intersection information automatically by using

computer vision algorithms. However, this approach requires a significant investment of

infrastructure, thus limiting its scalability, e.g., too expensive to use in under-developed or

developing regions.

There have been proposals to detect intersection information with cameras in more

efficient ways, but they suffer the natural limits of image data due to a variety of outdoor

conditions [111]. Besides, placement of various traffic signals/lights make it hard for

onboard perception systems to ensure that the intersection information is captured by using

120

a limited number of cameras [115].

Aly et al. proposed Map++ [94], a crowdsourcing platform for mining traffic sign

information from sensor data collected from mobile devices. However, Map++ detects

only coarse-grained road information, e.g., existence/absence of traffic light. TurnsMap

extracts and uses the spatio-temporal features from IMU sensor data to infer the specific

protection type at left-turn hotspots — a safety-critical information unachievable with Map

++.

Recently, a traffic pattern analysis with mobile crowdsensing is gaining popularity due

to its potential for benefiting smart cities. SmartRoad [134] uses mobile GPS data to

determine whether or not traffic lights and/or stop signs are present. However, none of

these existing studies explored left-turns information at intersections, albeit its importance

to driving safety.

Unlike existing schemes, we focused on the left-turns information, a safety-critical

yet unavailable data which can be efficiently collected by TurnsMap’s crowdsensing. By

crowdsensing mobile IMU sensor readings, TurnsMap can collect this information in an

efficient, scalable manner.

4.11 Conclusion

TurnsMap is a novel way of utilizing crowdsensing mobile IMU data and deep learning

for enhancing driving safety. It can infer the left-turn protection settings on road segments

with high accuracy. To train and evaluate TurnsMap, we constructed a real-world dataset.

TurnsMap is empowered by two key enablers: a novel data mining engine for extracting

left-turn hotspots and a deep learning-based pipeline for learning the model for classifying

left-turn enforcements. The left-turns information uncovered by TurnsMap is essential

for driving safety and can benefit many vibrant apps in the automotive and transportation

ecosystem.

121

CHAPTER V

TurnsGuard: Smartphone-based Profiling of Driver’s

Attentiveness to Turn-Signal Usage

Making turn(s) and/or changing lane(s) without giving turn signals is a dangerous

driving behavior that causes a variety of traffic accidents. However, there does not

exist any good way of detecting and analyzing a driver’s turn-signal usage and then

reminding him/her if s/he made a turn without giving a turn signal. To mitigate this

deficiency, we present TurnsGuard, a practical and scalable turn-signal profiling tool

only with commodity smartphones. TurnsGuard can be implemented as a smartphone

app to monitor the vehicle’s steering maneuver with phone sensors and detect the

existence/absence of turn signals by analyzing the acoustic feature picked up by the

phone’s microphone. TurnsGuard works locally on the driver’s mobile device, thus

enhancing TurnsGuard’s usability while preserving the driver’s privacy. The evaluation

started with testing on 10 different vehicle types in real-world settings, TurnsGuard can

achieve 94% precision in turn signal detection. According to our field study with a group

of participants, TurnsGuard can effectively profile and characterize the drivers’ turn-signal

usage, thus enabling an essential approach for understanding driver’s attentiveness.

122

A. Mounted B. Cupholder C. Background noise

Map view

D. Feedback panel

Figure 5.1: We designed, implemented and tested a smartphone-based tool (TurnsGuard)
for profiling a driver’s inattentive steering maneuvers, i.e., turning or changing
lanes without giving turn signals. A, B, and C demonstrate TurnsGuard’s
robust performance under different usage contexts — mounted, cupholder, and
under background noises (e.g., music), respectively. Please refer to our Video
Figure to see how TurnsGuard works in the real-world. D shows the online
feedback panel (elaborated in Sec. 5.4) for contextualizing the detection results
and arousing the driver’s attention.

5.1 Introduction

Steering maneuvers imply a rich set of information that can reflect the level of safety

and attentiveness of the driver. In particular, fast cornering turn signals or blinkers —

installed on the left and right front and rear corners of cars since the first introduction of

cars in 1909 [10] — have been a vital safety feature required by law worldwide. The

turn signal enables communication between cars (or drivers) which can effectively alert

nearby vehicles of the ego-car’s intended movement and is thus crucial information for

avoiding potential traffic accidents. In fact, turn signals have been recognized as the most

fundamental critical safety protection [73], and their use by the drivers is enforced by law

(e.g., U.S. Department of Transportation) and the traffic enforcer.

Unfortunately, many drivers make turns and/or change lanes often forgetting to

give turn signals. Studies and news coverage in psychology and driving behaviors have

shown [56,83], forgetting to use turn signals has severe repercussions: if the driver neglects

to use turn signals, s/he will eventually forget to use the signal when it is really needed.

According to a recent field study conducted by the Society of Automotive Engineers

(SAE), 48% of the drivers in the U.S. do not give turn signals when they change lane;

123

more than 25% of them fail to give signals when they make turns [15]. As a result, drivers’

failure to use turn signals alone accounts for more than 2,000,000 accidents annually [64].

Thus, enhancing the driver’s attentiveness to use of turn signals is vital not only for the

safety of individual drivers, but also for the safety and efficiency of the entire traffic

system.

To conduct an in-depth study of drivers’ turn-signal usage and enhance their

attentiveness, we need a practical and scalable tool for detecting their (un)use of turn

signals. In particular, the tool should be capable for both micro behavioral analysis (e.g.,

an individual driver’s attentiveness to turn signals) and macro sociological study (e.g., how

drivers’ turn-signal usage may impact traffic safety on a large scale). Moreover, this tool

should also be privacy-preserving, i.e., balancing needs between the system performance

and privacy concerns. However, to the best of our knowledge, there does not exist any

practical approach/tool that can meet these requirements.

To meet this pressing need, we propose TurnsGuard, a smartphone-based system for

detecting and analyzing the drivers’ turn-signal usage. Specifically, TurnsGuard’s sensing

is designed and built with two key modules for detecting the turn-signal usage only with

commodity smartphones carried by the drivers.

Steering Detection Module. TurnsGuard uses a novel way to detect a turning maneuver

without using any vision/camera data. In particular, the collection of vision information

requires mounted camera(s) that must persistently focus on the road — a requirement that

may make TurnsGuard unusable. Moreover, the detection performance by using image

data can be easily distorted by various environmental conditions, such as the road covered

with snow and/or poor lighting. To avoid these difficulties, TurnsGuard utilizes motion

sensors (e.g., gyroscope and accelerometer) on commodity smartphones for detecting turn

maneuvers. Our steering detection also harvests sensor calibration to overcome different

phone posture (e.g., mounted vs. cupholder as shown in Fig. 5.1 A and B).

Turn-Signal Detection Module. TurnsGuard uses the smartphone’s microphone as

124

peripheral sensing modality for detecting consecutively “clicking” turn-signal sound.

Although a turn signal can be detected accurately by accessing the vehicle’s CAN

bus [175], the de facto in-vehicle network that connects various modules/ECUs inside a

car, it has several usability restrictions in the real-world. First, due to the ever-increasing

security concerns of car hacking [59] via the CAN bus, car-makers have been working to

restrict the access of in-vehicle data, e.g., by shutting down [69] and/or encrypting [58]

the onboard diagnostic (OBD-II) [54] port. Second, since the CAN data packet frame

format varies with car-makers and/or car-models, interpreting or reverse-engineering the

CAN data would be very difficult without “translation dictionaries” which are proprietary

to car-makers. In contrast, TurnsGuard does not require any additional accessory or

proprietary information, thus enhancing its usability and deployability.

The detection of a turn signal by recognizing its clicker sound, however, can

be challenging because 1) the turn-signal sound can be easily distorted by various

environmental noises, such as mechanical vibrations, human voice, and loud music; 2)

although the clicking sound is designed to be audible, the sound configuration — e.g.,

amplitude and frequency — may vary with car models and makers. To overcome these

challenges, we have implemented an unsupervised turn-signal recognition pipeline that

allows TurnsGuard to be used locally on the user’s smartphone. In the first phase,

TurnsGuard makes a short-duration recording of the user’s vehicle’s turn-signal sound.

This is a one-time effort for each car-model and can be done within a minute even for

inexperienced users of TurnsGuard according to our field study (to be elaborated in

Sec. 5.4). The second phase matches, in real time, the sound of the vehicle’s turn signal

to automatically detect the turn signal. In the third and final phase, TurnsGuard is

customized for the driver’s vehicle. To evaluate the performance of TurnsGuard, we

recruited volunteers to drive their own cars with smartphones as naturally as possible.

We achieved robust steering and turn-signal sensing by using commodity smartphones

without any extra physical vehicle connections or accessories, opening a wide range of new

125

channels that could unlock a wide range of automotive applications. To further support

the usability of TurnsGuard, we employ a front-end/back-end co-design. As we will

elaborate in Sec. 5.3, we integrate the sound sensing into a front-end app, whereas the

back-end harvests the cloud support for managing and contextualizing user’s data. Based

on our on-road user study (Sec. 5.5), the information of turn-signal (un)usage can be

a cornerstone for studying driving behavior and developing applications thereof. The

statistical report of turn-signal usage can also be used for educating/training/improving

drivers on safety, e.g., we demonstrate (in Sec. 5.5) an on-road use case that contextualizes

the driver’s turn-signal usage for arousing his/her attention to driving (as shown in Fig. 5.1

D). Overall, TurnsGuard is shown to sense and determine the driver’s turn-signal (un)usage

with commodity mobile devices, thus enabling a wide range of mobility applications.

5.2 Related Work

5.2.1 Driving Behavior Analysis

Recently, industry has started using a driving behavior analysis as an effective way

of enhancing driving safety. In particular, developers use the onboard diagnostic devices

(OBD-II) dongle and/or smartphone apps for monitoring the users’ driving behavior.

For example, automotive insurance companies (e.g., Progressive and StateFarm) have

been working on a fast-emerging program called Usage-Based Insurance (UBI) [78] for

adjusting insurees’ premium based on their driving behavior. To enroll in UBI, drivers

need to install the dongle provided by the insurer for monitoring the driving behavior.

Although this program has been attracting a substantial number of participants, the

existing driving behavior analysis can only detect a very limited type and number of driving

behaviors. In fact, current UBI products are only able to detect two driving behaviors:

speeding and hard braking. This limited behavior set is neither comprehensive nor able to

accurately reflect the driver’s safety and/or attentiveness to safety-related maneuvers. For

126

example, hard braking for dodging crossing pedestrians and/or animals is a safe maneuver.

It would be very useful and safe if the driving behavior analysis service can detect the

failure to use turn signals, which is a well-known dangerous driving behavior closely

related to inattentive drivers.

5.2.2 Monitoring Driving Behavior with Mobile Devices

Researchers have been exploring the feasibility of assessing the driving behavior with

accessible devices such as smartphones. Hong et al. [133] demonstrated use of both a

smartphone and special hardware (with the combined cost around $200) for identifying

aggressive drivers. However, their system cannot profile the turn-signal usage. Zhang

et al. [180] and Chen et al. [103] proposed different methods of using a smartphone’s

motion sensor data for characterizing the driving style. They demonstrated the potential

of extracting rich information from the driving data for supporting various automotive

applications. Recently, Chen and Shin [104] have used the crowdsourced smartphone’s

data to classify intersection protections (e.g., whether an intersection has left/right turn

protection) — a safety-critical information for driving. Chen et al. [102] and Liu et al. [144]

briefly mentioned the concept of using smartphones for detecting the usage of turn signals.

However, none of these works have designed and tested a practical system for profiling the

usage of turn signal.

In summary, prior work demonstrated a significant potential for using smartphones

as a scalable and accessible modality for safe driving. However, none of them has

considered the turn-signal detection problem, despite its importance. As we will elaborate

in the remainder of this paper, the turn-signal (un)usage data and its analysis enabled by

TurnsGuard can open a new area of analyzing driving behavior and introduce/enhance

various applications.

127

Check sound profile
(e.g., VIN) Check sound database

Database check result

Inquire car type

Record clicking sound
Raw sound data Extract template, put

into sound database

Performance profile Driver’s performance
database

Remainders (via push
notifications)

Data contextualizationDriver

User registration
Profile construction

(sound, performance
database)

OAuth 2.0

Detect turn signal
usage, build

performance files

Frontend Backend

Setup
Phase

Runtime
Phase

Figure 5.2: The front-end and back-end design of TurnsGuard.

5.2.3 Improving Driving Safety

How to encourage safe driving effectively has been an important research topic in the

HCI community. Chin et al. [105] proposed use of social media for incentivizing drivers to

avoid dangerous driving, i.e., speeding, abrupt braking, and making sharp turns. Tanaka et

al. [163] showed three different interactive channels for enhancing safe driving for elders.

Their system alerts the driver if a dangerous behavior is detected.

To the best of our knowledge, none of prior studies investigated the safety and

behavioral implication of turn-signal usage patterns. We conjecture the primary reason for

this is the lack of a scalable way of detecting turn signals. TurnsGuard’s main goal is to

remove/narrow this gap and demonstrate how its detection of turn-signal (un)usage can be

detected for enhancing driving safety.

128

5.3 System Design of TurnsGuard

The goal of TurnsGuard is to provide a usable, scalable, and privacy-preserving tool

for transportation stakeholders to assess the drivers attentiveness based on their steering

maneuvers. In this section, we first articulate the three design goals. Next, we present

the usage model of TurnsGuard enabled by the front-end/back-end co-design. Finally, we

elaborate the design of our turn signal sensing scheme.

Usability. We achieve characterization of real-time steering maneuver and detection of

turn-signal (un)usage with the drivers’ smartphones. This allows the stakeholder to achieve

flexible and real-time accessibility of the driver’s behavioral data, an essential enabler

for many useful automotive apps, such as auto insurance, ride-sharing, and parental

monitoring.

Scalability. There are two key varying factors that hinder large-scale detection of steering

maneuvers with smartphones: different sensing device models and different vehicle

models. Specifically, different smartphone models may have varying configurations of the

sampling rate and sensing hardware, and different car types usually have different spectral

features (e.g., period, tone, and frequency) of the turn-signal sound. TurnsGuard unifies

the sensor usage on different smartphones by using a novel steering sensing scheme called

V-Sense [102]. To achieve robust turn-signal sensing for different car types, the back-end

support of TurnsGuard crowdsources the turn-signal sound from users in the setup phase

(to be elaborated in Sec. 5.3.1) to construct a comprehensive sound database. This allows

users to reuse different vehicles’ sound templates with ease.

Privacy-preservation. Protecting end-users’ privacy while retaining the usability and

scalability is a key requirement for TurnsGuard. We implemented two key privacy

protection features to meet this goal. First, TurnsGuard’s turn-signal detection module

only uses the microphone during the vehicle’s turn. The subsequent sound data analytics

(as elaborated in Secs. 5.3.2–5.3.4) are done efficiently on the smartphone to analyze

the recorded sound snippet, which is discarded immediately after the analysis. That

129

is, no sound data is stored locally or uploaded to the server. Second, TurnsGuard’s

driver assessment uses access control on the back-end resources while sharing the sound

template.

5.3.1 Usage Model of TurnsGuard

As shown in Fig. 5.2, there are setup and run-time phases to use TurnsGuard.

5.3.1.1 Setup Phase

The first-time usage of TurnsGuard front-end app will guide the user through the

three-step setup phase. In the first step, the user needs to register his account with

Google OAuth 2.0 [76] to construct his profile, including the sound profile of his car

and performance database. Specifically, the sound profile is a light sound data extracted

from the turn-signal sound of the user’s car. This file is essential for the real-time sound

analysis as elaborated in Sec. 5.3.4. The performance database includes the metrics for

assessing the driver’s steering maneuver. Each entry of the database is constructed with

four elements:

{time stamp,geo cooridnate,steering type,

sound usage, latitude acceleration}.
(5.1)

Then, the back-end will inquire of the driver’s car type, which can be accurately

identified with the vehicle’s VIN number. This step is to checking whether the sound

template of the user’s car is already in the back-end sound database. If TurnsGuard

already has the required sound template, the user can skip the third step.

In the third step, the user needs to provide a raw recording of his car’s turn-signal

sound. The users will be asked to collect a 10-second recording of their vehicles clicking

sound in a quiet setting. To set up the recording environment, the participants are instructed

to put the vehicle into ACC mode (e.g., accessory mode with electronic devices on and

130

engine off), turn off radio, and close all doors. Next, in order to record clear sounds

with low disturbances, the users are instructed to place their phones on the dashboard

before starting the recording. Then, the front-end app will automatically send the recorded

sound clips to the back-end for extracting the template turn-signal sound and customizing

the corresponding TurnsGuard. Subsequently, the template will be sent back to the

smartphone to finish the customization of the user’s app. The sound collection step enables

TurnsGuard to crowdsource sound templates of different vehicles in an efficient way.

This is a one-time effort for each user, which is an acceptable and easy task according to

our interviews of our on-road user study (elaborated in Sec. 5.5). The extracted template

(i.e., sound model) will be sent back to the user’s app via HTTP post in TXT format. Now,

the app is fully workable locally on the smartphone for the run-time phase.

5.3.1.2 Run-time Phase

TurnsGuard implemented two features to mitigate the front-end app’s distraction.

First, it automatically detects whether the user is driving a car by using Google Context

Fences API [67]. Specifically, this API detects the smartphone’s GPS speed to differentiate

transportation modes, e.g., biking and driving. This feature enhances the usability of

TurnsGuard, as the user need not manually start and stop the app. Second, to allow

multi-tasking and lower the energy overhead of the screen activity, our app uses Android

Foreground Service [65] to enable the background mode.

At run-time, TurnsGuard app detects the steering maneuver and the turn-signal usage

(see Sec. 5.3.2) and interacts with the user via real-time alerts and a comprehensive driving

report. To alarm un-signaled turns in real time, TurnsGuard front-end can make a pop-up

notification to the driver without sharing any data sharing and/or interacting with the

server. By accumulating the user’s driving data, TurnsGuard back-end can also provide

a comprehensive driving report to the app users and other eligible stakeholders (e.g.,

insurance provider, local transportation department). The microscopic analysis of each

131

Figure 5.3: The workflow of TurnsGuard’s front-end.

driver’s turn-signal usage can benefit the driver’s attentiveness, while using a macroscopic

analysis of the aggregated behavioral data from a large number of drivers, stakeholders

may gain insights into traffic problems on the roads.

5.3.2 Front-end Design

We employ a multi-thread design in TurnsGuard to enable seamless computation by

organizing steering detection, sound detection, and sound analysis as different threads.

Fig. 5.3 shows an operation sequence diagram, illustrating the workflow of TurnsGuard.

Specifically, when a steering maneuver takes place, the steering detection thread will trigger

the sound detection thread to activate the recording with microphone. Then, if a steering

maneuver is a left/right turn or a lane change, i.e., true positive (TP), the recording thread

will trigger the analysis thread to process the recorded sound data. Finally, the analysis

132

result, i.e., whether a turn signal is used or not during this steering maneuver will be shown

and/or recorded. This multi-thread framework is able to coordinate different operations,

e.g., the vehicle starts steering while TurnsGuard is analyzing the sound snippet. Note that

this framework can handle the false positive (FP) detection in a flexible manner without

inducing high computational overhead, e.g., the pipeline will skip the sound analysis if the

steering maneuver is neither a turn nor a lane-change.

The key advantage of this framework is that it only requires the sound snippet during a

turn (whose time duration is around 3–5 seconds), thus preserving the user’s privacy. Also,

it enables the detection of turn signals to alert drivers in real time.

5.3.3 Detection of Steering Maneuvers

To minimize users’ privacy concern and mitigate the workload on resource-limited

mobile devices, the steering detection thread is implemented by using the smartphone’s

motion sensors, i.e., gyroscope and accelerometer. These sensors generate one-dimensional

time-series data, which can be used for sensing the vehicle’s angular speed and velocity

during steering. We employ the sensor fusion of V-Sense II, and demonstrate a real-time

data analytics pipeline for detecting a vehicle’s steering maneuvers.

The key idea of V-Sense is illustrated in Fig. 5.4. To detect steering maneuvers, it

analyzes the phone’s gyroscope data to find the starting and ending points of each steering

maneuver by using a threshold ωsteer. This threshold is derived from natural driving

maneuvers (e.g., from the change of the vehicle’s heading) and is applicable to different

mobile platforms. For example, when the car is turning left, the gyroscope reading first

increases, and then decreases as shown in Fig. 5.4(a). So, the starting and ending points

of the “bump” shape in the figure are denoted by tstart and tend , respectively. V-Sense can

also detect a lane-change maneuver: after each tend , V-Sense applies a soft time window

to examine if there is a follow-on bump — the indicator for a lane-change — as shown in

Fig. 5.4(b).

133

A
ng

ul
ar

 S
pe

ed

!"#$%# !&'(

)"#&&%
Time

!"#$%#

!&'(

(a) Gyroscope reading of a left turn

Time

A
ng

ul
ar

 S
pe

ed

𝑡"#$%# 𝑡&'(

𝜔"#&&%

−𝜔"#&&%
𝑡"#$%#

𝑡&'(

(b) Gyroscope reading of a lane-change

Figure 5.4: Correlation between steering maneuver and IMU sensor.

For accurate detection of turns and lane-changes (active steering maneuvers), it is

important to differentiate them from driving on curved roads (passive steering maneuvers).

V-Sense achieves this by using the vehicle’s horizontal displacement. That is, a vehicle

traveling on a curved road often makes a much larger horizontal displacement than active

steering maneuvers. Note that, to overcome different smartphone postures (e.g., mounted

vs in the cupholder) V-Sense also performs coordinate alignment [181] for transferring the

motion sensor’s coordinate to the Earth’s coordinate. This design allows robust steering

detection despite the varying posture of the phone.

We have modified V-Sense to dynamically start and stop the sound detection thread.

Specifically, when the turn detection module finds the start of a bump (i.e., tstart), the

phone’s microphone will be triggered to record the sound; the recording will be terminated

upon detection of the end of a bump (i.e., tend). If the steering maneuver is classified as a

turn, the thus-recorded sound snippet will be passed to the sound analysis thread for further

analysis.

134

Figure 5.5: Spectrograms of Lincoln MKZ (upper) and Ford Explorer.

5.3.4 Detection of Turn Signals

Our sound analysis thread detects the existence of a turn signal by exploiting the

periodicity of the sound signal. In essence, a vehicle’s turn signal sound is a repeating

clicking sound with the frequency and volume that humans can hear. Based on SAE

J590b [51], the frequency of a turn signal ranges between 60 and 120 flashes per minute —

each flash should also be associated with a clicking sound. To understand the statistical and

spectral features of a turn signal sound, we show the spectrogram of two turn signal sound

snippets from two different vehicles in Fig. 5.5. The recordings include the turn-signal

sounds of two vehicles: (1) Lincoln MKZ’s sound is recorded in a quiet environment,

i.e., the car is stationary and the engine is off; (2) the recordings from Explorer contain a

human speaking sound and engine noises. The spectrogram provides two insights. First,

the clicking sound repeats at stable intervals. Its periodicity is a more robust feature than

other acoustic features (e.g., formant position and spectral density), considering the high

background noise in cars. Second, the main formant of turn signals lies between 3000 and

10000Hz. This observation inspired us to design a real-time sound analytics to detect the

turn-signal sound by exploiting its periodicity.

The main challenge in designing the sound detection module is how to mitigate the

effects of background noises, i.e., mechanical noise, human voice, and music sound.

To tackle this challenge and enable TurnsGuard to operate in real time, we propose

a light-weight periodic sound recognition pipeline powered by matched filtering and

auto-correlation analysis. Specifically, our pipeline includes four steps: (1) formation of

135

a template from the vehicle’s turn-signal sound, (2) maximizing the signal-to-noise ratio

(SNR) with the matched filter, (3) adaptive pattern matching with auto-correlation, and (4)

checking the existence of sound periodicity. These steps are elaborated next.

5.3.4.1 Formation of the Principal Clicking Sound

A representative template of the vehicle’s clicking sound is needed to filter out noises

and recognize the periodicity of sound signals. If the car type is new, the user needs

to provide a sound recording of the turn-signal sound when the car is parked, without

background noise, e.g., music and speaking sound. Our sound extraction first finds peaks

of the turn-signal sound and then frames the clicking sound for each peak. This two-step

approach allows us to form a sample set of 20 – 40 clicking sound snippets with 10-second

sound recording (provided by users). Finally, we construct the principal clicking sound

using Principal Component Analysis (PCA) [173] based on the sample set. The sound

template will be formulated into a TXT file in the back-end service. Note that the back-end

server archives (in the sound database) the sound template file for future use. Then, the

server dispatch the template file to the user’s smartphone via HTTP post. So far, we have

investigated the principal clicking sound from 10 different vehicle types, includes compact

(Corolla, Mini, 500X), mid-size (Accord, MKZ, Camry, Fusion, Q50), compact-size

crossover (CRV), and mid-size SUV (Explorer). We present the corresponding extracted

turn signal templates in Fig. 5.6. Here, the unified sampling rate is 16 KHz, the averaged

duration of sound template is 25.14 ms (STD: 3.89 ms). The average file size of the

resulting TXT files (from 10 different vehicle types) is 6,231 Bytes (STD 269 Bytes) — a

lightweight sound template for identifying clicking sound in real time.

5.3.4.2 Maximizing Signal Sound SNR

As mentioned earlier, the sound recorded during driving can be heavily distorted by

the background noise, which causes low SNR of the signal sound, thus undermining the

136

MKZ

5 10 15 20

Time (ms)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

Accord

10 20 30

Time (ms)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

CRV

5 10 15 20

Time (ms)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

Fusion

5 10 15 20

Time (ms)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

500X

5 10 15 20

Time (ms)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

Infinity

5 10 15 20 25

Time (ms)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

Mini

10 20 30

Time (ms)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

Explorer

5 10 15 20

Time (ms)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

Camry

5 10 15 20

Time (ms)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

Carolla

5 10 15 20

Time (ms)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

-140

-120

-100

-80

-60

P
ow

er
/fr

eq
ue

nc
y

(d
B

/H
z)

Figure 5.6: The spectrograms of the extracted templates of different cars’ turn signal
sounds.

detection result. To obtain a higher SNR of the signal, we harvest the discernible repetitive

feature from the recorded sound snippet S using a matched filter [167]. In essence, the

matched filter is designed to maximize the SNR of the sound signal by computing the

convolution of the signal with a reversed template.

Constructing a matched filter involves noise modeling and signal convolution. We

model the noise G inside the car as an additive Gaussian noise by designing the noise

core as:

G = [2,1,0,−1,2]~ [−2,−1,0,1,2]. (5.2)

We then convolve the reversed template (denoted as T ′) with the modeled noise to

construct the matched filter as:

hm = G~T ′. (5.3)

Finally, we calculate the maximal SNR by convolving the sound snippet S with hm:

Sh = S~hm. (5.4)

Note that, by using the short time snippet and template, TurnsGuard’s design also mitigate

the O(|S| · |hm|) time complexity in the convolution step. Application of a matched filter

can effectively substantiate the feature of interest — the periodicity of the sound snippet.

137

We benchmarked the matched filter’s performance with real-world experimental

data, i.e., recordings of turn signal sound inside of a 2011 Honda Accord under three

different environment noise settings. A Google Pixel phone (embedded with a 50H01196

microphone) is used for the benchmark data collection. To quantify the environment noise

level, we applied the sound pressure level (SPL) [53], the reference data is recorded by

using the Pixel phone inside of the car without any signal and/or noise sound. Specifically,

the quiet condition (SPL = 21.43 dB) only has turn signal sound; the moderate noise

condition (SPL = 49.56 dB) includes the indling engine sound and background music; the

noisy condition (SPL = 62.12 dB) includes engine sound while driving, and background

music. Our matched filtering scheme is able to extensively boost the SNR under different

noise settings. Specifically, the SNR increased from -24.78 dB to -5.67 dB under the

moderate noise condition; whereas in the noisy condition, the SNR increased from -29.31

dB to -7.18 dB.

5.3.4.3 Adaptive Pattern Matching

The goal of this step is to find the repetitive feature of the clicking sound. Our key

enabler is based on finding the auto-correlation coefficient [158] of the filtered turn

signal sound Sh. We use auto-correlation for detecting periodicity as it has been widely

used (e.g., in music information retrieval) for the detection of periodicity in time-series

signal data. In essence, the auto-correlation is a time-domain operation that convolves

Sh with itself iteratively using an increasing lag. This way, the resulting auto-correlation

function (ACF) would show peaks at N∗T , where T is the signal’s period and N a natural

number. We also optimized the auto-correlation calculation on smartphones, because the

complexity of the brutal-force calculation of auto-correlation is O(|Sh|2), and hence is too

computationally expensive to be used on mobile devices. To tackle this problem, we use

the Fast Fourier Transformation (FFT) implementation of auto-correlation, which reduces

the time complexity to O(|Sh| · log(|Sh|)).

138

5.3.4.4 Recognizing Sound Periodicity

As mentioned above, the ACF of Sh shows peaks at integer multiples of its period.

After computing ACF for Sh, we apply a peak-finding algorithm to ACF to extract T . The

subsequent peaks in ACF show a descending order of magnitudes, since the overlaps of a

signal with itself are in descending order. Therefore, the next global peak should be at T · fs,

where fs is the sample rate of the sound recording. Note that it is a standard regulation that

the turn-signal period of vehicles should range between 0.4 and 1 seconds. Because the

period of a turn-signal sound consists of two similar clicks (e.g., tik-tok sound), the peak

at position T/2 will often be recognized as the second peak in noisy environments. For

detection consistency, we set the search area in [0.2,0.5] seconds to find if a peak exists

at T/2. Let Ppeak be the position at which the second peak occurs, the period can then be

calculated by

Tdetected = 2Ppeak/ fs. (5.5)

Finally, we can conclude that Tdetected matches Ttemplate by checking if

|Tdetected−Tdetected| ≤ ε, (5.6)

where the bound ε = 0.05 second is predefined based on our experimental results. The

detection of each steering maneuver will be formed as a CSV entry:

”Time stamp” : <long : UNIX T IME>,

”Latitude” : <double : LAT ITUDE>,

”Longitude” : <double : LONGITUDE>,

”Steering type” : <int : TY PE ID>,

”Turn signal usage” : <boolean : IF USED>

(5.7)

where the type ID 1, 2, 3, and 4 denote left turn, right turn, left lane change, and right

139

500X Accord CRV Camry Carolla Cooper Explorer Fusion MKZ Q50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall Accuracy

Figure 5.7: Statistical results: precision and recall of the sound detection module on
different types of vehicle.

lane change, respectively. The driver can decide to upload each detection result in real

time or accumulate detections locally in his smartphone. To support real-time alarming, if

IF USED = 0, the app pushes a notification to alert the driver. The CSV entries are saved

locally, and the driver can decide when to upload them to the cloud for a further analysis.

5.3.5 Performance of Clicking Sound Detection

To examine the practicability of our sound detection scheme cross different types

of cars, we designed experiments that cover a wide range of turn signals from the 10

aforementioned car types. To evaluate TurnsGuard’s performance for detecting the

existence of a turn-signal sound, for each vehicle, we construct positive and negative

testing data. In particular, the positive testing data is a noisy turn-signal data collected from

real-world driving, with the smartphone mounted close to the dashboard, i.e., mimicking

real-world usage of smartphones while driving. The background noise includes mechanical

noises and music sound while driving. We measured the noise level by putting a decibel

meter on the dashboard. The overall noise volume (SPL) is approximately 65 dB, whereas

the averaged turn-signal sound is around 46 dB. The negative testing data is a recording

collected from a moving vehicle. To emulate the sound that will be recorded during

steering maneuvers, we divided the sound into 3-second chunks (steering maneuvers for a

140

Start

End

Path 1
Path 2
10 m

(a) Left/right turn test

Travel path
100 m

Lane change
Curved road

(b) Lane-change test

100.0%
12

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
14

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

80.0%
4

0.0%
0

20.0%
1

0.0%
0

0.0%
0

0.0%
0

80.0%
4

20.0%
1

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
6

LT RT LLC RLC NS
Actual Steering Types

LT

RT

LLC

RLC

NS

D
et

ec
te

d
St

ee
rin

g
Ty

pe
s

(c) Results of steering detection

Figure 5.8: (a) and (b) show the test routes. We blurred the map and street names to protect
the anonymity. (c) Shows the performance metric.

lane change take an average of 3.5 – 6 seconds [165]). In summary, each vehicle has an

average of 15 positive and 10 negative sound snippets.

The experimental results are presented as a bar chart in Fig. 5.7 with the precision, recall

and accuracy of each vehicle type. Our sound detection module is able to achieve average

precision, recall, and accuracy of 0.94, 0.89, and 0.89, respectively. Note that Lincoln MKZ

has the worst overall performance because of the low volume of its turn-signal sound.

5.4 Evaluation

5.4.1 Benchmark Test

We now benchmark TurnsGuard’s performance via real-world field testing. All field

tests are done in controlled environments to obtain the ground truth. The driver used a

Google Pixel XL (phone) and a Ford Explorer (car).

We conducted the left/right-turn experiments in the nights by driving on a

pre-determined route in a large parking lot (as shown in Fig. 5.4.1). This experiment

includes two paths: the driver first drove from the start to the end point via path 1, and

then returned via path 2. The driver signaled 8 left turns (LTs) and 6 right turns (RTs) on

path 1 and omitted the turn signal of 6 LTs and 6 RTs on path 2. The experiment consists

of a total of 14 LTs and 12 RTs. The experimental runs for detecting left lane-changes

(LLCs), right lane-changes (RLCs) and curved roads are shown in Fig. 5.4.1. TurnsGuard

141

is tested/evaluated on a suburban road with two lanes in each direction, and moderate

traffic. The participant drove on the route twice, each time making 5 lane-changes and

encountering 3 curved road segments as shown in Fig. 5.4.1. The driver signaled all lane

changes, abiding by the local traffic law and paying attention to safety.

We use a confusion matrix to describe TurnsGuard’s steering detection performance in

Fig. 5.4.1. We examined TurnsGuard’s performance in detecting LT, RT, LLC, RLC, and

maneuvers that are not an active steering maneuver (NS), where NS represents the detection

of driving on curved roads. Each cell shows the number of occurrences and precision for

each steering maneuver. In summary, TurnsGuard is shown to achieve the overall accuracy

of 0.952. The turn detection module was able to detect all LTs and RTs correctly, which

are consistent with the performance reported in [102]. The precision for detecting LLCs

and RLCs with 0.8 precision. We noticed a mis-classification when the driver was making

a lane-change in the middle of a curved road segment. This is because the trajectory of a

lane-change on an L-shaped curved road can be very similar to driving on a straight road

segment, thus leading to incorrect detection on a curved road. In both experiments, our

turn-signal detection module is used to analyze the presence of a turn signal. In all 24

signaled steering maneuvers, TurnsGuard was able to detect 21 turn signals, whereas for

12 unsignaled steering maneuvers, TurnsGuard mis-detected 3 maneuvers as the signaled.

This result indicates an overall TurnsGuard’s accuracy of 0.83 in detecting turn-signal

usage.

5.4.2 Large-scale Field Test

We further evaluate TurnsGuard’s performance in a large-scale setting before

starting a user study, because our user study is designed to represent participants’ natural

driving behavior, an intrinsic unsupervised nature that makes it infeasible to conduct

comprehensive ground truth collection.

In this experiment, we have one participant (a 28-year-old male, with 5 years of

142

-83.74 -83.73 -83.72 -83.71 -83.7
Longitude

42.28

42.285

42.29

42.295

42.3

42.305

42.31

La
tit

ud
e

Driving trace

200 m

(a) Large-scale test trace

100.0%
63

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
56

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

75.0%
18

0.0%
0

25.0%
6

0.0%
0

0.0%
0

0.0%
0

76.5%
13

23.5%
4

5.0%
2

7.5%
3

2.5%
1

5.0%
2

80.0%
32

RT LT LLC RLC NS

Actual Steering Types

RT

LT

LLC

RLC

NS

D
et

ec
te

d
S

te
er

in
g

T
yp

es

(b) Steering detection

LLC

70.0%
7

30.0%
3

0.0%
0

100.0%
8

On Off
Actual

On

OffD
et
ec
tio
n

LT

87.2%
34

12.8%
5

8.3%
2

91.7%
22

On Off
Actual

On

OffD
et
ec
tio
n

RLC

75.0%
6

25.0%
2

0.0%
0

100.0%
5

On Off
Actual

On

OffD
et
ec
tio
n

RT

93.5%
29

6.5%
2

12.0%
3

88.0%
22

On Off
Actual

On

OffD
et
ec
tio
n

(c) Sound detection

Figure 5.9: (a) shows the test routes. (b) and (c) show the performance metric.

driving experience) drove an SUV for 90.6km (1.35 hours) in the same region in a

Saturday afternoon. The overall trace is shown in Fig. 5.9(a). During this experiment,

the smartphone was placed in the cup-holder. To record the ground truth during the

experiment, an annotator sat in the passenger seat to take a timestamped note of the

participant’s driving behavior. Specifically, each entry of the annotation is in the form:

{timestamp,steering type,signal usage.} (5.8)

To keep a reference of the ground truth, we used another phone (mounted on the

windshield) for recording a video (including the sound) of the entire experiment. An

OBD-II dongle is also used for recording the turn-signal usage. To mimic the real-world

driving, the driver and the annotator were allowed to talk casually during the experiment.

Specifically, there were regular conversations during 86% of the experiment, with an

average volume of 66 dB. Our experiment resulted in 63 LTs, 56 RTs, 24 LLCs and 17

RLCs. TurnsGuard’s performance in the real-world setting is measured by:

• whether the steering detector can reliably capture the driver’s steering maneuvers,

and

• for all correctly detected steering maneuvers, whether the sound detection module

can identify the existence of the clicking sound.

To investigate the first performance metric, the results of detecting steering maneuvers

143

are presented as the confusion matrix in Fig. 5.9(b). Compared to the benchmark test,

the large-scale evaluation includes more comprehensive tests of the steering detection

module in differentiating steering maneuvers from driving on curvy roads, a challenging

task associated with steering detection. To this end, our driving traces include several

curvy road segments (as shown in Fig. 5.9(a)), in which TurnsGuard collects and uses

the horizontal displacement for differentiating abnormal steering from normal steering.

As a result, LT and RT achieve 100% detection rates, reproducing the performance of the

small-scale benchmark test, with the overall TurnsGuard’s accuracy of 91% in detecting

steering maneuvers. Note the mis-classifications of non-steering maneuvers (the rightmost

column in Fig. 5.9(b)) — false positives that trigger sound detections even in the absence

of steering maneuvers. This stems from diverse real-world road curvatures, which may

yield vehicle movements similar to steering maneuvers. Since our test environment

includes several curvy road segments (as shown in Fig. 5.9(a)), the steering detection can

achieve better accuracy in regions with a grid street plan [70] where straight roads are

predominant. Examples include New York, Chicago, and Barcelona to name a few.

For the second performance metric, we need to evaluate both positive and negative

detection rates of our signal-detection pipeline. To collect the negative samples (i.e.,

steering without the turn-signal usage), the driver was instructed to omit the turn signal

for some steering maneuvers. Since this behavior is dangerous and illegal in certain

areas (e.g., State of California), all steering maneuvers without turn signals were made on

low-traffic roads and in parking lots with no other vehicles in sight. In summary, 24 of 63

LTs, 25 of 56 RTs, 10 of 24 LLCs, and 7 of 17 RLCs are associated without turn-signal

uses, whereas the remainders are with proper turn signals. In all successfully detected

steering maneuvers, 39 LTs, 31 RTs, 10 LLCs, and 8 RLCs are associated with proper turn

signals. The confusion matrices of turn-signal detection of the four steering maneuvers

are shown in Fig. 5.9(c). TurnsGuard’s sound detection module shows a higher ratio of

false negatives (based on the LLC and RLC results) than the false positive ratio. This is

144

3 4

1 2

5 6

(a) App

Map view

(b) Web interface (c) Progress tracking

Figure 5.10: Screen shots of TurnsGuard from a Google Pixel XL phone. In (a), block
#1 shows the vehicle’s current speed; #2 shows the debug message for the
sound detection; #3 and #4 show the debug message for steering detection; #5
is the button for users to upload their collected data; #6 presents the link of
our online analysis portal. We blurred the URL bar and the map view for the
purpose of anonymity.

because of TurnsGuard’s conservative (i.e., safety-first) design, lowering the false positive

rate (FPR) by increasing the sensitivity of our sound detection module. Specifically, the

sensitivity of the sound detection module can be increased by narrowing the search area as

discussed in Sec. 5.3.4.4. The overall accuracy of sound detection for LT, RT, LLC, and

RLC are 89%, 91%, 83%, and 85%, respectively. The lower success rates for lane changes

are due to the smaller time required by lane-changes than left/right-turns.

5.5 Use TurnsGuard for Profiling Driving Maneuvers

To understand the user experience (especially from unbiased users) of TurnsGuard, we

tested TurnsGuard in a user study.

5.5.1 Design of a User Study

We have designed a 5-phase empirical study (IRB approved, study number:

HUM00167653) as described below.

145

5.5.1.1 Phase 1. Recruitment of Participants

We launched the study of TurnsGuard on our university campus in a mid-sized

town (approximately 75 km2) in the U.S. This study chose university students since

teenager drivers often lack driving experience and tend to be less attentive to driving. In

fact, statistical data from auto insurance companies shows that drivers under age 26 are

considered to be among the highest risk groups [60]. So, university students are likely to

make un-signaled turns or lane-changes. It would also be interesting to study experienced

drivers’ usage of turn signals. For example, TurnsGuard can be used to compare the

time needed for changing the driving habit for different age groups. We will leave this

exploration as our future work.

We recruited 5 participants of ages 19 – 23. Since all participants drive their own cars

for the experiment, we use 5 different cars in this study. Five different Android phones (two

Nexus 5X, one Samsung S10, one Samsung S9+, and one Pixel XL) are used in our study.

All participants are asked to consent to our study before starting their experimental runs.

5.5.1.2 Phase 2. Building a Sound Profile

The participants are asked to collect a 10-second recording of their vehicle’s clicking

sound for customizing the front-end app for their car. The detailed steps are presented in

Sec. 5.3.1.

5.5.1.3 Phase 3. Collection of Natural Driving Data

Our user study focuses on capturing the driver’s natural turn-signal usage. We reward

every participant with financial compensation ($20) if s/he can finish the study. All

participants are informed that the study is to understand turn signal usage pattern with

smartphones. To mitigate psychological biases, we stressed that finishing the study is the

only requirement for receiving the reward. All participants are asked to drive naturally

with their smartphone should be placed at a stable position, e.g., a cupholder or windshield

146

mount. No restrictions are imposed on talking during this study. Note that our restriction

do not require anything that may endanger drivers — both comply to the safe driving

guidelines.

5.5.1.4 Phase 4. Data Contextualization

For contextualizing the detection results, we design and deploy a web interface for

visualizing the user’s historical data.

The web interface for this study includes two components: (1) a Google map with pins

for highlighting locations where the driver failed to use the signal for steerings. As shown

in Fig. 5.10 (b), we use red pins for showing bad turn signal usage. (2) a colored bar

chart to show the driver’s statistical results. As shown in Fig. 5.10(c), the height of the

bar represents the number of steering maneuvers made each day. The color of each bar is

mapped from the ratio of the number of good turn signals to all steering maneuvers on that

day. As a result, if the driver has a higher ratio on a day, the bar of that day will be greener;

otherwise, the bar will be red. Drivers can also hover their fingers or cursor over each bar

to get the numerical details. This allow the driver to understand his/her behavioral change

through time.

5.5.1.5 Phase 5. User Survey of TurnsGuard

We designed five question in our post-experiment survey. First, how frequent you drive

and use our app? Second, is TurnsGuard easy to use (on a scale of 1 to 5)? Third,

how useful do you think TurnsGuard can help drivers enhance their attentiveness to turn

signals? Fourth, how do you think (on a scale of 1 to 5) the contextualization channel (web

interface) can improve the driver’s self-awareness of turn-signal usage? Fifth, please share

any of your feedback with us.

147

Right turn Left turn Lane change
Steering maneuver

0.2

0.25

0.3

0.35

0.4

0.45

R
at

io
 o

f t
ur

n
si

gn
al

 u
sa

ge

Figure 5.11: Distribution of users’ turn signal usage pattern.

5.5.2 Results and Insights

According to the answers of the first question, three of five participants have used

TurnsGuard for more than five days, whereas the other two participants have used it for

2–4 days. All participants have, on average, more than 20 minuets driving time per day.

For the second survey question, four out of five participants gave 5 (very easy to use),

three participants explicitly praised (answers for the fifth question) TurnsGuard’s privacy

preservation design after they learned the technical detail of our sound detection process —

it does not collect sound recordings but record only the data related to steering maneuvers.

For the third question, two of the five participants think TurnsGuard helps them enhance

their turn-signal usage by giving a score higher than 3, whereas two participants gave a

score of 2. One participant gave a score of 3 for this question. We will show the result of

the fourth question in Sec. 5.5.2.2.

5.5.2.1 Turn-Signal Usage Pattern

The data collected from our user study includes 572 left turns, 669 right turns, and

118 lane-changes. We first look at the the turn signal usage pattern of all participants

by analyzing the ratio of correct turn-signal usage (i.e., a turn signal is detected for the

corresponding steering maneuver) of different steering maneuvers. As shown in Fig. 5.11,

148

0

0.1

0.2

0.3

0.4

0.5

Tu
rn

 s
ig

na
l r

at
io

1 2 3 4 5 6
Days of usage

0

2

4

6

8

10

12

14

N
um

be
r o

f s
te

er
in

g
m

an
eu

ve
rs

Figure 5.12: Statistical change of the turn-signal usage over time.

the turn signal use ratio of left turns (median = 0.31) shows higher median and lower

variance than that of right turns (median = 0.29). We conjecture this is because left turns

are risker than right turns, and hence drivers pay more attention when they make left turns.

Note that the turn signal ratio of lane changes shows the highest median (0.33) and a

high variance, because different drivers may have very different patterns/habits of turn

signal usage even though drivers are aware of the importance of turn-signal usage during a

lane-change.

5.5.2.2 Users’ Awareness of Turn Signal Usage

According to participants’ answer of the fourth question, three of all five participants

agreed (by giving a score higher than 3) that reviewing the historical data via the colored

bar chart is straightforward and can effectively enhance their self-awareness of turn-signal

usage, while the other two participants gave a score of 2. For the data analytics, after

a user examined his/her performance at the end of day 1 and 3, we can observe (from

Fig. 5.12) improvements of the turn-signal usage ratio after these two days. Although

the improvement is subtle and need longer term experiment to support, it hints that our

intervention (e.g., web interface) may help improve the user’s attentiveness.

Note that, TurnsGuard also allows the app developer to design a stronger intervention

arm for improving the driver’s attentiveness. For example, a real-time alert (e.g., achieved

149

by using the pop-up notification on Android and iOS) can be implemented for reminding

the user of the neglect of the turn signal. The real-time alert functionality can be used in

several mobility apps, including driving coaching and parental control apps, to name just a

few.

5.5.3 Limitations

Based on the user study and participants’ feedback, there are following limitations of

TurnsGuard.

5.5.3.1 Technical Limitations

One participant complained TurnsGuard cannot filter out the turning maneuvers at a

parking lot. This limitation could result in many “bad turns” at a parking lot. To solve

this problem, we plan to filter the parking lot steering maneuvers by using contextual

information, such as smartphone’s GPS speed.

5.5.3.2 Incentivizing Drivers

We currently use financial incentives to attract participants to use TurnsGuard and its

online interfaces. This approach will not scale to a large number of users. An alternative

method for incentivizing users is collaboration with transportation stakeholders who are

interested in the drivers’ attentiveness and/or safety. For example, insurance programs like

UBI reward safe driving with premium discounts.

5.6 Discussion

5.6.1 Beyond Detection of Turn Signals

Knowing whether or not the driver is using the turn signal properly is essential for

various applications. Discussed below are the potential safety-critical information and new

150

research directions that can be enabled by TurnsGuard.

5.6.1.1 1. Analyzing Road Safety with TurnsGuard

As TurnsGuard’s users-base grows and detection data accumulates, we can also gather

data on intersections in a specific area. The collected data by TurnsGuard can be associate

with other traffic information (e.g., local accident report) to evaluate the traffic safety of

that area. Moreover, an intersection with high turn signal usage can be regarded as a

safe intersection, while a turn with low turn-signal usage should be flagged and warned

as unsafe. Meanwhile, outlier turn signal uses can be detected from this information. That

is, a driver making a bad (unsignaled) turn at a high-turn-signal-usage road segment may

indicate dangerous driving, and should be alerted and even penalized.

Furthermore, detection of a large number of outlier turn signal misuses can be an

indication of changes in traffic condition. These abnormalities in data can serve as an

additional feature in traffic monitoring. An area with an abrupt eruption of outlier turn

signal uses should be investigated closely and monitored by the local transportation

department and/or traffic enforcers.

5.6.1.2 2. Detection of Consecutive Misuses of Turn Signals.

A driver makes consecutive turns with/without using turn signals may indicate changes

in his/her driving behavior and condition. Specifically, as a person drives, TurnsGuard

accumulates the data of his/her turns it has detected. We can, therefore, analyze this

accumulated data, which may indicate changes in the person’s driving behavior and

condition. A driver with a bad turns record now making good turns consecutively may

sense improvements in his/her driving. A driver with a good turns records making

consecutive bad turns may indicate his/her careless driving due to something that bothers

him/her, or due to a sudden change in the road/traffic condition.

We can further use this extracted information to improve the effectiveness of our

151

notification system. An improvement in driving behavior should be rewarded with

incentivizing texts, while a worsening driving behavior should be flagged, and prompt

notifications such as ”be wary of careless driving” and ”remember to use turn signals in all

road/traffic conditions”.

5.6.1.3 3. Adaptive/Customized Path Planning with TurnsGuard

Most current research on vehicle navigation focuses on designing increasingly optimal

and efficient algorithms to find the least cost path. The existing cost metrics are mostly

temporal (travel time) or spatial (travel distance) [52]. The lack of driver-specific metrics

makes it difficult to customize current navigation algorithms for individual drivers.

TurnsGuard provides a new cost (behavioral) metric, and enables adaptive and/or

customizable navigation.

The driving data gathered from TurnsGuardmodels the likelihood of correct turn signal

usage, which reflects driving behavior. Moreover, the data can model turn signal usage at

intersections on a specific path. This modeling provides a behavioral metric that navigation

algorithms can optimize a navigation path that matches the modeled driving behavior. This

makes the navigation path not only optimal in spatial and temporal sense, but also adaptive

to the driver.

5.7 Conclusion

We have presented TurnsGuard, the first profiling tool for monitoring and analyzing

the driver’s turn-signal usage by only using commodity smartphones. TurnsGuard is

shown to be able to profile (1) turn-signal usage during steering maneuvers, and (2)

the dynamics of the driver’s steering maneuver. By exploiting these capabilities of

TurnsGuard on the user’s smartphone, our experimental tests and on-road user study

demonstrate TurnsGuard’s capability of studying drivers’ turn-signal usage at a large

scale.

152

CHAPTER VI

Conclusion and Future Directions

6.1 Conclusion

This thesis has demonstrated the feasibility of using ubiquitous sensing and machine

learning to enable a practical feedback loop (as discussed in Chapter I) to benefit the

mobility ecosystem. It has detailed four closely-knit systems — V-Sense (Chapter II),

Dri-Fi (Chapter III), TurnsMap (Chapter IV), and TurnsGuard (Chapter V)that present

accessible, reliable, and usable systems to facilitate seamless HMI.

6.1.1 Accessibility

These four systems can be implemented on off-the-shelf mobile platforms, which

greatly enhances their accessibility of the proposed systems. Compared to other sensory

data (e.g., camera and sound), IMU sensors are universally supported by the vast majority

of mobile devices. Due to the essential roles of IMU sensors in capturing device dynamics,

including quickly emerging augmented reality (AR) applications, these sensors are

unlikely to be replaced in the future. Moreover, the generation of time-series data incurs

low energy and computational overhead even for continuous sensing tasks (i.e., always-on

sensors) as evidenced by our evaluation results.

153

6.1.2 Reliability

As discussed in Chapter I, raw IMU sensor data produced by mobile devices may be

noisy given the devices changing posture (e.g., in a drivers pocket vs. a cupholder) and low

sensor fidelity. Overcoming these obstacles is pivotal to ensuring the reliability of our four

proposed systems.

Data calibration. Data calibration, namely coordinate alignment (see Chapter II), is

important in addressing the varying-posture problem. All of our systems applied coordinate

alignment to users devices (i.e., in the front end) to transform a changing coordinate system

to a fixed earth coordinate system. By doing so, IMU sensor data, such as from gyroscopes,

can be compressed into a one-dimensional data stream from the original three-dimensional

vector (i.e., data that reflect pitch, yaw, and roll axes). Coordinate alignment can also

reduce the data dimension to achieve more efficient data collection and analysis.

Data preprocessing. As shown in these four systems, basic data preprocessing steps (e.g.,

use of a low-pass filter) can alleviate noisy sensor readings, including spikes following

from system glitches. The specific requirements of different applications should also be

considered during data preprocessing. V-Sense and TurnsGuard preprocess IMU data

locally on the users device given the real-time requirements of their design goals; for

example, TurnsGuard must alert the driver on unsignaled steering maneuvers. By contrast,

data processing for Dri-Fi and TurnsMap can be implemented in the cloud because their

data need not be in real-time. As indicated via our evaluations (Chapter III), simplifying

computational tasks on users devices can mitigate the associated energy overhead.

6.1.3 Usability

Usability is an essential feature of our works, as all four systems were motivated,

designed, and evaluated based on practical problems.

Motivation. V-Sense is intended to mitigate cameras limitations in detecting vehicle

steering. Dri-Fi was motivated by the complicated nature of driver identification, which

154

poses a major obstacle to fast-emerging UBI and ride-sharing businesses. TurnsMap was

inspired by the riskiness of unprotected left turns at intersections, which many drivers

reported as a complaint in our user study. With TurnsGuard, we have developed the first

scalable tool to identify the dangerous driving habit of unsignaled steering.

System Design. All our system designs were inspired by real-world observations. For

instance, the strong feature (i.e., the concave shape of a smartphones gyroscope reading)

resulting from interruptions during unprotected left turns (Chapter IV) was discovered

using driving data collected by our V-Sense app. Dri-Fi discovers driver’s steering

maneuver as the behavioral-rich maneuver for characterizing drivers

Evaluation. To ensure the usability of our systems in the real-world, we have evaluated

these four systems with natural driving data gathered from drivers mobile devices while

driving. For example, Dri-Fi uses natural steering data to characterize each drivers driving

pattern. We also split real-world data into control and experimental groups to assess

Dri-Fis performance. In TurnsMap, we split the accumulated driving data at intersections

into training and testing datasets for building machine learning model and evaluating our

system, respectively.

6.2 Future Directions

The four systems presented herein suggest several exciting research directions.

First, with more sophisticated ubiquitous sensors, one could potentially analyze more

sophisticated data. Second, privacy-preserving computing paradigms, including data

collection and analytics, could prevent data misuse and better protect users privacy.

6.2.1 Exploring New Sensor Types

Within the rapidly evolving computing paradigm of advanced mobility technologies,

new accessible sensing modules can generate context-rich data that can be used to infer

more implicit information. This thesis research can be extended by investigating other

155

novel sensor types to enhance mobility systems.

As cars become smarter and more connected, modern vehicles are equipped with

a growing number of electronic control units, many of which can generate rich data

reflecting vehicle dynamics, engine health, and other contextual information. As noted

in Chapter III, the CAN data format is proprietary to OEMs, and reverse engineering

may involve prohibitive time and effort. To address this challenge, LibreCAN [155]

was recently developed to automatically translate most CAN messages. This automated

translator of proprietary data can be used to break the barrier of remote in-vehicle data

access and render car-based data flow transparent to developers. As a short-term task, I

would like to evaluate the feasibility of using translated in-vehicle data to develop new

applications based on reverse-engineered vehicular data.

However, harvesting data from diverse mobility systems remains in its infancy; in the

long term, I plan to continue pursuing this research direction by exploring (a) additional

sensor types (e.g., sensors in roadside infrastructure) and (b) novel applications that can be

enabled by increasingly advanced ubiquitous sensors.

6.2.2 Usable Privacy Model

Another dimension to enhance user privacy will involve studying potential side-channel

information leakage via mobile sensing. Specifically, I plan to investigate what

side-channel information may be leaked by malicious data controllers and/or processors

(as defined in General Data Protection Regulation [80] Article 4). For example, peoples

chosen vehicle types (e.g., a Toyota Prius hybrid car vs. a Ford F-150 pickup truck) contain

information-rich data that may carry implications for various forms of privacy-related

information, such as driver demographics. Existing studies [120, 124], market study [21],

and surveys [11, 16, 50] have also indicated that peoples vehicle choices could reflect their

political stance (e.g., conservative or liberal).

In the long term, I plan to study how to protect users privacy while preserving the

156

usability of novel sensing technologies. This is a challenging task because enhanced

sensing technology could be intrusive, whereas privacy-preserving sensing technologies

may undermine its usability. For example, Dri-Fi and TurnsMap have demonstrated

usability in real-world applications. Although they provide a pathway to various beneficial

applications, we must not overlook how their capabilities (i.e., driver identification and

location tracking) may raise users privacy concerns. To address these concerns, I plan to

investigate a privacy model to protect users privacy by adding noise systematically, such as

use of a differential privacy model [112].

Moving forward, I would like to explore how the seamless HMI can help facilitate the

coexistence between self-driving and human-driven cars. For example, it took humans over

a century to upgrade the mobility ecosystem from horse carriages to the modern motorized

vehicles. This historical transition was a time-consuming and tough process that requires

decades of experiments and adjustments of new technologies/infrastructures, including

vehicle components (e.g., ABS), traffic regulations (e.g., stop signs and traffic lights), road

infrastructure (e.g., roundabout, pedestrians crossing bridge). Seamless HMI can enable

an accessible and scalable data analytics scheme of different mobility systems, i.e., the

feedback loop discussed in Chapter I. This might be able to expedite the transition process

of inventing and/or refining mobility technologies, thus making the future transportation

safer and more efficient.

157

APPENDICES

.1 The Tutorial Page of TurnsMap

(a) Step 1

158

(b) Step 2 & 3

Figure .1: The tutorial for annotators to read before start labeling.

159

BIBLIOGRAPHY

160

BIBLIOGRAPHY

[1] Accelerating the pace of learning. https://medium.com/waymo/accelerating-
the-pace-of-learning-36f6bc2ee1d5.

[2] Amazon mechanical turk requester ui guide. https://docs.aws.amazon.com/
AWSMechTurk/latest/RequesterUI/amt-ui.pdf.

[3] Android fragmentation (august 2015). https://opensignal.com/reports/
2015/08/android-fragmentation/.

[4] Anti-lock braking system. https://en.wikipedia.org/wiki/Anti-
lock braking system#cite note-absfaq-25.

[5] Augmented driving. https://itunes.apple.com/us/app/augmented-
driving/id366841514?mt=8.

[6] Blacksensor on google play. https://play.google.com/store/apps/
details?id=com.chahoo.bsdrive&hl=en.

[7] Bosch BM160 IMU chip data sheet. https://ae-bst.resource.bosch.com/
media/ tech/media/datasheets/BST-BMI160-DS000-07.pdf.

[8] Cellular connection of apple watch 3. https://www.apple.com/watch/
cellular/.

[9] Coverage of google streetview. https://en.wikipedia.org/wiki/
Coverage of Google Street View.

[10] Device for indicating the intended movements of vehicles.

[11] Do You Drive a Liberal Car or Conservative Car? https://baristanet.com/
2012/08/do-you-drive-a-liberal-car-or-conservative-car/.

[12] Drivea app. http://www.drivea.info/.

[13] Fatality analysis reporting system (fars) encyclopedia. http://www-

fars.nhtsa.dot.gov/Main/index.aspx.

[14] The first look inside zooxs mysterious robo-taxi. https://www.bloomberg.com/
news/articles/2017-11-29/the-first-look-inside-zoox-s-

mysterious-robo-taxi.

161

[15] Fox business: Half of drivers don’t use turn signals. https://

www.foxbusiness.com/features/half-of-drivers-dont-use-turn-
signals.

[16] Gallup Poll Analysis: Political Correlates of Car Choice. http:

//news.gallup.com/poll/23230/gallup-poll-analysis-political-
correlates-car-choice.aspx.

[17] Google map enable lane guidance. https://support.google.com/gmm/answer/
3273406?hl=en.

[18] Google’s waze is helping drivers avoid left-hand turns. http://fortune.com/
2016/06/18/google-waze-difficult-intersection/.

[19] Haversine formula. https://en.wikipedia.org/wiki/Haversine formula.

[20] Here hd map. https://www.here.com/en.

[21] Here’s What Really ’Drives’ Democrats And Republicans. https:

//www.forbes.com/sites/jimgorzelany/2016/11/02/heres-what-really-
drives-democrats-and-republicans/#19a7e85e22b8.

[22] Honda, advanced driver-assistive system. http://world.honda.com/news/2014/
4141024Honda-SENSING-Driver-Assistive-System/.

[23] How does google maps calculate your eta? https://www.forbes.com/
sites/quora/2013/07/31/how-does-google-maps-calculate-your-eta/

#e1dc5a3466e2.

[24] How google tracks traffic. https://web.archive.org/web/20140222173908/
http://www.theconnectivist.com/2013/07/how-google-tracks-traffic/.

[25] Intersection design. http://www.deldot.gov/information/
pubs forms/manuals/road design/pdf/revisions062811/

07 Intersections.pdf?100411.

[26] Intersections and right of way. https://www.dmv.org/how-to-guides/
intersections-and-right-of-way.php.

[27] Introduction to the controller area network (can). http://www.ti.com/lit/an/
sloa101b/sloa101b.pdf.

[28] ionroad app. http://www.ionroad.com/.

[29] k nearest neighbor dynamic time warping. http://www.cs.unm.edu/~mueen/
DTW.pdf.

[30] Manual on uniform traffic control devices. https://mutcd.fhwa.dot.gov/pdfs/
2009r1r2/mutcd2009r1r2edition.pdf.

162

[31] Mobileye. http://www.mobileye.com/.

[32] Number of vehicles in operation in the united states between 1st quarter 2017 and 1st
quarter 2019 (in millions). https://www.statista.com/statistics/859950/
vehicles-in-operation-by-quarter-united-states/.

[33] Open data portal for traffic light at intersection. http:

//gisdata-arlgis.opendata.arcgis.com/datasets/
af497e2747104622ac74f4457b3fb73f 2.

[34] Over 1,400 self-driving vehicles are now in testing by 80+ companies across
the us. https://techcrunch.com/2019/06/11/over-1400-self-driving-
vehicles-are-now-in-testing-by-80-companies-across-the-u-s/.

[35] Pew research: Smartphone ownership across the world. http:

//www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-
usage-continues-to-climb-in-emerging-economies/.

[36] Proposed features/turn signals. http://wiki.openstreetmap.org/wiki/
Proposed features/turn signals#Traffic signal only for traffic that turns left.

[37] Road edge and barrier detection with steer assist. https://www.youtube.com/
watch?v=xrLVaWnJmMI.

[38] Safety issues of left turns at intersections. https://www.washingtonpost.com/
news/innovations/wp/2014/04/09/the-case-for-almost-never-

turning-left-while-driving/.

[39] Sleepy behind the wheel? some cars can tell. https://www.nytimes.com/2017/
03/16/automobiles/wheels/drowsy-driving-technology.html.

[40] Statista: Number of connected iot devices across the world. https:

//www.statista.com/statistics/789615/worldwide-connected-iot-
devices-by-type/.

[41] Steering patterns as drowsy indicator. http://www.sae.org/events/gim/
presentations/2012/sgambati.pdf.

[42] Tomtom hd map. https://www.tomtom.com/en us/.

[43] Traffic signal data on data.gov. https://catalog.data.gov/dataset?q=
traffic+lights&sort=none.

[44] Turn left at a traffic light safely. http://drivinginstructorblog.com/turn-
left-traffic-lights/.

[45] Turning radius and intersection size. http://articles.latimes.com/2005/apr/
20/autos/hy-wheel20.

163

[46] Volvo xc90. http://www.volvocars.com/us/cars/new-models/all-new-
xc90.

[47] Waymo tests its self-driving cars in my town. here are the odd things i’ve seen.
https://www.forbes.com/sites/rrapier/2017/11/12/waymo-tests-its-
self-driving-cars-in-my-town-here-are-the-odd-things-ive-seen/

#57a5eb724e4a.

[48] Waymos big ambitions slowed by tech trouble. https://

www.theinformation.com/articles/waymos-big-ambitions-slowed-
by-tech-trouble.

[49] Why ups trucks never turn left. https://www.cnn.com/2017/02/16/world/ups-
trucks-no-left-turns/index.html.

[50] Your cars: politics on wheels. https://www.nytimes.com/2005/04/01/
automobiles/your-car-politics-on-wheels.html.

[51] Turn Signal Flashers, jul 1999.

[52] A real-time vehicle navigation algorithm in sensor network environments. https:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6220254, 2012.

[53] Sound pressure level. https://en.wikipedia.org/wiki/Sound pressure, 2012.

[54] The OpenXC Platform. http://openxcplatform.com/, 2012.

[55] Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated
Driving Systems, jan 2014.

[56] Why dont we use turn signals? https://www.ajc.com/news/why-don-use-
turn-signals/NGYxrMMl05uPJlJrxEiWZP/, 2014.

[57] Allstate mulls selling driver data. https://www.bloomberg.com/news/articles/
2015-05-28/allstate-seeks-to-follow-google-as-ceo-mulls-selling-

driver-data, 2015.

[58] CAN-bus can be encrypted. http://www.eetimes.com/document.asp?doc id=

1328081, 2015.

[59] Car Hacking. https://www.wired.com/2015/03/60-gadget-thatll-make-
car-hacking-easier-ever/, 2015.

[60] Car Insurance for Teen After Accident. https://

www.autoinsurance.org/auto-insurance-for-teens-after-an-accident/
#Factors Influencing Rate Hikes, 2016.

[61] Progressive’s note on excluded drivers. https://www.progressive.com/
glossary/, 2016.

164

[62] Stolen Uber accounts worth more than stolen credit cards. https:

//www.cnbc.com/2016/01/19/stolen-uber-accounts-worth-more-than-
stolen-credit-cards.html, 2016.

[63] TrueMotion – Motioning in a New Wave of Auto Insurance. https:

//medium.com/@TylerCrown/truemotion-motioning-in-a-new-wave-
of-auto-insurance-44ef48e362cb, 2016.

[64] Turn signal neglect is a leading cause of motor vehicle accidents in
the u.s. https://www.shanestafford.com/turn-signal-neglect-causes-
motor-vehicle-accidents/, 2016.

[65] Android foreground service. https://developer.android.com/guide/
components/services, 2017.

[66] Driver Accounts are being Hacked. https://ridesharecentral.com/check-
uber-driver-account-hacked-uber-data-breach-update, 2017.

[67] Fence api overview. https://developers.google.com/awareness/android-
api/fence-api-overview, 2017.

[68] Flaw in CAN bus. https://www.wired.com/story/car-hack-shut-down-
safety-features/, 2017.

[69] German car industry plans to close OBD interface. http://

www.eenewsautomotive.com/news/german-car-industry-plans-close-
obd-interface, 2017.

[70] Grid plan. https://en.wikipedia.org/wiki/Grid plan#United States, 2017.

[71] Nasdaq – Introducting Usage-based Insurance. http://www.nasdaq.com/
article/driving-the-future-of-blockchains-part-four-introducing-

usage-based-insurance-cm818062, 2017.

[72] Pokemon Go Speed Restrictions. https://bgr.com/2017/03/20/pokemon-go-
speed-limit-bypass-trick/, 2017.

[73] Turn signals - common sense and common courtesy. https://

www.transportation.gov/connections/turn-signals-common-sense-
common-courtesy, 2017.

[74] Uber forbid driver account sharing. https://help.uber.com/h/1d93388d-cf19-
408f-9c41-743dbdd34d44/, 2017.

[75] Usage based insurance. https://en.wikipedia.org/wiki/Usage-
based insurance, 2017.

[76] Using oauth 2.0 to access google apis. https://developers.google.com/
identity/protocols/oauth2, 2017.

165

[77] Discussion on Reddit: My postmates driver is different. https://www.reddit.com/
r/postmates/comments/6x23no/driver was someone else/, 2018.

[78] Mckinsey: telematics poised for strong global growth. https://

www.mckinsey.com/industries/automotive-and-assembly/our-insights/
telematics-poised-for-strong-global-growth, 2018.

[79] New Scam Puts Unchecked Rideshare Drivers Behind the Wheel.
https://www.nbcbayarea.com/news/local/new-scam-puts-unchecked-
rideshare-drivers-behind-the-wheel/207917/, 2018.

[80] The EU General Data Protection Regulation (GDPR). https://www.eugdpr.org/,
2018.

[81] Amazon is now making its delivery drivers take selfies. https:

//www.theverge.com/2019/4/19/18507789/amazon-delivery-drivers-
selfies-facial-recognition-fraud-protection-flex-app, 2019.

[82] CNN investigation: 103 Uber drivers accused of sexual assault or abuse.
https://money.cnn.com/2018/04/30/technology/uber-driver-sexual-
assault/index.html, 2019.

[83] Getting to appreciate the unloved turn signal. https://www.nytimes.com/2019/
06/20/smarter-living/use-your-turn-signal.html, 2019.

[84] Java PMML API. https://github.com/jpmml, 2019.

[85] Law Enforcement Struggles to Catch Fraudulent Uber and Lyft Drivers.
https://www.nbcbayarea.com/news/local/bay-legal-uberlyft-scam-
law-enforcement-struggles-to-catch-fraudulent-rideshare-drivers/

6836/, 2019.

[86] They Thought It Was Their Uber. But the Driver Was a Predator.
https://www.nytimes.com/2019/04/04/us/fake-uber-driver-
assaults.html#commentsContainer, 2019.

[87] USAGE-BASED INSURANCE AND TELEMATICS. https://www.naic.org/
cipr topics/topic usage based insurance.htm, 2019.

[88] About Face ID advanced technology. https://support.apple.com/en-us/
HT208108, 2020.

[89] Balanced Accuracy. https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.balanced accuracy score.html, 2020.

[90] Fake Grubhub Driver Charged With Hitting Restaurant Worker With His Car,
Driving Away. https://blockclubchicago.org/2020/05/19/grubhub-
driver-charged-with-hitting-restaurant-worker-with-his-car-

driving-away-police-say/, 2020.

166

[91] Uber safety tips. https://www.uber.com/us/en/ride/safety/tips/, 2020.

[92] Uber to use its selfie tech to verify drivers are wearing masks. https:

//techcrunch.com/2020/05/07/uber-may-use-its-selfie-tech-to-
verify-drivers-are-wearing-masks/#:~:text=The%20driver%20selfie%

20technology%2C%20officially,being%20allowed%20to%20accept%
20fares., 2020.

[93] T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, and X. Zhu. Introduction to Control
Theory And Its Application to Computing Systems, pages 185–215. Springer US,
Boston, MA, 2008.

[94] H. Aly, A. Basalamah, and M. Youssef. Map++: A crowd-sensing system
for automatic map semantics identification. In 2014 Eleventh Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON),
pages 546–554, June 2014.

[95] M. Aly. Real time detection of lane markers in urban streets. In Intelligent Vehicles
Symposium, 2008 IEEE, pages 7–12, June 2008.

[96] K. J. Åström. Challenges in control education. In 7th IFAC Symposium on Advances
in control Education, Madrid, Spain, 2006.

[97] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery, 31(3):606–660, May 2017.

[98] C. Bo, X.-Y. Li, T. Jung, X. Mao, Y. Tao, and L. Yao. Smartloc: Push the limit of the
inertial sensor based metropolitan localization using smartphone. In Proceedings of
the 19th Annual International Conference on Mobile Computing and Networking,
MobiCom’13, 2013.

[99] A. Bouhoute, R. Oucheikh, K. Boubouh, and I. Berrada. Advanced driving
behavior analytics for an improved safety assessment and driver fingerprinting. IEEE
Transactions on Intelligent Transportation Systems, pages 1–14, 2018.

[100] Lane change at intersection in california. http://articles.latimes.com/2005/
apr/20/autos/hy-wheel20.

[101] F. Caron, E. Duflos, D. Pomorski, and P. Vanheeghe. Gps/imu data fusion using
multisensor kalman filtering: introduction of contextual aspects. Information
Fusion, 7(2):221 – 230, 2006.

[102] D. Chen, K.-T. Cho, S. Han, Z. Jin, and K. G. Shin. Invisible sensing of vehicle
steering with smartphones. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’15, pages
1–13. ACM, 2015.

167

[103] D. Chen, K.-T. Cho, and K. G. Shin. Mobile imus reveal driver’s identity from
vehicle turns. arXiv preprint arXiv:1710.04578, 2017.

[104] D. Chen and K. G. Shin. Turnsmap: Enhancing driving safety at intersections
with mobile crowdsensing and deep learning. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., 3(3):78:1–78:22, Sept. 2019.

[105] H. Chin, H. Zabihi, S. Park, M. Y. Yi, and U. Lee. Watchout: Facilitating safe
driving behaviors with social support. In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems, CHI EA ’17, pages
2459–2465, New York, NY, USA, 2017. ACM.

[106] C. Corbett, J. Alexis, and L. Watkins. Who’s driving you? In Consumer
Communications & Networking Conference (CCNC), 2018 15th IEEE Annual, pages
1–4. IEEE, 2018.

[107] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-supervised
monocular road detection in desert terrain. In Proceedings of Robotics: Science and
Systems, Philadelphia, USA, August 2006.

[108] J. Dai, J. Teng, X. Bai, Z. Shen, and D. Xuan. Mobile phone based drunk driving
detection. In International Conference on Pervasive Computing Technologies for
Healthcare (PervasiveHealth), pages 1–8, March 2010.

[109] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR 2009, pages 248–255. Ieee, 2009.

[110] P. Di Lena, S. Mirri, C. Prandi, P. Salomoni, and G. Delnevo. In-vehicle human
machine interface: An approach to enhance eco-driving behaviors. In Proceedings
of the 2017 ACM Workshop on Interacting with Smart Objects, SmartObject ’17,
pages 7–12. ACM, 2017.

[111] M. Diaz-Cabrera, P. Cerri, and P. Medici. Robust real-time traffic light detection
and distance estimation using a single camera. Expert Systems with Applications,
42(8):3911 – 3923, 2015.

[112] C. Dwork. Differential privacy. In 33rd International Colloquium on Automata,
Languages and Programming, part II (ICALP 2006), volume 4052, pages 1–12,
Venice, Italy, July 2006. Springer Verlag.

[113] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno. Automobile driver fingerprinting.
In Proceedings on Privacy Enhancing Technologies, pages 34–50, 2016.

[114] M. Ester, H. peter Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. pages 226–231. AAAI
Press, 1996.

[115] N. Fairfield and C. Urmson. Traffic light mapping and detection. In 2011 IEEE
International Conference on Robotics and Automation (ICRA), 2011.

168

[116] B. Friedland. Treatment of bias in recursive filtering. IEEE Transactions on
Automatic Control, 14(4):359–367, Aug 1969.

[117] K. Gade. The seven ways to find heading. The Journal of Navigation,
69(5):955–970, 2016.

[118] J. Galbally, S. Marcel, and J. Fierrez. Image quality assessment for fake biometric
detection: Application to iris, fingerprint, and face recognition. IEEE Transactions
on Image Processing, 23(2):710–724, 2014.

[119] R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: current state and future
challenges. IEEE Communications Magazine, 49(11):32–39, November 2011.

[120] T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, E. L. Aiden, and L. Fei-Fei.
Using deep learning and google street view to estimate the demographic makeup
of neighborhoods across the united states. Proceedings of the National Academy of
Sciences, 114(50):13108–13113, 2017.

[121] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

[122] I. Google. Battery historian. https://github.com/google/battery-
historian, 2017.

[123] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 6645–6649, May 2013.

[124] D. M. Gromet, H. Kunreuther, and R. P. Larrick. Political ideology affects
energy-efficiency attitudes and choices. Proceedings of the National Academy of
Sciences, 110(23):9314–9319, 2013.

[125] J. A. Gubner. Probability and random processes for electrical and computer
engineers. Cambridge University Press, 2006.

[126] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. IEEE
Intelligent Systems, 24(2):8–12, 2009.

[127] D. Hallac, A. Sharang, R. Stahlmann, A. Lamprecht, M. Huber, M. Roehder, R. Sosi,
and J. Leskovec. Driver identification using automobile sensor data from a single
turn. In 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), pages 953–958, Nov 2016.

[128] K. A. Hallgren. Computing inter-rater reliability for observational data: an overview
and tutorial. Tutorials in quantitative methods for psychology, 8(1):23, 2012.

[129] M. Hermans and B. Schrauwen. Training and analysing deep recurrent neural
networks. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26, pages
190–198. Curran Associates, Inc., 2013.

169

[130] S. Hetrick. Examination of driver lane change behavior and the potential
effectiveness of warning onset rules for lane change or “side” crash avoidance
systems, 1997.

[131] M. Hirabayashi, A. Sujiwo, A. Monrroy, S. Kato, and M. Edahiro. Traffic light
recognition using high-definition map features. Robotics and Autonomous Systems,
111:62–72, 2019.

[132] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[133] J.-H. Hong, B. Margines, and A. K. Dey. A smartphone-based sensing platform
to model aggressive driving behaviors. In Proceedings of the 32nd Annual ACM
Conference on Human Factors in Computing Systems, CHI ’14, pages 4047–4056,
New York, NY, USA, 2014. ACM.

[134] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher. Smartroad: Smartphone-based
crowd sensing for traffic regulator detection and identification. ACM Transactions
on Sensor Network, 11(4), July 2015.

[135] S. Jha. Characteristics and sources of noise and vibration and their control in motor
cars. Journal of Sound and Vibration, 47(4):543 – 558, 1976.

[136] D. Johnson and M. Trivedi. Driving style recognition using a smartphone as a sensor
platform. In International IEEE Conference on Intelligent Transportation Systems
(ITSC), pages 1609–1615, Oct 2011.

[137] C. J. Kahane and J. N. Dang. The long-term effect of abs in passenger cars and ltvs.
Technical report, National Highway Traffic Safety Administration, 2009.

[138] G. Kar, S. Jain, M. Gruteser, J. Chen, F. Bai, and R. Govindan. Predriveid: pre-trip
driver identification from in-vehicle data. In Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, page 2. ACM, 2017.

[139] Y. Kim. Convolutional neural networks for sentence classification. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

[140] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR,
2014.

[141] B. I. Kwak, J. Woo, and H. K. Kim. Know your master: Driver profiling-based
anti-theft method. In Privacy, Security and Trust (PST), pages 1040–1045, June
2016.

[142] Z. C. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent neural
networks for sequence learning. CoRR, abs/1506.00019, 2015.

170

[143] L. Liu, H. Li, J. Liu, C. Karatas, Y. Wang, M. Gruteser, Y. Chen, and R. P. Martin.
Bigroad: Scaling road data acquisition for dependable self-driving. In Proceedings
of the 15th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’17, 2017.

[144] X. Liu, H. Mei, H. Lu, H. Kuang, and X. Ma. A vehicle steering recognition system
based on low-cost smartphone sensors. Sensors, 17(3):633, 2017.

[145] M. V. Ly, S. Martin, and M. M. Trivedi. Driver classification and driving style
recognition using inertial sensors. In 2013 IEEE Intelligent Vehicles Symposium
(IV), pages 1040–1045, June 2013.

[146] F. Martinelli, F. Mercaldo, A. Orlando, V. Nardone, A. Santone, and A. K. Sangaiah.
Human behavior characterization for driving style recognition in vehicle system.
Computers & Electrical Engineering, 2018.

[147] E. Massaro, C. Ahn, C. Ratti, P. Santi, R. Stahlmann, A. Lamprecht, M. Roehder,
and M. Huber. The car as an ambient sensing platform [point of view]. Proceedings
of the IEEE, 105(1):3–7, 2017.

[148] T. Menard, J. Miller, M. Nowak, and D. Norris. Comparing the gps capabilities of
the samsung galaxy s, motorola droid x, and the apple iphone for vehicle tracking
using freesim mobile. In IEEE Intelligent Transportation Systems (ITSC), pages
985–990, 2011.

[149] C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, K. Takeda, and F. Itakura.
Driver modeling based on driving behavior and its evaluation in driver identification.
Proceedings of the IEEE, 95(2):427–437, Feb 2007.

[150] L. K. Nandam and T. D. Hess. Dynamic change of left turn phase sequence between
time-of-day patterns-operational and safety impacts. Institute of Transportation
Engineers, 2000.

[151] S. Narain, T. Vo-Huu, K. Block, and G. Noubir. Inferring User Routes and Locations
Using Zero-permission Mobile Sensors. In IEEE Symposium on Security and
Privacy, May. 2016.

[152] S. Nowak and S. Rüger. How reliable are annotations via crowdsourcing: a study
about inter-annotator agreement for multi-label image annotation. In Proceedings of
the international conference on Multimedia information retrieval, pages 557–566.
ACM, 2010.

[153] M. Pal. Random forest classifier for remote sensing classification. International
Journal of Remote Sensing, 26(1):217–222, 2005.

[154] V. M. Patel, R. Chellappa, D. Chandra, and B. Barbello. Continuous user
authentication on mobile devices: Recent progress and remaining challenges. IEEE
Signal Processing Magazine, 33(4):49–61, July 2016.

171

[155] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and K. G. Shin.
Librecan: Automated can message translator. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19, pages
2283–2300, New York, NY, USA, 2019. ACM.

[156] R. Ponziani. Turn signal usage rate results: A comprehensive field study of 12,000
observed turning vehicles. SAE International Paper, 2012-01-0261, 2012.

[157] H. Qiu, J. Chen, S. Jain, Y. Jiang, M. McCartney, G. Kar, F. Bai, D. Grimm,
M. Gruteser, and R. Govindan. Towards robust vehicular context sensing. IEEE
Transactions on Vehicular Technology, PP(99):1–1, 2017.

[158] L. Rabiner. On the use of autocorrelation analysis for pitch detection. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 25(1):24–33, 1977.

[159] A. Riener and A. Ferscha. Supporting implicit human-to-vehicle interaction: Driver
identification from sitting postures. In The first annual international symposium on
vehicular computing systems (isvcs 2008), page 10, 2008.

[160] E. Shi, Y. Niu, M. Jakobsson, and R. Chow. Implicit authentication through learning
user behavior. In Proceedings of the 13th International Conference on Information
Security, ISC’10, pages 99–113, Berlin, Heidelberg, 2011. Springer-Verlag.

[161] C. Sousedik and C. Busch. Presentation attack detection methods for fingerprint
recognition systems: a survey. IET Biometrics, 3(4):219–233, 2014.

[162] F. Tahmasbi, Y. Wang, Y. Chen, and M. Gruteser. Poster: Your phone tells us the
truth: Driver identification using smartphone on one turn. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, MobiCom
’18, pages 762–764, 2018.

[163] T. Tanaka, K. Fujikake, Y. Yoshihara, T. Yonekawa, M. Inagami, H. Aoki, and
H. Kanamori. Driving behavior improvement through driving support and review
support from driver agent. In Proceedings of the 6th International Conference on
Human-Agent Interaction, HAI ’18, pages 36–44, New York, NY, USA, 2018. ACM.

[164] B. C. Tefft. American driving survey: 2015-2016. (research brief), 2018.

[165] T. Toledo and D. Zohar. Modeling duration of lane changes. Transportation
Research Record, 1999(1):71–78, 2007.

[166] Traffic lane. http://en.wikipedia.org/wiki/Lane.

[167] G. Turin. An introduction to matched filters. IRE transactions on Information
Theory, 6(3):311–329, 1960.

[168] Turning radius. http://en.wikipedia.org/wiki/Turning radius.

[169] B. Wang, S. Panigrahi, M. Narsude, and A. Mohanty. Driver identification using
vehicle telematics data. In SAE Technical Paper. AE International, 2017.

172

[170] Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and R. P. Martin. Sensing vehicle
dynamics for determining driver phone use. In Proc. of ACM MobiSys. ACM, 2013.

[171] M. Weiser, R. Gold, and J. S. Brown. The origins of ubiquitous computing research
at parc in the late 1980s. IBM Systems Journal, 38(4):693–696, 1999.

[172] J. S. Wijnands, J. Thompson, G. D. Aschwanden, and M. Stevenson. Identifying
behavioural change among drivers using long short-term memory recurrent neural
networks. Transportation Research Part F: Traffic Psychology and Behaviour, 53:34
– 49, 2018.

[173] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics
and intelligent laboratory systems, 2(1-3):37–52, 1987.

[174] J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu, H. Liu, N. Cecan, Y. Chen,
M. Gruteser, and R. P. Martin. Sensing driver phone use with acoustic ranging
through car speakers. IEEE Transactions on Mobile Computing, 11(9):1426–1440,
Sept 2012.

[175] T. Yang. Networked control system: a brief survey. IEE Proceedings - Control
Theory and Applications, 153:403–412(9), July 2006.

[176] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher. Deepsense: A unified deep
learning framework for time-series mobile sensing data processing. In Proceedings
of the 26th International Conference on World Wide Web, WWW ’17, pages
351–360, Republic and Canton of Geneva, Switzerland, 2017. International World
Wide Web Conferences Steering Committee.

[177] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in
deep neural networks? In NIPS, 2014.

[178] C.-W. You, N. D. Lane, F. Chen, R. Wang, Z. Chen, T. J. Bao, M. Montes-de Oca,
Y. Cheng, M. Lin, L. Torresani, and A. T. Campbell. Carsafe app: Alerting drowsy
and distracted drivers using dual cameras on smartphones. In Proc. of ACM MobiSys.
ACM, 2013.

[179] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell. Bdd100k:
A diverse driving video database with scalable annotation tooling. arXiv preprint
arXiv:1805.04687, 2018.

[180] C. Zhang, M. Patel, S. Buthpitiya, K. Lyons, B. Harrison, and G. D. Abowd. Driver
classification based on driving behaviors. In Proceedings of the 21st International
Conference on Intelligent User Interfaces, IUI ’16, pages 80–84, New York, NY,
USA, 2016. ACM.

[181] P. Zhou, M. Li, and G. Shen. Use it free: Instantly knowing your phone attitude. In
Proc. of ACM Mobicom. ACM, 2014.

173

