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ABSTRACT

The average American spends around at least one hour driving every day. During

that time the driver utilizes various sensors to enhance their commute. Approximately

77% of smartphone users rely on navigation apps daily. Consumer grade OBD dongles

that collect vehicle sensor data to monitor safe driving habits are common.

Existing sensing applications pertaining to our drive are often separate from each

other and fail to learn from and utilize the information gained by other sensing streams

and other drivers. In order to best leverage the widespread use of sensing capabilities,

we have to unify and coordinate the different sensing streams in a meaningful way.

This dissertation explores and validates the following thesis: Sensing the same

phenomenon from multiple perspectives can enhance vehicle safety, secu-

rity and transportation.

First, it presents findings from an exploratory study on unifying vehicular sen-

sor streams. We explored combining sensory data from within one vehicle through

pairwise correlation and across multiple vehicles through normal models built with

principal component analysis and cluster analysis. Our findings from this exploratory

study motivated the rest of this thesis work on using sensor redundancy for CAN-bus

injection detection and driving hazard detection.

Second, we unify the phone sensors with vehicle sensors to detect CAN-bus in-

jection attacks that compromise vehicular sensor values. Specifically, we answer the

question: Are phone sensors accurate enough to detect typical CAN-bus injection at-

tacks found in literature? Through extensive tests we found that phone sensors are

sufficiently accurate to detect many CAN-bus injection attacks.

Third, we construct GPS trajectories from multiple vehicles nearby to find sta-

xvi



tionary and mobile driving hazards such as a pothole or a bicyclist on the side of the

road. Such a tool will effectively extend the coverage of current navigation assistant

applications such as Google Maps which detect and warn drivers about upcoming

stationary hazards.

Finally, we present an easy-to-use tool to help developers and researchers quickly

build and prototype data-collection apps that naturally exploit sensing redundancy.

Overall, this thesis provides a unified basis for exploiting sensing redundancy

existing inside a single vehicle as well as between different vehicles to enhance driving

safety and security.
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CHAPTER I

Introduction

1.1 Background

Our daily driving commute is heavily augmented with sensor data from our phones

and the vehicle’s internal sensors. Navigation apps direct our routes, steer us away

from traffic, and warn us of upcoming speed traps. The vehicle monitors its own

internal state to warn if there is something wrong with the engine or if the fuel level

is low. There are many commercially available OBD-dongles which provide statistics

such as our driving score [6, 101].

These sensing streams remain largely isolated from each other. We can provide

more useful functionality if we unify the different sensing modalities and integrate

them with neighboring cars. Successful applications of this kind of information shar-

ing have proven to be very useful in traffic prediction; over 77% of smartphone users

regularly use navigation apps [66]. By exploiting this spatio-temporal redundancy of

sensing information, we can enhance our daily lives.

In this thesis, we apply sensing redundancy to solve problems in two different

domains — CAN-bus injection detection and driving hazard detection. Furthermore,

we created a data collection app builder which makes it very easy for researchers

and developers to launch data collection campaigns which take advantage of these

naturally-existing redundancies. The following sections summarize the background
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and state of the art in these domains.

1.2 CAN-bus Injection

The most widely-studied form of vehicular cyber-attack is CAN-bus injection [69,

57, 46]. The CAN-bus is a broadcast-only bus connecting different electronic compo-

nents within the vehicle. By design, it doesn’t have sender authentication and uses a

very simple distributed medium-access protocol. This makes the CAN bus vulnerable

to injection and spoofing attacks. An attacker would first gain access to the CAN bus

through a variety of local or remote methods. Checkoway et al. [14] identified many

such entry points to the CAN bus, even including a malicious file on a CD that is

played through the infotainment system. The malicious file flashes a new firmware to

the infotainment ECU which gives the attacker the ability to read and write to the

CAN bus. Once the attacker has write access to the CAN bus, they have the ability

to cause damage by spoofing falsified sensor readings. For example, in one attack

demonstrated in [68], an attacker triggered the Park Assist system while the car is

moving by falsifying multiple sensor values over the CAN bus.

1.2.1 CAN-bus Traffic Monitoring

One approach to detecting and defending against CAN-bus injection attacks is

to monitor the CAN bus traffic and identify any abnormal patterns. These solutions

model the normal behavior using various statistics of CAN-bus packets. For example,

Müter et al. [72] uses CAN-bus entropy and Cho and Shin [20] use inter-packet arrival

time to model normal behavior. In the presence of an attack, the CAN bus would

exhibit abnormal behavior as the attack attempts to flood the bus with spoofed

packets. Some other solutions propose the use of cryptography in the CAN bus to

prevent injection attacks [43]. These solutions are thwarted by the attacker modifying

the attacked CAN traffic to mimic the realistic CAN traffic. In fact, attacks such as
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the Bootrom attack discussed in [68] change the CAN bus traffic to mimic realistic

traffic patterns.

1.2.2 Additional Hardware

Commercial vehicular intrusion detection systems often propose adding new com-

ponents inside the vehicle for IDS purposes [4, 89, 98]. These solutions require deep

integration into the vehicle which often increase the cost for the consumer. This

would be undesirable for all parties involved. Furthermore, they fail to exploit the

redundancy already present such as other vehicles or the user’s smartphone.

1.2.3 Modeling Specific Subsystems

Another class of systems detect CAN-bus intrusion by modeling sub-components

of the vehicle — Cho et al. [21] modeled the acceleration brake response of a vehicle

to detect compromised brake-by-wire systems and Wasicek and Weimerskirch [107]

modeled the engine torque response to detect chip tuning attacks — or by modeling

certain properties of the vehicle over road segments — Agamennoni et al. [2] modeled

the normal trajectory of vehicles and Jiang et al. [51] predict speed and traffic given

road-related properties. These methods all rely on in-vehicle information. If an

attacker has the ability to perform CAN-bus injection, they also have the ability to

spoof multiple sensor values in agreement with the model thereby evading detection.

We propose a solution for CAN-bus injection detection that overcomes these lim-

itations. Our solution uses information from the near-ubiquitous smartphones and

therefore provides an external source of knowledge to verify the sensors broadcast

within the vehicle.
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1.3 Detecting Stationary and Mobile Driving Hazards

Unseen and surprising hazards on the road lead to fatal accidents. There were

5,977 pedestrian deaths in 2017 in traffic accidents [27]. Early warning of upcoming

hazards will bring the driver’s attention to the road and help reduce such accidents.

A driving hazard can be stationary (e.g., stopped car), slow moving (e.g., pedestrian)

or even fast-moving objects (e.g., a reckless drunk driver).

Most existing work focuses on detecting stationary hazards on the road. Commer-

cial applications like Google Maps or Waze notify the driver of an upcoming stopped

car or a speed trap. Academic works also use IMU and GPS data to detect stationary

landmarks such as potholes [32, 91], speed bumps [3, 52, 7] or unprotected turns [16].

However these methods fail to detect moving hazards such as pedestrians, which has

led to thousands of pedestrian deaths in 2017 [27].

Other mobile hazards such as pedestrians or animals on the road do not actively

transmit their location therefore it is impossible to directly collect data from these

hazards in order to warn future drivers. They must be inferred through sensors. Us-

ing a camera or other vision-based sensors is currently the best way to detect these

hazards on the road. However, this is limited to vehicles equipped with these sophis-

ticated sensors and has its own challenges such as bad weather conditions occluding

the view.

A reckless driver is also a mobile hazard to other well-behaved drivers on the road.

Existing work on detecting dangerous drivers use in-vehicle data [45, 67, 117, 104, 116,

107], smartphone data [45, 113, 60, 61, 18], camera data [104, 61, 112, 96, 53] or GPS

trajectories from the reckless driver’s vehicle [115, 111, 47, 2, 78]. These methods fail

to detect the reckless driver if they disable the data collection mechanism. Ideally, we

need a method that can detect such driving hazards, whether stationary or mobile,

without requiring their explicit participation.

We propose a system that detects and tracks mobile driving hazards using only
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the GPS trajectories of nearby vehicles. This takes advantage of the near ubiquitous

GPS samples and can track stationary and mobile sensors even if they are not actively

broadcasting their location.

1.4 Vehicular Data Collection Platforms

Vehicular research spans a diverse set of areas including driver monitoring [87,

54, 96], road anomaly detection [32, 3, 103], and vehicular security [72, 49, 68].

Due to the lack of a very flexible reconfigurable data collection builder, most of

these researchers build their own data collection tools. This is a high barrier of

entry for non-technical researchers who would like to enter this field and investigate

vehicle-related research questions. Furthermore, since platforms are built for a specific

purpose, they often lack the flexibility to take advantage of redundant ways to measure

the same information.

Most data collection apps have similar requirements. They must all first access

and process low level sensor data from the vehicle or the phone. This requires under-

standing how to interface with different hardware devices and consolidating all the

information in one place. Next they often need to upload the data to a remote server

for later processing, and handle user management of the uploaded data. In many

cases, the data needs to be communicated between multiple aspects of the applica-

tion that is deployed on the user’s phone. A general data collection platform needs

to address these requirements.

We present an overview of the current state of vehicular data collection platforms

below.

1.4.1 Specialized Data Collection

Certain use cases require custom-built data collection tools and therefore cannot

be automated with a general, configurable tool builder. For instance, the IVBSS
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study [42] requires data from modified Honda Accords and Bender et al. [8] require

integration with the vehicle’s LiDAR and other sensors. Other data collection plat-

forms require adding sensors to vehicles. The Safety Pilot Model Deployment [10]

outfits cars with a DSRC antenna, an aftermarket safety device, and sometimes with

a MobileEye camera [100]. CANOPNR [95] is an OBD-II data logger built using Ar-

duino that can run local processing and offload the data to the cloud. This platform

was used to study slippery road conditions [30]. BigRoad [64] uses an easy-to-deploy

data collection platform [63] consisting of an IMU sensor attached to steering wheel

angle and a smartphone app. These research undertakings require a heavy engineering

effort and custom platforms to suit their special needs.

1.4.2 General Data Collection

Other vehicular research efforts can benefit from a general data collection builder

tool. For instance, SenseMyCity [84] is a crowd-sourcing mobile platform that collects

data from the smartphone and the vehicle through the OBD-II port. This has been

used to study city-wide fuel consumption [83] and the mental state of bus drivers [85].

Chen et al. [17] built V-Sense, which uses smartphone-based sensing to detect steering

maneuvers. Walhstörm et al. [103] include many such examples in their survey. These

investigations can be expedited by the existence of a simple data collection tool builder

that can be configured to meet their specific needs. This would enable non-technical

researchers to undertake similar research projects.

1.4.3 Reusable Data Collection Platforms

There are a few notable platforms that have been re-used across multiple inves-

tigations. The CarTel hardware data collection platform [48] was customized with

additional sensors and used in several follow-up works [31, 71, 32, 97]. However, this

platform wasn’t designed to be easily extended to additional use cases and must be
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manually modified for each investigation. In contrast, we develop a data collection

builder that is extensible for future required functionality.

Sensibility Testbed [82] has a web interface through which researchers can sub-

mit their data collection tasks. It automatically deploys the task to users who have

installed the Sensibility Testbed app. This tool makes it very easy to do data col-

lection, however it does not allow for developers to prototype any real-time custom

functionality on top of the data collection platform.

To meet these needs and facilitate vehicular research, we present a tool that can

be used to rapidly build data collection apps.

1.5 Thesis Contributions

In this dissertation we unify multiple sensing streams to the advantage of vehicular

safety and security. Each chapter of this dissertation contributes towards the following

thesis statement:

Sensing the same phenomenon from multiple perspectives can

enhance vehicle safety, security and transportation.

1.5.1 Exploratory Analysis of OBD-Sensor Redundancy

I started my exploration into sensor redundancy by investigating the sensors inside

the vehicle, often broadcast on the internal communication network. Working with a

dataset of 117 drivers, we had access to numerous vehicular sensors sampled at 100

ms for thousands of miles of driving. We use three different techniques to explore

relationships between this data.

First, we explored pairwise correlation between sensors within a vehicle, and ap-

plied that to CAN-bus injection detection. Natural redundancy occurs when the

same physical phenomenon causes related effects across multiple sensors. For in-

7



stance, pressing the accelerator pedal causes the engine to pump faster and increases

the speed of the vehicle. Engine RPM and vehicle speed respond in a related fashion

to the same cause, the accelerator pedal. We use pairwise correlation to study this

effect. We found that there is usually very high variation in pairwise correlation,

but if we restrict by context, this variation drops. We show that it can be useful to

detect some forms of CAN-bus injection but isn’t sufficient or a precise-enough tool

in general. This exploration lays the groundwork and gives rise to CarSec, presented

in a later chapter.

Next we model the normal behavior of sensors across vehicles in the same road

segment. We start with the hypothesis that as vehicles drive over the same road

segment, some of the sensors must react the same way to adapt to the geometric

constraints of the road. For example, the steering wheel must roughly match the

road curvature. We model this normal behavior on many sensors from the IVBSS

dataset using Principal Component Analysis (PCA) and Cluster Analysis (CA). These

techniques find patterns in an unsupervised way and detect anomalies. Using these on

the vast dataset, we find that in a set of manually-labeled anomalous cases, PCA and

CA tend to find them as anomalous as well. Furthermore, PCA and CA are helpful in

isolating a small set of cases that seem suspicious or anomalous. Manually inspecting

those further helps us identify 12 cases of anomalous cases which were missed in

earlier analysis of this dataset. On the other hand, PCA and CA often flag many

additional cases as anomalous and cause false positives. These findings motivate the

development of Ubi, an automatic and more precise way to detect anomalies on the

road, presented in a later chapter.

1.5.2 CarSec: Using Smartphones as Car Security Assistants

Smartphones have increasingly sophisticated sensing capabilities and are ubiqui-

tous. This gives us a unique opportunity to leverage them for car-security purposes.
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In this work, we explore the hypothesis that smartphones can be used for de-

tecting CAN-bus injection attacks. We built a system called CarSec that uses three

smartphone sensors (magnetometer, IMU and GPS) to estimate six vehicular sensors

(speed, steering wheel angle, change in odometer, change in fuel level, gear and en-

gine RPM). By using smartphones for this purpose, we augment car-security at no

additional cost and introduce an external source of information from the car sensors.

In order to answer the hypothesis, we perform two evaluations. Firstly, we imple-

mented vehicle-estimation algorithms and measured their accuracy in a wide range

of scenarios. We collected over 900 miles of driving for many different cars and use

cases. We measured the accuracy of the vehicle estimation algorithms under such

conditions and showed that it is, indeed, quite accurate.

Secondly, we answered the question: How significant are CAN-bus injection at-

tacks? We surveyed CAN bus injection papers and characterized the types and mag-

nitude of common attacks. We evaluated the estimation algorithms of CarSec against

these attacks to show the strengths and limitations of using smartphones to detect

CAN-bus injection attacks.

1.5.3 Ubi: Using GPS Trajectories to Detect Driving Hazards

Navigation apps that use GPS to provide services are in widespread use. One study

found that 77% of users regularly use navigation apps during their commutes [66].

In addition to navigation functionality, these applications report upcoming objects of

interest such as a stopped car or a speed trap. Currently these reports are limited

to stationary obstacles and cannot report the presence of mobile hazards such as a

bicyclist on the side of the road or a reckless driver.

Detection of dangerous mobile hazards is difficult to achieve. The most common

approach is through direct sensing such as with a camera or a LiDAR. This requires

sophisticated computer vision and tracking, which is lacking in most older vehicles.
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Other approaches to detect dangerous drivers often require collecting GPS or IMU

data from the hazard in question. This becomes impossible if the mobile hazard (e.g.

an elusive reckless driver) purposefully disables the data collection or if the mobile

hazard naturally doesn’t collect any data (e.g. an animal on the road).

In this chapter, we address the problem of detecting mobile driving hazards. The

main intuition behind our approach is to model the behavior of vehicles around the

mobile driving hazard. For example, when approaching a bicyclist, cars tend to swerve

out of the way to avoid a collision. Someone driving up to the same location a few

minutes later will get an early warning that there is a bicyclist nearby and will receive

the estimated distance.

We detect hazards by modeling their location as a three-dimensional graph of

location (lat/lng) and time. As drivers sight the mobile hazard, we mark a node in

the 3D graph, and then simulate their location forward in time based on the likely

mobility of that hazard. As future cars approach this hazard, we use this predicted

location to warn other drivers of upcoming hazards.

1.5.4 CAB: On-Demand Vehicular Data Collection Builder

Vehicular research often requires building vehicular data collection applications.

Researchers tend to implement their own data collection platform for their specific

purposes. This creates a large barrier of entry for non-technical researchers and re-

sults in wasted effort as even technical researchers sometimes duplicate their efforts.

In this work, we built a data collection app builder which allows researchers with-

out programming expertise to quickly build and launch their own data collection

platforms.

Our data collection app builder, called CAB, defines information (data types about

users) and algorithms (implementations that produce that information). These def-

initions are language and platform-independent which allows us to define multiple
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redundant algorithms that may produce the same information. This allows decen-

tralized development of algorithms by multiple developers as long as they adhere to

the agreed-upon interface. We develop CAB and use it to build three collection apps

to show its expressivity and flexibility.
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CHAPTER II

Exploration in Leveraging OBD-Sensor

Redundancy Within and Across Vehicles

2.1 Introduction

The vehicular CAN bus exposes numerous sensors about the vehicle state. A

sophisticated vehicle may also measure the outside such as the outside temperature or

the atmospheric pressure. In particular we explored three different ways of combining

the vehicular sensor data in order to gain increased functionality. This study is

an exploratory look at redundancy of different sensors within the same vehicle and

sensors across multiple vehicles.

2.1.1 IVBSS Dataset

All of our experiments were done on the Integrated Vehicle-Based Safety System

(IVBSS) database collected by the University of Michigan Transportation Research

Institute (UMTRI) [42]. IVBSS contains diverse data collected from 117 drivers

between April 2009 and May 2010 in Southeast Michigan. The purpose of this study

was to evaluate the impact of collision avoidance and other safety systems on driver

behavior. 16 vehicles (Honda Accord) were distributed to 117 drivers for 6 weeks and

extensive data was collected from each vehicle. The vehicles were equipped with a
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Sensors on the CAN bus
Sensor Units

→ Vehicle speed m/sec
Acceleration pedal %
→ Steering wheel deg

Brake On or Off
→ Throttle and Target Throttle %

Coolant temperature deg C
→ Engine speed rpm

→ Master cylinder pressure kpa
Intake temperature deg C

→ Gear 1-7
IMU/GPS sensors
Sensor Units

GPS speed m/sec
→ Acceleration in X, Y and Z m/s2

→ Yaw, Pitch and Roll deg
Yaw rate, Pitch rate, and Roll rate deg/sec

Table 2.1: IVBSS data sources used in our experiments. All sensors were used when
calculating the pairwise correlation and the rows marked with a → were used in
creating normal models per-drivers.

data acquisition system (DAS) and a custom-designed CAN bus for the purpose of

the study. Details of the DAS and data sources are provided in [88].

2.1.2 Exploratory Methods Overview

I explored the relationship between sensors using the three exploratory methods

summarized in Fig. 2.1.

Correlation. First I used Pearson’s pairwise correlation coefficient to study the

relationship between sensors in the same vehicle. The Pearson’s correlation coefficient

is defined as cov(X, Y )/(σ(X)σ(Y )) where σ is the standard deviation and cov is the

covariance of the two. I observed that multiple vehicle sensors seem correlated and

are caused by similar physical phenomenon. If we find a strong correlation coefficient,

we can use the value of one sensor to detect if the second one is malfunctioning or is

compromised.
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Figure 2.1: Three different approaches summarized. Each approach was well suited
for finding certain kinds of similarities between data. Pairwise correlation found
relationships across different kinds of sensor data. CA and PCA modeled normal
behavior for same kind of sensor data across vehicles. The highlighted line for CA
and PCA are time-series examples which would be marked as anomalous using that
approach. Each approach is described in more detail in their respective section below.

Application: CAN-bus injection attacks. The target application for this

approach was to detect CAN-bus injection attacks which might compromise one of

the sensors. If the correlation significantly differs from the normal case, then we can

detect the attack.

Cluster Analysis (CA). Next we explored using cluster analysis to model the

normal behavior of sensors across vehicles. In this approach, we collected multiple

instances of the sensor value for the same road segment. We applied DBSCAN and

K-Means to find the optimal cluster which maximizes the silhouette score. In some

cases, this approach helped us identify multiple distinct clusters corresponding to

different types of behavior (e.g. turning left or turning right).

Principal Component Analysis (PCA). We also used principal component

analysis to find normal behavior models across vehicles. Similar to the previous

approach, we collected multiple instances of the same sensor from different vehicles

over the same road segment. In contrast to CA, PCA was able to find anomalous

behaviors even if they are distributed within the same clusters of normal behavior,

as shown in the example in Fig. 2.1c.
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Application: Anomalous behavior detection. We used CA and PCA normal

models to find abnormal driving events in naturalistic data. These methods were

helpful in detecting reckless driving behavior or driving maneuvers to avoid deer.

2.2 Related Work

2.2.1 In-vehicle Sensor Relationships

We apply pairwise correlation of in-vehicular sensors towards detecting CAN-bus

injection attacks. Koscher et al. [57] demonstrated a wide range of vehicular attacks

that are enabled once the attacker can write to the CAN bus. Some of the reported

attacks are extremely safety critical such as disabling the brakes or killing the engine.

There are many defenses to detect CAN-bus injection attacks. Most related to our

work are methods which use sensor-sensor relationships to detect these attacks. Our

exploration of pairwise correlation for this application is along the spirit of these

methods.

Cho et al. [21] detect anomalies in the brake sub-system by modeling vehicle dy-

namics. They use a tire friction model and the current road condition to model

the expected braking behavior. We explored a broader set of sensors with pairwise

correlation. Liu et al. [62] detect anomalies in cyber-physical systems using a spa-

tiotemporal pattern network and a restricted Boltzman machine. They demonstrate

how their technique can detect anomalies in smart home monitoring environments,

where sensor values tend to be well-behaved and more bounded. In contrast with

this domain, vehicular sensors naturally express large variation, many of which may

be falsely considered as anomalous. Pajic et al. [77] develop an attack-resilient state

estimator which functions in the presence of sensor noise. They demonstrate this

on an automatic cruise-control for a ground vehicle. We explored using a general

pairwise correlation between sensors thereby avoiding the use of fine-tuned models
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for each sub system.

2.2.2 Across-vehicle Road-Level Anomalies

Agamennoni et al. [2] performed anomaly detection by building an expected tra-

jectory of the vehicle over individual road segments. They measured ‘trajectory’ by

the distance of the vehicle from the center of the lane. Likewise, we build normal mod-

els of multiple variables over road segments. In contrast to their work, we go beyond

just the trajectory and consider 11 different variables related to vehicle safety.

Jiang & Fei [51] use various road-related properties to predict the traffic and speed

of the vehicle. Our work collects data from individual road-segments, however, does

not rely on road-specific properties. Moreover, we model normal behavior of many

more sensors in addition to speed.

There are also numerous works which detect dangerous or anomalous driving

behavior. Zheng et al. [117] use cluster analysis to determine which factors lead to

near-crash scenarios in naturalistic data. They use K-Means to model the features

extracted from the vehicle speed and driver braking behavior. Similar to their work,

we apply cluster analysis to natural driving datasets. In contrast to their work, we

build situation-agnostic normal models using cluster analysis across road segments.

Many existing approaches detect dangerous driving by extracting features from

vehicles [45, 67, 117, 104, 116, 107], smartphone data [113, 60, 61, 45, 18], camera

data [112, 96, 53, 104, 61], or GPS trajectories [115, 111, 47, 2, 78]. In contrast to

these works, we explored automatically extracting normal models using PCA and CA

without restricting to individual sensors or extracting hand-crafted features from the

data. Our approach was inherently more exploratory rather than directed towards a

specific behavior detection.
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2.3 Exploratory Methods

In this section we describe the three approaches in detail.

2.3.1 In-Vehicle: Correlation

We study pairwise correlation in the short-time scale — within trips — and the

larger time scale — across trips, drivers, and vehicles. The pairwise correlation coef-

ficient is defined in Eqn. 2.1.

corr(X, Y ) =
cov(X, Y )

σ(X)σ(Y )
(2.1)

Normal behavior causes related change within the vehicle. For instance, pressing

the accelerator pedal will result in an increase in the speed of the car, cause acceler-

ation in the forward direction, an increase in the engine RPM, and a gear shift for

automatic systems. However, in the presence of a fault or an attack, these relation-

ships will no longer hold. If an attacker spoofs the speed of the vehicle, that will no

longer correlate with the accelerator pedal behavior, and therefore can be identified

as anomalous.

We performed pairwise correlation between all variables from Table 2.1. The

variables are divided into two classes — sensors within the vehicle which are broadcast

on the CAN bus, and sensors from an external IMU/GPS system. Correlating both

external and internal sensors gives us additional redundancy and robustness of the

system. In order to successfully fool the system, the attacker has to compromise both

internal and external systems, thus increasing the threshold for a successful attack.

Based on the pairwise correlation matrix, we found unexpected and interesting

correlations of sensors for individual trips. In many trips the acceleration and brake

pedals are positively and negatively correlated with the pitch. This captures when the

vehicle slightly dips forward or backward when the driver depresses the acceleration
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pedal. We also found that the steering wheel angle is positively correlated with the

yaw rate and that the brake is negatively correlated with many variables such as

speed, throttle, engine speed and acceleration.

However, these correlations differ across multiple trips. To study this systemati-

cally, we explore which variables are consistently correlated for the same driver and

how this changes across different drivers and different cars. This is presented in the

next section.

2.3.2 Across-Vehicles: PCA and CA

The guiding principle behind PCA and CA is that vehicles tend to behave similarly

at the same location. Sensors such as the speed, steering angle, and IMU sensors are

largely determined by the road segment and direction of travel. The exact relationship

between road segment and these sensor values is complex. To model this relationship,

we rely on data from many vehicles traversing the same road segment.

We operationalize this idea by dividing the map into road segments and aggregat-

ing all trips over each road segment. A “road segment” is a stretch of road between

two intersections. It is defined this way because vehicles are more likely to enter or

exit a road at the intersection points, and therefore, in between intersections we will

likely have complete vehicle data. Complete data is useful when applying PCA or

CA to the group of trips. For each vehicle driving over the road segment, we sample

the sensor values for uniformly distributed points in the road segment.

We divide each road segment into 0.01 mile-long discrete units and average the

sensor value within each interval of 0.01 mile. For a segment that is N miles long, this

provides a vector of length L = bN/0.01c. Some road segments have up to several

hundred trips (including the same and different drivers). A “trip” is defined as one

drive over the road segment, whereas a “driver” refers to a person with a vehicle.

The distribution of number of trips traversing each road segment and the length
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(a) Number of trips over each segment (b) Length of each segment

Figure 2.2: CDFs describing the length of road segments and the number of trips
across segments.

of road segment in shown in Figs. 2.2a and 2.2b. Out of 68,507 road segments, 1,206

of them have at least 100 trips traversing them. 50% of the road segments have at

least 5 trips or more. 50% of the road segments are at least 0.083 mile long. We focus

on road segments which have at least 100 trips.

Both PCA and CA techniques yield different results and taken as a whole we have

a more comprehensive view of vehicular anomalies. In what follows, we describe the

details of both techniques and compare them in Sec. 2.5.

2.3.3 Principal Component Analysis (PCA)

PCA is commonly used for dimensionality reduction [11] and anomaly detection

[109, 102]. Given a set of points in an N -dimensional space, PCA finds a new set

of orthogonal vectors, called Principal Components (PCs), such that each vector, in

order, represents most of the remaining variance. The PCs form a basis of the N -

dimensional space and can be found by computing the eigenvectors of the covariance

matrix.

Each point in the dataset can be represented as a linear combination of the PCs,

as shown in Eq. (2.3) where X is the set of points, V is the top k eigenvectors, Z is

the projection of X to V and µ is the mean vector of points in X.
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Forward transformation

X̃ = X − µ
Z = X̃V

Inverse transformation

X̃V = Z

X̃V V −1 = ZV −1

X̃V V T = ZV T

X̃ = ZV T

X = ZV T + µ.

Figure 2.3: PCA forward and inverse transformation where X ∈ Rn×p, V ∈ Rp×k

If we use all eigenvectors (i.e., V ∈ Rp×p), we can fully reconstruct the original

dataset by the inverse transformation shown in Eq. (2.3). If we use a subset of the

eigenvectors (i.e., V ∈ Rp×k where k < p), the reconstructed dataset will be an

approximation of the original dataset. If most of the variance of X can be captured

using only k principal components, then X can be accurately approximated using

only the top k principal components.

In social network datasets, Viswanath et al. [102] observed that only 3–5 PCs are

required to explain 85% of the variance. Their original dataset captures user behavior

in social networks using 181–687 features. PCA-based anomaly detection exploits this

phenomenon by representing the original data using a small number of PCs that can

capture most of the variance. The key insight is that normally-behaved data can be

accurately approximated using the top few PCs whereas anomalous data points are

poorly approximated using the same number of PCs.

2.3.3.1 Application to vehicle behavior

We use this property to detect anomalies in vehicular data. First, we aggregate

all sensor data over individual road segments and discretize the signal into uniformly-

sampled sensor values, spaced 0.01 miles apart. Fig. 2.4a shows the speed values of

multiple trips over one road segment. Then, we apply PCA to represent the data

using the top N principal components that are needed to explain Perc Var = 95%

of the variance, shown in Fig. 2.4b. We vary Perc Var from 90% to 99%, and report
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(c) Anomalous speed values
highlighted in black.

Figure 2.4: PCA-based anomaly detection technique applied to the IVBSS dataset.

the results later in this chapter.

We calculate the Euclidean distance between the original signal and the trans-

formed signal. The anomalous cases will have the greatest distance between the

original and the transformed points. Some of these anomalous data are darkened in

Fig. 2.4c.

2.3.3.2 Anomaly score

For each trip over a road segment we assigned an anomaly score for each sensor of

the vehicle. For one vehicle over one road segment, this means we have 11 anomaly

scores, one for each sensor in the vehicle. The “anomaly score” is the Euclidean

distance of the original signal from the transformed signal using the top PCs. It

is normalized by the standard deviation of all distances for each road segment and

sensor. The anomaly score gives us a unified way to compare anomalies between PCA

and cluster analysis presented in Section 2.3.4.

2.3.4 Cluster Analysis (CA)

This approach is motivated by the examples shown in Fig. 2.5. Fig. 2.5a shows the

steering wheel angle of multiple trips over one road segment. One set of trips start
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(b) Two clusters found in vehicle speed

Figure 2.5: Clusters found in the IVBSS dataset

with a largely positive steering wheel angle and then turn the wheel to the neutral

position, while another remains neutral all the way and the third set starts negative

becomes neutral. These three cases represent trips when drivers turn into the road

segment from the left, right, or continue straight onto the road segment. Similarly,

Fig. 2.5b shows two visible clusters in the speed of trips over one road segment.

Similar driving patterns are reflected in clusters in the IVBSS dataset. A trip

which fluctuates between multiple clusters may be anomalous. By finding the clusters,

we can detect such anomalies. We use unsupervised CA to identify clusters of vehicle

sensor data in each road segment. Furthermore, we flag data outside of all clusters

as anomalous.

2.3.4.1 Cluster assignment search

CA has numerous variants tailored for different kinds of data; see Xu et al. for a

thorough survey [109]. We vary many parameters and try two clustering algorithms

to find the best possible clustering assignment of the trips over each road segment.

Each cluster is evaluated using a relative measure called the silhouette score [25].

The silhouette score, defined in Eq. (2.2), compares the average distance of each

point to other points within the same cluster and the average distance of each point

to neighboring clusters. b(i) is the average distance of i to the nearest cluster. a(i)

is the average distance of i with other nodes in the same cluster. The silhouette

score ranges from -1 to 1. If it is negative, then the clusters overlap and they are not
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Transformation Values
Low-pass filter Yes or No

Dimensionality Reduction 99% PCA, 85% PCA, 75% PCA, 2 PC, high dimension
Algorithm Parameters
DBSCAN ε ∈ {0.01...3}, Min Samples ∈ {5, 10, 20}

K-Means (K-Means++ [5]) K ∈ {2, 3, 4, 5}

Table 2.2: Parameters and algorithms varied during cluster assignment search.

well-defined.

s(i) =
b(i)− a(i)

max{a(i), b(i)} (2.2)

We chose the silhouette score because of the absence of ground truth data. Due to

this limitation, we cannot calculate the accuracy of each cluster assignment. Instead,

the silhouette score simply tells us if a well-defined cluster assignment exists in the

database. This is often used to fine-tune hyper-parameters in existing clustering

algorithms such as K-Means [86].

We varied two properties of signal transformations and applied two different clus-

tering algorithms to find the configuration with the highest silhouette score. This

search space is succinctly described in Table 2.2.

2.3.4.2 Signal Transformation

We first applied a low-pass filter to the vehicular signals. Some of the sensors

such as accelerometer values or steering wheel angle exhibit very high frequency noise.

We applied a low-pass filter to remove this noise such that two similar trips over a

road segment will appear more similar to the clustering algorithm. We also used PCA

to reduce the dimensionality of the signals before applying clustering algorithms.

We represented the signal using N PCs such that they explain 75%, 85% and 99%

of the variance. We also tried representing the signal using only 2 PCs and clustered

the raw high-dimensional signal.
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2.3.4.3 Clustering Algorithms

We explored two clustering algorithms – DBSCAN and K-Means (with K-

Means++ initialization). DBSCAN is a density-based clustering algorithm which

groups nearby points. DBSCAN requires two parameters, ε and Min Samples. ε is

the maximum distance between two points to be considered “nearby” each other.

Min Samples is the minimum number of samples required before a set of points is

considered a cluster. We varied these values to search for the optimal clustering as

shown in Table 2.2. We also varied the number of clusters for K-Means and considered

K = {2, 3, 4, 5}.

We chose these two clustering algorithms because of available computationally

effective implementations. In future work, we will explore alternate clustering al-

gorithms such as CLIQUE (for clustering high-dimensional data) and BIRCH (for

agglomerative clustering) [38].

2.3.4.4 Anomaly Score

Silhouette score is an indication of clear cluster structure. If the silhouette score

is above a threshold (e.g., 0.8), we suppose there are well-defined clusters and extract

points that are outside of all clusters. The “anomaly score” is the Euclidean dis-

tance from the nearest cluster normalized by the standard deviation of intra-cluster

distance. If the silhouette score is below the threshold, we assume there is no clear

cluster structure and simply measure the distance of all points from the average

point, normalized by the standard deviation. This way we detect very abnormally

distributed signals even if there is no clear cluster structure,
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2.4 Findings: In-Vehicle

In this section, we share the patterns we found through pairwise correlation within

the same vehicle.

2.4.1 Across-Trip Consistency

The correlation of sensors often changes between trips and drivers. We isolate

which variables remain highly positively or negatively correlated across all trips of

a single driver and explore the changes across multiple drivers. Fig. 2.6 shows the

correlation and average change of the correlation across all trips for a single driver.

From the full pair of sensors, we identified 14 pairs which have greater than 0.5 or

less than -0.5 Pearson’s correlation across all trips for at least one driver. The top

sensors and the corresponding average correlation matrix are shown in the bottom

row of Fig. 2.6 and listed in Table 2.3.

ID Variable 1 Variable 2 Avg Corr Avg δ
1 Speed GPS Speed 1.00 0.00
2 Accel Pedal Target Throttle 0.99 0.00
3 Throttle Target Throttle 0.99 0.01
4 Accel Pedal Throttle 0.98 0.02
5 Y Acc. Yaw Rate 0.82 0.07
6 Throttle Engine Speed 0.76 0.09
7 Target Throttle Engine Speed 0.77 0.06
8 Speed Engine Speed 0.75 0.09
9 GPS Speed Engine Speed 0.74 0.10

10 Accel Pedal Engine Speed 0.74 0.07
11 Steering Angle Yaw Rate 0.75 0.19
12 GPS Speed Gear 0.56 0.14
13 Brake Engine Speed -0.68 0.12
14 Speed Gear 0.55 0.14

Table 2.3: Highly correlated pairs, their average correlation and their average change
in correlation across trips for a single driver. Results were similar for other drivers
and is omitted.

Among the highly correlated variables, we found four pairs to be nearly 100%
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Figure 2.6: The right two figures show the average change of each pair sensors for
one of the drivers in our database. The left two figures show the correlation matrix
for one of the trips for that driver. The top row of figures correspond to the entire
set of pairs. We selected the pairs which correlate more often and tend to have lower
variance in the bottom two figures. The subset shown in the bottom two figures are
highlighted in yellow in the top two figures. The bounds in the bottom right figure
is the average change of that pair’s correlation across trips for this driver. The axes
labels have been removed due to lack of space when unnecessary. (Best viewed in
color)

positively correlated in nearly all the trips. These four were speed × GPS speed,

acceleration pedal × target throttle, throttle × target throttle, and acceleration pedal

× target throttle. The vehicles in our dataset broadcast the target throttle and

current throttle as separate values. Due to their high correlation, we can easily

detect if an attacker modifies one of the variables in a sustained attack that lasts

throughout the trip.
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2.4.2 Vehicle- and Driver-Specific Models

In Section 2.4.1, we explored the long-lasting cross correlation properties for differ-

ent pairs of sensors. We started to expand this to driver-specific and vehicle-specific

models of cross-correlation. Figure 2.7 compares the average correlation of the top

pairs of sensors as it varies across drivers and vehicles

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.50

0.75

1.00

Figure 2.7: The aggregate correlation of all trips across different drivers and different
vehicles. The top figure shows the average correlation for all 9 drivers using vehicle
1. The bottom figure shows the average correlation for all 16 vehicles. The ID in the
X axis corresponds to the pair of sensors in Table 2.3.

First we computed the pairwise correlation across all data from a single driver,

and compared with other drivers. This is shown in the top half of the figure. The first

four pairs remain highly correlated for all drivers, however, other pairs vary across

drivers. For instance, between two drivers in the same vehicle, the correlation between

vehicle speed and engine speed varies by 0.17 (out of 1 being perfectly correlated)

and the correlation between steering wheel angle and yaw rate varies by 0.21. We

hypothesize that this is caused by driver-specific patterns such as how aggressively

the driver turns the steering wheel.

Second, we explored how these correlations vary across different vehicles. Each

vehicle has between 7–10 drivers and there are 16 vehicles in total. For each vehicle,

we computed the correlation of all pairwise sensor data to get an aggregate correlation
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value. This correlation is shown for all 16 vehicles in the bottom of Fig. 2.7. The

maximum difference between a pair of vehicles is 0.089 correlation between the brake

and engine speed.

This suggests that the changes in correlation is a driver-specific phenomenon and

not dependent on the vehicle. Therefore, we must learn this correlation matrix for

individual drivers before attempting to use it to detect spoofed sensor attack. We

can use the vehicle-specific model as a starting point and iteratively learn the driver-

specific model to improve detection.

2.4.3 Within-Trip Consistency
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(a) Correlation variation of highly correlated variables
within one trip.
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Figure 2.8: The distribution of pairwise correlation within a single trip. One trip was
divided into multiple 10-second segments. Each pairwise correlation was calculated
for each segment and shown above in the scatter plot and the accompanying CDF.
The colors in the scatter plot correspond with the colored lines in the CDF.

In order to use the correlation of sensors to detect real-time attacks, we must look

at the correlation matrix in a small time window in the current trip. If the current

time-window correlation differs from the expected, we can flag it as an attack.

In this section, we investigate the nature of within-trip correlation fluctuations.

Fig 2.8a shows the example variation within a trip of a subset of the highly-correlated

pairs from Table 2.3. We calculated the correlation within sliding window of 10

seconds for every second of the trip. The entire trip was 2 hours and 32 minutes long.
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Fig. 2.8b shows the CDF of the standard deviation of the correlation for each pair of

variables for this trip.

On average, we found considerable deviation. Some of the pairs, such as the

Throttle and Engine Speed, ranged from ≈-0.5 to 0.9 correlation for certain time

windows. We found a similar variability for other trips and other drivers. In the pre-

vious section we found that when aggregated across trips and drivers, the correlation

remains steady, however, if we look at small time windows within one trip, we found

there to be such high variability.

2.4.4 Hypothesis: Contextual Factors

We formed two hypotheses to explain this high variation within one trip: (1)

the variation is caused by different contexts of the driver, vehicle and surroundings

at each point in time, and (2) within a single context, the variability of the pairwise

correlations is much lower. If these hypotheses prove true, then we can use knowledge

of the current context to draw bounds for expected behavior and detect anomalous

behavior caused by attacks or other factors.

The above hypotheses are motivated by the following observation. Suppose the

vehicle goes through a tunnel for a part of the trip. The GPS connectivity will suffer

and it will report inaccurate location and speed. In this case, the correlation between

the GPS-speed and the vehicle speed will be much lower than what is normally

seen. Therefore, the context “out of GPS range” leads to a change in the correlation

behavior.

Similarly, if the driver is going up-hill versus down-hill, there will be different

measurements in the short time-window correlation. If going up-hill, the driver has

to apply the acceleration pedal to maintain the speed of the car, but if he or she

is going down-hill, then the car is more likely to maintain the speed without much

application of the acceleration pedal. For up-hill, the correlation between acceleration
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pedal and change in speed of the car will be more correlated. In this example, the

context is “road incline”.

We developed the tools to ask our database whether such contexts exist and

whether our above two hypotheses are correct. We present our results below and

report on the amount of standard deviation within each context.

2.4.5 Cluster analysis

We modeled the idea of contexts using clusters of the correlations found across

trips. We divided each trip into 10 second windows and calculated the correlations of

certain pairs of sensors. We treat this as a point in anN -dimensional space, whereN is

the number of pairs being considered. We applied DBSCAN [33] to identify clusters

in this N -dimensional space. By looking for clusters in this N -dimensional space

as opposed to individual pairs, we are able to capture richer relationships between

variables.

We chose a subset of the variable pairs from Table 2.1 which are likely to capture

different contexts and calculated the correlations across multiple time windows for

each driver, shown in Table 2.3. In addition, we explored the variables shown in

Table 2.4. We chose these pairs – such as brake and master cylinder pressure – to

better capture the context of aggressive or sudden driving. If the brake is applied in

a forceful and sudden fashion, the master cylinder pressure will increase rapidly.

Fig 2.9 shows clusters for one of the drivers in our database for the sensor pairs in

Table 2.4. We split each trip into 10 second windows and ran DBSCAN with ε=0.2

and min samples required to form a cluster = 100.

In Fig. 2.9, we can see the presence of two clusters. The right side of Fig. 2.9

shows the average correlation and standard deviation of members of each cluster. In

the green cluster, the brake and master cylinder pressure were much more correlated

when compared to the brown cluster. The pitch was also more positively and more
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(a) Two clusters emerge in the pairwise cor-
relation. (Best viewed in color)
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(b) The average value and the standard de-
viation for each pair of variables.

Figure 2.9: Each trip for a driver was divided into 10 second windows. Within each
10 second window, we calculated the correlation and used DBSCAN to find clusters.
For this driver, DBSCAN identified two clusters.

negatively correlated with brake and accelerator pedal respectively, when compared

to the the brown cluster.

The average inter-cluster distance is 0.99 and the intra-cluster distance is 0.41,

strongly suggesting the presence of well-defined clusters. The standard deviation

of individual pairs within each cluster is quite small. For example, the standard

deviation of the brake and master cylinder pressure is 0.06 for the green cluster and

0.05 for the brown cluster. However, when both are considered together, the standard

deviation is much larger — 0.41 in total.

Aggressive Driving
ID Variable 1 Variable 2
C1 Accelerator pedal Pitch rate
C2 Brake Master cylinder pressure
C3 Brake Pitch
C4 Steer Yaw rate
C5 Accelerator pedal Pitch

Table 2.4: A subset of variables from the IVBSS dataset specifically chosen to capture
the context of aggressive driving. If the driver quickly applies the brake or jolts the
vehicle when accelerating or turning, we expect to see a high positive or negative
correlation among these pairs.

For the variables in Table 2.3 and in Table 2.4, we examined all 117 drivers in

our database for the presence of clusters. For each driver, we used a 10 second time

window through their trips and generated correlation signatures. For all experiments,
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we empirically set the DBSCAN parameters to ε=0.1 and minimum points for a clus-

ter=50. We fed this into the clustering algorithm and measured how many clusters

are found for each driver. As shown in Fig. 2.10, clustering with Table 2.4 predom-

inantly yields two clusters (59 drivers) and for all but one driver, it finds 2 or more

clusters. Clustering with Table 2.3 yields a wider spread of clusters. For 22 drivers,

it only identified 1 cluster, and identified at least 2 for the remaining.

The different number of clusters for different drivers can be explained by the types

of data encountered by that driver. For example, if a driver lives near a tunnel and

often drives through the tunnel, then a new cluster will form when they leave GPS

range. Deeper manual inspection is part of our future work.
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Figure 2.10: Histogram of how many clusters we found for each of the contexts
specified in Table 2.4. For each driver, we collected all 10 second time windows for
their trips and ran DBSCAN on the final aggregate plot. We used epsilon between
clusters = 0.3 and minimum samples within each cluster = 50

Fig. 2.11 shows what percent of the time windows within a single trip are fall into

one of the clusters or are marked as unclustered. Even if we find multiple clusters

for a driver, it is possible that a subset of the 10-second time windows for that driver

are actually unclustered by the DBSCAN algorithm. Fig 2.11 shows that 50% of the

trips are clustered 51.4% of the time for Table 2.3 and 50% of the trips are clustered

62.4% of the time for Table 2.4.

Variables in Table 2.4 more consistently have two cluster and more of their trips

fall under one of these clusters compared to Table 2.3. This highlights the impor-
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tance of choosing the right variables when searching for clusters. The proper choice

of variables is part of our future work. This is a challenging problem because we

cannot exhaustively search through all subsets of variables (powerset of the variables

is a combinatorial explosion) and must resort to heuristics or other simplifying trans-

formations to reduce the search space.
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Figure 2.11: The percent of time windows which fall under a cluster across all drivers
for each context.

From these results we conclude that (1) clusters exist in the distribution of cor-

relation data and that (2) majority of the time-window correlations fall inside these

clusters. In future work, we will form the connection between clusters and contexts.

For the purposes our analysis, if we can detect the cluster which belongs to a par-

ticular time in the drive (based on contextual clues such as “GPS is out of range”),

then we can more tightly bound the expected pairwise correlation values.

2.4.6 Variation within each cluster

In the previous section, we established the presence of clusters and that a large

portion of time-windows within a trip falls in one of these clusters. In this section,

investigate the second hypothesis formed above – the variability within a cluster re-

mains small compared to across clusters. If the variability is low, we can form a

tighter bound of expected behavior and detect an attack more easily.

Fig. 2.12a and Fig. 2.12b show the change in standard deviation when clustering
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the trip data for variables in Table 2.3 and Table 2.4 respectively. The figures show

the standard deviation of the unclustered trips and the average standard deviation

of all the clusters for both variable sets. For Table 2.4, clusters reduce the standard

deviation to 15.5% of the unclustered standard deviation in the best case, and 91%

in the worst case. For Table 2.3, they reduce the standard deviation to 19.8% in the

best case and 50.6% in the worst case.
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1 2 3 4 5 6 7 8 9 10 11
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Unclustered
Clustered

(b) Variables from Table 2.3

Figure 2.12: The average standard deviation for unclustered and clustered trips for
each set of variables. We averaged the standard deviation of the clustered and un-
clustered across all drivers in the IVBSS dataset. In many cases, we found that
clustering significantly reduces the standard deviation of the pairwise correlation,
therefore making it a promising technique for attack detection.

2.4.7 Detecting CAN-bus Injection Attacks

In this section, we leverage our understanding of clusters and pairwise correlations

to detect an anomaly which may be caused by a malicious attack or a system fault.

For each time window, the context is first determined and the cluster describing that

context is identified. The exact method of identifying the current context is outside

the scope of this work. Then, we compared the current pairwise cross-correlation

with the expected values for that cluster. For each pair, we calculated the deviation

from the mean correlation value for that cluster and reports it in terms of number of

standard deviations from the mean.

To test this idea, we spoofed the speed of the vehicle by modifying collected vehicle
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Figure 2.13: The bottom figure shows the attack on the speed sensor of the vehicle.
From 800-850 seconds, the vehicle speed is spoofed to appear as though it is slowing
down to 4 mph. Then it returns back to normal after a few minutes. The attacked
signal is in red and the original trip is in blue. The top figure shows the normalized
error (measured as a multiple of the standard deviation) with and without clusters,
shown in red and blue respectively. The Y axis of the top figure is drawn in log scale
to highlight the difference between unclustered and clustered cases.

traces. In our attack, the attacker injects fake speed values into the CAN bus for 50

seconds from 800-850. He brings the speed down from the current speed to 4 mph in

that time frame. Then he stops the attack and the vehicle resumes to broadcast the

correct value. Our attack and our detection results are shown in Fig. 2.13.

When we consider the context and cluster, we notice a considerable spike imme-

diately at the attacked time. The error rises to 106.6 times the standard deviation

for that cluster. However, when we fail to consider the cluster, the error only rises to

4.59 times the standard deviation, which is below the cut off point to be considered

an attack.

This result shows the possibility of using pairwise correlation to detect CAN-bus

injection, however this is a very noisy way to perform this analysis. This requires

finding the right set of sensors which may form well-defined clusters, and even after

doing so, the pairwise correlation sometimes rises to 3.05× and 4.48× the baseline

for non-injected data. We concluded from this result that pairwise correlation is not

well-suited for CAN-bus injection and explored alternate methods in follow up work,

also included in this thesis.
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Figure 2.14: Illustrative examples highlighting the strengths and weaknesses of each
technique.

2.5 Findings: Across-Vehicles

We evaluate the accuracy of the anomalies detected through PCA and CA by

comparing it with manually annotated cases of abnormal driving. As part of the

IVBSS project [42], several researchers manually reviewed the video footage of drivers

and vehicles to explain the root cause of forward collision warnings (FCW) and lane

departure warnings (LDW). They identified 139 instances of abnormal behavior which

triggered FCW or LDW. These include deer or other animals jumping in front of the

car, texting while driving, excessive speeding or skidding out of control. We used

PCA and CA to calculate the anomaly score of these instances compared to normal

behavior. We first present the overall accuracy of PCA/CA and then delve deeper

into the evaluation of cluster and PCA-based anomaly detection techniques.

2.5.1 Observations

At a high level, CA finds sets of similar behavior over each road segment. Anoma-

lies detected using CA are outside of all sets of common behavior. PCA finds the

common shape of the data signals. Therefore, anomalies detected using PCA are

cases where the driver’s behavior seems abnormal, even if it is within the bounds of

other normally-distributed trips.

Figure 2.14 illustrates the different strengths and weaknesses of PCA and CA.

Figure 2.14b shows an example where CA would flag the anomaly but PCA would
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Figure 2.15: Analysis of anomalous and normal data using PCA and CA

miss it. The abnormal time series signal is clearly abnormal and much higher than the

others in the set. However, since they all share the same shape, the “abnormal” case

can be well represented using linear combinations of the top principal component.

Because of this, PCA-based techniques would fail to flag this anomaly. Figure 2.14a

shows an example of an anomaly that is better detected using PCA but would be

missed by CA. The abnormal time series signal is well within the bounds of the others

in the same set. However, due to their abnormal shape, PCA would be unable to

reconstruct this using the top principal component, therefore correctly identifying the

anomaly.

2.5.2 Detecting Abnormal Cases

We created two sets of data for abnormal and normal driving. Using the manually-

annotated cases described above, we collected 139 instances of “abnormal driving”.

These cases triggered the forward collision warning, lane departure warning, or caused

sudden changes in brake pressure. Along the same road segment, we collected the

remaining trips and marked them as “normal driving”. Note that this is an imperfect

labeling of the data since the remaining trips might also contain some abnormal

cases that was missed by FCW or LDW. For instance, swerving at night is abnormal

behavior but is unlikely to set off the lane departure warning if the lane is not visible.
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As shown in Fig. 2.15, abnormal cases resulted in a much higher anomaly score for

most sensors than normal cases. We measured the distribution of anomaly score for

both abnormal and normal cases, for both CA and PCA. The example distribution

is shown in Fig. 2.15a. This example is the distribution of anomaly scores for the

Engine Speed calculated using our cluster-based technique. On average, the anomaly

score is 52.7% higher for abnormal cases than normal cases. At the 90-th percentile

of cases, the anomaly score is 54.9% higher.

At the 50-th percentile, there is a 34.6% and 19.9% increase in anomaly score

across all sensors for CA and PCA, respectively. This is shown in Figure 2.15b. Note

that the Y -axis is capped at 1. Cluster-based techniques found a 357.9% increase in

anomaly scores for the Gear sensor. Moreover, we found an increase of 23.4% and

42.8% for cluster-based and PCA-based techniques for the 90-th percentile cases.

Cluster-based techniques are better suited at finding anomalies in the Engine

Speed, master cylinder pressure (MCP) and X-acceleration from the accelerometer.

During anomalous cases, these sensors tend to deviate largely from other values. For

instance, when the driver suddenly brakes, the MCP spikes up much higher than

other drivers on the same road segment. Therefore, these cases are easily detected by

clustering similar dense behavior together and detecting the anomaly.

On the other hand, PCA-based techniques are better suited for Vehicle Speed,

Steering wheel angle, Yaw, Pitch, and Roll. Even during anomalous driving, these

sensors tend to remain within bounds of what is considered normal behavior, but the

pattern of the sensor will differ from traditional cases. For instance, when skidding,

the driver might have trouble stopping the car and make a sudden stop. This is

within the bounds of normal driving as a vehicle can come to a stop for normal

reasons. However, the pattern of suddenly stopping is unusual and will be flagged

using PCA-based techniques.
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2.5.3 Novel Anomalous Discoveries

We apply PCA and CA to identify novel anomalous cases in the IVBSS dataset;

we identified 12 additional anomalous cases using these techniques.

Using CA, we discovered and manually verified 8 additional cases of anomalies

— 2 abrupt and dangerous lane changes, 2 single lane vehicle overtake maneuver,

2 sudden deviation to avoid hitting another vehicle, and 2 aggressive speeding and

reckless driving. For one of the reckless driving instances, 4 out of 10 sensors were

flagged as anomalous using CA (Throttle, Engine speed, Y-acceleration, and Steering

angle). These are shown in Figures 2.16a, 2.16b, 2.16c, and 2.16d. In this instance,

the driver merges onto the highway and speeds through the ramp. Once he merges

onto the highway, he suddenly turns the steering wheel to enter the adjacent lane. At

times, he speeds beyond 100 mph. This case was not previously manually identified

because it did not trigger a lane departure warning or forward collision warning.

Using PCA, we discovered 6 cases of anomalous driving — 2 dangerous lane chang-

ing and swerving, 1 speeding, 1 sudden braking due to texting, and 2 sudden deviation

to avoid hitting another vehicle. In one of the cases, we found that 5 out of 10 sensors

were flagged as anomalous (Engine speed, pitch, Gear, Throttle, and Vehicle speed).

This instance is shown in Figures 2.16e, 2.16f, 2.16g, 2.16h, and 2.16i. The driver

changed two lanes in a busy highway driving very close to other vehicles. This be-

havior was unnatural for this part of the road and was flagged as anomalous using

PCA. The sensor values were close to the normal bounds therefore CA did not assign

a large anomaly score.

Two cases of anomalous driving were flagged by both PCA and CA. In both of

these instances, the drivers quickly swerve out of the way to avoid hitting another

vehicle. For the first instance, we found a CA-based anomaly in the Throttle position

and a PCA-based anomaly in the Engine Speed. In the second instance, we found

a CA and PCA-based anomaly in the MC Pressure. These are all shown in Fig-
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ures 2.16j, 2.16k and 2.16l. This result demonstrates that PCA and CA may find the

same trips and sensor values as anomalous. However, we discovered the remaining

10 cases using either CA or PCA independently; these two techniques can be used to

complement each other in discovering anomalous driving behavior.

2.6 Conclusion

In our exploratory analysis of in-vehicular sensors, we found that pairwise corre-

lation, principal component analysis and cluster analysis yielded interesting patterns

and models.

In-Vehicle Pairwise Correlation In the macroscopic scale, there is low vari-

ability of pairwise correlations across trips, drivers and vehicles. However, there is

considerable variability of pairwise correlation within time windows of a single trip.

We studied the cause of this variability and identified the presence of clusters which

correspond to contexts of the driver or vehicle. Within a cluster, there is lower vari-

ability than compared to across clusters.

Overall we concluded that pairwise correlation may be too coarse-grained of a

technique to be useful for attack detection. Even after reducing the variability through

cluster analysis, the CAN-bus injection detection is very noisy and often incorrect.

This exploratory analysis led us to leveraging the smartphone for CAN-bus injection,

presented in Chapter III.

Across-Vehicle PCA and CA We used two different techniques to identify dif-

ferent kinds of anomalies — Principal Component Analysis (PCA) and Cluster Anal-

ysis (CA). We applied these to the Integrated Vehicle-Based Safety System (IVBSS)

dataset consisting of 117 drivers and over 200,000 miles of driving behavior. On a

manually labeled subset of the data, CA and PCA assigned on average a ≈ 30%

higher anomaly score to abnormal cases. However, although the anomaly score was

higher on average for these anomolous cases, it was also lower during a subset of the
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Figure 2.16: Example anomalies for each road segment and each technique. The
anomalous trip is highlighted in bold. The sensor and the anomaly scores are listed
under each sub-figure.
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data. This leads to false positives through this technique.

Furthermore, we used this approach identify 12 new abnormal cases which were

previously missed in manual analysis. We found that PCA and CA are best suited for

narrowing down the driving data which seems anomalous. Using these approaches,

we found a short list of ≈ 100 anomalous cases flagged by our technique and identified

the 12 cases presented here. Without our tool, it may be impossible to sift through

the large amounts of data to find these unique cases.

Due to the limitations of using PCA and CA for anomaly detection, this work

led us to focus on detecting a more specific kind of anomaly caused by mobile and

stationary hazards on the road. We narrowed our focus to road-based anomalies

specifically in GPS trajectories of nearby vehicles in order to find mobile hazards.

That work is explained in Chapter IV.
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CHAPTER III

CarSec: Using Smartphones as Car Security

Assistants

3.1 Introduction

Cyber attacks on cars are now a very real and serious threat. In recent years,

researchers have demonstrated numerous vulnerabilities which allow an attacker to

take control of a vehicle and put drivers and passengers at peril [14, 37, 69, 68].

Most of these attacks involve injecting falsified sensor data into the Controller Area

Network (CAN), the de facto communication network within a vehicle, and hence the

first and foremost step in their defense is to detect these falsified sensor values.

While there are many proposals of increased security in future vehicles, we need

to enhance security and safety in cars on the roads today. In particular, we need

a system which can be used immediately by passengers to enhance their sense of

confidence in the security and safety of their vehicle.

State-of-the-art. Existing security assistant proposals fail to meet this press-

ing need of increased security in today’s cars. They usually detect these in-vehicle

attacks by modeling packet-arrival characteristics within the vehicle [20, 73] or the

relationships between in-vehicle sensors [21, 39]. If the vehicle is compromised, both

classes of security assistants suffer from untrustworthy data since they both rely on
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Figure 3.1: Three smartphone sensors are used to infer six different vehicular prop-
erties. CarSec compares these inferred values with those reported by the vehicle to
detect sensor-falsification attacks.

in-vehicle sensor data. There has also been a strong commercial push for vehicular

intrusion detection systems, but they all require deep integration with the vehicle

hardware, making their integration with existing vehicles prohibitively expensive [4,

89, 98].

Proposed Solution. We propose a new security assistant called CarSec to fill

this need. The first step of many of the vehicular attacks reported in literature involves

injecting falsified sensor data into the CAN bus. CarSec independently acquires these

sensor values using the smartphone’s sensors and cross-validates them with what is

seen in the CAN bus. By doing so, CarSec adds a second layer of assurance in the

vehicle’s sensor values on CAN, and can quickly identify when sensor falsification is

taking place. CarSec can be used in tandem with other security measures to detect

and defend against the emerging threat of vehicular cyber attacks.

Smartphones have proven successful in assisting with other vehicular tasks such

as dangerous driving detection [45, 67, 60, 113, 29], road monitoring [32, 47, 92,

118, 40], and trajectory mining [23, 106, 12, 65]. We expand the use of smartphones

to enhance vehicular security by detecting sensor-falsification attacks. To the best

of our knowledge, this is the first application of smartphones for vehicular security

assistance.

One of the main advantages of CarSec is its ease of deployment at no additional

cost. A driver simply installs the CarSec app from the app market, and pairs it
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with a Bluetooth OBD dongle which reads values from the vehicle’s CAN bus. The

read-only OBD dongle simply relays the information it sees in the CAN bus to the

phone, thereby not contributing to the attack surface. CarSec runs automatically

in the background to independently acquire vehicle sensors on the CAN bus via a

dongle and cross-validate them. Since almost everyone carries a smartphone these

days, we can use both driver’s and passenger’s phones to increase the available sensor

redundancy at no additional cost.

By implementing CarSec on a smartphone, we provide this additional security to

drivers today. The smartphone serves as an external source of knowledge about ve-

hicular dynamics, thereby overcoming the above-mentioned limitation of sole-reliance

on in-vehicle sensor data. Furthermore, CarSec capitalizes on the existing hardware

and computing power of smartphones. This can be used in addition to commercial

solutions, if any, which provide enhanced protection but require deeper and more

expensive integration with the vehicle.

Key Challenges and Solutions. In order to use smartphones to detect vehicular

sensor-falsification attacks, we have to estimate vehicular values and compare them

with the sensor values on the CAN bus.

Challenges in Evaluating Falsification Attacks There exists a dearth of eval-

uation metrics for CAN-bus injection or falsification attacks, even though injection

attacks are often a necessary step before achieving vehicular compromise. To solve

this lack of benchmarks, we survey existing literature on vehicular cyber-attacks and

identify some of the more common sensor-falsification attacks. We categorize this

into different types of falsification attacks, and evaluate CarSec against these attacks

to demonstrate its effectiveness in a realistic scenario.

Challenges in Estimating Vehicular Sensor Values Estimating the readings of

vehicle sensors using smartphone sensors requires a robust method which is resilient
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to common phone usage. Prior work on vehicle sensor estimation requires data from

installed sensors and has not addressed the difficulties associated with common phone-

based movements [64, 94]. In contrast, using the vehicle’s physical dynamics models

(e.g., Ackerman model [64]), publicly available vehicle specifications from the OEMs

(e.g., gear ratios), and sensor fusion techniques (e.g., complementary filter, neural

network), we have built a system that is robust to common phone usage/movements.

We demonstrate this through extensive experiments.

Furthermore, to overcome the lack of a well-defined vehicle model for estimating

the current gear position, we have developed a neural network to predict the gear

position given the change in recent speed.

Key Findings. We have implemented CarSec in Android and evaluated it against

sensor-falsification attacks. We evaluated CarSec by injecting three types of sensor-

falsification attacks reported in literature — sudden, gradual, and delta injections —

in real-world driving traces. CarSec is shown to be capable of detecting falsifications

of 6 vehicular sensors with different levels of true positive rate (TPR), ranging from

97.33% for speed sensors to 78.29% for RPM falsifications, with very low false positive

rate (FPR), often set to less than 1% FPR. CarSec can most accurately detect speed,

gear position, fuel and odometer falsifications.

Furthermore, CarSec only consumes ≈8% of the CPU on average, even while

performing expensive neural network-based sensor estimation algorithms.

This chapter makes the following main contributions:

• Thorough characterization of CAN-bus sensor falsification attacks. We survey

the literature on vehicular cybersecurity to create a taxonomy of different at-

tacks on vehicular CAN bus. This taxonomy of attacks will guide future research

into defenses against such attacks.

• Extensive evaluation of vehicle sensor estimation algorithms under diverse real-

istic situations. We show the robustness of vehicle sensor estimation algorithms
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on 6 different vehicles, 912 miles of driving, and under 4 different common uses

of the phone by 7 different passengers.

• Expansion of vehicle estimation research. We extend prior work on vehicle

estimation by (a) developing a novel neural-network based gear-estimation al-

gorithm and (b) investigating the failure modes of engine RPM estimation using

prior methods.

• Development and evaluation of CarSec a novel system to detect CAN-bus in-

jection attacks. We use phone-based vehicle sensor estimation to detect CAN-

bus injection attacks. To the best of our knowledge, this is the first to apply

phone-based vehicle estimation algorithms for the detection of CAN-bus sen-

sor falsification attacks. We also demonstrate its computational feasibility with

an efficient Android implementation and provide source code facilitating future

follow-up research in this area.

Paper Organization. The chapter is structured as follows. Sec. 4.2 reviews

other related IDS solutions while Sec. 3.3 presents the necessary background and

attack model. Next we describe CarSec in Sec. 4.3 and evaluate it against simulated

and realistic attacks in Sec. 3.5. Finally, we discuss limitations of current CarSec and

future work in Sec. 4.5, and conclude the chapter in Sec. 4.6.

3.2 Related Work

3.2.1 Phone-based Estimation of Vehicular Sensors

There are numerous studies which estimate vehicular sensors using phone sensors

for dangerous driving detection [45, 67, 60, 113, 29], road monitoring [32, 47, 92,

118, 40], and trajectory mining [23, 106, 12, 65]. In contrast to these studies, we

explore if phone sensing can be used to enhance security. Thus, the evaluation for
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this exploration is very different from existing studies.

3.2.2 Vehicular Intrusion Detection Systems (IDS)

These fall under two main categories, CAN-bus traffic characterization and vehic-

ular sensor modeling, both of which essentially rely on vehicular sensors and are thus

vulnerable to compromise.

3.2.2.1 CAN-bus Traffic Characterization

Müter et al. [72, 73] developed an IDS which models information-theoretic and

structural patterns of the CAN bus under normal behavior. During an attack, they

observed that these information-theoretic properties, such as entropy, are likely to

change. However, this only holds true for CAN-bus injection attacks that deviate

from the normal behavior of the ECU. If the attacker is able to mount the attack

without changing the behavior of the CAN bus — such as through a bus-off attack

[19] or Bootrom attack [68] — it may not result in a significant change in the entropy

score and thereby evade detection. In contrast, CarSec does not model the CAN-

bus traffic. It externally validates the sensor values using their estimation based

on smartphone sensor readings. This makes it possible to detect sensor falsification

attacks even in the presence of no abnormal CAN-bus traffic.

Cho and Shin [20] used clock-based fingerprinting of ECUs to identify misbehaving

ECUs, which is orthogonal to CarSec. Once CarSec is used to determine that an

attack is taking place, we can use the system presented in [20] to pinpoint the culprit

ECU.

3.2.2.2 In-Vehicular Intrusion Detection Systems

Other IDSes model the normal behavior of the vehicle by comparing with other

vehicle sensors on the CAN bus. For example, Ganesan et al. [39] use cross-correlation
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to constrain the possible values of different ECUs within the CAN bus. Wasicek et

al. [107] use neural networks to model the relationship between engine RPM, torque

and speed. Cho et al. [21] used a random forest to model the brake behavior in

different road and weather conditions. All these approaches rely on sensors within

the CAN bus and may be susceptible to the same adversary who can inject data into

the CAN bus. In contrast, CarSec uses the smartphone sensors, which are an external

source of knowledge, to cross-validate the internal sensors within the vehicle. Even if

the vehicle has been compromised, this additional source of redundancy can provide

a measurement of true sensor values.

In addition to providing an external source of knowledge, smartphones are also

freely and readily available to enhance car security. Furthermore, they are personal

devices which form a natural interface to the user. If there is a problem with your car,

your phone can warn you and help you take preventative and diagnostic measures.

3.3 Background and Threat Model

Vehicles are built with many ECUs which are responsible for different vehicular

functions and usually communicate with each other using one or more Controller

Area Network (CAN) buses. These buses are broadcast-based and use a decentralized

protocol for access arbitration and real-time communication.

Sensor-falsification attacks use these communication networks to broadcast sen-

sor data masquerading as one of the ECUs. Since the CAN protocol does not iden-

tify/authenticate senders/receivers, an attacker capable of writing to CAN bus can

achieve this [57, 69, 68]. For example, an attacker can gain write access using an

Internet-facing Infotainment system, forced Bluetooth pairing or even a corrupted

audio file with a firmware update [14]. Once successful, the attacker can mount an

attack which involves writing falsified messages to the CAN bus. The intention of

this attack may be to confuse the user (e.g., [69] p.32, [57] p.456), or to control the
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Ref. ID Page # Target ECU Sensor spoofed Purpose of attack

1 32 Instrument Cluster (IC) Speed Confuse user

2 32 IC Engine RPM Confuse user

3 34 IC Odometer Confuse user

4 38 Pre-Collision System (PCS) RADAR-state Sudden brake, disable gas pedal

5 43 Intel. Park. Assistant System (IPAS) Gear, Speed Control steering

6 45 Lane Keeping Assistant (LKA) Camera-state Control steering

[69]

7 59 IC Fuel gauge Confuse user

8 455 IC Fuel gauge Confuse user
[57]

9 456 IC Speed Confuse user

10 84 IC Engine RPM Confuse user
[70]

11 85 Anti-lock Brake System (ABS) Imminent collision state Cause ABS to apply brakes

12 7 IC Speed Confuse user

13 23 Power Steer. Ctrl. Module (PSCM) Engine RPM Put ECU in diagnostic mode[68]

14 27 Park. Assistance Module (PAM) Speed Control steering

Table 3.1: Example CAN bus injection attacks which require falsifying vehicular
sensors.

vehicle (e.g., [68] p.27), as enumerated in Table 3.1 and categorized in Fig. 3.2.

3.3.1 Why Smartphones?

CarSec uses smartphone sensors for cross-validation of vehicle sensors. Smart-

phones are attractive to play this role for several reasons.

• They are powerful and capable computers with multiple ways to sense the out-

side environment. For example, the latest flagship phone from Samsung has a

2.7/1.8 Ghz 8-core processor and 11 sensors [58].

• They are ubiquitous and always-on-and-with-person. One study found that

77% of U.S. adults have smartphones [13]. Given their prevalence, smartphones

can act as a free source of data redundancy in our vehicular IDS.

• Smartphones undergo a frequent refresh rate and on average, users buy a new

smartphone every ≈2 years [56]. In a span of two years, phones often undergo

significant improvements in their resources including CPU, memory, OS, sen-

sors, etc. For example, the Galaxy S series significantly improved in processing

power (2.3 Ghz quad core in 2016 to 2.7/1.8 Ghz octa core in 2018) and software

(Android 6 in 2016 to Android 8 in 2018).
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3.3.2 Adversary Model

We model our adversary after what is normally found in related literature. At

the bare minimum, the adversary has write access to the CAN bus (e.g., through

the UConnect infotainment system, as demonstrated in [70]) and uses this access to

broadcast falsified sensor values. S/he uses falsified sensor readings to confuse the

user or force ECUs within the vehicle to misbehave. The attacks can vary in how

quickly they are accomplished and must be detected.

3.3.2.1 Trusted Components

In order to run CarSec, the driver must carry a smartphone equipped with IMU

and GPS sensors. We assume the smartphone is not compromised and is mounted on

the windshield or placed in the cup holder. Smartphone security is an active area of

research and there exist numerous deployed solutions to ensure that the software run-

ning on a smartphone has integrity and hasn’t been compromised. Besides, securing

smartphones is orthogonal to our work.

Additionally, the driver needs to connect an OBD dongle to the OBD-II port found

under the steering wheel. These are cheap and widely available devices used by many

people for diagnostic and telematics purposes. We assume that the OBD-dongle is not

compromised. We envision an OBD dongle which has very limited functionality and

only serves to dutifully relay the information it reads on the CAN bus. A simple OBD

dongle which only serves the purpose of relaying information doesn’t need Internet

connectivity and doesn’t need programmability. Although prior work has shown

remote compromise through the OBD dongle [37, 70], its target was dongles that

have Internet connectivity and sophisticated programmability. This sophistication

makes them vulnerable to attacks from the Internet.
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3.3.2.2 Attacks to Be Covered

CarSec detects sensor falsification attacks which are mounted via the CAN bus

that can be externally cross-validated using the smartphone sensors. Sensor falsifica-

tion on the CAN bus is often the first step in vehicular cyber-compromise reported in

literature [68, 69, 70, 57]. As such, it is important to detect and thwart the attacks

at this stage before they progress further.

We assume the sensor-spoofing happens through CAN-bus injection. In other

words, it doesn’t involve externally spoofing the sensor values via LiDAR injection or

other means. There are numerous examples of CAN-bus injection attacks reported in

literature. For example, [57] p.458 demonstrates a compound attack which involves

falsifying a speedometer reading and [69] p.43 presents a detailed attack that controls

the steering wheel angle by falsifying gear and vehicle speed readings.

3.3.2.3 Attacks Not to Be Covered

CarSec is not designed to detect CAN-injection attacks which do not involve sensor

falsification. For instance, CarSec cannot detect CAN-injections used to lock/unlock

the door found in [69] p.58. Additionally, CarSec is not designed to detect CAN-

injections where the spoofed sensor value reflects the actual vehicle sensor value. This

happens when the spoofed value is the same as the real value or when the vehicle

reacts to the spoofed value and changes its state to resemble the input value (e.g.,

[68] p.22).

3.4 System Model

We estimated six in-vehicle sensors using smartphone sensors. We chose to focus

on these 6 sensors for the following reasons. They are falsified in various attacks found

in literature on offensive vehicle security. Furthermore, they are related to vehicle
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Figure 3.2: Sensor falsification attacks can be characterized in two axes:intention and
time sensitivity. The attack IDs are explained in Table 3.1.

dynamics, thereby making it possible to replicate and cross-validate them using the

external smartphone sensors. There are also increasing commercial interests in these

sensors, making them available to consumers.

These sensors and their estimation equations are summarized in Table 3.2a. For

some of them, we used estimated sensors as input to estimate additional sensors.

The dependency of sensor estimation is shown in Fig. 3.12a. CarSec cross-validates

these estimations with the sensor values reported via the CAN bus to confirm or

raise a warning about the reported values. We give the details of 5 sensors below.

The odometer can be accurately estimated by accumulating the Haversine distance

between consecutive GPS points.1

Some of these sensor estimations require per-vehicle calibration. For example, we

trained a different neural network for each vehicle in our dataset for Gear estimation,

and loaded vehicle-specific parameters for engine RPM or fuel MPG. These must be

done one time for each vehicle model and can be done by the OEM before release.

CarSec doesn’t require per-smartphone calibration. The same vehicle-model can be

loaded on different smartphones.

1https://en.wikipedia.org/wiki/Haversine_formula
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Sensor Estimation Method

IMU-align R = [(~V × ~G)T ; ~V T ; ~GT ]
Speed vt = α(vt−1 +AccY ∗ dt) + (1− α)GPSv

Gear Neural-network based on vehicle speed
Steering [64] k ∗ arcsin(l ∗ yawrate/v)

Eng. RPM [94] v ∗ (Fr ∗Gr)/T
Odometer Haversine sum of consecutive GPS
Fuel level Distance * Average MPG

(a) Estimation of 6 different sensors used in
CarSec. When an attack is detected, CarSec
compares the approximations with the values
on CAN. For details on each sensor, see their
respective sections below.

Speed Offset in Seconds
{-0.5, -0.4, -0.3, -0.2, -0.1, 0}
{-5, -0.5, -0.4, -0.3, -0.2, -0.1, 0}

{-1, 0}
{-3, -2, -1, 0}
{-4, -3, -2, -1, 0}

(b) Each feature vector represents
the vehicle’s speed sampled at differ-
ent time offsets in seconds. For each
vehicle, we searched through each of
these to find the most optimal one.

Table 3.2: Summary of estimation equations.
3.4.1 Speed

We fuse the speed estimates from both the accelerometer and GPS sensors using

a complementary filter. The integration of consecutive accelerometer readings is an

estimate of the speed, but due to the noise in the IMU sensor readings, this results in

very divergent and incorrect speed estimates. Alternatively, we use the GPS sensor

for speed estimates in the order of 1Hz, but it misses more frequent changes which

might be sensed by the IMU sampling at 10Hz.

To use the accelerometer, we first align the phone’s IMU accelerometer readings

to the vehicle’s direction of travel. Given consecutive GPS points, we find the angle

of the GPS bearing offset from the magnetic north. We then rotate the magnetic

north vector from the magnetometer by the same angle to get the vehicle pointing

vector from the phone’s frame of reference, called ~V . We do this using a change of

basis transformation from the plane perpendicular to the frame of reference which

has basis vectors ~M, ~G, ~G × ~M where ~M is the magnetic north. Using ~G and ~V we
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can calculate the rotation matrix R, described in Eq. (3.1).

~C = ~V × ~G

R =


~C0

~C1
~C2

~Vx ~Vy ~Vz

~Gx
~Gy

~Gz


(3.1)

After calculating R, we rotate all accelerometer readings in the vehicle’s frame of

reference by ~Accv = R ~Accp
T

where ~Accv and ~Accp are the accelerometer vectors in

the vehicle and phone frame of reference, respectively.

As in [64], we also found that the GPS-estimated speed is slightly delayed from

the actual vehicle speed. We aligned the GPS-speed by shifting it by ≈0.5 seconds,

a value we found experimentally in our data. We fuse the Y axis of the aligned

Accv, and the delay-adjusted GPSspeed using a complementary filter vt = α(vt−1 +

Accv[Y ]dt) + (1 − α)GPSspeed. We set dt to 100 ms since our accelerometer sample

rate is 10Hz. We search through a training set and set α to 0.33.

3.4.2 Steering Wheel Angle

We estimate the steering wheel angle (SWA) using the yaw-rate of the gyroscope

on the phone. To accurately estimate the SWA, we first align the phone’s coordinate

system with the world coordinate system, and then convert the angular rotation in

the yaw axis to SWA. We use a similar rotation matrix as described in R above. Since

we are only concerned about the yaw-rate, this only uses the third row of the rotation

vector — which is the vector pointing in the direction of gravity. Only using the

gravity vector for world-frame alignment is more robust than using the vehicle-facing

vector and is sufficient for SWA calculations.

With this new rotation matrix R′, we calculate the aligned gyroscopic movement
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in the world frame of reference by ~gw = R′ ~gp
T where ~gw and ~gp are the gyroscope

vectors in the world and phone frame of reference, respectively.

Once we aligned to the world frame of reference, we use a simplified Ackerman

mechanism model to estimate the steering wheel angle using the smartphone’s IMU

sensors [64]. The steering wheel angle is estimated using:

θsteering = k ∗ arcsin(l ∗ yawrate/v), (3.2)

where k is the steering ratio, l is the vehicle length,2 v is the vehicle speed and yawrate

is the world-aligned yaw rate calculated using the above transformation.

3.4.3 Fuel Level

We estimate the vehicle’s fuel level by using the manufacturer’s published aver-

age MPG. Starting with a full tank of gas, CarSec uses the manufacturer-published

datasheet on the tank capacity of the vehicle. As the user drives his vehicle, CarSec

matches each location of the vehicle to a road segment3 and labels that as either

highway or city-level driving, using publicly available information, e.g., [35]. We take

the average MPG for that type of road and multiply it by the distance traveled to

get the new fuel tank level.

3.4.4 Gear Position

We focus on automatic transmission vehicles and exclude continuous variable

transmission systems. The gear position in automatic transmission vehicles is con-

trolled by the Transmission Control Unit (TCU). The TCU uses inputs from a variety

of vehicle sensors to inform its algorithm to upshift or downshift the gear. These sen-

sors include the vehicle speed, throttle position, and many others. Using a detailed

2We found both of these in vehicle specifications published online by the respective manufacturers.
3We matched it to OpenStreetMap [75].
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algorithm, the TCU adjusts the gear position to reduce load on the engine, increase

safety of the driver, and reduce the long-term wear and tear of internal components.

Since the smartphone lacks access to many of these sensor values, we trained

neural networks based on a vector of the vehicle’s recent speed to predict the current

gear position. For each vehicle, we found the most accurate feature vector from those

listed in Table 3.2b. We also searched through a neural network of depths 1, 2 or 3

where each layer is densely connected with 10 neurons each. The output is a one-hot

encoding of the current gear position. We used Tensorflow to train these models, and

Tensorflow Lite to run them on Android [1].

3.4.5 Engine RPM

The engine RPM is related to the vehicle speed and the current gear position via:

RPM = v ∗ (Fr ∗Gr)/T, (3.3)

where v is vehicle speed in meters per minute, Fr is the final drive ratio, Gr is the

transmission gear ratio and T is tire circumference in meters. We learned Fr, Gr and

T using publicly published parameters by the vehicle manufacturer [35]. We used the

gear estimate from our gear position estimation described above.

3.5 Evaluation

We first evaluated CarSec’s estimation accuracy for each of the 6 sensors (Sec. 3.5.2).

Next we evaluated CarSec’s sensor-falsification detection accuracy against common

falsification attacks found in the literature (Sec. 3.5.3). Finally, we implemented

CarSec in Android and measured the computation resource usage and latency of

each component (Sec. 3.5.4).
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Vehicle model Trips Hours
Mid-size sedan 2018 21 7.08
SUV A 2017 12 4.87
Compact sedan A 2017 2 0.91
SUV B 2016 44 9.73
Hatchback 2016 2 0.73
Compact sedan B 2012 31 5.07
Total 112 28.56

Table 3.3: Driving dataset collected for evaluation of CarSec. We use the OpenXC
[36] platform to access the CAN bus data in all test vehicles. We collected a total of
712.8 miles of data.

3.5.1 Evaluation Dataset

We evaluated CarSec by driving around and collecting ground truth data from

the CAN bus and smartphone sensors. Our evaluation required in-vehicle data that

is beyond the scope of the OBD-II diagnostic standard, so we used OpenXC [36] to

collect data from test cars. We collected data from 112 trips for a total of 28.56

hours and 712.8 miles of driving. The trips covered highways and surface streets. We

collected data from 7 different Ford vehicles and 3 drivers, summarized in Table 3.3.

The drivers were asked to place the phone in a natural stationary location such as

the windshield, cup holder or their pocket. More diverse phone placements while the

phone is used by the passenger is shown in Sec. 3.5.2.7.

In the following evaluation, we estimate the in-vehicle sensors (speed, steering

wheel angle, gear, engine RPM, odometer, and fuel level) using smartphone sensors

(GPS, IMU, magnetometer). See Sec. 3.4 for details of the estimation algorithms.

3.5.2 Estimation Accuracy

We evaluated CarSec’s estimation accuracy in the absence of attacks. We compare

the estimated and the ground truth values for all 112 trips. Fig. 3.3 plots the CDF of

the errors. The results presented in this section corroborate the estimation accuracy

reported by prior work [94, 64]. We go beyond prior work in our gear estimation
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Figure 3.3: Estimation error of vehicular sensors using CarSec. Each CDF shows the
estimation error of each trip along with the average error in a thick black line.
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evaluation and dig deeper into the common cause of estimation failure for many

sensors. Moreover we evaluate the estimation algorithms under normal phone usage

scenarios.

3.5.2.1 Speed

CarSec can very accurately estimate the speed using GPS sensors — 50th per-

centile has < 0.69kmph error, and 95th percentile has < 4.74kmph error. The low-

frequency speed (< 1Hz) is accurately estimated using the GPS-inferred speed and the

high-frequency speed (> 1Hz) is estimated using the aligned accelerometer readings.

3.5.2.2 Gear

CarSec also accurately estimates the gear position. Over ≈80% of the time, it

can exactly estimate the current gear position, and at 95% percentile, it is wrong by

1 gear position. We observed that the errors are related to where the driver travels.

CarSec can more accurately estimate the gear position when the trip is predominantly

in the highway versus surface local roads (see Figs. 3.6a and 3.6b). We divided the

data from the highway and the local road by map-matching the GPS points to the

OpenStreetMap database. This effect occurs because the driver tends to stay in the

same gear in the highway whereas there is much more fluctuation caused by start and

stop behavior on the surface streets. This is further corroborated by the fact that

gear estimation error and vehicle speed have a negative pairwise correlation of -0.1,

meaning as the vehicle goes faster, there is less gear estimation error.

3.5.2.3 Odometer, Fuel-Level

CarSec can also accurately estimate odometer (50th% < 0.15km, 95% < 2.14km)

and fuel level (50th% < 0.09L, 95% < 0.51L). Due to the accumulative nature of

fuel estimation, we noticed an increasing error as the trip continues for a longer
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period of time. The fuel-level estimate and drifting error are shown in Fig. 3.8. The

accumulating error only affects the estimates within a single trip. In between trips,

CarSec estimates the change in odometer and fuel level, and is therefore able to detect

injection attacks which happen during the trip.

3.5.2.4 Steering Wheel Angle

CarSec can estimate steering wheel angle with < 2.02◦ error in 50% of all trips, and

< 38.2◦ in 95% of all trips. We found a strong negative correlation between steering

wheel angle estimation and vehicle speed (coef=-0.22) and gear position (coef=-0.31).

We found large errors in steering wheel angle when the car moves slowly. This occurs

because as the car drives faster, there is a stronger relationship between the induced

yaw rate in the vehicle body and the steering wheel angle.

3.5.2.5 Engine RPM

CarSec has the most challenge in estimating the engine RPM. The 50% error is

115.6 RPM and 95% error is 788.5 RPM. We use the estimated vehicle speed and

vehicle gear position to calculate the likely RPM value (equation shown in Table 3.2a).

Even if we use the ground truth vehicle speed and gear position, there is a large

variability in the calculated RPM, as shown in Fig. 3.7a.

This large variation in the engine RPM estimation is caused by tire slip. The

relationship between the engine RPM and tire speed is mediated by the tire slip ratio

[21]. The tire slip is affected by such factors as the road conditions, wear of the tire,

and the friction coefficient between the tire and the road. To uncover this relationship,

we separated the regions with high acceleration of the vehicle, where there is likely to

be high tire slip as the vehicle moves faster, from regions with low acceleration. This

difference in the estimation error between the two scenarios is shown in Fig. 3.7b.

We found +524 more RPM error (a 1790% increase) for sudden acceleration versus
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normal acceleration conditions. Similarly, we found 372% increased error in up-hill

versus flat roads and 178% increased error in high-precipitation areas. (Not shown in

figure)
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Figure 3.4: Estimation error using the passenger’s phone. The black horizontal line
shows the 50th and 95th percentile errors for each of these sensors when the phone is
more carefully mounted, as done in our previous experiments.

3.5.2.6 GPS blockage noise

CarSec relies on GPS to estimate the vehicle speed. We evaluated the effect of

GPS error/noise by adding artificial noise to the dataset before estimating the vehicle

speed. The results are plotted in Fig. 3.5.

We added normally-distributed noise to the GPS samples (sampled up to once

every 100ms). We injected random noise for each 100ms time sample of the GPS

signal. Realistic GPS noise is likely to be less jittery and noisy, but our analysis

shows the effect of a more extreme noise distribution. We found that as we increase

the high-frequency GPS noise, the average error also increases. The trend is that for

every additional meter of high-frequency GPS noise, we see an additional error of 1

km/h speed estimation on average. Furthermore, we found that with an increased
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Figure 3.5: Vehicle speed estimation error for increasing high-frequency GPS noise.
For higher GPS noise, CarSec relies more and more on the accelerometer component
of the complementary filter.

GPS noise, CarSec also relied more on the vehicle-aligned accelerometer. This is

shown as the α curve in our analysis results. α refers to the trade-off between GPS-

speed and accelerometer-speed, used in the complementary filter in CarSec. To extend

this work, we can use the GPS confidence returned by GPS chips to conditionally

turn on or off CarSec’s estimation capabilities.

3.5.2.7 Additional Redundancy from Passengers’ Phones

CarSec can be easily extended to make use of additional sources of redundancy

from other devices. We demonstrate this possibility by running CarSec on passengers’

smartphones while they engage in various common activities on their phone. We

recruited 7 different passengers to repeat a 6.7 mile-long circuit four times. Each trip

around the circuit, the passenger engaged in one of the following four activities —

watching a movie, browsing a website, typing out a message, or making a phone call.

For each condition we collected ≈2 hours and 50 miles of data. In total we collected

7.9 hours and 200 miles of data.

The 50th and 95th percentile estimation errors are shown in Fig. 3.4. We skipped

odometer and fuel since those only depend on the GPS, which is unaffected by who

is using the phone. We also skipped gear estimation results since they are the same

as the 50th and 95th percentile estimation accuracy presented earlier in this section.
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Across all sensors, the estimation accuracy is only minimally affected by the pas-

senger using the phone. There are two main factors which affect the estimation

accuracy while the passenger uses the phone.

The first factor is how much the user interacts with the phone. We found that

as the user types on the phone or makes a phone call, the steering wheel estimation

accuracy tends to be worse. Especially when the passenger types on the phone, the

95th percentile steering wheel estimation error is worse compared to other activities.

The steering wheel estimation heavily makes use of the IMU sensors to both align

to the world-frame and convert the gyroscope readings to steering wheel estimates.

Increased noise in the IMU readings results in worse estimations. Speed is also affected

by typing (95th percentile texting is worse than browsing) but this is overshadowed

by a second factor.

The second factor is the phone orientation. When the passenger watches a movie

(in landscape orientation) or places a phone call, the phone is no longer oriented

in the direction of the car’s travel. For both browsing and texting, the phone is in

portrait orientation and faces the direction of the car’s travel. Since speed estimation

uses the accelerometer in the direction of the car’s travel, this is more sensitive to the

phone orientation.

The second factor doesn’t affect steering wheel estimations as badly because the

phone only needs to the re-oriented to the world-plane to get the angular movement.

We simply do this using the gravity vector. In contrast, the speed estimation requires

that we get the oriented acceleration along the axis of the car’s movement, which is

a more constrained estimation of the phone’s orientation.

CarSec can similarly be extended using other IoT devices such as the driver’s

smartwatch.
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Figure 3.6: Engine RPM and tire slip investigation
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3.5.2.8 Key Findings

We corroborated the errors reported in prior work in estimating vehicle sensors

[64, 21]. We also made three key findings, summarized below.

• Phone-based estimation algorithms work reliably even while the phone is being

used for common activities such as texting or making a phone call.

• Gear position can be accurately estimated using a neural network that accepts

the recent change in vehicle speed.

• By conditioning for various factors, we discovered that engine RPM estimation

is plagued by tire slip. This is especially predominant in steep road segments

or regions with high-acceleration applied to the car.

3.5.3 Sensor-Falsification Detection Accuracy

Next, we use the best settings learned from the estimation accuracy evaluation

(Sec. 3.5.2) to evaluate the of sensor-falsification detection accuracy. This evaluation

first involves injecting data into the CAN bus to mimic realistic attacks (Sec. 3.5.3.1)

and then detecting intrusion using CarSec (Sec. 3.5.3.3).
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3.5.3.1 CAN-bus Injection

We injected data into the collected data traces to simulate sudden, gradual, and

delta injections. The attacker might resort to one of these three forms of injection

depending on the intended outcome. For example, in [68] p.23, an attacker spoofs

false RPM values to put an ECU into diagnostic mode. In this case, the purpose

of the attack is to quickly put the vehicle in diagnostic mode, so the attacker would

flood the CAN bus with the target RPM value, a sudden injection. Alternatively, in

[69] p.38 or [57] p.458, the attacker gradually changes the falsified values to control

the vehicle or stealthily confuse the user, a gradual injection. An attacker might also

falsify values that are consistently different from the current value so as to mimic

normal but incorrect behavior. For example, in [57] p.458, the attacker falsified the

speedometer value to be 10mph below the actual speed of the car, a delta injection.

Table 3.4 details the injection types, sensors, and values.

Sensor Values Rationale

Speed { 4, 10, 25, 50, 100 } kmph Used in manipulating other ECUs E.g. [69].

Steer. Wheel Angle { -100, -50, -10, 10, 50, 100 } degrees Trick adaptive headlight into shining in the wrong location.

Gear { -1, 1, 4, 6 } gear Used in manipulating other ECUs, e.g., [69].

Engine RPM { 100, 1000, 2000, 5000 } RPM Low engine RPM used to put ECUs into diag. mode [68].

S
u
d
d
e
n
,

G
ra

d
.

Fuel level { 15.4 } gallons Trick driver into emptying gas tank, e.g., [57].

Speed { -50, -10, +10 } kmph Trick driver into going faster. E.g., [57].

Steer. Wheel Angle { +10, +50 } degrees

Odometer { -1000 } km Trick driver into missing oil change dates.D
e
lt

a

Fuel Level { +0.5 } gallons Trick driver into driving without sufficient fuel level, e.g., [57]

Table 3.4: Specific injection values used in our analysis. The first five attacks were
injected as a sudden or gradual injection. The last four were injected immediately as
a delta of the actual value. See Sec. 3.5.3.1 for more details. These injection values
were inspired by existing literature and extend beyond them.

In all three cases of injection, we measured the difference between smartphone-

estimated value and CAN-bus reported value, and counted the instances of true pos-

itive (TP), true negative (TN), false positive (FP) and false negative (FN). We used

the normal case without injection to count FP and TN, and the injected case to

count TP and FN. In what follows, we compare the True Positive Rate (TPR) and

False Positive Rates (FPR) of various conditions. The TPR (also known as recall) is
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(a) Sudden attack where the
attacker immediately sets the
sensor value to the target
value.
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(b) Gradual attack where
the sensor value gradually
changes to the target over a
span of 10 seconds.
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(c) Delta attack where the at-
tacker sets the injected value
to a offset of the
actual value.
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(d) All graphs share
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Figure 3.9: The true positive rate (TPR) and false positive rate (FPR) of different
conditions. We considered gradual, sudden, and delta injections. See Sec. 3.5.3.1 for
more details. For each condition, we restricted the maximum FPR and adjusted the
parameters to yield the highest TPR. As we reduced the FPR requirement, the TPR
also suffered.
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defined as TP/(TP + FN) and the FPR is defined as FP/(FP + TN). Configuring

CarSec results in a tradeoff between TPR and FPR. A cautious driver would prefer

to increase TPR at the risk of more alarms. However, if the FPR is too high, it will

raise too many false alarms and might lead to the driver ignoring the alarms during

a real attack.

3.5.3.2 Warning Threshold

CarSec uses two parameters before flagging an on-going attack — the attack mag-

nitude and duration. By adjusting these parameters, CarSec can be configured to

trade off false positive rates (FPR) with true positive rates (TPR). The first param-

eter specifies a threshold difference between the estimated CarSec and OBD values

before flagging it as anomalous. This can be caused by an attack, by a faulty sensor,

or by estimation inaccuracy due to inaccurate smartphone sensors. The second pa-

rameter disambiguates this by looking for a sustained deviation from expected values.

The first parameter is in a different unit for each sensor. For example, the steering

wheel angle sensor uses “degrees.” The second parameter is in seconds.

We search through 100 combinations of both parameters and calculate the receiver

operating characteristic (ROC) curve. We set the magnitude threshold to one of

10 different values, defined independently for each sensor, and set the duration

threshold to one of 10 different values equally ranging from 100ms to 5s. Fig. 3.10 is

the ROC curve for speed-falsification detection. With the ROC curve, we search for

the configuration which yields the maximum TPR for bounded FPR values, where

FPR is bounded to {0.1, 0.5, 0.01, 0.001}

3.5.3.3 Detection Accuracy

Fig. 3.9 shows the FPR and TPR for different attacks, and detection thresholds.

CarSec is able to most accurately detect attacks which falsify speed, fuel level or
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Figure 3.10: ROC curve of 100 different combinations of the two parameters — attack
magnitude and duration. For each combination, we calculate the FPR and TPR. A
similar ROC curve was computed for each of the 6 sensor estimations.

odometer values.

Speed For sudden falsification attack, CarSec can detect speed injection attacks

with TPR=97.33%, FPR=0.2% and for a delta attack, CarSec can detect the injec-

tion with TPR=99.67% and FPR=0.2%. However, if the attacker gradually spoofs

speed values to the desired target value, CarSec’s accuracy drops to TPR=90.25%

at FPR=0.2%. If the user is willing to tolerate more false alarms, CarSec can detect

gradual speed spoofing attacks at TPR=94.98% at FPR=4.56%.

Fuel-level We found a similar pattern in the fuel-level attacks. CarSec can de-

tect a fuel-level delta attack at TPR=93.86% at FPR=0.77%, and a sudden attack

at TPR=88.8% at FPR=0.77%. However, it only detects the gradual attack at

TPR=64.57% at FPR=0.77%. In the subsequent analysis, we uncovered the rea-

son for poorer performance in detecting gradual-level attacks. In a gradual attack,

injected values closely resembles the actual values during initial stages of the attack.

Only after a few seconds of the 10-second gradual attack does the value start to dif-

fer. We decouple this factor and study the detection accuracy by the percentage of

injection in Sec. 3.5.3.4.
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Steering Wheel Angle CarSec is able to detect delta steering wheel injection

attacks at TPR=91.98% for FPR=0%, sudden-injection attacks at TPR=94.12%

for FPR=0%, and gradual-injection attacks at TPR=58.33% for FPR=0%. The

steering-wheel detection is less accurate for gradual injection attacks due to the in-

herent difficulty of estimating the steering wheel angle using IMU sensors. This is

especially a problem when the vehicle is traveling very slowly or stopped at a stop

sign. The driver may move the steering wheel significantly but the IMU sensor will

be unable to estimate these values. Therefore, in order to improve the TPR, we have

to accommodate a much higher FPR, which may not be acceptable for drivers.

Gear Position CarSec can accurately detect any gear injection attacks

— TPR=90.08%, FPR=0.22% for sudden injection and TPR=88.3%, FPR=4.79%

for gradual injection. Contrary to other sensors, even a gradual gear injection can

be detected with high accuracy because of the discrete nature of gear values. The

smallest injection can change the gear value by 1 gear position. As seen in Fig. 3.3,

we can estimate the gear position correctly almost 80% of the time.

Engine RPM Mirroring what we saw in the estimation accuracy, CarSec has the

most difficulty in detecting RPM injection attacks. Sudden attacks have TPR=78.29%,

FPR=0.54% and gradual attacks have TPR=43.22%, FPR=0.54%. This resembles

our estimation error which is caused by tire slip, as shown in Fig. 3.7b. In the ideal

case, the RPM estimation without considering tire slip is still incorrect by just over

1000 RPM values in the 99th percentile. If we only look at injection between 1000–

1200 RPM values, we can detect them with 87.23% TPR. We further investigate the

relationship between attack magnitude and detection rate in the next section.
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3.5.3.4 Smallest Detectable Attack

We measured the minimum injection that CarSec can detect. This analysis helps

us disentangle the type of injection from our detection method. Fig. 3.11 shows the

result of this analysis.
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Figure 3.11: The left figure shows TPR for varying amounts of injection magnitude.
The right figure shows varying fixed values of injection. At the moment of the injection
the vehicle sensor varies depending on the scenario. For instance, in some cases the
car was traveling at 10 kmph when there was a 4kmph injection. For all cases, FPR
was less than 5% and therefore omitted. Figure best seen in color.

As shown in Fig. 3.11, we injected different magnitude values for each sensor

deviating from the actual value. The X-axis is the magnitude of the injection where

each unit is multiplied by the scale specific to that sensor, shown in the figure legend.

We can detect speed injection once it exceeds 10kmph. Similarly, the minimum bound

threshold for other sensors are: engine RPM=1000 RPM, Gear=2, steering=22.5◦,

odometer=4km and fuel level=0.9L.

On the left figure, we show varying magnitudes of a delta injection. As the injection

is close to 0 delta (i.e. the true value), the TPR drops to 0. On the right figure, we

show the TPR for fixed injection values. If the fixed value is close to the actual value

(e.g., setting engine RPM to ≈1500) then the TPR becomes very low.
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Figure 3.12: Implementation details and measurements

3.5.3.5 Key Findings

The key results of intrusion detection accuracy evaluation can be summarized

as follows. These findings are key contributions of our work, which is the first to

investigate using phone sensors to detect CAN-bus injection attacks.

• Mirroring what we found in estimation evaluation (Section 3.5.2), CarSec can

detect injection to the vehicle speed, fuel level, steering wheel angle, gear and

odometer with high true positive rate (TPR), but has a lower TPR for engine

RPM.

• The TPR depends on the nature of the attack. It is lowest during a gradual

attack - this is due to injections of very low magnitude at the onset of the attack.

• The TPR increases as the attack magnitude increases and starts to starts to

exceed the estimation error.

3.5.4 Android Implementation and Evaluation

We implemented CarSec as an Android app for all devices running Android 7.0

or higher. CarSec reads vehicular data via a Bluetooth-based dongle attached to
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the vehicle’s OBD port. It uses the internal phone-based sensors to estimate the

same sensors from the OBD dongle, and reports any suspicious looking discrepancies

to the user. CarSec infrequently polls nearby Bluetooth devices to detect if it is

within proximity of the vehicle. Once it detects that the user is near their vehicle, it

establishes a connection, and starts security-assistance operations.

The Bluetooth latency incurred by CarSec communicating the information from

the OBD dongle to the phone is negligible (due to short distance and low traffic)

and all data are aligned to the same time using timestamps. Furthermore, as we

show below, the time to run each estimation algorithm is also within the order of

milliseconds, making CarSec a very time-efficient implementation.

We implemented each of the six sensor estimators into CarSec in a modular

fashion. Each module has a set of inputs which it uses to calculate the estimated

value. The inputs can be raw phone sensors or outputs from other module estima-

tors. Fig. 3.12a shows the relationship between the input and output of each module.

Each module’s outputs are routed to other modules which depend on them. This

modular implementation pattern avoids replicated code and operations within the

resource-constrained phone. We built each module on top of a vehicular data col-

lection library developed in our lab. The library handles interfacing with Android

sensors, with Bluetooth-based OBD dongle, routing data from one module to an-

other, and many other basic requirements of CarSec. Each sensor estimation logic

took less than 100 lines of Java code to implement. The vehicle alignment and gear

estimation modules took the most amount of development effort due to their increased

complexity.

We measured the CPU usage of each of the estimators within CarSec and the

combined operation of CarSec. The results are shown in Fig. 3.12b. We separated

out the six estimation algorithms within CarSec and evaluated their CPU usage in

isolation, shown in the first six bars of the figure. These algorithms were tested

74



using trace of the sensor data, in order to measure CPU usage isolated from data

collection. We also measured the CPU usage of data collection as a separate trial

shown in the bar titled “Read Phone Sensors”, and the full CarSec implementation

with all estimators and data collection, shown in the bar titled “Full CarSec”. All our

measurements were made on a Google Pixel 2, which has an Octa-core ARM-based

Kyro CPU.

For each test case, we ran that subset of CarSec for 1 minute and sampled the

percent CPU utilized using ‘top’. We divided this value by the number of cores — 8

cores in our test device. We also measured the CPU utilized by two system-level hard-

ware access services (grouped under “Hardware services”) and two system services

responsible for other operation within Android (grouped under “System services”).

As shown in Fig. 3.12b, CarSec only uses approximately 2% of the total CPU

availability for each of the sensor estimators. Furthermore, when we ran all sensors

simultaneously (shown under “All Estimators”), the CPU utilization is still near 2%.

The primary overhead of running CarSec is not the sensor estimation algorithms;

their implementation is very light-weight and make use of the output from each other

to reduce total CPU consumption. The primary overhead comes from other Android-

related requirements of launching an app.

Next we measured the cost of reading from the smartphone sensors (i.e., GPS,

IMU and magnetometer) without doing any sensor estimation. That is shown in the

bar labeled “Read Phone Sensors”. The CarSec process only takes approximately 1%

of the CPU, but the system-wide services which are used to read from the sensors

take approximately 6%, putting the total at around 7% CPU utilization. Finally, we

ran the full CarSec implementation with a user interface and it takes approximately

8% of the total CPU utilization.

We expect the driver to connect their phone to the car power source, as is com-

monly the case. A security-conscious driver may be willing to make this tradeoff to
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avoid any battery consumption by CarSec.

Each of the six modules which estimate six sensors run in negligible time. We

measured this by running CarSec and measuring the time required to process and

output each of the estimations. We averaged the runtime over approximately 100

runs of each estimator. Speed, steering wheel, fuel, and engine RPM modules all ran

in less than 1 ms on average. Odometer estimation ran in 2 ms on average and gear

estimator took 5.6 ms on average. The gear module is the most complex as it uses

a neural network to predict the gear position, and hence it takes the longest amount

of time. Since each estimation is very fast, the real bottleneck is the rate at which

the phone provides us with the low-level sensor values. For example, the odometer

estimation module depends on the GPS, which is often only available at 1Hz.

3.6 Discussion

CarSec brings car-security to everyday drivers. Due to ease of deployability and

the widespread, ubiquitous nature of smartphones, our system has the potential for

a wide reach.. Discussed below are a couple of remaining issues worth further inves-

tigation beyond our current approach.

• Compromised Phone Sensors. As described in our adversary model (Sec. 3.3.2),

we assume that the phone isn’t compromised. Mobile security is an active re-

search area on its own and is orthogonal to our work. We refer the reader to

recent surveys on mobile security [34].

• Additional Redundancy. We demonstrated that CarSec can run on passen-

gers’ phones while they engage in common activities on their phones. Similarly,

we can extend this work to other devices which have the required three sensors.

CarSec only needs IMU, magnetometer, and GPS sensors to estimate vehic-

ular sensors. Many existing IoT devices could be used in this way including
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smartwatches, fitness trackers, or some mounted after-market devices such as

Amazon Echo Auto, 4 as long as they expose access to these three sensors. We

leave the evaluation of this extension as future work.

• Response After Detection. CarSec serves as a two-factor source of knowl-

edge to detect sensor falsification attacks. If an attack is detected, CarSec

merely notifies the driver of the suspicious activity and they can choose to take

the car to a mechanic for further diagnostics. We do not consider automated

response based on this information. Automatically responding is risky since the

attacker may target the smartphone in order to trigger this response mechanism

and immobilize the car. Therefore, we restrict CarSec to detection and leave

response up to the driver.

3.7 Conclusion

In this chapter, we presented CarSec, a car-security assistant which uses smart-

phone sensors to cross-validate and detect vehicular sensor falsification attacks. We

used smartphone sensors to estimate six sensors inside the vehicle: speed, fuel level,

odometer, engine RPM, gear position and steering wheel angle. Using driving traces

and simulated injections, we have demonstrated CarSec’s ability to detect injections

which have sufficient magnitude of attack (e.g., enough to actually impact the car or

confuse driver) very quickly after the attack onset.

We focused on these six sensors, but CarSec can easily be extended to many

more sensors within the vehicle. Furthermore, through the combination of multiple

phones, other IoT devices, and rich media sensors on the phone (e.g., cameras and

microphones), we can extend the space of sensors which can be cross-validated using

CarSec. This work lays the groundwork for future researchers to expand on the idea

4https://www.amazon.com/Introducing-Echo-Auto-first-your/dp/B0753K4CWG
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of using smartphones for car-security assistance.
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CHAPTER IV

Ubi: Using GPS Trajectories to Detect Driving

Hazards

4.1 Introduction

According to the World Health Organization (WHO), road injuries are one of the

leading causes of deaths worldwide in 2018 [76]. The National Highway Traffic Safety

Administration (NHTSA) reported that in 2017, dangerous driving alone claimed

over 3000 lives [74]. To reduce this fatality, dangerous driving hazards — including

potholes, debris, pedestrians or other reckless drivers — must be detected and dealt

with in a timely manner.

4.1.1 State-of-the-Art

Automatic detection of road hazards is reserved for high-end vehicles with sophis-

ticated sensors and significant computing power. The majority of drivers without this

capability rely on phone-based solutions to be warned of upcoming hazards. Station-

ary hazards such as potholes or speed traps are collected and shared through popular

navigation applications such as Google Maps [66], but these solutions fail to track

moving hazards such as pedestrians or bicyclists. Furthermore, none of these ap-

proaches support tracking highly-mobile hazards such as a fast-approaching reckless

79



Inform nearby drivers
through navigation apps

such as Google Maps

Inform transportation 
department or 
authorities

Ubi
• Collect GPS traces
• Perform graph search
• Detect hazards

Stationary

Slow-moving

Fast-moving

Figure 4.1: Ubi detects different driving hazards (shown in red) by collecting GPS
trajectories of vehicles around the hazard (shown in blue). This operation is done in
a cloud service and broadcast back to the drivers, or to the proper authorities

driver. The state-of-the-art in detecting reckless driving behavior requires collecting

GPS or sensor data from the driver in question [117, 111]. This approach is insuf-

ficient for an uncooperative reckless driver who wishes to hide his driving behavior

from the authorities. Thus, we need a solution to detect and track stationary and

mobile driving hazards without their explicit cooperation.

In this chapter, we provide a unified solution for detecting stationary (e.g., pot-

hole), slow (e.g., pedestrian) and fast (e.g., driver) moving hazards. Our solution, Ubi,

does not require data from the hazard in question and infers the presence through

GPS trajectories of, and sightings reported by well-behaving drivers surrounding the

hazard.

4.1.2 Proposed Solution

We propose a system called Ubi that detects stationary (e.g., potholes, broken-

down cars, or fallen tree branches), slow-moving (e.g., pedestrians) and fast-moving

(e.g., bicyclists, reckless driver) hazards. Our system, summarized in Fig. 4.1, accepts

the GPS trajectories of drivers on the road and any reported sightings of the hazard.

Using an internal graph representation of the road segment, Ubi identifies the most

likely hazard on the road segment, if any, and predicts their location into the future.

As new cars approach the hazard’s predicted location, Ubi sends a warning to the
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driver ahead of time.

4.1.3 Ubi Operation

Drivers install Ubi on their smartphone along with their regular navigation app.

During their daily commute, as they approach a hazard Ubi sends them an alert with

the type of hazard (e.g., pedestrian) and the current distance from the car. A driver

may also press a button on their smartphone to instruct Ubi about the presence of a

new hazard nearby. On the server side, the cloud operator collects GPS samples from

multiple drivers at the same location and tracks the reported sightings of hazards.

The server cycles through a library of known hazard types and identifies the most

likely hazard that fits the observed sightings. As a driver queries Ubi at time t, the

cloud operator predicts the location of the hazard at t and warns the driver if they

are nearby.

4.1.4 Key Technical Details

Ubi detects and tracks mobile hazards using two key ideas.

1. Mobility model Ubi uses an internal representation of the mobility patterns of

each hazard type. A mobility model is the probability distribution of movement

over each time step. For example, a pedestrian may only travel at a maximum

of 10m per second whereas a driver can travel much faster.

2. Graph representation Ubi combines the GPS trajectories, sightings of haz-

ards, and the mobility model of each hazard using a 3-dimensional occupancy

graph (Fig. 4.6). As hazards are sighted, Ubi marks individual nodes at that

time and attempts to find the best hazard that matches the sightings. For each

time step, Ubi applies the mobility model for each hazard type to predict how

the hazard could have moved from one time step to the next. This prediction

is then used to warn future drivers as they approach the hazard.
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4.1.5 Results

We use Ubi to detect three different hazards in simulation: a stationary pothole,

a slow-moving pedestrian, and a fast-moving bicyclist. We demonstrate that in all

three cases, Ubi is able to accurately classify the hazard type (≈ 95% accuracy) and

provide accurate warnings about the hazard’s distance from the driver (1.75m for

pothole, 1.5m for pedestrian and 3.5m for bicyclist). We demonstrated that Ubi is

resilient to GPS noise as high as 25m, which is the worst-case scenario in highly-dense

neighborhoods [52]. Furthermore, we show that the distance error decreases as the

density of cars increases.

4.1.6 Contributions

This chapter makes the following contributions:

1. Development of Ubi, a novel hazard detection and warning system that uses

GPS trajectories of nearby cars to detect stationary and mobile hazards;

2. A novel graph-based algorithm to track and predict the future locations of

mobile hazards;

3. Demonstration of Ubi’s effectiveness in detecting stationary potholes, slow-

moving pedestrians, and fast-moving bicyclists.

4.1.7 Outline

This chapter is organized as follows. We give Ubi’s algorithm and implementation

details in Sec. 4.3. In Sec. 4.4 we present the results of evaluating Ubi. Finally, we

consider future work in Sec. 4.5, survey related work in Sec. 4.2, and conclude in

Sec. 4.6.
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4.2 Related Work

There have been numerous methods proposed thus far to detect stationary, slow-

and fast-moving hazards. However, most of them require direct sensing of the hazard

(Sec. 4.2.1). A few of them also detect stationary hazards through indirect sensing of

GPS trajectories (Sec. 4.2.2).

4.2.1 Direct: Hazard Detection

Using cameras Most driving hazard detection systems use cameras and other sen-

sors to directly sense the hazard. For example, numerous systems use camera to

detect pedestrians [26] or other vehicles [93]. Autonomous vehicles use even more

advanced vision sensors to detect hazards in their surroundings [59]. Vision-based

systems require advanced processing and installation, which can be expensive in ex-

isting vehicles. Our solution simply uses GPS trajectories which is already widely

used in navigation systems.

Road anomaly detection Some systems use GPS and IMU sensors to detect sta-

tionary hazards, such as potholes or speed bumps [92, 91, 32, 7, 50]. They collect

IMU/GPS data from multiple vehicles driving by the stationary hazard and use ma-

chine learning techniques to identify the location of the hazard. With a notable

exception explored later [91], these systems only work if the vehicle drives over the

hazardous region. If the vehicle swerves out of the way, it will not register as anoma-

lous IMU sensor data. Furthermore, these systems are only able to detect stationary

hazards. In contrast, Ubi uses only GPS trajectories to detect stationary, slow- or

fast-moving hazards.

Detection of reckless drivers There have been numerous proposals for dangerous

driving detection. Many of them rely on data from inside the vehicle [45, 67, 117,
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104, 116, 107], smartphone data [113, 60, 61, 45, 18], camera data [112, 96, 53, 104,

61], or GPS trajectories [115, 111, 47, 2, 78]. All of these assume that the collected

dataset also includes data from the dangerous driver. In reality, however, this may

be missing due to lack of coverage or the active evasion by the dangerous driver. Ubi

assumes no data from the dangerous driver and uses the behavior of nearby vehicles

to reconstruct the likely trajectory and presence of the dangerous driver.

4.2.2 Indirect: Detection based on GPS trajectories

There are some solutions which infer the presence of other objects based on GPS

trajectory data. The authors of [90] use swerving behavior to detect the presence of

potholes. They observe that drivers tend to avoid potholes, and by aggregating the

driving behavior from multiple drivers, it is possible to reconstruct the likely location

of potholes. The authors of [47, 12] use GPS trajectories to infer the presence of

stop signs and stop lights. They observe that near stop signs, drivers will have a

sudden de-acceleration behavior, which can be aggregated in a large scale. [106] uses

GPS traces and map matching algorithms to find new road segments which are not

cataloged in a digital map. [23] uses common parking patterns in a busy street to

automatically infer parallel parking spots. The occupancy of a parking spot changes

over time, and during dense times, they use the fact that drivers drive past illegal

parking spots to infer that it must be illegal to park there.

All of these approaches use the GPS trajectories to find stationary hazards and

landmarks, such as potholes or stop signs. In contrast, Ubi goes beyond to slow- and

fast-moving hazards as well.

4.2.3 Graph-based anomaly detection

A few approaches use graph theory to detect abnormal driving behavior. [78]

collects GPS trajectory and builds graphs to represent common paths between source
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Figure 4.2: Ubi system components. Individual drivers upload their current location
and optionally a sighting of the hazard if they are nearby. Ubi uses subsequent sight-
ings to track the location of the hazard, and returns the distance from the upcoming
hazard.

and destination. If the flow of traffic through the graph changes significantly one

day, they investigate more closely to find the source of the change and find traffic

obstructions. Unlike this, we model the micro-traffic using graphs. The nodes in

our graph model is the open space and edges represent feasible movement of hazards

through the nodes.

[116] uses graphs to represent the state of the vehicle using multiple vehicular

sensors such as engine RPM, speed, gear and swerving behavior. Our work uses

graph models for an entirely different purpose of finding open spaces and feasible

trajectories.

4.2.4 Crowd-sourced detection

Existing navigation applications like Google Maps or Waze use crowd-sourced

reports to detect stationary obstacles or events on the road, such as a speed trap or

stopped car. These rely on manual user inputs and only work for stationary hazards.

Our system has the ability to expand the detection repertoire of these navigation

systems by also tracking and detecting mobile hazards, such as a pedestrian or a

reckless driver.
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def warn_driver (time, gps, sighting):

all_gps.append(gps)

# Sighting reported, update hazard model

if sighting is not None:

all_sightings.append(sighting)

likelihood = {}

for hazard in all_hazard_types:

likelihood[hazard] = graph_search(

all_gps, all_sightings, hazard, time)

likely_hazard = most_likely_hazard(likelihood)

# No sighting reported

# Simulate past sighting of hazard and warn driver

else:

network = graph_search(

all_gps, all_sightings, likely_hazard, time)

location = average_location(network, time)

return likely_hazard, location

Figure 4.3: Ubi pseudocode. Ubi accepts a timestamped GPS location and whether
the hazard/obstacle was sighted at this location. If there is a sighting, it updates
the likelihood model. Otherwise, it predicts the current location of the obstacle and
warns the driver. The graph search algorithm is described in more detail in Alg. 4.4.

4.3 System Design

Ubi is a real-time detection and warning service for upcoming stationary or mobile

hazards. As shown in Fig. 4.2, Ubi accepts GPS trajectories from multiple drivers

near the same location and internally tracks and simulates the location of hazards on

the road. Ubi uses a three-dimensional graph to represent the trajectories of vehicles

and the potential trajectories of hazards. As more drivers drive around the hazard,

Ubi gains increasing confidence about the type and projected trajectory of hazard.

As the driver approaches the hazard, Ubi sends a warning with the type of hazard

and the estimated distance from the car. The main system components behind Ubi

are shown in Fig. 4.2 and the pseudocode is shown in Fig. 4.3.
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Input:
T – set of trajectories for all vehicles
S – set of sightings of hazard
M – set of obstacles in the map
H – set of movements for hazard from (x, y)
E – set of valid regions where hazard can enter

Output: List of possible hazard paths

1 Nodes← ∅;
2 for t ∈ all times in T do
3 Nodest ← Nodest ∪ Et;
4 Nodest ← Nodest ∩ ¬(Tt ∪Mt);
5 if t ∈ S then
6 Nodest ← Nodest ∩ St;
7 for (x0, y0) ∈ Nodest do
8 for (x1, y1) ∈ Hx0,y0 do
9 collision ←False;

10 Hazard transition = (x0, y0)→ (x1, y1);
11 for car ∈ T do
12 if collides(cart, Hazard transition) then
13 collision ←True;

14 for car ∈ T do
15 Car transition = cart → cart+1;
16 if collides((x1, y1), Car transition) then
17 collision ←True;

18 if collision == False then
19 add node (x1, y1, t+ 1);
20 add edge (x0, y0, t)→ (x1, y1, t+ 1);

21 return List of possible hazard paths

Figure 4.4: Graph search used in Ubi
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4.3.1 Ubi System Input Output

Drivers running Ubi share GPS samples of their location and whether a hazard

was sighted in their vicinity. The cloud operator pools data from multiple drivers near

the same location and uses a graph data structure in two different ways. Suppose

Ubi has received data from time t0 until t1. First, Ubi uses a graph to simulate

an obstacle traveling through the sighted regions between t0 and t1. Ubi attempts

to place multiple hazards in this time range amidst the GPS samples and reported

sightings. Second, when a new car approaches at t2 > t1, Ubi simulates the location

of the most likely hazard (learned from the first use of graph search above) until t2.

Next we describe this graph search, which constitutes the core algorithm used in Ubi.

4.3.2 Graph Search

Ubi uses a graph representation to efficiently find hazards amidst the known ve-

hicle GPS trajectories and through reported sightings. For mobile hazards, Ubi also

finds the possible likely paths the hazard could have taken through the trajectories.

A graph is a natural representation of physical locations and the relationship between

them. The nodes in the graph encode the available open space and edges represent

feasible movements between nodes. The graph is initialized at the starting time and

with a definition of the map including road boundaries and obstacles on the road.

The graph search create nodes only where there is free open space that is not occu-

pied by other known cars. Depending on the mobility of the unknown hazard (e.g.,

a pedestrian, a driver who is turning right at the next intersection) we create edges

with different weights and connectivity.

A step-by-step visual walk-through of the graph construction and graph search is

shown in Fig. 4.6 and the algorithm is shown in Alg. 4.4.
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Figure 4.5: The open space around the GPS trajectories are represented using a
network. Each node represents a potential location for the hazard.

(a) Input (b) Create nodes (c) Connect edges (d) Shortest path (e) Output

Ov
er
he
ad
 v
ie
w

3D
 n
et
wo
rk
 v
ie
w

Figure 4.6: An overview of the steps involved in detecting hazards in Ubi. This
example uses trajectories of simulated bumper cars where the hazard is also a missing
bumper car. This is chosen for ease of visualization. The top row shows the overhead
view during one time step. The bottom row shows the full 3D graph where the Z
axis is used to represent time. The blue lines in the input represent the trajectory
of the input. The sightings are shown in red where the missing bumper car was last
seen. The third step (c) shows how the edges are connected such that the hazard
goes through the sightings. All outside nodes and edges are excluded (Alg. 4.4 #6).
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4.3.2.1 Discretization

In order to use graphs to find possible vehicle trajectories, we first discretize the

continuous information into a grid with a grid size of X, Y, T for each cell. For each

trajectory, we discretize them using D(x, y, t) = (bx(i)/Xc, by(i)/Y c, bt(i)/T c) =

([x]X , [y]Y , [t]T ) = [X]. We have to ensure that the discrete resolution is fine enough

to capture the motion and shape of the hazard but not too fine making it expensive.

For instance, if we are searching for a pedestrian, we need a finer resolution than if we

are searching for a car. In many of our evaluation, we found that X = 1, Y = 1, T = 1

works well. We investigate the trade-off of resolution, accuracy, and computation in

Sec. 4.4.

4.3.2.2 Encode Open Space into Nodes

After discretizing the known trajectories, we create nodes in our graph that

roughly corresponds to the open space around the vehicles. Each node specifically

represents the proposition if the unknown hazard was placed at this location, it will

not collide with the car trajectories. Therefore, given the shape of the unknown haz-

ard (e.g., cars are roughly 4.3m x 1.3m 1), we place them at each location with a

specific orientation that is fixed for that portion in the road segment. This yields a

3D network where each node encodes the (x, y, t) of vehicle. An overhead view of an

example 3D network is shown in Fig. 4.5.

4.3.2.3 Encode Mobility into Edges

Given the open space over time represented as a graph, we encode possible mobility

of hazards through the open space as directed edges.

Ubi searches for hazards of varying mobility — stationary, slow- and fast-moving.

For each type of hazard, we define a mobility model which specifies how much the

1https://sumo.dlr.de/wiki/Vehicle_Type_Parameter_Defaults
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Car obstacle in front Approaching exit on right

(a) Edge weights encoding the likelihood of
transition of a reckless driver hazard. If the
hazard is next to the edge of the road they are
likely to continue straight.

hazard could have moved in one time step. The mobility models of a slow-moving

pedestrian and a fast-moving bicyclist are shown in Fig. 4.8.

(a) Pedestrian
fixed speed

(b) Pedestrian
accelerating

(c) Biker
fixed speed

(d) Biker
accelerating

Figure 4.8: Mobility models for 4 different hazard types. Each scatter plot represents
the full range of possible movement in one time step with the hazard starting at (0, 0).
We also compared these with a stationary obstacle that isn’t shown here.

Possible Movement: Physical Constraints Starting at T = 0, we connect

nodes to subsequent time steps based on the possible mobility shown in Fig. 4.8. The

edges represent how the hazard could have moved through the time steps. In the case

of stationary hazards all edges are simply connected to the same node in the next

time step, i.e. all edges point directly up in our 3D directed graph. When connected

nodes based on the mobility model, we have to ensure there is no collision with other

known trajectories. This is enforced in two different conditions.

First, moving the unknown hazard from X to Y from T0 to T1 must not jump

over any known trajectories of other vehicles in between the two time steps. Due

to the discretization of time, this overlap of trajectories and hazards may occur in

between the two time steps. We resolve this by checking the continuous-space location
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of the cars in between T0 and T1 to ensure no collision happens between T0 and T1.

(Alg. 4.4 #10-13) The second requirement is that no other known trajectories overlap

with the unknown hazard between the two time steps due to their own movement.

This occurs even if the unknown hazard doesn’t move between the two time steps.

A lack of motion may still be in violation of other vehicle motions (Alg. 4.4 #14-

17). Resolving these two constraints gives us a full list of possible movements of the

unknown hazard.

Probable Movement: Behavioral Constraints After connecting all possible

transitions between open-space nodes, we are still left with an over-estimation of

where the unknown hazard may be in our graph. This is due to the behavioral

probabilities of how different entities behave in the real world. For example, a car is

likely to stay within the lane or go in the right direction on a one-way road. Although

it is physically possible to go in the opposite direction, this is highly unlikely. Fig. 4.7a

shows example likelihoods of a reckless driver hazard given the position on the road.

We set the edge weight to reflect the transition likelihood.

Specifically, we assign a higher transition likelihood based on two factors: (1) the

prior probability distribution of hazard mobility (e.g., bicyclists are more likely to go

straight) and (2) physical constraints on the road such as collision with other vehicles

or obstacles on the road.

4.3.2.4 Find Shortest Path

After creating the graph and connecting the edges, we use Dijkstra’s algorithm to

find the shortest weighted path through the network. We further add the constraint

that the path has to pass through the known sightings of the unknown vehicle. For

each run of Ubi we have a set of possible paths through the network. The shortest

weighted path is the path with the smallest sum of weights of its edges. This path
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gives us the most likely path through the graph since the edge weights are inversely

proportional to the likelihood of the transition. Choosing the shortest path gives a

more accurate and more likely trajectory of the hazard.

4.3.3 Using graph search to warn drivers

Ubi uses the graph search described above in two different steps of its operation.

The pseudocode of Ubi is shown in Fig. 4.3. In the first application of the graph

search, Ubi uses multiple sightings of the hazard to determine the most likely hazard.

In the extreme cases, if the hazards have very different mobility models, it may

be possible to uniquely identify the hazard simply using the sighting. If that isn’t

possible, Ubi uses the edge weights from the graph search to determine the most likely

hazard.

Next it uses the same graph search tool to forward simulate the most likely hazard.

From the last known sighting, Ubi incrementally applies the hazard mobility model

to the graph to get a set of possible location of the hazard. Ubi then averages the

set of possible locations and uses that to determine the distance from the upcoming

vehicle.

4.4 Evaluation

We first evaluate the accuracy of the warning detection system, and then the

requirements and runtime of the graph search algorithm in isolation.

4.4.1 Evaluation of the Warning System

Ubi receives GPS locations from each driver and returns a warning if there is a

hazard up ahead and the distance to the hazard. As each driver gets near the hazard,

Ubi creates a new sighting and run the graph search to detect the type of hazard. For

all GPS samples of cars before they encounter the hazard, Ubi uses the graph search
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to simulate the location of the hazard from the last sighting and reports the average

location from the approaching car.

We compare Ubi’s warnings against the correct expected behavior. Before the

first driver encounters the hazard, the expected behavior is that there is no warning

returned from Ubi, as it hasn’t seen the hazard yet. After the first driver reports a

sighting, the correct behavior is to warn upcoming drivers that there is a stationary

obstacle detected at that fixed location. As more drivers report sightings of the

hazard, the correct behavior is to report the exact type of hazard and the accurate

distance to the hazard.

These experiments were done in simulation using three different hazard models —

a stationary obstacle, a pedestrian (traveling up to 1.5m/s) and biker (traveling up to

5.5m/s) [99]. The speed and acceleration parameters of the models were chosen from

the SUMO vehicle type parameters.2 We simulated 2 different types of mobility for

each hazard with all three hazards moving on the side of the road (1) going straight

close to their max speed, and (2) accelerating up to their max speed. The mobility

template for all types of hazards is shown in Fig. 4.8.

4.4.1.1 Warning Accuracy

Fig. 4.9 shows an example output of Ubi to warn a driver of an upcoming pedes-

trian on the side of the road. Initially, when Ubi collects only a few sightings of the

hazard, it tends to incorrectly classify the hazard type. As it collects more sight-

ings, it can more accurately detect the hazard type. The distance to the hazard also

depends on the correctness of the classification. If it is estimated to be the wrong

hazard type, the estimated distance suffers due to incorrect forward simulation of the

hazard type from the last sighting.

We measured the accuracy of the hazard warning for fixed speed hazards. The

2https://sumo.dlr.de/docs/Vehicle_Type_Parameter_Defaults.html
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Figure 4.9: The left figure shows the distance from the hazard. Vertical lines show the
time of the sightings of the hazard by all cars in the simulation, which is also reflected
in the right figure to show the location where the sighting took place. The colored
scatter points on the left figure represent Ubi’s response to the driver, showing both
the classification and the distance to the hazard.

(a) Ubi warning accuracy for fixed-speed
hazards.

(b) Ubi warning accuracy for accelerating
hazards

results are shown in Fig. 4.10a. The hazard was placed near the middle of the track in

the simulation, and therefore once vehicles went past the hazard, they were no longer

notified, therefore around 50% of the GPS points receive no response from Ubi. For

the remaining, we measured the number of missed (shown in red) warnings where

Ubi didn’t give any warning of an upcoming hazard, the number of warnings of a the

wrong type (shown in orange), number of warnings that include the actual hazard

and other hazards (light green) and warnings that only specify the current hazard

(dark green).

In most instances, we found that Ubi rarely misses giving any sort of warning.

For stationary hazards, Ubi failed to give a warning only 8 out of 143 requests (94.4%

correct). For pedestrian and biker hazards, Ubi gave the wrong warning 10 out of
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168 requests (94% correct) and 7 out of 168 requests (95.8% correct), respectively.

For the rest of the requests, Ubi either warned the driver of the correct hazard

type (dark green) or returned a set of hazards which included the correct hazard

type (light green). Ubi may return a set containing multiple possible hazards if the

sightings are compatible with multiple hazard types. The pedestrian and biker hazard

mobility models (shown in Fig. 4.8) are very distinct when they move at fixed speeds,

and hence those two hazard types are not confused for another type. However, the

stationary obstacle is often confused for a pedestrian obstacle since a pedestrian may

move slowly near where the stationary obstacle was sighted. This results in a large

number (110 out of 143) of warnings which include both pedestrian and stationary

hazard warnings.

We further explored the relationship between overlapping hazard types and warn-

ings by using an accelerating hazard model (second two figures in Fig. 4.8). The

accuracy results are shown in Fig. 4.10b. We found that Ubi still rarely failed to give

a warning of an upcoming mobile hazard. However, there is a much higher ambiguity

about the hazard type. For an accelerating pedestrian hazard, Ubi often warned the

driver that the upcoming hazard may be a pedestrian or another hazard type (107

out of 116 warnings). This ambiguity is also increased for the accelerating biker haz-

ard but is not a pronounced because after collecting a few sightings, Ubi is able to

distinguish the biker from the slow-moving pedestrian.

4.4.1.2 Density and GPS Noise

Next we studied the impact of car density and GPS noise in Ubi hazard warnings.

First, we varied the density of cars on the road with the stationary, pedestrian or biker

hazard. The impact on detection accuracy and distance error is shown in Fig. 4.11.

For very low-density traffic, Ubi receives fewer sightings of the hazard. This results

in more misclassifications of the hazard. We found that for very low density, only
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Figure 4.11: Accuracy and distance errors for varying density of cars. “Included”
results show the responses which included multiple hazards, including the correct
hazard. “Exclusive” results show the responses which only warn the driver about the
correct hazard.

≈ 30% of warnings for a pedestrian hazard classify the hazard as a pedestrian, but

≈ 95% of warnings report a set of hazards including the pedestrian and others. This

is also reflected in the distance reported by the Ubi warning. For very low density,

the pedestrian hazard average error is ≈ 13m, which drops to ≈ 2m for higher density

traffic. This occurs because Ubi determines that with few sightings, the hazard could

be multiple different options. Forward simulation with the wrong hazard type results

in a wrong estimate of the actual position of the hazard.

Next we studied the effect of GPS noise in Ubi classification and distance reports.

To measure the impact of GPS noise, we down-sampled the simulated trajectory to

1Hz, and added random distributed noise scaled up to four different values. The

results are shown in Fig. 4.12.

In general, we found that Ubi warning accuracy and distance is unaffected by GPS

noise. However, if we have high GPS noise, Ubi is unable to correctly warn drivers

of stationary obstacles. This occurs because the graph search algorithm connects

nodes from (t0, x0, y0) to (t1, x1, t1) only if it is possible for the hazard to travel from

(x0, y0) to (x1, y1) in one time step without colliding with any known trajectories.
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Figure 4.12: Accuracy and distance errors for varying GPS noise. The different noise
values were chosen from [52].

As we increase the GPS noise, the “known trajectories” appear more noisy and cause

more collisions with the hazard paths. For mobile hazards, such as a pedestrian or

a bicyclist, this algorithm is able to find a path through the noisy trajectories and

still find a path which connects the hazard sightings, but for stationary obstacles it

is unable to do this. This makes the stationary obstacle detection brittle to high

GPS noise. If high GPS noise is detected, we can switch to simpler methods for

tracking stationary obstacles such as those used by existing navigation apps (e.g.,

Google Maps).

4.4.2 Evaluation of Graph Search

Next we evaluated the accuracy of the graph search in detecting stationary, slow-

and fast-moving hazards. The graph search algorithm is used twice inside the Ubi

algorithm. First, it is used to detect the most likely hazard given the sightings. Next,

it is used to predict the location of the hazard and warn future drivers.

We measured the number of sightings required before we can confidently label each

hazard type. We evaluated this using Movsim [99] to create trajectories from vehicles

driving around the hazard. We drew sightings around the hazard and ran applied the
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search to evaluate whether the hazard was detected under different conditions.

(a) Stationary obstacle haz-
ard FPR

(b) Slow moving hazard
FPR

(c) Reckless driver hazard
FPR

Figure 4.13: Heatmap of false positive rate for each hazard type. The number of
sightings varied from 1–6 and the density of cars changes from light (250 cars per
hour), medium (500 cars per hour) and dense (1000 cars per hour).

If the dataset contains a hazard, this is considered a positive test case. If Ubi finds

a hazard in this dataset, that is a true positive and if it fails to find a hazard, that is

a false negative. We also drew random sightings where there is no hazard to create a

negative test case. If Ubi finds a hazard in this dataset, that is a false positive and if

it doesn’t find a hazard, that is a true negative.

4.4.2.1 Simulation Dataset

Using Movsim [99], we simulated 3 different hazards — a stationary stopped car, a

slow-moving bicyclist, and a fast-moving reckless driver. The vehicle parameters are

defined in https://sumo.dlr.de/docs/Vehicle_Type_Parameter_Defaults.html.

For each hazard, we varied the density of the other vehicles on the road and the

number of sightings where the hazard was spotted by neighboring cars.

The density is defined in terms of number of cars per lane per hour. We simulated

for 250 cars per hour (‘light’), 500 (‘medium’) and 1000 (‘dense’). The road is 500m

long and cars were randomly generated to travel through the road segment avoiding

the hazard. The cars use the MOBIL lane-changing model to avoid hazards and

change lanes among other vehicles [55].

We created 10 different random scenarios and ran the simulation for 30 seconds.

We first evaluated the effect of density and number of sightings in the false positive
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rate (Sec. 4.4.2.2). In order to keep the FPR low, Ubi requires a certain density of

cars and reported sightings. In all cases in our simulation, Ubi was able to correctly

detect the hazard if it exists in the scenario (i.e., TPR = 1 in all cases). However, if

we decrease the distance between neighboring cars or if the discretization of the graph

is very coarse-grained, the TPR suffers. We explore this in Sec. 4.4.2.3. Changing

the discretization resolution affects the run-time of the algorithm. The run-time is

measured in Sec. 4.4.2.4

4.4.2.2 False Positive Rate

The false positive rate depends on three factors — the mobility of the hazard,

the number of sightings, and the density of the known cars. Fig. 4.13 shows three

heatmaps of the FPR while varying the number of sightings and the density of the

cars. We can see the pattern for different types of hazards with different mobility.

If there is low mobility (e.g., a stationary hazard), then even two false sighting

reports are enough to rule out the hazard. As seen in the heatmap, we have no false

positives for stationary obstacles if we require 2 or more sightings. However, if the

hazard has higher mobility, then multiple false sightings might still be a valid way for

the hazard to move, and therefore a false positive is reported. However, if we require

multiple sightings (e.g., 3 sightings for slow-moving and 5 for fast-moving) the false

positives drop.

We can use this as a guideline to adjust the false positive rate. If we are using Ubi

to find a stationary hazard, we require 2 or more sightings. If it is a highly mobile

hazard, then we must record multiple sightings before we use Ubi to find the hazard in

order to avoid false positives. The exact number of sightings depends on the density

of the cars in that region and the type of hazard. The trade-off here is that to require

more sightings means it takes longer to detect the hazard after it appears on the road.
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(a) True positive rate. The
density varies from 1000–
2000 cars per hour and the
discrete grid size changes
from 1m2–5m2.

(b) Runtime of Ubi. We mea-
sured the run time for differ-
ent hazards and different res-
olutions 1m2–5m2.

4.4.2.3 Effect of discrete grid resolution

In the simulations above, the true positive rate (TPR) was always 100%. The

TPR (defined as TP
TP+FN

) is affected by the density of the cars and the resolution for

the graph. We varied these two parameters and measured the true positive rate in

simulation, shown in Fig. 4.14a. As the resolution becomes more coarse-grained, the

TPR tends to be worse. This is further exacerbated with a high density of cars on

the road.

This pattern occurs because a coarse-grained resolution is unable to represent cars

that are close to each other without collision. Ubi’s graph search models the physical

possible movement of the hazard in the discrete realm (details in Sec. 4.3.2.3). With

a coarser resolution, there are no possible movements to match the sightings of the

vehicle because even small movements result in collision with nearby vehicles.

With a grid size of 1m2, the TPR is very high throughout our analysis and only

starts to drop as we reach 2000+ cars per hour. To accommodate higher density road

segments, we can increase the resolution of the graph, but this results in a higher run

time. The run time is further explored in the next section.
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4.4.2.4 Run-time measurement

The run time of the graph search depends on multiple factors. Mainly, it is

affected by the resolution and the number of steps the hazard can take at each time

step (Variable H in Alg. 4.4 #8). For a stationary hazard, it only has one possible

movement from one time step to the next. For a mobile hazard, the faster it can

move, the more possible steps it can take from one time step to the next.

The number of nodes in the graph is upper-bounded by M ×N × T , where MN

is the number of cells needed to represent the discrete grid and T is the number of

discrete time steps. The number of edges depends on how many possible steps each

hazard can take. The upper bound for the number of steps is M ×N × T ×H where

H is the number of possible movements the hazard can take at each time step.

Once we find the possible set of movements, we use Dijkstra’s algorithm to find

the shortest path for each pair of possible nodes from the start to finish. The run

time of Dijkstra’s algorithm is upper bounded by O(|E|+ |V |log|V |). If there are En

possible entry nodes and Ex possible exit nodes, we repeat the graph search En×Ex

times.

The measured run time for each type of hazard and different resolution is shown in

Fig. 4.14b. As we increased the grid size from 1 to 5 m2, there was a sharp decrease

in run time for each type of hazard. For a stationary hazard, the line of best fit

has a -5.8 negative slope, and the slow-moving hazard has -16.6 and the fast-moving

hazard has -284. The fast-moving hazard is better fit with an exponential curve with

a -4 exponent. The biggest factor influencing the run time is the number of possible

movements by each of the hazard. The fast-moving hazard has the most number

of possible movements at each time step. This results in many more edges in the

network, which requires more computation to search through the network to find

paths which contain the hazard.

These results were obtained on a 2.1 Ghz Intel Xeon E5 processor. The current
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implementation only uses one core of the CPU and can be improved using multi-

ple cores. The algorithm is inherently parallelizable since we operate on multiple

independent nodes at the same time from one time step to the next. We can use

existing parallel processing frameworks such as MapReduce3 to process the nodes in

a distributed manner.

The output of the graph search can be used in a real-time or a semi-real-time way

depending on the underlying application. If it is a dangerous hazard (e.g., a reckless

driver) or is in a highly populated area, then it is important to report the results to

upcoming drivers in real-time. If it is a non-time-critical hazard such as a pothole, it

is sufficient to detect and report this at a later time.

4.5 Discussion and Future Work

Possible deployment strategies Existing navigation apps such as Google Maps

or Waze already notify drivers of stationary obstacles in the path of traffic. For

example, through crowd-sourced reports, Waze can report if there is a stopped car

on the road. Using Ubi they can extend their coverage to include mobile hazards

as well. If a few drivers report the presence of a pedestrian on the side of the road,

using Ubi these navigation applications can warn drivers ahead of time. Alternatively,

we can also build Ubi as a standalone application which accepts reports of hazard

sightings. It can collect this on a central cloud and distribute it back to drivers with

Ubi installed on their phones if there is a hazard nearby.

Security and Privacy implications The downside of distributing Ubi as a stan-

dalone application is that it shares the user’s location across multiple service providers,

thereby putting their location privacy at risk of exposure. It is, therefore, advisable

that existing widely-deployed navigation service providers adopt Ubi into their sys-

3https://en.wikipedia.org/wiki/MapReduce
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tem. If it must be deployed as a standalone application, we can further explore adding

differentially-private noise into the location acquired from each driver in order to pro-

tect the user’s privacy but at the same time accurately determine the location of the

hazard. This is part of our future work.

Another direction of future research is whether it is possible for a malicious actor

to poison the data that feeds into Ubi and falsely report a hazard where there is

none. An attacker who poisons the system can then influence routes suggested by

navigation applications and create a free route for their own travel. This is partly

mitigated by design because we require that multiple users report sightings before we

flag a hazard (see Sec. 4.4.2.2). In future, we will test the robustness of Ubi to such

data poisoning attacks.

4.6 Conclusion

Traditional methods to detect dangerous driving hazards requires sophisticated

vision-based sensors or are restricted to stationary obstacles. We have proposed a

novel method and system, called Ubi, which only uses GPS trajectories from nearby

vehicles and reported sightings to detect and track the presence of stationary and

mobile hazardous object. Our system doesn’t require direct GPS traces from the

hazard itself, and works for detecting stationary as well as mobile hazards.

Ubi is shown to be able to detect hazards with very high accuracy (> 94%) and

with low distance error (< 3.5m). Ubi is also resilient to GPS noise up to 25m and

can be implemented efficiently using a directed graph and therefore leverages existing

graph search algorithms such as Dijkstra’s shortest path algorithm.

Ubi can be integrated into existing navigation applications. By integrating sta-

tionary and mobile hazard detection into their systems, navigation applications can

consider the safety of the route to the destination in addition to the traditional con-

siderations of shortest travel time.
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CHAPTER V

CAB: On-demand Vehicular Data Collection Builder

5.1 Introduction

Vehicular research and app development spans a wide range of interests and re-

quirements such as driver monitoring [87, 54, 96], road hazards detection [32, 3,

103], and vehicular security [72, 49, 68]. There are also numerous consumer-focused

vehicular apps such as driver status monitoring or driving score evaluation [101, 6].

However, there is a high barrier of entry to engage in automotive research or

app development. A researcher or an app developer needs to understand how to

collect, process and interpret driving behavior from low-level sensor data, set up

all the communication channels to collect data and interpret them for research or

consumer-facing app development purposes. This expensive startup barrier deters

researchers or consumers from venturing into this field. This is a detriment to rapid

prototyping of vehicular apps, and therefore slows down consumer-facing vehicular

app development.

To remove or mitigate this barrier, we need an easily configurable vehicular app

builder which allows users to build and launch data-collection campaigns without

in-depth technical knowledge, and facilitate rapid prototyping of new vehicular data-

collection ideas/apps.
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Figure 5.1: Three parties involved in CAB. Algorithm developers contribute code to
the CAB repository. App designers, which could be researchers or app developers,
submit high-level requirements. The CAB server takes the available algorithms and
automatically compiles a data-collection app. The Experiment participant joins the
data collection and installs the data-collection app

5.1.1 State of the Art

Consumer-facing data-collection apps either provide high-level statistics which

cannot be re-configured for different purposes [6, 101] or provide raw low-level infor-

mation which isn’t useful for consumers without sophisticated technical knowledge

[36, 44]. Furthermore, academic researchers often build a new data-collection plat-

form for each investigation, which results in time-consuming and often duplicated

effort [42, 17, 95]. Existing data-collection platforms lack the flexibility to be used

across multiple studies [95, 64, 8, 82, 48]. They often collect excessive and poten-

tially irrelevant data or are built for a specific purpose and are not customizable for

different data-collection needs.

Due to the lack of re-configurable data-collection platforms, consumers and re-

searchers are deterred from entering into this field of automotive data collection and

research.
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5.1.2 Proposed System: CAB

We propose a novel system called CAB (Car App Builder) to meet the above-

mentioned need. CAB is a configurable data-collection app builder that is useful for

non-technical users as well as app developers who want to rapidly prototype their

vehicular app. The primary goal of CAB is to reduce the effort needed to build data-

collection apps and engage in vehicular data collection and research.

CAB uses a simple user interface to accept the requirements of the data-collection

app and automatically compiles an app to perform the data collection, creates a

sandboxed server to accept and communicate data, and a website where users can

sign up and configure their data-collection app. Collectively, we call the app, server

and website as the “data-collection platform.” An app developer can further take the

auto-generated data-collection platform and prototype their own ideas on top of it,

reducing the overhead needed to test their ideas.

Fig. 5.1 shows the system components of CAB. There are three main parties who in-

teract with CAB. A data-collection app designer submits the high-level data-collection

requirements to the CAB server. The server proposes a data-collection strategy which

includes a set of algorithms running on the user’s phone, server-side components and

website components which meets these requirements. The second party, the algorithm

developer, contributes individual algorithms to the CAB repository. They provide the

source code for each algorithm and specify the required information and the produced

output information. The submitted algorithms are compiled as needed for each data-

collection platform. Finally, the third party, the data-collection participant, installs

the compiled app created by CAB.

5.1.3 Key Technical Details

CAB has two main technical features which enable its use for diverse data-collection

needs. Fig. 5.2 shows the system architecture of CAB.
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‘Information’ ⇔ ‘Algorithm’ Interface. At the heart of CAB is the language-

agnostic definition of information and algorithm. An algorithm is a module in the CAB

repository which defines a set of information types it requires and the information

type that it outputs. This interface between algorithms and information enables the

following features:

• Automatic dependency resolution. CAB automatically crawls the graph of in-

formation and algorithms to find the set of dependencies needed to meet the

data-collection requirements.

• Distributed development. Multiple developers can define algorithms and con-

tribute to the shared CAB repository. The algorithms are interconnected using

this well-defined algorithm-information interface.

• Redundant algorithms. Multiple algorithms may produce the same information

using different means. For example, if a user doesn’t have an OBD dongle, a dif-

ferent algorithm may produce the same information by estimating the required

information using only phone sensors. This increases the reach and deployability

of the apps compiled using CAB.

Automatic Compilation into Sandboxed Environment. Once an app de-

signer submits a new data-collection requirement CAB automatically identifies the set

of dependencies and compiles a custom data-collection platform.

It creates an isolated environment for this data-collection campaign and links the

relevant data-collection algorithms from the repository. This includes Android-based

components, server-side scripts, and website user-interface components which are

necessary for this data collection platform. CAB launches a separate linking server for

each data collection campaign. The linking server allows different algorithms to work

together seamlessly to receive and upload data that is required for their operation.
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5.1.4 Results

Our evaluation shows that CAB can be used to build diverse data-collection apps,

with diverse requirements. We implemented 3 different data-collection apps in CAB

to show its versatility — fuel consumption data collection, vehicle sensor estimation,

and crowd-sourced obstacle detection. In each scenario, CAB reduced the effort needed

to program and build the data collection platform. We demonstrate that with 18

different modules which we implemented in this work, we can create 8,100 unique

data collection applications, which is a 450× return in developer effort. Next, we did

a usability study with domain-expert and non-expert researchers. The participants

were likely to use CAB for their own data collection needs and find that it reduces the

effort needed to launch a data collection campaign as well as develop novel algorithms.

5.1.5 Contributions

This chapter makes the following contributions.

• An open-source data-collection builder, CAB, which accepts high-level data col-

lection requirements and automatically builds custom data collection platforms.

• A collection of 18 algorithms developed using CAB, which can be assembled to

create 8,100 unique data collection platforms.

• A user interface for researchers to specify and launch their own data collection

platforms. A demo of the interface is found on YouTube1

• Use of CAB to build 3 vehicular data-collection platforms from related literature.

1https://www.youtube.com/playlist?list=PLuEbkT_dQmRIn7JOoDf2JHKQT0n_xfcFc
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5.2 Data-Collection Requirements

Vehicular data collection research spans multiple areas, a subset of which are

shown in Table 5.1.

Most of the studies involving data collection transform low-level sensor data (ac-

cessed via a smartphone or an OBD dongle) into higher-level information. For ex-

ample, Hong et al. [45] transformed smartphone sensors into a dangerous driving

classifier. Chen et al. [17] transformed IMU data into lane-changing and turning be-

havior. Many other studies in dangerous driving detection also transformed low-level

sensor data in a similar way [113, 17, 60, 61, 45, 18].

Environment-modeling studies require a server-side component to collect data

from multiple vehicles. For instance, Jiang et al. [52] collected pothole information

across multiple drivers in a central cloud. Wang et al. [106] developed CrowdAtlas,

a system which combines GPS traces multiple drivers to automatically update maps

with driving data. Many of these systems also require training machine learning

models which is better suited to a resource-heavy server. For instance, Zheng et

al. [118] trained a neural network to predict air quality in cities, as task which is best

suited to a resource-rich machine rather than directly on the smartphone.

Finally, many applications require user input to collect information which cannot

be learned through sensors. For example, Hong et al. [45] required questionnaires

to learn about the driver’s history of accidents and build a dangerous driving pro-

file model. Chen and Shin [16] used crowd-sourced reports to collect ground truth

information about unprotected left turns. All these methods require a versatile user

interface to collect information from users. Many consumer applications such as

Google Maps [41] and Waze [108] require user input to collect the presence of speed

traps of obstacles on the road.
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Driver-modeling Environment-modeling Vehicle-modeling
Drowsiness detection [87, 112] Pothole detection [32, 92, 91] CO2 emission analysis [22]
Driver fingerprinting [28, 15, 60, 117] Digital maps [16, 23, 3, 47] Vehicle turning detection [17, 105, 64]
Dangerous driving [45, 67] City-wide monitoring [40, 118, 95] Speed estimation [114, 51]

Table 5.1: Selection of studies which require data collection categorized by whether
the focus of the study is to model the driver, the environment or the vehicle.

5.2.1 Design Goals

Based on the requirements of vehicular studies involving data collection, we con-

solidated a list of design goals to be met by CAB. First, we have a list of functional

design goals that must be supported by CAB as follows:

1. Low-level sensor access translated into high-level information. CAB

must be able to transform low-level sensor data to high-level information. Sensor

data must be accessed from the phone, OBD or other supporting devices. CAB

must be easily extensible to support new high-level information as they are

discovered in the research community.

2. Server-side processing. CAB must provide seamless communication of data

between the smartphone and server-side scripts. Server-side processing is re-

quired for heavy-duty computation when data must be shared across multiple

drivers.

3. User interaction. CAB must provide the ability to interact with the user to

acquire user-supplied information such as their reports about their mood. The

user interaction platform should support many forms of intuitive interaction

such as text-based forms and buttons.

In addition to the functional requirements, CAB’s main goal is to reduce the ef-

fort required by app designers and algorithm developers. To this end, we have two

additional design goals.

(4) Effort reduction for app designers. CAB must provide a simple interface

where app designers can submit their requirements and build data-collection

111



CAB Server

Library

Android

Libcarlab.java

React

Libcarlab.ts

Python

libcarlab.py

Information
registry

JSON

Algorithm 
Graph 
Search

App Sandbox <port>

A A

R P

PP

Link 
server

Data Users

Ap
p 
De
si
gn
er

Experiment Participant

Algorithm Developers

Algorithms

Texting 
response
web hook

Phone # Port User

555-5555 1234 johndoe

666-6666 4321 janedoe

666-6666 4321 janedoe

666-6666 4321 janedoe

666-6666 4321 janedoe

Figure 5.2: CAB system architecture.

platforms. CAB must simplify the data-collection process by presenting the col-

lected data and interfacing with participants in data-collection experiments.

(5) Effort reduction for algorithm developers. CAB must provide a simple pro-

grammatic API and development environment where developers can implement

their own algorithm and integrate with the CAB ecosystem.

5.3 System

CAB is a reconfigurable on-demand data-collection builder useful for data-collection

campaigns and rapid prototyping of data-collection apps. It accepts high-level re-

quirements from users and automatically assembles a data-collection platform with

all the necessary infrastructure to carry out complex data-collection campaigns across

multiple devices. CAB can also be easily extended to add more functionality through

a shared central code repository.

In what follows, we describe the system components of CAB which make it possi-

ble to automatically build data-collection campaigns to meet different requirements.

The discussion is organized around the three main parties involved in CAB, shown
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Platform Language User interaction % phones
Android Java Low-level phone sensors 39.8% 2

React TypeScript Web interface 77% 3

Python scripts Python3.7 Texts or phone calls 95% 4

Table 5.2: Algorithms can be developed for 3 different platforms. All algorithms share
the common interface so data can be communicated across each other seamlessly.
Each algorithm is implemented in a language that has typing support to enforce the
proper formatting of information.

in Fig. 5.1. We describe the system architecture pertaining to each party and their

interaction with CAB. Fig. 5.2 shows the overall system architecture. The high-level

specification files and their relationships are summarized in Fig. 5.3 and detailed in

their respective sections below.

5.3.1 Algorithm Developer

CAB builds data collection apps by sampling from a library of algorithms con-

tributed to the shared repository. An “algorithm” is a self-contained module defined

in one of the three supported languages shown in Table 5.2. The three languages

meet the three functional design requirements. Algorithms implemented in Android

are best suited for low-level sensor access (design goal #1). Python-based algorithms

are best suited for server-side processing (design goal #2) and React-based algorithms

can define complex user interfaces (design goal #3).

Each algorithm defines an interface in a JSON file which defines all required

input information and the output information. An example interface file is shown in

Fig. 5.10a. All algorithms share a common language of information, including the

information name, a shared understanding of its meaning, and a data type, defined

in a language-independent JSON file shown in Fig. 5.10a.

CAB provides a tool to auto-generate the algorithm stubs given an algorithm defi-

nition of input and output. The auto generation tool ensures each algorithm conforms

to the interface required to communicate with other algorithms and helps jumpstart

the development process without any tedious setup. Auto-generation expedites de-

113



Designer

requirements
json

Developer

registry
json

Spec.jsonSpec.jsonspec
json

strategy
json

Participant

cl-algorithm

cl-strategy

cl-package

Figure 5.3: CAB uses several high-level configuration files to automatically generate
data-collection platforms. Examples of all configuration files are shown in the Ap-
pendix. It uses the script cl-algorithm to convert the spec.json file into algorithm
stubs to be filled in by the algorithm developer. Using cl-strategy, it converts
the high-level requirements input by the app designer (requirements.json) to get
a detailed strategy file which lists all algorithms and dependencies (strategy.json)
to be included in the data collection app. Finally, it uses cl-package to compile the
data-collection app, build the data-collection website, and initialize a virtual machine
for each data-collection platform.
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velopment of new algorithms for the CAB repository, thereby meeting design goal #5.

The auto-generation tool can be invoked using

cl-algorithm <specfile.json>. This command creates all the necessary classes

to interface with the CAB library and includes the required library files, which we

implemented separately for each platform. It also creates function headers which

accept input information as function parameters and return the output information

(abstract classes in Java, Components with props in React, and Classes with functions

in Python). The data type for the function header is loaded from the registry JSON

file. Once created, the algorithm developer can simply fill in the function stub to

transform the input information and return the output information. The CAB library

ensures that the required input information is collected and fed into the function and

the output return value is properly sent to the CAB server and multiplexed to the

appropriate algorithm which requires that information. An example auto-generated

function stub for the above algorithm spec is shown in Fig. 5.4. The algorithm class

also explicitly defines the list of functions and their input and output information

types. The explicit definition is used later when automatically compiling algorithms

into a data-collection platform.

5.3.2 App Designer

An app designer submits a high-level requirement to CAB and decides on a set of

algorithms which may span multiple platforms to meet the data-collection require-

ments. CAB uses the requirement file to assemble all required algorithms into a package

for each platform and runs them simultaneously during the data-collection process.

Each aspect of this process is described in detail below.
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package cab.aligned_imu;

import android.renderscript.Float3;

public class Algorithm extends AlgorithmBase {

@Override

public Float[] produceVehiclePointingRotation (

Float3 m, Float3 gps, Float3 g) {

// Write code here

}

@Override

public Float3 produceVehicleAlignedAccel (

Float3 accel, Float [] rotation) {

// Write code here

}

}

Figure 5.4: Java algorithm implementation stub auto generated using CAB. A similar
function is auto generated for Python and React-based algorithms.

5.3.2.1 Refining the data-collection strategy

The app designer submits the basic requirements, via a requirements.json file —

an example shown in Appendix Fig. 5.10c — to CAB. The requirements file specifies

the list of information that is required, the list of forbidden sensors (e.g., GPS),

and the set of platforms for this data-collection requirement. CAB uses the internal

representation of the available algorithms and their information to find the set of

algorithms which output the required information. CAB furthermore crawls all the

input requirements of the algorithms to resolve their dependencies. The user can

further specify which algorithm to use if there is a choice. If no choice is given, we

choose all algorithms for added redundancy. CAB outputs the final set of algorithms

needed to satisfy the input requirements and saves this to a strategy.json file,

example shown in Appendix Fig. 5.10d.

The graph used to resolve algorithmic dependencies is shown in the middle in

Fig. 5.3. This graph is automatically generated with all the information types, and

the algorithm specification files submitted by developers. As more developers con-

tribute more algorithms and refine registry.json, the graph is automatically up-
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dated thereby providing more sophisticated algorithms to app designers.

We have built a simple web UI to generate the requirements file so that a non-

technical users can also generate a valid file without writing JSON specifications. We

will give an example this web UI in the evaluation section. By only requiring the

high-level specification file and a user-friendly web UI, we meet design goal #4. This

significantly reduces the effort of an app designer to create and launch their own

data-collection platform.

5.3.2.2 Compiling required algorithms

Once the app designer confirms the data-collection strategy, CAB uses that to com-

pile the relevant algorithms together. We created a script

(cl-package strategy.json) which translates strategy.json into a standalone

project for each platform. All Android algorithms are linked into an Android project

which is compiled into an APK. All Python algorithms are loaded as separate mod-

ules and invoked by a Python script running on the CAB server. The React algorithms

are loaded as components into a website also running on the CAB server.

The linking process is different for each platform. For Android algorithms, al-

gorithms are included as separate Gradle modules. Their paths and module names

are defined in the settings.gradle file. They are also included in the projects

build.gradle file and are therefore compiled during run-time. All further depen-

dencies of the algorithms are defined in their own project and recursively resolved

during compile time. Similarly, Python modules are defined as Python libraries and

are symbolically linked into the project folder for this data-collection platform. React

algorithms are compiled as separate Node modules and are linked together using the

node package manager.

Once the algorithm dependencies are loaded into the project folder, the cl-package

script statically creates the code needed to load the algorithms during run-time and
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package cab.packaged;

import java.util.Arrays;

import edu.carlab.Registry;

import edu.carlab.Strategy;

public class PackageStrategy extends Strategy {

public PackageStrategy () {

// List of algorithm objects

List<Algorithm> loadedAlgorithms =

Arrays.asList(

carlab.android_passthroughs.Algorithm.class,

carlab.obd_devices.Algorithm.class);

// An "AlgorithmFunction" is a custom class that

// defines all input and output Information

List<AlgorithmFunction> loadedFunctions =

Arrays.asList(

carlab.android_passthroughs.Algorithm.getLocation,

carlab.obd_devices.Algorithm.readFuelLevel);

// Information to be uploaded to CL server

List<Information> saveInformation =

Arrays.asList(

Registry.Location,

Registry.CarFuel);

}

}

Figure 5.5: Auto-generated code connecting different algorithms loaded for Android.
This file is auto-generated and doesn’t need to be edited by the app designer.

invoke the callback functions if necessary. The example statically generated code for

Android is shown in Fig. 5.5. A similar strategy file is generated for Python and

React (TypeScript). A technical developer can modify the auto-generated code to

add their own functionality to the packaged data-collection application. This enables

rapid prototyping, contributing towards design goal #5.

5.3.2.3 Routing information across algorithms

One of the primary services provided by CAB is the seamless communication of data

across different algorithms. This communication happens both inside the platform

and across platforms. For Android algorithms which require low-level sensor data

(such as GPS or IMU sensors), CAB creates the necessary listeners to read that sensor
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Endpoints Parameters Return
POST /createuser username, password Success message
GET /login username, password Session ID used for all future transactions
POST /add session, information, file or value Success message
GET /list session, information, sincetime List of data points
GET /latest session, information Latest data point

Table 5.3: API endpoints exposed by the linking server. A new linking server is
started for each data collection application. All platforms (Android, React and
Python scripts) make HTTP calls to the linking server to communicate information
to other platforms.

information. The data is then passed into the algorithm’s callback function. If the

information is required by other algorithms running on a different platform, then it is

packaged and uploaded to a linking server. Each data-collection campaign contains

a separate linking server which is responsible for marshaling between algorithms, for

saving data and user management. The linking server exposes RESTful API endpoints

for uploading and downloading relevant data, shown in Table 5.3.

5.3.2.4 Isolating application in a virtual machine

CAB spawns a new virtual machine instance to hold platform-specific files. The

virtual machine contains the linking server responsible for sharing information be-

tween algorithms within each platform. The linking server runs on a fixed port inside

the virtual machine and is forwarded to a different uniquely chosen port in the host

machine. The host machine’s port is exposed to the outside so that Android-based

algorithms can interface with the appropriate linking server. This also allows us to

run multiple platforms on the same server. The virtual machine also contains all the

data and maintains a database of users for that data-collection app.

5.3.3 Experiment Participant

A participant registers for the data-collection campaign through the linking server

with a username and password. This adds a new entry to the users database for that

data-collection campaign. Once they create an account, they are presented with a

URL to access the React-based algorithms and a link to download the APK containing
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the Android-based algorithms. They log in to the website and on their Android app

using the same login information from before.

If the data-collection campaign includes an algorithm which accepts text messages

from the user, the linking server also registers the user’s phone number with the

texting server database. The texting server is a public-facing server that runs on on

a fixed port on the host machine. It records the port number of the linking server,

the session ID and the phone number of the user. We use an external texting service

called Twilio5 to send and receive texts. Whenever the user responds to a text, it is

received by the Twilio service which then invokes a web hook running on the texting

server with the message information. The texting server looks up the appropriate

linking server which registered this phone number and forwards the message.

5.4 Implementation

The CAB server, texting server, and linking servers were implemented in 385 lines

of Ruby on Rails. The Android CAB library was written in 3101 lines of Java and 246

lines of XML. The Python library was written in 139 lines of Python3.7 and the React

library was written in 109 lines of TypeScript. Additionally, each project is wrapped

in a platform-specific code which includes all developer-specific algorithms (output

from cl-package), example shown in Fig. 5.5. The Android-package is written in

475 lines of Java, Python-package is 83 lines and the React-package is 313 lines of

TypeScript. Finally, CAB auto-generates the base code for each algorithm to simplify

the development process (output from cl-algorithm), example shown in Fig. 5.4.

CAB creates 47 lines of Java, 29 lines of Python and 20 lines of TypeScript for each

algorithm. In total, all aspects of our system (not including the algorithm libraries)

amounts to 385 lines of Ruby, 3,623 lines of Java, 251 lines of Python and 442 lines of

TypeScript. The Android libraries are responsible for interfacing with the low-level

5https://www.twilio.com/
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Android sensors and is therefore the most complex part of our system.

We used Android SDK 28 in Java and Python 3.7. The server-side components

for each data collection platform is run inside a Docker container. Node modules

are maintained and packaged using the Node Package Manager version 6.13. We

implemented 19 algorithms and defined 18 new information types.

5.5 Demonstrative Applications

We implemented three different apps using CAB, to demonstrate its expressiveness

and ability to meet diverse requirements. Each app highlights a different aspect of

CAB. For all apps we highlight the reduced effort required by the app designer or the

algorithm developer.

5.5.1 Case Study 1 – GreenGPS

GreenGPS [40] is a study into the fuel efficiency of various road segments. We

implemented a data-collection app which collects the fuel information and the road

name and location of the experiment participants. Fig. 5.6 shows the workflow from

the app designer perspective. First, they specify the information types they wish to

collect from the web interface. This is converted into a requirements.json file and

CAB prepares a data-collection strategy using the repository of available algorithms.

This is shown in the graph in the bottom right of the figure.

Note that CAB automatically compiles all possible algorithms which can produce

the necessary information. In this example, there are three possible algorithms which

output the car-fuel information. The user can either (1) input the fuel level through

a web interface (opened on their phone or on a laptop), (2) read the fuel level through

an OBD dongle or (3) they can text the fuel level to the CAB service. For all data-

collection paths, CAB includes the necessary dependencies into the platform. By auto-

matically compiling all possible methods into the data-collection platform, CAB allows
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Figure 5.6: The app designer inputs the high-level requirements using our web inter-
face (#1). This is translated to a JSON specification file (#2) which is used by CAB

to assemble the necessary algorithmic modules. The dependency graph (#3) lists the
compiled algorithmic modules to meet this requirement. The user-input information
is shown in the gray boxes with a thick black border. The remaining information (gray
boxes), Android algorithms (green), React algorithms (blue) and Python algorithms
(pink) are automatically determined. CAB uses the dependency graph to generate the
individual components for the data-collection platform (#4).
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the app designer to take advantage of the redundancy present in the repository with-

out additional effort.

Finally, CAB materializes the strategy by compiling an Android APK with the

required Android algorithms and launches a Docker container with the Python scripts

needed for the server-side algorithms and a React website with all necessary React-

based algorithms. The sign-up URL is shared with the app designer to distribute to

experiment participants.

The app designer’s effort to build this data-collection platform with multiple re-

dundant paths is significantly reduced to simply specifying two information types on a

web interface drop down, and distributing the sign-up link to experiment participants.

5.5.2 Case Study 2 – Car Sensor Estimation

Next, we demonstrate an app which estimates the vehicle speed, steering wheel

angle and gear position using smartphone sensors. Estimating vehicular sensors is

a useful concept in numerous studies. Several studies use the gyroscope to estimate

the vehicle steering wheel angle [64, 17, 91] and others estimate the vehicle speed

for various purposes such as road pavement monitoring [92] or instantaneous vehicle

speed estimation [114].

In order to use CAB to achieve this, an app designer uses our web interface to

select three information types: car-speed, car-steering, and car-gear. CAB searches

through the algorithms in the repository to determine the required dependencies to

produce the three necessary information types. Fig. 5.7 shows the list of algorithms

and information included in this app. The effort from the app designer perspective

is significantly reduced to just using this web interface to select the required sensors,

and CAB produces the Android app to achieve this goal.

The individual blocks in the compiled application are supplied by algorithm de-

velopers and contributed to the repository. Due to the automatic code generation
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vehicle-estimate/estimateSpeed

car-speed

vehicle-estimate/estimateSteering

car-steering

vehicle-estimate/estimateGear

car-gear

aligned-imu/produceVehicleAlignedAccel

vehicle-aligned-accel

user-input/acceptCarModel

car-model

aligned-imu/produceGravityAlignedGyro

gravity-aligned-gyro

tensorflow-models/get_gear_model_file

gear-model-file

aligned-imu/produceVehiclePointingRotation

vehicle-pointing-rotation

gps

accel

gravity gyromagnetometer

Figure 5.7: All information and algorithms compiled together for a vehicle sensor
estimation case study. All information blocks are in gray. The input required infor-
mation are the three gray blocks with a thick border. The remaining dependencies
and all algorithms were determined by CAB’s graph search.

Platform # Dev LoC
Android 6 156 / 667 (19%)
Python 1 11 / 116 (8.7%)
React 1 79 / 189 (29.5%)

Table 5.4: Developer-supplied code for each algorithm for vehicle estimation demo
app
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within CAB, algorithm developers can focus on just the estimation logic. CAB gener-

ates function stubs where the required input is passed in as function arguments, as

shown in Fig. 5.4. In this example app, the developer-supplied code only makes up a

fraction of the auto-generated code, as shown in Fig. 5.4.

5.5.3 Case Study 3 – Obstacle/Hazard Warning

We created an obstacle/hazard avoidance app using CAB. Upcoming obstacle warn-

ing is part of navigation apps like Google Maps [41] or Waze [108]. An obstacle/hazard

warning app needs to collect reports from multiple users and warn users of upcoming

hazards based on the vehicle’s current location. CAB compiled a data-collection plat-

form to achieve this containing of 1 Android component to get the user’s location,

1 React component to show the map and accept reports of obstacles and 1 Python

component to collect reports from multiple users and disseminate the information.

The Python algorithm collects the individually reported sightings and shares a

combined sightings report to all drivers. The Python algorithm runs in the same

sandbox for all users using this app, and hence it is easy to pool data across drivers.

This Python script only contains 13 lines of developer-supplied code and 33 lines of

auto-generated code. This highlights the minimal effort required by the algorithm

developer to collect data from multiple drivers. The CAB linking server automatically

routes all information within the data collection campaign.

The React algorithm, shown in Fig. 5.8, consists of a map to display upcoming

obstacles and several buttons using which the user can flag new obstacles observed

near their location. React can be used to create complex user interfaces such as this

interactive map application. The required information (e.g. upcoming obstacles) is

automatically routed into the React application through the properties of the React

components.
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Figure 5.8: Obstacle avoidance/warning app built using CAB. The React algorithm
has a maps interface here it displays upcoming obstacles sightings-map and outputs
a new sighting if the user presses one of the three buttons.

5.6 Evaluation

Here we evaluated the effort reduction for app designers and algorithm developers.

App designers who wish to launch a data-collection platform without the support of

CAB need to engage in multiple steps in addition to programming the data-collection

platform. They need to (1) list the required information for the data-collection plat-

form, (2) develop the tools needed to collect the information, (3) set up a server to

receive the data from multiple users, (4) create a website to distribute the app to

participants, and (5) optionally set up a web hook to receive texts from participants

if that is required for their data-collection platform. CAB significantly shortens this

process by only requiring step #1 — the list of required information. It automatically

completes the remaining steps of the data collection.

In our evaluation we built 18 different functions contained in 10 algorithms span-

ning 3 platforms. A data-collection platform is created using a combination of these

18 functions including any dependencies that are needed for each function. Given the

current state of our repository, CAB can create a total of 8,100 unique applications

by assembling different combinations of the 18 functions. This is a 450× growth in

possible data- collection platforms given only 18 functions contributed by developers.

We foresee this number drastically increasing with contributions by other developers.
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Figure 5.9: Lines of code contributed by developer compared to auto-generated and
library components.

We also quantified the effort reduction for algorithm developers. Due to the

automatic code generated by CAB, algorithm developers need only be concerned with

the logic of their algorithm and not with any other aspect of data collection such as

accessing low-level sensors or communicating information with the server. Fig. 5.9

shows the lines of code needed to implement algorithms in each platform compared

to auto-generated code and libraries. Developers only need to contribute 3.9% of

Android code, 9.8% of Python and 33.8% of React code with the logic for each

component. The Android libraries are especially large because they have to interface

with various low-level sensors.

5.7 User Study

We recruited 5 researchers to gauge the usability of CAB. We explained the concept

of CAB and showed them a video demo of CAB6. Three of the participants are vehicular

domain experts and the other two are non-experts. After the presentation of CAB, we

asked them to rate the app designer interface and the algorithm developer workflow.

For both components, the participants answered (Q1) “Would you use CAB for your

future research?” (rated 1 - 7 where 7 is “definitely would use”) and (Q2) “Do you

perceive CAB will reduce your development and deployment effort?” (rated 1 - 7 where

6https://www.youtube.com/playlist?list=PLuEbkT_dQmRIn7JOoDf2JHKQT0n_xfcFc
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7 is “definitely would reduce effort”).

Below we summarize the survey results and some recurring comments raised by

participants in free-form discussion. We uncovered several practical challenges that

must be addressed when deploying CAB.

App Designer. Participants found the app designer interface to be very useful

and would consider using it in their own research (score=6.7, std=0.4). One domain-

expert researcher said

“[App development is] really frustrating – if I can use [CAB] automatically

to do that, it would reduce the learning curve for many novices. Even for

researchers it would reduce effort significantly”

This sentiment was shared by other participants as well. They largely found

that the app designer interface would reduce the effort needed to develop such data

collection apps (score=6.7, std=0.49).

In free-form discussion multiple participants commented that the definition of

information types needs to be well-documented. One participant said the documen-

tation would help answer “How can I know if CAB can help with my purpose?”.

Algorithm Developer. Participants were largely interested in using the al-

gorithm development workflow for their future research (score=6.4, std=0.8). The

participant who gave the lowest score (5) suggested that a graphical user-interface

would be better for defining the algorithm specifications. Participants suggested that

the specification files and script invocation doesn’t need to be exposed to developers.

With such a user interface, they would be more willing to use the system (score=6)

with the following quote on its simplicity:

“I already have the algorithm. So I already write that. So I just copy it.

That’s very convenient, it will not take much time.”
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The participants agreed that the algorithm generation would reduce the effort

needed by algorithm developers (score=6.8, std=0.4).

General Comments. Multiple participants commented on the best practices for

contributing to the CAB repository. As multiple developers create algorithms to be

used with CAB, we need a standard code-review procedure to ensure the algorithms

meet quality and accuracy standards. One participant suggested offline testing of

the algorithms by feeding in trace files for input and verifying their output values.

However, the details of the open source collaboration of CAB is outside the scope

of this work. We foresee answering these questions as we deploy CAB and grow a

community of contributors and users.

5.8 Related Work

Vehicular research spans a diverse set of areas including driver monitoring [87,

54, 96], road anomaly detection [32, 3, 103], and vehicular security [72, 49, 68].

Due to the lack of a very flexible reconfigurable data collection builder, most of

these researchers build their own data collection tools. This is a high barrier of

entry for non-technical researchers who would like to enter this field and investigate

vehicle-related research questions. Furthermore, since platforms are built for a specific

purpose, they often lack the flexibility to take advantage of redundant ways to measure

the same information.

Most data collection apps have similar requirements. They must all first access

and process low level sensor data from the vehicle or the phone. This requires under-

standing how to interface with different hardware devices and consolidating all the

information in one place. Next they often need to upload the data to a remote server

for later processing, and handle user management of the uploaded data. In many

cases, the data needs to be communicated between multiple aspects of the applica-

tion that is deployed on the user’s phone. A general data collection platform needs
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to address these requirements.

We present an overview of the current state of vehicular data collection platforms

below.

5.8.1 Specialized Data Collection

Certain use cases require custom-built data collection tools and therefore cannot

be automated with a general configurable tool builder. For instance, IVBSS [42] and

collects data from modified Honda Accords and Bender et al. [8] require integration

with the vehicle’s LiDAR and other sensors. Other data collection platforms require

adding sensors to vehicles. The Safety Pilot Model Deployment [10] outfits cars with a

DSRC antenna, an aftermarket safety device and sometimes with a MobileEye camera

[100].CANOPNR [95] is an OBD-II data logger built using Arduino which can run

local processing and offload the data to the cloud. This platform was used to study

slippery road conditions [30]. BigRoad [64] uses an easy-to-deploy data collection

platform [63] consisting of an IMU sensor attached to steering wheel angle and a

smartphone app. These research undertakings require heavy engineering effort and

must require custom platforms to suit their special needs.

5.8.2 General Data Collection

Other vehicular research efforts can benefit from a general data collection builder

tool. For instance, SenseMyCity [84] is a crowdsourcing mobile platform that collects

data from the smartphone and the vehicle through the OBD-II port. This has been

used to study city-wide fuel consumption [83] and the mental state of bus drivers [85].

Chen et al. [17] built V-Sense, which uses smartphone-based sensing to detect steering

maneuvers. Walhstörm et al. [103] include many such examples in their survey. These

investigations can be expedited by the existence of a simple data collection tool builder

which can be configured to meet their specific needs. This would enable non-technical

130



researchers to undertake similar research problems.

CARLOG [52] defines a programming abstraction on top of vehicular events. Their

programming abstraction can be composed to find driving events such as turning or

reckless driving. In contrast, CAB defines functionality as callback functions which can

perform procedural computation and store internal state. Information and events is

composed in CAB by routing information from one algorithmic module to another.

In addition, we also provide other convenient functionality such as automatic code

generation and a web-UI to generate the data collection campaign.

5.8.3 Reusable Data-Collection Platforms

There are a few notable platforms which have been re-used across multiple inves-

tigations. The CarTel hardware data collection platform [48] was customized with

additional sensors and used in several follow up work [31, 71, 32, 97]. However, this

platform wasn’t designed to be easily extended to additional use cases and must be

manually modified for each investigation. In contrast, CAB can be easily extended for

future required functionality.

Sensibility Testbed [82] has a web interface through which researchers can sub-

mit their data collection tasks. It automatically deploys the task to users who have

installed the Sensibility Testbed app. This tool makes it very easy to do data col-

lection, however it does not allow for developers to prototype any real-time custom

functionality on top of the data collection platform. CAB generates the data collection

platform which allows customization and extension to meet each data collection need.

HealthSense [24] provides a user interface to define clinical trials, distribute to

participants and collect data. In contrast, CAB also allows for rapid prototyping

of new algorithmic ideas. Using the auto-generated code, algorithm developers can

extend the functionality of CAB to add novel user interfaces or engage in real-time

processing of user data.
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5.9 Discussion & Future Work

Communicating App Requirements CAB accepts the requirements as a JSON

specification file (Fig. 5.10c) and assembles the data-collection platform. We created a

simple website to create this requirements file, but there is much room for exploration

and investigation in this area. Ultimately, the goal of a good interface is to learn the

user’s intent and requirements and automatically translate that to a CAB input file.

This may be done using natural language processing akin to many general voice

assistants such as Amazon’s Alexa or domain-specific voice assistants such as Clinc.7

An investigation into the most natural form of input is outside the scope of this work

but worth further investigation.

Application to Personal Informatics The core concepts of CAB are applicable

more broadly than vehicular data collection. We foresee the application of the same

tools to personal health informatics, as seen in related work [24, 9]. Personal infor-

matics is a rich area of research as we can infer the user’s mental state or emotional

level based on numerous low-level sensors, such as their heart rate or daily movement.

Such informatics can help raise self-awareness of the user’s own state of mind and

well-being.

Expansion to Additional Sensors Future work can expand CAB to additional

hardware sensors such as wearables or rich-vehicle sensors such as camera, radar or

LiDAR. CAB naturally has support for acquiring data from one platform and send-

ing it to another platform for processing. Expanding to other sensors will leverage

this functionality to allow easy access and rapid prototyping of novel applications.

For example, Augmented Vehicle Reality [81] shares LiDAR point cloud information

across vehicles to detect obstacles in blind spots. Such technology can be quickly

7https://clinc.com/
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prototyped using CAB.

5.10 Conclusion

We have presented CAB, an on-demand vehicular data-collection app builder. CAB

accepts high-level requirements from researchers and developers, and creates a custom

data-collection app to meet their needs. The app is easily distributed through the

CAB server and doesn’t require any programming expertise to launch a custom data-

collection campaign.

CAB compiles each on-demand data-collection platform using algorithmic modules

contributed to the shared repository by developers. Using a shared understanding

of information types that are requested by the user, CAB automatically resolves al-

gorithmic dependencies and builds an app to meet the requirements. By assembling

different sets of algorithms, CAB can create numerous unique data-collection apps us-

ing just a small number of algorithms. In this work, we created 18 algorithms which

can be composed to create 8,100 unique applications.

We have demonstrated CAB’s versatility by building three complex data-collection

apps. CAB significantly reduces the programming effort needed to achieve complex

app functionality, requiring as little as 4% of the Android code that would otherwise

be needed. Through a usability study, we found that researchers find that CAB reduces

the effort for both data collection and for algorithm development, and are likely to

use CAB for their research or app development needs.
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5.11 Appendix: Specification Files

{

"location": {"type": "float[2]"},

"car-speed": {"type": "float"},

"car-fuel": {"type": "float"},

"car-steering": {"type": "float"},

"vehicle-pointing-rotation":

{"type": "float[9]" },

"vehicle-aligned-accel":

{"type": "float[3]" },

"accel":

{"type": "float[3]",

"sensor": true},

"gps":

{"type": "float[3]",

"sensor": true},

"phone-number": {"type": "string"},

}

(a) Information registry specification

{

"aligned-imu" : {

"platform": "android",

"functions": {

"produceVehicleAlignedAccel": {

"output": "vehicle-aligned-accel",

"input": [

"accel",

"vehicle-pointing-rotation"]

},

"produceVehiclePointingRotation": {

"output":

"vehicle-pointing-rotation",

"input": ["magnetometer", "gps",

"gravity"]

},

}

}

}

(b) Algorithm function specification

{

"required": [

"location",

"map-matched-location",

"car-fuel"

],

"platforms": [

"android",

"python",

"react"

],

"exclude": [

"accel"

],

"choices": {

"car-fuel":

"obd-devices/readFuelLevel"

}

}

(c) App designer requirements

[

{ "algorithm": "android-passthroughs",

"function": "getLocation" },

{ "algorithm": "map-match",

"function": "mapmatch" },

{ "algorithm": "user-input",

"function": "acceptFuelLevel" },

{ "algorithm": "obd-devices",

"function": "readFuelLevel" },

{ "algorithm": "text-input",

"function": "accept_fuel_level" },

{ "algorithm": "user-input",

"function": "acceptPhoneNumber" }

]

(d) App designer strategy

Figure 5.10: Specification files
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CHAPTER VI

Thesis Contributions and Conclusion

This thesis made three main contributions towards unifying diverse sensor streams.

By unifying sensor streams, we can take full advantage of the information learned by

any individual sensor or vehicle. We built systems which utilized sensor redundancy

and solved problems in two different domains.

CAN-bus Injection Detection. First, we developed a system called CarSec which

uses smartphone sensors to detect if the vehicular sensors are deviating from their

expected value. We estimated six (6) different vehicular sensors and measured their

accuracy under many realistic driving scenarios. We characterized CAN-bus injection

attacks found in literature and demonstrated CarSec’s ability to exploit the sensor

redundancy found in phones for their detection.

Driving Hazard Detection. Next, we developed a system called Ubi which uses

GPS trajectories of nearby cars to detect dangerous driving hazards. Ubi detects

stationary and mobile driving hazards using GPS trajectories of nearby vehicles. We

modeled the mobility of these hazards to predict their location and warn drivers early

on as they approach the hazard. By leveraging the GPS sensing redundancy from

multiple nearby vehicles, we are able to make the roads safer and provide earlier

warning about dangerous hazards ahead.
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Data-Collection App Building. Finally, we consolidated the main requirements

for building vehicular data collection applications which leverage redundant sensors

into a data-collection app builder called CAB. In contrast to existing tools, CAB is

designed so that non-technical users can easily create and launch a data-collection

campaign for their research purposes. Moreover, CAB is designed to be easily extended

by developers and supports development in three different platforms – Android (Java),

React (TypeScript) or Python scripts.
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CHAPTER VII

Interesting Future Direction

There are several interesting directions to follow up this thesis.

Extensions to CarSec. CarSec uses three sensors, GPS, IMU and magnetometer,

to replicate six vehicular sensors. As a possible extension of this work, one may

consider using the camera and microphone sensors found in smartphones. Every

year smartphone cameras improve. Modern smartphones even have depth cameras

and multiple cameras for a wide field of view. This could serve as an additional

source of redundancy for detecting attacks. By replicating the vision of in-vehicle

LiDAR or camera, we can leverage smartphone cameras to the detect adversarial

machine learning attacks [79], or sensor blinding attacks [80, 110]. If we can share

the extracted camera information across vehicles, we can extend sensor redundancy

and explore a wide range of attacks. Similar work on vision sharing between vehicles

was done by Qiu et al. [81].

Extensions to Ubi. The graph search algorithm used in Ubi is a general repre-

sentation of hazard mobility. It can represent diverse hazard mobility and used to

represent how cars interact with the hazard, such as how they slow down or speed

up as they approach the hazard. We can explore the full limits of such a tool by

extending Ubi to other types of hazards not explored in this thesis. This could be
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extended to detect stray animals on the road which have a distinct mobility pattern.

Being able to detect animals and report in real-time could potentially can save lives

by early warnings.

Extensions to CAB. We developed a flexible and extensible data-collection platform

for vehicular data-collection research. A possible extension of this work involves

expanding the development surface to different platforms. For example, currently

in order to access low-level sensors on the phone, a developer has to use Android-

based algorithms available within CAB. If we add support for React-Native or Swift, a

user can also access low-level sensors on iPhones or other mobile operating systems,

thereby increasing the coverage and impact of CAB.
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cle telematics: A ten-year anniversary”. In: IEEE Transactions on Intelligent
Transportation Systems 18.10 (2017), pp. 2802–2825.

[104] Wenshuo Wang, Junqiang Xi, and Ding Zhao. “Driving style analysis using
primitive driving patterns with bayesian nonparametric approaches”. In: IEEE
Transactions on Intelligent Transportation Systems (2018).

[105] Wenshuo Wang and Ding Zhao. “Extracting Traffic Primitives Directly From
Naturalistically Logged Data for Self-Driving Applications”. In: IEEE Robotics
and Automation Letters 3.2 (Apr. 2018), pp. 1223–1229. issn: 2377-3774. doi:
10.1109/LRA.2018.2794604.

147

http://tower-sec.com/
http://safetypilot.umtri.umich.edu/index.php?content=technology_overview
http://safetypilot.umtri.umich.edu/index.php?content=technology_overview
https://www.hum.com/
https://doi.org/10.1109/LRA.2018.2794604


[106] Yin Wang et al. “CrowdAtlas: Self-updating Maps for Cloud and Personal
Use”. In: Proceeding of the 11th Annual International Conference on Mobile
Systems, Applications, and Services. MobiSys ’13. event-place: Taipei, Taiwan.
New York, NY, USA: ACM, 2013, pp. 27–40. isbn: 978-1-4503-1672-9. doi:
10.1145/2462456.2464441. url: http://doi.acm.org/10.1145/2462456.
2464441 (visited on 04/21/2019).

[107] Armin Wasicek and Andre Weimerskirch. Recognizing Manipulated Electronic
Control Units. English. SAE Technical Paper 2015-01-0202. Warrendale, PA:
SAE International, Apr. 2015. doi: 10.4271/2015-01-0202. url: https:
//www.sae.org/publications/technical- papers/content/2015- 01-

0202/ (visited on 04/21/2019).

[108] Waze Waze. Driving Directions, Traffic Reports, and Carpool Rideshares by
Waze. Dec. 2019. url: https://www.waze.com/ (visited on 12/09/2019).

[109] Rui Xu and Donald Wunsch. “Survey of clustering algorithms”. In: IEEE
Transactions on neural networks 16.3 (2005), pp. 645–678.

[110] Chen Yan, Wenyuan Xu, and Jianhao Liu. “Can you trust autonomous vehi-
cles: Contactless attacks against sensors of self-driving vehicle”. In: Def-Con
24 (2016).

[111] L. Yin et al. “Detecting illegal pickups of intercity buses from their GPS
traces”. In: 17th International IEEE Conference on Intelligent Transporta-
tion Systems (ITSC). Oct. 2014, pp. 2162–2167. doi: 10.1109/ITSC.2014.
6958023.

[112] Chuang-Wen You et al. “CarSafe App: Alerting Drowsy and Distracted Drivers
Using Dual Cameras on Smartphones”. In: Proceeding of the 11th Annual In-
ternational Conference on Mobile Systems, Applications, and Services. Mo-
biSys ’13. event-place: Taipei, Taiwan. New York, NY, USA: ACM, 2013,
pp. 13–26. isbn: 978-1-4503-1672-9. doi: 10.1145/2462456.2465428. url:
%5Curl%7Bhttp://doi.acm.org/10.1145/2462456.2465428%7D (visited on
04/21/2019).

[113] J. Yu et al. “Fine-Grained Abnormal Driving Behaviors Detection and Iden-
tification with Smartphones”. In: IEEE Transactions on Mobile Computing
16.8 (Aug. 2017), pp. 2198–2212. issn: 1536-1233. doi: 10.1109/TMC.2016.
2618873.

[114] Jiadi Yu et al. “SenSpeed: Sensing Driving Conditions to Estimate Vehicle
Speed in Urban Environments”. In: IEEE Transactions on Mobile Computing
15.1 (Jan. 2016), pp. 202–216. issn: 2161-9875. doi: 10.1109/TMC.2015.

2411270.

[115] Daqing Zhang et al. “iBAT: detecting anomalous taxi trajectories from GPS
traces”. In: Proceedings of the 13th international conference on Ubiquitous
computing. Beijing, China: ACM, 2011, pp. 99–108. isbn: 978-1-4503-0630-0.

148

https://doi.org/10.1145/2462456.2464441
http://doi.acm.org/10.1145/2462456.2464441
http://doi.acm.org/10.1145/2462456.2464441
https://doi.org/10.4271/2015-01-0202
https://www.sae.org/publications/technical-papers/content/2015-01-0202/
https://www.sae.org/publications/technical-papers/content/2015-01-0202/
https://www.sae.org/publications/technical-papers/content/2015-01-0202/
https://www.waze.com/
https://doi.org/10.1109/ITSC.2014.6958023
https://doi.org/10.1109/ITSC.2014.6958023
https://doi.org/10.1145/2462456.2465428
%5Curl%7Bhttp://doi.acm.org/10.1145/2462456.2465428%7D
https://doi.org/10.1109/TMC.2016.2618873
https://doi.org/10.1109/TMC.2016.2618873
https://doi.org/10.1109/TMC.2015.2411270
https://doi.org/10.1109/TMC.2015.2411270


[116] M. Zhang et al. “SafeDrive: Online Driving Anomaly Detection From Large-
Scale Vehicle Data”. In: IEEE Transactions on Industrial Informatics 13.4
(Aug. 2017), pp. 2087–2096. issn: 1551-3203. doi: 10 . 1109 / TII . 2017 .

2674661.

[117] Yang Zheng et al. “Driving risk assessment using cluster analysis based on nat-
uralistic driving data”. In: 17th International IEEE Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2014, pp. 2584–2589. isbn: 1-4799-
6078-0.

[118] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. “U-Air: when urban air quality
inference meets big data”. In: Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. Chicago, Illinois,
USA: ACM, 2013, pp. 1436–1444. isbn: 978-1-4503-2174-7.

149

https://doi.org/10.1109/TII.2017.2674661
https://doi.org/10.1109/TII.2017.2674661

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Background
	CAN-bus Injection
	CAN-bus Traffic Monitoring
	Additional Hardware
	Modeling Specific Subsystems

	Detecting Stationary and Mobile Driving Hazards
	Vehicular Data Collection Platforms
	Specialized Data Collection
	General Data Collection
	Reusable Data Collection Platforms

	Thesis Contributions
	Exploratory Analysis of OBD-Sensor Redundancy
	CarSec: Using Smartphones as Car Security Assistants
	Ubi: Using GPS Trajectories to Detect Driving Hazards
	CAB: On-Demand Vehicular Data Collection Builder


	Exploration in Leveraging OBD-Sensor Redundancy Within and Across Vehicles
	Introduction
	IVBSS Dataset
	Exploratory Methods Overview

	Related Work
	In-vehicle Sensor Relationships
	Across-vehicle Road-Level Anomalies

	Exploratory Methods
	In-Vehicle: Correlation
	Across-Vehicles: PCA and CA
	Principal Component Analysis (PCA)
	Application to vehicle behavior
	Anomaly score

	Cluster Analysis (CA)
	Cluster assignment search
	Signal Transformation
	Clustering Algorithms
	Anomaly Score


	Findings: In-Vehicle
	Across-Trip Consistency
	Vehicle- and Driver-Specific Models
	Within-Trip Consistency
	Hypothesis: Contextual Factors
	Cluster analysis
	Variation within each cluster
	Detecting CAN-bus Injection Attacks

	Findings: Across-Vehicles
	Observations
	Detecting Abnormal Cases
	Novel Anomalous Discoveries

	Conclusion

	CarSec: Using Smartphones as Car Security Assistants
	Introduction
	Related Work
	Phone-based Estimation of Vehicular Sensors
	Vehicular Intrusion Detection Systems (IDS)
	CAN-bus Traffic Characterization
	In-Vehicular Intrusion Detection Systems


	Background and Threat Model
	Why Smartphones?
	Adversary Model
	Trusted Components
	Attacks to Be Covered
	Attacks Not to Be Covered


	System Model
	Speed
	Steering Wheel Angle
	Fuel Level
	Gear Position
	Engine RPM

	Evaluation
	Evaluation Dataset
	Estimation Accuracy
	Speed
	Gear
	Odometer, Fuel-Level
	Steering Wheel Angle
	Engine RPM
	GPS blockage noise
	Additional Redundancy from Passengers' Phones
	Key Findings

	Sensor-Falsification Detection Accuracy
	CAN-bus Injection
	Warning Threshold
	Detection Accuracy
	Smallest Detectable Attack
	Key Findings

	Android Implementation and Evaluation

	Discussion
	Conclusion

	Ubi: Using GPS Trajectories to Detect Driving Hazards
	Introduction
	State-of-the-Art
	Proposed Solution
	Ubi Operation
	Key Technical Details
	Results
	Contributions
	Outline

	Related Work
	Direct: Hazard Detection
	Indirect: Detection based on GPS trajectories
	Graph-based anomaly detection
	Crowd-sourced detection

	System Design
	Ubi System Input Output
	Graph Search
	Discretization
	Encode Open Space into Nodes
	Encode Mobility into Edges
	Find Shortest Path

	Using graph search to warn drivers

	Evaluation
	Evaluation of the Warning System
	Warning Accuracy
	Density and GPS Noise

	Evaluation of Graph Search
	Simulation Dataset
	False Positive Rate
	Effect of discrete grid resolution
	Run-time measurement


	Discussion and Future Work
	Conclusion

	CAB: On-demand Vehicular Data Collection Builder
	Introduction
	State of the Art
	Proposed System: CAB
	Key Technical Details
	Results
	Contributions

	Data-Collection Requirements
	Design Goals

	System
	Algorithm Developer
	App Designer
	Refining the data-collection strategy
	Compiling required algorithms
	Routing information across algorithms
	Isolating application in a virtual machine

	Experiment Participant

	Implementation
	Demonstrative Applications
	Case Study 1 – GreenGPS
	Case Study 2 – Car Sensor Estimation
	Case Study 3 – Obstacle/Hazard Warning

	Evaluation
	User Study
	Related Work
	Specialized Data Collection
	General Data Collection
	Reusable Data-Collection Platforms

	Discussion & Future Work
	Conclusion
	Appendix: Specification Files

	Thesis Contributions and Conclusion
	Interesting Future Direction
	Bibliography

