
Thermal and QoS-Aware Embedded Systems

by

Youngmoon Lee

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2019

Doctoral Committee:

Professor Kang G. Shin, Chair
Assistant Professor Mosharaf Chowdhury
Professor Wei Lu
Professor Thomas F. Wenisch

Youngmoon Lee

ymoonlee@umich.edu

ORCID iD: 0000-0002-6393-2994

© Youngmoon Lee 2019

All Rights Reserved

mailto:ymoonlee@umich.edu
https://orcid.org/0000-0002-6393-2994

To my wife Jinwoo and my parents Taeho and Hyesook

for their unwavering love and support

ii

ACKNOWLEDGEMENTS

When I look back on the 5 years of my Ph.D. program, I now realize how much I

have been given. I was given an endless time to sit down and think that made me an

independent thinker. Furthermore, I was given another chance upon failures, which

made me never give up on challenges. My most sincere gratitude goes to my advisor

Kang G. Shin, who has been extremely patient in fostering my independent thinking.

I would also like to thank my collaborator Mosharaf Chowdhury who has been my

hands-on mentor. I will never forget his patience and never giving up spirit.

I am indebted to all the members of Real-Time Computing Lab (RTCL) where

I learned a lot from each of these independent thinkers. I would especially like to

acknowledge my colleagues Sunmin, Liang, and Hoonsung. We spent an enormous

amount of time shaping ideas and refining them into research problems and solutions.

I would also like to thank Karen, Xiaoen, Krishina, Huan, Kassem, Kyongtak, Yuchih,

Seunghyun, Arun, Dongyao, Taeju, Juncheng, Chunyu, Mert, Duc, Tim, Hsunwei,

Youssef, Suining, Hamed, Sunhyun, Daehan, Jiaqing, and Haichuan.

I would like to express my gratitude to my family, especially my wife, Jinwoo. She

has been always with me when I was struggling the most. Thank you for trusting me

for the 7 years we have spent together. In addition, I appreciate my parents - Taeho

and Hyesook - for their unwavering love and support.

My acknowledgments also go to all the people who helped me during my graduate

studies. Finally, I wish to acknowledge the support of the National Science Foundation

and the South Korean government with my graduate fellowship.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Thermal Challenges . 2
1.1.1 High Temperature 2
1.1.2 Low Temperature 3

1.2 Dynamic Thermal Behaviors 4
1.2.1 Changing Ambient Temperature 4
1.2.2 Hardware Thermal Variabilities 4
1.2.3 Dynamic Application Workloads 4

1.3 State of the Art . 5
1.4 Thesis Statement and Contributions 7

1.4.1 BPM . 8
1.4.2 eTEC . 8
1.4.3 RT-TRM . 9
1.4.4 RT-TAS . 10

II. BPM: Battery-Aware Power Management 11

2.1 Introduction . 11
2.2 Background . 14

2.2.1 Mobile Devices and Their Batteries 14
2.2.2 Battery Management of Mobile Devices 16

iv

2.3 Causes of Unexpected Device Shutoffs 17
2.4 Fixes for Unexpected Device Shutoffs 21

2.4.1 Overview . 21
2.4.2 Profiling Batteries During Charging 23
2.4.3 Regulating Battery Voltage During Discharging . . 28

2.5 BPM Implementation . 34
2.6 Evaluation . 34

2.6.1 Methodology . 35
2.6.2 Preventing Unexpected Device Shutoffs 36
2.6.3 Performance–Operation Time Tradeoff 39
2.6.4 BPM with Different Temperature and Battery Cycles 42

2.7 Related Work . 43
2.8 Conclusion . 45

III. eTEC: Efficient Thermoelectric Cooling 46

3.1 Introduction . 46
3.2 Related Work . 48
3.3 Motivation . 49
3.4 System Thermal Model . 50

3.4.1 TEC Cooling Model 50
3.4.2 Processor Power Model 52
3.4.3 System Thermal Model 52

3.5 Processor Thermal Management 53
3.5.1 Thermal Model Identification 54
3.5.2 TEC Optimization 55
3.5.3 Dynamic TEC Control 57

3.6 Evaluation . 58
3.7 Conclusion . 62

IV. RT-TRM: Real-time Thermal-Aware Resource Management . . 64

4.1 Introduction . 64
4.2 Related Work . 67
4.3 Target System, Challenges, and Solution Overview 68

4.3.1 Target System . 68
4.3.2 Problem Statement and Motivation 70
4.3.3 Overview of the Proposed Approach 72

4.4 Task-Level Power Model . 74
4.4.1 Task-Level Dynamic Power Model 74
4.4.2 Empirical Model Validation 76

4.5 Adaptive Parameter Assignment 78
4.5.1 Parameter Assignment 78
4.5.2 Runtime Parameter Adaptation 81

4.6 Online Idle-time Scheduling 82

v

4.7 Evaluation . 88
4.8 Discussion . 95
4.9 Conclusion . 96

V. RT-TAS: Real-time Thermal-Aware CPUs–GPU Scheduling . 97

5.1 Introduction . 97
5.2 Related Work . 100
5.3 Motivation . 101

5.3.1 Target System . 102
5.3.2 Thermal Characteristics of CPUs–GPU Platforms . 102
5.3.3 Why Thermal-Aware Task Scheduling? 104

5.4 CPUs–GPU System Model 106
5.4.1 Task Execution Model 106
5.4.2 CPU and GPU Power-dissipation Model 108
5.4.3 Platform’s Thermal Model 109
5.4.4 Parameter Identification and Validation 110

5.5 Thermal-Aware Scheduling 112
5.5.1 Thermally-Balanced Assignment 112
5.5.2 CPU–GPU Co-Scheduling 118

5.6 Evaluation . 124
5.6.1 Methodology . 124
5.6.2 Effectiveness at Reducing Temperature 126
5.6.3 Evaluation with Different Task Sets 129

5.7 Conclusion . 131

VI. Conclusion and Future Directions 133

6.1 Contributions, Limitations, and Lessons Learned 133
6.2 Future Directions . 135

BIBLIOGRAPHY . 137

vi

LIST OF FIGURES

Figure

1.1 Thermal challenges in embedded systems threatening system
reliability and user’s safety. 3

2.1 Battery-aware power management middleware. 12
2.2 Equivalent circuit model of a mobile device: the device will shut off

when the battery voltage Vb is lower than the minimum level required
by the device. 15

2.3 The OCV-SoC relationship of batteries. 15
2.4 Operating a Nexus 5X phone: playing a video, idling, and then

playing a game until shutoff. 17
2.5 Battery impedance rises as temperature falls. 18
2.6 Unexpected shutoff of a Nexus 5X smartphone in a cold ambient

temperature. 20
2.7 Voltage drop at shutoff vs. the average voltage drop and SoC at

shutoff of a Nexus 5X battery. 21
2.8 Battery impedance and SoC when different mobile devices shut off. 21
2.9 BPM profiles the device battery during charging and regulates the

voltage drop during discharging. 22
2.10 BPM’s duty-cycled charging vs. standard CCCV charging. 23
2.11 Estimating battery parameters using battery voltage during resting. 25
2.12 Battery parameters estimated at different SoC levels for the 1st,

100th, and 200th charging cycles. 26
2.13 Validating the temperature-dependency model over 100 cycles with

Nexus 5X battery. 27
2.14 The processor incurs a burstier discharge current than other

components. 28
2.15 Component-specific discharge currents. 29
2.16 Processor frequency variations during the phone’s real-life usage. . . 29
2.17 Battery voltage with and without inserting rest periods between task

executions. 32
2.18 Control flow of BPM’s battery-aware discharging management. 33
2.19 Experimental setup. 36

vii

2.20 Operating a Nexus 5X (143rd cycle) until it shuts off, with and
without BPM. 37

2.21 BPM prevents unexpected device shutoffs and extends device
operation, especially for aged devices. 38

2.22 BPM (a) reduces the peak discharge current by (b) limiting the
processor frequency, thus (c) achieving extended device operation. . 39

2.23 Performance and operation time tradeoff. 40
2.24 UI latency/operation time/total events. 41
2.25 Video FPS/operation time/total frames. 41
2.26 Game FPS/operation time/total frames. 41
2.27 Average discharge current and operation time with different

temperatures. 42
2.28 Extracted capacity and operation time with batteries of different ages. 43
3.1 Chip temperature and frequency traces from Nexus 5/5X/6P while

running Mibench benchmark. 49
3.2 TEC device and chip packaging with embedded TEC. 50
3.3 (a) Net cooling capacity and (b) cooling efficiency of a TEC

depending on the temperature difference between two sides. 51
3.4 Thermal circuit model of the TEC system. 53
3.5 Thermal model identification with various (a) processor frequencies

and (b) TEC currents. 54
3.6 Convexity of chip temperatures for the various processor frequencies

and TEC cooling currents. 56
3.7 Workflow diagram of dynamic TEC control. 57
3.8 Experiment and simulation setup. 59
3.9 Temperature, frequency, and cooling current traces from the

experiment running the Antutu mobile benchmark. 60
3.10 (a) Processor frequency and (b) power consumption with and without

the TEC for benchmark applications. 61
3.11 (a) Processor frequency and (b) power consumption with and without

the TEC for different ambient temperature. 62
4.1 Ambient temperature variations over time and the corresponding

available computation power. 71
4.2 Average power consumptions for various automotive applications. . 72
4.3 Model validation with varying utilizations. 77
4.4 Model validation with two periodic tasks (Bit manipulation,

Angle-time Conversion). 77
4.5 Runtime adaptation with (a) different different adaptation intervals

and (b) the trade-off between adaptation overhead and resource
efficiency . 82

4.6 Cumulative idle-time for (a) different ambient temperature and (b)
different tasks decreases with the number of subtasks mi. 85

4.7 Experimental results of RT-TRM showing the processor temperature,
frequency, and task-rate traces under (a) different ambient
temperatures, (b) thermal constraints and (c) power dissipations. . 90

viii

4.8 Job schedule of a task (bit manipulation) and the corresponding
temperature variation by RT-TRM. 91

4.9 Experimental results of different schemes showing the processor
temperature, frequency, and task-rate traces. 93

5.1 Example of an embedded vision systems. 102
5.2 CPUs surrounded by the GPU cluster on a SoC (Tegra X1), where

the GPU’s power dissipation affects the CPUs’ temperatures, creating
temperature imbalance across the CPUs. 103

5.3 Average power dissipations of (a) CPU and (b) GPU vary greatly by
application tasks. 104

5.4 (a) CPU temperatures resulting from varied GPU power dissipations
and (b) maximum CPU temperature resulting from varied CPU and
GPU power dissipations. 111

5.5 Task-to-core assignment algorithms and their corresponding
temperature increases. 114

5.6 RT-TAS avoids thermal throttling by reducing maximum
temperature, thus achieving a reliable response time. 126

5.7 Core-level peak temperature under different scheduling policies. . . 127
5.8 Maximum temperature CDF under different scheduling policies. . . 127
5.9 Transient temperatures w/o and w/ CPU–GPU co-scheduling. . . . 128
5.10 Job schedule (a) w/o and (b) w/ co-scheduling. 128
5.11 Maximum temperature CDF for different task sets. 130
5.12 Schedulability for various utilizations and GPU execution times. . . 131

ix

LIST OF TABLES

Table

1.1 Selected state-of-the-art solutions. 5
1.2 Summary of this thesis’ contributions. 7
2.1 Summary of the regression model. 27
3.1 Identified leakage and thermal parameters. 55
4.2 Thermal parameters of the iMX6 processor. 89
4.3 WCET and min/maximum periods. 89
4.4 The number of preemptions and idle-time per job. 92
5.1 Thermal coupling coefficients for the Tegra X1 (°C/W) 110
5.3 Task-set generation parameters. 129

x

ABSTRACT

While embedded systems such as smartphones and smart cars become essential parts

of our lives, they face urgent thermal challenges. Extreme thermal conditions (i.e.,

both high and low temperatures) degrade system reliability, even risking safety;

devices in the cold environments unexpectedly go offline, whereas extremely high

device temperatures can cause device failures or battery explosions. These thermal

limits become close to the norm because of ever-increasing chip power densities and

application complexities. Embedded systems in the wild, however, lack adaptive

and effective solutions to overcome such thermal challenges. An adaptive thermal

management solution must cope with various runtime thermal scenarios under a

changing ambient temperature. An effective solution requires the understanding of

the dynamic thermal behaviors of underlying hardware and application workloads

to ensure thermal and application quality-of-service (QoS) requirements. This thesis

proposes a suite of adaptive and effective thermal management solutions to address

different aspects of real-world thermal challenges faced by modern embedded systems.

First, we present BPM, a battery-aware power management framework for mobile

devices to address the unexpected device shutoffs in cold environments. We develop

BPM as a background service that characterizes and controls real-time battery

behaviors to maintain operable conditions even in cold environments. We then

propose eTEC, building on the thermoelectric cooling solution, which adaptively

controls cooling and computational power to avoid mobile devices overheating. For

the real-time embedded systems such as cars, we present RT-TRM, a thermal-aware

xi

resource management framework that monitors changing ambient temperatures

and allocates system resources to individual tasks. Next, we target in-vehicle

vision systems running on CPUs–GPU system-on-chips and develop CPU–GPU

co-scheduling to tackle thermal imbalance across CPUs caused by GPU heat. We

evaluate all of these solutions using representative mobile/automotive platforms

and workloads, demonstrating their effectiveness in meeting thermal and QoS

requirements.

xii

CHAPTER I

Introduction

Smartphones are becomeing essential to daily life; people use these devices not

only to connect with others but also to navigate while driving, and even make

mobile payments and conduct banking. Beyond the smartphone era, smart cars

with advanced driver assistant systems (or even automated driving) are growing

rapidly; both the European Union and United States have mandated that by 2020,

all vehicles must be equipped with autonomous emergency-braking systems and

forward-collision warning systems [34]. With the number of smartphones exceeding

the world’s population [49] and smart cars expected to hit 1.2 billion by 2025 [91],

these embedded systems will further improve the quality and safety of life.

These and other smart applications/systems are enabled by (i) the increasing

computational power of embedded systems and (ii) advances in artificial intelligence

– a trend that will not slow with the rise of the edge computing paradigm,

where interconnected smart/edge devices will perform major computations for end

users [108]. Future embedded systems with advanced functionalities and increasing

computational capabilities will soon be integrated into every aspect of life, rendering

them indispensable.

Such embedded systems, however, face urgent thermal challenges in both extreme

thermal conditions (i.e., high and low temperatures) where their reliability is

compromised, such as in the following cases:

1

� Device overheating shortens the lifetime of a device and severely degrades

its reliability, even risking safety (e.g., vehicle breakdowns or smartphone

explosion).

� Extremely low-temperatures cause unpredictable shutoffs of battery-powered

devices; for example, devices might shut off even when their batteries are shown

to have 20% remaining capacity.

Such systems must cope with changing environmental temperature to overcome

these thermal challenges. Dynamic thermal behaviors of application workloads and

underlying platforms must also be accounted to meet the thermal requirements. This

thesis identifies the new thermal challenges in modern embedded systems (§1.1),

highlights dynamic thermal characteristics therein (§1.2) along with state-of-the-art

(§1.3), and proposes a set of thermal management solutions to address those

deficiencies (§1.4).

1.1 Thermal Challenges

As embedded systems evolve, thermal limits are close to the norm where system

reliability is compromised, as is evident in Fig. 1.1.

1.1.1 High Temperature

Dangerously high temperatures severely degrade a system’s reliability, and even

risk safety. Device overheating often makes the system unavailable (Fig. 1.1a)

and can cause battery explosion (Fig. 1.1b), such as in the example of Samsung

Note 7 explosions [93]. These thermal emergencies not only cause monetary loss

but can also lead to catastrophic consequences for driving, medical and wearable

applications. When a given temperature threshold is reached, these devices are often

2

(a) Device Unavailable (b) Battery Explosion (c) Unexpected Device Shutoff

Figure 1.1: Thermal challenges in embedded systems threatening system reliability
and user’s safety.

cooled by stopping/slowing their operations, and these applications therein experience

significant lagging and quality-of-service (QoS) degradation.

1.1.2 Low Temperature

Cold environments also limit the availability of battery-powered embedded

systems (Fig. 1.1c). This is because the power-supply capability of batteries severely

degrades in low temperatures. Devices unpredictably shut off even when the battery

is shown to have plenty of capacity remaining, and such unmanageable device

shutoffs may lead to disastrous situations for mission-critical applications. In 2017,

Apple attempted to avoid such premature/unexpected device shutoffs. They limited

the maximum allowed discharge current (through regulating the maximum speed

of the processors) on iPhones in cold environments. This solution, however, caused

noticeable degradation in the QoS perceived by device users, leading to multiple

lawsuits against Apple [92].

Furthermore, these thermal challenges will become worse with increasing

application complexities [47] and chip-power densities but a fixed thermal limit [110].

Simultaneously, as people’s lives increasingly rely on these devices, their thermal

reliability will become even more significant.

3

1.2 Dynamic Thermal Behaviors

Thermal behaviors of embedded systems are often dynamic, making their thermal

management challenging. Three major dynamic factors dictate device temperature:

ambient temperature, hardware thermal characteristics and dynamic application

behaviors.

1.2.1 Changing Ambient Temperature

Embedded systems, unlike desktops or data-centers, experience a wide range of

environmental variations especially ambient temperature during their operation/life.

Ambient temperature changes dynamically, and their seasonal and locational

variations are very wide. Because a device’s temperature depends on the ambient

temperature, changing ambient temperature under a fixed thermal limit indicates a

changing thermal budget.

1.2.2 Hardware Thermal Variabilities

Other issues pertaining to thermal management are the unique thermal

characteristics of underlying hardware components. To manage the thermal

behaviors of computing platforms, cooling devices must be captured to manage

system temperatures effectively. To enable reliable system operation, the

temperature-dependent characteristics of batteries must also be captured, which are

the dominant power-supply hardware in embedded systems.

1.2.3 Dynamic Application Workloads

Finally, application workloads fluctuate widely, causing high temperature

fluctuations and peak temperatures. In embedded systems, workloads in response

to sporadic user activities exhibit a bursty pattern for user-interactive applications.

Different application contexts (e.g., driving contexts such as highway/urban driving

4

Table 1.1: Selected state-of-the-art solutions.

System
Ambient

Temperature
Hardware

Variabilities
Dynamic

Workloads
Deployment

[26,30,31,51,77,119] - - - Simulation
[13,68,70,78,127] - - X Simulation
[43,63,99,107,112] - X - OS change

[28,54,55,87] X - - Simulation

or parking) also create large variations in workloads. Such dynamic workloads must

be captured to effectively predict/regulate peak temperatures, thereby meeting

thermal requirements.

1.3 State of the Art

Extensive studies have been conducted on thermal management [76] at both

the hardware- (e.g., architecture design, floorplan, and hardware throttling) and

software-level (e.g., task assignment, scheduling, and idle insertion). Thermal-aware

dynamic voltage/frequency scaling (DVFS) and task scheduling have been active

subjects of research attempting to meet timing and thermal constraints. DVFS

scheduling determines the voltage and frequency of a processor to minimize power

consumption [15, 129] and the peak temperature subject to timing constraints on

single-core [30, 31, 119] or multi-core platforms [26, 51]. These solutions, however, do

not deal with the problems of a changing environment, hardware thermal variabilities,

and dynamic application workloads.

To address the thermal impact of dynamic workload, researchers have focused

on different task-level power dissipations to reduce the peak temperature [13, 70] or

maximize throughput [68, 127] through interleaving the execution of hot and cold

tasks. Through analyzing such task-level power variations, the peak temperature was

derived to meet the thermal constraint [13,78].

To capture unique thermal characteristics/variabilities of the underlying

5

hardware, researchers have analyzed a platform’s temperature imbalance across

CPUs [79] and CPUs–GPU [96, 107] platforms. CPUs–GPU thermal coupling is

known to limit a core’s maximum frequency, which is greatly affected by the GPU’s

heat dissipation [96,99]. Maestro [107] focused on characterizing a thermally efficient

core to control the frequency in heterogeneous systems. The infrared imaging

was used to characterize the CPUs–GPU thermal coupling, demonstrating thermal

challenges in an integrated CPU and GPU [43]. Singla et al. [112] proposed a thermal

modeling methodology through system identification for a heterogeneous mobile

platform. A few researchers have considered battery characteristics from the system

perspective. Xie et al. analyzed thermal coupling in smartphones between the

system and battery [120]. B-MODS [63] used battery-aware intermittent discharge

patterns on mobile devices to exploit the battery relaxation effect.

Several researchers have considered dynamic environments and developed

adaptive thermal management to meet both thermal and QoS requirements.

Feedback controller approaches were proposed to regulate the processor temperature

by adjusting the processor utilization [54] or operating frequency [55] subject

to timing constraints. Furthermore, a few online scheduling algorithms have

been proposed to enhance the thermal reliability of homogeneous [28, 87] and

heterogeneous [86] multiprocessor platforms.

Unfortunately, state-of-the-art solutions fall short in adaptively managing

dynamic thermal behaviors, providing a deployable solution and/or satisfying both

QoS and thermal requirements. Many of the existing approaches, however, have

been evaluated using thermal simulations but have neither been implemented nor

tested with realistic platforms and workloads.

6

Table 1.2: Summary of this thesis’ contributions.

System Target System
Ambient

Temperature
Hardware

Variabilities
Dynamic

Workloads
Deployment

BPM [1] Mobile X X X User-level service
eTEC [2] Mobile X X X User-level service + cooling device

RT-TRM [3] Automotive X - X User-level service + OS change
RT-TAS [4] Automotive - X X User-level APIs

1.4 Thesis Statement and Contributions

Although existing research work considered thermal challenges, embedded systems

in the wild still lack effective and adaptive solutions to cope with extreme thermal

conditions. An effective thermal management solution requires understanding the

dynamic thermal behaviors of application workloads and the underlying hardware

to ensure thermal and application QoS requirements, and moreover, an adaptive

one must cope with various runtime thermal scenarios under the changing ambient

temperature.

Thesis Statement: The thermal management systems for embedded applications

developed in this thesis meet both thermal and QoS requirements under (i) changing

ambient temperature, (ii) platform thermal variabilities and (iii) dynamic application

workloads.

In this thesis, we improve on the state of the art by proposing a set of effective and

adaptive thermal management systems span various environment and applications

(Table 1.2) that target mobile devices: BPM and eTEC; and automotive systems:

RT-TRM and RT-TAS. Each of these thermal management systems advances the

state of the art in dynamic thermal management by addressing different aspects of

dynamic thermal behaviors. These thermal management systems meet thermal and

QoS requirements, and thus provide a practical and deployable solution.

7

1.4.1 BPM

Many users have reported experiencing unexpected shutoffs of their mobile devices,

such as smartphones and tablets, even when the device battery is shown to have

>30% remaining capacity. After examining the problem from both the user and

device sides, we have discovered the cause of such unexpected shutoffs to be the large

and dynamic voltage drop across the device battery’s internal impedance, which, in

turn, is caused by the dynamics of mobile devices’ power supply and demand: (i) a

battery’s dynamic internal impedance, which varies with the state-of-charge (SoC),

temperature, and age, together with the device’s bursty discharge current, cause a

voltage drop across the battery’s impedance to fluctuate; (ii) this drop reduces the

voltage supplied to the device, and if the reduction is too large, this shuts off the

device even before the battery is fully drained.

To fix such unexpected shutoffs, we designed a novel battery-aware power

management (BPM) middleware for mobile devices. This middleware accounts for the

dual-dynamics of device operation — capturing the dynamic battery impedance and

adaptively controlling the device’s dynamic runtime discharge current — thereby

regulating the battery’s voltage drop and achieving reliable and extended device

operation. Specifically, BPM profiles the battery impedance at different SoCs and

temperatures using a novel duty-cycled charging method, and then regulates, at

runtime, the discharge current based on the thus-constructed battery profile. We

implemented and evaluated BPM on four commodity smartphones from different

original equipment manufacturers (OEMs), demonstrating that BPM prevents

unexpected device shutoffs and extends the device operation time by 1.16–2.03×.

1.4.2 eTEC

In this project, we investigated device overheating, where underlying processors

were throttled to cool devices, causing mobile apps to suffer significant degradation

8

in performance. Fans or heat sinks are not a viable option for mobile devices, which

calls for a new portable cooling solution. Thermoelectric coolers (TECs) are scalable

and controllable cooling devices that can be embedded into mobile devices on the

chip surface. This project presents a thermoelectric cooling solution that enables

efficient thermal management of processors in mobile devices. Our goal was to

minimize performance loss from thermal throttling by efficiently using thermoelectric

cooling. Because mobile devices experience large variations in workload and

ambient temperature, our solution adaptively controls cooling power at runtime.

Our evaluation on a smartphone using mobile benchmarks demonstrated that the

performance loss from the maximum speed was only 1.8% with a TEC compared to

19.2% without the TEC.

1.4.3 RT-TRM

Whereas BPM and eTEC focus on mobile devices, we subsequently focused

on embedded real-time applications such as automotive systems. For real-time

automotive systems, we demonstrated the importance of accounting for dynamic

ambient temperature and task-level power dissipation in resource management to

meet both thermal and timing constraints. To address this problem, we proposed

a real-time thermal-aware resource management (RT-TRM) framework. We first

introduced a task-level dynamic power model that could capture different power

dissipations with a simple task-level parameter called the activity factor. We then

developed two new mechanisms, adaptive parameter assignment and online idle-time

scheduling. The former adjusts voltage/frequency levels and task periods according to

the varying ambient temperatures while preserving feasibility. The latter generates

a schedule by allocating idle times efficiently without missing any task or job

deadlines. By tightly integrating the solutions of these two mechanisms, we could

guarantee both thermal and timing constraints in the presence of dynamic ambient

9

temperature variations. We implemented RT-TRM on an automotive microcontroller

to demonstrate its effectiveness, improving resource utilization by 18.2% over

other runtime approaches while simultaneously meeting both thermal and timing

constraints.

1.4.4 RT-TAS

Because modern cars perform real-time vision processing using high-performance

CPUs–GPU system-on-chip (SoC), they face greater thermal problems than before,

which in turn cause higher failure rates and cooling costs. We used a representative

vision platform to demonstrate the importance of scheduling the CPU and GPU

while accounting for their thermal coupling, which incurred significant temperature

imbalance on the platform. To address this problem, we proposed RT-TAS, a real-time

thermal-aware CPUs–GPU scheduling framework. We first developed a CPUs–GPU

thermal coupling model that could capture the different CPU temperatures caused

by GPU power dissipation. We then used the model for thermally-balanced

task-to-core assignment and CPU–GPU co-scheduling. The former addresses the

platform’s temperature imbalance by assigning tasks efficiently to cores while

preserving scheduling feasibility. The latter, building on the thermally-balanced

assignment, co-schedules the CPU and GPU to mitigate peak total power dissipation

without missing any task deadlines. We implemented and evaluated RT-TAS on a

representative automotive vision platform to demonstrate its effectiveness, achieving

a 1.52× improvement in platform lifetime or savings on cooling cost of US$ 16.4

over other approaches by reducing the maximum temperature while meeting timing

constraints.

10

CHAPTER II

BPM: Battery-Aware Power Management

2.1 Introduction

Many users are reported to have suffered the unexpected shutoffs of their mobile

devices — even when the device batteries are shown to have >30% remaining capacity

— on both Android [66] and iOS platforms [115], especially in cold environments.

These unexpected shutoffs prevent users from making and receiving important calls

and texts even when the device batteries have sufficient remaining capacity. Apple

introduced an update to iOS 10.2.1 to remedy the unexpected shutoff of iPhones

with aged batteries. This update, however, (i) did not fully address the underlying

issue [115], and (ii) slowed the phone noticeably [6], leading to multiple lawsuits

against Apple [92].

Causes: Large and Dynamic Internal Voltage Drop. Our experiments showed

the cause of such unexpected device shutoffs to be a large voltage drop across

the battery’s internal impedance, causing an insufficient voltage supplied to the

device1, and thus shutting off the device.2 The internal voltage drop is determined

by the battery’s impedance and the device’s discharge current, both of which vary

1Mobile devices require a minimum voltage (e.g., Vbat>3.4V) to operate.
2Mobile devices may shut off when their batteries/chips are overheated. These shutoffs, however,

are intentionally-triggered (for safety) and well-tracked by both Android and iOS, and are thus not
considered “unexpected”.

11

 Device
 Hardware

 Application Layer

 BPM
 Middleware

 Operating
 System

Fuel-Gauge
Chip

BMS Driver

B
M

S

Processor

Power
Management

Battery-aware
Discharging

Duty-Cycled
Charging

application task

regulating frequency profiling battery

battery
profiles

scheduling rest

NetworkDisplay

Figure 2.1: Battery-aware power management middleware.

over device operation: (i) the battery’s impedance varies with the state-of-charge

(SoC)3 and rises as the battery ages or temperature falls [62], and (ii) a mobile

device’s discharge current is often bursty in response to user activities [102]. Such

“dual-dynamics” of battery impedance and discharge current magnify the uncertainty

of the battery’s internal voltage drop, making it difficult to predict/regulate the

battery’s voltage output. Notably, the dependency of a battery’s impedance on its

age or the environmental temperature exacerbates the unexpected shutoffs as it ages

or when it operates in a cold environment (§2.3).

Fixes: Battery-Aware Power Management (BPM). To mitigate unexpected

device shutoffs, we present a novel BPMmiddleware that is compatible with commodity

mobile devices and require no additional hardware — except for a typical charger —

or OS modifications. BPM captures the dynamic battery impedance at different SoCs

and temperatures, updates it as the battery ages, and regulates the device’s runtime

discharge current to ensure a sufficient voltage supply to operate the device whenever

possible, thereby achieving a reliable and extended device operation. Thus, users can

use their phones for longer and in a more predictable manner (§2.4.1). Specifically, BPM

fixes unexpected device shutoffs with the joint management of battery charging and

3SoC is the percentage of remaining capacity relative to the total usable capacity when the battery
is fully charged.

12

discharging via close interactions with the (lower) OS layer and (upper) application

layer (see Fig. 2.1):

� Duty-Cycled Charging. BPM becomes aware of the device battery by profiling (and

updating) the battery impedance at different SoC levels with novel duty-cycled

charging: the battery is rested after being charged to a set of discretized SoC

levels, and the battery is characterized at a specific SoC level based on the

battery voltage during the corresponding rest period. BPM further compensates the

temperature-dependency of the thus-profiled battery impedance according to the

environmental temperature. This duty-cycled charging, however, requires more

time to fully charge the battery. To ensure no perceivable degradation of user

experience caused by the prolonged charging, BPM applies the duty-cycled charging

only when the device is charging overnight (as mobile device users commonly

do), and furthermore, it allows a sufficient time to fully charge/characterize the

battery [64] (§2.4.2).

� Battery-Aware Discharging. BPM adaptively regulates the device’s operation, and

hence battery discharging, based on this battery-awareness. Specifically, BPM (i)

estimates the battery impedance based on the above-captured impedance–SoC

relationship; (ii) identifies the maximum allowed discharge current; (iii) regulates

the device’s discharge current below the allowed maximum by limiting the

maximum processor frequency; and then (iv) schedules rest periods between

consecutive device operations to restore the battery voltage before executing the

next operation. BPM uses the processor frequency and scheduling as control knobs

to regulate the discharge current, instead of the operation of other device modules,

such as display and networking (see Fig. 2.1). This was based on our empirical

observation that the major dynamics of a device’s discharge current are attributed

to the processor (§2.4.3). Moreover, BPM limits the maximum processor frequency

13

only to the necessary degree, thereby minimizing degradation in user-perceived

experience. Our experiments showed that BPM prevented unexpected device

shutoffs at a cost of only a 1.1% reduction in processor frequency, whereas the iOS

10.2.1 update reduces the processor frequency by 9.1% according to the empirical

measurements in [6].

We implemented and evaluated BPM on the following smartphones: two Nexus 5X,

one Nexus 6P, and one Pixel (§2.5). Our experimental results demonstrated BPM to (i)

prevent unexpected device shutoffs, and (ii) extend device operation by 1.16–2.03×

compared with the default battery saver mode of these devices.

Contribution : . This chapter makes the following main contributions:

� Demonstrations of the root causes of unexpected mobile device shutoffs and the

importance of accounting for devices’ dynamic power supply and demand together

to avoid unexpected shutoffs.

� Design of BPM, a novel battery-aware power management middleware that fixes

unexpected device shutoffs and extends device operation (§2.4).

� Implementation (§2.5) and evaluation of BPM on four commodity mobile devices

from different OEMs (§2.6).

2.2 Background

Presented in the following subsection is the necessary background information of

mobile device batteries and their management.

2.2.1 Mobile Devices and Their Batteries

Batteries are used to power the hardware components of a mobile device, such

as processors, displays, and communication modules, with the typical architecture

14

R0
R1

C1
OCV

Battery

Processor

Display
Network

Device

Ib

Vb

+

- ⋮

+

-

Ib

Rb

R
eg
ul
at
or

Figure 2.2: Equivalent circuit model of a mobile device: the device will shut off when
the battery voltage Vb is lower than the minimum level required by the device.

100 80 60 40 20 0

SoC (%)

3

3.5

4

4.5
O

C
V

 (
V

)

Figure 2.3: The OCV-SoC relationship of batteries.

illustrated in Fig. 2.2. The device battery is abstracted by an equivalent circuit

model (the left part of Fig. 2.2) consisting of [123]:

1. An ideal voltage source, providing the battery’s open-circuit voltage (OCV),

defined as the voltage between its terminals without loads/charger connected.

A battery’s OCV has a monotonic relationship with the battery’s remaining

capacity (see Fig. 2.3, which presents the example of the battery of a Nexus 5X),

which is the basis for SoC estimation commodity mobile devices [59].

2. A resistor–capacitor network (i.e., R0, R1, C1), which we call the battery’s internal

impedance Rb.

When the battery discharges current Ib, the serial resistance R0 causes an instant

voltage drop

∆Vinst. = Ib ·R0. (2.1)

15

The parallel connection of R1 and C1 further triggers a gradual voltage drop of

∆Vtrans.(t) = Ib ·R1 −R1 · C1
dVb(t)

dt
, (2.2)

which converges (i.e., when dVb(t)
dt

=0) at

∆Vtrans. = Ib ·R1. (2.3)

A combination of Eqs. (2.1) and (2.2) shows that the battery’s output voltage Vb(t)

can be described as

Vb(t) = OCV (SoC)−∆Vinst. −∆Vtrans.(t)

= OCV (SoC)− (R0 +R1) · Ib +R1 · C1 ·
dVb(t)

dt
. (2.4)

Note that by defining the discharge/charge current as positive/negative values,

Eqs. (2.1)–(2.4) hold for charging devices as well.

The mobile device on the right of Fig. 2.2 requires the minimum input voltage

V cutff
b to operate (e.g., 3.3–3.4V for mobile phones [63]), otherwise the device will

shut off. This cutoff voltage — usually implemented using voltage regulators [62]

— ensures a sufficient voltage to power hardware components and avoids the deep

discharging of the battery, which accelerates battery degradation.

2.2.2 Battery Management of Mobile Devices

The battery management system (BMS) of commodity mobile devices consists of a

fuel-gauge chip and the BMS driver/firmware in the OS (see Fig. 2.1). The fuel-gauge

chip monitors the battery information in real time, such as the voltage, current, and

temperature. The BMS driver/firmware then estimates advanced battery information

such as SoC and battery health using this raw information [17]. The OS displays

16

0 1 2 3

Time (hour)

3.4

3.6

3.8

4

4.2

4.4

V
o
lt
a
g
e
 (

V
)

Battery OCV
Battery Voltage
Worst-Case Batt. Volt.

3.95V

(a) Voltage

0 1 2 3

Time (hour)

0

1

2

3

C
u

rr
e

n
t

(A
)

0.1

0.15

0.2

0.25

R
b
 (

)

Discharge Current
Battery Impedance

(b) Current and impedance

0 0.1 0.2 0.3 0.4 0.5

I
b
 R

b

0

0.2

0.4

V
o
lt
a
g
e
 D

ro
p
 (

V
)

(c) Voltage drop

Figure 2.4: Operating a Nexus 5X phone: playing a video, idling, and then playing a
game until shutoff.

this battery information to users and takes coarse-grained actions (e.g., enabling the

battery saver mode or disabling the camera) when the battery’s remaining capacity

is low. The OS also maintains device/battery usage statistics to calculate the power

usage of each app or device module, and uses them to adjust the processor frequency

through dynamic voltage frequency scaling (DVFS).

2.3 Causes of Unexpected Device Shutoffs

With the understanding of the power architecture of mobile devices, this section

analyzes and validates the causes of unexpected device shutoffs.

Device Operation and Shutoff. We first use the empirical traces shown in Fig. 2.4

to illustrate how mobile devices operate,4 from which we make the following three

key observations.

O1. The battery voltage decreases during the phone’s operation until it reaches

4These traces were collected with a Nexus 5X phone in a room temperature, during which the
phone was used to play a Youtube video (i.e., the first 38 minutes), kept idle (i.e., 38–86 minutes),
and then play a game until shutoff (i.e., 86–206 minutes).

17

-20 0 20 40
Battery Temperature (

o
C)

0.2

0.3

0.4

R
b
 (

)

Figure 2.5: Battery impedance rises as temperature falls.

approximately 3.4V, at which point the phone shuts off, as shown in Fig. 2.4(a).

O2. Both the discharge current and battery impedance vary during device operation

(see Fig. 2.4(b)).

O3. The internal voltage drop of the battery — that is the difference between the

“Battery OCV” and “Battery Voltage” in Fig. 2.4(a) — depends on both the

discharge current and impedance. This can be observed in Fig. 2.4(c), where

the voltage drop (i.e., y-axis) and the term Ib·Rb (i.e., x-axis) are calculated

from Fig. 2.4(a) and (b), respectively. This can also be derived from Eq. (2.4):

the battery’s output voltage Vb is determined by its internal resistance and

capacitance (i.e., R0, R1 and C1) and discharge current Ib. Note the markers in

Fig. 2.4(c) are below the line of y = x because of the insufficient time for the

battery voltage to be stabilized during this measurement (i.e., dVb(t)/dt>0 in

Eq. (2.2)) — the collected voltage drop has not yet reached its maximum.

These observations led to our conjecture that a large voltage drop over a battery’s

internal impedance may reduce the battery voltage too much to power the device,

thereby causing unexpected device shutoffs. This large voltage drop is likely to occur in

practice because of a dynamically changing battery impedance and discharge current,

especially in view of the fact that the battery impedance also varies with temperature

Tb; that is, the impedance rises as the temperature falls, as shown in Fig. 2.5 with

the Nexus 5X.

18

Assuming this conjecture holds, the “Worst-Case Battery Voltage” in Fig. 2.4(a)

plots the lower-bound of the battery voltage, meaning the lowest possible voltage

without shutting the device off. This is derived using

Vworst = OCV (SoC)−max{Ib} ·max{Rb}, (2.5)

where max{Ib} and max{Rb} are extracted from Fig. 2.4(b), showing that the phone

may shut off with an OCV as high as 3.95V, which maps to (according to Fig. 2.3)

an SoC of nearly 70%.

Case Studies of Unexpected Shutoffs. To corroborate this conjecture, we

conducted case studies to trigger unexpected shutoffs of a Nexus 5X phone by

magnifying the voltage drop across its battery’s impedance (i.e., Ib·Rb). Specifically,

we operated a fully-charged Nexus 5X phone in a freezer (−5°C) with the User

Interaction (UI) exerciser [8] on until it shut off (thus with increasing Rb and Ib·Rb),

warmed it in room temperature (thus Rb and Ib·Rb decreased), and then attempt

to turn it on and operate it further without charging. Fig. 2.6 plots the discharge

current, battery impedance, voltage drop, and battery voltage supplied to the phone

during this measurement, showing that,

� the discharge current was highly dynamic/bursty;

� the battery’s internal impedance rose as the temperature fell;

� the phone shut off when the voltage dropped to approximately 3.4V, but then

it was successfully turned back on after being warmed in room temperature —

delivering another 330mAh capacity or operating for an additional 18 minutes

— without having its battery charged. The battery’s voltage drop before the

unexpected shutoff was 0.49V, which reduced to 0.14V after being warmed in

room temperature (e.g., at the 88th minute) and thus we were able to turn the

19

0

1

2

I b
 (

A
)

0

0.2

0.4

R
b
 (

)

0

0.5

1
I b

R
b
 (

V
)

0

50

100

S
oC

 (
%

)

0 20 40 60 80 100 120
Time (s)

3.2
3.5
3.8
4.1

V
ol

t.
(V

)

cutoff voltage

Figure 2.6: Unexpected shutoff of a Nexus 5X smartphone in a cold ambient
temperature.

phone on again.

Next, we repeated the experiments while varying the ambient temperature from

−5 to 25°C and the maximum discharge current from 1 to 2A. The results are plotted

in Fig. 2.7, and show that (i) unexpected shutoffs were observed at all explored

temperatures, and (ii) the voltage drop increased and the phone shut off with up to

33% SoC when discharging with a large current in cold ambient temperatures. We

have conducted similar experiments with a Nexus 6P and iPhone 5S and SE5 and

made similar observations, as summarized in Fig. 2.8. Note the iPhone SE had the

iOS 10.2.1 update to prevent unexpected shutoffs, whereas the iPhone 5S did not.

Although this update reduced the unexpected shutoffs at −5°C (i.e., from 35% SoC on

iPhone 5S to 15% SoC on iPhone SE), the problem still persisted. More importantly,

the update degraded the phone performance significantly, for example, it reduced the

5All these devices are within their battery warranty (e.g., 500 complete charge/discharge cycles).

20

25oC 15oC 5oC 0oC -5oC
0

0.5

1

I b
 X

 R
b
 (

V
)

I
b
max=1A

I
b
max=2A

Avg. I
b
 X R

b

(a) Voltage drop

25oC 15oC 5oC 0oC -5oC
0

10

20

30

40

50

S
oC

 (
%

)

I
b
max=1A

I
b
max=2A

(b) SoC at shutoff

Figure 2.7: Voltage drop at shutoff vs. the average voltage drop and SoC at shutoff
of a Nexus 5X battery.

N
ex

us
 5

X

N
ex

us
 6

P

iP
ho

ne
 5

S

iP
ho

ne
 S

E

0

0.2

0.4

0.6

0.8

R
b (

)

25oC -5oC

(a) Impedance at shutoff

N
ex

us
5X

N
ex

us
6P

iP
ho

ne
5S

iP
ho

ne
S

E

0

10

20

30

40

50

S
oC

 (
%

)

25oC -5oC

(b) SoC at shutoff

Figure 2.8: Battery impedance and SoC when different mobile devices shut off.

average processor frequency by 9.1% [6].

These case studies confirmed our conjecture that a large voltage drop across the

battery’s internal impedance (i.e., Ib·Rb) causes unexpected device shutoffs, which are

prevalent across Android and iOS devices.

2.4 Fixes for Unexpected Device Shutoffs

These causes of unexpected device shutoffs also inspire their remedy, i.e.,

regulating the voltage drop across battery impedance Ib·Rb, where both Ib and Rb

vary.

2.4.1 Overview

As mobile devices have little control over their battery’s internal impedance Rb,

BPM regulates Ib·Rb by actively limiting Ib based on the real-time estimation of Rb.

21

Regulating

Processor Frequency

Voltage ResponseCharging Pulse

Battery Volt. ≥

Cutoff Vol.

Duty-Cycled Charging

Battery-aware Discharging

Battery Parameters

SoC(%)
Temp(°C)

R0 R1 OCV 𝜏

Scheduling

Battery Resting

Regulate
Voltage

Drop

Battery
Profile

Figure 2.9: BPM profiles the device battery during charging and regulates the voltage
drop during discharging.

Specifically, BPM uses (i) duty-cycled charging management to profile the dynamic

battery characteristics thereby facilitating the real-time estimation of Rb, and (ii)

battery-aware discharging management to regulate the device’s discharge current Ib

at runtime (see Fig. 2.9). During battery charging (dotted line), BPM charges the

device with a duty-cycled current followed by a rest period, and then determines the

battery parameters — i.e., <OCV, R0, R1, C1> — at each SoC based on the voltage

observed during the rest period. At runtime, BPM further compensates these battery

parameters based on the environmental temperature using a temperature dependency

model (§2.4.2). During discharging (solid line), BPM (i) estimates the runtime battery

impedance, (ii) identifies in real time the maximum allowed discharge current based on

battery impedance, (iii) determines the thus-allowed maximum processor frequency,

and (iv) allocates a rest period between operations to restore the battery voltage

— using the recovery effect of batteries [63] — before executing the next operation

(§2.4.3).

Note that the BPM middleware implements the duty-cycled charging and

discharging management by leveraging readily available BMS and the DVFS drivers

of commodity mobile devices, and thus requires no special hardware — except a

22

0 1 2 3 4

Time (hour)

0

0.5

1

1.5

C
h
a
rg

in
g

 C
u
rr

e
n
t
(A

)

CCCV
Duty-Cycled Charging

(a) Discharge Current

0 1 2 3 4

Time (hour)

3.6

3.8

4

4.2

4.4

V
o

lt
a

g
e

 (
V

)

CCCV
Duty-Cycled Charging

(b) Voltage

0 1 2 3 4

Time (hour)

0

50

100

S
o

C
 (

%
)

CCCV
Duty-Cycled Charging

(c) SoC

Figure 2.10: BPM’s duty-cycled charging vs. standard CCCV charging.

typical charger — or OS modifications (§2.5).

2.4.2 Profiling Batteries During Charging

BPM profiles the battery’s parameters as functions of battery SoC and temperature,

and then stores them as lookup tables.

Duty-Cycled Charging. BPM constructs and updates these lookup tables by

charging the devices with a customized duty-cycle: in each cycle, the battery is

charged with a current Ic for a duration of tc, and then it is rested the battery for

a duration of tr. BPM implements this duty-cycled charging by enabling/disabling

the device’s charging,6 which also simplifies BPM because the charging current Ic will

automatically be determined by the device’s charging chip — BPM only needs to

control tc and tr. Note that when the device’s charging is disabled with the charger

connected, the device’s operation will be powered by the charger, thereby resting the

battery.

Fig. 2.10 depicts the duty-cycled charging current, battery voltage, and SoC

during BPM’s charging of a Nexus 5X phone, and compares them with constant-current

constant-voltage (CCCV) charging, which is commonly used in mobile devices [64].

Clearly, BPM’s duty-cycled charging prolongs the time required to fully charge the

battery, for example, Fig. 2.10 shows that BPM requires approximately 1.4 hours longer

to fully charge the battery compared with CCCV. To preserve the user-perceived QoS,

6This charging control can be achieved, e.g., by configuring
/sys/class/power supply/bms/battery charging enable in Android devices.

23

BPM applies duty-cycled charging only when mobile devices are charged overnight,

which provides sufficient time to fully charge the battery and is very common for

most mobile device users [64]. Moreover, resting the battery after each charging cycle

slows battery aging [59].

In addition, note that BPM’s duty-cycled charging differs from existing pulsed

charging; that is, BPM exploits the rest periods to profile the battery, as we explain

next.

Battery Voltage During Resting. BPM uses the battery voltage during rest periods

to estimate battery parameters at specific SoC levels. According to Eqs. (2.1)–(2.4),

resting battery at time 0 after charging it with current Ic yields:

Vb(0
−) = OCV − Ic · (R0 +R1), (2.6)

Vb(0
+) = OCV − Ic ·R1, (2.7)

Vb(t) = OCV − Ic ·R1 · e−
t

R1·C1 (t > 0), (2.8)

showing the battery voltage to (i) drop instantly by ∆Vinst. = Ic·R0 because of

the ohmic voltage drop across R0 (i.e., Eq. (2.6) to Eq. (2.7)), and (ii) drop

gradually afterwards according to Eq. (2.8) until converged to the steady-state

voltage of OCV .The term τ=R1·C1 in Eq. (2.8) is the time-constant of the R1 &

C1 parallel network in Fig. 2.2, which describes how quickly the battery voltage

stabilizes. Eqs. (2.6)–(2.8) are the basis for BPM to estimate the battery parameters

<OCV, R0, R1, C1> from the battery voltage, as we describe next.

Estimating Battery Parameters Using Voltage. BPM profiles the battery

parameters at a set of discretized SoC levels: {0%,∆%, 2∆%, · · · , 100%}. BPM

charges the battery with current Ic until the next SoC level is reached, rests the

battery by disabling the charging for tr, and then estimates the battery parameters

at the current SoC level using the battery voltage during resting, as illustrated in

24

0 250 500

Time (s)

3.6

3.8

4

4.2

V
o

lt
a

g
e

 (
V

)

charging

resting

(a) Duty-Cycled Charging

100 150 200 250

Time (s)

3.6

3.8

4

V
o

lt
a

g
e

 (
V

)

OCV

identify and C
1

via curve fitting

V
inst.

V
trans.

(b) Zoom-in of Resting Voltage

Figure 2.11: Estimating battery parameters using battery voltage during resting.

Fig. 2.11 with ∆ = 2 and a resting period of tl = 100s. Specifically, BPM estimates

the battery parameters using the resting voltage based on Eqs. (2.6)–(2.8) as follows:

� it estimates R0 from the instantaneous voltage drop according to R0 = ∆Vinst./Ic;

� it estimates R1 based on the transient voltage drop to the steady-state voltage

R1 = ∆Vtrans./Ic;

� it estimates C1 from the time constant (τ=R1·C1) of the voltage response via

least-square curve-fitting; and

� it estimates the OCV as the steady-state voltage.

Note that the 100-s rest period in Fig. 2.11 is determined based on Eq. (2.8):

the battery voltage converges to OCV at a rate of 1 − e
t
τ . For example, with the

maximum τ of approximately 25s observed in Fig. 2.12, a 100s rest allows the voltage

to converge to OCV 1− e100s/25s ≈ 98%.

Fig. 2.12 plots the thus-estimated parameters of a battery used by a Nexus 5X,

for the SoC range of [0, 30]%, at the {1st, 100th, 200th} charging cycles. Unlike R0

which is relatively stable across a given charging cycle, R1 and τ vary significantly

with the SoC because of phase transitions [22], causing different voltage drops at

different SoC levels even with the same discharge current. Moreover, these battery

parameters change significantly over charging cycles: battery impedances increase

25

0 10 20 30

SoC (%)

0

0.1

0.2

0.3

0.4

R
0
 (

)
1st 100th 200th

(a) R0

0 10 20 30

SoC (%)

0

0.1

0.2

0.3

0.4

R
1
 (

)

(b) R1

0 10 20 30

SoC (%)

3.6

3.7

3.8

3.9

O
C

V
 (

V
)

(c) Battery OCV

0 10 20 30

SoC (%)

0

5

10

15

20

25

T
im

e
 C

o
n

s
t.

 (
s
)

(d) Time Constant (τ)

Figure 2.12: Battery parameters estimated at different SoC levels for the 1st, 100th,
and 200th charging cycles.

while the time-constant (i.e., τ in Eq. (2.8)) decreases, thereby reducing the battery

power capacity over time. This explains why devices with aged batteries are likely to

experience more unexpected shutoffs.

Capturing Batteries’ Temperature-Dependency. Battery parameters also vary

with temperature, which BPM must capture to facilitate the compensation of battery

parameters based on the runtime environment temperature. Clearly, empirically

capturing battery parameters at all potential temperature is impractical; moreover,

overnight device charging usually occurs at room temperature. Thus, asking users are

required to assist in profiling the parameters at different temperatures, which requests

too much effort from them. To overcome this challenge, BPM estimates the battery

parameters at various runtime temperatures based on those at room temperature

using an offline constructed temperature-dependency model.7 Specifically, we profiled

7Accurate offline temperature-dependency model is known to generate reliable battery parameter
estimation over battery aging [116].

26

-20 0 20 40
Temperature (C)

0

0.5

1

R
0 (

)

Samples over 100 Cycles
Exp Model

(a) R0

-20 0 20 40

Temperature (C)

0

0.5

1

R
1
 (

)

(b) R1

-20 0 20 40

Temperature (C)

3

3.5

4

4.5

5

O
C

V
 (

V
)

(c) Battery OCV

-20 0 20 40

Temperature (C)

0

10

20

30

40

T
im

e
 C

o
n

s
t.

 (
s
)

(d) Time Constant (τ)

Figure 2.13: Validating the temperature-dependency model over 100 cycles with
Nexus 5X battery.

Table 2.1: Summary of the regression model.

Parameters [a0, b0, c0, d0] RMSE Adj. R2

R0(W) [1.2e-4, -5.7, 1.1, -0.14] 0.051 0.979
R1(W) [0.94, -0.17, 2.3e-5, -6.2] 0.044 0.968
OCV (V) [1.0, -2.4e-2, -3.9e-5, -4.8] 0.095 0.946

Time Constant τ(s) [0.15, -0.47, 0.47, 0.37] 2.11 0.884

battery parameters at different temperatures, using a thermal chamber. For example,

BPM compensates the temperature’s impact on R0 using

R0(Tb) = (a0 · eb0·Tb + c0 · ed0·Tb) ·Rr
0(SoC%). (2.9)

where Rr
0(SoC%) is the R0 at room temperature for the current SoC level (SoC%)

and a0, b0, c0, d0 are the regression coefficients. We then empirically examined the

accuracy of the temperature-dependency model over extended battery discharging

cycles. Fig. 2.13 plots the measured battery parameters (circle labels) over 100 cycles

at different battery temperatures, justifying the use of a set of exponential regression

27

0 200 400 600 800
Time (s)

0

1

2

D
is

ch
ar

ge
 C

ur
re

nt
 (

A
) Display Network Processor

Web browsing Video streaming Gaming

Figure 2.14: The processor incurs a burstier discharge current than other components.

models (solid line) to capture the battery’s temperature-dependency. Table 2.1

summarizes these regression models and the corresponding model validation errors.

In summary, during the over-night charging process, BPM first estimates the

parameters at each SoC, and then, using the temperature-dependency model, it

estimates the parameters at different battery temperatures to construct a set of

lookup table for battery parameters at different SoC and temperature levels.8

2.4.3 Regulating Battery Voltage During Discharging

BPM uses the above-constructed battery profile to mitigate unexpected shutoffs of

mobile devices and extend their operation, by (i) regulating the discharge current

based on real-time battery impedance through adjusting the maximum processor

frequency, and (ii) restoring the battery voltage to a safe level by resting the battery

before performing the next operation. BPM employs the processor frequency and

scheduling as control knobs for regulating the device’s discharge current because the

processor dominates the dynamics thereof, as we explain below.

Modeling a Device’s Discharge Current. Processor, network and display

modules are the dominant energy consumers in a mobile device [124, 126]. Fig. 2.14

plots the discharge current required to run these modules on a Nexus 5X, collected

with PowerTutor [126] during web browsing, video streaming, and 3D gaming.

8The lookup table on Nexus 5X contains the battery parameters from -20°C to 40°C battery
temperature with a 0.4°C interval equal to the temperature sensor precision, and from 0% to 100%
SoC with a 2% interval. The space overhead is only 0.03MB or 0.0015% of total memory.

28

0 0.4 0.8 1.2 1.6

Proc. Freq. (GHz)

0

0.5

1

P
ro

c
.

I b
(A

)

(a) Processor

0 100 200 300

Brightness

0

0.5

1

D
is

p
la

y
 I

b
(A

)

(b) Display

0 50

Packet/sec

0

0.5

1

N
e

tw
o

rk
 I

b
(A

)

Wifi
Cellular

(c) Network

Figure 2.15: Component-specific discharge currents.

0 20 40 60 80

Time (min)

0

1

2

P
ro

c
.
F

re
q
.
(G

H
z
)

0

1

2

D
C

h
g
 C

u
rr

e
n
t
(A

)

Processor Frequency Discharge Current

Figure 2.16: Processor frequency variations during the phone’s real-life usage.

Whereas the currents drawn by the display and network modules are relatively

stable, the processor’s current draw varies greatly, implying that the processor

dominates the dynamics of the device’s discharge current. We further examined the

discharge current of each module with different configurations. Specifically, Fig. 2.15

plots the collected processor discharge current at different frequencies (Fig. 2.15a);

the display’s discharge current at different levels of brightness (Fig. 2.15b); and

the network module’s discharge current at different packet transmission rates

(Fig. 2.15c), showing that the processor discharge current is much more sensitive to

its configuration (i.e., frequency) than those of the display and network modules. To

further examine whether such dynamic processor frequencies exist in practice, we

plotted the processor frequency and discharge current in Fig. 2.16 during the phone’s

real-life usage, confirming the dynamics of processor frequency and the thus-caused

dynamics of discharge current.

Inspired by the above mentioned empirical observations, we abstracted the

discharge current of mobile devices with two components: a stable background

29

current Ibg and dynamic current Idyn. The background current Ibg is contributed

by components other than the processor and the idle processor leakage, and the

dynamic current Idyn is drawn by the active processor performing the computation.

Thus, the discharge current during the busy period Ibusyb and the idle period I idleb can

be captured using

Ibusyb = Idyn + Ibg and I idleb = Ibg. (2.10)

Furthermore, the dynamic current Idyn is usually described by the dynamic power

model [121,126]:

Idyn = V 2
p · fp · α, (2.11)

where Vp and fp are the processor voltage and frequency,9 and α is a scaling factor

that can be empirically identified based on the relationship between discharge current

and processor frequency (e.g., as shown in Fig. 2.15a) [90,124]. Through this, we can

obtain the average discharge current using the processor utilization Up:

Ib = Idyn(Up) + Ibg. (2.12)

Controlling Maximum Processor Frequency. BPM regulates the processor

frequency to control the dynamic discharge current, without incurring noticeable

impact on user experience (e.g., dimming of the screen in battery saver mode).

BPM checks the constructed battery profile with the current SoC/temperature every

control period to determine the maximum allowed discharge current (i.e., the cutoff

current Icutoff), and then determines the maximum feasible processor frequency

based on Icutoff .

The cutoff current is determined using Eq. (2.4) to maintain the battery voltage

9On commodity mobile devices, the processor voltage Vp is set based on a given frequency fp in
a pre-defined DVFS table, i.e., there is a one-to-one mapping between voltage and frequency.

30

above V cutff
b ; that is,

Vb(t) = OCV − (R0 +R1)Ib +R1C1
dVb(t)

dt
≥ V cutff

b . (2.13)

To meet the constraint, in the extreme case of τ→0 (e.g., in the low SoC levels as in

Fig. 2.12(d)), we obtain

Ib ≤
OCV − V cutff

b

R0 +R1

= Icutoff . (2.14)

Note that both R0 and R1 depend on battery SoC and temperature, making Icutoff

SoC/temperature-dependent. In every control period, BPM first identifies the dynamic

and background current (i.e., Idyn and Ibg): Idyn is determined based on the current

processor frequency using Eq. (2.11), and then, by sampling the processor utilization

Up and discharge current Ib, BPM estimates Ibg based on {Ib, Idyn, Up} using Eq. (2.12).

BPM then identifies the maximum processor frequency that regulates the discharge

current below Icutoff , by plugging the thus-obtained Ibg and Up into Eq. (2.12). This

way, BPM allows the processor to run at the maximum available frequency when the

battery voltage is high, and adaptively reduces the maximum processor frequency to

the required degree when the battery is low. Additionally, BPM is compatible with

existing low-power DVFS schemes because it only limits the maximum processor

frequency, within which the processor frequency can still be dynamically adapted to

the workload.

Moreover, BPM must determine its control period. Inspired by the fact that the

battery voltage changes gradually with the time-constant τ=R1·C1 in Eq. (2.8), we

used the time-constant for the current SoC level as the control period.

Resting the Battery to Restore Voltage. On top of regulating the OS-layer

processor frequency, BPM further captures application-level task executions and

schedules a rest period between consecutive executions to restore the battery

31

1 3.493869 1

1 3.473228 1

3.412991 1 3.4 3.425

3.410922 1 3.4 3.425

3.408959 1 3.4 3.425

3.407096 1 3.4 3.425

3.405329 1 3.4 3.425

3.403653 1 3.4 3.425

3.402062 0.1 3.4 3.425

3.413192 0.1 3.4 3.425

3.42375 1 3.4 3.425

3.42113 1 3.4 3.425

3.418643 1 3.4 3.425

3.416284 1 3.4 3.425

3.414046 1 3.4 3.425

300

Vb
safe

3.3

3.4

0 100 200 300

V
b
(V

)

Time (ms)

Texec Trest

Vb Vb
cutoff Vb

safe

Task Task
3.3

3.4

0 100 200 300
V

b
(V

)

Time (ms)

Vb Vb
cutoff

Task Task

Texec Texec

(a) w/o resting

1 3.493869 1

1 3.473228 1

3.412991 1 3.4 3.425

3.410922 1 3.4 3.425

3.408959 1 3.4 3.425

3.407096 1 3.4 3.425

3.405329 1 3.4 3.425

3.403653 1 3.4 3.425

3.402062 0.1 3.4 3.425

3.413192 0.1 3.4 3.425

3.42375 1 3.4 3.425

3.42113 1 3.4 3.425

3.418643 1 3.4 3.425

3.416284 1 3.4 3.425

3.414046 1 3.4 3.425

300

Vb
safe

3.3

3.4

0 100 200 300

V
b
(V

)

Time (ms)

Texec Trest

Vb Vb
cutoff Vb

safe

Task Task
3.3

3.4

0 100 200 300
V

b
(V

)
Time (ms)

Vb Vb
cutoff

Task Task

Texec Texec

(b) w/ resting

Figure 2.17: Battery voltage with and without inserting rest periods between task
executions.

voltage. Specifically, BPM schedules an idling thread with the highest priority, which

is triggered upon the completion of every task to insert a rest period. Fig. 2.17

compares the battery voltage with and without rest periods inserted between

task executions. While both cases have the same average discharge current, (i) a

continuous workload without resting reduces the battery voltage below the operable

level (see Fig. 2.17a), and (ii) by efficiently inserting rest periods (see Fig. 2.17b),

the battery voltage is restored during rest periods and thus stays above the operable

level.

To efficiently schedule battery resting, we need to determine when and for how

long to insert such rest periods. According to Eqs. (2.4) and (2.10), we obtain two

voltage levels: (i) when the processor is busy and drawing Ibusyb , the stable-state

battery voltage is

V busy
b = OCV − (R0 +R1) · (Idynb + I idleb), (2.15)

and (ii) when the processor is idle, the battery voltage recovers to

V idle
b = OCV − (R0 +R1) · I idleb . (2.16)

Clearly, no rest time distribution is required if V busy
b ≥ V cutoff

b . Let Texec be a

32

 Application Layer Tasks

 OS Layer Task Execution

Each
Control
Period

Monitor
Battery

Monitor
System

Lookup Battery
Parameters

Max
Frequency

Resting
Period

Cutoff Current

Estimate DChg
Currents

B
P

M
’s

 B
a
tt

e
ry

-

A
w

a
re

 D
is

c
h
a
rg

in
g

Figure 2.18: Control flow of BPM’s battery-aware discharging management.

task’s execution time.10 BPM first identifies the safe voltage Vsafe that allows the task

execution without dropping the voltage below V cutoff
b , as illustrated in Fig. 2.17,

Vb(Texec) = (Vsafe − V busy
b) · e

−Texec
R1·C1 + V busy

b = V cutff
b . (2.17)

Then, we can find the rest period that can recover the battery voltage to Vsafe:

Vb(Trest) = (V cutff
b − V idle

b) · e
−Trest
R1·C1 + V idle

b = V safe
b . (2.18)

In this manner, BPM determines the rest period Trest based on Texec, and

inserts it before executing the next task. Taking the task of user touch

interaction as an example — including initiating user input and the corresponding

processing/communication — BPM inserts the rest period between UI tasks by

calculating the rest period using Eq. (2.18). It then inserts such a rest period

by scheduling an idling thread before executing each task. With a 108ms median

execution time of UI tasks (as we will see in Sec. 2.6.3), the rest period calculated by

Eq. (2.18) ranges from 4.7 to 15.8ms depending on the battery impedance.

Summary. Fig. 2.18 illustrates the control flow of BPM’s battery-aware discharging.

10The execution time of each task can be acquired from app log.

33

BPM collects the battery information at the beginning of each control period, identifies

the cutoff current based on this information, and regulates the processor frequency in

the OS layer accordingly. Furthermore, BPM encapsulates an app task by appending

a rest period before the task, before passing the encapsulated task to the OS layer

for execution.

2.5 BPM Implementation

We implemented the BPM middleware as a user-level background service on an

unmodified Android kernel, which automatically starts upon the device being turned

on. We summarize a few implementation details as follows. Specifically, BPM:

� monitors and records battery voltage, current, SoC, and temperature from

voltage now, current now, capacity, located at /sys/class/power supply/bms/;

� generates charging pulses by disabling/enabling the charging flag charging enable,

located at /sys/class/power supply/battery/;

� limits the maximum CPU frequency at /sys/devices/system/ cpu/cpufreq/scaling max freq;

and

� inserts a rest period by scheduling an idling thread with the highest priority, using

the priority-based scheduling policy sched setscheduler(SCHED FIFO).

In addition, BPM stores the constructed battery profiles as a set of lookup

tables. Our implementation/evaluation showed that the battery-aware discharging

management incurs a runtime overhead per core of only 0.16% on average.

2.6 Evaluation

We evaluated BPM on mobile devices with various battery cycles: two Nexus 5X

at the 143rd and 263rd cycle, respectively; one Nexus 6P at the 414th cycle; and one

34

Pixel at the 15th cycle. All these batteries were within the typical warranty (e.g., 500

cycles) and replacement period (e.g., 2–3 years). The obtained results are highlighted

as follows.

� With BPM, the devices shut off when showing an SoC close-to-0%, validating BPM’s

effectiveness at preventing unexpected device shutoffs (§2.6.2).

� BPM facilitates devices extracting more of their battery capacities, thereby achieving

extended device operation, especially for devices powered by aged batteries (§2.6.3).

� BPM’s advantage is more pronounced at low temperatures or on aged devices (§2.6.4).

2.6.1 Methodology

To evaluate BPM in various real-life scenarios, we emulated realistic user activities

using representative mobile apps. Specifically, we considered three typical mobile

apps:

� UI Exerciser (UI): generating a sequence of events emulating user operations,

such as touch events and app launching [8];

� YouTube video streaming (Video): playing a video using YouTube;

� 3D gaming (Game): playing a 3D game called FarmVille, which has 10M+

downloads.

Fig. 2.19 shows the overview and setup of our experiments using a thermal

chamber. We emulated the user workload using UI/App Exerciser [8] and logged

the app performance and system/battery information, to compare the battery

operation and system/app performance with and without BPM. Without BPM, the

phone’s default battery saver mode is used when the battery is low, in which case

(i) the interactive DVFS lowers the processor frequency to the minimum level and

only raises it in response to user activities [102]; and (ii) the location service and

35

User

Workload

Generator

System/

Battery Log

100%→Shutoff

with vs. w/o BPM

Thermal Chamber

Target Smartphones

Performance

Log
App

BPM

OS

(a) Overview

App

Workload

Generator

Battery Log

!

100%→Shutoff

with vs. w/o BPM

Thermal Chamber

Target Smartphones

System/App

Performance

Log

(b) Setup

Figure 2.19: Experimental setup.

background sync are disabled, and the phone waits until the user activates an app

(e.g., email or news) to refresh its content. Unless otherwise specified, we ran a full

discharging cycle from 100% SoC to device shutoff while executing one of the above

apps at a constant ambient temperature.

2.6.2 Preventing Unexpected Device Shutoffs

We first validated BPM’s effectiveness at preventing unexpected device shutoffs.

Specifically, we repeated the experiments in Fig. 2.6; that is running UI exerciser

on a Nexus 5X in a cold ambient temperature, with and without BPM. Again, this

cold ambient temperature was to facilitate triggering unexpected shutoffs without

BPM enabled. Fig. 2.20 plots the (a) discharge current, (b) battery impedance, (c)

voltage drop across battery impedance, (d) battery voltage supplied to the phone, (e)

battery SoC, and (f) discharged capacity during a full discharge cycle, from which

two observations were obtained.

First, without BPM, the discharge current fluctuated significantly due to OS-level

power management, because the processor frequency increased as the workload rose

without awareness of battery impedances. The peak current at approximately 61min

caused an excessive voltage drop across the battery impedance, reducing the battery

voltage to below the cutoff level and thus shutting off the phone when the battery

had an SoC of 23%.

Second, BPM adaptively regulated the discharge current based on the increasing

36

0 20 40 60 80

Time (min)

0

1

2

I b
 (

A
)

w/o BPM

w. BPM

(a) Discharge Current

0 20 40 60 80

Time (min)

0

0.2

0.4

0.6

R
b
 (

)

w/o BPM

w. BPM

(b) Battery Impedance

0 20 40 60 80

Time (min)

0

0.5

1

I b
R

b
 (

V
)

w/o BPM

w. BPM

(c) Voltage Drop

0 20 40 60 80

Time (min)

3

3.5

4

V
o
lt
.
(V

)

w/o BPM

w. BPM

(d) Battery Voltage

0 20 40 60 80
Time (min)

0

50

100

S
oC

(%
)

w/o BPM
w. BPM

(e) Battery SoC

0 20 40 60 80

Time (min)

0

0.5

1

E
x
tr

a
c
te

d
 C

a
p
.
(A

h
)

w/o BPM
w. BPM

(f) Extracted Capacity

Figure 2.20: Operating a Nexus 5X (143rd cycle) until it shuts off, with and without
BPM.

impedance of the battery (caused by a cold temperature), thereby mitigating the

sudden and significant voltage drops. Specifically, with BPM, the device:

� shut off when the battery SoC reduced steadily to 0%, thereby preventing the

unexpected shutoff;

� extracted nearly 730mAh more capacity from the battery to support its operation,

a 730/1897 = 38.4% improvement over the case of without BPM;

� operated 79min before it shut off; that is, 79/61≈1.3× of that without BPM.

To further corroborate BPM’s effectiveness for different phones, we repeated

similar experiments with a Google Pixel with a battery at the 15th cycle, a (second)

Nexus 5X with a battery at the 263th cycle, and a Nexus 6P with a battery at the

37

0 10 20 30 40 50
0

1

2

I b (
A

)

0 10 20 30 40 50
0

0.2

0.4

R
b (

)

0 10 20 30 40 50
0

0.5

I b
 R

b (
V

)

0 10 20 30 40 50

Time(min)

3
3.5

4

V
ol

t.
(V

)

0 10 20 30 40 50

Time(min)

0

50

100

S
oC

(%
)

0 10 20 30 40 50

Time(min)

0

0.5

1

C
ap

. (
A

h)

w/o BPM
with BPM

(a) Pixel (15th Cycle)

0 10 20 30 40 50 60
0

1

2

I b (
A

)

0 10 20 30 40 50 60
0

0.2

0.4

R
b (

)

0 10 20 30 40 50 60
0

0.5

I b
 R

b (
V

)

0 10 20 30 40 50 60

Time(min)

3
3.5

4

V
ol

t.
(V

)

0 10 20 30 40 50 60

Time(min)

0

50

100

S
oC

(%
)

0 10 20 30 40 50 60

Time(min)

0

0.5

1

C
ap

. (
A

h)

w/o BPM
with BPM

(b) Nexus 5X (263rd Cycle)

0 10 20 30 40
0

1

2

I b (
A

)

0 10 20 30 40
0

0.2

0.4

R
b (

)

0 10 20 30 40
0

0.5

I b
 R

b (
V

)

0 10 20 30 40

Time(min)

3

3.5

4

V
ol

t.
(V

)

0 10 20 30 40

Time(min)

0

50

100

S
oC

(%
)

0 10 20 30 40

Time(min)

0

0.5

1

C
ap

. (
A

h) w/o BPM
with BPM

(c) Nexus 6P (414th Cycle)

Figure 2.21: BPM prevents unexpected device shutoffs and extends device operation,
especially for aged devices.

38

0 0.5 1 1.5 2
Discharge Current (A)

0

0.5

1

C
D

F w/o BPM 25oC

w. BPM 25oC

w/o BPM -5oC

w. BPM -5oC

(a) Discharge Current

0 0.5 1 1.5 2 2.5
Processor Frequency (GHz)

0

0.5

1

C
D

F w/o BPM 25oC

w. BPM 25oC

w/o BPM -5oC

w. BPM -5oC

(b) Processor Frequency

0 50 100 150 200 250
Operation Time(min)

0

0.5

1

C
D

F w/o BPM 25oC

w. BPM 25oC

w/o BPM -5oC

w. BPM -5oC

(c) Operation Time

Figure 2.22: BPM (a) reduces the peak discharge current by (b) limiting the processor
frequency, thus (c) achieving extended device operation.

414th cycle. Fig. 2.21 summarizes the discharging processes, showing that BPM (i)

prevented unexpected shutoffs, as demonstrated by device shutoffs when the SoC

reduced steadily to approximately 0%, and (ii) extended the device operation from

43 to 50min for the Google Pixel, 33 to 54min for the Nexus 5X, and 17 to 34min

for the Nexus 6P. This meant an increase up to 2.03× in device operation time,

especially for those powered by aged batteries (e.g., the Nexus 6P).

2.6.3 Performance–Operation Time Tradeoff

BPM achieves the above mentioned reliable and extended device operation by

limiting the processor frequency (and thus the discharge current) trading the device’s

computation power with its operation time. To examine this tradeoff closely, we

repeated the full discharging cycle experiment 10 times on the Nexus5X running UI

exerciser (in Fig. 2.20) with 25oC and a −5oC ambient temperatures, respectively.

Fig. 2.22 plots the cumulative distribution functions (CDFs) of the discharge current,

processor frequency, and operation time during/of these experiments. BPM reduced the

39

140 150 160

Operation Time (min)

0.64

0.66

0.68

0.7

A
v
g

.
D

C
h

g
 C

u
rr

e
n

t
(A

)

w/o BPM
w. BPM

(a) Current vs. Operation Time

120 140 160 180

Operation Time (min)

1.1

1.15

1.2

1.25

1.3

A
v
g

.
P

ro
c
.

F
re

q
.

(G
H

z
)

w/o BPM
w. BPM

(b) Freq. vs. Operation Time

Figure 2.23: Performance and operation time tradeoff.

peak discharge current (Fig. 2.22a) by limiting the processor frequency (Fig. 2.22b),

thereby extending the device operation by up to 30 min and 17 min on average

(Fig. 2.22c). In particular, BPM reduced the unpredictability of operation time by

decreasing its variation by 19.8%, as well as extended the minimum operation time

by 19 min. BPM achieved this at the cost of reducing the average process frequency

by only 1.1% (Fig. 2.22b), whereas iOS was shown to reduce the processor frequency

by 9.1% on average [6].

Fig. 2.23a plots BPM’s tradeoff between the average discharge current and

operation time, and then compares it with the case without BPM. Note that

multiplying the average discharge current (y-axis) with the operation time (x-axis)

obtains the extracted capacity. This way, the markers toward the top-right corner of

the figure — the results with BPM do — indicate greater effectiveness in extracting

battery power to operate the device. Fig. 2.23b plots a (similar) tradeoff between the

average processor frequency and operation time, where the markers at the top-right

corner again with BPM indicate a greater overall computation ability of the device

before shutoff.

We further investigated whether this tradeoff causes noticeable degradation

in user-perceived app performance. To examine its impact on application-level

performance, we used response latency to quantify the user experience when running

the UI exerciser (i.e., the latency for the phone to respond to user actions, such as

40

0

500

1000

La
te

nc
y

(m
s)

w/o BPM 25oC w. BPM 25oC w/o BPM -5oC w. BPM -5oC

0

100

200

O
pe

r.
 T

im
e

(m
in

)

0

20

40

T
ot

. E
ve

nt
s

(x
10

3)

50th

95th

Figure 2.24: UI latency/operation time/total events.

0

20

40

F
P

S

0

200

400

O
p

e
r.

 T
im

e
 (

m
in

)

0

200

400

600

T
o

t.
 F

ra
m

e
s
 (

x
1

03
)

Figure 2.25: Video FPS/operation time/total frames.

0

20

40

60

F
P

S

0

100

200

300

O
p

e
r.

 T
im

e
 (

m
in

)

0

500

1000

T
o

t.
 F

ra
m

e
s
 (

x
1

03
)

Figure 2.26: Game FPS/operation time/total frames.

touching the screen), and used frames per second (FPS) as the metric to evaluate

user experience during video streaming and gaming. We repeated full discharging

cycles 10 times while running each app at ambient temperatures of 25oC and −5oC,

respectively.

Fig. 2.24 compares the {50th, 95th}-percentiles of the response latency, operation

time, and total number of processed UI events, when running the UI/App exerciser

on a fully charged Nexus 5X until it shut off. BPM increased the median latency from

108ms to 119ms at the 25oC and from 77ms to 104ms at the −5oC because of a

lower processor frequency, but such an increase is only equal to approximately 11ms

and 27ms per action, which are still below the average response time that human can

perceive [98]. Moreover, BPM, by increasing the operation time by 1.15× at 25oC and

2.2× at the −5oC, enabled the device to perform 1.07× and 1.49× more user actions

before the device shut off. For video streaming in Fig. 2.25, BPM slightly reduced the

41

25
o
C 15

o
C 10

o
C 5

o
C 0

o
C

Temperature

0

200

400

600

800

A
v
g
.
D

C
h
g
 C

u
rr

e
n
t
(m

A
)

w/o BPM w. BPM

(a) Discharge Current

25
o
C 15

o
C 10

o
C 5

o
C 0

o
C

Temperature

0

50

100

150

200

O
p
e
ra

ti
o
n
 T

im
e
 (

m
in

)

w/o BPM w. BPM

(b) Operation Time

Figure 2.27: Average discharge current and operation time with different
temperatures.

FPS by 0.94× at 25oC and 0.98× at −5oC, but the device was able to stream 1.23×

and 1.71× longer. As a result, the phone processed 64.3K and 86.2K more frames

with BPM before it shut off, which are 1.16× and 1.68× more than DVFS. Similar

observations were made with the gaming app shown in Fig. 2.26. Note that BPM’s

improvements to the operation time and total computation ability at 25oC — an ideal

temperature for battery operation — were not as significant as those at −5oC, i.e.,

{1.15×, 1.23×, 1.27×} v.s. {2.2×, 1.71×, 1.74×} in terms of improving the phone’s

operation time, as shown in Figs. 2.24–2.26. This is because the phone’s performance

at 25oC was already close to optimal, and hence little space for further improvement

existed, even without BPM.

2.6.4 BPM with Different Temperature and Battery Cycles

To obtain a clearer view on the performance of BPM in different runtime thermal

scenarios, we ran the UI exerciser as the workload on a Nexus5X until it shut off, in

different ambient temperatures ranging from room temperature (25oC) to freezing

temperature (0oC). Fig. 2.27 summarizes the discharge current and operation time,

averaged over 10 experimental runs and shows BPM to have extended the device

operation by (154 − 135)/135 = 14.1% in an ambient temperature of 0oC compared

with the case without BPM. Furthermore, the discharge current increased gradually

as the temperature falls. This is because the battery’s internal impedance increases

42

50th Cycle 300th Cycle
Battery Cycle

0

1

2

3

E
xt

ra
ct

ed
 C

ap
ac

ity
 (

A
H

)

w/o BPM w. BPM

(a) Discharge Current

50th Cycle 300th Cycle
Battery Cycle

0

100

200

O
pe

ra
tio

n
T

im
e

(m
in

)

w/o BPM w. BPM

(b) Operation Time

Figure 2.28: Extracted capacity and operation time with batteries of different ages.

as temperature fell, which, in turn, reduced the battery’s output voltage (i.e.,

Vb=OCV−I·Rb). As a result, a larger discharge current was required to supply

the same power (i.e., Pb=Vb·Ib). Without BPM, the unregulated discharge current

shortened the operation time, especially in cold ambient temperatures; the operation

time at freezing temperature was shortened by (159 − 135)/159 = 15.1% compared

with that at room temperature. By contrast, BPM’s adaptive regulation of discharge

current mitigated the shortening of operation time in the cold temperature; the

operation time was reduced from 163min to 154min — only 6.1% — when the

ambient temperature fell from 25oC to 0oC.

Last but not least, we compared BPM’s effects on a Nexus 5X while powering the

phone with two batteries of different ages (i.e., at the 50th and 300th discharging

cycles, respectively) at room temperature (25oC). Fig. 2.28 plots the experiment

results, demonstrating BPM’s magnified advantages with aged batteries/devices — a

42.8% increased capacity delivery and a 26 min longer operation time for the battery

at the 300th cycle.

2.7 Related Work

Battery Management of Mobile Devices. Sudden voltage drops and a

crowd-sourced approach to the analysis of fading battery capacity have been

43

presented in [35, 65–67]. Inaccurate SoC estimation due to battery temperature was

addressed in [62], aiming to provide accurate SoC or full charge capacity monitoring.

He et al. designed a method to estimate batteries state-of-health (SoH) using only

the battery voltage [60]. These approaches, however, only passively monitor or

estimate the battery status, and are not able to proactively operate mobile devices

based on the thus-obtained awareness of batteries.

Power Management of Mobile Devices. At the other end of the spectrum,

extensive research has been conducted to analyze the sources of energy consumption

focusing on system [74, 126], application/network module [124], and user contexts

[50,89], to prolong the operation of mobile devices. These analyses have led to various

proposals for reducing the energy consumption in systems [40,113], apps [24,122] and

networks [101,128]. However, these solutions do not consider batteries, and thus miss

a crucial dimension for improving the device operation.

Battery-Aware Power Management. Among the limited explorations that

have considered battery dynamics in power management, Benini et al. explored

hardware-level power management policies in digital audio recorder system [19].

Another study proposed software approaches using task sequencing and DVFS [104]

to optimize the operation time based on an offline battery model. Furthermore,

a pulsed discharge pattern for communications in wireless sensor networks was

proposed for enhancing the delivered battery capacity [32]. B-MODS [63] used

battery-aware intermittent discharge patterns to exploit the battery relaxation effect

for mobile data services. Unlike these approaches, BPM investigates the unexpected

shutoffs of mobile devices by identifying the causes and designing/implementing

mitigations.

44

2.8 Conclusion

We have presented BPM, a novel battery-aware power management middleware for

mobile devices, to mitigate the unexpected device shutoffs frequently experienced by

users. The design of BPM was steered by the causes of unexpected device shutoffs

that we empirically identified/verified; that is, the dynamic voltage drop across

the internal impedance of device batteries. Specifically, BPM regulates such voltage

drops by (i) capturing the dynamically-changing battery impedance during device

charging, and (ii) adaptively regulating the device’s runtime discharge current. We

have implemented and evaluated BPM on four commodity smartphones, demonstrating

that it prevents unexpected device shutoffs and extends device operation by up to

2.03×.

45

CHAPTER III

eTEC: Efficient Thermoelectric Cooling

3.1 Introduction

Mobile devices such as smartphones, tablets, and laptops have become a

primary computing/communication platform because of their portability and high

computational power. In turn, their processor chips must cope with dangerously

high temperatures with a limited cooling capability [110]. Because using a fan or

heat sink is not a viable solution, mobile devices rely on thermal throttling, such as

voltage/frequency scaling. When a given temperature threshold is reached, mobile

devices are cooled by reducing the processor speed; thus, applications on those

devices experience significant lagging. In particular, interactive mobile applications

that require real-time responsiveness suffer significant degradation in performance.

Motivation. Thermoelectric coolers (TECs) are compact and controllable cooling

devices that actively extract heat by flowing a cooling current via the Peltier

effect [106]. A recent study suggested that thin-film TECs can meet the cooling

demand of modern microprocessors [36]. Because TECs can be built at a micro scale

(13mm3 footprint), they can be embedded into mobile devices, whereas conventional

cooling hardware cannot fit the device form factor. Furthermore, unlike cooling

fans, solid-state TECs are reliable and noise-free, making them an attractive cooling

solution for mobile devices.

46

Existing proposals for TECs focus on high-power desktop/server processors,

optimizing static TEC cooling power in conjunction with fan cooling [45, 85].

However, low-power mobile processors dissipate substantially less heat than in

previous analyses [46, 69], rendering TECs a feasible cooling solution without fans.

Moreover, unlike server systems, mobile devices exhibit large variations not only

in operating ambient temperature but also application workloads in response to

sporadic user activities [103]. This chapter focuses on dynamic control of a TEC

adaptive to various runtime thermal scenarios in mobile devices.

We present an efficient TEC (eTEC) solution embedded into mobile devices on the

chip surface, which enables efficient processor thermal management. Our goal was to

minimize performance degradation caused by thermal throttling through efficiently

using the TEC. Our solution controls the TEC cooling power adaptively to the

runtime workloads and ambient temperature.

To address this challenge, we first needed to model the thermal characteristics

of the TEC and processor chip. Using the system thermal model, we then needed

to determine the optimal cooling current and perform adaptive cooling control by

tracking runtime workloads and ambient temperature. Chip temperature forms a

convex function of the cooling current and processor speed, facilitating mathematical

optimization for determining the optimal cooling current. At runtime, we read

thermal sensors to learn a processor activity factor and adaptively controlled the

cooling power.

We evaluated the effectiveness of the TEC cooling solution on a smartphone using

representative mobile benchmarks [5]. When running compute-intensive workloads

without the TEC, the processor speed was lowered to the minimum level, resulting

in significant lagging. Using the TEC, the processor speed could be maintained

close to the maximum speed; it only reduced by 1.8% on average compared with

19.2% without the TEC. Our TEC solution achieves the maximum performance at a

47

cost of 0.2W cooling power consumption through adaptively controlling the TEC.

Furthermore, we performed thermal simulations to complement the experimental

evaluation for extreme ambient temperatures by emulating the TEC with thermal

parameters identified from the experiments. The results revealed that significant

performance degradation under adverse ambient temperatures can be mitigated using

the TEC, but at the cost of higher cooling power consumption.

Contribution. The main contributions of eTEC are as follows:

� Feasibility test of thermoelectric cooling for mobile devices;

� Dynamic cooling control that is adaptive to runtime workloads and ambient

temperatures; and

� Demonstration and an in-depth evaluation on a smartphone.

3.2 Related Work

To cope with increasing chip temperatures, new cooling techniques have received

significant attention in recent years. Chowdhury et al. [36] demonstrated that modern

thin-film TECs can meet the cooling requirement of on-chip hotspots. Chaparro et

al. aimed to enhance existing dynamic thermal management using a TEC [29]. Long

et al. [85] optimized the deployment of TEC devices and the static cooling current.

Dousti et al. [45,46] optimized the cooling power of a fan cooler and TEC to minimize

power consumption. A recent study [69] investigate energy harvesting and cooling

with fan cooler on a fully instrumented TEC cooling system.

Unlike existing solutions, we aimed to adaptively control the TEC not only

for runtime workloads but also for the surrounding ambient temperature, which is

significant for mobile devices. Where previous studies have focused on desktop/server

processors [45, 85] rated over 80W with fan coolers [46, 69], we propose the use of

48

40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90

T
em

p
er

a
tu

re
 (

C
) Nexus5 Nexus5X Nexus6P Tmax

0
0.5

1
1.5

2
2.5

0 10 20 30 40 50 60 70 80 90

F
re

q
u

en
cy

 (
G

H
z)

Time (s)

Figure 3.1: Chip temperature and frequency traces from Nexus 5/5X/6P while
running Mibench benchmark.

TECs for mobile devices rated at most a power consumption of 3W, which can be

efficiently cooled with low cooling power consumption.

3.3 Motivation

Modern mobile devices are powered by state-of-the-art multi-core chips, yet

they cannot leverage their computing power because of limited cooling capabilities

without fans or heat sinks. Our measurements for Nexus 5/5X/6P smartphones in

Fig. 3.1 show that a CPU-intensive benchmark application [57] quickly raised the chip

temperature beyond the specified temperature threshold within 20s, throttling the

processor frequency thereafter. The processor frequency was reduced to 56/35/68%

of the maximum speed on average; thus, applications on the devices suffer large

performance degradation. This calls for a new portable cooling technology for mobile

devices.

TECs can be used for mobile devices because of their scalable size and solid-state

property. While a TEC can instantly extract heat from the cold side to the hot

side, consuming active cooling power, the cooling effect is limited when the heat

accumulates at the hot side. However, mobile devices only demand cooling power for

49

Heat Absorb

Heat Dissipate

TEC current

TEC

Chip Packaging

Heat Spreader

Surrounding Ambient

Figure 3.2: TEC device and chip packaging with embedded TEC.

short bursts of user activities and are idle most of the time, and thus, the heat

does not continuously accumulate on the hot side. Moreover, mobile processors

are designed with orders of magnitude smaller thermal design power (TDP) [110]

than desktops/server processors to operate without a fan or heat sink; therefore, the

hot-side temperature does not increase much. The instantaneous cooling of TEC

devices can efficiently cool their processor in response to sporadic workloads, and

it must be dynamically controlled according to the runtime workloads to minimize

cooling power consumption.

3.4 System Thermal Model

Fig. 3.2 illustrates a TEC device that can be embedded on top of the chip

packaging. We consider a processor chip tiled with TEC modules extracting heat

to the external ambient temperature. In this chapter, ambient temperature is the

average temperature surrounding the chip packaging affected by heat dissipation

from other components, such as the battery, display, and communication modules.

This section describes how to model the TEC cooling capacity, processor power

consumption, and system-level thermal behavior.

3.4.1 TEC Cooling Model

A TEC is a solid-state device made of arrays of N- and P-type semiconductor

pellets. When an electric current flows through the thermoelectric material, heat is

50

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

C
o

o
li

n
g

 C
a

p
a

ci
ty

 (
W

)

Cooling Current (A)

∆T = 5 ∆T = 10 ∆T = 15

(a) Net Cooling Capacity

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

C
o

o
li

n
g
 E

ff
ic

ie
n

cy
 (

ra
ti

o
)

Cooling Current (A)

∆T = 5 ∆T = 10 ∆T = 15

(b) Cooling efficiency

Figure 3.3: (a) Net cooling capacity and (b) cooling efficiency of a TEC depending
on the temperature difference between two sides.

absorbed from the cold side and dissipated to the hot side via the Peltier effect [106].

This thermoelectric heat pump can be controlled by the current. The amount of

cooling effect on the cold side and heat dissipation on the hot side can be modeled as

follows [85]:

Pc = −STcITEC +
1

2
I2

TECrTEC Ph = SThITEC +
1

2
I2

TECrTEC (3.1)

where S is the Seebeck coefficient, ITEC is the cooling current, Tc and Th are the

temperatures on the cold and hot sides, and rTEC is the electrical resistance generating

heat on both sides. The cooling power consumption is computed as follows [85]:

PTEC = Ph − Pc = I2
TECrTEC + S(Th − Tc)ITEC. (3.2)

While active TEC cooling extracts heat from the cold side to the hot side, heat

dissipates from the hot side to the cold side through heat conduction, thereby limiting

the TEC cooling capacity, which is described as follows:

Pnet = −STchipITEC +
1

2
I2

TECrTEC +
Th − Tc
RTEC

(3.3)

Fig. 3.3 shows the cooling capacity and efficiency of a TEC for various TEC

currents. As the temperature difference (∆T) increases, more heat is conducted to

51

the cold side, limiting the net cooling capacity. Because the TEC power consumption

quadratically increases with the cooling current, the cooling efficiency (Pnet

PTEC
) is higher

with a smaller cooling current. Compared with high-power desktop/server chips,

low-power mobile chips demand a small cooling current, where cooling efficiency of

the TEC is maximized.

3.4.2 Processor Power Model

Processor heat dissipation can be modeled using dynamic and leakage power

consumption [112]. The dynamic power consumed when executing workloads depends

on the processor voltage/frequency and activity caused by workloads. Leakage power

is statically consumed even when the processor is idle. Leakage power increases with

temperature, which can be approximated using a linear model [25]. The processor

power consumption is equal to:

Pchip = Pdyn + Pleak = CV 2fα + V (β1Tchip + β0) (3.4)

where C is the constant load capacitance, V, f are processor voltage/frequency, α

is the processor activity factor caused by workloads, Tchip is the average chip die

temperature and β1, β0 are leakage parameters. The leakage parameters, β1, β0, are

platform-dependent constants depending on the technology that can be characterized

at design time. By contrast, the activity factor α is a runtime parameter capturing

the real-time CPU workloads that must be characterized at runtime.

3.4.3 System Thermal Model

Because the TEC cooling capacity and efficiency greatly depend on the

temperature difference between the hot and cold sides of the TEC, as shown in

Fig. 3.3, a system thermal model is required to efficiently control the TEC. By

52

Figure 3.4: Thermal circuit model of the TEC system.

Tchip, Tamb Chip and surrounding ambient temperatures
Pchip, Pc, Ph Chip heat dissipation, TEC heat pump
RTEC, Ramb Thermal resistances between chip-TEC, TEC-ambient

combining TEC and processor models, Fig. 3.4 presents an RC thermal circuit model

that corresponds to the chip packaging with the TEC in Fig. 3.2. The TEC extracts

heat from the cold side on the chip surface (Pc) to the hot side (Ph), which eventually

dissipates into the ambient temperature. In the steady-state, chip temperature can

be written as

Tchip = Tamb +Ramb · Ph + (RTEC +Ramb)(Pchip − Pc) (3.5)

Where thermal resistances and the TEC thermal constants can be determined at

the design time through system identification [112], the changing ambient temperature

Tamb must be captured at runtime.

3.5 Processor Thermal Management

Our focus in this chapter is on minimizing performance loss caused by thermal

throttling through efficiently controlling the TEC cooling power. We first identified

the model parameters required to optimize the TEC cooling current. Then,

we dynamically controlled the cooling power according to runtime ambient and

workloads.

53

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5

T
em

p
er

a
tu

re
 (

C
)

Operating Frequency(GHz)

Chip Temperature

Processor Model

(a) Varied processor frequency

40

42

44

46

48

50

0 0.2 0.4 0.6 0.8 1

T
em

p
er

a
tu

re
 (

C
)

Cooling Current (A)

Chip Temperature

TEC model

(b) Varied cooling current

Figure 3.5: Thermal model identification with various (a) processor frequencies and
(b) TEC currents.

3.5.1 Thermal Model Identification

To optimize the TEC, we first needed to identify the thermal model parameters

of the target platform. By leveraging the thermal sensors available on most mobile

devices [110], we could perform system thermal identification to learn the thermal

model parameters. We ran mobile benchmark workloads [57] for a sufficient length of

time and measured the steady-state chip temperature while the ambient temperature

remained constant. The steady-state temperature measurement was repeated for

the various processor frequency and TEC cooling currents. Fig. 3.5 illustrates the

system thermal identification using various processor frequencies and cooling currents.

Through plugging the measured chip temperature, processor frequency, and TEC

cooling current into Eq. (3.5), we were able to identify the thermal constants and

TEC parameters. Sec. ?? provides details on the experimental setups.

Fig. 3.5a presents the measured chip temperature and identified thermal model at

different processor frequencies without TEC cooling. The chip temperature increases

with processor frequency following the dynamic power model in Eq. (3.4). The

measured chip temperature (plotted as square) accurately fits in the processor thermal

model (plotted as dashed line) using the identified thermal parameters. Fig. 3.5b

plots the steady-state chip temperature at the different TEC cooling currents while

the processor is idle. The chip temperature cools with increasing cooling currents, but

54

Joule heat dissipation grows quadratically, thereby limiting the net cooling capacity

according to Eq. (3.3). The TEC thermal parameters can be identified from these

measurements, and the chip temperature (plotted as square) can be approximated

well using the TEC thermal model (plotted using dashed line).

The leakage parameters were also identified by placing the device under the

various ambient temperatures while the processor was idle. The measured leakage

power could be approximated well using a linear fitting from 45 °C to 85 °C of

on-chip temperature. Table. 3.1 summarizes the identified power and thermal model

parameters.

Table 3.1: Identified leakage and thermal parameters.

Leakage Power Thermal Resistance TEC parameters
β1 β0 RTEC Ramb S rTEC

0.016 0.035 3.4W/K 17.4 W/K 0.022 V/K 0.5 Ω

3.5.2 TEC Optimization

For a given processor activity and ambient temperature, we could use the proposed

thermal model to find the optimal cooling current. Our goal was to minimize thermal

throttling while meeting the chip temperature and power constraints, which can be

formulated as follows:

Given runtime processor activity factor α and ambient temperature Tamb,

Find the maximum allowed operating frequency f and the corresponding TEC

cooling current ITEC that meet the power and thermal constraints Pmax, Tmax.

max
ITEC

f (3.6)

s.t Tchip ≤ Tmax (3.7)

Ptotal ≤ Pmax (3.8)

55

Cooling current I (A)Frequency (Ghz)

20
2.5

40

60

1
T

em
p

er
a
tu

re
(C
°
)

80

100

0.40.5 0.2
0 0

Figure 3.6: Convexity of chip temperatures for the various processor frequencies and
TEC cooling currents.

Eq. (3.6) defines our objective to find the maximum allowed processor frequency

subject to power and thermal constraints. Since interactive mobile applications

are usually latency-sensitive, their performance is directly impacted by processor

speed. We aimed to find the maximum allowed processor speed for the real-time

responsiveness of mobile applications.

Eqs. (3.7) and (3.8) specify the thermal and power constraints of the platform.

To guarantee maximum temperature for long-running workloads, the steady-state

temperature must be lower than the temperature threshold. Furthermore, the total

power consumption of the chip and cooling device must be lower than the power

constraint.

Eq. (3.5) describes the steady-state chip temperature as a convex function of the

processor frequency f and cooling current I. Fig. 3.6 illustrates the chip temperature

for different processor frequencies and cooling currents using the identified model

parameters. Because of the optimization problem’s convexity, it can be efficiently

solved using an interior point method with a complexity of O(n3.5) for a typical

case [72]. To avoid runtime overheads, we optimized the TEC in terms of design

time for a range of chip and ambient temperatures, and online thermal control use it

56

Processor Activity

TEC Optimization 𝑰𝑻𝑬𝑪, 𝒇𝒎𝒂𝒙

Thermal Model Identification

Thermal Model

Dynamic TEC

Control

Thermal Sensor

Measurements

𝑻𝒄𝒉𝒊𝒑, 𝑻𝐚𝐦𝐛

Figure 3.7: Workflow diagram of dynamic TEC control.

through table lookup.

3.5.3 Dynamic TEC Control

In mobile systems, not only runtime workloads but also ambient temperatures

dynamically change over time. Therefore, for efficient thermoelectric cooling, the

cooling power must be adapted to the runtime CPU load and operating ambient

temperature. Modern mobile devices are equipped with on and off-chip thermal

sensors that can be used to learn the runtime chip and surrounding ambient

temperatures.

Fig. 3.7 shows how we learned runtime CPU workload and operating ambient

using thermal sensor measurements. We measured both the on and off-chip thermal

sensors (Tchip, Tamb) and plugged into Eq. (3.5) to calculate the processor power (Pchip).

From the processor power model in Eq. (3.4), we could learn the processor activity

factor (α) caused by the application workloads running on the processor. Using the

thus-obtained runtime thermal parameters (α, Tamb), we could optimize the TEC

cooling current and processor frequency (ITEC, f) to meet the thermal and power

constraints.

This dynamic thermal management was periodically invoked to adapt to various

runtime thermal scenarios. The period must be short enough to quickly react to

application workloads that may overheat the chip. The chip temperature does not

increase instantly because of the thermal time constant, and it required several

seconds to reach the threshold, as shown in Fig. 3.1. Thus, the invocation period

57

could be orders of seconds such that the runtime overhead is low.

While our goal was to maximize performance, the CPU frequency could be lowered

to save power when the CPU load was low. To allow the DVFS governor to save power,

we only set the maximum allowed frequency corresponding to the TEC cooling. Thus,

the underlying DVFS governor could adjust the frequency depending on the runtime

workload within the allowed range through TEC cooling.

3.6 Evaluation

We have experimented with our TEC solution on a smartphone, as well as

performed extensive simulations by emulating the TEC. Thermal simulations

complemented the experiments allowing us to examine the extreme ambient and

various workloads.

Experimental Setup. Our experiment was on a Nexus 5 powered by a quad-core

Snapdragon 800 processor, which supports chip-wide DVFS with a maximum

frequency of 2.26GHz. The device is equipped with on and off-chip thermal

sensors with 1 °C precision. We used the on-chip thermal sensors to obtain the

average chip die temperature, whereas we used the off-chip thermal sensors for

the surrounding ambient temperature. For the TEC, we used CP60133 [7] with

silver-based thermal paste (Arctic Silver 5) rated with a maximum cooling capacity

of 12.2W at a maximum cooling current of 6.0A. The TEC was powered by HP

6632A programmable power supply. Fig. 3.8 demonstrates our experimental setup

and overview. Because the processor chip faced the front panel, we placed the

TEC on the chip surface and reinstalled it to the original configuration. Thus, the

hot side of the TEC was faced the heat spreader on the front panel, and the back

cover was also reinstalled in the experiment. We used the performance governor

for DVFS and default thermal governor in Android kernel such that frequency was

only reduced when a specified temperature threshold is reached. As representative

58

TEC Power Supply

TEC on Chip Surface

Heat Spreader

(a) Setup

TEC Emulator

TEC

optimization

fopt

ITEC

Pchip Tchip

fopt

Tamb

Mobile
Benchmarks

Thermal Model Identification

(b) Overview

Figure 3.8: Experiment and simulation setup.

mobile workloads, we used Antutu benchmark suite v6.2 [5], which comprises

3D graphics and games as well as multi-thread CPU operations. We also tested

Mibench benchmarks [57] with three different categories (computational, network,

and communication) representing typical operations in mobile systems.

In addition, we performed simulations by emulating the TEC to examine

the proposed solution for various workloads under different operating ambient

temperatures. As shown in Fig. 3.8, we obtained power and temperature traces

from the devices while running mobile applications, and emulated the TEC using

thermal parameters identified from the experiments. The simulation was performed

in MATLAB similar to the HotSpot thermal simulator [45].

Throughout the evaluation, we compared the proposed solution with the baseline

system without the TEC. We evaluated the temperature control, CPU performance,

and power consumption of the TEC.

Experimental Results. In the experiments, we focused on dynamic thermal control

and performance gain using the TEC. We ran Antutu benchmark suite [5], which ran

3D graphics, 3D gaming and CPU-intensive workloads for 3 minutes. Fig. 3.9 shows

the real-time traces of the chip temperature, processor frequency and TEC power

consumption. While processing 3D graphics, the baseline without the TEC quickly

reached the temperature threshold and throttled the processor frequency from 30s to

75s. The processor frequency was largely reduced to the minimum level, 0.3GHz,

where graphics were significantly lagging. The overall processor frequency when

59

60

70

80

90

100

0 30 60 90 120 150 180

T
em

p
er

a
tu

re

(C
)

Time (s)

TEC without TEC Tmax

3D Game3D Graphics CPU

0
0.5

1
1.5

2
2.5

0 30 60 90 120 150 180
F

re
q

u
en

cy

(G
H

z)
Time(s)

0

0.2

0.4

0 30 60 90 120 150 180T
E

C
 P

o
w

er

(W
)

Time(s)

Figure 3.9: Temperature, frequency, and cooling current traces from the experiment
running the Antutu mobile benchmark.

running the benchmark suite was 1.87GHz, which translated to a 19.2% performance

loss with respect to the maximum processor speed.

The proposed TEC solution could maintain the processor temperature lower than

the temperature threshold while maintaining the processor frequency close to its

maximum level. In particular, the large performance loss from 30s to 75s could

be mitigated using the TEC. The minimum processor frequency was 1.6GHz using

the TEC compared with 0.3GHz without the TEC; thus, the TEC resulted in a

more reliable latency for user applications. When the processor heat dissipation still

exceeded the cooling capacity, the processor frequency was briefly lowered at around

150s. The average processor frequency was 2.22GHz, which translated to only a 1.8%

performance loss, an improvement of 18.9% over baseline without the TEC. Our

TEC solution also reduced thermal violation to 1.1% from 3.3% without the TEC.

It did so with dynamic TEC control consuming an average cooling power of 0.21W,

which is comparable to a Wifi module’s power consumption [44]. Without dynamic

cooling control, the TEC must maintain the worst-case cooling power of 0.39W for

peak workloads, consuming 86% more cooling power. The results demonstrated the

60

0

0.5

1

1.5

2

2.5

3

a
n

tu
tu

b
itcn

ts

d
ijk

stra

fft

p
a
tricia

a
v

era
g
e

F
re

q
u

en
cy

 (
G

H
z)

Without TEC With TEC

𝒇𝒎𝒂𝒙

(a) Processor Frequency

0.21
0.36

0.23
0.29 0.19 0.26

0

1

2

3

4

5

6

a
n

tu
tu

b
itcn

ts

d
ijk

stra

fft

p
a
tricia

a
v

era
g
e

P
o
w

er
 (

W
)

System Power Cooling Power

(b) Power Consumption

Figure 3.10: (a) Processor frequency and (b) power consumption with and without
the TEC for benchmark applications.

feasibility of the TEC for mobile devices and efficient dynamic cooling control.

Simulation Results. In the simulations, we focused on a trade-off between

performance versus cooling power consumption across different benchmarks and

ambient temperatures. Fig. 3.10 shows the processor frequency and total power

consumption under room temperature with and without the TEC; the TEC cooling

power consumption is presented on the top of the bar. Using the TEC, all the

applications could run close to the maximum processor frequency of 2.24GHz on

average, which translated to a performance loss of 0.7%. The average cooling power

consumption was 0.26W, which corresponded to a system power consumption of

6%. The performance improvement was especially significant for compute-intensive

workloads because they suffer a larger performance degradation from thermal

throttling; for example, 23.9% for bitcnts compared with 7.5% for patricia. As a

consequence, compute-intensive bitcnts demanded more cooling power at 0.36W

compared with 0.19W for patricia. Thus, the TEC system enables peak performance

operations in mobile platforms, which is limited by cooling capacity; however, this

peak performance comes at the cost of TEC power consumption.

In addition, we simulated different ambient temperatures for running Antutu

benchmarks in Fig. 3.11. At the high ambient temperature, the baseline without the

TEC suffered a large performance loss from thermal throttling. Without the TEC,

61

0

0.5

1

1.5

2

2.5

3

25 30 40 50

F
re

q
u

en
cy

 (
G

H
z)

Ambient Temperature (C)

Without TEC With TEC

𝒇𝒎𝒂𝒙

(a) Processor Frequency

0.21 0.25 0.32 0.41

0

1

2

3

4

5

6

25 30 40 50

P
o

w
er

 (
W

)

Ambient Temperature (C)

System Power Cooling Power

(b) Power Consumption

Figure 3.11: (a) Processor frequency and (b) power consumption with and without
the TEC for different ambient temperature.

the average frequency in case of 40°C (50 °C) ambient temperature was reduced to

1.42GHz (1.09GHz), which translated to a 37.1% (51.7%) performance loss. Using

the TEC, the average frequency could be maintained to 1.84GHz (1.63GHz), which

translated to an 18.5% (27.8%) performance loss for 40°C (50 °C). However, the

cooling power consumption also increased with a higher ambient temperature of

0.41W for 50 °C. The results showed that the performance degradation under the high

ambient temperature could be largely be mitigated, which is especially significant for

mobile devices that experience large variations in operating ambient temperature.

3.7 Conclusion

In this chapter, we presented a thermoelectric cooling solution for mobile

devices. In particular, dynamic TEC control was proposed for the efficient

thermal management of processors in mobile devices. Because mobile systems

face large variations in runtime workloads and ambient temperatures, our solution

adaptively controls TECs using online information. Our evaluation on a smartphone

demonstrated the solution’s effectiveness at maintaining peak performance, which

is especially critical for interactive mobile apps. Our experimentation with realistic

mobile workloads showed a performance loss of only 1.8% with a TEC compared

62

with a 19.2% loss without a TEC at a cost of 0.2W cooling power consumption.

63

CHAPTER IV

RT-TRM: Real-time Thermal-Aware Resource Management

4.1 Introduction

Thermal-aware resource management has become critical for modern embedded

real-time systems, such as automotive controls and smartphones, as they are

increasingly realized on powerful computing platforms with exponentially increasing

power densities. High on-chip temperatures shorten a platform’s lifetime and

severely degrade its performance and reliability, risking safety (e.g., vehicle breaks or

smartphone explosions). Therefore, the processor temperature must be maintained

below the peak temperature constraints while all application timing constraints are

satisfied.

There are two key thermal issues to consider for embedded real-time systems: (1)

dynamically varying ambient temperature and (2) task-level power dissipation. Our

experimental evaluations have shown that the ambient temperature of an automotive

electronic module varies highly and dynamically even during a single driving event,

and furthermore, its seasonal temperature varies widely up to a difference of 28°C.

Moreover, according to our evaluation of various automotive benchmark applications,

the average power consumed by each application differs by up to 140% (to be detailed

in §4.3).

Motivation. These dynamic thermal features pose significant challenges to meeting

64

application timing constraints. In particular, the maximum available computation

power varies with the ambient temperature, because the temperature of a processor

depends on its ambient. According to our experimental evaluation (§4.3), an increase

of 14.9°C in ambient temperature results in a maximum reduction of 28.8% in the

processor’s computation power. In such a case, the processor’s thermal constraint

may be violated if it executes a task whose average power dissipation exceeds a

certain limit. One may reduce the processor temperature by idling or slowing it,

but such an action may also lead to task/job deadline miss(es), thus violating the

app timing constraint. This calls for adaptive resource management that considers

dynamically varying ambient temperatures and task-level power dissipation to meet

both the processor’s thermal and app’s timing constraints.

A significant amount of work has been conducted on real-time thermal-aware

scheduling (see [76] for a survey). Existing approaches have usually employed

DVFS scheduling [31, 51], idle-time scheduling [77], or task scheduling [26] to

minimize the peak temperature while guaranteeing the timing constraint. Worst-case

temperature analyses [78, 109] have also been proposed for offline guarantees to

meet thermal constraints. The concept of thermal utilization [12] was introduced to

capture the thermal impact of periodic real-time tasks on processors. Most of these

existing solutions, however, assume either fixed ambient temperature or constant,

task-independent power dissipation. Although there exist real-time feedback thermal

controllers that minimize the error between the current processor temperature and

the desired temperature by regulating task utilization [54] or frequency [55], they are

limited to guaranteeing thermal constraints due to temperature overshooting.

In this chapter, we propose a new real-time thermal-aware resource management

framework, called RT-TRM, which captures not only varying computation power

bounds caused by variations in ambient temperature but also different power

demands by different tasks. RT-TRM adaptively makes a parameter assignment

65

(voltage/frequency levels and a task period assignment) and builds a schedule

(processor idling or task-execution as well as the priority ordering of tasks) to meet

both thermal and timing constraints.

We first proposed a task-level dynamic power model that uses a simple task-level

parameter called the activity factor, to capture different power dissipations by

different tasks. Building on this dynamic power model, we studied the effect of

task-execution or processor-idling on the processor temperature. Our model was also

validated experimentally with several automotive benchmarks running in various

realistic environments. Second, we proposed the notions of dynamic power demand

of a task set and dynamic power bound at a given ambient temperature and derive

the feasibility conditions for a parameter assignment with respect to both thermal

and timing constraints. We then developed a runtime adaptive strategy that can

preserve feasibility under ambient temperature variations by adjusting the parameter

assignment. Third, building on a feasible parameter assignment, we developed

an online scheduling policy that determines not only the processor state (active

or idle) but also the order of executing tasks in the active state. Our scheduling

algorithm could reclaim slack (spare capacity) at runtime and allocate it to tasks

in proportion to their power demands by considering the fact that a task with

higher power dissipation should be assigned more idle time. This way, we could

meet both thermal and timing constraints with much fewer preemptions. Finally,

we implemented RT-TRM on an automotive microcontroller to demonstrate its

effectiveness for dealing with ambient temperature variations. RT-TRM was shown

to improve resource utilization by 18.2% over the existing runtime feedback thermal

controllers while guaranteeing both thermal and timing constraints.

Contribution. This chapter makes the following main contributions:

� Demonstration of the importance of accounting for dynamic ambient

temperature and task-level power dissipation for thermal-aware resource

66

management (§4.3);

� Development of a dynamic power model that captures different power

dissipations with a simple task-level parameter called the activity factor and

its experimental validation (§4.4);

� Development of an adaptive parameter-assignment framework under varying

ambient temperature while preserving feasibility (§4.5); and

� Development of an online idle-time scheduling algorithm that enables dynamic

idle-time allocation with much fewer preemptions while guaranteeing both

thermal and timing constraints (§4.6);

� Implementation and evaluation of the effectiveness of RT-TRM on an

automotive microcontroller (§4.7).

4.2 Related Work

Significant work has been conducted on thermal management at both hardware

(e.g., architecture design and floorplans) and OS level (e.g., thermal-aware DVFS

and scheduling) [76]. The focus of this chapter is on OS-level thermal-aware resource

management for hard real-time systems, such as cars.

Thermal-aware real-time scheduling has been an active subject of research that

attempts to meet timing and thermal constraints in a constant environment. DVFS

scheduling determines the voltage and frequency of a processor to minimize the

power consumption [15, 129] and peak temperature subject to timing constraints on

single-core [30, 31, 119] or multi-core platforms [51]. Multi-core task scheduling [26]

determines task-to-core assignment and scheduling to minimize the peak temperature.

Thermal shaping inserts idle periods during task execution to reduce the temperature

without missing deadlines [18,77].

67

Researchers have focused on different task-level power dissipations to reduce

the peak temperature [13, 70] or maximize throughput [68, 127] by interleaving the

execution of hot and cold tasks. By analyzing such task-level power variations, the

peak temperature was derived to meet the thermal constraint [78]. The concept of

thermal utilization was introduced in [11,12] to capture the different thermal impacts

of real-time tasks. Several researchers have considered adaptive thermal-aware

resource management for real-time tasks to cope with dynamic environments;

feedback controllers regulate the processor temperature by adjusting processor

utilization [54,87] or operating frequency [55] subject to the timing constraint.

Although researchers have developed task-level scheduling and processor-level

thermal control techniques to deal with both thermal and timing requirements, they

have not yet addressed both large environmental variations and peak temperatures

caused by task workloads together. To meet this need, we first verified the significance

of these factors in automotive systems, and then developed and validated a task-level

thermal model that could capture individual tasks’ different power dissipations.

Building upon the task-level thermal model, we proposed a new thermal-aware

resource management scheme that (i) jointly adapts task periods and processor

frequency in response to the varying ambient temperature and (ii) schedules tasks to

meet both thermal and timing constraints.

4.3 Target System, Challenges, and Solution Overview

This section describes our target system (§4.3.1) and introduces the challenges

faced therein (§4.3.2) followed by an overview of our approach (§4.3.3).

4.3.1 Target System

We consider an embedded real-time system running a set of real-time tasks on a

computing platform.

68

Processor and Task Model. Our target system is a uniprocessor platform

that provides DVFS with a separate set of discrete frequency/voltage levels. If

an operating frequency f is adjustable within the specified range of [fmin, fmax],

its corresponding voltage V is determined according to a typical implementation

principle [52]. Furthermore, we consider a task set τ composed of implicit-deadline

periodic tasks. Each task τi ∈ τ is characterized by period pi and its worst-case

execution time (WCET) ei(f) as a function of operating frequency f . We assume that

pi is adjustable within [pmini , pmaxi] based on typical application elasticity [39, 111].

Note that, for a task whose period is fixed, we set its period range as pmini = pi = pmaxi .

Such τi is assumed to generate a sequence of jobs, once every pi time-units, with

each job needing to complete ei(f) within a relative deadline of pi time-units.

Power and Thermal Model. We consider dynamic power management where the

processor is in either idle or active state. The processor is said to be active if it

is currently executing a job, or idle otherwise. Its power dissipation (Pproc) is then

expressed as Pproc = Pleak+Pdyn, where Pleak is the leakage power for the processor to

stay ready (in active or idle state) for the execution of jobs, and Pdyn is the additional

dynamic power to execute a job (in active state). The term Pleak is modeled as [83]:

Pleak = V · (β1 ·T +β0), where β1 and β0 are processor-dependent constants, and T is

the processor’s temperature. Note that Pdyn depends on the task currently running

on the processor, and its detailed model is described in §4.4.1.

To translate the processor’s power dissipation to its temperature, we use a

well-known thermal circuit model [20]. If the average processor power and ambient

temperature is Pproc(t) and Tamb(t), respectively, over a time period t, then the

processor temperature T (t) at the end of this period is

T (t) = T (0) · e−
t

R·C + (Tamb(t) + Pproc(t) ·R) · (1− e−
t

R·C), (4.1)

69

where R and C are the thermal resistance and capacitance, respectively, and T (0) is

the initial temperature of the processor. Eq. (4.1) shows that the temperature will

increase/decrease towards and eventually reach Tamb(t) + Pproc(t) · R. We define the

steady temperature T (∞) of the processor as

T (∞) = Tamb(t) + Pproc(t) ·R. (4.2)

4.3.2 Problem Statement and Motivation

Problem Definition. We want to address the following real-time thermal-aware

resource management problem.

Definition 4.1. Given a task set τ running on a uniprocessor, determine (i) the

voltage/frequency (V /f) level, (ii) the period {pi} of task τi ∈ τ parameters, and

(iii) the schedule of jobs such that (a) temperature T (t) never exceeds the peak

temperature Tmax (thermal constraint), and (b) all jobs of τi ∈ τ meet their deadlines

for all possible legitimate job arrival sequences (timing constraint).

To generate a job schedule, we need to determine not only the processor

state (active or idle) but also the order of executing jobs in active state. From

real embedded systems (e.g., cars and smartphones), we found two key thermal

characteristics: (1) dynamic changes in the ambient temperature and (2) different

power dissipations by different tasks. These are the primary motivation behind

RT-TRM.

Dynamic Changes on Ambient Temperature. Unlike desktops or data-centers,

embedded real-time systems experience a wide range of environmental variations

(especially in ambient temperature) during their operation/life. To confirm this,

we measured the ambient temperature of a vehicle infotainment module embedded in

the dashboard over days and months, and the results are plotted in Fig. 4.1. When

the car was driven for several days, the change in the ambient temperature was highly

70

0

500

1000

1500

2000

2500

0

5

10

15

20

25

30

Feb/19 Feb/20 Feb/21

P
o
w

er
 (

m
W

)

T
em

p
.

(C
)

Time (Days)

Ambient Temperature

P
o

w
er

 (
m

W
)

Ambient Temperature

0

500

1000

1500

2000

2500

0
5

10
15
20
25
30
35
40

J
a

n

F
eb

M
a
r

A
p

r

M
a
y

J
u

n

J
u

l

A
u

g

S
ep

O
ct

N
o

v

D
ec

P
o

w
er

 (
m

W
)

T
em

p
.

(C
)

Time (Months)

Maximum Computation Power

Figure 4.1: Ambient temperature variations over time and the corresponding available
computation power.

dynamic and fluctuated between 0°C and 23°C. During a single driving event on Feb.

21, 2018 the ambient temperature increased by up to 180%. The seasonal variation in

the ambient temperature is also very wide. A similar phenomenon was also reported

in [71] for car engine and transmission control units.

Under such a varying ambient temperature, real-time thermal-aware resource

management becomes much more challenging as the processor’s temperature is

affected by the ambient temperature. We can use Eq. (4.2) to calculate the

maximum processor’s power dissipation without exceeding Tmax for a given ambient

temperature Tamb as Tmax−Tamb
R

. The change in the maximum processor computation

power under a varying ambient temperature is then plotted in Fig. 4.1 (the gray

line).1 For example, on Feb. 21, 2018 as the ambient temperature increased by

14.9°C from 8.3°C, the available processor computation power decreased by 28.8%.

Task-level Power Dissipations. We also measured the processor’s average power

consumption to run various automotive benchmarks [57]. The results are plotted

in Fig. 4.2, where each app is shown to consume a different amount of power. For

example, a table lookup task consumes 1726mW, whereas a bit manipulation task

consumes 2348mW at the maximum processor frequency.2

1We set Tmax = 60°C and R = 22°C/W based on the specification of an automotive
microcontroller [53].

2A table lookup operation is used by an engine control module to find an output value

71

y = 0.435x + 611.23

626.5

627

627.5

628

628.5

629

35 36 37 38 39 40 41

Idle Power

0

500

1000

1500

2000

2500

Angle-Time

Conversion

Bit

Manipulate

Table

Lookup

Edge

Detection

FFT PID

P
o

w
er

(m

W
)

Automotive Benchmarks

Figure 4.2: Average power consumptions for various automotive applications.

In summary, the available processor’s computation power varies with the ambient

temperature. In addition, the execution of each task imposes a different power

demand on the processor. Therefore, to meet both thermal and timing requirements,

we must consider different task-level power dissipations and make adaptive parameter

assignments and job schedules according to the varying ambient temperature.

4.3.3 Overview of the Proposed Approach

To solve the real-time thermal-aware resource management problem while

considering the varying ambient temperature and diverse task-level power

dissipations, we address the following questions:

Q1. How to model power dissipations of different tasks and analyze the impact of

their execution on the thermal behavior?

Q2. How to make adaptive parameter assignments under dynamically changing

ambient temperatures while meeting both thermal and timing constraints?

Q3. How to derive a job schedule meeting both thermal and timing constraints based

on parameter assignment?

corresponding to an input value (e.g., the ignition angle). A bit-manipulation operation is used
by a display module where the pixels are moved into a display buffer until the entire buffer is
displayed.

72

To answer Q1, we develop a task-level dynamic power model using a

simple task-level parameter called the activity factor. Based on this task-level

dynamic power model, we analyze the effect of task execution on the processor’s

temperature; that is, whether it increases or decreases the processor’s temperature.

Moreover, we empirically determine the activity factors for several automotive

apps and verify our model in various environments, specifically, under different

processor-frequency/task-utilization settings, varying ambient temperatures, and

executing multiple tasks (§4.4).

To address Q2, we define a dynamic power demand of a task set τ that represents

the total dynamic power demand by τ at the processor’s steady temperature. We

also define a dynamic power bound function of Tamb that represents the processor’s

maximum dynamic power Pdyn at Tamb without violating the thermal constraint.

Based on these concepts, we derive the feasibility conditions of a task set and

formulate an optimization problem that finds a feasible parameter assignment

for a given Tamb. We also develop a runtime adaptive strategy that can preserve

feasibility by adapting the parameter assignment to ambient temperature changes.

We determine a tolerable ambient temperature range for parameter adaptation by

considering the trade-off between adaptation overhead and resource efficiency. With

our adaptive parameter assignment, the steady temperature is guaranteed not to

exceed the peak temperature limit without missing any deadlines in the presence of

ambient temperature variations (§4.5).

To answer Q3, building on the feasible parameter assignment derived by answering

Q2, we develop an online scheduling policy. A task schedule may affect the transient

temperature, potentially violating the thermal constraint before reaching the steady

temperature. To avoid this, we calculate the minimum idle-time required for the

execution of each job with respect to the thermal constraint. We then develop an

idle-time scheduling algorithm that can reclaim unused resources at runtime and

73

utilize them to allocate idle-time efficiently while meeting all deadlines with the

minimum idle-time for each task. As a result, our algorithm can guarantee both

thermal and timing constraints with much fewer preemptions (§4.6).

4.4 Task-Level Power Model

We present a task-level power-consumption model that captures different dynamic

power dissipations by individual tasks. In particular, we use a simple task-level

activity factor to capture each task’s dynamic power dissipation (§4.4.1) and

empirically validate the model using an automotive platform and workloads (§4.4.2).

4.4.1 Task-Level Dynamic Power Model

For automotive workloads, power dissipation is found to vary significantly with

the executing task (Fig. 4.2). Since individual tasks programmed with distinct sets of

instructions generate different switching activities and dynamic power dissipations,

we used a task-level activity factor αi to capture such different dynamic power Pi

consumed by each task τi as Pi = V 2 · f · αi. Using this task-level dynamic power

model, we can analyze how the processor’s temperature changes with the execution

of each job/task. Let T (t) (Ti(t+ ei(f))) be the temperature at the beginning (end)

of the execution of a job of τi. Using Eqs. (4.1) and (4.2), Ti(t+ ei(f)) can be written

as:

Ti(t+ ei(f)) = T (t) · e−
ei(f)

R·C + T∞i (Tamb) · (1− e−
ei(f)

R·C), (4.3)

where T∞i (Tamb) is the steady temperature associated with the execution of τi that

would be reached if the processor executes τi continuously. T∞i (Tamb) can be expressed

as:

T∞i (Tamb) = Tamb + (Pi + Pleak) ·R. (4.4)

74

We observe from Eqs. (4.3) and (4.4) that (i) if T (t) < T∞i (Tamb) then the temperature

increases towards T∞i (Tamb), and (ii) if T (t) ≥ T∞i (Tamb) then the temperature

decreases towards T∞i (Tamb). A task τi is said to be hot if T∞i (Tamb) > Tmax, or

cold otherwise. Depending on Tamb, τi can become hot or cold.

To consider the effect of idling the processor on its temperature, we let T0(t + l)

denote the temperature at the end of an idle period of length l. Similar to Eq. (4.3),

T0(t+ l) can be written as:

T0(t+ l) = T (t) · e−
l

R·C + T∞0 (Tamb) · (1− e−
l

R·C), (4.5)

where T∞0 (Tamb) = Tamb + Pleak · R is the processor’s steady temperature in an idle

state.

Thus far, we have discussed the thermal effect of continuously executing (idling)

a single job (a processor). Now, let us consider the impact of a schedule of periodic

tasks and idle-times. Let T (t,W (t)) denote the temperature at the end of a schedule

W (t) = {wi(t)}, where wi(t) is the total workload scheduled in (0, t]. Then, T (t,W (t))

can be written as:

T (t,W (t)) = T (0) · e−
t

R·C

+ (Tamb + (
∑
τi

Pi ·
wi(t)

t
+ Pleak) ·R) · (1− e−

t
R·C), (4.6)

where
∑

τi
Pi · wi(t)t

is the average dynamic power consumed by W (t). Note that every

task τi generates a sequence of jobs executing ei(f) every pi time-units, consuming

an average dynamic power of Pi · ei(f)
pi

. We can then define the steady temperature

T (∞, τ) of a task set τ as:

T (∞, τ) = Tamb + (
∑
τi

Pi ·
ei(f)

pi
+ Pleak) ·R. (4.7)

75

Table 4.1: Identifying activity factors and maximum errors.

Task Angle Bit Table Edge FFT PID
T∞i (°C) 66.1 73.6 59.9 61.6 69.5 67.8

αi 0.355 0.446 0.284 0.304 0.435 0.377

Note that the steady temperature of a task set is independent of its schedule, which

serves as a basis for the feasibility condition presented in §4.5.

Identifying Task-level Activity Factors. To identify the activity factor of each

task, we ran automotive benchmarks, one at a time, with 100% resource utilization

at the maximum frequency under room temperature. We then measured the steady

temperature and determined each task’s activity factor using Eq. (4.4), which are

presented in Table 4.1.3 The activity factor varies greatly with tasks by up to 65%.

For example, a table-lookup task with a large number of conditional switches and

I/O accesses shows a low activity factor, whereas a bit-manipulation task with a high

instruction-per-cycle rate shows a high activity factor.4

4.4.2 Empirical Model Validation

To confirm that the task-level dynamic power model and its thermal effect

represent real hardware behaviors, we measured the steady temperature of the

processor and compared it with our model’s estimation under various settings. In

particular, we validated our model under (i) different processor-frequency/task-utilization

settings, (ii) running multiple tasks together, and (iii) different ambient temperatures.

First, as shown in Fig. 4.3, we varied the task period to achieve the processor

utilization ranging from 10% to 90% with 10% increments as well as the frequency

level from 0.4GHz to 1GHz for each task before measuring the steady-state

temperature.5 Fig. 4.3 plots the measured steady temperature as dotted points while

3The detailed experimental setup will be given in §4.7.
4The activity factor α is normalized by the maximum power, i.e., α = 1 means the maximum

power dissipation.
5See §4.7 for more details of the experimental setup.

76

0 20 40 60 80100

Utilization (%)

40

45

50

55

60

65

70

75

T
em

pe
ra

tu
re

 (
C

)

Angle-Time
Conversion

0 20 40 60 80100

Utilization (%)

40

45

50

55

60

65

70

75

Bit
Manipulation

0 20 40 60 80100

Utilization (%)

40

45

50

55

60

65

70

75

Table Lookup
Interpolation

0 20 40 60 80100

Utilization (%)

40

45

50

55

60

65

70

75

T
em

pe
ra

tu
re

 (
C

)

0.4GHz 0.8GHz 1GHz

0 20 40 60 80100

Utilization (%)

40

45

50

55

60

65

70

75

T
em

pe
ra

tu
re

 (
C

)

PID

0 20 40 60 80100

Utilization (%)

40

45

50

55

60

65

70

75
FFT

0 20 40 60 80 100

Utilization (%)

40

50

60

70

T
em

pe
ra

tu
re

 (
C

)

Angle-Time
Conversion

0 20 40 60 80 100

Utilization (%)

40

50

60

70

Bit
Manipulation

0 20 40 60 80 100

Utilization (%)

40

50

60

70

Table Lookup
Interpolation

0 20 40 60 80 100

Utilization (%)

40

50

60

70

T
em

pe
ra

tu
re

 (
C

)
Edge

Detection

0 20 40 60 80 100

Utilization (%)

40

50

60

70

FFT

0 20 40 60 80 100

Utilization (%)

40

50

60

70

PID

Figure 4.3: Model validation with varying utilizations.

40
100

50

60

80 100

T
em

pe
ra

tu
re

 (
C

)

70

60 80

Bit Manipulation
Utilization (%)

80

60

Angle-Time Conversion
Utilization (%)

40

90

4020 200 0

1GHz

Figure 4.4: Model validation with two periodic tasks (Bit manipulation, Angle-time
Conversion).

the estimations with our model are plotted as lines with an error up to 0.65°C.

Second, as shown in Fig. 4.4, we ran two tasks — bit manipulation and angle-time

conversion — together on a single core at 1GHz by varying their utilizations. The

result shows that the steady temperature of the processor linearly increases with each

task’s utilization (plotted as a linear surface) as formulated in Eq. (4.7). We also

confirmed that the same tendency is observed for different numbers of tasks (i.e., 4

77

and 8 tasks) with an error up to 1.2°C.

Finally, we validated our model for different ambient temperatures from 20°C

to 35°C. For each configuration, we repeated this 10 times with sufficient intervals,

revealing an error of up to 0.98°C.

4.5 Adaptive Parameter Assignment

We now present how to adjust a voltage/frequency level and task period

assignment according to the varying ambient temperature, called the Adaptive

Parameter Assignment Framework (APAF). Specifically, we derive feasibility

conditions for a parameter assignment, formulate a parameter optimization problem,

and introduce a runtime strategy for adapting to varying ambient temperatures.

4.5.1 Parameter Assignment

We first consider the feasible parameter assignment problem for a given ambient

temperature.

Definition 4.2 (Feasible parameter assignment). Given a task set τ and the ambient

temperature Tamb, determine V , f and pi for every τi ∈ τ such that if τ is feasible

(i.e., it meets the thermal and timing constraints), it remains feasible even with the

new parameter assignment.

To solve this problem, we introduce two conditions for a parameter assignment

to be feasible with respect to thermal and timing constraints for a given ambient

temperature, and then formulate an optimization problem to find a feasible parameter

assignment.

Feasibility Condition. Recall that for a given task set τ , the processor temperature

will eventually reach the steady temperature T (∞, τ) of τ (defined in Eq. (4.7))

regardless of its schedule. Therefore, to meet the thermal constraint, the steady

78

temperature T (∞, τ) should be lower than or equal to the peak temperature limit

Tmax,

C1: T (∞, τ) ≤ Tmax. (4.8)

We define a dynamic power demand PD(τ) of τ as the total dynamic power

demand by τ at the steady temperature, which is as follows:

PD(τ) =
∑
τi

Pi ·
ei(f)

pi
= V 2 · f ·

∑
τi

αi ·
ei(f)

pi
. (4.9)

We also define a dynamic power bound PB(Tamb) of Tamb as the processor’s maximum

dynamic power at Tamb without exceeding Tmax. We can derive PB(Tamb) by solving

T (∞, τ) = Tmax:

PB(Tamb) =
Tmax − Tamb

R
− V · (β1 · Tmax + β0). (4.10)

Using these, the feasibility condition C1 with respect to the thermal constraint can

be re-written as

C1: PD(τ) ≤ PB(Tamb). (4.11)

To meet the timing constraint, we use the well-known exact feasibility analysis by

Liu and Layland [82]:

C2:
∑
τi

ei(f)

pi
≤ 1. (4.12)

If a parameter assignment satisfies both C1 and C2, the steady temperature of τ is

guaranteed not to exceed Tmax without missing any task deadline when a task set is

scheduled by an optimal scheduling algorithm. However, as can be seen in Eq. (4.6), a

job schedule may affect a transient temperature T (t,W (t)), potentially violating the

thermal constraint before reaching the steady temperature. To avoid this situation,

we define the minimum idle-time Imini (Tamb) required for the execution of each job

79

without violating the thermal constraint and include the term in C2 (to be detailed

in §4.6). Then, the feasibility condition C2 can be extended to:

C2:
∑
τi

ei(f) + Imini (Tamb)

pi
≤ 1. (4.13)

Thus, if a parameter assignment exists that satisfies both C1 and C2, we can guarantee

that a task set τ is feasible with respect to both thermal and timing constraints.

Parameter Optimization. We formulate the parameter assignment problem as an

optimization problem subject to the feasibility conditions (C1 and C2):

maximize
f,pi

∑
τi

wi ·
1

pi
(4.14)

s.t. C1: PD(τ) = V 2 · f ·
∑
τi

αi ·
ei(f)

pi
≤ PB(Tamb) (4.15)

C2:
∑
τi

ei(f) + Imini (Tamb)

pi
≤ 1 (4.16)

f ∈ [fmin, ..., fmax]. (4.17)

∀τi pmin
i ≤ pi ≤ pmax

i (4.18)

As an optimization goal, a QoS function associated with resource usage can be used

as in [39, 111]. Our objective in Eq. (4.14) is to maximize the weighted sum of each

task-rate 1
pi

.6 Eq. (4.17) specifies the discrete frequency scaling levels available on the

processor. Eq. (4.18) specifies the minimum and maximum bounds of an allowable

task period within [pmin
i , pmax

i]. We use linear programming to determine a task

period assignment for a given voltage/frequency level starting from the maximum

level. If there is no solution, we lower the voltage/frequency level until a feasible

solution is found. The computational complexity is O(m · n3.5) for n tasks and m

frequency scaling levels [88].

6The value of wi can be determined by the importance of each task.

80

4.5.2 Runtime Parameter Adaptation

We propose a runtime parameter adaptation strategy that samples ambient

temperature variations and dynamically adjusts the voltage/frequency level and

period assignment. For this, we need to determine when and how to adjust the

parameter assignment. We set fixed points of the ambient temperature threshold

{TSamb(k)}, which are determined by

TSamb(k + 1) = TSamb(k) + ∆T, (4.19)

where ∆T is a tolerable ambient temperature range.

Our runtime adaptation strategy periodically estimates the ambient temperature

and adjusts the parameter assignment whenever the sampled ambient temperature

is out of range (TSamb(k), TSamb(k + 1)] for any k. The parameter assignment in

each range is determined by solving the optimization problem in Eq. (4.14) with

the ambient temperature of TSamb(k + 1). The challenge is how to choose ∆T and

estimate the ambient temperature.

Determining a Tolerable Ambient Temperature Range. A trade-off exists

between resource utilization and adaptation overhead when choosing ∆T . A smaller

∆T can achieve efficient resource utilization with a prompt response upon small

ambient temperature changes at the expense of a high adaptation overhead. If

the adaptation interval ∆T is too large, coarse-grained parameter adaptation incurs

resource utilization loss.

To determine the optimal value of ∆T , we analyze the ambient temperature trace

in Fig. 4.1a and compare the runtime overhead and resource efficiency depending on

∆T . Fig. 4.5a illustrates how our parameter adaptation responds to the varying

ambient temperature for different values of ∆T . From the trace, we obtain the

adaptation overhead and resource utilization loss for each value of ∆T .

81

0

5

10

15

20

25

30

Feb/19 Feb/20 Feb/21

T
em

p
.

(C
)

Time (Days)

∆T=0 ∆T=1 ∆T=5

(a) Different Adaptation Interval ∆T

0

1

2

3

4

5

0 1 2 3 4 5

U
ti

li
za

ti
o

n
 (

%
)

∆T

Adaptation Overhead
Resource Utilization Loss
Total

(b) Impact of ∆T on Overhead

Figure 4.5: Runtime adaptation with (a) different different adaptation intervals and
(b) the trade-off between adaptation overhead and resource efficiency

Fig. 4.5b illustrates the trade-off between resource efficiency and adaptation

overhead, where the adaptation overhead (dotted line) decreases but the resource

utilization loss (grey line) increases as ∆T increases. The adaptation overhead in our

experimental setup (§4.7) was approximately 27ms. When adapting every sampling

period (∆T = 0), the incurred processor utilization overhead was 2.7%. (Fig. 4.5b).

We set the optimal value of ∆T to the point where the sum of the adaptation overhead

and resource utilization loss (solid line) was minimized, which was ∆T = 1°C.

4.6 Online Idle-time Scheduling

Thus far, we have discussed how to adaptively adjust the processor’s

voltage/frequency and task periods under the varying ambient temperature. We now

consider how to schedule task/job executions and idle-times to meet both thermal and

timing requirements. Specifically, we want to address the following problem, which

we call the schedule-generation problem.

Definition 4.3 (Schedule generation). Given the assignment of V , f , and {pi} (with

APAF), determine a schedule of job executions and idle-times such that the processor

temperature T (t) does not exceed Tmax at any time t while all jobs of all tasks τi ∈ τ

meet their deadlines.

82

To solve this problem, we must consider two key issues: 1) transient temperature

T (t) varies with the task running at any given time, and 2) ambient temperature Tamb

also affects T (t). Suppose that the processor has reached Tmax (i.e., T (t) = Tmax)

and two tasks — a cold task τ1 and a hot task τ2 — are ready to run at time t. If

a cold task τ1 is scheduled, the temperature will decrease because T∞1 (Tamb) ≤ Tmax.

By contrast, if a hot task τ2 starts to run immediately, the temperature will increase

(because T∞2 (Tamb) > Tmax), and the thermal constraint will be violated. To avoid

the processor temperature exceeding Tmax, we must idle the processor to drop its

temperature to a safe temperature before executing τ2. With this safe temperature,

the continued execution of τ2 will not violate the thermal constraint. The main

challenge is then how to derive a safe temperature and schedule idle-times to reach

the temperature before executing each hot task. Note that each task has a different

power dissipation, and thus the safe temperature may vary with tasks. Moreover,

the amount of idle time required to reach a safe temperature varies with the ambient

temperature. Without a proper idle-time scheduling decision, the result may end up

with some undesirable situations, such as those where (a) the temperature exceeds

Tmax and/or (b) a task/job deadline is missed.

To resolve such problems, we develop a thermal-aware online idle-time scheduling

policy that determines idle-times between the execution of tasks to meet both

thermal and timing constraints. We assume that tasks are priority-ordered according

to the earliest deadline first (EDF) policy. We calculate the minimum idle-time

required for the execution of each task to avoid the aforementioned situation (a)

and take the minimum idle-time into account in our adaptive parameter assignment

to avoid situation (b). Our proposed online scheduling algorithm then makes a

trade-off between the total amount of required idle-time and preemption overhead.

In particular, it updates the available slack at runtime and effectively utilizes it to

allocate more idle-time with much fewer preemptions while guaranteeing both thermal

83

and timing constraints.

Calculating the Minimum Idle-Time. Now, we describe the relationship between

the amount of necessary idle-time and the number of preemptions. We first consider

the case of executing a hot task τi for ei(f) units without any preemption. We

define the safe temperature of τi to execute for ei(f) units at Tamb (denoted by

T safei (ei(f), Tamb)) as the initial temperature at which the temperature reaches Tmax

after the execution of ei(f) units. The safe temperature can then be derived by

solving the term T (t) in Eq. (4.3) when Ti(t+ ei(f)) = Tmax:

T safei (ei(f), Tamb) = T∞i (Tamb)−
T∞i (Tamb)− Tmax

e−
ei(f)

R·C

. (4.20)

Similarly, we can calculate the idle-time necessary to reach T safei (ei(f), Tamb)

(denoted by tidle(ei(f), Tamb) by solving the term l in Eq. (4.5) when T0(t + l) =

T safei (ei(f), Tamb) and T (t) = Tmax:

tidle(ei(f), Tamb) = R · C · ln(
Tmax − T∞0 (Tamb)

T safei (ei(f), Tamb)− T∞0 (Tamb)
). (4.21)

Now, let us consider a case where preemption is allowed specifically, each task τi is

split into multiple — mi (mi > 1) — sub-tasks and idle-time is inserted in between.

Likewise, by using Eqs. (4.20) and (4.21), we can calculate the safe temperature and

idle-time required for executing each sub-task for ei(f)
mi

units. Then, the cumulative

idle-time to execute mi sub-tasks at Tamb can be calculated as mi · tidle(ei(f)
mi

, Tamb).

Fig. 4.6 depicts the cumulative idle-time as mi increases. It is important to observe

that the more sub-tasks there are, the less cumulative idle-time is required, as was also

observed in [68]. In Fig. 4.6(a), it can be seen that the amount of required idle-time

also depends on the ambient temperature. As shown in Fig. 4.6(b), each task requires

a different amount of idle-time. Note that cold tasks — such as a table-lookup task

— do not require idle-time. The results shown in Fig. 4.6 imply that the cumulative

84

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10

R
eq

u
ir

ed
 I

d
le

 t
im

e
(m

s)

Number of sub-task mi

Tamb=25

Tamb=30

Tamb=35

R
eq

u
ir

ed
 I

d
le

 t
im

e

(a) Different Ambient Temperature

10
0

500

1000

1500

1 2 3 4 5 6 7 8 9 10

R
eq

u
ir

ed
 I

d
le

 t
im

e
(m

s)

Number of sub-task mi

Angle-Time Conversion

Bit Manipulate

Table Lookup

(b) Different Tasks

Figure 4.6: Cumulative idle-time for (a) different ambient temperature and (b)
different tasks decreases with the number of subtasks mi.

idle-time can be reduced by splitting each task into more sub-tasks with frequent

idling of the processor. However, the benefit of frequent idling becomes saturated as

mi increases, and the preemption overhead can no longer be ignored. Considering this,

we derive the minimum idle-time for a task τi (denoted by Imini (Tamb)) as follows. We

calculate a decreasing amount of cumulative idle-time by taking derivative ∂
∂mi

(mi ·

tidle(
ei(f)
mi

, Tamb)), and find the value of mi (denoted by mmax
i) where the value of the

derivative becomes closest to the preemption cost for switching between active and

idle states. Then, the minimum idle-time of τi can be calculated as follows:

Imini (Tamb) = mmax
i · tidle(

ei(f)

mmax
i

, Tamb). (4.22)

Note that it is sufficient to update the minimum idle-time of each task only when

there exists any parameter change caused by our adaptive parameter assignment.

Guarantee of Thermal and Timing Constraints. For every invocation of a

task τi, if the minimum idle-time is correctly scheduled before the execution of τi is

finished, we can guarantee that the thermal constraint is never violated. The question

then becomes how to guarantee the timing constraint when all tasks are scheduled

together with their minimum idle-time. To address this, we derive a new feasibility

85

condition by incorporating the minimum idle-time for each task. For a task set τ

to be feasible under both thermal and timing constraints, every job of each task τi

should have its minimum idle-time (for at least Imini (Tamb)) and finish its execution

(for at most its WCET ei(f)) before its deadline. Then, a new feasibility condition

can be derived by extending the utilization-based exact feasibility analysis by Liu and

Layland [82]: ∑
τi

ei(f) + Imini (Tamb)

pi
≤ 1. (4.23)

We include the feasibility condition (Eq. (4.23)) in the optimization formulation

for the parameter assignment presented in §4.5.1. This way, RT-TRM can guarantee

both thermal and timing constraints.

Online Idle-time Scheduling. Building upon the parameter assignment obtained

by APAF, if we divide each task τi into mi(I
min
i (Tamb)) sub-tasks and evenly distribute

the idle-time Imini (Tamb) between the execution of each sub-task, we can schedule all

tasks without violating thermal and timing constraints. However, such static idle time

allocation under pessimistic assumptions cannot efficiently utilize all available slack

resources at runtime, which may in turn incur unnecessary preemption overheads.

Therefore, we develop an online idle-time scheduling algorithm that reclaims unused

resources and utilizes them to allocate dynamic idle-time for each task in an efficient

manner. As a result, our algorithm can meet both thermal and timing requirements

with much fewer preemptions.

Described below is our online idle-time scheduling algorithm. The scheduler

is invoked upon the (i) release of a new job (JOB RELEASE), (ii) completion of a

job (JOB COMPLETION), or (iii) update of frequency by APAF (FREQ UPDATE). The

scheduler keeps track of the worst-case remaining execution time, e lefti(f) for

the active job of τi. This is set to ei(f) on JOB RELEASE, decremented as the job

executes, updated according to the frequency change on FREQ UPDATE, and set to 0

upon JOB COMPLETION. Upon each invocation (either JOB RELEASE, JOB COMPLETION,

86

Algorithm IV.1 Slack calculation

1: U =
∑

τi

ei(f)+Imini (Tamb)

pi
2: p = 0
3: for i = n to 1, τi ∈ {τ1, ..., τn|d1(tcur) ≤ · · · ≤ dn(tcur)} do
4: {In reverse EDF order of tasks}
5: U = U − ei(f)+Imini (Tamb)

pi
6: qi = max

(
0, e lefti(f) + Imini (Tamb)− (1− U) · (di(tcur)− d1(tcur))

)
7: U = min

(
1.0, U +

e lefti(f)+Imin
i (Tamb)−qi

di(tcur)−d1(tcur)

)
8: p = p+ qi

9: end for
10: S(tcur, d1(tcur)) = d1(tcur)− tcur − p

or FREQ UPDATE), the scheduler updates the available slack S(tcur, d1(tcur)) for the

interval of [tcur, d1(tcur)), where tcur is the current time instant and d1(tcur) is

the earliest absolute deadline among all released jobs whose deadline is after tcur.

Subsequently, the scheduler assigns slack S(tcur, d1(tcur)) to tasks in proportion to

their average power dissipation (i.e., Pi · ei(f)
pi

). The rationale for such a proportional

slack distribution is that a task with higher power dissipation requires more idle-time.

In this way, each task is assigned an amount of idle-time equal to

Ii(tcur) = Imini (Tamb) + S(tcur, d1(tcur)) ·
Pi · ei(f)

pi∑
τi
Pi · ei(f)

pi

. (4.24)

Based on the assigned idle time Ii(tcur) and the remaining execution time e lefti(f),

the scheduler splits τi into mi(Ii(tcur)) sub-tasks and alternates the processor to be

idle for Ii(tcur)
mi(Ii(tcur))

units and task execution for e lefti(f)
mi(Ii(tcur))

units.

Let us consider how to calculate slack S(tcur, d1(tcur)). Our goal is to find

the maximum amount of slack time, which may be available during the interval

[tcur, d1(tcur)), while guaranteeing 1) at least the minimum idle-time for all future

jobs and 2) all future deadlines (≥ tcur) are met. Algorithm IV.1 presents our

slack calculation method. At time tcur, we examine at the interval until the earliest

absolute deadline d1(tcur) among all tasks as well as examine all tasks in reverse

87

EDF order; that is, the latest deadline first (Line 4). Note that tasks are indexed

in EDF order (i.e., for τi and τk where i < k, di(tcur) ≤ dk(tcur)). We assume that

future task invocations require the worst-case execution and minimum idle- times,

and thus their utilization is
∑

τi

ei(f)+Imini (Tamb)

pi
(Line 1). We attempt to defer as

much execution/idling as possible beyond d1(tcur) and compute the minimum amount

of execution/idling p that must execute before d1(tcur) to meet all future deadlines

(Lines 5–8). This step is repeated for all tasks. To calculate p, we use a similar

approach used in [37, 97]. Then, the slack is set to the remaining time slots except

for p over the interval [tcur, d1(tcur)) (Line 10). The underlying principle behind our

slack calculation is that EDF will determine a feasible schedule if the utilization in

Eq. (4.23) is ≤1.0 at any time [23].

Runtime Complexity. At each invocation (either JOB RELEASE, JOB COMPLETION,

or FREQ UPDATE), our scheduling algorithm updates the slack by Algorithm IV.1 with

the complexity of O(n), where n is the number of tasks. Then, our algorithm allocates

the slack to a job with the earliest deadline according to Eq. (4.24) with the complexity

of O(1). Thus, the total complexity is O(n).

4.7 Evaluation

We implemented and evaluated RT-TRM on a commercial embedded processor

for automotive and infotainment applications. Our evaluation focused on how it

guarantees thermal and real-time constraints under various conditions.

Experimental Setup. Our evaluation platform was an i.MX6 [53] with ARM A9

supporting three discrete frequency levels (1, 0.8, and 0.4GHz) and corresponding

voltage levels (1.25, 1.15, and 0.95V). The chip was equipped with an on-chip thermal

sensor with a precision of 0.4°C. Table 4.2 specifies the power and thermal parameters

of our target platform. We set the peak temperature constraint Tmax to 60°C.7

7According to the mean-time-to-failure (MTTF) model [27], the thermal constraint of 60°C can

88

Table 4.2: Thermal parameters of the iMX6 processor.

R (°C/W) C (J/°C) β1 (mA/°C) β0 (mA) Pmax(mW)
22 0.0454 0.435 611 3860

Table 4.3: WCET and min/maximum periods.

(s) Angle Bit Table Edge FFT PID
ei 2.51 1.03 0.919 0.872 0.456 0.151

pmini , pmaxi 15, 30 6, 12 6, 12 5, 10 2.5, 5 1, 2

For demonstration purposes, we used realistic automotive workloads obtained from

MiBench [57], including Angle-time Conversion, Bit Manipulation, Table Lookup,

Edge Detection, FFT, PID. Table 4.3 provides the configuration of each workload.8

We used real-time kernel [94] to periodically execute above benchmark applications.

For idle-time scheduling, we generate a kernel idle thread to preempt task execution.

Handling Ambient Temperature Variation. To illustrate how RT-TRM adapts

to various environmental conditions to meet the thermal constraint, we conducted a

set of experiments at different ambient temperatures (25, 30, and 35°C). Fig. 4.7a

plots the real-time traces of the processor temperature, frequency and task-rate. The

task-rate was defined in Eq. (4.14) and normalized by the maximum rate. The

results showed that RT-TRM effectively regulated the processor temperature below

Tmax. At an ambient temperature of 25°C (dotted line), RT-TRM was shown to be

able to maintain the 1GHz processor frequency and 91.5% of the maximum task-rate.

At 30°C (grey line), the processor frequency was switched between 1 and 0.8GHz, and

the task-rate was dynamically adjusted, achieving 82.6% of the maximum task-rate.

At 35°C (solid line), the processor frequency had to be reduced at a time around

150s to meet the thermal constraint, resulting in 65.6% of the maximum task-rate.

We also looked closer at the results in Fig. 4.7a in a shorter time interval (0, 40]

and presented the execution behavior of the hottest task (bit manipulation) and

cover a typical vehicle warranty period of 10 years.
8Note that MiBench does not specify task period and execution time. We thus measure the

worst-case execution time of each task in our experimental setup and synthetically assign a period
range of each task proportional to the WCET.

89

45

50

55

60

0 150 300 450 600 750 900

T
em

p
 (

C
)

Tmax Tamb=25C Tamb=30C Tamb=35C

0.4
0.6
0.8

1

0 150 300 450 600 750 900

f
(G

H
z)

60
70
80
90

100

0 150 300 450 600 750 900T
as

k
R

at
e

(%
)

Time (s)

(a) Different Ambient Temperature
45.833 49.479

45.312 49.479

46.354 49.479

46.354 50

46.354 51.041

45.833 50

45.833 49.479

45.833 49.479

45.312 49.479

45.312 48.958

45.312 48.958

44.791 50.52

45.312 50.52

44.791 51.041

44.791 50.52

45.312 51.562

45.833 52.604

46.354 51.562

46.875 51.041

46.354 50.52

45
55
65
75

0 300 600 900T
em

p
 (

C
) Tmax=55 Tmax=60 Tmax=65

0.4
0.6
0.8

1

0 300 600 900

f
(G

H
z)

60
70
80
90

100

0 300 600 900

T
as

k
 R

at
e

(%
)

Time (s)

(b) Different Thermal Constraints

45
50
55
60
65

0 300 600 900

T
em

p
 (

C
)

Low-power Workload High-power Workload

0.4
0.6
0.8

1

0 300 600 900

f
(G

H
z)

60
70
80
90

100

0 300 600 900

T
as

k
 R

at
e

(%
)

Time (s)

(c) Different Power Dissipation

Figure 4.7: Experimental results of RT-TRM showing the processor temperature,
frequency, and task-rate traces under (a) different ambient temperatures, (b) thermal
constraints and (c) power dissipations.

90

55
56
57
58
59
60

0 5 10 15 20 25 30 35 40

T
em

p
 (

C
)

x 5

Tamb=35

0 5 10 15 20 25 30 35 40

x 5

55
56
57
58
59
60

0 10 20 30 40

T
em

p
 (

C
)

x 5

Tamb=30

0 10 20 30 40

x 5

55
56
57
58
59
60

0 10 20 30 40

T
em

p
 (

C
)

Time (s)

Tamb=25

Figure 4.8: Job schedule of a task (bit manipulation) and the corresponding
temperature variation by RT-TRM.

its corresponding temperature variation under RT-TRM as shown in Fig. 4.8. In

the figure, the processor temperature increased whenever the bit manipulation task

executed. When the ambient temperature was 35°C, a job of the bit manipulation

task was invoked every 12 seconds, whereas it was invoked every 8 seconds (6 seconds)

when the ambient temperature was 30°C (25°C). RT-TRM could adaptively adjust

the processor frequency and task periods under different ambient temperatures while

meeting both thermal and timing requirements.

Handling Different Thermal Constraints. Fig. 4.7b presents the results of

RT-TRM under different thermal constraints (55, 60, and 65°C). Under the thermal

constraint of 65°C, RT-TRM achieves a higher task-rate of 91% without reducing the

core frequency. Under the thermal constraint of 55°C, it achieved a lower task-rate

of 64.6% by reducing the core frequency to 0.8GHz to meet the thermal constraint.

RT-TRM was shown to effectively control the processor temperature close to the

thermal constraint and maximize resource utilization.

Handling Different Power Dissipations. Fig. 4.7c presents the results of

RT-TRM for different power dissipation workloads under the thermal constraint of

91

Table 4.4: The number of preemptions and idle-time per job.

Preemption Used idle-time (s)
Static minimum idle-time 8.77 0.221

Online idle-time scheduling 1.18 0.275

60°C. For the low power dissipation workload, RT-TRM achieved a higher task-rate

of 88.9% with the maximum core frequency. Whereas, for the high power dissipation

workload, it dynamically adjusted the task-rate to meet the thermal constraint,

achieving a task rate of 79.3%.

Effect of Online Slack Usage. We also analyzed the effect of slack usage on

online idle-time scheduling. During the above-mentioned experiment, we measured

the total idle-time and number of preemptions per job, as shown in Table 4.4.

Our online idle-time scheduling algorithm can assign more idle-time by 0.054s by

efficiently utilizing runtime slack, and thus reducing the number of preemptions by

7.4x, compared with the static minimum idle-time allocation method. We observe

that a small amount of additional idle-time could dramatically reduce the number

of preemptions. By reclaiming the available slack at runtime, RT-TRM used 24.4%

more idle-time to reduce 86.5% of preemptions without violating both thermal and

timing constraints.

Performance Evaluation. Thus far, we have demonstrated how RT-TRM handles

the dynamically changing ambient temperature and uses runtime slack to reduce the

number of preemptions while satisfying thermal and timing constraints. We now

focus on resource-efficiency and compare RT-TRM with two baseline approaches:

� EDF: static processor frequency and task period assignment under EDF 9

� RT-MTC : dynamic processor frequency scaling using feedback control under

EDF [55]

� RT-TRM: adaptive parameter assignment (§4.5) and online idle-time scheduling

9Parameters are assigned by solving the optimization problem Eq. (4.14)

92

50
55
60
65
70

0 150 300 450 600 750 900

T
em

p
 (

C
) EDF-A

EDF-W

0.4
0.6
0.8

1

0 150 300 450 600 750 900

f
(G

H
z)

60
70
80
90

100

0 150 300 450 600 750 900T
as

k
 R

at
e

(%
)

Time (s)

(a) EDF

50
55
60
65
70

0 150 300 450 600 750 900

T
em

p
 (

C
) Tmax

RT-MTC

0.4
0.6
0.8

1

0 150 300 450 600 750 900

f
(G

H
z)

60
70
80
90

100

0 150 300 450 600 750 900T
as

k
 R

at
e

(%
)

Time (s)

(b) RT-MTC

50
55
60
65
70

0 150 300 450 600 750 900

T
em

p
 (

C
) Tmax

RT-TRM

0.4
0.6
0.8

1

0 150 300 450 600 750 900

f
(G

H
z)

60
70
80
90

100

0 150 300 450 600 750 900T
as

k
R

at
e

 (%
)

Time (s)

(c) RT-TRM

Figure 4.9: Experimental results of different schemes showing the processor
temperature, frequency, and task-rate traces.

93

(§4.6)

Under EDF, we considered two static parameter assignments: one assumes an average

ambient temperature of 25°C (EDF-A) and the other assumes the worst-case ambient

temperature of 35°C (EDF-W). Under RT-MTC, if the processor utilization exceeds

the schedulable utilization by lowering the processor frequency, task periods are scaled

to meet deadlines. We used the following two metrics: (1) the percentage of time

during the thermal constraint being violated and (2) the task-rate. A higher task-rate

indicated higher resource-efficiency.

Fig. 4.9 compares the processor temperature, frequency and task-rate for three

different thermal management schemes. EDF-A assigned the processor frequency of

1GHz and the task-rate of a 100%, whereas EDF-W assigned the frequency of 0.8GHz

and a task-rate of 63.5% (Fig. 4.9a). Under EDF-A, the maximum temperature was

71.5°C, and thus the thermal constraint was violated 76.7% of the time. By contrast,

under EDF-W, the thermal constraint was satisfied all the time with the maximum

temperature of 59.1°C, but resources were severely under-utilized.

Under RT-MTC as shown in Fig. 4.9b, when the processor temperature hit

the threshold at time 250s, the processor frequency was lowered to 0.8GHz. The

temperature still exceeded the limit, and thus the frequency was lowered again to

0.4GHz at 750s. Due to the frequency reduced to the lowest level, the task-rate

for RT-MTC was reduced to 67.2%. Although the feedback controller regulated the

temperature close to the set point, it also violated the thermal constraint 3% of the

time with a maximum temperature of 60.5 °C.

Fig. 4.9c shows that RT-TRM maintained the maximum processor frequency most

of the time by adaptively adjusting the task periods, achieving a task-rate of 79.4%

— an 18.2% improvement over RT-MTC. Note that parameters were adjusted every

3 seconds on average. Through efficiently scheduling idle-time, RT-TRM was always

able to meet thermal constraints with a maximum temperature of 59.6 °C. The

94

runtime overheads of parameter adjustment and idle-time scheduling were 27ms and

1ms, respectively.

4.8 Discussion

Thus far, we have presented a task-level power/thermal model and developed

RT-TRM, which guarantees both thermal and timing constraints in the presence

of dynamic ambient temperature variations. To demonstrate the importance of

accounting for dynamic ambient temperature and different power dissipations, we

considered a simple model and a platform as an example — a task-level linear power

model and a uniprocessor platform, respectively.

We now discuss the applicability of RT-TRM to general models and multi-core

platforms.

Task-level Power Variations. We assumed a task-level dynamic power model

where power dissipation is constant across the jobs of a task and during the execution

of a job. To guarantee the feasibility of RT-TRM without this assumption, we used

the maximum power dissipation among all jobs as task-level dynamic power.10

Linear Power/Thermal Model. According to [20,83], we assumed that the leakage

power Pleak (thermal resistance R) has a linear (no) relation with the processor

temperature. We validated that such relations hold in a small temperature range (i.e.,

20°C–35°C), but this may not hold in a wider temperature range. For example, the

leakage power is known to increase exponentially as the temperature increases from

20°C to 120°C [84]. To apply RT-TRM in a wider temperature range, the leakage

power and thermal resistance can be approximated using a piecewise linear model;

specifically, the operating temperature range can be divided into multiple sub-ranges,

each of which can be approximated using a linear model as shown in [84].

Multi-core Platform. To apply RT-TRM to multi-core platforms, we can consider

10Characterization of precise job-level power dissipation is part of our future work.

95

partitioned or global scheduling. In the case of partitioned scheduling, RT-TRM can

be directly applied once a task-to-core assignment is made. Because the task-to-core

assignment is known to be NP-hard [117], well-known heuristics can be used for the

assignment. In the case of global scheduling, we need to extend our slack calculation

in Alg. IV.1 to consider the concurrent execution of multiple tasks on a multi-core

platform (which is part of our future work). Note that the calculation of the minimum

idle-time for each task has nothing to do with a task schedule, and hence it can be

directly applied for multi-core platforms. Moreover, on multi-core platforms, tasks

scheduled on a core could affect the temperature of its neighboring cores. For this

situation, a new thermal model is required that can capture the thermal effect between

neighboring cores. Furthermore, the new idle-time must be calculated.

4.9 Conclusion

Emerging embedded real-time systems, such as connected cars and smartphones,

pose new challenges to meeting timing constraints under the processors’ thermal

constraints. Such a system should consider a new dynamic computation power bound

in addition to the conventional schedulable utilization bound. In this chapter, we

developed a new thermal model that captures individual tasks’ heat generation as

their activity factors. We then developed two new mechanisms, adaptive parameter

assignment and online idle-time scheduling. By tightly coupling the solutions of

these two mechanisms, we can guarantee both thermal and timing constraints in the

presence of dynamic ambient temperature variations. Our evaluation of RT-TRM on

a realistic microcontroller using automotive benchmarks demonstrated the validity

of the proposed thermal model and the effectiveness of RT-TRM at meeting both

real-time and thermal constraints.

96

CHAPTER V

RT-TAS: Real-time Thermal-Aware CPUs–GPU Scheduling

5.1 Introduction

While modern embedded systems such as cars are increasingly using integrated

CPUs–GPU system-on-chips (SoCs) with growing power dissipations, thermal

challenges therein have become critical. Hardware cooling solutions such as fans

have been used to lower chip temperature, but the cooling cost has been increasing

rapidly, estimated to be US$3 per watt of heat dissipation [114]. Chip overheating

not only incurs higher cooling costs but also degrades chip reliability [118], which may

in turn risk physical safety. Thus, reducing on-chip temperature while simultaneously

meeting application timing constraints have become key system design objectives.

Two key thermal characteristics must be considered for integrated CPUs–GPU

platforms: (1) the platform’s temperature imbalance and (2) different CPU and

GPU power dissipations for different tasks. Our experimentation on a representative

CPUs–GPU SoC showed the GPU’s power dissipation to raise CPUs’ temperatures

(i.e., CPUs–GPU thermal coupling) at different rates, creating a large temperature

imbalance among CPU cores (up to a 10°C difference); some (hot) CPU cores exhibit

higher temperatures than others due to heat conducted from the GPU. In addition to

this platform’s temperature imbalance, our experimentation with automotive vision

tasks has demonstrated a difference of up to 1.35× in CPU power dissipations and a

97

difference of up to 2.68× in GPU power dissipations for different tasks; some (hot)

tasks dissipate more power than others when executed on a CPU/GPU.

Motivation. These distinct thermal features for integrated CPUs–GPU systems

pose significant challenges in partitioned fixed-priority scheduling of real-time tasks.

Our CPU–GPU stress test demonstrates that the concurrent execution of hot tasks on

both CPU and GPU generates a 24°C higher CPU temperature than CPU execution

alone. Moreover, assigning a hot task to a hot core raises the temperature 5.6°C

higher than assigning it to a cold core does, significantly increasing cooling costs

and/or severely degrading app performance through drastic hardware throttling

(to be detailed in §5.3, §5.6). This calls for thermal-aware task assignment and

scheduling tailored to integrated CPUs–GPU platforms; a task-to-core assignment

must distribute workloads to cores in a thermally-balanced manner by taking into

account both the platform’s temperature imbalance and different power dissipations

of tasks; furthermore, a scheduling decision on CPUs and the GPU must be made

cooperatively to avoid any burst of power dissipations on a CPUs–GPU platform while

guaranteeing all app timing constraints.

Numerous thermal-aware scheduling schemes have been proposed for real-time

uni-processor systems [3, 77] and multiprocessor systems [10, 26, 80]. They usually

employ idle-time scheduling [77], DVFS scheduling [80], or a thermal-isolation server

[10] to regulate the chip temperature at runtime. Although these prior studies have

made many contributions to thermal-aware real-time scheduling, they are not directly

applicable to integrated CPUs–GPU platforms because they have not considered the

thermal effect of GPU workloads on CPUs, i.e., CPUs–GPU thermal coupling. GPU

thermal management has also been studied for non-real-time systems [42, 99, 107,

112]. Studies have recognized thermally-efficient cores [107] and demonstrated the

platform’s thermal imbalance through infrared imaging [42]. However, they have

not been suitable for safety/time-critical systems such as in-vehicle vision systems.

98

To the best of our knowledge, no studies exist on thermal-aware task assignment

and scheduling of real-time tasks on CPUs–GPU platforms while accounting for the

platform’s temperature imbalance.

In this chapter, we propose a new Real-Time Thermal-Aware Scheduling

(RT-TAS) framework that accounts for not only the platform’s temperature imbalance

but also diverse power dissipations of app tasks running on integrated CPUs–GPU

platforms. RT-TAS generates a thermally-balanced task-to-core assignment and

co-schedules CPUs and GPU to reduce the maximum chip temperature while meeting

task/job deadlines.

We first capture the different CPUs’ temperatures caused by the GPU’s power

dissipation with core-specific GPU thermal coupling coefficients. We analyze the effect

of executing individual tasks on CPUs and GPU temperatures by taking the thermal

coupling into account and validating such a thermal coupling effect on a representative

CPUs–GPU platform with automotive vision workloads. Second, we introduce the

notion of thermally-balanced task-to-core assignment to gauge the heat distribution

across cores on a CPUs–GPU platform and derive a sufficient condition for an

assignment to be thermally-balanced, while simultaneously considering CPUs–GPU

thermal coupling. We then develop a thermally-balanced task-to-core assignment

called T-WFD, which equilibrates the platform’s thermal imbalance by considering

different power dissipations of tasks while preserving schedule feasibility.

Third, building on a thermally-balanced assignment, we develop an online

scheduling policy called CPU–GPU co-scheduling, for CPUs and GPU. It determines

which tasks to schedule on CPUs by considering the task running on its counterpart

(GPU), and vice versa, to avoid simultaneous executions of hot tasks on both CPUs

and the GPU, thus mitigating excessive temperature increase without missing any

task deadline.

Finally, we implemented RT-TAS on a representative CPUs–GPU platform [9] and

99

evaluated it with automotive vision workloads [100], demonstrating its effectiveness at

reducing the maximum temperature by 6−12.2°C compared with existing approaches

without violating timing constraints; this provided a reliable response time under a

given chip temperature limit. This 6°C reduction translates to a 1.52× improvement

in chip lifetime reliability [118] or savings on cooling costs of US$ 15.6 per chip

[81,114].

Contribution. This chapter makes the following contributions:

� Demonstration of the importance of co-scheduling CPUs and GPU while

accounting for their thermal coupling (§5.3);

� Empirically capturing CPUs–GPU thermal coupling effect and temperature

differences among CPU cores (§5.4);

� Development of thermally-balanced task-to-core assignment and CPUs–GPU

co-scheduling (§5.5);

� Implementation and evaluation of RT-TAS on a popular CPUs–GPU platform

with automotive vision workloads (§5.6).

5.2 Related Work

Prior research in the field of real-time systems has focused on thermal-aware

task and DVFS scheduling while meeting timing constraints for uni-processor [3,77],

and multiprocessor platforms [10, 26, 80]. Kumar et al. [77] proposed a thermal

shaper to regulate the runtime chip temperature by inserting idle periods. Lampka

et al. [80] proposed a history-aware dynamic voltage/frequency scaling (DVFS)

scheme that raises the core frequency only in case of potential timing violations.

A thermal-isolation server was proposed in [10] to avoid thermal interference between

tasks in temporal and spatial domains with thermal composability. However, these

100

solutions did not consider the thermal effect of GPU workloads on CPUs, i.e.,

CPUs–GPU thermal coupling, and thus they are not directly applicable to integrated

CPUs–GPU platforms.

Studies have been conducted on GPU thermal management for non-real-time

systems [42, 99, 107, 112]. Singla et al. provide a thermal modeling methodology via

system identification on a CPU and GPU mobile platform and present a proactive

DTM policy to prevent thermal violations [112]. Prakash et al. proposed CPU–GPU

cooperative frequency scaling for a mobile gaming app [99]. The notion of a

thermally-efficient core was proposed in [107], where the CPU core less impacted

by GPU heat dissipation was identified offline, and tasks were assigned in the order

of thermally-efficient cores. Infrared imaging characterized the CPUs–GPU thermal

coupling, introducing scheduling challenges [42]. Although all of the aforementioned

studies have made valuable contributions, they have not dealt with the timing

constraint when applying DVFS or scheduling tasks, rendering them infeasible for

time-critical embedded systems.

To the best of our knowledge, no prior work has addressed the challenges of

thermal-aware assignments and the scheduling of real-time tasks on CPUs–GPU

platforms while accounting for the platform’s temperature imbalance. Unlike the state

of the art, RT-TAS captures both CPUs–GPU thermal coupling and power-dissipation

variations of tasks to lower the maximum temperature of thermally-unbalanced

CPUs–GPU platforms while meeting the app timing constraint. We implemented and

evaluated RT-TAS, demonstrating its effectiveness on a representative CPUs–GPU

platform with automotive vision workloads.

5.3 Motivation

We first present a case study to demonstrate the distinct thermal characteristics

of integrated CPUs–GPU systems and describe the challenges faced therein.

101

CPU CPU CPU CPU

GPU

Detector Tracker Motion ⋯
Vision Tasks

CPUs-GPU SoC platform

Figure 5.1: Example of an embedded vision systems.

5.3.1 Target System

We consider an automotive vision system — a prototypical real-time CPUs–GPU

system — composed of multiple CPU cores and one GPU core running various

real-time vision tasks (Fig. 5.1) . Typical vision apps include feature detectors, object

trackers, and motion estimators [100]. A feature detector captures features to detect

various objects, such as cars, road signs, and pedestrians; an object tracker maps and

tracks moving/standing objects in consecutive input frames; and a motion estimator

determines the motion/movement between consecutive frames to predict objects’

motions. Real-time processing of these tasks relies on a GPU that supplements the

computing capabilities of the primary CPUs. Each vision task consists of CPU and

GPU sections of computation. To use the GPU, the CPU transfers data to the GPU

memory and calls GPU functions. The GPU then performs the required computation

and returns the results back to the CPU. See [48] for GPU operation details for

real-time apps.

5.3.2 Thermal Characteristics of CPUs–GPU Platforms

To understand the thermal characteristics of CPUs–GPU platforms, we conducted

experiments on an Nvidia Tegra X1 [9] equipped with four CPUs and a GPU

with representative vision workloads [100]. Here, we highlight two key findings

from this experimentation. First, GPU power dissipation raise CPUs’ temperatures

significantly at different rates, creating a large temperature imbalance on the platform

102

(a) CPUs–GPU SoC [9]

30

40

50

60

70

80

90

without GPU load with GPU load

T
em

p
er

at
u

re
(C

)

CPU1 CPU2 CPU3 CPU4 GPU

(b) Platform’s temperature imbalance

Figure 5.2: CPUs surrounded by the GPU cluster on a SoC (Tegra X1), where
the GPU’s power dissipation affects the CPUs’ temperatures, creating temperature
imbalance across the CPUs.

cores. Second, different tasks dissipate different amounts of power on the CPU and

GPU cores, i.e., some tasks are GPU-intensive and others are CPU-intensive.

Temperature Imbalance. In typical embedded vision platforms, unlike in

desktops/servers, CPU and GPU cores are integrated on a single SoC (Fig. 5.2a) for

cost, power, and communication efficiency [118]. CPU cores are usually surrounded

by a GPU cluster [42]; hence, the GPU’s power dissipation greatly affects CPU core

temperatures because of heat transfer. To understand the GPU’s thermal impact

on CPU cores, we measured the temperatures of CPU and GPU cores with and

without GPU workload.1 Fig. 5.2b corroborates CPUs–GPU thermal coupling where

the GPU workload raises the CPU cores’ temperatures from 50°C to 77°C on average

without any CPU workload. More crucially, we observed a significant temperature

difference across CPU cores up to 10 °C (CPU2 vs. CPU3) in the presence of GPU

workload. This imbalance was caused by CPU3’s close proximity to the GPU cluster,

and thus the significant impact of GPU power dissipation (Fig. 5.2a). We refer to

CPU cores with higher (lower) temperature than the average in the presence of GPU

workload as hot (cold) cores. For example, in this example, CPU1/CPU3 are hot and

CPU2/CPU4 are cold cores.

1Note that in this motivational experiment, we used the GPU thermal benchmark [41], i.e., CPU
remains idle, to minimize the impact of each CPU’s own power dissipation.

103

1

1.5

2

2.5

3

Feature

detector

Object

tracker

Motion

estimator

Image

stabilizer

C
P

U
 P

o
w

er
 (

W
)

(a) CPU Power

0

1

2

3

4

5

6

Feature

detector

Object

tracker

Motion

estimator

Image

stabilizer

G
P

U
 P

o
w

er
 (

W
)

(b) GPU Power

Figure 5.3: Average power dissipations of (a) CPU and (b) GPU vary greatly by
application tasks.

We conducted the same experiments on other SoCs — a Snapdragon 810 and an

Exynos 5420 — with different chip layouts and observed similar trends of temperature

imbalance [4]. Existing studies have also reported large temperature imbalances in

various integrated CPUs–GPU platforms, such as MD A10-5700 [42] and Trinity

APU [96].

Power Dissipations of App Tasks. In addition to the underlying platform’s

temperature imbalance, different tasks incur significantly different amounts of power

dissipation on CPU and GPU. Fig. 5.3 plots the average power dissipations on

(a) CPU and (b) GPU of sample vision workloads. We refer to tasks with power

dissipations higher (lower) than the average as hot (cold) tasks (a hot/cold task is

defined formally in Section 5.5.2). On the CPU, the image stabilizer is the hottest,

dissipating 1.35× more power than the coldest, the object tracker. On the GPU, the

motion estimator is the hottest, dissipating 2.68× more power than the coldest, the

object tracker.

5.3.3 Why Thermal-Aware Task Scheduling?

We now demonstrate how the above-mentioned features can adversely affect

system performance and reliability if they are not figured into task scheduling on

integrated CPUs–GPU platforms. For a motivational purpose, we ran high-power

104

CPU and GPU workloads2 on our testbed for 10 minutes and measured the maximum

CPU temperature for the following three cases: i) the simultaneous execution of both

CPU and GPU workloads; ii) the execution of CPU workload alone; and iii) no

execution (idling). For cases i), ii), and iii), the maximum temperature were recored

as 79.6, 55.6, and 50.3°C, respectively. Simultaneous CPU and GPU executions made

the CPU temperature 24°C higher than the case of CPU execution alone. Moreover,

assigning the CPU workload to a hot core resulted in 85.2°C, a CPU temperature

increase of 5.6°C compared with the CPU workload being assigned to a cold core.

Such an excessive temperature increase/imbalance may result in i) high cooling costs,

ii) poor reliability, and/or iii) performance degradation caused by thermal throttling,3

making it likely to extend the response time of tasks beyond their deadlines.

To avoid this, we need a new thermal-aware task assignment and scheduling

framework that captures not only the platform’s thermal imbalance but also task

power-dissipation variations to mitigate excessive temperature rises. Thus, assigning

hot tasks to hot cores without capturing the underlying temperature gap can raise the

maximum temperature significantly. Traditional load-balancing schemes that evenly

distribute workloads to CPU cores can be thermally-unbalanced because they do not

consider the distinct thermal characteristics of individual cores. We must, therefore,

accurately capture the platform’s temperature imbalance and distribute tasks in a

thermally-balanced manner to lower the maximum temperature.

In addition to the platform’s temperature imbalance, tasks’ different CPU/GPU

power-dissipation variations make the scheduling of app tasks on CPUs and the

GPU critical. Scheduling CPUs and GPU independently may adversely affect the

peak temperature if both CPUs and the GPU simultaneously run hot tasks, both

dissipating a large amount of heat. Therefore, we need to cooperatively schedule CPU

2We chose the CPU and GPU workloads from the thermal benchmark [41, 105] designed for
CPU/GPU stress tests with high power dissipations of 4.67W and 9.89W, respectively.

3Thermal throttling is a hardware technique that can lower the processor’s frequency on-the-fly
to reduce the amount of heat generated by the chip.

105

and GPU computations to avoid a burst of power dissipations on the CPUs–GPU

platform while simultaneously meeting all timing constraints.

5.4 CPUs–GPU System Model

This section presents the task execution and power models, analyzes how the

power dissipations of tasks are converted into chip temperatures by taking the thermal

coupling into account, and presents a validation of the models on a CPUs–GPU

platform running various vision workloads.

5.4.1 Task Execution Model

Each independent4 task τi ∈ τ can be represented as (pi, di, ηi, e
C
i,j, e

G
i,j), where pi

is the task period, di is its relative deadline equal to pi, ηi is the number of GPU

sections of computation that are enclosed by ηi + 1 CPU sections of computation,

and eCi,j and eGi,k are the worst-case execution times (WCETs) of the j-th CPU section

and the k-th GPU section, respectively. Let eCi =
∑ηi+1

j=1 eCi,j be the total WCET of all

the CPU sections, and eGi =
∑ηi

k=1 e
G
i,k be the total WCET of all the GPU sections.

For tasks without a GPU section, ηi = eGi = 0. We also define the CPU and GPU

utilizations of τi as uCi =
eCi
pi

and uGi =
eGi
pi

, respectively, and define the total utilization

of τi as ui = uCi + uGi .

Under partitioned fixed-priority preemptive scheduling, each task τi is statically

assigned to a CPU with a unique priority and let p(πc) be the set of tasks assigned

to πc ∈ {π1, . . . , πm}. Let hp(τi) (lp(τi)) be the set of all tasks with a priority higher

(lower) than τi. Likewise, Let hpp(τi) (lpp(τi)) be the set of higher (lower)-priority

tasks assigned to the same CPU as τi. GPU is a shared resource among tasks, and

it is modeled as a critical section protected by a suspension-based mutually-exclusive

4Assuming ”independent” tasks does not lower the general applicability of our approach, since
one can use shared buffers to eliminate inter-task dependencies as shown in [75].

106

lock (mutex) because most contemporary GPUs perform their assigned computation

non-preemptively. The GPU access is then made with the MPCP protocol, a

well-known locking-based GPU access scheme [56, 95]. Under this protocol, a task

requesting access to a lock held by a different task is suspended and inserted into a

priority queue. During that time, other ready tasks may use the CPU. When the lock

is released, a task in the priority queue is woken and granted access to the GPU. At

a time instant, a task is either i) executing its CPU section, ii) executing its GPU

section, or iii) idle.

Response Time Analysis. Under partitioned fixed-priority scheduling with the

MPCP protocol, the worst-case response time (WCRT), wi, of τi can be calculated

iteratively using the following expression:

wa+1
i = eCi + eGi + Iai +Ba

i , (5.1)

where Iai is τi’s preemption delay caused by higher-priority tasks and Ba
i is the

blocking time for τi to acquire the GPU lock [95]. Note that the initial value w0
i is

set to eCi + eGi , and the iteration halts when wa+1
i > di (unschedulable) or wa+1

i = wai

(the response time no larger than wai). To derive Iai and Ba
i , we use the job-driven

response time and blocking time analyses in [95]. A task τi can be preempted by

higher-priority tasks τh running on the same CPU, i.e., hpp(τi). The number of jobs

of τh released during the execution of a single job of τi is at most
⌈
wi+wh−eCh

ph

⌉
. Then,

Iai is derived as

Iai =
∑

τh∈hpp(τi)

⌈
wi + wh − eCh

ph

⌉
· eCh . (5.2)

The blocking time for τi to acquire the GPU lock under the MPCP protocol

can be divided into i) direct blocking (Bdr
i), which occurs when there is a task

using τi’s requested resource, and ii) prioritized blocking (Bpr
i), which occurs when

lower-priority tasks executing with priority ceilings preempt the execution of τi. Using

107

the blocking time analysis in [95], Ba
i is derived as

Ba
i = Bdr

i +Bpr
i , (5.3)

where

Bdr
i = ηi · max

τl∈lp(τi)
eGl,j +

∑
τh∈hp(τi)

⌈
wi + wh − eCh

Th

⌉
· eGh,j,

Bpr
i =

∑
τh∈lpp(τi)

⌈
wi + dl − eCl

Tl

⌉
· eGl .

Detailed proof of this can be found in [95]. Then, we can check the schedulability of

a task set as presented in the following lemma:

Lemma 5.1. [95] A task set τ is schedulable if

∀τi ∈ τ, wi ≤ di. (5.4)

5.4.2 CPU and GPU Power-dissipation Model

As shown in Fig. 5.3, CPU and GPU power dissipations are found to vary

significantly with the executing task. This is becausse individual tasks realize distinct

vision algorithms with different CPU and GPU sections that incur different CPU and

GPU power dissipations. Thus, we model different power dissipations during the

CPU execution (PC
i) and GPU execution (PG

i) of τi. Because every τi generates a

sequence of CPU jobs, each with execution time eCi , at the interval of pi time units,

the average CPU power dissipation by τi is PC
i ·uCi . Likewise, the average GPU power

dissipation of τi is PG
i · uGi . Given a task set τ and a task-to-core assignment Λ, the

average CPU and GPU power dissipations can be calculated as follows:

Pπc(Λ) =
∑

τi∈p(πc)

PCi · uCi , Pπg(Λ) =
∑
τi∈τ

PGi · uGi , (5.5)

108

where πc denotes a CPU core among the set of CPUs (i.e., πc ∈ {π1, . . . , πm}).

5.4.3 Platform’s Thermal Model

To translate the power dissipations of tasks into chip temperature together with

the consideration of CPUs–GPU thermal coupling, we adopt a core-level thermal

circuit model5:

Tπ(t) = TA +R · Pπ(t) +R · C · dTπ(t)

dt
(5.6)

where Tπ(t) = [Tπ1(t), . . . , Tπm(t), Tπg(t)] is an m+1 element vector of CPU and GPU

temperatures at time t; TA is also an (m+ 1)-element vector of ambient temperature;

Pπ(t) = [Pπ1(t), . . . , Pπm(t), Pπg(t)] is an (m + 1)-element vector of power dissipated

by each CPU or GPU at time t; R represents an (m+ 1)× (m+ 1) matrix of thermal

resistances between each component describing the heating impact of each component

on each other component; and C is a diagonal matrix with the thermal capacitance

of each component. With the thermal circuit model shown in Eq. (5.6), if the average

power of a processor is Pπ(t) over a time period t, then the transient temperature

Tπ(t) at the end of this period is

Tπ(t) = e(R·C)−1·t · Tπ(0) + (1− e(R·C)−1·t) · (TA +R · Pπ(t)). (5.7)

where Tπ(0) is the initial temperature of the processor. One can observe from Eq. (5.7)

that the temperature will increase/decrease toward and eventually reach TA+R·Pπ(t)

in the steady state. We define the steady-state temperature Tπ of a processor as

Tπ = TA +R · Pπ. (5.8)

5Note that this thermal model has been shown to be reasonably accurate [3, 112].

109

Table 5.1: Thermal coupling coefficients for the Tegra X1 (°C/W)

R =


R1 R1,2 R1,3 R1,4 R1,g

R2,1 R2 R2,3 R2,4 R2,g

R3,1 R3,2 R3 R3,4 R3,g

R4,1 R4,2 R4,3 R4 R4,g

Rg,1 Rg,2 Rg,3 Rg,4 Rg

 =


2.54 1.66 1.68 1.68 2.20
1.66 2.37 1.71 1.73 1.43
1.68 1.71 2.93 1.72 2.27
1.68 1.73 1.72 2.62 1.76
1.50 1.71 1.60 1.71 1.87



The steady-state temperature of πx for a given task-to-core assignment Λ (denoted

by Tπx(Λ)) can be computed as follows:

Tπx(Λ) = TA +Rx · Pπx(Λ) +
∑

πy∈π\πx

Rx,y · Pπy(Λ) (5.9)

where Rx represents the heating impact of πx by itself, and Rx,y represents the heating

impact of other CPU and GPU cores πy on πx caused by the thermal couplings. Note

that thermal coupling coefficients Rx,g, 1 ≤ x ≤ m, capture the different impact of

GPU heat dissipation on other cores depending on the thermal properties and chip

layout; for example, how cores are geometrically positioned w.r.t. GPU.

5.4.4 Parameter Identification and Validation

Parameter Identification. The thermal resistance R and capacitance C are

SoC-specific parameters in the platform’s thermal model in Eq. (5.6), . While

considering the CPUs–GPU thermal coupling, we identify these SoC-specific

parameters using a typical thermal parameter identification process [33] as follows.

We ran a GPU benchmark [41] on the GPU with CPU cores maintained as idle and

measured the power dissipation of the GPU and steady-state temperatures of the

CPU and GPU cores. We then determined each core’s thermal coefficient w.r.t. GPU

heating impact using Eq. (5.8). Similarly, we ran a CPU benchmark [105] on each

CPU core, one at a time, and determined each core’s thermal coefficient w.r.t. CPU

heating impact. From these results, we identified the thermal-coupling coefficients

using Rx,y = ∆Tπx/Pπy as in Table 5.1. Note that the thermal coefficient values

110

50

60

70

80

2 3 4 5 6 7 8 9 10

T
em

p
er

at
u

re
 (

C
)

GPU Power (W)

CPU1 CPU2 CPU3 CPU4

Model

(a) Varied GPU power

50

6

60

2.5

M
ax

 T
em

pe
ra

tu
re

 (
C

)

4

70

2

GPU Power(W)

1.5

CPU Power(W)

80

2 1
0.5

0 0

Model
Measurement

(b) Varied CPU/GPU power

Figure 5.4: (a) CPU temperatures resulting from varied GPU power dissipations
and (b) maximum CPU temperature resulting from varied CPU and GPU power
dissipations.

shown in Table 5.1 are for an Nvidia Tegra X1. Through applying the above parameter

identification process to other SoCs, we can directly apply our thermal model and

the proposed thermal-aware scheduling framework to other CPUs–GPU SoCs.

Model Validation. To confirm that the CPUs–GPU thermal coupling model

correctly represents the platform’s thermal behavior, we measured the maximum

temperature of the CPUs and GPU and compared it with the model’s estimation

under various settings. We validated our model by varying (i) GPU power settings

and (ii) both CPU and GPU power dissipations with vision workloads as shown in

Fig. 5.4.

Fig. 5.4a plots the measured CPU temperatures resulting from the GPU’s varying

power dissipation. CPU temperatures linearly increased with the GPU’s power

dissipation at different rates, which were captured by core-level thermal coupling

coefficients. As the GPU’s power dissipation increased from 2.2W to 8.2W, the

temperature of CPU3 increased at most by 14.3 °C while that of CPU2 increased

by 9.4 °C. Fig. 5.4b plots the maximum chip temperature with varying CPU and

GPU power dissipations. The results shows that the maximum chip temperature

linearly increases with both CPU and GPU power dissipations, as in Eq. (5.9).

111

5.5 Thermal-Aware Scheduling

To achieve both G1 and G2 in integrated CPUs–GPU platforms, we propose

RT-TAS which takes both the platform’s temperature imbalance and different power

dissipations of tasks into account for the assignment and scheduling of real-time tasks.

To this end, we first introduce a sufficient condition for a task-to-core assignment to

be thermally-balanced in the presence of the underlying platform’s thermal imbalance

among CPU cores, and then present a thermally-balanced assignment called T-WFD,

which equilibrates the platform’s thermal imbalance by considering different power

dissipations of tasks while preserving feasibility (§5.5.1). Building upon the

thermally-balanced assignment, we then present an online CPU–GPU co-scheduling

policy that cooperatively schedules jobs to avoid simultaneous executions of hot tasks

on both CPUs and the GPU, and thus effectively reduces the peak chip temperature

while meeting task deadlines (§5.5.2). Whereas our task-to-core assignment algorithm

minimizes the maximum steady-state temperature of CPU cores, our co-scheduling

policy regulates CPUs’ and the GPU’s power dissipations to mitigate the increase of

transient temperature.

5.5.1 Thermally-Balanced Assignment

We now formally state the task-to-core assignment problem.

Definition 5.2 (Task-to-core assignment). Given a task set τ and a CPUs–GPU

platform π, find a mapping from the tasks of τ to the CPU cores in π (i.e.,

task-to-core assignment Λ) such that the maximum steady-state temperature of the

cores is minimized while all tasks mapped onto each core meet their deadlines under

fixed-priority scheduling with MPCP.

The task-to-core assignment problem is NP-hard, because finding a feasible

mapping is equivalent to the bin-packing problem which is known to be NP-hard

112

in the strong sense [14]. Thus, we must look for heuristics. Focusing on feasibility,

a typical task-to-core assignment is to apply variants of well-known bin-packing

algorithms, including First-Fit Decreasing (FFD), Best-Fit Decreasing (BFD), and

Worst-Fit Decreasing (WFD) [38]. These algorithms process tasks one-by-one in the

order of non-increasing utilization, assigning each task to a core according to the

heuristic function that determines how to break ties if multiple cores exist that can

accommodate the new task. Whether a core can accommodate each task or not is

determined by the schedulability test in Lemma 5.1.

Example 5.3. Let us consider a set of four vision tasks shown in Fig. 5.3 and a

platform consisting of two CPU cores and a single GPU. The CPU utilizations of

individual tasks, i.e., uCi = eCi /pi, are uC1 = 0.2, uC2 = 0.1, uC3 = 0.05, and uC4 = 0.05.

The CPU’s power dissipations by individual tasks are PC
1 = 1.8W , PC

2 = 1.8W ,

PC
3 = 2.0W , and PC

4 = 2.5W . In this example, we consider CPU1 and CPU2 in

Fig. 5.2b where CPU1 heats up faster than CPU2 because of the CPUs–GPU thermal

coupling. We consider four possible task-to-core assignment algorithms as shown in

Fig. 5.5: (a) FFD and BFD, (b) WFD, and (c) a thermally-optimal assignment. In

FFD, each task is assigned to the first CPU on which it fits. In BFD and WFD,

each task is assigned to the minimum remaining capacity exceeding its own CPU

utilization and the maximum remaining capacity, respectively. After assignment,

under FFD and BFD, the temperatures of CPU1 and CPU2 are increased by 22 °C

and 9 °C,6 respectively, while under WFD, the temperature increases are 17 °C and 13

°C, respectively. Although WFD results a lower maximum steady-state temperature

than FFD/BFD, it is not thermally-optimal. In fact, there exists a thermally-optimal

assignment, as shown in Fig. 5.5c.

Note that FFD and BFD attempt to pack as many tasks as possible onto one

6Note that the temperature rise of CPU2 in Fig. 5.5a is due to the indirect effect of the execution
of workloads on GPU, i.e., CPUs–GPU thermal coupling.

113

CPU1

CPU2

τ1 τ2 τ3 τ4

CPU1

CPU2

τ1

τ2 τ3 τ4

τ1

τ2 τ3

τ4

Uc1
= 0.4

Uc2
= 0

Uc1
= 0.2

Uc2
= 0.2

Uc1
= 0.15

Uc2
= 0.25

0
5

10
15
20
25

CPU1 CPU2T
em

p.
 in

cr
ea

se
(C

)

0
5

10
15
20
25

CPU1 CPU2T
em

p
in

cr
ea

se
 (C

)

0
5

10
15
20
25

CPU1 CPU2T
em

p
in

cr
ea

se
 (C

)

9℃

22℃

17℃
13℃

15℃ 15℃
CPU1

CPU2

(a) FFD and BFD

CPU1

CPU2

τ1 τ2 τ3 τ4

CPU1

CPU2

τ1

τ2 τ3 τ4

τ1

τ2 τ3

τ4

Uc1
= 0.4

Uc2
= 0

Uc1
= 0.2

Uc2
= 0.2

Uc1
= 0.15

Uc2
= 0.25

0
5

10
15
20
25

CPU1 CPU2

T
em

p
in

cr
ea

se
(C

)

0
5

10
15
20
25

CPU1 CPU2T
em

p
in

cr
ea

se
 (C

)

0
5

10
15
20
25

CPU1 CPU2T
em

p
in

cr
ea

se
 (C

)

9℃

22℃

17℃
13℃

15℃ 15℃
CPU1

CPU2

(b) WFD

CPU1

CPU2

τ1 τ2 τ3 τ4

CPU1

CPU2

τ1

τ2 τ3 τ4

τ1

τ2 τ3

τ4

Uc1
= 0.4

Uc2
= 0

Uc1
= 0.2

Uc2
= 0.2

Uc1
= 0.15

Uc2
= 0.25

0
5

10
15
20
25

CPU1 CPU2T
em

p.
 in

cr
ea

se
(C

)

0
5

10
15
20
25

CPU1 CPU2T
em

p
in

cr
ea

se
 (C

)

0
5

10
15
20
25

CPU1 CPU2T
em

p
in

cr
ea

se
 (C

)

9℃

22℃

17℃
13℃

15℃ 15℃
CPU1

CPU2

(c) Thermally-optimal assignment

Figure 5.5: Task-to-core assignment algorithms and their corresponding temperature
increases.

core while keeping the other cores empty to accommodate other unassigned tasks.

By contrast, WFD tends to distribute the workloads evenly across all cores. In

general, FFD and BFD have shown better feasibility than WFD [16]. However, they

may result in higher temperatures than WFD because the workloads are allocated

(heavily) to one core in many cases. Although WFD may decrease the maximum

steady-state temperature by evenly distributing the workloads across all cores, it does

not consider different power dissipations of tasks and CPUs–GPU thermal coupling,

resulting in thermally-unbalanced assignments as shown in Fig. 5.5b. As shown in

Fig. 5.5c, a thermally-optimal assignment in this example turns out to be the one

that assigns slightly more CPU workloads to CPU2 than to CPU1. This is because

CPU2 provides a more thermally-efficient operation than CPU1 does because of the

CPUs–GPU thermal coupling.

Considering the thermal coupling between GPU and CPU cores, we present the

114

concept of thermally-balanced assignment to gauge the heat distribution across cores

in a multi-core platform.

Definition 5.4 (Thermally-balanced assignment). A task-to-core assignment Λ is

said to be thermally-unbalanced if the maximum steady-state temperature among

cores can be lowered by moving one task from one core to another without losing

feasibility. Otherwise, it is said to be thermally-balanced.

Clearly, the optimal task-to-core assignment that achieves both G1 and G2 must

be thermally-balanced, since by definition, its maximum steady-state temperature

among cores cannot be lowered. We now derive a sufficient condition for a task-to-core

assignment to be thermally-balanced. Note that, based on the thermal coefficient

values in Table 5.1, in task-to-core assignment, we assume that the difference in

thermal conduction rate from one CPU to others is negligible (Rc1,c2 ' Rc2,c1 ' Rc1,c3

where ∀1 ≤ c1, c2, c3 ≤ m).7

Lemma 5.5. A task-to-core assignment Λ is thermally-balanced if for every pair

(πp, πq) s.t. πp, πq ∈ {π1, ..., πm} and every task τi ∈ p(πp) satisfy

Tπp(Λ)− Tπq(Λ) ≤ Rp · PCi · uCi . (5.10)

Proof. Suppose that a task-to-core assignment Λ satisfies Eq. (5.10). Without a loss

of generality, we consider a pair (πp,πq) that satisfies (a) Tπp(Λ)−Tπq(Λ) ≤ Rp ·PC
i ·uCi

(by assumption). Consider a new assignment Λ′ obtained from Λ by transferring a

task τi from πp to πq. We will prove that the maximum steady-state temperature

among cores cannot be lowered by moving τi from πp to πq. Two possibilities exist:

i) Tπp(Λ) > Tπq(Λ), and ii) Tπp(Λ) ≤ Tπq(Λ).

Case i): according to Eqs. (5.5) and (5.9), Tπp(Λ
′) = Tπp(Λ) − Rp · PC

i · uCi and

7Note that we still consider a different thermal coefficient value for other elements in Table 5.1,
such as Rc, Rg, Rg,c, and Rc,g.

115

Algorithm V.1 T-WFD (τ , π)

1: for πc ∈ {π1, . . . , πm} do
2: Λπc ← ∅
3: end for
4: τ ′ ← Sort(τ by non-increasing PCi · uCi)
5: for τi ∈ τ ′ do
6: π′ ← {πc : feasible-assignment(Λπc ∪ τi)}
7: if π′ = ∅ then
8: return Failed to assign
9: end if

10: πk ← arg minπc∈π′ Tπc(Λπc ∪ τi)
11: Λπk ← Λπk ∪ τi
12: end for
13: return Λ

Tπq(Λ
′) = Tπq(Λ) +Rq · PC

i · uCi . Then, we have

Tπq
(Λ′)− Tπp

(Λ′) =Tπq
(Λ)− Tπp

(Λ) +Rp · PCi · uCi +Rq · PCi · uCi

≥−Rp · PCi · uCi +Rp · PCi · uCi +Rq · PCi · uCi (by (a))

=Rq · PCi · uCi .

That is, (b) Tπq(Λ
′)−Tπp(Λ′) ≥ Rq·PC

i ·uCi . By (a) and (b), we have Tπq(Λ
′)−Tπp(Λ′) ≥

Tπp(Λ) − Tπq(Λ) for any pair (πp,πq). Hence, the new assignment Λ′ is unbalanced

because the temperature difference between πp and πq only increases compared with

the original assignment Λ. Therefore, returning to the original assignment Λ (by

moving back τi to πp) always lower the maximum steady-state temperature.

Case ii): that is, moving a task τi from a low temperature core to a high

temperature one. The resulting assignment Λ′ can easily be seen to be unbalanced

and just like Case i). Therefore, we should be able to further lower the maximum

steady-state temperature by returning to the original assignment Λ.

To achieve a thermally-balanced assignment, we propose a new thermal-aware

task-to-core assignment called T-WFD, as presented in Algorithm V.1. Unlike the

previous algorithms presented in Example 5.3, tasks are sorted into a non-increasing

order of their average CPU power dissipations (Line 4). T-WFD then assigns each

116

task to the core with the lowest temperature on which it fits (Lines 5–12).

Note that T-WFD considers feasibility and thermal issues together in task-to-core

assignment. In particular, tasks are sorted according to their average power

dissipation by considering different power dissipations of tasks and effects on CPU

temperature. Cores are arranged in increasing order of temperature, taking the

CPUs–GPU coupling into account. Then, T-WFD allocates each task to the core

with the lowest temperature on which the allocation can preserve feasibility with the

schedulability test in Lemma 5.1. This way, it is possible to find a thermally-balanced

assignment.

Next, we prove that T-WFD never produces a thermally-unbalanced assignment

in the following theorem.

Theorem 5.6. The T-WFD scheme always generates a thermally-balanced

task-to-core assignment.

Proof. Consider a set τ of n periodic tasks (indexed according to non-increasing

average CPU power dissipations) that are to be assigned on m CPU cores. We will

prove this statement by induction. Clearly, after assigning the first task τ1 to the core

with the lowest temperature upon which it fits, the assignment is balanced. Suppose

that the statement holds after assigning τ1, . . . , τk (1 ≤ k < n) to the cores according

to T-WFD. Let us define Λ(k) to be the assignment after allocating the k-th task.

Let us also define πc to be the core with the lowest temperature on which τk fits in

Λ(k).

T-WFD chooses πc to allocate τk+1. Any pair (πp, πq) such that πp 6= πc and πq 6=

πc cannot be the source of a thermally-unbalanced assignment, because their workload

did not change and Λ(k) is supposed to be balanced by the inductive hypothesis.

Therefore, we need to focus only on pairs (πc, πp) where 1 ≤ p ≤ m, and p 6= c.

Two possible cases exist: after assignment of τk+1 to πc, i) πc becomes the highest

temperature core, and ii) otherwise.

117

Case i): consider a pair (πc, πp) such that Tπc(Λ(k + 1)) > Tπp(Λ(k + 1)), where

Tπp(Λ(k + 1)) is the temperature of πp in Λ(k + 1). Note that Tπc(Λ(k)) ≤ Tπp(Λ(k))

in Λ(k) by T-WFD. Thus,

Tπc(Λ(k)) = Tπc(Λ(k + 1))−Rc · PCk+1 · uCk+1 ≤ Tπp(Λ(k)) ≤ Tπp(Λ(k + 1))

⇔Tπc
(Λ(k + 1))− Tπp

(Λ(k + 1)) ≤ Rc · PCk+1 · uCk+1.

Because of the pre-ordering of tasks according to average power dissipations, PC
k+1 ·

uCk+1 ≤ PC
x · uCx for any task τx allocated to πc (x ≤ k + 1). Therefore, Tπc(Λ(k +

1))− Tπp(Λ(k + 1)) ≤ Rc · PC
x · uCx for any task τx allocated to πc (x ≤ k + 1). Then,

according to Lemma 5.5, the pair (πc, πp) cannot be unbalanced.

Case ii): after the assignment of τk+1 to πc, let πq be the highest temperature

core and consider a pair (πc, πq). The new assignment Λ(k + 1) cannot make the

pair (πc, πq) thermally-unbalanced, because if it were, then the same pair would be

thermally-unbalanced in Λ(k) as well (∵ Λ(k + 1) only reduced the temperature

difference between πc and πq). This contradicts the inductive hypothesis.

Runtime Complexity. Alg. V.1 first sorts the tasks with O(n · logn) complexity,

where n is the number of tasks. Then, the algorithm allocates each task to a feasible

core starting from the core with the lowest temperature with O(n · m) complexity

where m is the number of cores. Thus, the total complexity is O(max(n·logn, n·m)).

5.5.2 CPU–GPU Co-Scheduling

Thus far, we have discussed the task assignment to handle the platform’s

temperature imbalance. Building on the thermally-balanced assignment, we now

demonstrate how to schedule task/job executions on CPU and GPU cores to

mitigate the peak temperature. Specifically, we want to address the following

schedule-generation problem.

Definition 5.7 (schedule-generation). Given the task-to-core assignment, determine

118

a schedule of job executions and idle-times on both CPUs and the GPU such that the

maximum transient temperature across the CPU and GPU cores is minimized while

all the jobs of all tasks τi ∈ τ meet their deadlines.

Addressing the Peak Temperature. According to our proposed task-to-core

assignment, tasks are allocated in a thermally-balanced manner in terms of the

steady-state temperature while feasibility is preserved under fixed-priority scheduling

with MPCP [95]. However, a job schedule on CPU and GPU cores may affect the

transient temperature, potentially leading to the chip overheating before it reaches

the steady-state temperature. This situation would be caused by the following two

key issues: 1) different power dissipations of tasks on the CPU and GPU cores, and

2) CPUs–GPU thermal coupling. Specifically, because of different power dissipations

caused by different tasks (as shown in Fig. 5.3), the temperatures of the CPUs and

GPU vary greatly depending on the tasks currently running on their cores. We

observe from Eqs. (5.7) and (5.9) that (i) if PC
i > Pπc(Λ) (i.e., the power dissipation

during CPU execution of τi is greater than the average power dissipation on πc), the

temperature of πc increases above the steady-state temperature Tπc(Λ), and (ii) if

PC
i ≤ Pπc(Λ) then the temperature of πc decreases below Tπc(Λ). The same holds

for the GPU case. A task τi is said to be hot if PC
i > Pπc(Λ) (PG

i > Pπg(Λ)), or

cold otherwise. Depending on PC
i and PG

i , τi can become hot or cold on CPUs and

the GPU. In addition, because of heat conduction by CPUs–GPU thermal coupling,

the tasks scheduled on the GPU could affect the temperature of its neighboring

CPU cores, and vice versa. For example, scheduling a hot task on CPU (GPU)

in the presence of hot GPU (CPU) workloads tends to cause a rapid rise in the

temperature of CPUs and the GPU together. One may slow the temperature increase

by suspending the execution of a hot task and scheduling a cold task or idle-time on

CPU/GPU, but such an action may also lead to a hot task’s deadline being missed.

This calls for cooperative scheduling of CPU and GPU computations, i.e., scheduling

119

Algorithm V.2 CPU-GPU co-scheduling

1: QCPU : CPU ready queue
2: Upon job release/completion or no remaining inversion budget:
3: for τi ∈ QCPU do
4: if ∀τh ∈ hpp(τi) satisfies vh − eCi,cur ≥ 0 then
5: Put τi in the candidate set Γ.
6: end if
7: end for
8: if Γ is not empty then
9: τCPU = minτi∈Γπc |P̄tot − (PCi +

∑
π\πc P

C
cur + PGcur)|

10: Schedule τCPU
11: else
12: Schedule a task with the highest priority in QCPU .
13: end if

CPU jobs while considering GPU schedules, and vice versa, to effectively mitigate

excessive temperature rises without missing any task deadlines.

We develop a thermal-aware CPU–GPU co-scheduling mechanism that determines

which tasks to run on CPUs and the GPU in a cooperative manner. Basically,

at each scheduling instant, our mechanism is based upon partitioned fixed-priority

scheduling and restrictively allows priority inversions – executing cold/idle tasks

with lower-priorities ahead of a hot task with the highest-priority on CPUs when its

counterpart (the GPU) is running a hot task, and vice versa – subject to schedulability

constraints. Such a mechanism avoids simultaneous executions of hot tasks on both

CPUs and the GPU and thus reduces the peak temperature while ensuring that

all tasks still meet their deadlines. Algorithm V.28 presents our thermal-aware

CPU–GPU co-scheduling mechanism, which consists of two steps: (i) candidate

selection and (ii) job selection. Whenever a scheduling decision is to be made on

CPUs and the GPU, the algorithm first constructs a list of candidate jobs that are

allowed to execute without missing any others’ deadline (lines 3–7) and then selects

one job from the list by taking the current job on its counterpart into consideration;

8Algorithm V.2 describes CPU scheduling, and GPU scheduling is also performed similarly.
RT-TAS uses GPU lock and priority queue to schedule GPU, and the implementation is presented
in Sec. 5.6.1.

120

thus, the difference between the steady-state temperature and transient temperature

caused by the execution of the selected and current jobs on the CPUs and the GPU

is minimized (lines 8–10).

Finding Candidate Jobs. To prevent any deadline misses caused by the priority

inversions, we calculate the worst-case maximum inversion budget Vi for each task

τi allowing lower-priority tasks to execute while τi waits. Vi is calculated using the

WCRT analysis shown in Lemma 5.1 with a similar approach proposed in [125]. Note

that in the presence of priority inversions, τi can experience more interference from

higher-priority tasks than when no priority inversion is allowed, which is because of

the additional interference by the deferred executions (also known as back-to-back

hits) [125]. To consider such deferred executions when calculating Vi, we derive a

pessimistic upper-bound on the worst-case response time w∗i using the WCRT analysis

under the assumption that the worst-case busy interval of τi is equal to di, instead of

the iterative increment of the busy interval of τi until it no longer increases. Using the

pessimistic upper-bound on w∗i , we define the worst-case maximum inversion budget

Vi as

Vi = di − w∗i . (5.11)

We then only allow bounded priority inversions using Vi to guarantee that deadlines

are met. To enforce these budgets at run-time, our mechanism maintains a remaining

inversion budget vi where 0 ≤ vi ≤ Vi. This indicates the time budget left for

lower-priority tasks than τi to execute in a priority inversion mode while τi has an

unfinished job. The budget vi is replenished to Vi when a new job of τi is released.

It is decreased as the CPU/GPU execution of τi is blocked by a lower-priority job.

When the budget becomes 0, no lower-priority task is allowed to run until τi finishes

its current job.

The scheduler is invoked upon (i) the release of a new job, (ii) the completion of

121

a job, or (iii) when no inversion budget of a job remains. Upon each invocation, our

scheduling algorithm finds candidate jobs that are allowed to execute on CPU/GPU

based on the following lemmas. For each task τi in the CPU run queue, we let eCi,cur

denote the remaining CPU section execution time at time tcur.

Lemma 5.8. For a task τi, if ∀τh ∈ hpp(τi) satisfies vh − eCi,cur ≥ 0 or τi is the

highest-priority task, τi can be a candidate for CPU execution without missing any

deadlines of higher-priority tasks hpp(τi).

Proof. A busy interval of τh ∈ hpp(τi) is composed of its CPU and GPU executions,

the preemption delay of CPU execution by hpp(τh), the blocking time to acquire a

GPU access, and a further delay of CPU execution caused by priority inversions using

our co-scheduling policy. Suppose that at time tcur, our co-scheduling policy decides

to execute τi, which is a lower priority than τh at time t. Then, the worst-case busy

interval of τh is bounded by

eCh + eGh + Ih +Bh + eCi,cur ≤ w∗h + eCi,cur ≤ w∗h + vh = dh,

because vh − eCi,cur ≥ 0. The execution of the remaining CPU section of τi will not

miss the deadline of τh ∈ hpp(τi). Thus, τi can be a candidate for CPU execution at

time tcur.

For each task τi in the GPU run queue, let eGi,cur denote the remaining GPU section

execution time at time tcur.

Lemma 5.9. If ∀τh ∈ hp(τi) satisfies vh− eGi,cur ≥ 0 or τi is the highest-priority task,

τi is a candidate for GPU execution.

Proof. This lemma can be proved in a similar manner to Lemma 5.8.

Note that we also include an idle CPU task, which is a special cold task that

allows an idling CPU during hot task execution on the GPU.

122

Select a Job among Candidates. For CPU scheduling, we select one job to execute

on πc from the candidate set Γπc by considering the current job on its counterpart

(GPU). The total average power dissipation P̄tot for the entire task set is calculated

as follows:

P̄tot =
∑
i

(PCi ·
eCi
pi

+ PGi ·
eGi
pi

). (5.12)

Let PC
cur and PG

cur denote the power dissipation by the current running job on the

CPUs and GPU, respectively. Then, we pick a task τs in Γπc such that the difference

between the total average power dissipation P̄tot and the expected power dissipation

(PC
s +

∑
π\πcPCcur

+PG
cur) by the selected and currently running jobs on the CPUs and

GPU is minimized; that is,

min
τs∈Γπc

|P̄tot − (PCs +
∑
π\πc

PCcur + PGcur)|. (5.13)

This way, we co-schedule CPU and GPU cores such that the total transient power

dissipation on them maintains the total average power dissipation (P̄tot) for a task set

as close as possible, thereby reducing the transient temperature. Such a job selection

process can be performed similarly for GPU scheduling. We pick a task τs in Γπg such

that

min
τs∈Γπg

|P̄tot − (
∑
πc

PCcur + PGs)|. (5.14)

With the proposed CPU–GPU co-scheduling algorithm, we can reduce the

variation in steady-state and transient temperatures, thus effectively mitigating any

excessive rise in transient temperature while guaranteeing all deadlines are met.

Runtime Complexity. Upon each invocation (either job release/completion or no

remaining inversion budget), our scheduling algorithm checks/updates the remaining

inversion budget and finds candidate jobs using Alg. V.2 with O(n) complexity,

where n is the number of tasks. Then, our algorithm selects a task based on

123

Eqs. (5.13)–(5.14) with O(1) complexity. Thus, the total complexity is O(n).

5.6 Evaluation

We implemented and evaluated RT-TAS on a representative CPUs–GPU platform

with automotive vision workloads, and the key results as follows:

� Maximum temperature was reduced by 6°C and 12.2°C w.r.t. the state of the

art [107] and a default OS scheduler, respectively.

� Our thermally-balanced assignment reduced the maximum temperature by

3.9°C and CPU–GPU co-scheduling reduced it further by 2.1°C w.r.t. the

state-of-the-art.

� Maximum temperature is reduced by up to 8.3°C (5.0°C on average) across

various task sets w.r.t. WFD (Fig. 5.5b).

5.6.1 Methodology

Our experimental platform was an Nvidia Tegra X1 equipped with four CPU

cores and a shared GPU [9] rated at the maximum power dissipation of 15W . To

avoid chip overheating, each CPU/GPU was equipped with a thermal sensor. The

built-in hardware temperature management kicks in when one of its cores reaches

the temperature threshold, and it lowers the CPU frequency to cool the temperature.

According to the thermal specifications in [9], chip thermal resistance is 1.15°C/W .

To evaluate the benefit of RT-TAS under a realistic setup, we implemented a real-time

vision system running representative vision workloads [100]: (i) a feature detector,

(ii) an object tracker, (iii) a motion estimator, and (iv) an image stabilizer. An

in-vehicle camera video was provided to these tasks for input. Specifically, we

implemented RT-TAS on top of the Linux kernel as a user-level application that

124

Table 5.2: Vision tasks used in the experiments.

Task PCi (W) PGi (W) eCi (ms) eGi (ms) pi(ms)
Feature detector 1.8 3.7 14 25 400
Object tracker 1.8 2.8 34 17 400

Motion estimator 2.0 5.7 63 105 400
Video stabilizer 2.5 3.6 35 65 400

executes a set of tasks each running one of the above vision workloads periodically.

The implementation details are summarized as follows:

� Assigning tasks to CPU cores using sched setaffinity and CPU SET;

� Priority-based scheduling using sched setscheduler under the SCHED FIFO;

and

� GPU lock is implemented using pthread mutex, and the highest priority task

waiting for the lock will grab the lock.

Throughout the evaluation, we compared the following approaches:

� BASE: default OS scheduler (completely fair scheduling);

� TEA: thermally-efficient allocation [107] assigning tasks from the most

thermally-efficient core first9;

� RT-TAS: the proposed thermally-balanced assignment (§5.5.1) and CPU–GPU

co-scheduling (§5.5.2).

To avoid external influences, the external fan was turned off. Unless otherwise

specified, the temperature threshold was set to 65°C, and the CPU and GPU cores

were running at the maximum frequency. During our experiments, the WCET of

each job was recorded to check whether the job deadlines were met. The CPU/GPU

execution time, power dissipation, and period of tasks are provided in Table 5.2.

9TEA identifies thermally-efficient cores depending on the CPU power dissipation offline and
then sequentially bind the task with the highest CPU usage to the next most thermally-efficient
core.

125

1.734 1.73 1.73 1 1 47 62812 59312 70000

1.734 1.73 1.73 1 1 48 62375 59062 70000

1.5555 1.73 1.73 1 1 49 62937 58437 70000

1.428 1.73 1.73 1 1 50 62937 59000 70000

1.734 1.73 1.73 1 1 51 63062 58625 70000

1.734 1.73 1.73 1 1 52 62500 58437 70000

1.326 1.73 1.73 1 1 53 62500 59000 70000

1.5555 1.73 1.73 1 1 54 62625 59812 70000

1.326 1.73 1.73 1 1 55 63062 60875 70000

1.428 1.73 1.73 1 1 56 62500 61062 70000

1.734 1.73 1.73 1 1 57 62937 59937 70000

1.734 1.73 1.73 1 1 58 62937 59937 70000

1.734 1.73 1.73 1 1 59 63062 59625 70000

1.734 1.73 1.73 1 1 60 62812 59375 70000

1.734 1.73 1.73 1 1 61 62937 59062 70000

1.734 1.73 1.73 1 1 62 62937 59812 70000

1.5555 1.73 1.73 1 1 63 63125 59000 70000

1.734 1.73 1.73 1 1 64 63437 60875 70000

1.326 1.73 1.73 1 1 65 62500 60875 70000

1.734 1.73 1.73 1 1 66 63562 59687 70000

1.632 1.73 1.73 1 1 67 62937 59687 70000

1.5555 1.73 1.73 1 1 68 63062 59000 70000

1.632 1.73 1.73 1 1 69 62937 59625 70000

1.734 1.73 1.73 1 1 70 62625 59187 70000

1.734 1.73 1.73 1 1 71 63562 59000 70000

1.734 1.73 1.73 1 1 72 62812 59625 70000

1.734 1.73 1.73 1 1 73 63562 60562 70000

1.326 1.73 1.73 1 1 74 62500 59500 70000

1.734 1.73 1.73 1 1 75 63250 60750 70000

1.734 1.73 1.73 1 1 76 62375 59812 70000

1.734 1.73 1.73 1 1 77 63125 60125 70000

1.326 1.73 1.73 1 1 78 63375 59812 70000

1.428 1.73 1.73 1 1 79 62812 59625 70000

1.734 1.73 1.73 1 1 80 63062 59625 70000

1.734 1.73 1.73 1 1 81 62812 59625 70000

1.734 1.73 1.73 1 1 82 62937 59687 70000

1.734 1.73 1.73 1 1 83 63687 60375 70000

1.734 1.73 1.73 1 1 84 62812 59500 70000

1.734 1.73 1.73 1 1 85 63375 59687 70000

1.734 1.73 1.73 1 1 86 63250 59375 70000

1.734 1.73 1.73 1 1 87 63562 59312 70000

1.734 1.73 1.73 1 1 88 62937 58750 70000

1.734 1.73 1.73 1 1 89 63562 59375 70000

1.428 1.73 1.73 1 1 90 62937 59312 70000

1.326 1.73 1.73 1 1 91 62812 59000 70000

1.734 1.73 1.73 1 1 92 63750 59375 70000

0

0.5

1

1.5

2

50

54

58

62

66

70

74

0 200 400 600 800

F
re

q
u

en
cy

 (
G

H
z)

T
em

p
er

at
u

re
 (

C
)

Time (s)

Tmax Temperature Frequency

0

100

200

300

400

500

0 200 400 600 800R
es

p
o

n
se

 t
im

e
(m

s)

Time(s)

Deadline

Response time

0

0.5

1

1.5

2

50

54

58

62

66

70

0 200 400 600 800

F
re

q
u

en
cy

 (
G

H
z)

T
em

p
er

at
u

re
 (

C
)

Time (s)

Tmax Temperature Frequency

0

100

200

300

400

500

0 200 400 600 800R
es

p
o

n
se

 t
im

e
(m

s)

Time(s)

Deadline

Response time

(a) BASE

1.734 1.73 1.73 1 1 47 62812 59312 70000

1.734 1.73 1.73 1 1 48 62375 59062 70000

1.5555 1.73 1.73 1 1 49 62937 58437 70000

1.428 1.73 1.73 1 1 50 62937 59000 70000

1.734 1.73 1.73 1 1 51 63062 58625 70000

1.734 1.73 1.73 1 1 52 62500 58437 70000

1.326 1.73 1.73 1 1 53 62500 59000 70000

1.5555 1.73 1.73 1 1 54 62625 59812 70000

1.326 1.73 1.73 1 1 55 63062 60875 70000

1.428 1.73 1.73 1 1 56 62500 61062 70000

1.734 1.73 1.73 1 1 57 62937 59937 70000

1.734 1.73 1.73 1 1 58 62937 59937 70000

1.734 1.73 1.73 1 1 59 63062 59625 70000

1.734 1.73 1.73 1 1 60 62812 59375 70000

1.734 1.73 1.73 1 1 61 62937 59062 70000

1.734 1.73 1.73 1 1 62 62937 59812 70000

1.5555 1.73 1.73 1 1 63 63125 59000 70000

1.734 1.73 1.73 1 1 64 63437 60875 70000

1.326 1.73 1.73 1 1 65 62500 60875 70000

1.734 1.73 1.73 1 1 66 63562 59687 70000

1.632 1.73 1.73 1 1 67 62937 59687 70000

1.5555 1.73 1.73 1 1 68 63062 59000 70000

1.632 1.73 1.73 1 1 69 62937 59625 70000

1.734 1.73 1.73 1 1 70 62625 59187 70000

1.734 1.73 1.73 1 1 71 63562 59000 70000

1.734 1.73 1.73 1 1 72 62812 59625 70000

1.734 1.73 1.73 1 1 73 63562 60562 70000

1.326 1.73 1.73 1 1 74 62500 59500 70000

1.734 1.73 1.73 1 1 75 63250 60750 70000

1.734 1.73 1.73 1 1 76 62375 59812 70000

1.734 1.73 1.73 1 1 77 63125 60125 70000

1.326 1.73 1.73 1 1 78 63375 59812 70000

1.428 1.73 1.73 1 1 79 62812 59625 70000

1.734 1.73 1.73 1 1 80 63062 59625 70000

1.734 1.73 1.73 1 1 81 62812 59625 70000

1.734 1.73 1.73 1 1 82 62937 59687 70000

1.734 1.73 1.73 1 1 83 63687 60375 70000

1.734 1.73 1.73 1 1 84 62812 59500 70000

1.734 1.73 1.73 1 1 85 63375 59687 70000

1.734 1.73 1.73 1 1 86 63250 59375 70000

1.734 1.73 1.73 1 1 87 63562 59312 70000

1.734 1.73 1.73 1 1 88 62937 58750 70000

1.734 1.73 1.73 1 1 89 63562 59375 70000

1.428 1.73 1.73 1 1 90 62937 59312 70000

1.326 1.73 1.73 1 1 91 62812 59000 70000

1.734 1.73 1.73 1 1 92 63750 59375 70000

0

0.5

1

1.5

2

50

54

58

62

66

70

74

0 200 400 600 800

F
re

q
u

en
cy

 (
G

H
z)

T
em

p
er

at
u

re
 (

C
)

Time (s)

Tmax Temperature Frequency

0

100

200

300

400

500

0 200 400 600 800R
es

p
o

n
se

 t
im

e
(m

s)
Time(s)

Deadline

Response time

0

0.5

1

1.5

2

50

54

58

62

66

70

0 200 400 600 800

F
re

q
u

en
cy

 (
G

H
z)

T
em

p
er

at
u

re
 (

C
)

Time (s)

Tmax Temperature Frequency

0

100

200

300

400

500

0 200 400 600 800R
es

p
o

n
se

 t
im

e
(m

s)

Time(s)

Deadline

Response time

(b) TEA
1.5555 1.73 1.73 1 1 24 62187 59312 70000

1.428 1.73 1.73 1 1 25 62187 59687 70000

1.734 1.73 1.73 1 1 26 62062 59687 70000

1.5555 1.73 1.73 1 1 27 62812 59375 70000

1.734 1.73 1.73 1 1 28 62312 59625 70000

1.734 1.73 1.73 1 1 29 62000 59937 70000

1.734 1.73 1.73 1 1 30 62812 59312 70000

1.734 1.73 1.73 1 1 31 62375 59500 70000

1.734 1.73 1.73 1 1 32 62062 58000 70000

1.734 1.73 1.73 1 1 33 62000 57375 70000

1.326 1.73 1.73 1 1 34 62312 57062 70000

1.734 1.73 1.73 1 1 35 62187 56750 70000

1.734 1.73 1.73 1 1 36 63062 56750 70000

1.734 1.73 1.73 1 1 37 62812 58000 70000

1.632 1.73 1.73 1 1 38 62687 58000 70000

1.734 1.73 1.73 1 1 39 63062 58250 70000

1.632 1.73 1.73 1 1 40 62687 58000 70000

1.734 1.73 1.73 1 1 41 62812 59812 70000

1.5555 1.73 1.73 1 1 42 62500 59812 70000

1.734 1.73 1.73 1 1 43 62687 58625 70000

1.734 1.73 1.73 1 1 44 63062 58437 70000

1.734 1.73 1.73 1 1 45 62937 60687 70000

1.224 1.73 1.73 1 1 46 62375 59937 70000

30

0 200 400R
es

p
o

n
se

 t
im

e
(m

s)

Time(s)

0

0.5

1

1.5

2

50

54

58

62

66

70

0 200 400 600 800

F
re

q
u

en
cy

 (
G

H
z)

T
em

p
er

at
u

re
 (

C
)

Time (s)

Tmax Temperature Frequency

0

100

200

300

400

500

0 200 400 600 800R
es

p
o

n
se

 t
im

e
(m

s)

Time(s)

Deadline

Response time

(c) RT-TAS

Figure 5.6: RT-TAS avoids thermal throttling by reducing maximum temperature,
thus achieving a reliable response time.

5.6.2 Effectiveness at Reducing Temperature

We first demonstrated RT-TAS’s effective reduction of the maximum chip

temperature, thus achieving reliable performance of a real-time vision system. Fig. 5.6

plots the maximum transient temperature among cores, CPU frequency, and task

response time for different schemes. With BASE (Fig. 5.6a), the temperature

126

55

60

65

70

BASE TEA RT-TAS

T
em

p
er

at
u

re
 (

C
)

CPU1 CPU2 CPU3 CPU4 GPU

Figure 5.7: Core-level peak temperature
under different scheduling policies.

0

0.2

0.4

0.6

0.8

1

54 56 58 60 62 64 66 68 70 72

C
D

F

Temperature (C)

BASE

TEA

RT-TAS

Figure 5.8: Maximum temperature CDF
under different scheduling policies.

exceeded the threshold at approximately 200s and hardware thermal throttling was

triggered to reduce the processor frequency from 1.7GHz to 0.5GHz. As a result,

the maximum response time increased from 309ms to 493ms, violating the deadline

(400ms). However, the chip temperature increased further, reaching up to 73°C.

With TEA (Fig. 5.6b), the maximum temperature increased less rapidly than with

BASE, but the temperature exceeded the threshold at approximately 800s, and

experienced thermal throttling thereafter. With RT-TAS (Fig. 5.6c), the temperature

remained below the threshold maintaining the maximum CPU frequency and reliable

response time. RT-TAS achieves this by addressing the temperature imbalance on its

underlying platform.

Fig. 5.7 compares the CPUs’ and GPU’s peak temperatures, demonstrating

how RT-TAS mitigated the temperature imbalance. With BASE, tasks were

assigned without considering the temperature imbalance, which led to the max-min

temperature difference of 7.5°C. Consequently, the CPU temperatures increased

unevenly, causing the highest maximum temperature of 72.9 °C. With TEA, tasks

were assigned to the thermally-efficient core first, distributing workloads more

effectively across CPU cores than with BASE. However, tasks were assigned to hot

CPU cores (i.e., CPU1, CPU3), resulting in the maximum temperature of 66.7°C with

a max-min temperature difference of 5.7°C. RT-TAS assigned tasks to the core in a

thermally-balanced manner by capturing the different core-level GPU heating impact

and power variations of tasks. Therefore, RT-TAS reduced the max-min difference

to 1°C, and the maximum temperature to 60.7°C. Fig. 5.8 compares the maximum

127

56

58

60

62

64

0 100 200 300 400 500 600

M
ax

 T
em

p
 (

C
)

Time (s)

w/o co-scheduling w/ co-scheduling

Figure 5.9: Transient temperatures w/o and w/ CPU–GPU co-scheduling.

0 5 10 15 20 25 30

GPU

CPU

Time (ms)

Cold Task Hot Task

(a) w/o co-scheduling

0 5 10 15 20 25 30

GPU

CPU

Time (ms)

Hot Task Cold Task

(b) w/ co-scheduling

Figure 5.10: Job schedule (a) w/o and (b) w/ co-scheduling.

temperature dynamics over time for different schemes. RT-TAS could reduce the

peak temperature (at the 100% percentile) by up to 6°C and 12.2°C compared with

TEA and BASE, respectively.

Next, we analyzed the impact of co-scheduling by running the same experiment

without and with co-scheduling. Fig. 5.9 compares the transient temperature

variations over time without and with co-scheduling. The peak temperature

under CPU–GPU co-scheduling was 61.5°C at 217 seconds, whereas that without

co-scheduling was 63.6°C. Fig. 5.10 shows the actual schedule of jobs in a

specific time interval without and with co-scheduling. Without co-scheduling, tasks

were scheduled in a fixed-priority order on the CPUs and GPU independently

(Fig. 5.10a). In such a case, the CPUs and GPU may simultaneously perform peak

computations (running hot tasks), and thus incur a peak total power dissipation.

With co-scheduling the CPUs and GPU together, RT-TAS avoided the overlap of

simultaneous peak computations on the CPUs and GPU to reduce the peak power

dissipation (Fig. 5.10b). As a result, co-scheduling effectively mitigated any excessive

rise in transient temperature by avoiding bursts of peak power dissipation. We also

analyzed the effectiveness of task assignment and co-scheduling at reducing the peak

128

Table 5.3: Task-set generation parameters.

Number of CPUs (M) 4
Number of tasks (n) 8

Maximum number of GPU sections (ηi) 2
Maximum CPU execution time (eCi) 100ms

Maximum CPU power dissipation (PC
i) 2.5W

Maximum GPU execution time (eGi) 100ms
Maximum GPU power dissipation (PG

i) 6W
Utilization per CPU (

∑
τi
ui/M) 0.3

temperature, respectively. Overall, thermally-balanced assignment and CPU–GPU

co-scheduling reduced the maximum temperature by 3.9°C and 2.1°C, respectively,

resulting in a total temperature reduction of 6°C compared with TEA. This 6°C

reduction in maximum temperature translates to a 1.52× longer chip lifetime10 [118]

and cooling cost savings of US$ 15.6 per chip11 [9, 114].

5.6.3 Evaluation with Different Task Sets

Next, we evaluated RT-TAS with different task sets using the parameters measured

through the experiments. The base parameters in Table 5.3 were acquired from the

above mentioned platform and sample vision tasks. We randomly generated 1,000

task sets, and task execution parameters (ηi, e
C
i , e

G
i , P

G
i) were set to be uniformly

distributed within their maximum bounds. Next, the task utilization was determined

according to the UUniFast algorithm [21], and the task period was set to pi = (eCi +

eGi)/ui. We also used the identified platform thermal parameters in Table 5.1 and the

thermal model in Eq. (5.6) to estimate the chip temperature. We compared RT-TAS

against two baseline algorithms, FFD and WFD, in Sec. 5.5.1.

10Chip lifetime is typically estimated by mean-time-to-failure MTTF ∝ mean(kT (t)
exp(−Ea/k·T (t)))

where k,Ea are the Boltzmann and activation energy constant [118]. We evaluate MTTF using the
above equation and temperature traces.

11Cooling power and chip temperature is modeled by Pcooling =
∆Tchip

Rchip
where Pcooling is the heat

extracted, Rchip is the chip thermal resistance, ∆Tchip is the temperature reduction. To reduce
6°C for the chip with the thermal resistance of 1.15°C/W , the cooling solution needs to extract

6
1.15 = 5.2W of thermal dissipation. The cooling cost is estimated by 3$/W [114] and the saving is
5.2× 3 = 15.6$.

129

0

0.2

0.4

0.6

0.8

1

40 50 60 70 80

C
D

F

Temperature (C)

FFD

WFD

RT-TAS

Figure 5.11: Maximum temperature CDF for different task sets.

Fig. 5.11 plots the maximum temperature dynamics for different task sets with

base parameters. The maximum temperature reduction by RT-TAS was up to 8.3°C

and 5.0°C on average. From the base task set parameters, we varied i) utilization

ii) GPU execution time, and iii) task-level power variation for each experiment

setting. We highlight the following three observations: the maximum temperature

reduction by RT-TAS became more pronounced for i) lower overall utilization, ii)

higher maximum GPU execution time, and iii) larger variation of task-level power

dissipations. The temperature decrease by RT-TAS diminished as the utilization

increased, because a task assignment can no longer avoid assigning tasks to hot

CPU cores. As the utilization per CPU increased from 0.3 to 0.6, the maximum

temperature reduction by RT-TAS decreased from 5.0°C to 2.1°C on average. As the

GPU execution time increased, the temperature reduction by RT-TAS became more

pronounced because of the increasing temperature imbalance across CPU cores and

the overlap between GPU and CPU executions. When the ratio of GPU execution

time to CPU execution time increased from 0.1 to 1, the maximum temperature

reduction by RT-TAS increased from 1.1°C to 4.6°C on average.

When the variation in task-level power dissipation was large, the temperature

decrease by RT-TAS became more pronounced. Furthermore, when the maximum

difference between task-level power dissipations increased from 10W to 15W ,

maximum temperature reduction by RT-TAS increases from 5.6°C to 11.5°C on

average. Such an improvement can be interpreted as the benefit of taking different

task-level power dissipations and the platform’s temperature imbalance into account

130

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8S
ch

ed
u

la
b
le

 S
et

(%
)

Utilization per CPU

FFD WFD RT-TAS

0

20

40

60

80

100

0.3 0.5 0.7 0.9 1.1 1.3 1.5S
ch

ed
u

la
b
le

 S
et

(%
)

Ratio of GPU execution time/CPU execution time

FFD WFD RT-TAS(a) Varied utilization

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8S
ch

ed
u

la
b
le

 S
et

(%
)

Utilization per CPU

FFD WFD RT-TAS

0

20

40

60

80

100

0.3 0.5 0.7 0.9 1.1 1.3 1.5S
ch

ed
u

la
b
le

 S
et

(%
)

Ratio of GPU execution time/CPU execution time

FFD WFD RT-TAS

(b) Varied GPU/GPU execution time

Figure 5.12: Schedulability for various utilizations and GPU execution times.

in task-to-core assignment and scheduling.

We finally discuss RT-TAS’s impact on schedulability. Fig. 5.12 plots the

schedulability as a percentage of the schedulable task sets out of 1,000 task sets with

varied (a) utilization per CPU, and (b) ratio of GPU execution time to CPU execution

time. While FFD generated the largest number of feasible assignments across different

task set configurations, T-WFD could achieve schedulability comparable to FFD.

Across various configurations, T-WFD yielded only 3.6% less schedulable sets than

FFD on average.

5.7 Conclusion

Embedded real-time systems running on integrated CPUs–GPU platforms should

consider CPUs–GPU thermal coupling and the different CPU and GPU power

dissipations of tasks when making their scheduling decisions. To address this problem,

we developed RT-TAS, a new thermal-aware scheduling framework, by proposing

a thermally-balanced task assignment algorithm. We considered the platform-level

temperature imbalance and a CPU–GPU co-scheduling policy to prevent CPUs and

the GPU from generating large amounts of heat simultaneously while meeting all

timing constraints. Our evaluation on a typical embedded platform with automotive

vision workloads demonstrated the effectiveness of RT-TAS in reducing the maximum

chip temperature, thus improving reliability and saving cooling costs.

131

In this chapter, we considered partitioned fixed-priority scheduling with the MPCP

protocol as a baseline. In the future, we would like to extend our task-to-core

assignment and CPU–GPU co-scheduling to other baseline scheduling algorithms

and GPU access protocols, and identify which scheduling algorithm with which GPU

access protocol is effective in thermal-aware task scheduling on integrated CPUs–GPU

platforms. We also plan to extend the proposed approach to multi-GPU platforms.

132

CHAPTER VI

Conclusion and Future Directions

Emerging embedded systems, such as wearable/IoT devices and connected cars,

pose new challenges in meeting both their thermal and QoS requirements. Thermal-

and QoS-aware embedded systems must cope with changing ambient temperature,

platform thermal characteristics, and dynamic application workloads. We have

developed four novel embedded battery and thermal management systems that are

adaptive, effective, and practical to meet these challenges. We now summarize

the contributions, limitations, and lessons learned as well as discuss future research

directions.

6.1 Contributions, Limitations, and Lessons Learned

Contributions. This thesis covers the intersection between cyber system

dynamics and battery/thermal dynamics. By capturing such multi-dynamics in

environment, platform, and application levels, the proposed systems adapt to

changing battery/thermal conditions in real time. Building on the analysis of

underlying hardware and applications, they are shown to be effective in satisfying

applications’ QoS and battery/thermal requirements. Finally, the thesis has shown

the proposed systems to be practical by implementing and demonstrating them on

real-world smartphones or industrial embedded controllers used in cars.

133

In Chapter II, we developed BPM to address unpredictable shutoffs for smartphones

in cold environments based on battery temperature characteristics. In Chapter III,

we developed eTEC to mitigate system and battery overheating for mobile devices

by jointly optimizing cooling power and chip heat dissipation. In Chapter IV

and V, we developed a thermal-aware scheduler specifically designed for embedded

real-time systems. RT-TRM defines the dynamic thermal budget as a function of

changing ambient temperature and adaptively allocates thermal budget to individual

tasks. Furthermore, RT-TAS identifies the thermal imbalance in CPUs–GPU SoCs

and efficiently schedules CPU–GPU power dissipations to minimize the maximum

chip temperature while meeting application timing constraints. All of these four

proposed systems were implemented and evaluated on mobile/automotive platforms

to demonstrate their adaptivity, effectiveness, and practicality.

Limitations. Although our thermal management systems provide adaptivity,

effectiveness, and practicality, they have three limitations as highlighted next. First,

hardware cooling solutions remain as the primary approach to removing heat from

electronic devices. Our thermal management systems cannot substitute the adequate

hardware cooling design; they rather supplement such hardware cooling design with

various runtime methods to provide adaptivity and effectiveness. Second, advanced

thermal management algorithms often incur high power dissipation, defeating the

purpose of thermal management. This limits the complexity and runtime overhead of

our thermal management algorithms. Third, our thermal management relies on offline

characterization to compensate for hardware heterogeneity among different platforms,

which limits the usability of the proposed frameworks for various devices/platforms.

Lessons Learned. As physical limits become the norm for modern computer

systems, computer scientists must understand the underlying physical dynamics as

well as the cyber systems. We have learned that thermal and battery engineers often

oversimplify cyber systems behavior; thus, computer scientists must provide unique

134

insights on dynamic application behavior, workload characterization, and user-level

QoS. Finally, we must stress the importance of the design of experiment (DoE)

because physical behavior is often hard to replicate and takes longer to experiment

with than cyber systems.

6.2 Future Directions

Battery and thermal management will continue to present unique challenges to

future cyber-physical systems and wearable/IoT devices, mainly because of advancing

embedded artificial intelligence applications and increasing hardware heterogeneity.

A large and diverse set of underlying architectures and autonomous systems therein

will dominate the cyber-physical systems of the future, creating new power and

thermal challenges on constrained embedded platforms. We must rethink power and

thermal management strategies to deploy state-of-the-art machine learning systems

on embedded platforms. Here, we discuss future research directions that can build

on this thesis at both the hardware- (i.e., energy storage and computation platform)

and application-level.

Software-Defined Batteries for Cyber-Physical Systems/IoTs. A major

challenge related to the mass proliferation of IoT devices is that of various types

of energy storage or batteries. Users are increasingly frustrated with unexpected

device shutoffs, battery capacity fading, and even explosions. Traditional system

power/thermal management mechanisms assume batteries to be the ideal power

source, thus failing to understand and control dynamic battery power/thermal

behaviors. We should explore new system-level interfaces between batteries, systems,

and users that abstract complex battery dynamics for systems and users perspectives

[61]. Software-defined batteries will improve the state of the art by offering users

a more intuitive interface to monitor and/or control their battery health, potential

thermal emergency, and power supply capability [58]. Software-defined batteries can

135

be part of a more general direction toward heterogeneous power sources. We should

extend hybrid energy storage systems (HESS) [73] as a new way of designing power

delivery systems for sensors and IoTs. Additionally, we can explore the system-level

implication and interfaces of HESS that will empower future cyber-physical systems.

Machine Learning on Constrained Embedded Platforms. Because of the

constrained nature of many embedded platforms in practice, state-of-the-art machine

learning algorithms often cannot run on embedded platforms. We need to optimize

machine learning algorithms to be run on constrained platforms. In particular,

we must address the various challenges of power/thermal constraints and real-time

support for machine learning systems running on heterogeneous platforms. Such

systems can be built on highly heterogeneous platforms consisting of GPUs, FPGAs,

ASICs, and traditional CPUs. We will need to establish a methodology for

distributing machine learning tasks on heterogeneous computing units in both the

OS and compiler-level while meeting both thermal and real-time requirements.

Application Context-Aware Power Management. Various application-level

contexts in many cyber-physical systems and IoT applications present unique

opportunities for efficient resource management. We often observe system workloads

and timing/power behaviors significantly changing in different application-level

contexts. For example, depending on the distance to the car ahead, the processing

times of adaptive cruise control (ACC) and active vehicle steering (AVS) vary

significantly. In vision-based object detection systems, different driving contexts

(e.g., a highway or urban area) generate different amounts of workload and power

consumption behaviors for vision tasks. We need to investigate context-aware

resource/power management mechanisms that adapt to different application-level

contexts and QoS requirements.

136

BIBLIOGRAPHY

137

BIBLIOGRAPHY

[1] Youngmoon Lee, Liang He, Eugene Kim, and Kang G Shin. Causes and fixes
of unexpected mobile device shutoffs. In arXiv preprint, 2019.

[2] Youngmoon Lee, Eugene Kim, and Kang G. Shin. Efficient thermoelectric
cooling for mobile devices. In ISLPED, 2017.

[3] Youngmoon Lee, Hoon Sung Chwa, Kang G Shin, and Shige Wang.
Thermal-aware resource management for embedded real-time systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
37(11):2857–2868, 2018.

[4] Youngmoon Lee, Hoon Sung Chwa, and Kang G Shin. Thermal-aware
scheduling for integrated cpus-gpu platforms. ACM Transactions on Embedded
Computing Systems, 18(5s):90, 2019.

[5] Antutu Mobile Benchmark. http://web.archive.org/web/20190915034122/
https://play.google.com/store/apps/details?id=com.antutu.

ABenchMark.

[6] iPhone Performance and Battery Age. https://web.archive.org/

web/20190925175455/https://www.geekbench.com/blog/2017/12/

iphone-performance-and-battery-age/.

[7] Peltier Module CP60. https://web.archive.org/web/20190615193958/

https://www.cui.com/product/resource/cp60.pdf.

[8] UI/Application Exerciser Monkey. https://web.archive.org/web/

20191010145634/https://developer.android.com/studio/test/monkey.

[9] Tegra X1 Thermal Design Guide. Technical Report TDG-08214-001, Nvidia,
2018.

[10] Rehan Ahmed, Pengcheng Huang, Max Millen, and Lothar Thiele. On the
design and application of thermal isolation servers. ACM Transactions on
Embedded Computing Systems, 16(5s):165, 2017.

[11] Rehan Ahmed, Parameswaran Ramanathan, and Kewal K Saluja. On thermal
utilization of periodic task sets in uni-processor systems. In RTCSA, 2013.

138

http://web.archive.org/web/20190915034122/https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
http://web.archive.org/web/20190915034122/https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
http://web.archive.org/web/20190915034122/https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://web.archive.org/web/20190925175455/https://www.geekbench.com/blog/2017/12/iphone-performance-and-battery-age/
https://web.archive.org/web/20190925175455/https://www.geekbench.com/blog/2017/12/iphone-performance-and-battery-age/
https://web.archive.org/web/20190925175455/https://www.geekbench.com/blog/2017/12/iphone-performance-and-battery-age/
https://web.archive.org/web/20190615193958/https://www.cui.com/product/resource/cp60.pdf
https://web.archive.org/web/20190615193958/https://www.cui.com/product/resource/cp60.pdf
https://web.archive.org/web/20191010145634/https://developer.android.com/studio/test/monkey
https://web.archive.org/web/20191010145634/https://developer.android.com/studio/test/monkey

[12] Rehan Ahmed, Parameswaran Ramanathan, and Kewal K Saluja. Necessary
and sufficient conditions for thermal schedulability of periodic real-time tasks.
In ECRTS, 2014.

[13] Rehan Ahmed, Parameswaran Ramanathan, and Kewal K Saluja. Temperature
minimization using power redistribution in embedded systems. In VLSI Design,
2014.

[14] Tarek A AlEnawy and Hakan Aydin. Energy-aware task allocation for rate
monotonic scheduling. In RTAS, 2005.

[15] Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mej́ıa-Alvarez.
Power-aware scheduling for periodic real-time tasks. IEEE Transactions on
Computers, 53(5):584–600, 2004.

[16] Hakan Aydin and Qi Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Parallel and Distributed Processing Symposium, 2003.

[17] Anirudh Badam, Ranveer Chandra, Jon Dutra, Anthony Ferrese, Steve Hodges,
Pan Hu, Julia Meinershagen, Thomas Moscibroda, Bodhi Priyantha, and
Evangelia Skiani. Software defined batteries. In SOSP, 2015.

[18] Peter Bailis, Vijay Janapa Reddi, Sanjay Gandhi, David Brooks, and Margo
Seltzer. Dimetrodon: processor-level preventive thermal management via idle
cycle injection. In DAC, 2011.

[19] Luca Benini, Giuliano Castelli, Alberto Macii, Enrico Macii, Massimo
Poncino, and Riccardo Scarsi. Discrete-time battery models for system-level
low-power design. IEEE Transactions on Very Large Scale Integration Systems,
9(5):630–640, 2001.

[20] Theodore L Bergman. Introduction to heat transfer. John Wiley & Sons, 2011.

[21] Enrico Bini and Giorgio C Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154, 2005.

[22] Christoph Birkl, Euan McTurk, Matthew Roberts, Peter Bruce, and David
Howey. A parametric open circuit voltage model for lithium ion batteries.
Journal of The Electrochemical Society, 162(12):A2271–A2280, 2015.

[23] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic integrated
scheduling of hard real-time, soft real-time and non-real-time processes. In
RTSS, 2003.

[24] Duc Hoang Bui, Yunxin Liu, Hyosu Kim, Insik Shin, and Feng Zhao. Rethinking
energy-performance trade-off in mobile web page loading. In MobiCom, 2015.

[25] Thidapat Chantem, X. Sharon Hu, and Robert P. Dick. Online Work
Maximization Under a Peak Temperature Constraint. In ISPLED, 2009.

139

[26] Thidapat Chantem, X Sharon Hu, and Robert P Dick. Temperature-aware
scheduling and assignment for hard real-time applications on MPSoCs. IEEE
Transactions on Very Large Scale Integration Systems, 2011.

[27] Thidapat Chantem, Y Xiang, Xs Hu, and Robert Dick. Enhancing multicore
reliability through wear compensation in online assignment and scheduling. In
DATE, 2013.

[28] Thidapat Chantem, Yun Xiang, X Sharon Hu, and Robert P Dick. Enhancing
multicore reliability through wear compensation in online assignment and
scheduling. In DATE, 2013.

[29] Pedro Chaparro, José González, Qiong Cai, and Greg Chrysler. Dynamic
Thermal Management using Thin-Film Thermoelectric Cooling. In ISPLED,
2009.

[30] Jian-Jia Chen, Chia-Mei Hung, and Tei-Wei Kuo. On the minimization fo the
instantaneous temperature for periodic real-time tasks. In RTAS, 2007.

[31] Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. Proactive speed scheduling
for real-time tasks under thermal constraints. In RTAS, 2009.

[32] Carla-Fabiana Chiasserini and Ramesh R Rao. Pulsed battery discharge in
communication devices. In MobiCom, 1999.

[33] Minki Cho, William Song, Sudhakar Yalamanchili, and Saibal Mukhopadhyay.
Thermal system identification (TSI): A methodology for post-silicon
characterization and prediction of the transient thermal field in multicore chips.
In SEMI-THERM, 2012.

[34] Seunghyuk Choi, Thalmayr, Florian, Dominik Wee, and Florian Weig.
Advanced driver-assistance systems: Challenges and opportunities ahead.
https://www.mckinsey.com/industries/semiconductors/our-insights/

advanced-driver-assistance-systems-challenges-and-opportunities-ahead,
Feb 2016.

[35] Yohan Chon, GwangMin Lee, Rhan Ha, and Hojung Cha. Crowdsensing-based
smartphone use guide for battery life extension. In UbiComp, 2016.

[36] Ihtesham Chowdhury, Ravi Prasher, Kelly Lofgreen, Gregory Chrysler,
Sridhar Narasimhan, Ravi Mahajan, David Koester, Randall Alley, and
Rama Venkatasubramanian. On-chip cooling by superlattice-based thin-film
thermoelectrics. Nature nanotechnology, 4(4):235–238, 2009.

[37] Hoon Sung Chwa, Kang G. Shin, Hyeongboo Baek, and Jinkyu Lee.
Physical-state-aware dynamic slack management for mixed-criticality systems.
In RTAS, 2018.

140

https://www.mckinsey.com/industries/semiconductors/our-insights/ advanced-driver-assistance-systems-challenges-and-opportunities-ahead
https://www.mckinsey.com/industries/semiconductors/our-insights/ advanced-driver-assistance-systems-challenges-and-opportunities-ahead

[38] Edward G Coffman, Gabor Galambos, Silvano Martello, and Daniele Vigo. Bin
packing approximation algorithms: Combinatorial analysis. In Handbook of
combinatorial optimization, 151–207, 1999.

[39] Tommaso Cucinotta, Luigi Palopoli, Luca Abeni, Dario Faggioli, and Giuseppe
Lipari. On the integration of application level and resource level QoS control
for real-time applications. IEEE Transactions on Industrial Informatics,
6(4):479–491, 2010.

[40] Anup Das, Matthew J Walker, Andreas Hansson, Bashir M Al-Hashimi,
and Geoff V Merrett. Hardware-software interaction for run-time power
optimization: A case study of embedded linux on multicore smartphones. In
ISLPED, 2015.

[41] David Defour and Eric Petit. Gpuburn: A system to test and mitigate gpu
hardware failures. In SAMOS, 2013.

[42] Kapil Dev and Sherief Reda. Scheduling challenges and opportunities in
integrated cpu+ gpu processors. In ESTIMedia, 2016.

[43] Kapil Dev, Xin Zhan, and Sherief Reda. Scheduling on CPU+GPU Processors
Under Dynamic Conditions. Journal of Low Power Electronics, 13(4):551–568,
2017.

[44] Mohammad Javad Dousti, Majid Ghasemi-gol, Mahdi Nazemi, and Massoud
Pedram. ThermTap : An Online Power Analyzer and Thermal Simulator for
Android Devices. In ISPLED, 2015.

[45] Mohammad Javad Dousti and Massoud Pedram. Platform-dependent,
leakage-aware control of the driving current of embedded thermoelectric coolers.
In ISPLED, 2013.

[46] Mohammad Javad Dousti and Massoud Pedram. Power-Aware Deployment and
Control of Forced-Convection and Thermoelectric Coolers. In DAC, 2014.

[47] Christof Ebert and John Favaro. Automotive software. IEEE Software,
34:33–39, May 2017.

[48] Glenn A Elliott, Bryan C Ward, and James H Anderson. GPUSync: A
framework for real-time GPU management. In RTSS, 2013.

[49] Ericsson. Ericsson Mobility Report. http://web.

archive.org/web/20190904133641/https://www.ericsson.

com/assets/local/mobility-report/documents/2015/

ericsson-mobility-report-june-2015.pdf, June 2016.

[50] Matteo Ferroni, Andrea Cazzola, Domenico Matteo, Alessandro Antonio Nacci,
Donatella Sciuto, and Marco Domenico Santambrogio. Mpower: gain back your
android battery life! In UbiComp, 2013.

141

http://web.archive.org/web/20190904133641/https://www.ericsson.com/assets/local/mobility-report/documents/2015/ericsson-mobility-report-june-2015.pdf
http://web.archive.org/web/20190904133641/https://www.ericsson.com/assets/local/mobility-report/documents/2015/ericsson-mobility-report-june-2015.pdf
http://web.archive.org/web/20190904133641/https://www.ericsson.com/assets/local/mobility-report/documents/2015/ericsson-mobility-report-june-2015.pdf
http://web.archive.org/web/20190904133641/https://www.ericsson.com/assets/local/mobility-report/documents/2015/ericsson-mobility-report-june-2015.pdf

[51] Nathan Fisher, Jian-Jia Jia Chen, Shengquan Wang, and Lothar Thiele.
Thermal-Aware Global Real-Time Scheduling on Multicore Systems. In RTAS,
2009.

[52] Freescale. iMX 6Dual/6Quad Power Consumption Measurement:
Table 1. VDDARM, VDDSOC, VDDPU Voltage Levels. http:

//web.archive.org/web/20190826131445/https://cache.freescale.

com/files/32bit/doc/app_note/AN4509.pdf.

[53] Freescale. Technical Data Applications Processors: Table 5. FCPBGA Package
Thermal Resistance. http://web.archive.org/web/20190827023750/https:
//www.nxp.com/docs/en/data-sheet/IMX6DQIEC.pdf.

[54] Yong Fu, Nicholas Kottenstette, Yingming Chen, Chenyang Lu, Xenofon D.
Koutsoukos, and Hongan Wang. Feedback Thermal Control for Real-time
Systems. In RTAS, 2010.

[55] Yong Fu, Nicholas Kottenstette, Chenyang Lu, and Xenofon D Koutsoukos.
Feedback thermal control of real-time systems on multicore processors. In
EMSOFT, 2012.

[56] Paolo Gai, Marco Di Natale, Giuseppe Lipari, Alberto Ferrari, Claudio
Gabellini, and Paolo Marceca. A comparison of mpcp and msrp when sharing
resources in the janus multiple-processor on a chip platform. In RTAS, 2003.

[57] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. MiBench : A free , commercially representative
embedded benchmark suite. In IISWC, 2001.

[58] Liang He, Dongyao Chen, Youngmoon Lee, Yuanchao Shu, and Kang G Shin.
Authenticating Drivers Using Automotive Batteries. In arXiv preprint, 2019.

[59] Liang He, Eugene Kim, and Kang G Shin. *-aware charging of lithium-ion
battery cells. In ICCPS, 2016.

[60] Liang He, Eugene Kim, Kang G Shin, Guozhu Meng, and Tian He. Battery
state-of-health estimation for mobile devices. In ICCPS, 2017.

[61] Liang He, Youngmoon Lee, Eugene Kim, and Kang G Shin. Mobile device
batteries as thermometers. In arXiv preprint, 2019.

[62] Liang He, Youngmoon Lee, Eugene Kim, and Kang G Shin. Environment-aware
estimation of battery state-of-charge for mobile devices. In ICCPS, 2019.

[63] Liang He, Guozhu Meng, Yu Gu, Cong Liu, Jun Sun, Ting Zhu, Yang Liu, and
Kang G Shin. Battery-aware mobile data service. IEEE Transactions on Mobile
Computing, 16(6):1544–1558, 2017.

142

http://web.archive.org/web/20190826131445/https://cache.freescale.com/files/32bit/doc/app_note/AN4509.pdf
http://web.archive.org/web/20190826131445/https://cache.freescale.com/files/32bit/doc/app_note/AN4509.pdf
http://web.archive.org/web/20190826131445/https://cache.freescale.com/files/32bit/doc/app_note/AN4509.pdf
http://web.archive.org/web/20190827023750/https://www.nxp.com/docs/en/data-sheet/IMX6DQIEC.pdf
http://web.archive.org/web/20190827023750/https://www.nxp.com/docs/en/data-sheet/IMX6DQIEC.pdf

[64] Liang He, Yu-Chih Tung, and Kang G Shin. icharge: User-interactive charging
of mobile devices. In MobiSys, 2017.

[65] Mohammad A Hoque and Sasu Tarkoma. Characterizing smartphone power
management in the wild. In UbiComp, 2016.

[66] Mohammad A Hoque and Sasu Tarkoma. Sudden drop in the battery level?:
understanding smartphone state of charge anomaly. ACM SIGOPS Operating
Systems Review, 49(2):70–74, 2016.

[67] Mohammad Ashraful Hoque, Matti Siekkinen, Jonghoe Koo, and Sasu
Tarkoma. Full charge capacity and charging diagnosis of smartphone batteries.
IEEE Transactions on Mobile Computing, 16(11):3042–3055, 2017.

[68] Huang Huang, Gang Quan, Jeffery Fan, and Meikang Qiu. Throughput
Maximization for Periodic Real-Time Systems Under the Maximal Temperature
Constraint. In DAC, 2011.

[69] Sriram Jayakumar. Making Sense of Thermoelectrics for Processor Thermal
Management and Energy Harvesting. In ISLPED, 2015.

[70] Ramkumar Jayaseelan and Tulika Mitra. Temperature aware task sequencing
and voltage scaling. In ICCAD, 2008.

[71] R Wayne Johnson, John L Evans, Peter Jacobsen, James R Thompson, and
Mark Christopher. The changing automotive environment: high-temperature
electronics. IEEE Transactions on Electronics Packaging Manufacturing,
27(3):164–176, 2004.

[72] N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[73] Eugene Kim, Jinkyu Lee, Liang He, Youngmoon Lee, and Kang G Shin.
Offline guarantee and online management of power demand and supply in
cyber-physical systems. In RTSS, 2016.

[74] Minyong Kim, Young Geun Kim, Sung Woo Chung, and Cheol Hong Kim.
Measuring variance between smartphone energy consumption and battery life.
Computer, 47(7):59–65, 2014.

[75] Sharath Kodase, Shige Wang, Zonghua Gu, and Kang G Shin. Improving
scalability of task allocation and scheduling in large distributed real-time
systems using shared buffers. In RTAS, 2003.

[76] Joonho Kong, Sung Woo Chung, and Kevin Skadron. Recent thermal
management techniques for microprocessors. ACM Computing Surveys,
44(3):13, 2012.

143

[77] Pratyush Kumar and Lothar Thiele. Cool shapers: Shaping real-time tasks for
improved thermal guarantees. In DAC, 2011.

[78] Pratyush Kumar and Lothar Thiele. System-level power and timing variability
characterization to compute thermal guarantees. In CODES+ISSS, 2011.

[79] Eren Kursun and Chen-Yong Cher. Temperature variation characterization and
thermal management of multicore architectures. IEEE Micro, 29(1):116–126,
2009.

[80] Kai Lampka and Bjorn Forsberg. Keep It Slow and in Time : Online DVFS
with Hard Real-Time Workloads. In DATE, 2016.

[81] Sheng-Chih Lin and Kaustav Banerjee. Cool chips: Opportunities and
implications for power and thermal management. IEEE Transactions on
Electron Devices, 55(1):245–255, 2008.

[82] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the Association for Computing
Machinery, 20(1):46–61, 1973.

[83] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature dependent
integrated circuit leakage power estimation is easy. In DATE, 2007.

[84] Yongpan Liu and Huazhong Yang. Temperature-aware leakage estimation
using piecewise linear power models. IEICE Transactions on Electronics,
93(12):1679–1691, 2010.

[85] Jieyi Long and Seda Ogrenci Memik. A framework for optimizing thermoelectric
active cooling systems. In DAC, 2010.

[86] Yue Ma, Thidapat Chantem, Robert P Dick, Shige Wang, and X Sharon Hu.
An On-Line Framework for Improving Reliability of Real-Time Systems on
Big-Little Type MPSoCs. In DATE, 2017.

[87] Yue Ma, Thidapat Chantem, X Sharon Hu, and Robert P Dick. Improving
lifetime of multicore soft real-time systems through global utilization control.
In GVLSI, 2015.

[88] Nimrod Megiddo. Linear programming in linear time when the dimension is
fixed. Journal of the ACM, 31(1):114–127, 1984.

[89] Chulhong Min, Chungkuk Yoo, Inseok Hwang, Seungwoo Kang, Youngki Lee,
Seungchul Lee, Pillsoon Park, Changhun Lee, Seungpyo Choi, and Junehwa
Song. Sandra helps you learn: the more you walk, the more battery your phone
drains. In UbiComp, 2015.

[90] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering developers
to estimate app energy consumption. In MobiCom, 2012.

144

[91] Navigant Research. Transportation Outlook: 2025 to 2050. http://web.

archive.org/web/20181020005230/https://www.navigantresearch.com/

reports/transportation-outlook-2025-to-2050, 2016.

[92] New York Times. Accused of Slowing Old iPhones, Apple Offers Battery
Discounts. https://web.archive.org/web/20190805185043/https://www.

nytimes.com/2017/12/28/business/apple-iphone-batteries.html, Dec
2017.

[93] New York Times. Galaxy Note 7 Fires Caused by Battery and
Design Flaws, Samsung Says. https://web.archive.org/web/

20190501141352/https://www.nytimes.com/2017/01/22/business/

samsung-galaxy-note-7-battery-fires-report.html, Jan 2017.

[94] Shuichi Oikawa and Raj Rajkumar. Linux RK: A Portable Resource Kernel in
Linux. In RTSS, 1998.

[95] Pratyush Patel, Iljoo Baek, Hyoseung Kim, and Ragunathan Rajkumar.
Analytical Enhancements and Practical Insights for MPCP with
Self-Suspensions. In RTAS, 2018.

[96] Indrani Paul, Srilatha Manne, Manish Arora, W Lloyd Bircher, and Sudhakar
Yalamanchili. Cooperative boosting: needy versus greedy power management.
In ISCA, 2013.

[97] Padmanabhan Pillai and Kang Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. In SOSP, 2001.

[98] Mary C Potter, Brad Wyble, Carl Erick Hagmann, and Emily S McCourt.
Detecting meaning in rsvp at 13 ms per picture. Attention, Perception, &
Psychophysics, 76(2):270–279, 2014.

[99] Alok Prakash, Hussam Amrouch, Muhammad Shafique, Tulika Mitra, and Jörg
Henkel. Improving mobile gaming performance through cooperative cpu-gpu
thermal management. In DAC, 2016.

[100] Danil Prokhorov. Computational intelligence in automotive applications, 132,
Springer, 2008.

[101] Moo-Ryong Ra, Jeongyeup Paek, Abhishek B Sharma, Ramesh Govindan,
Martin H Krieger, and Michael J Neely. Energy-delay tradeoffs in smartphone
applications. In MobiSys, 2010.

[102] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou,
Kevin P Pipe, Thomas F Wenisch, and Milo MK Martin. Computational
sprinting. In HPCA, 2012.

145

http://web.archive.org/web/20181020005230/https://www.navigantresearch.com/reports/transportation-outlook-2025-to-2050
http://web.archive.org/web/20181020005230/https://www.navigantresearch.com/reports/transportation-outlook-2025-to-2050
http://web.archive.org/web/20181020005230/https://www.navigantresearch.com/reports/transportation-outlook-2025-to-2050
https://web.archive.org/web/20190805185043/https://www.nytimes.com/2017/12/28/business/apple-iphone-batteries.html
https://web.archive.org/web/20190805185043/https://www.nytimes.com/2017/12/28/business/apple-iphone-batteries.html
https://web.archive.org/web/20190501141352/https://www.nytimes.com/2017/01/22/business/samsung-galaxy-note-7-battery-fires-report.html
https://web.archive.org/web/20190501141352/https://www.nytimes.com/2017/01/22/business/samsung-galaxy-note-7-battery-fires-report.html
https://web.archive.org/web/20190501141352/https://www.nytimes.com/2017/01/22/business/samsung-galaxy-note-7-battery-fires-report.html

[103] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou,
Kevin P Pipe, Thomas F Wenisch, and Milo MK Martin. Computational
sprinting. In HPCA, 2012.

[104] Daler Rakhmatov, Sarma Vrudhula, and Chaitali Chakrabarti.
Battery-conscious task sequencing for portable devices including voltage/clock
scaling. In DAC, 2002.

[105] Robert Redelmeier. cpuburn. https://github.com/patrickmn/cpuburn.

[106] David Michael Rowe. Thermoelectrics handbook: macro to nano. CRC press,
2005.

[107] Onur Sahin, Lothar Thiele, and Ayse K Coskun. Maestro: Autonomous
qos management for mobile applications under thermal constraints. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
38(8):1557–1570, 2018.

[108] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[109] Lars Schor, Iuliana Bacivarov, Hoeseok Yang, and Lothar Thiele. Worst-case
temperature guarantees for real-time applications on multi-core systems. In
RTAS, 2012.

[110] Krishna Sekar. Power and thermal challenges in mobile devices. In MobiCom,
2013.

[111] Danbing Seto, John P Lehoczky, Lui Sha, and Kang G Shin. Trade-off analysis
of real-time control performance and schedulability. Real-Time Systems,
21(3):199–217, 2001.

[112] Gaurav Singla, Gurinderjit Kaur, Ali K. Unver, and Umit Y. Ogras. Predictive
Dynamic Thermal and Power Management for Heterogeneous Mobile Platforms.
In DATE, 2015.

[113] Gaurav Singla, Gurinderjit Kaur, Ali K Unver, and Umit Y Ogras. Predictive
dynamic thermal and power management for heterogeneous mobile platforms.
In DATE, 2015.

[114] Kevin Skadron, Mircea Stan, Wei Huang, Sivakumar Velusamy, Karthik
Sankaranarayanan, and David Tarjan. Temperature-aware microarchitecture.
In ISCA, 2003.

[115] Yongquan Sun, Lingxi Kong, Hassan Abbas Khan, and Michael Pecht.
Li-ion battery reliability–a case study of the apple iphone. IEEE Access,
7:71131–71141, 2019.

146

https://github.com/patrickmn/cpuburn

[116] Xiaopeng Tang, Yujie Wang, Changfu Zou, Ke Yao, Yongxiao Xia, and
Furong Gao. A novel framework for lithium-ion battery modeling considering
uncertainties of temperature and aging. Energy conversion and management,
180:162–170, 2019.

[117] Ken W Tindell, Alan Burns, and Andy J. Wellings. Allocating hard real-time
tasks: an NP-hard problem made easy. Real-Time Systems, 4(2):145–165, 1992.

[118] Liang Wang, Xiaohang Wang, and Terrence Mak. Adaptive routing algorithms
for lifetime reliability optimization in network-on-chip. IEEE Transactions on
Computers, 65(9):2896–2902, 2016.

[119] Shengquan Wang and Riccardo Bettati. Delay analysis in
temperature-constrained hard real-time systems with general task arrivals. In
RTSS, 2006.

[120] Xie, Qing and Kim, Jaemin and Wang, Yanzhi and Shin, Donghwa and Chang,
Naehyuck and Pedram, Massoud. Dynamic thermal management in mobile
devices considering the thermal coupling between battery and application
processor. In ICCAD, 2013.

[121] Fengyuan Xu, Yunxin Liu, Qun Li, and Yongguang Zhang. V-edge: Fast
self-constructive power modeling of smartphones based on battery voltage
dynamics. In NSDI, 2013.

[122] Fengyuan Xu, Yunxin Liu, Thomas Moscibroda, Ranveer Chandra, Long
Jin, Yongguang Zhang, and Qun Li. Optimizing background email sync on
smartphones. In MobiSys, 2013.

[123] Shichun Yang, Cheng Deng, Yulong Zhang, and Yongling He. State of charge
estimation for lithium-ion battery with a temperature-compensated model.
Energies, 10(10):1560, 2017.

[124] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha.
Appscope: Application energy metering framework for android smartphone
using kernel activity monitoring. In USENIX ATC, 2012.

[125] Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and Lui Sha. Taskshuffler:
A schedule randomization protocol for obfuscation against timing inference
attacks in real-time systems. In RTAS, 2016.

[126] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert Dick,
Zhuoqing Mao, and Lei Yang. Accurate power estimation and automatic battery
behavior based power model generation for smartphones. In CODES+ISSS,
2010.

[127] Sushu Zhang and KS Chatha. Thermal aware task sequencing on embedded
processors. In DAC, 2010.

147

[128] Xinyu Zhang and Kang G Shin. E-mili: energy-minimizing idle listening in
wireless networks. In MobiCom, 2011.

[129] Yifan Zhu and Frank Mueller. Feedback EDF scheduling exploiting dynamic
voltage scaling. In RTAS, 2004.

148

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Thermal Challenges
	High Temperature
	Low Temperature

	Dynamic Thermal Behaviors
	Changing Ambient Temperature
	Hardware Thermal Variabilities
	Dynamic Application Workloads

	State of the Art
	Thesis Statement and Contributions
	BPM
	eTEC
	RT-TRM
	RT-TAS

	BPM: Battery-Aware Power Management
	Introduction
	Background
	Mobile Devices and Their Batteries
	Battery Management of Mobile Devices

	Causes of Unexpected Device Shutoffs
	Fixes for Unexpected Device Shutoffs
	Overview
	Profiling Batteries During Charging
	Regulating Battery Voltage During Discharging

	BPM Implementation
	Evaluation
	Methodology
	Preventing Unexpected Device Shutoffs
	Performance–Operation Time Tradeoff
	BPM with Different Temperature and Battery Cycles

	Related Work
	Conclusion

	eTEC: Efficient Thermoelectric Cooling
	Introduction
	Related Work
	Motivation
	System Thermal Model
	TEC Cooling Model
	Processor Power Model
	System Thermal Model

	Processor Thermal Management
	Thermal Model Identification
	TEC Optimization
	Dynamic TEC Control

	Evaluation
	Conclusion

	RT-TRM: Real-time Thermal-Aware Resource Management
	Introduction
	Related Work
	Target System, Challenges, and Solution Overview
	Target System
	Problem Statement and Motivation
	Overview of the Proposed Approach

	Task-Level Power Model
	Task-Level Dynamic Power Model
	Empirical Model Validation

	Adaptive Parameter Assignment
	Parameter Assignment
	Runtime Parameter Adaptation

	Online Idle-time Scheduling
	Evaluation
	Discussion
	Conclusion

	RT-TAS: Real-time Thermal-Aware CPUs–GPU Scheduling
	Introduction
	Related Work
	Motivation
	Target System
	Thermal Characteristics of CPUs–GPU Platforms
	Why Thermal-Aware Task Scheduling?

	CPUs–GPU System Model
	Task Execution Model
	CPU and GPU Power-dissipation Model
	Platform's Thermal Model
	Parameter Identification and Validation

	Thermal-Aware Scheduling
	Thermally-Balanced Assignment
	CPU–GPU Co-Scheduling

	Evaluation
	Methodology
	Effectiveness at Reducing Temperature
	Evaluation with Different Task Sets

	Conclusion

	Conclusion and Future Directions
	Contributions, Limitations, and Lessons Learned
	Future Directions

	BIBLIOGRAPHY

