
Resource-Efficient Replication and Migration of
Virtual Machines

by

Kai-Yuan Hou

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in the University of Michigan

2015

Doctoral Committee:

Professor Kang G. Shin, Chair

Professor Peter M. Chen

Professor Jason N. Flinn

Professor Dawn M. Tilbury

c© Kai-Yuan Hou 2015

All Rights Reserved

To my father.

ii

ACKNOWLEDGEMENTS

I cannot say enough to thank my advisor, Professor Kang Shin; this thesis would not

have been possible without him. He sets an example of continued pursuit of excellence,

strong sense of responsibility and hard work. He has provided tremendous support all the

years of my graduate study, and has shown me great patience and understanding in the

difficult times. His advice on research, career and life has also benefited me immensely. I

consider myself truly fortunate to have been his student, and would like to express my deep

gratitude to him. I would also like to thank Professors Peter Chen, Jason Flinn and Dawn

Tilbury, for serving on my thesis committee, proposing insightful questions and providing

invaluable feedback for improving this thesis.

The work described in this thesis is not produced by my effort alone. HydraVM, de-

scribed in Chapter III, was designed in collaboration with Dr. Arif Merchant, Dr. Mustafa

Uysal and Dr. Sharad Singhal. The characterization of checkpoint compression methods

described in Chapter II was conducted with help from Dr. Yoshio Turner and Dr. Sharad

Singhal. Dr. Jan-Lung Sung contributed remarkably to application-assisted live migration

and JAVMM, which are described in Chapter IV. I am truly grateful for these extraordi-

nary researchers, whose insights greatly helped shape this thesis. I would like to extend a

special thanks to Dr. Jan-Lung Sung for his kind encouragements and bold confidence in

me. I also thank the Air Force Office of Scientific Research, HP Labs and Oracle Labs for

supporting the research in this thesis.

I sincerely thank the past and present members of the Real-Time Computing Lab, for

making such a supportive team and their friendship that goes beyond graduate studies. I

iii

would like to mention a few in particular. Dr. Hai Huang provided the source code of his

work, FS2, Free Space File System, and helped me understand the code, in my first year of

graduate school; I started to learn about software systems since then. Dr. Howard Tsai of-

fered help on virtually everything—from brainstorming research ideas to trouble-shooting

when the network is down. It was also Howard who taught me the skills and attitude of

being a system administrator. Dr. Pradeep Padala let me work with him in his AutoControl

project; this broadened my exposure to virtualization technologies, upon which my the-

sis eventually dwelt. Xiaoen Ju has always been generous with his time, encouragements

and insights in our conversations; I am grateful for having such a wonderful friend and

colleague in the last few years of school.

My heartfelt thanks goes to my friends; they made my time at the University of Michi-

gan preciously memorable. I am deeply, deeply indebted to my family; their love, under-

standing and support is what has kept me going. To my father, who has become a computer

hobbyist, I dedicate this thesis.

Above all, I give thanks to God. He led me through valleys and provided for me. He

has shown me incomparable grace and that He is without limits. I am humbled, and to Him

I am forever grateful.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 VM Replication for High-Availability 2

1.2 VM Live Migration . 4

1.3 Thesis Overview . 5

1.4 Thesis Organization . 7

II. Tradeoffs in Compressing Virtual Machine Checkpoints in

High-Availability Systems . 9

2.1 Introduction . 9

2.2 Checkpoint Replication . 11

2.2.1 Preliminaries . 11

2.2.2 Need for Checkpoint Compression 13

2.3 Evaluation Methodology . 14

2.3.1 Framework . 14

2.3.2 Metrics . 15

2.4 Checkpoint Compression . 17

2.4.1 Existing Techniques 17

2.4.2 Exploiting VM Similarity 18

2.5 Experimental Results . 20

2.5.1 Workloads and Testbed 20

v

2.5.2 Traffic Reduction . 22

2.5.3 CPU and Memory Costs 28

2.5.4 Checkpoint Transfer and Storage Time 32

2.6 Discussions on Compression Method Selections 37

2.7 Related Work . 38

2.8 Conclusions . 40

III. HydraVM: Memory-Efficient High-Availability for

Virtual Machines . 41

3.1 Introduction . 41

3.2 HydraVM Design . 44

3.2.1 Storage-based VM High-Availability 44

3.2.2 An Overview of HydraVM 45

3.2.3 Advantages and Limitations 46

3.3 VM Protection . 48

3.3.1 Checkpointing VM CPU and Memory State 49

3.3.2 Checkpointing VM Disk State 52

3.4 VM Recovery . 52

3.4.1 Slim VM Restore . 53

3.4.2 Fetching VM Pages On-demand 54

3.4.3 Pre-fetching Nearby VM Pages 55

3.5 Evaluation . 56

3.5.1 Testbed and Workloads 56

3.5.2 Storage-based VM Protection 57

3.5.3 Overheads of VM Protection 60

3.5.4 Restoration of a Failed VM 62

3.5.5 Operation of a Restored VM 64

3.6 Discussions on Alternative Storage Architectures 67

3.7 Related Work . 70

3.8 Conclusions . 72

IV. Application-Assisted Live Migration of Virtual Machines

with Java Applications . 73

4.1 Introduction . 73

4.2 Related Work . 76

4.3 Application-Assisted Live Migration 78

4.3.1 What Memory to Skip Migrating? 78

4.3.2 Challenges and Design Principles 78

4.3.3 A Generic Framework 79

4.4 JAVMM: Java-Aware VM Migration 85

4.4.1 Background on Java Heap Management 86

4.4.2 Garbage in Java Heap 86

4.4.3 JAVMM . 89

vi

4.5 Evaluation . 92

4.5.1 Experimental Setup . 92

4.5.2 Progress of Migration 93

4.5.3 Performance of Migration 95

4.5.4 Impact of Young Generation Size 98

4.6 Discussions on Applications and Extensions 100

4.7 Conclusions . 101

V. Conclusions . 102

5.1 Thesis Contributions . 102

5.2 Future Directions . 103

BIBLIOGRAPHY . 106

vii

LIST OF FIGURES

Figure

2.1 The bandwidth requirements and total traffic of checkpoint replication

during two minutes of workload execution. 13

2.2 The traffic reductions achieved for a single protected VM running differ-

ent workloads. The ”sim-*” lines show the traffic reductions achieved by

similarity compression using different chunk sizes and a single-interval

hash table, and the ”sim2-*” lines show those achieved using a two-

interval hash table. 22

2.3 The traffic reductions achieved by similarity compression for a HPC-C

VM when the VM’s checkpoints are processed alone (Single-VM), to-

gether with other VMs’ checkpoints in a 4-VM HPC cluster (4-VM), and

using a two-interval hash table (4-VM, 2-intv.) 26

2.4 The CPU cost of checkpoint replication for a single protected VM run-

ning different workloads. No compression is used in the baseline. Delta

cache is 32MB. Similarity compression uses 256 byte chunks with a

single-interval (Sim) and a two-interval (Sim2) hash table. 28

2.5 The memory cost of similarity compression using 256 byte chunks. 30

2.6 The checkpoint transfer time of a single protected VM running different

workloads. 31

2.7 The ratio of the measured transfer time in Figure 2.6 to the configured

checkpointing interval. 33

2.8 The storage time of each checkpoint of a single protected VM running

different workloads. 34

2.9 The checkpoint transfer time of a HPC-C VM measured in our 4-VM

HPC cluster and workload mixture scenarios. 34

viii

2.10 The breakdown of the checkpoint transfer times of a HPC-C VM mea-

sured in our HPC clusters consisting of 1, 2 and 4 VMs. 36

3.1 The HydraVM system. 49

3.2 The VM pause time incurred for taking an incremental checkpoint. The

legend is given in (configured checkpointing interval, fail-over image

storage type). 60

3.3 The performance of the workloads when checkpointed periodically. The

runtime of HPC-C without checkpointing (baseline) is 344 seconds. The

baseline throughput of FFT is 6.1 ops/min. The baseline runtime of FFm-

peg is 289.5 seconds. 61

3.4 The time required to bring up a failed VM from a HDD- and a SSD-based

fail-over image storage. 62

3.5 The performance of the workloads under different conditions: no protec-

tion and not checkpointed, protected and configured to be checkpointed

every second, and restored from a failure that occurs halfway through the

workload executions. 64

3.6 Number of VM pages fetched to execute the last 50% of the workloads

in a restored VM. 65

3.7 The storage I/Os incurred to demand fetch VM pages for FFmpeg after it

resumes execution in a restored VM. Each dot represents an I/O, and the

size of the dot represents the size of the I/O. 66

4.1 Live migration of a 2GB Xen VM running the Apache Derby database

workload from SPECjvm2008. 74

4.2 A generic framework for application-assisted live migration. 80

4.3 An example of transfer bitmap updates. 82

4.4 The workflow of application-assisted live migration. 84

4.5 Java heap usage and GC behavior of sample workloads from SPECjvm2008

running in a 2GB VM; see Table 4.1 for workload descriptions. The

Young generation of the Java heap is allowed to use at most 1GB memory. 87

ix

4.6 An overview of JAVMM, which is built on our framework for application-

assisted live migration. This is a zoom-in view of Figure 4.2 with JVM/Java

application being the running application. 90

4.7 The workflow of JAVMM, with details of JVM’s and our TI agent’s ac-

tions to fulfill the requirements of an application assisting in migration

shown in Figure 4.4. 91

4.8 Progress of migrating a VM running the compiler workload from SPECjvm2008.

Each box represents a migration iteration; the width shows the duration

and the area shows the amount of traffic sent. In (b), the second last it-

eration of JAVMM generates little network traffic while waiting for the

workload to execute to a Safepoint (0.7 sec) and a minor GC to be done

(0.1 sec). 93

4.9 Amount of memory processed when migrating a VM running the com-

piler workload from SPECjvm2008. In (b), the 4–10th iterations of JAVMM

each process less than 2MB of dirty memory. 93

4.10 Performance of JAVMM and Xen live migration for workloads with dif-

ferent characteristics of Java heap usage. 96

4.11 Effect of VM migration on the throughput of running application, i.e., the

number of operations completed per second. Migration begins after the

application runs for 300 seconds. 97

4.12 Performance of JAVMM and Xen live migration for Category 1 work-

loads with different size Young generations. 99

x

LIST OF TABLES

Table

2.1 The workloads used in our evaluation and their setup. 20

2.2 The average checkpoint sizes of each workload. 21

3.1 The size of the incremental checkpoints taken and the time required to

send and store each checkpoint to the fail-over image storage during the

execution of the workloads. 58

3.2 Amount of data loaded and the loading time incurred during fail-over

(slim VM restore). 63

4.1 Description of the SPECjvm2008 workloads used in our experiments. . . 87

4.2 Workloads with different characteristics of Java heap usage and their ex-

perimental settings. 96

4.3 Workloads with high object allocation rates and their experimental settings. 98

xi

ABSTRACT

Resource-Efficient Replication and Migration of Virtual Machines

by

Kai-Yuan Hou

Chair: Kang G. Shin

Continuous replication and live migration of Virtual Machines (VMs) are two vital tools

in a virtualized environment, but they are resource-expensive. Continuously replicating a

VM’s checkpointed state to a backup host maintains high-availability (HA) of the VM de-

spite host failures, but checkpoint replication can generate significant network traffic. Each

replicated VM also incurs a 100% memory overhead, since the backup unproductively re-

serves the same amount of memory to hold the redundant VM state. Live migration, though

being widely used for load-balancing, power-saving, etc., can also generate excessive net-

work traffic, by transferring VM state iteratively. In addition, it can incur a long completion

time and degrade application performance.

This thesis explores ways to replicate VMs for HA using resources efficiently, and to

migrate VMs fast, with minimal execution disruption and using resources efficiently. First,

we investigate the tradeoffs in using different compression methods to reduce the network

traffic of checkpoint replication in a HA system. We evaluate gzip, delta and similarity

compressions based on metrics that are specifically important in a HA system, and then

suggest guidelines for their selection.

Next, we propose HydraVM, a storage-based HA approach that eliminates the unpro-

xii

ductive memory reservation made in backup hosts. HydraVM maintains a recent image of

a protected VM in a shared storage by taking and consolidating incremental VM check-

points. When a failure occurs, HydraVM quickly resumes the execution of a failed VM by

loading a small amount of essential VM state from the storage. As the VM executes, the

VM state not yet loaded is supplied on-demand.

Finally, we propose application-assisted live migration, which skips transfer of VM

memory that need not be migrated to execute running applications at the destination. We

develop a generic framework for the proposed approach, and then use the framework to

build JAVMM, a system that migrates VMs running Java applications skipping transfer of

garbage in Java memory. Our evaluation results show that compared to Xen live migra-

tion, which is agnostic of running applications, JAVMM can reduce the completion time,

network traffic and application downtime caused by Java VM migration, all by up to over

90%.

xiii

CHAPTER I

Introduction

Virtualization is used to create one or more Virtual Machines (VMs) that act like real

machines in a physical host. It facilitates flexible partitioning and dynamic allocation of

computing resources, and is widely used in computing environments of various kinds and

scales.

In a virtualized environment, applications run in VMs, and multiple VMs may be con-

solidated in a single physical server. Server consolidation has in fact been the most common

reason for using virtualization [66]. It is most useful when applications require a certain

level of isolation, e.g., isolation of configurations, performances, faults, and so on, yet each

of them does not need the full capacity of a single server. Running these applications in

separate VMs on a single physical server enhances server utilization and reduces various

operational costs, including management cost, power, space, etc.

However, server consolidation exacerbates the consequence of unexpected host fail-

ures. When VMs are consolidated, failure of a single host may bring down multiple VMs

on the host and all applications running thereon, resulting in an unacceptable aggregate

loss. As host failures are inevitable, even common in large systems [29, 94], maintaining

highly available VMs despite the occurrences of host failure has become a crucial task.

To achieve this, various approaches have been proposed to replicate VMs between hosts

continuously throughout VMs’ execution [20, 24, 32, 39, 44, 47, 93], but they incur high

1

resource costs, creating a tension between high-availability and resource-efficiency, both

critical operational goals of a virtualized environment.

On the other hand, server consolidation increases the need for VM live migration, which

is the ability to move a running VM from a physical host to another without disrupting the

VM’s execution. As co-located VMs’ workload dynamics and resource demands change,

live migration can be used to adjust placement of the VMs at runtime, to mitigate resource

hotspots [98] or enhance VM performance [31]. It can also be used to achieve power

savings [30, 40, 72]. While live migration has been implemented by many virtualization

platforms [9, 11, 38, 73], it can perform poorly when the underlying network is a bottle-

neck; it not only incurs a high resource cost, but also takes a long time to complete and

degrades running applications’ performance.

The needs to achieve VM high-availability (HA) at reduced resource costs and to per-

form VM live migration efficiently despite a network bottleneck are the two main motiva-

tions behind this thesis. Recognizing these needs, this thesis explores ways to (1) replicate

VMs for HA using resources efficiently; (2) migrate VMs fast, with minimal disruption to

VM execution and using resources efficiently. Below, we discuss the motivations of the

thesis in more detail, and then provide an overview of the thesis.

1.1 VM Replication for High-Availability

The simplest way to maintain highly available VMs despite the occurrences of physical

host failure is to reboot the VMs brought down by a host failure in other healthy hosts

automatically upon detection of the failure [21]. This approach is “stateless”, since the

restarted VM loses its runtime state before the failure.

To be able to resume a failed VM’s execution from where it left off upon failure, various

“stateful” HA approaches have been proposed. They create a backup VM in a separate host

for each primary running VM, and synchronize a primary VM’s runtime state to its backup

in one of the following two ways: log-and-replay [20, 32] and checkpoint replication [24,

2

39, 44, 47, 93]. The backup VM stands by in the background until the primary VM fails,

at which point it becomes active and takes over execution from the primary’s state before

the failure.

During normal operation of the primary, the aforementioned primary-backup synchro-

nization approaches work as follows. Log-and-replay records the low-level events executed

by the primary VM, e.g., instructions and interrupts, and replays them deterministically in

the backup VM, to bring the backup to the same state as the primary. Checkpoint replica-

tion sends the primary’s state to the backup directly and continuously, by sending a series

of primary VM checkpoints. In the two approaches, checkpoint replication is more widely

applicable to different hardware/software configurations in a virtualized environment; the

performance of log-and-replay can degrade significantly for VMs configured with multiple

virtual CPUs, since the shared memory communication between CPUs must be accurately

tracked and replayed [45, 88].

By maintaining backup VMs, stateful HA approaches minimize the loss of VMs’ com-

pleted work caused by failures, but at high resource costs. Though approaches based on

checkpoint replication have a wide applicability, they can impose a heavy load on network

resources, especially when frequent checkpointing is used to save the network packets of

client-facing applications before sending the packets out. For example, replicating check-

points for a single protected VM once every 25 ms can consume more than 3 Gb/s of

network bandwidth. When multiple VMs are protected at the same time, even dedicated

GbE links cannot provide the aggregate bandwidth required for checkpoint replication.

With such prohibitive network requirements, replicating VM checkpoints for HA could

potentially use up all available network resources, interfere with normal VM traffic, and

degrade application performance. The network traffic of checkpoint replication needs to be

reduced for real-world deployment of this technique, and this should be done taking into

consideration any impact on protected VMs’ HA properties and performances.

On the other hand, whether based on checkpoint replication or log-and-replay, existing

3

HA approaches use in-memory backups. The backup VM sits in the memory of a dedicated

backup host, and reserves as much memory as its primary; the reserved memory space can-

not be utilized by other running VMs. Therefore, using existing approaches, each VM pays

a 100% memory overhead to achieve HA. The backup memory reservation is unproductive,

since the backup VM does not contribute to workload execution and system throughput

until the primary fails. The aggregate backup memory reservation made for a group of

protected VMs can significantly and unproductively consume RAM, a rather expensive

computing resource. Furthermore, inactively blocking host memory for backup VMs may

hinder effective consolidation of active running VMs, and result in under-utilization of

other host resources (e.g., CPU cores). An alternative HA approach using memory effi-

ciently is thus needed, to reduce the overall memory requirement for supporting HA.

1.2 VM Live Migration

VM migration was first proposed to support user mobility [37], and the early migration

systems moved a VM while the VM was suspended (i.e., not executing) [61, 87]. Later,

VM live migration was proposed to move a VM while the VM is (mostly) executing [38,

73]. Live migration has different usages than the early migration systems. It is intended

to relocate VMs at runtime, and has primarily been used for achieving load-balancing,

performance enhancements, and so on. This thesis focuses on live migration of VMs.

Various contemporary virtualization technologies support live migration, and most of

them use a pre-copy approach [9, 11, 38, 73]. A pre-copy approach copies all the state of a

VM to be migrated to the destination host before the VM starts to execute in the destination

host. This is contrary to a post-copy approach [50], which copies a migrated VM’s state

from the source host after the VM starts execution in the destination. Pre-copy is more

widely used mainly for reliability reasons. Should the destination host fail in the middle of

migration of a VM, a pre-copy approach aborts the migration, and the VM remains running

in the source host. In a post-copy approach, a failure of the destination host may lead to

4

a complete failure of the VM, since the VM has begun executing in the destination and its

state in the source host is only partially valid.

A pre-copy approach works as follows. To migrate a VM with minimal disruption to

its execution, while the VM continues to run in the source host, its memory pages are

transferred to the destination host incrementally and iteratively. In the first iteration, all of

the memory pages are sent; at each following iteration, only the pages dirtied during the

previous iteration are sent. Ideally, dirty pages should be transferred faster than new pages

get dirtied. As the iterations progress, the number of dirty pages pending transmission

should decrease. In the last iteration, the VM is paused, but only for a short time, since

only a small number of dirty pages remain to be sent. After this short pause, the VM

resumes execution in the destination, and migration of the VM completes.

However, this ideal migration is not always achieved, since the underlying network

can be a bottleneck. Under this condition, VM memory pages are dirtied faster than they

can be transferred to the destination, and the number of dirty pages pending transmission

cannot be reduced iteratively. This can result in sending a large number of dirty pages in

each iteration, and the iterations can last long until the last one, during which the VM is

paused. Consequently, the migration can take a long time to complete, create significant

network traffic and cause a noticeable VM downtime, which leads to degradation of run-

ning applications’ performance. For example, we have observed live migration of a 2GB

database VM over a gigabit Ethernet to last for more than one minute, generate 7GB (over

3x the VM size) of network traffic, cause 8 seconds of VM downtime and degrade the

database application’s performance by more than 20%. It is crucial to enhance live mi-

gration to overcome the network bottlenecking problem, but previous enhancements (e.g.,

[38, 50, 54, 92]), mostly treating migrating VMs as black boxes, incur either high resource

costs or application performance penalties.

5

1.3 Thesis Overview

The following statement summarizes this thesis:

VMs need to be replicated for high-availability (HA) against host failures at reduced

resource costs, and migrated with minimal execution disruption even when network is a

bottleneck. Approaches to reducing the network traffic of VM checkpoint replication in

a HA system should be applied adaptively based on workload scenarios, and a memory-

efficient HA alternative is feasible. Assistance from applications running in migrating VMs

is useful for efficient VM live migration despite a network bottleneck.

This thesis consists of three parts to fulfill the above statement.

The first part of the thesis focuses on reducing the network traffic of VM checkpoint

replication in a HA system. Checkpoint compression has been suggested to meet this pur-

pose. While several compression methods are available, they have not been compared

systematically when applied to VM checkpoints in the context of supporting HA. There-

fore, we build a generic framework to evaluate compression methods based on metrics

that are specifically relevant and important in a HA system. The primary objective of our

evaluation is to quantify the tradeoffs between the effectiveness and overheads of differ-

ent compression methods, and provide insights that could guide their selection. Using our

framework, we evaluate and compare three compression methods: two existing approaches,

gzip and delta compression, and a method we explore, called similarity compression; simi-

larity compression applies redundancy elimination to VM checkpoints continuously at fine

time granularities to reduce checkpoint traffic. Our evaluation shows that one can hardly

find a single best compression solution to the problem of reducing checkpoint traffic. Based

on the experimental results, we provide guidelines for applying the different compression

methods according to the workload types and resource constraints in a HA system.

The second part of this thesis proposes a memory-efficient HA approach for VMs,

called HydraVM, to reduce the cost of making backup memory reservation for VM protec-

tion. The primary objective of HydraVM is to provide stateful protection for VMs against

6

failures of their hosting machines without any backup memory reservation. Instead of

maintaining a backup VM in a separate server, HydraVM keeps track of the runtime state

of a protected VM in a fail-over image maintained in a networked, shared storage, which is

commonly deployed in a virtualized environment to hold VM disks and facilitate VM man-

agement. Upon detection of a failure, HydraVM performs a slim VM restore, which loads

only a small amount of critical VM state from the fail-over image to quickly bring a failed

VM back alive. As the VM resumes execution, the VM state not yet loaded is supplied on-

demand. Our experimental results show that HydraVM provides VM protection at a low

overhead, and can recover a failed VM within 2.2 seconds. This memory-efficient, storage-

based approach complements the HA toolbox currently available to system administrators

with a cost-effective alternative.

Finally, this thesis proposes application-assisted live migration. We take a white-box

approach to efficient VM live migration. Our approach leverages assistance from appli-

cations running in a migrating VM, and skips transfer of the VM’s memory pages that

need not be migrated for the applications to execute in the destination host. It reduces the

amount of memory transfer during live migration, with the objective of migrating the VM

fast, with minimal disruption to VM execution and using resources efficiently. We build a

generic framework for application-assisted live migration, and then use the framework to

build JAVMM, a system that migrates VMs running Java applications skipping transfer of

garbage in Java memory. In JAVMM, Java Virtual Machine (JVM), the application-level

VM that executes Java bytecode, is enabled to provide all the assistance needed for mi-

gration on behalf of Java applications; no modifications to Java applications are required.

Our experimental results show that compared to Xen live migration, which is agnostic of

applications running in migrating VMs, JAVMM can migrate a Java VM with up to more

than 90% shorter completion time, less network traffic and shorter application downtime.

7

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter II describes the framework we build for evaluating checkpoint compression

methods, and discusses the experimental results of evaluating and comparing gzip, delta

and similarity compressions using our framework, as well as the insights gained from the

evaluation.

Chapter III presents HydraVM, a memory-efficient, storage-based HA approach for

VMs. We discuss the rationale, advantages and limitations of a storage-based HA approach,

and describe the design, implementation and evaluation of HydraVM.

Chapter IV describes application-assisted live migration. We first present a generic

framework for VM live migration to use applications’ assistance, and then describe the

design, implementation and evaluation of JAVMM, built based on the framework to migrate

Java VMs using JVM’s assistance.

Chapter V summarizes the contributions and future directions of this thesis.

8

CHAPTER II

Tradeoffs in Compressing Virtual Machine Checkpoints in

High-Availability Systems

2.1 Introduction

Continuous checkpoint replication is a prevalent approach to maintaining highly avail-

able VMs even in the case of host failures [24, 39, 44, 47, 93]. It periodically captures the

state of a VM in checkpoints, and replicates the checkpoints to a backup host. If the physi-

cal host of the VM fails, the VM can be restored from the most recent checkpoint available

in the backup. However, checkpoint replication protects VMs at the expense of significant

network traffic. Large amounts of checkpoint data are transported over the network, espe-

cially when frequent checkpointing is used by client-facing, latency-sensitive applications

to checkpoint network packets before sending them out. Reducing checkpoint replication

traffic is crucial to using this technique in real-world HA systems.

One way of reducing checkpoint traffic is to “compress” checkpoints before sending

them over the network. Checkpoint compression requires no modifications to a VM, and

can be applied regardless of the applications running in the VM. It can be done by a general-

purpose tool, such as gzip [5]. Alternatively, for each dirty memory page in a checkpoint,

the bits that are actually changed (called the page delta) may be identified, and the delta

is replicated instead of the full page [69, 80, 92, 97]. These compression methods are

9

available, but they have not been evaluated comparatively and systematically when applied

to VM checkpoints in the context of supporting HA. There are few guidelines for selecting

and using them under different workloads and operating conditions in a HA system.

The primary goal of this chapter is to quantify the tradeoffs between the effectiveness

and overheads of various checkpoint compression methods, and provide insights that could

guide their selection decisions. We compare three compression methods, including gzip,

delta compression, and a method we explore, called similarity compression. Similarity

compression finds and eliminates duplicate contents in VM checkpoints to reduce check-

point traffic, exploiting the content redundancy in VM memory. Different from existing

memory deduplication systems, which coalesce identical pages of co-located VMs and

reduce host memory pressure [49, 58, 70, 96], similarity compression finds redundant con-

tents in the changed set of VM pages, i.e., the VM checkpoints, and much more frequently.

We evaluate the three compression methods using workloads chosen from types fre-

quently seen in HA systems, including server workloads that constantly interact with exter-

nal clients and long-running computation jobs. Our results show that one can hardly find a

single best compression solution. gzip reduces checkpoint traffic substantially, but at a pro-

hibitive CPU cost. It takes a long time to replicate and store each checkpoint when gzip is

used, and this limits the applicability of gzip for interactive, latency-sensitive applications

needing frequent checkpointing. Delta compression incurs a low CPU overhead and short

checkpoint transfer times, but requires a cache larger than the average checkpoint size of

a protected VM to achieve a reasonable traffic reduction. For workloads that touch large

areas of memory rapidly, delta compression can consume hundreds of MBs of RAM for

the cache.

Similarity compression eliminates redundant contents within checkpoints of the same

VM (intra-VM similarity), and between checkpoints of different VMs on a host (inter-VM

similarity). It is particularly effective for VM clusters running homogeneous workloads,

such as High Performance Computing (HPC) clusters. Our results show that a non-trivial

10

amount of VM similarity exists in these environments, especially when VMs collaborate

on a shared task set. However, in heterogeneous workload scenarios, limited VM similarity

is found, so gzip and delta compression are better suited. Although similarity compression

is suited for a smaller range of application scenarios compared to the other two methods,

for suitable scenarios, it reduces checkpoint traffic effectively using both CPU and memory

efficiently, and requires short checkpoint transfer time and storage time.

The contribution of this chapter is threefold. First, it explores similarity compression,

and proposes its use in homogeneous workload scenarios. Similarity compression is a new

application of the existing concept of redundancy elimination; it applies redundancy elim-

ination to changed VM memory continuously at fine time granularities, and our evaluation

quantifies the effectiveness of redundancy elimination in this specific case. Second, to our

best knowledge, this chapter presents the first detailed evaluation and characterization of

checkpoint compression methods in the context of supporting HA, considering gzip, delta

and similarity compressions. Third, based on the evaluation results, this chapter suggests

guidelines for selecting and using these compression methods for different workload types

and resource constraints in a HA system.

The remainder of the chapter is organized as follows. Section 2.2 provides background

on checkpoint replication. We describe our evaluation framework in Section 2.3 and the

three compression methods evaluated in Section 2.4. Section 2.5 presents and analyzes our

experimental results. We discuss the insights gained from our evaluation in Section 2.6.

Section 2.7 describes related work, and the chapter concludes with Section 2.8.

2.2 Checkpoint Replication

2.2.1 Preliminaries

Checkpoint replication protects a VM from the failure of its physical host by sending

checkpoints of the VM to a backup host continuously [24, 39, 44, 47, 93]; the backup

11

host is chosen so that it is isolated from the failure of the protected host. When protection

begins, a full checkpoint containing every memory page and the CPU state of the protected

VM is replicated to the backup. It is stored in the backup’s RAM, and becomes the fail-over

image of the protected VM.1

As the VM executes, incremental checkpoints are taken and replicated to the backup,

usually at fixed time intervals (a pre-configured checkpointing frequency). An (incremen-

tal) checkpoint mainly consists of the VM pages dirtied during the last checkpointing in-

terval. After all dirty pages in a checkpoint are replicated to the backup, their contents are

stored in proper locations in the fail-over image according to the page indexes. The fail-

over image is not updated as each dirty page is received, or it may become inconsistent and

unusable for recovery if the protected host fails in the middle of sending a checkpoint. If a

checkpoint takes longer than the configured checkpointing interval to replicate, the subse-

quent checkpoint is not taken when the next interval begins, but delayed until the on-going

replication finishes. This way, checkpoints are not sent faster than they can be stored and

made useful in the fail-over image.

Once a failure of the VM host is detected, the HA system initiates a fail-over. The failed

VM is restored based on its fail-over image (in the backup’s RAM) and a consistent disk

state (in a shared storage), and resumes operation from the most recent checkpointed state

in the backup host. In order to make this fail-over transparent to the VM’s external clients,

the HA system ensures that the clients never see “unprotected” VM state, i.e., the state not

yet backed up. Specifically, during normal operation of the VM, outgoing network packets

are withheld until the checkpoint capturing the state from which the packets are generated

is fully replicated to the backup. Therefore, HA systems commonly use checkpointing

intervals of tens of milliseconds or even shorter, in order to checkpoint and release network

packets very frequently and achieve reasonable performance for client-facing applications.

1VM disks are usually hosted in a shared storage accessible to all VM hosts. A VM disk state consistent

with the VM’s memory and CPU state in the fail-over image may be maintained by the storage system using

copy-on-write techniques [12, 67, 84, 85].

12

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

25 50 100 1000 2000 5000
 0

 20

 40

 60

 80

 100

N
et

w
or

k
Ba

nd
w

id
th

 (M
b/

s)

To
ta

l T
ra

ffi
c

(G
B)

Checkpointing Interval (ms)

1vm-ffmpeg
1vm-voltdb
4vm-mixed

Figure 2.1: The bandwidth requirements and total traffic of checkpoint replication during

two minutes of workload execution.

2.2.2 Need for Checkpoint Compression

We ran different workloads in VMs, and replicated VM checkpoints for two minutes

of workload executions. Figure 2.1 shows the network bandwidth required and total traffic

generated by checkpoint replication (see Table 2.1 for workload details). When check-

points are replicated every 25 ms, protection of a media transcoding (ffmpeg) server and a

database (voltdb) server uses more than 1700 Mb/s and 3000 Mb/s of network bandwidth,

respectively. Even a dedicated GbE link cannot meet these requirements for protecting a

single VM. When 4 VMs are protected concurrently, replicating checkpoints every 25 ms

creates almost 100 GB of traffic in the network in only two minutes. To replicate these

checkpoints at the configured checkpointing intervals, over 6500 Mb/s of network band-

width is required. Even if a 10GbE link is available, it will soon become saturated with just

a few more VMs to protect.

One may consider installing faster networks to meet the bandwidth requirement of

checkpoint replication. However, higher-bandwidth links are expensive, and it is not al-

ways feasible to upgrade networks in existing infrastructures. Furthermore, as more and

more VMs need protection, checkpoint replication traffic may eventually use up all avail-

able network resources and interfere with normal VM traffic, degrading application per-

formance and users’ experience with VMs. Therefore, reducing checkpoint traffic when

providing VM protection is a must. This chapter conducts a systematic evaluation and

13

comparison of three compression methods for reducing checkpoint traffic, and provides

guidelines for their selections in a HA system. Next, we describe how each compression

method is evaluated.

2.3 Evaluation Methodology

2.3.1 Framework

To facilitate systematic comparison of multiple compression methods, we took an emu-

lation approach for our evaluation. We built a framework consisting of a checkpoint sender

(emulhacp) and a checkpoint receiver (emulharcv), which emulate the replication and

storage of VM checkpoints in a HA system, as described in Section 2.2.1. emulhacp and

emulharcv use multiple concurrent threads to emulate concurrent protection of multiple

VMs. Different compression methods are implemented as modules inserted into the frame-

work for evaluation.

To use this framework, we capture VM checkpoints a priori in a real HA system [52],

and store them as individual files. emulhacp runs in a protected host. It reads a complete

checkpoint from a file into a memory buffer, and from then operates on the buffer. It

processes each dirty page using the compression method to be evaluated, and then sends

the page to emulharcv, which runs in the backup. Once all dirty pages are received,

emulharcv sends an ACK to emulhacp, and begins to decompress each page and store the

page content to the fail-over image kept in RAM.

After emulhacp receives the ACK, it waits until the current checkpointing interval ends,

and replicates a new checkpoint when the next interval begins. If an ACK is not received

by the beginning of the next interval, emulhacp waits for the current checkpoint to be fully

replicated, and immediately after an ACK is received, it sends a new checkpoint. In this

case, emulharcv is receiving a new checkpoint while decompressing and storing the one

just received at the same time.

14

We use double buffering in the backup: emulharcv uses at most two checkpoint buffers

at the same time for each VM. If, by the time emulharcv receives the new incoming check-

point in entirety, the previous checkpoint is not yet fully decompressed and incorporated

into the fail-over image, the VM may not replicate more checkpoints. Checkpoint replica-

tion is resumed when the previous checkpoint is completely stored and its buffer released

to receive another incoming checkpoint. Double buffering keeps any VM from using too

much memory in the backup, and is especially useful when checkpoints take a non-trivial

amount of time to store due to decompression.2

2.3.2 Metrics

We identify important metrics to consider when using checkpoint compression in a HA

system, and evaluate them in our framework. For each compression method, we evaluate

the traffic reduction achieved in each checkpointing interval, and the memory and CPU

used in the protected and backup hosts to achieve such reduction. A compression method

that uses excessive resources in the protected host can create a non-trivial interference with

the normal operation of the protected VMs. The resource usage in the backup is also

considered, since other active VMs may be running in the host (and backed up elsewhere)

and their performances can be affected.

The memory cost of a compression method is evaluated by the average memory usage

of its key data structures that enable page compression/decompression. CPU cost is evalu-

ated by a per-page metric. We measure the total CPU time taken by emulhacp to compress

and send checkpoints for all concurrently protected VMs. We then divide this time by the

number of dirty pages processed, and obtain the average CPU time spent for each page.

Likewise, we obtain the average CPU time taken by emulharcv to receive, decompress

and store each page in the backup. These per-page metrics facilitate a fair comparison

2We use this simple scheme to facilitate evaluation and fair comparison of compression methods. Sophis-

ticated flow control schemes may be devised to regulate checkpoint traffic in real HA systems, taking into

account the checkpointing frequencies, compression methods and workloads used.

15

between different compression methods.

Besides consuming resources, compression affects the time required to replicate and

store a checkpoint. We evaluate the transfer time of each checkpoint, which starts when

emulhacp begins to send the checkpoint, and ends when an ACK for the checkpoint is re-

ceived. Checkpoint transfer time consists of two components: the time to process/compress

the dirty pages (processing time), and the time to send them over the network (sending

time). Replicating compressed checkpoints reduces sending time, but performing compres-

sion lengthens processing time. The overall effect of compression on checkpoint transfer

time must be quantified experimentally.

Checkpoint transfer time has a direct impact on achievable checkpointing frequency,

which in turn affect the performance and HA property of a protected VM. Since a sub-

sequent checkpoint may be replicated only after the on-going replication finishes, the ac-

tual (elapsed, not configured) checkpointing interval must be larger than the transfer time

of a checkpoint. If a compression method incurs long transfer times, consecutive check-

points must be separated by large intervals, thus the achievable checkpointing frequency is

lowered. This can degrade application performance during normal operations, especially

for latency-sensitive, server applications, since network packets are checkpointed and re-

leased infrequently. For computation jobs without external observers, low checkpointing

frequency results in a greater loss of completed work upon a fail-over, since the VM has to

resume execution from an earlier point in time.

The storage time of each checkpoint can also affect achievable checkpointing fre-

quency and the performance of a protected VM. It is the time required to decompress all

dirty pages and store their contents to the fail-over image. Without compression, check-

point storage time is usually very short, since memory copying is fast. However, checkpoint

storage time can be significantly lengthened when compression is used, if dirty page de-

compression involves complex steps or heavy computations. Checkpoint replication can

become bottlenecked on slow storage of checkpoints: a new checkpoint may be delayed

16

waiting for a previous one to be completely stored so that the buffer space can be utilized,

since a protected VM is not allowed to use unlimited memory in the backup.

2.4 Checkpoint Compression

Using the framework and metrics discussed in Section 2.3, we evaluate the three com-

pression methods described below.

2.4.1 Existing Techniques

gzip is a commonly-used, general-purpose compression algorithm. Its application on check-

point traffic was briefly discussed in [39] without a thorough evaluation. We implemented

gzip using zlib [23] to evaluate it thoroughly and in comparison with other methods.

Delta compression identifies the parts in a dirty page that are changed when the page is

written to, i.e., the page delta, and replicates the delta to the backup instead of the entire

page. It has been used in a few HA systems [69, 80].

Before sending a checkpoint, each dirty page is XOR’ed with its content in the last

checkpointing interval. The outcome is compressed by RLE (Run-Length Encoding) [77],

and the compression result is sent to the backup. To restore the page content in the backup,

the RLE result is decoded, and the outcome is XOR’ed with the content of the page in

the fail-over image; no extra memory copying is needed. Since keeping the prior content

of every page incurs a 100% memory overhead, like previous work, we maintain a fixed-

size cache of transmitted dirty pages. If a dirty page finds its prior content in the cache,

delta compression is performed and the compression outcome is sent. On a cache miss,

the entire page is replicated without compression. We implemented a LRU cache using a

double linked list for efficient replacement and a lookup array to speed up queries. We use

Basic Compression Library [2] for RLE.

17

2.4.2 Exploiting VM Similarity

Since VMs in a virtualized datacenter are often created from template images consisting

of the same or similar operating systems and applications, they can load nearly identical

kernel images and software binaries into memory, and read duplicate data from common

files. Many systems use this content redundancy to enable page sharing [49, 58, 70, 96].

They detect duplicate contents in the entire memory space of co-located VMs, and coalesce

identical pages in the same physical frame to save host memory.

We argue that not only may VMs be created from similar sources, even as they execute,

various activities can keep changing their memory state in similar ways. For example,

during maintenance, a group of VMs is updated with the same set of security patches at

the same time. Also, in computing clusters, multiple VMs (and multiple processes in each

VM) collaborate to finish computation-intensive tasks, each running the same application

code and working on a common set of data. These VMs are often checkpointed at the same

time intervals to gain a comparable level of protection, and the similar changes made to

their memory may generate similar dirty pages in their checkpoints. We therefore explore

similarity compression, which finds content redundancy in VM checkpoints and sends

only one copy of the duplicate contents to reduce checkpoint traffic.

To detect content redundancy, we divide each dirty page into multiple chunks, and

process checkpoints by chunks. Unique chunks are separated from duplicate chunks. A

unique chunk contains a content different from any other chunks that have been processed.

This content must be replicated to the backup in full. A duplicate chunk contains a content

that is identical to at least one other chunk. Since the duplicate content can be found in

another chunk that is already replicated (called a reference chunk), instead of sending the

chunk again, we send a pointer to locate the reference chunk in the backup.

For similarity compression to be practically useful, two important requirements must be

met: (1) unique and duplicate chunks must be separated quickly, and (2) the pointers sent

for duplicate chunks must be small, yet contain enough information to restore the duplicate

18

contents in the backup. To meet these requirements, we build a hash table in the protected

host. The hash table maps a chunk content to a chunk location that has the content. Chunk

location is described by the VM to which the chunk belongs and the offset of the chunk

in the checkpoint containing it. Chunk content is compactly represented and efficiently

compared using the MD5 digest of the chunk. We also tested Rabin fingerprinting [79]

over a sliding window, another commonly used method of detecting content redundancy,

but found that to be much slower. For efficiency, we chose to detect duplicate fixed-size

chunks by hashes.

In each checkpointing interval, the hash table is initially empty, and the checkpoints

taken for concurrently protected VMs are processed together. For each chunk in the check-

points, we compute its MD5 digest, and query the hash table by the digest. If the digest is

not found in the hash table, the chunk content is sent to the backup, since this is a unique

content that is not seen before. A new entry is inserted into the hash table to record the

content and location of the chunk.

If the hash table lookup finds the chunk digest, we have a duplicate chunk, and the

matching hash entry records the location of a replicated chunk with the same content, that

is, the reference chunk. The location of the reference chunk is sent to the backup as a

pointer, following which the duplicate content can be retrieved when incorporating the

checkpoint into the fail-over image.3 The reference chunk may belong to the same, or a

different VM than the duplicate chunk does, upon detection of intra- and inter-VM similar-

ity, respectively.

To increase the chance of finding and eliminating redundancy in checkpoint traffic, we

also explore maintaining the hash table beyond interval boundaries. Instead of rebuilding

the hash table in every checkpointing interval, we rebuild it every few intervals. With a

multi-interval hash table, a duplicate chunk may contain the content of a chunk seen in a

past interval. However, when a past chunk content is referenced, the referenced chunk in

3In our current implementation, each hash entry is 20 bytes. Chunk location is encoded in 4 bytes in the

entry, and the remaining 16 bytes contain the MD5 digest of the chunk.

19

HPC-C [8]

A suite of 7 calculation-intensive benchmarks essential to long-running scientific

jobs. We run HPC-C in a single VM and also in multiple VMs that collaborate via

MPI. Each VM uses 512 MB RAM.

RUBiS [15]

An auction site benchmark modeled after ebay.com. We use a three-tier setup:

a back-end database, a RUBiS server (Apache/PHP) and a client emulator. Each

tier runs in a separate VM on a separate host. Our experiments use checkpoints of

the RUBiS server (a 512 MB VM).

FFmpeg [3]

An open-source tool to “transcode” video/audio files, i.e., to convert their codecs

and formats. The transcoded media are usually fed to a real-time streaming service

to fulfill requests from external clients. We run FFmpeg in a 512 MB VM.

VoltDB [22]

An in-memory database. We run it in a 1.75GB VM to support a TPC-C-like

workload generated from a client VM running in a separate host. This OLTP

workload simulates an order-entry environment for a business with multiple ware-

houses [18]. Our experiments use checkpoints of the VoltDB server.

Table 2.1: The workloads used in our evaluation and their setup.

the fail-over image may have been overwritten with a recent content. To ensure correct

restoration of all duplicate contents, when a multi-interval hash table is used, a replicated

(unique) chunk is cached in the backup until the next time the hash table is rebuilt and the

chunk’s content can no longer be referenced by other chunks.

2.5 Experimental Results

This section presents and analyzes our evaluation results of the three compression meth-

ods. Section 2.5.1 describes the workloads and testbed used in our evaluation. Section 2.5.2

evaluates the traffic reduction achieved by each compression method. Section 2.5.3 and

Section 2.5.4 evaluate the resource and time overheads incurred by each method for achiev-

ing traffic reduction, respectively.

2.5.1 Workloads and Testbed

The computation tasks needing HA most are the ones that are not repeatable or pro-

hibitively expensive to repeat after a failure occurs. These tasks include server workloads

that constantly interact with external clients, and long-running computing jobs such as sci-

20

Checkpoint Checkpointing Intervals (ms)

Sizes (MB) 5000 2000 1000 100 50 25

HPC-C 19.3 18.2 13.1 3.1 2.1 1.7

RUBiS 13.0 11.4 8.2 4.4 4.1 3.7

FFmpeg 19.0 12.9 10.8 8.0 6.8 5.4

VoltDB 396.7 207.5 114.4 20.0 13.2 9.6

Table 2.2: The average checkpoint sizes of each workload.

entific computations. Our evaluation uses four different workloads of these types. Table 2.1

summarizes the workloads we use and their setup.

We run the workloads in VMs, take periodic checkpoints of the VMs for two minutes

of workload execution, and store the checkpoints taken for repeated use in our various ex-

periments. For each workload, we capture multiple series of checkpoints, each using a

different checkpointing interval length. We use sub-second (25, 50 and 100 ms) check-

pointing intervals to reflect those used in current HA systems [39], and also longer (1, 2

and 5 secs) intervals to explore a wider parameter space. For two minutes of workload exe-

cution, checkpointing every 5 seconds to every 25 ms generates 24 to 4800 checkpoints in

each series. Table 2.2 summarizes the average checkpoint sizes of the different workloads.

While in some cases individual checkpoints seem small, especially when taken at short in-

tervals, sending these checkpoints frequently creates excessive network traffic in only two

minutes, as discussed in Section 2.2.2.

All checkpoints are taken on HP Proliant BL465c blades, each with two dual-core AMD

Opteron 2.2GHz CPUs, 4–8 GB RAM, one GbE NIC and two SAS 10K rpm disks. All

our experiments are run on the same testbed. emulhacp and emulharcv run on top of

Xen in the Domain-0 of two separate blades in the same LAN; this setup resembles the

typical setup in a virtualized datacenter where protected and backup hosts are connected

by an internal LAN for management operations. In each experimental run, emulhacp and

emulharcv process complete series of checkpoints, and report average results over the

checkpoints processed.

21

 0

 20

 40

 60

 80

 100

25 50 100 1000 2000 5000

T
ra

ffi
c

R
ed

uc
tio

n
(%

)

Checkpointing Interval (ms)

(a) HPC-C

 0

 20

 40

 60

 80

 100

25 50 100 1000 2000 5000

T
ra

ffi
c

R
ed

uc
tio

n
(%

)

Checkpointing Interval (ms)

(b) RUBiS

 0

 20

 40

 60

 80

 100

25 50 100 1000 2000 5000

T
ra

ffi
c

R
ed

uc
tio

n
(%

)

Checkpointing Interval (ms)

gzip
delta-16M
delta-32M
sim-256B

sim-1K
sim2-256B

sim2-1K

(c) FFmpeg

 0

 20

 40

 60

 80

 100

25 50 100 1000 2000 5000
T

ra
ffi

c
R

ed
uc

tio
n

(%
)

Checkpointing Interval (ms)

(d) VoltDB

Figure 2.2: The traffic reductions achieved for a single protected VM running different

workloads. The ”sim-*” lines show the traffic reductions achieved by similarity

compression using different chunk sizes and a single-interval hash table, and

the ”sim2-*” lines show those achieved using a two-interval hash table.

2.5.2 Traffic Reduction

We first evaluate how each compression method reduces checkpoint traffic for a single

protected VM. Figure 2.2 shows the traffic reductions achieved when different workloads

are running in the protected VM. gzip is effective for various workloads and checkpointing

frequencies. It reduces traffic by 40–80% in our evaluation.4 Smaller traffic reductions are

achieved for FFmpeg and HPC-C at 1-second and longer checkpointing intervals. These

FFmpeg checkpoints contain large amounts of media contents that are already encoded

by video/audio codecs, and hence are not compressed much further by gzip. The HPC-C

checkpoints have many numerical values from the computation matrices of the workload.

4We use level 1 (fastest) compression for gzip. Our experiments with higher levels of compression show

only 1-2% more reductions with a 4x CPU overhead for gzip.

22

The randomness of these values are not friendly to the gzip compression algorithm.

We evaluate delta compression starting with a 32 MB delta cache, which is large enough

to store at least one complete checkpoint for most of the workloads and checkpointing fre-

quencies we use. To test the sensitivity of traffic reduction to cache size, we also evaluate a

smaller (16 MB) cache. The traffic reductions achieved by delta compression vary widely

in our experiments, ranging from 0% to 92% for different workloads and checkpointing fre-

quencies. The effectiveness of delta compression is mainly impacted by how the delta cache

is sized in relation to the size of the checkpoints. Our results suggest that to achieve more

than 40% traffic reductions, the delta cache must be larger than the average checkpoint

size of the workload under the checkpointing frequency used.

A 16 MB cache is effective for RUBiS. When RUBiS is checkpointed at sub-second

intervals, a 16 MB cache holds at least 5 consecutive checkpoints, and keeps a good history

of the dirty page contents of the workload. The cache produces over 98% hit rates, letting

almost all checkpointed pages be compressed before network transmission. In these cases,

delta compression outperforms gzip and achieves up to 92% traffic reduction.

A 16 MB cache becomes ineffective at 1-second and longer checkpointing intervals for

HPC-C. In these cases, using a 32 MB cache improves traffic reductions by an additional

41–81%, thanks to a 49–89% increase of cache hit rate. However, a 32 MB cache is still

far from enough for VoltDB. At 1-second and longer intervals, the checkpoint traffic of

VoltDB is not reduced at all. Each of these VoltDB checkpoints contains 100–400 MB of

dirty page contents, much more than the delta cache can hold, and all cached dirty pages

have to be replaced before enabling any compression. Thus, to reduce VoltDB checkpoint

traffic reasonably in these cases, hundreds of MBs of RAM must be provisioned for the

delta cache.

Given a sufficiently large cache, delta compression is more effective for workloads that

modify memory pages by smaller areas. We observed that even though the cache is com-

parably effective for FFmpeg and RUBiS, producing over 97% hit rates for both workloads

23

at sub-second intervals, the checkpoint traffic of FFmpeg is reduced by 34–45% less than

that of RUBiS. Our off-line analysis shows that, upon a cache hit, a dirty page of RU-

BiS is compressed by more than 80%, while FFmpeg’s dirty page is compressed by less

than 50%. This is because RUBiS modifies small areas in memory pages, but FFmpeg

changes each page significantly by reading media contents in 4 KB blocks from disk to be

transcoded; compressing FFmpeg’s buffer pages by the changes from their past contents

does not reduce data size effectively.

We evaluate similarity compression using 256 byte, 1 KB and 4 KB chunks to detect and

remove redundancy in checkpoint traffic. For each workload, using 256 byte chunks always

reduces traffic more effectively than using 1 KB chunks, which is, in turn, more effective

than using 4 KB chunks. In our experiments concerning a single protected VM, similarity

compression achieves smaller traffic reductions comparing to gzip and delta compression,

ranging from 12% to 62% reduction using a single-interval hash table and 256 byte chunks.

In these cases, similarity compression can only utilize intra-VM similarities—traffic is re-

duced by removing the duplicate checkpoint contents within each VM, since only one VM’s

checkpoints are processed at a time.

Even in the cases of only one protected VM, our results confirm and quantify the intu-

ition that similarity compression is particularly effective for workloads that have multiple

components collaborating on a shared data set. Similarity compression is particularly ef-

fective for HPC-C in the four workloads evaluated. Using only intra-VM similarity and a

single-interval hash table, HPC-C checkpoint traffic is reduced by 47–62% at 1-second and

longer intervals. We initially suspected that much of the reduction comes from the elim-

ination of zero pages, generated upon memory allocations by the workload. An off-line

analysis shows that less than 2.5% of these checkpointed pages contain all zeros. Thus,

similarity compression reduces checkpoint traffic effectively for HPC-C by removing the

non-zero workload data duplicated in the multiple processes spawned by the workload to

collaborate on computation problems.

24

Maintaining the hash table across checkpointing interval boundaries improves the ef-

fectiveness of similarity compression, especially when checkpoints are taken at sub-second

intervals. Using a multi-interval hash table, similarity compression not only removes the

checkpoint contents duplicated in the current interval, but also those duplicated with the

dirty page contents in the past intervals. Similarity compression achieves up to 25% addi-

tional traffic reduction by rebuilding the hash table every two intervals, rather than in every

interval. Expanding the hash table further to cover 3 consecutive intervals yields another

10% more traffic reduction, compared to that achieved with a two-interval hash table.

A multi-interval hash table improves traffic reduction especially in short checkpointing

intervals, where dirty pages are likely modified by a small degree—similarity compression

thus finds and eliminates much more checkpoint redundancy when prior page contents are

available in a multi-interval hash table for comparison. Our results also suggest that in

these cases, expanding the time coverage of the hash table improves traffic reductions more

effectively than refining the granularity of the hash table, i.e., detecting redundancy by

smaller chunks. As shown in Figure 2.2, at sub-second intervals, similarity compression

reduces checkpoint traffic more effectively using 1 KB chunks with a two-interval hash

table, comparing to using 256 byte chunks with a single-interval hash table.

2.5.2.1 Multiple Concurrently Protected VMs

We apply the compression methods to the checkpoint traffic of four VMs simultane-

ously, and evaluate the traffic reductions achieved in the following two scenarios: (S1) a

HPC cluster, representative of a homogeneous workload environment, and (S2) A hetero-

geneous mixture of workloads. In S1, each of the four VMs runs an instance of HPC-C.

To introduce realistic workload differences in S1, VM1 and VM2 work independently on

different problem sets, and VM3 and VM4 collaborate on a third, larger set of problems. In

S2, the four VMs run HPC-C, RUBiS, FFmpeg and VoltDB, respectively. In both scenar-

ios, the VMs are co-located in a single protected host, and their checkpoints are captured

25

 0

 20

 40

 60

 80

 100

25 50 100 1,000 2,000 5,000

T
ra

ffi
c

R
ed

uc
tio

n
(%

)

Checkpointing Interval (ms)

Single−VM
4−VM
4−VM, 2−intv.

(a) An independent HPC-C

 0

 20

 40

 60

 80

 100

25 50 100 1,000 2,000 5,000

T
ra

ffi
c

R
ed

uc
tio

n
(%

)

Checkpointing Interval (ms)

(b) A collaborating HPC-C

Figure 2.3: The traffic reductions achieved by similarity compression for a HPC-C VM

when the VM’s checkpoints are processed alone (Single-VM), together with

other VMs’ checkpoints in a 4-VM HPC cluster (4-VM), and using a two-

interval hash table (4-VM, 2-intv.)

at the same frequency.

The overall traffic reduction achieved in a multi-VM cluster roughly equals the average

of the traffic reductions achieved for the individual VMs, weighted by the VMs’ respective

checkpoint sizes. This is a good estimate especially for gzip and delta compression, which

process the checkpoint traffic of each VM independently. Similarity compression is the

only method in the three methods evaluated that may achieve additional traffic reductions

when processing checkpoints of multiple VMs concurrently, since inter-VM similarity can

be utilized—dirty page contents duplicated across VM boundaries are also eliminated to

further reduce checkpoint traffic.

To understand the effect of exploiting inter-VM similarity, we select a VM, and compare

the traffic reductions achieved for this VM when its checkpoints are processed alone, versus

together with other VMs’ checkpoints in a cluster. This comparison is more reasonable than

simply comparing the overall traffic reductions achieved in single- and multi-VM scenarios,

since that observed in a multi-VM cluster is biased by the individual VMs’ checkpoint

sizes.

We would like to answer the following questions about inter-VM similarity: (1) How

well does inter-VM similarity, when utilized, improve checkpoint traffic reductions in a

26

homogeneous workload environment? (2) In a homogeneous workload environment, does

VM collaboration affect the level of inter-VM similarity that is present? (3) How well does

inter-VM similarity and multi-interval hash tables, when used together, improve the effec-

tiveness of similarity compression? (4) Is there any inter-VM similarity in a heterogeneous

workload environment?

Figure 2.3(a) shows the traffic reductions achieved by similarity compression for VM1

in scenario S1, which works on a HPC problem set independently. When its checkpoints

are processed together with the checkpoints of the other three VMs in the cluster, an addi-

tional 2–11% traffic reduction is achieved, compared to processing its checkpoints alone.

Figure 2.3(b) shows the traffic reductions achieved for VM3 in scenario S1, which collab-

orates with another VM in the cluster on the same HPC problem set. Processing this VM’s

checkpoints with the other VMs’ results in greater additional traffic reductions of 11–20%

more; even in short, sub-second intervals, non-trivial amounts of inter-VM similarity and

thus traffic reduction improvements are observed. Exploiting inter-VM similarity with a

two-interval hash table, similarity compression reduces checkpoint traffic by 57–81% for

these VMs, as effectively as gzip.

Similarity compression is effective for homogeneous workload environments, where

non-trivial amounts of inter-VM similarity exist, especially when VMs collaborate on a

common task set. However, limited similarity is found between VMs running heteroge-

neous workloads, for which similarity compression is a poor fit. We found in the workload

mixture of scenario S2 that each VM’s checkpoint traffic is hardly reduced further when

their checkpoints are processed together, compared to processed independently. In the four

VMs in S2, the greatest improvement on traffic reduction is observed for RUBiS to be only

6% more.

Note that the additional traffic reductions achieved by similarity compression in a multi-

VM environment may be considered a lower-bound of the inter-VM similarity present in

the environment, for two reasons. First, one copy of the duplicate contents must be sent over

27

 0

 20

 40

 60

 80

 100

 120

 140

 160

Baseline gzip Delta Sim Sim2

C
P

U
 T

im
e/

P
ag

e
(u

s)

hpcc
rubis
ffmpeg
voltdb

(a) In the protected host

 0

 20

 40

 60

 80

 100

 120

 140

 160

Baseline gzip Delta Sim Sim2

C
P

U
 T

im
e/

P
ag

e
(u

s)

(b) In the backup host

Figure 2.4: The CPU cost of checkpoint replication for a single protected VM running

different workloads. No compression is used in the baseline. Delta cache

is 32MB. Similarity compression uses 256 byte chunks with a single-interval

(Sim) and a two-interval (Sim2) hash table.

the network, and is not counted in traffic reduction. Second, some contents are duplicated

both across VM boundaries and within individual VMs, and are already removed when pro-

cessing checkpoints of individual VMs independently. The elimination of these duplicates

is thus not reflected in the additional traffic reduction gained by processing checkpoints of

multiple VMs together.

2.5.3 CPU and Memory Costs

We now examine the resource requirements for each compression method to achieve

the traffic reductions presented in Section 2.5.2.

Figure 2.4 shows the per-page CPU cost of the compression methods measured in the

protected and backup hosts. We show the measurements taken at 100 ms checkpointing

intervals for the single protected VMs running the different workloads; the measurements

in our other experimental cases show consistent trends. In our experiments, checkpoint

replication for each VM can use one CPU core in the protected and backup hosts, respec-

tively. The CPU usage in the protected host is generally larger than that in the backup host,

as shown in Figure 2.4.

While reducing checkpoint traffic effectively, gzip requires significant CPU for compres-

28

sion. In the protected host, gzip typically shows an above 80% CPU usage. It incurs the

largest CPU cost in the three methods evaluated. It also uses more CPU when compressing

less effectively: gzip achieves lower traffic reductions at higher CPU costs for FFmpeg and

HPC-C compared to the other workloads. While gzip can operate at a minimal memory

cost—a 4 KB buffer per VM to contain the compression outcome as checkpoints are pro-

cessed page-by-page, its high CPU usage can greatly impact the protected VMs’ normal

operation, especially when checkpoints of multiple protected VMs are processed concur-

rently.

Delta compression uses less CPU for compression than gzip. It typically shows a 70–

80% CPU usage in the protected host. Though it uses fixed-size caches of 16MB and 32MB

in our experiments, we note that for workloads that dirty large areas of memory rapidly,

delta compression can use excessive RAM in the protected host to cache transmitted dirty

pages for effective compression. VoltDB is an example of such workloads. At 1-second and

longer intervals, delta compression cannot reduce VoltDB’s checkpoint traffic at all using

16MB and 32MB caches. To achieve reasonable traffic reductions in these cases, up to

400MB of memory is required for the delta cache, since as discussed in Section 2.5.2, delta

compression needs a cache larger than the average checkpoint size to reduce checkpoint

traffic by more than 40%. If a few such VMs are protected at the same time, the total

memory consumption of delta compression can grow quickly and create memory pressure

in the protected host.

In the three methods evaluated, similarity compression uses CPU most efficiently. Typ-

ically, it shows a 50–60% CPU usage in the protected host. Higher CPU costs are incurred

when checkpoints are processed by smaller chunks, since more MD5 digests are computed

for each dirty page. But even when using 256 byte chunks (computing 16 digests per page),

its CPU cost is the lowest of the three methods evaluated. Similarity compression also uses

little CPU in the backup host, since it “decompresses” checkpoints simply by copying du-

plicate contents from reference chunks, requiring no additional computations. In some

29

 0

 5

 10

 15

 20

 25

25 50 100 1,000 2,000 5,000

M
em

or
y

C
os

t (
M

B
)

Checkpointing Interval (ms)

hpcc
voltdb
4−VM HPC cluster
4−VM workload mixture

(a) A single-interval hash table

 0

 50

 100

 150

 200

25 50 100 1,000 2,000 5,000

M
em

or
y

C
os

t (
M

B
)

Checkpointing Interval (ms)

274 304

(b) A two-interval hash table

Figure 2.5: The memory cost of similarity compression using 256 byte chunks.

cases, it even uses less CPU than receiving and storing uncompressed checkpoints in the

backup (the baseline), thanks to the reduced checkpoint data sizes.

Similarity compression requires memory in the protected host for the hash table. The

hash table installs one entry for each unique chunk processed, so it uses more memory as

more unique chunks are recorded. Figure 2.5(a) shows the memory cost of similarity com-

pression with a single-interval hash table. In the four workloads, similarity compression

incurs the smallest memory costs for HPC-C and the largest memory costs for VoltDB. It

uses up to 20 MB of memory to record the chunk contents of the large VoltDB checkpoints

in the hash table. For the other three workloads, it incurs low memory overheads, ranging

from 95 KB to 1.3 MB when using 256 byte chunks, and less (8–350 KB) when 1 KB and

4 KB chunks are used.

Similarity compression uses memory more efficiently in the presence of greater VM

similarity, since fewer unique chunks need to be stored in the hash table. In our 4-VM HPC

cluster (scenario S1 in Section 2.5.2.1), it uses less than 2 MB of memory at all times to

process the checkpoints of all four VMs concurrently with a single-interval hash table, and

is able to reduce checkpoint traffic effectively thanks to the significant intra- and inter-VM

similarity present in the cluster. However, in the workload mixture of scenario S2, it uses

up to 22 MB of memory with most entries in the hash table recording the unique contents

of the large VoltDB checkpoints.

30

 0

 100

 200

 300

 400

 500

 600

 700

 800

25 50 100 1000 2000 5000

T
ra

ns
fe

r
T

im
e

(m
s)

Checkpointing Interval (ms)

gzip
delta-32M
sim-256B
baseline

(a) HPC-C

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

25 50 100 1000 2000 5000

T
ra

ns
fe

r
T

im
e

(m
s)

Checkpointing Interval (ms)

(b) RUBiS

 0

 200

 400

 600

 800

 1000

25 50 100 1000 2000 5000

T
ra

ns
fe

r
T

im
e

(m
s)

Checkpointing Interval (ms)

(c) FFmpeg

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

25 50 100 1000 2000 5000
T

ra
ns

fe
r

T
im

e
(m

s)

Checkpointing Interval (ms)

(d) VoltDB

Figure 2.6: The checkpoint transfer time of a single protected VM running different work-

loads.

Larger memory costs are incurred when similarity compression uses a two-interval hash

table, as shown in Figure 2.5(b), since additional memory in the backup is required to cache

the unique chunks in the previous interval for possible references; this cache constitutes the

main part of the memory consumptions. In the HPC cluster of scenario S1, using a two-

interval hash table improves traffic reduction—similarity compression reduces checkpoint

traffic by up to 81%, at a moderate memory cost of 2–18 MB. However, in a heterogeneous

workload environment, like the workload mixture in scenario S2, a multi-interval hash table

may not be suitable. Since limited VM similarity exists in such an environment, a multi-

interval hash table may likely incur a large memory overhead by caching unique checkpoint

contents in the backup, without effectively improving traffic reduction.

31

2.5.4 Checkpoint Transfer and Storage Time

In addition to consuming resources, checkpoint compression affects the time taken to

transfer and store each checkpoint. Figure 2.6 shows the average checkpoint transfer time

incurred by a single protected VM running the different workloads. For all workloads,

transfer time is the shortest when compression is not used (the baseline), ranging from 16

to 188 ms except for VoltDB; VoltDB checkpoints are larger and each takes much longer

to finish replication.

In these experiments concerning a single protected VM, uncompressed VM check-

points are usually replicated within each configured interval, unless the intervals are 50

ms and shorter. Take FFmpeg as an example. When checkpointed every 50 and 25 ms,

an uncompressed checkpoint takes an average of 61 and 49 ms, respectively, to replicate.

Since each checkpoint does not finish replication within the configured interval time, sub-

sequent checkpoints must be delayed, and the configured checkpointing frequencies (one

checkpoint every 50 and 25 ms) are not achieved. For VoltDB, even lower frequency of

checkpointing every 1 second cannot be achieved.

Compression lengthens the checkpoint transfer time incurred by the single protected

VMs, and gzip requires the longest transfer times in the three methods evaluated. Figure 2.7

plots the ratio of the measured transfer time in Figure 2.6 to the configured checkpointing

interval. A ratio greater than 1 indicates that the elapsed time between two consecutive

checkpoints is larger than the configured interval length, and the configured checkpointing

frequency is not achieved. Even though gzip sends only 20–60% of the original checkpoint

data over the network, it incurs transfer times up to 14x longer than the configured check-

pointing interval, due to performing compression. As a result, for VoltDB, none of the

checkpointing frequencies evaluated can be achieved, and for all other workloads, check-

pointing every 100 ms and higher frequencies are no longer feasible when gzip is used.

The long checkpoint transfer times required by gzip can limit its applicability for server

applications that are very sensitive to network latencies.

32

 0

 0.5

 1

 1.5

 2

 2.5

 3

25 50 100 1000 2000 5000

R
at

io

Checkpointing Interval (ms)

gzip
delta-32M
sim-256B
baseline

(a) HPC-C

 0

 1

 2

 3

 4

 5

 6

25 50 100 1000 2000 5000

R
at

io

Checkpointing Interval (ms)

(b) RUBiS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

25 50 100 1000 2000 5000

R
at

io

Checkpointing Interval (ms)

(c) FFmpeg

 0

 2

 4

 6

 8

 10

 12

 14

25 50 100 1000 2000 5000
R

at
io

Checkpointing Interval (ms)

(d) VoltDB

Figure 2.7: The ratio of the measured transfer time in Figure 2.6 to the configured check-

pointing interval.

Similarity compression requires the shortest checkpoint transfer times for the single

protected VMs, as well as the shortest checkpoint storage times in the three methods eval-

uated. It takes 1.5x less time than delta compression to replicate each checkpoint of the

protected VM using 256 byte chunks and a single-interval hash table. Even shorter transfer

times are required when processing checkpoints by larger chunks and a multi-interval hash

table. It also stores each replicated checkpoint to the fail-over image as fast as if compres-

sion were not used, incurring almost the same amount of checkpoint storage time as in the

baseline cases, as Figure 2.8 shows.

Checkpoint decompression of gzip and delta compression takes a non-trivial amount of

time to complete, resulting in prolonged checkpoint storage times and lowering the check-

pointing frequency actually achieved. In our experiments, gzip and delta compression incur

up to 10x and 13x longer storage times compared to similarity compression, respectively.

33

 0

 50

 100

 150

 200

 250

hpcc rubis ffmpeg voltdb

S
to

ra
ge

 T
im

e
(m

s) Baseline
gzip
D−32M
Sim−256B

Figure 2.8: The storage time of each checkpoint of a single protected VM running different

workloads.

 0

 200

 400

 600

 800

 1000

25 50 100 1000 2000 5000

T
ra

ns
fe

r
T

im
e

(m
s)

Checkpointing Interval (ms)

gzip
delta-32M
sim-256B
baseline

(a) In a HPC cluster

 0

 200

 400

 600

 800

 1000

25 50 100 1000 2000 5000

T
ra

ns
fe

r
T

im
e

(m
s)

Checkpointing Interval (ms)

(b) In a workload mixture

Figure 2.9: The checkpoint transfer time of a HPC-C VM measured in our 4-VM HPC

cluster and workload mixture scenarios.

We observed that using the two methods, replication of a subsequent checkpoint is often

delayed by the previous checkpoint not being completely stored and releasing its buffer

in time for a new incoming checkpoint, especially when checkpoints are configured to be

replicated at sub-second intervals. The checkpointing frequencies actually achieved thus

decrease.

2.5.4.1 Transfer Time in Multi-VM Environments

To understand how checkpoint transfer time varies when multiple VMs are concur-

rently protected, we consider the transfer times incurred by a HPC-C VM in our multi-VM

experimental scenarios S1 and S2, the HPC cluster and workload mixture, as shown in

Figure 2.9.

While gzip consistently requires long transfer times, those incurred by similarity com-

34

pression show an interesting variation. As discussed above, similarity compression requires

the shortest transfer times in the three methods evaluated for the single protected VMs run-

ning different workloads. This observation remains true in our various experiments with

a 2-VM HPC cluster. However, as the number of VMs in the HPC cluster increases to 4

(scenario S1), in some cases, the transfer times incurred by delta compression become the

shortest. In the workload mixture (scenario S2), similarity compression even takes as long

as gzip to replicate each checkpoint.

These results suggest that similarity compression may lose the advantage of requiring

small checkpoint transfer times as the number of concurrently protected VMs increases, and

we have found that this is the case when the target environment is bottlenecked on network

bandwidth, but not CPU, as we will discuss below. Our testbed happens to represent such

a computing environment.

Checkpoint transfer time consists of processing time, during which dirty pages are com-

pressed, and sending time, during which the pages are transferred over the network. Com-

pression lengthens processing time while reducing sending time, and the two components

vary by different degrees for different compression methods. A computation-intensive

method can greatly increase processing time, while an effective method greatly reduces

sending time. The resource availability in the target environment also impacts the two

components in different ways: abundant CPU improves processing time, while faster net-

work improves sending time.

In an environment with limited network bandwidth (assuming abundant CPU), send-

ing time plays a more important role than processing time in the variation of checkpoint

transfer time. Using an effective method like gzip, less dirty data is sent for each protected

VM, and as the number of VMs increases, sending time grows more gently. By contrast,

since similarity compression reduces traffic less effectively, with more VMs concurrently

protected, sending time increases more rapidly. As a result, similarity compression may

begin to require longer transfer times than the other methods when the network becomes

35

 0

 100

 200

 300

 400

 500

 600

 700

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

T
ra

ns
fe

r
T

im
e

(m
s)

Baseline gzip D−32M		S−256B		

Sending
Processing

(a) 1sec intervals

 0

 20

 40

 60

 80

 100

 120

 140

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

T
ra

ns
fe

r
T

im
e

(m
s)

Baseline gzip D−32M		S−256B		

(b) 100ms intervals

Figure 2.10: The breakdown of the checkpoint transfer times of a HPC-C VM measured in

our HPC clusters consisting of 1, 2 and 4 VMs.

saturated.

We verify this reasoning by breaking down the transfer time measurements into pro-

cessing time and sending time. We estimate the (elapsed) processing time by the average

CPU time spent for each checkpoint. This estimate is reasonable, since there is minimal

CPU sharing in our testbed: when emulhacp spawns four threads to replicate checkpoints

for 4 VMs in parallel, CPU is almost always available to the threads in our server, which

has 4 physical cores. We then consider the remainder of the transfer time as sending time,

which is a lower-bound of the time required to send the dirty data (the part not overlapping

with processing time).

Figure 2.10 shows the breakdowns of the transfer times incurred for a HPC-C VM mea-

sured in a HPC cluster consisting of 1, 2, and 4 VMs; we show the breakdowns in cases

of 1 second and 100 ms checkpointing intervals as an example. While similarity compres-

sion requires the shortest processing time, as the number of VMs increases, its sending

time grows by a larger degree comparing to gzip and delta compression. Comparing Fig-

ure 2.10(a) with Figure 2.10(b), the sending time of similarity compression also increases

more significantly in the cases of longer checkpointing intervals, where a larger amount of

checkpoint data is generated in the network in each interval. Therefore, similarity compres-

sion requires longer transfer times than delta compression when the network is saturated to

a certain degree. As the amount of checkpoint traffic keeps increasing, similarity compres-

36

sion may take as long as gzip, or even longer, to replicate each checkpoint.

2.6 Discussions on Compression Method Selections

From our evaluation, one can hardly find a single best compression solution, and com-

pression methods should be selected based on the workload types and resource constraints

in the target environment.

Our results suggest that similarity compression is the most suitable for VM clusters run-

ning homogeneous workloads, especially when VMs in the cluster collaborate on a shared

task set. In these scenarios, similarity compression achieves satisfactory traffic reductions

using both CPU and memory efficiently, and it becomes even more effective with a multi-

interval hash table. For example, using a two-interval hash table in our 4-VM HPC cluster

yields up to 32% more traffic reduction than a single-interval hash table would achieve,

without incurring an undue resource overhead. The additional traffic reduction also helps

shorten checkpoint transfer time further; similarity compression regains the advantage of

requiring the shortest transfer time in the three methods evaluated with a two-interval hash

table in our HPC cluster. Note, however, that maintaining the hash table across many in-

tervals may not be necessary, since the additional traffic reductions gained decrease with

increasing resource costs.

For other workload scenarios, especially a heterogeneous mixture of workloads, gzip

and delta compression are better suited. These methods are effective for a wider range of

workload types than similarity compression. When using them, the resource availability in

the target environment must be considered.

To use gzip, the protected host must have abundant CPU to support checkpoint com-

pression in addition to normal operation of protected VMs and applications. Since gzip

generally reduces checkpoint traffic effectively at a high CPU cost, it is bottlenecked on

checkpoint compression rather than transmission. If processing checkpoints of multiple

VMs creates severe CPU contention in the protected host, the usefulness of gzip can de-

37

grade. In such a case, not only are VM operations in the protected host affected, each

checkpoint of the protected VMs also takes longer to replicate. Consequently, the VMs

must be checkpointed at lower frequencies, and this can potentially make gzip unusable for

VMs running latency-sensitive server applications.

For delta compression to be effective, sufficient memory must be available and provi-

sioned for the delta cache. Our results show minimal traffic reductions when the delta cache

is smaller than the average checkpoint size of the protected VM. It is thus critical to prop-

erly size the delta cache according to the memory access behavior of the target workloads

and the checkpointing frequencies used. A proper cache size may be determined by pro-

filing the target workloads a priori. Alternatively, the cache may first be over-provisioned

and then dynamically adjusted as the workloads execute.

2.7 Related Work

This chapter examines the prohibitive network requirements of checkpoint replication.

Two types of approaches have been proposed to reduce checkpoint replication traffic in HA

systems. One reduces the amount of VM state to protect/checkpoint; the other checkpoints

the full VM state, but reduces the amount of data sent for each checkpoint taken.

RemusDB [69], a highly available database system in VM, uses the first approach.

It does not checkpoint clean disk buffers, and “de-protects” certain data structures in the

database system that can be regenerated after a failure. Therefore, it creates smaller check-

points and less replication traffic in the network. However, it requires in-depth understand-

ing of the applications running in a protected VM to identify data structures that can be

safely de-protected. The VM and applications must also be instrumented to recover un-

checkpointed state after a fail-over.

Checkpoint compression exemplifies the second type of approach. Compression is gen-

erally applicable regardless of the applications in the VMs, and requires less system instru-

mentation; hence we focus on compression in our study presented in this chapter. The

38

authors of [39] briefly discussed compressing checkpoints by gzip and delta compression,

although a thorough evaluation was not included. RemusDB [69] and SecondSite [80],

designed for database HA and datacenter disaster recovery, respectively, use delta com-

pression in their systems. They both find page delta by XOR, and compress the delta by

RLE, like evaluated in this chapter. Lu et al. propose fine-grained dirty region tracking

(FDRT) [64], which shares the same concept of delta compression. FDRT divides each

dirty page into fixed-size regions, and finds the regions that are actually modified by com-

paring content hashes. It then replicates the modified regions to the backup instead of

the entire page. While delta compression has been used in HA systems and during live

VM migration [92, 97], our study compares it with other types of compression methods to

understand when it is best suited for use.

Similarity compression exploits memory content redundancy to reduce checkpoint repli-

cation traffic. In a broader context, content redundancy is widely used for storage dedupli-

cation to improve I/O performance [59, 78, 81], and in network infrastructures to improve

network capacity and end-to-end application performance [27, 28]. Content redundancy

in VM memory is often utilized to share identical pages and reduce host memory pres-

sure [49, 70, 96]. Different from these systems, which find and coalesce redundant pages

in the entire memory space of co-located VMs, similarity compression finds redundant

data in dirtied memory pages. It also detects redundancy much more frequently than these

systems as well as VM migration systems that use redundancy elimination [82, 87, 97].

Gerofi et al. presents another way to utilize VM similarity and reduce checkpoint repli-

cation traffic [48]. Instead of finding “identical” data in dirty pages, the authors find mem-

ory areas that are “similar” to the dirty pages, and send only the differences between the

dirty pages and these memory areas over the network; their approach is currently applied

to each VM independently. The same idea has also been used to reduce VM migration

traffic [42, 99]. Note that similarity compression examines the content similarity in the

memory space of live, executing VMs, in contrast to systems like VMFlock [25], which

39

utilize the similarity in VM disks to reduce the traffic incurred for migrating static VM disk

images.

2.8 Conclusions

Reducing checkpoint traffic is crucial to using checkpoint replication for maintaining

VM availability. Although checkpoint compression methods are available, they have not

been thoroughly evaluated and compared in the context of supporting HA. In this chapter,

we conducted a detailed characterization of three checkpoint compression methods, gzip,

delta compression, and similarity compression, based on their effectiveness and overheads.

Our evaluation uncovered the different strengths and weaknesses of each method, and pro-

vided guidelines for selecting and using these methods based on the workload types and

resource constraints in a HA system. The evaluation framework developed in this chapter

is generic, and can be used to evaluate other compression methods.

40

CHAPTER III

HydraVM: Memory-Efficient High-Availability for

Virtual Machines

3.1 Introduction

To restore a failed VM and resume its execution from where it left off in the failure,

existing approaches create a backup VM in a separate host for each primary running VM,

and synchronize a primary VM’s runtime state to its backup by replaying VM instruc-

tions [20, 32] or replicating VM checkpoints [24, 39, 44, 47, 93]. The backup stands by in

the background until a failure of the primary occurs, at which point it becomes active and

takes over execution from the primary’s state before the failure.

Using backup VMs, existing HA approaches reduce the amount of completed work lost

upon failures, but at a high resource cost. In particular, each backup VM reserves as much

memory as its primary. This reserved memory space cannot be used by other VMs even

though the backup remains inactive during normal VM operations. Making backup mem-

ory reservation is expensive for several reasons. First, each VM that desires HA support

incurs a 100% memory overhead without any increase in its system throughput. Second,

the aggregate backup memory reservation made for a group of protected VMs can sig-

nificantly and unproductively consume RAM, a scarce and expensive resource. Third, as

many-core processors become pervasive, memory is increasingly the resource bottleneck

41

of VM consolidation [49]. Inactively blocking host memory for backup VMs may hinder

effective consolidation of active running VMs, and result in under-utilization of other host

resources (e.g., CPU cores) and degradation of the overall resource efficiency in a virtual-

ized environment.

In this chapter, we propose HydraVM, a memory-efficient HA approach for VMs. The

primary objective of HydraVM is to protect VMs against failures of their hosting machines

without any backup memory reservation. Instead of creating a backup VM, HydraVM

keeps track of the runtime state of a protected VM in a fail-over image maintained in a net-

worked, shared storage, which is commonly deployed in a virtualized environment to hold

VM disks and facilitate VM management and migration. In case of a failure, HydraVM

quickly restores the VM from the fail-over image and resumes its execution.

HydraVM keeps track of VM runtime state by taking incremental VM checkpoints, as

existing HA systems do [24, 39, 44, 47, 93]. Different from existing systems, which store

the checkpoints taken in an in-memory backup VM, HydraVM consolidates the check-

points in a shared storage. HydraVM utilizes inexpensive storage, and frees up expensive

RAM for better usage. A failed VM can be recovered in any host that has sufficient re-

sources, since HydraVM maintains the VM state needed by fail-over in a shared storage

instead of a dedicated backup host. However, fast VM recovery is challenging for Hy-

draVM, since the fail-over state must be loaded from the shared storage. To bring a failed

VM back alive quickly, HydraVM performs a slim VM restore, which loads only a small

amount of critical VM state from the fail-over image to restore a VM, and activates the ex-

ecution of the restored VM immediately. As the VM executes, the VM state not yet loaded

is supplied on-demand.

HydraVM was not intended to provide “hot mirroring” of VM state as existing ap-

proaches that use in-memory backup VMs do, since each VM checkpoint takes longer to

store on a storage device than in memory. With hot mirroring, existing approaches buffer,

and checkpoint, VM network outputs before releasing them, to provide transparent failure

42

recovery for client-facing applications. However, even with hot mirroring, latency-sensitive

applications can suffer from significant performance degradations due to network buffer-

ing [39, 44]. HydraVM does not buffer network outputs for protected VMs with its “warm

mirroring” of VM state, and therefore, does not provide transparent recovery for server

applications. We make this tradeoff to maintain fail-over VM state in inexpensive storage,

and provide a cost-effective HA alternative for applications which do not require network

buffering, including long-running computation jobs and distributed applications that run in

a VM cluster. These applications benefit from the protection of HydraVM at a reduced

resource cost without requiring any modification.

We implemented HydraVM based on Xen, and evaluated it using workloads that may

benefit from HydraVM. Our results show that HydraVM provides VM protection at a low

overhead, and can recover a failed VM within 2.2 seconds. While the individual techniques

used in HydraVM have been applied to different problems, the contribution of this chapter

is a new combination of the techniques that solves the real-world problem of providing

resource-efficient HA support for VMs and the demonstration of the applicability of this

solution. Our aim is not to replace existing HA approaches that use in-memory backups—

they are needed especially for client-facing applications to benefit from transparent failure

recovery, but rather to complement the HA toolbox currently available with a cost-effective

alternative.

The remainder of this chapter is organized as follows. Section 3.2 discusses the design

rationale, and provides an overview of HydraVM. Section 3.3 and Section 3.4 detail the

VM protection and recovery mechanisms in HydraVM, respectively. Section 3.5 evaluates

HydraVM experimentally. Section 3.6 discusses alternative storage architectures that Hy-

draVM may take advantage of, especially in large environments. Section 3.7 summarizes

related work, and the chapter concludes with Section 3.8.

43

3.2 HydraVM Design

The design of HydraVM is based on a key observation that existing HA approaches

incur a high cost by maintaining backup VMs in memory. It is our primary objective to

reduce backup memory reservation and provide a memory-efficient HA alternative.

3.2.1 Storage-based VM High-Availability

One may consider downsizing backup memory reservation by memory ballooning [96].

Ballooning is designed for adjusting VM memory allocation at runtime, and requires the

VM to cooperate. It is very challenging for a backup VM to exercise its balloon driver,

since the backup may not be operational, and its state changes must follow that of the

protected VM very closely.

Another way to reduce the overhead of backup memory reservation is to make the

memory usable for other actively running VMs, i.e., to time-share a backup VM’s memory

space with other VMs in the host. To do this, a host-wide paging system may be needed to

schedule physical page frames between hosted VMs. Unfortunately, since this extra level

of paging can introduce performance anomalies due to unintended interactions with the

paging system in the guest OS [96], current platform virtualization technologies, such as

Xen and VMware ESX, either do not support, or do not prefer host-wide paging. It is thus

difficult to let other running VMs use the memory reserved by a backup.

A third alternative is to page out backup VMs [34], reclaim their memory and re-

distribute to active VMs. This approach appears feasible, since a backup VM remains

inactive until the protected VM fails. However, to be able to take over execution from

where the protected VM left off in the event of a failure, the backup needs to be swapped in

very frequently to synchronize with the execution state of the protected VM. This overhead

is non-trivial, and can offset the resource benefits gained by swapping the backup out.

HydraVM “pages out” the backup VM to eliminate the unproductive reservation of

backup memory, and shortcuts the state synchronization process by updating the backup’s

44

on-disk pages without paging them back in. In other words, HydraVM takes a storage-

based approach. Instead of reserving memory in an additional server, we “maintain” the

backup VM in a stable storage. For each protected (primary) VM, HydraVM maintains in

a networked, shared storage the state needed by fail-over, based on which a backup VM

can be quickly restored and activated to take over execution when the primary fails. The

storage system holding the VM fail-over states is assumed to be fail-independent of and

accessible from the physical servers that host VMs.

Rather than adding a new shared storage into a virtualized environment for the sole pur-

pose of providing VM protection, HydraVM utilizes the one that is already installed—the

shared storage commonly deployed as a central store for VM images. This shared storage

may be provisioned in various ways in practice, to deliver the aggregate capacity and com-

bined throughput of a federation of devices and meet the I/O demands of all VMs running

in the environment. For example, it may be a shared block storage accessed via a Fibre

Channel or iSCSI-based storage area network (SAN), or a cluster filesystem. To ensure

undisrupted accesses to VM data, this storage is usually built with redundant connections

to and from the VM hosts, as well as storage-level reliability mechanisms against device

and controller failures. HydraVM depends on these properties to assume the reliability and

availability of the shared storage, and focuses on maintaining VM availability in the face

of VM host failures.

3.2.2 An Overview of HydraVM

HydraVM is designed to provide VM protection from fail-stop host failures. It does not

attempt to recover VM execution from non-fail-stop conditions caused by configuration

errors, software bugs, and so on.

HydraVM has two operation modes, protection and recovery. We give a brief overview

of HydraVM below, and detail its two operation modes in Section 3.3 and Section 3.4,

respectively.

45

During normal operation of a primary VM, HydraVM operates in the protection mode.

HydraVM maintains a backup copy of the primary VM state in a shared storage. As the

primary executes, the backup state is periodically synchronized with the changing state in

the VM, such that in the event of a primary host failure, the VM can be recovered based on

its backup state without losing much of the completed work. Like existing approaches [24,

39, 44, 47, 93], HydraVM replicates checkpoints of the primary VM to update the backup

VM state. Unlike previous systems, HydraVM consolidates and stores the checkpoints in

storage, without making any backup memory reservation.

Upon detection of a failure of the primary host, HydraVM switches to the recovery

mode and responds to the failure. A restoration host with available memory must be se-

lected, either from the stand-by hosts, or from the surviving hosts. HydraVM then initiates

a fail-over to restore the failed primary VM in the restoration host. HydraVM performs a

“slim” VM restore, which loads only a small amount of critical VM state from the shared

storage to instantiate and restore the VM. It activates the restored VM immediately to take

over execution from the most recent runtime state recorded before the failure. As the VM

executes, the state not loaded during fail-over is supplied on-demand.

We implemented the protection and recovery mechanisms of HydraVM based on Xen

(version 3.3.2) as management commands to be invoked via the xm interface. Currently,

HydraVM does not implement custom-built mechanisms to detect host failures and select

restoration hosts, and assumes to cooperate with and be informed by existing failure detec-

tors (e.g., [83]) and cluster resource managers (e.g., [19, 100]) of these decisions.

3.2.3 Advantages and Limitations

The storage-based HydraVM approach offers several advantages. First, by using in-

expensive storage to maintain the VM state necessary for fail-over in place of expensive

RAM, the hardware costs of providing HA support are reduced. Second, the memory re-

served by inactive backup VMs are freed up for better usage. They may be added to active

46

VMs for performance enhancements, or used to create new VMs and consolidate existing

ones more effectively. Third, since HydraVM maintains the fail-over states in a shared stor-

age instead of dedicated backup machines, in the event of a failure, the affected VMs may

be recovered in any physical host that has access to the storage. This allows fail-over to any

host that currently has sufficient spare memory and other resources. This ability is critical

given the highly variable utilization of hosts in a virtualized environment. Finally, using

HydraVM, a relatively small number of spare hosts needs to be provisioned in anticipation

of failures, instead of a large number of hosts passively synchronized with the protected

VMs, since a single host can now back up or protect many more VMs, as long as they do

not all fail together.

However, maintaining fail-over state in storage also causes limitations for HydraVM,

mainly because persistent storage devices are orders of magnitudes slower than RAM.

When maintaining backup VMs in memory, the primary and backup can be synchro-

nized quickly and frequently, or kept in lock-step, even though significant overheads are

incurred [32, 39, 44]. In HydraVM, each synchronization of the primary and backup VM

state takes much longer to finish on storage devices. HydraVM thus has to replicate VM

checkpoints and update backup VM state much less frequently than approaches using in-

memory backup VMs.

Previous approaches use in-memory backup VMs and frequent checkpointing mainly

to enable network buffering. Network buffering is the act of withholding outgoing net-

work packets of the primary VM until the checkpoint that captures the state from which

the packets are generated is fully replicated and acknowledged by the backup. Frequent

checkpointing is necessary, since network outputs must be released frequently after each

checkpoint to not incur unacceptably long delays. However, even when checkpoints are

taken and replicated as frequently as 10–40 times per second, latency-sensitive applica-

tions still suffer from significant performance degradations [39, 44].

Network buffering ensures that any exposed state is recoverable if a failure occurs, and

47

is needed when the protected VM interacts with external clients and transparent failure

recovery is required. However, for most client-facing applications, any storage-based HA

approach does not replicate checkpoints frequently enough to sustain reasonable applica-

tion performance with network buffering. HydraVM currently does not buffer network

outputs for protected VMs, and does not provide transparent recovery for server applica-

tions constantly interacting with external clients. Without cooperation from the end-user or

programmer during recovery, server applications should be protected by in-memory backup

VMs with network buffering, even though at larger application and resource overheads.

HydraVM makes this design tradeoff to maintain the state needed by VM fail-over in

storage, instead of RAM, and provide a cost-effective HA alternative for application sce-

narios in which frequent checkpointing and network buffering are not needed. HydraVM

protects long-running computing jobs which can be prohibitively expensive to repeat af-

ter a failure occurs, such as scientific computation and simulation, at a reduced resource

cost and without requiring any modification to the application. In a cluster, HydraVM can

work with distributed snapshot algorithms [46] to provide coordinated protection and re-

covery for VMs running distributed and multi-tiered applications. Alternatively, HydraVM

can work with synchronized clocks to checkpoint and protect multiple VMs in a cluster

concurrently.

3.3 VM Protection

During normal execution of a primary VM, HydraVM maintains a backup copy of the

VM state in a shared storage, and updates the backup state continuously as the primary

runs.

There are two main approaches to primary-backup state synchronization. Log-and-

replay records all instructions and non-deterministic events executed by the primary VM,

and replays them deterministically to generate an identical state in the backup [20, 32]. This

approach is not suitable for HydraVM, since by maintaining the backup state in a storage,

48

Primary host

Management VM

hacp

Protected

(primary) VM

harcv send checkpoints

VM disk storage

Virtual disk images

Restoration host

Management VM

hart
Restored VM

odpf

Shared storage system
accessible to all VM hosts

Fail-over image storage

VM fail-over image

consolidate checkpoints

fetch memory contents

supply memory contents

selected upon fail-over

VM hosts

Figure 3.1: The HydraVM system.

we essentially page out the entire backup VM, and to replay primary VM execution would

require frequently bringing pages of the backup VM back in. Therefore, HydraVM uses

the other approach, checkpoint replication [24, 39, 44, 47, 93], which captures the entire

state of the primary VM in checkpoints and replicates them to the backup.

3.3.1 Checkpointing VM CPU and Memory State

Figure 3.1 illustrates the architecture of HydraVM. For each primary VM, HydraVM

runs a checkpointing daemon, called hacp, to enforce the protection of the VM. hacp first

creates a fail-over image for the VM by taking a full VM checkpoint and replicating it to

the fail-over image storage; this full checkpoint is taken only once at the beginning of the

protection. The fail-over image contains the backup state of the VM, based on which the

VM can be restored in case a failure occurs. Specifically, a fail-over image contains (1) the

configuration of the VM describing the VM’s allocated resources, virtual devices, pages

shared with the hypervisor, and so on, (2) the VM’s virtual CPU state, and (3) all memory

pages of the VM, laid out sequentially in the order they appear in the VM’s memory space.

49

In our implementation, (1) and (2) contain only 60 KB of data, so the size of the fail-over

image is just slightly larger than the memory size of the VM.

As the VM continues executing, hacp takes incremental checkpoints periodically. Each

incremental checkpoint captures the changes of the VM’s CPU and memory state since the

last checkpoint taken. We implemented hacp by modifying the stop-and-copy stage of

Xen’s live migration support [38]. hacp uses Xen’s shadow page tables to find the memory

pages modified in each checkpointing interval, by putting the execution of a primary VM

in log-dirty mode. In this mode of operation, Xen maintains a private (shadow) copy of the

VM’s page tables, in which all pages of the VM are marked read-only. A write to a page

generates a fault and traps into Xen, so Xen can record the page in a dirty bitmap.

At the end of each checkpointing interval, hacp pauses the VM momentarily to capture

a consistent set of changed VM state while the VM is not executing. It finds the dirty

memory pages based on the dirty bitmap, and copies their contents along with the CPU state

of the VM to a buffer. It then resets the dirty bitmap to record for the next checkpoint, and

un-pauses the VM. While the VM continues executing, hacp sends the buffer containing

the checkpointed VM state to the fail-over image storage.

HydraVM replicates each checkpoint asynchronously, overlapping checkpoint replica-

tion with VM execution as existing HA systems do [39, 44, 47]. Unlike previous systems,

which store checkpoints in server memory, HydraVM writes checkpoints to storage. A

checkpoint may be stored as an individual patch file, or merged with the fail-over image

in the shared storage. The first approach may store the checkpoint faster with sequential

I/Os, but checkpoint patches can consume storage space very rapidly as the VM continues

running. In our experiments, we observed that a workload can dirty 10–40MB of memory

per second. Using these results as an example, protection of a VM can generate 36–144GB

of checkpoint data per hour, and potentially use up an entire disk per day.

The checkpoint patches need to be consolidated to reclaim storage space and to generate

a recent, consistent VM state for fail-over. However, merging checkpoint patches is very

50

time-consuming. Each patch file must be read from disk, and the dirty page contents written

to different locations in the fail-over image according to the page indexes. Our experience

suggests that merging only 80 checkpoints or so, each containing about 30MB of data,

takes almost 4 minutes to complete. For a workload that dirties 30MB of memory per

second, to merge all its checkpoints when restoration of the VM is required would result

in an unacceptably long fail-over time. Even if a daemon runs to merge a few checkpoints

periodically, the I/Os incurred can interfere with the storage of new incoming checkpoints,

and offset the speed benefit of writing checkpoints sequentially as patches.

Therefore, HydraVM takes the other approach, to consolidate an incoming checkpoint

into the fail-over image, and keep the image updated with the latest checkpointed VM

state, ready for use by VM restoration. For each primary VM, HydraVM runs a checkpoint

receiver daemon, harcv, in the fail-over image storage. harcv receives a checkpoint in

its entirety, and applies all state changes included in the checkpoint to the fail-over image.

Note that harcv does not write to the fail-over image while receiving the checkpoint, nor

does hacp update the fail-over image directly by sending checkpointed VM state in network

file or block I/Os. Otherwise, the fail-over image may become inconsistent and unusable

for recovery, if the primary host fails in the middle of transmitting a checkpoint.

harcv commits all checkpoint writes to the storage, releases the buffer cache used, and

sends an ACK back to hacp, confirming the successful completion of the checkpoint. After

receiving the ACK, hacp waits until the current checkpointing interval ends, and takes a

checkpoint again. If a checkpoint takes a longer time than the configured checkpointing

interval to replicate, hacp waits until the on-going replication finishes and an ACK is re-

ceived, and then starts the next checkpoint. This way, checkpoints are not taken faster than

they can be stored and made useful (in the fail-over image).

51

3.3.2 Checkpointing VM Disk State

To correctly restore the primary VM in the event of a failure, a VM disk state that is

consistent with its CPU and memory state in the fail-over image is required. The focus of

HydraVM is to keep track of and recover VM runtime state in a memory-efficient manner,

and we currently use a simple technique to meet the requirement of checkpointing virtual

disk state. Our system hosts VM disks under LVM [12], and uses the snapshot functionality

of LVM to capture the disk state at the time of an incremental checkpoint.

LVM snapshots can be taken very quickly and at a low overhead. It is implemented

by performing copy-on-write at block level. Note that HydraVM is not designed for, nor

confined to, the use of LVM. File system snapshots, such as those supported in ZFS [85],

BTRFS [84], Ext3cow [76], to name a few, can also be used. It is most ideal to integrate

HydraVM with a storage infrastructure that is designed to support efficient creation of

virtual disk snapshots; one good example of such a storage system is Parallax [67].

3.4 VM Recovery

For prior approaches that use in-memory backup VMs, when a failure occurs, all VM

states needed for fail-over are in place in the memory of the backup VM. Ideally, fail-

over can be accomplished simply by switching on backup VM execution. However, quick

restoration of a failed VM is challenging in HydraVM, since the fail-over image is kept on

a networked stable storage, and must be loaded into the memory of the selected restoration

host before the VM can resume execution from the last checkpointed state.

Loading the entire fail-over image of a VM can take an unacceptably long time. It

takes 20–40 seconds to load a single fail-over image of 1–2GB from a hard drive and

send it over a GbE link to the restoration host in our experiments, and it will take even

longer to load a larger fail-over image or multiple images at a time. Loading large amounts

of VM state from the fail-over image can also make VM restoration a highly variable

52

procedure, especially when restoring multiple VMs concurrently: even a small VM which

may individually restore acceptably can require an unpredictably long fail-over time, due

to the aggregate network and storage traffic incurred. It is therefore important to reduce the

time and traffic incurred for VM fail-over.

3.4.1 Slim VM Restore

HydraVM performs a “slim” restore for a failed VM to quickly instantiate the VM in

the restoration host based on a minimal set of information in the fail-over image. The

execution of the VM is activated immediately after the instantiation, without waiting for

the fail-over image to be fully loaded.

The restoration agent hart is invoked in the restoration host, and is responsible for

performing the fail-over. hart first loads the VM configuration from the fail-over image,

which describes the allocated resources and virtual devices of the failed VM. Based on

this information, hart reserves sufficient memory in the host, constructs a VM container,

establishes communication channels between the VM container and the hypervisor, and

creates the virtual devices used by the VM. We recycled Xen’s code for VM restore to

implement this stage of slim restore.

Although sufficient memory is reserved in the restoration host when hart creates the

VM container, physical page frames that constitute the memory area are not yet designated

when the memory reservation is made. hart loads the VM page tables from the fail-

over image. It walks through the page table entries, allocates and assigns physical page

frames in the restoration host to VM pages. This establishes the mappings between guest

page frame numbers (GPFNs), which are the page indexes in the VM’s private view of

its contiguous memory space, and machine frame numbers (MFNs), which are the host-

dependent physical frame numbers in the restoration host. The VM page tables are updated

to contain correct references to the allocated memory of the VM in the restoration host.

Subsequently, hart loads several VM data structures that are critical to restoring VM

53

execution, for example, the running virtual CPU, wall-clock time, and a few pages shared

with the hypervisor. Finally, hart loads the virtual CPU state. With the above information

loaded from the fail-over image storage and a consistent virtual disk state in the VM disk

storage, hart restores the VM, reconnects the virtual devices to the restored VM, and

switches on VM execution.

3.4.2 Fetching VM Pages On-demand

Immediately after the restored VM begins to execute, its memory space is partially

populated. Only the small set of VM pages loaded by slim restore is placed in the memory

space of the restored VM and is ready for use; no data pages of the VM are loaded during

fail-over.

As the restored VM executes and accesses its memory, valid contents must be supplied

for the execution to proceed. In HydraVM, memory references made by the restored VM

are intercepted by the hypervisor. If a page accessed is not yet present in the memory space

of the VM, the hypervisor requests on the VM’s behalf that the page content be fetched

from the fail-over image.

VM memory references may be intercepted in different ways. One approach is to mark

all resident pages in the VM as “not-present” in their page table entries when loading VM

page tables during slim restore, so that when the VM accesses a page, it generates a fault

and traps into the hypervisor. However, this approach requires significant modification in

the guest kernel to work. Our implementation uses Xen’s support of shadow page tables in-

stead. Before finishing slim restore, hart puts the operation of the restored VM in shadow

mode. The shadow copy of the VM page tables are initially empty, and therefore, the first

access to each VM page traps into Xen upon a fault; the shadow entries are filled in as Xen

handles these faults during VM execution.

When the restored VM accesses a page that is not yet loaded from the fail-over im-

age, its execution is temporarily paused, and the content of the page is requested. A page

54

fetching daemon, called odpf, runs in the restoration host to service such a request. Based

on the GPFN of the requested page, odpf loads the page content from the fail-over image

storage into the memory space of the restored VM. Once the page is brought in, the VM is

un-paused and continues executing.

By requesting memory contents on-demand, no unnecessary pages are transferred for

the restored VM, and the network and storage traffic incurred at the beginning stage of

VM recovery is greatly reduced. The remainder VM pages can be pushed from the fail-

over image storage at a later time to fully populate the memory space of the restored VM

when the system is relatively lighter loaded. Although the execution of the restored VM

is inevitably interrupted by page fetches, we use page pre-fetching to reduce the frequency

of such interruptions, as we will next describe. Interruption to VM execution becomes

minimal once the working set of the VM is brought into memory.

3.4.3 Pre-fetching Nearby VM Pages

Memory references often exhibit spatial locality. When servicing a page fetch request,

it may be beneficial to also fetch pages that are adjacent to the one requested, in anticipation

of the VM’s future needs. However, two factors must be considered for page pre-fetching.

First, pre-fetching can incur additional storage I/O overhead. Second, getting more pages

than the one requested can increase the request service time, keeping the VM paused and

waiting for the requested page longer.

In HydraVM, pre-fetching adjacent pages means reading additional blocks sequentially

in a fetch I/O, or issuing additional sequential I/Os. Since sequential I/Os can be performed

efficiently on storage devices, page pre-fetching will likely incur more benefit than over-

head. In our prototype implementation, odpf accesses the fail-over image over NFS [36],

to take advantage of NFS’ asynchronous read-ahead buffering for page pre-fetching. As

greater memory reference locality is detected (upon detection of greater sequentiality in

fetch I/Os), NFS pre-fetches more pages in the proximity of the requested pages asyn-

55

chronously, without blocking the operation of odpf or increasing request service times.

Pre-fetched pages are brought into the page cache memory of the restoration host in paral-

lel with, but not on the critical path of, the page fetch requests issued by the restored VM.

When the VM accesses a pre-fetched page, the content becomes available instantly with

minimal interruption to VM execution.

3.5 Evaluation

We evaluate HydraVM addressing the following questions:

• What type of VM protection does HydraVM provide without making any backup

memory reservation?

• How much overhead is incurred for protection with HydraVM?

• When a host failure is detected, how quickly does HydraVM bring a failed VM back

up?

• How does a fail-over performed by HydraVM affect VM operation?

3.5.1 Testbed and Workloads

We ran all experiments on a testbed consisting of four HP Proliant BL465c blades in

the same LAN. The four blades are used as the primary host, restoration host, VM disk

storage, and fail-over image storage in HydraVM, respectively. Each blade is equipped

with two dual-core AMD Opteron 2.2GHz processors, 4–8GB RAM, two Gigabit Ethernet

cards, and two 146GB SAS 10K rpm hard disks.

The VM under test is configured with 1G memory, one virtual CPU and one virtual

NIC. Its virtual disks are hosted in the VM disk storage under LVM, and mounted in the

primary and restoration hosts via NFS. The VM under test and HydraVM use separate

network interfaces: all VM traffic, including its disk traffic, go through one NIC of the

56

hosts, while the VM checkpoint and restoration traffic incurred by HydraVM go through

the other NIC.

We evaluate HydraVM on two types of fail-over image storage, a hard disk drive (HDD)

and a SSD; we replaced one disk in the blade used as the fail-over image storage with an

Intel 80GB X25M Mainstream SATA II MLC SSD. HydraVM writes to and reads from the

VM fail-over image at the granularity of an OS page in its protection and recovery modes,

respectively. Running experiments with both HDD and SSD helps us understand how these

small and largely random I/Os are performed on different storage media types.1

As discussed in Section 3.2.3, HydraVM is suitable for protecting long-running compu-

tation jobs and cluster applications. We used three workloads of these types in our evalua-

tion. HPC-C [8] is a suite of 7 benchmarks essential for long-running scientific jobs. These

benchmarks stress floating point computation and the memory subsystem. All of them are

executed in our experiments. SPECjvm2008 [16] is a benchmark suite for evaluating the

performance of a Java runtime environment. We executed the FFT benchmark of this suite

for 10 minutes in each experimental run.2 FFmpeg [3] is an open-source media transcoding

tool. We used it to convert a 124MB MP4 file to AVI format in our experiments.

Unless otherwise mentioned, all measurements reported are the averages of at least four

runs of each experiment. All bar graphs show 90% confidence intervals. The VM under

test is rebooted between each experimental run.

3.5.2 Storage-based VM Protection

We ran the three workloads in a VM, and configured hacp to take checkpoints of the

VM periodically throughout the execution of the workloads. Table 3.1 summarizes the

average size of each checkpoint taken, the time required to replicate a checkpoint over

the network, the time required to store a checkpoint in the fail-over image and the storage

1In all experiments, the virtual disks of the VM under test were hosted on a hard disk in the VM disk

storage.
2Specifically, we used scimark.fft.large, which computes Fast Fourier Transform and is designed to stress

the memory subsystem by using a dataset large enough to not fit within a standard L2 cache.

57

HPC-C

Configured checkpointing interval (sec) 1 2 5

Fail-over image storage HDD SSD HDD SSD HDD SSD

Actual checkpointing interval (sec) 1.0 1.0 2.0 2.0 5.0 5.0

Checkpoint size (MB) 10.2 10.2 12.7 12.6 14.3 14.4

Checkpoint sending time (ms) 93 93 117 116 131 133

Checkpoint storage time (ms) 724 476 808 572 987 665

Checkpoint storage throughput (MB/s) 14.1 21.4 15.7 22.1 14.4 21.6

FFT

Configured checkpointing interval (sec) 1 2 5

Fail-over image storage HDD SSD HDD SSD HDD SSD

Actual checkpointing interval (sec) 1.7 1.6 2.2 2.2 5.0 5.0

Checkpoint size (MB) 38.7 38.7 40.8 40.8 50.8 51.0

Checkpoint sending time (ms) 349 349 368 368 458 459

Checkpoint storage time (ms) 1335 1274 1442 1359 1939 1711

Checkpoint storage throughput (MB/s) 29.0 30.4 28.3 30.0 26.2 29.8

FFmpeg

Configured checkpointing interval (sec) 1 2 5

Fail-over image storage HDD SSD HDD SSD HDD SSD

Actual checkpointing interval (sec) 1.3 1.0 2.0 2.0 5.0 5.0

Checkpoint size (MB) 11.0 10.3 13.1 12.9 20.5 20.8

Checkpoint sending time (ms) 102 95 121 120 189 191

Checkpoint storage time (ms) 1108 607 1123 716 1488 1088

Checkpoint storage throughput (MB/s) 9.9 17.0 11.7 18.1 13.8 19.1

Table 3.1: The size of the incremental checkpoints taken and the time required to send and

store each checkpoint to the fail-over image storage during the execution of the

workloads.

throughput achieved, under different checkpointing frequencies and storage types.

The checkpoint storage throughput achieved is dependent on both the workload in the

checkpointed VM and the storage type. In our experiments, checkpoints are written to a

HDD at a rate of 10–29MB/s. In the three workloads, higher throughputs (26–29MB/s) are

observed for the storage of FFT checkpoints. While FFT touches more memory pages in

each checkpointing interval, resulting in larger checkpoints than the other two workloads,

the I/Os incurred for storing its checkpoints have a higher degree of sequentiality and are

carried out much more efficiently. In our experiments, HDD even achieves a performance

comparable to SSD when storing FFT checkpoints.

58

However, in most cases, SSD still handles checkpoint storage more efficiently. Our

results show that for HPC-C and FFmpeg, checkpoints are stored faster on SSD by 7MB/s

than HDD. While SSD generally incurs much lower access latencies without any mechan-

ical parts, its write performance can be affected by the need to erase blocks before reusing

them, and is also workload-dependent. In our experiments, the checkpoint storage through-

puts achieved on SSD range from 17MB/s to 30MB/s. Write performance tends to degrade

with increasing randomness in the I/Os, due to the impact of internal fragmentation and

increased overhead of garbage collecting clean blocks [68].

With these storage throughputs, all three workloads have their checkpoints committed

to storage within each checkpointing interval when checkpointed every 5 seconds, whether

using HDD or SSD in the fail-over image storage. When checkpoints are taken at shorter

intervals, it becomes more challenging to finish writing each checkpoint before the interval

ends. For example, when FFmpeg is configured to be checkpointed every second, each

of its checkpoints takes an average of 0.1 second to be transmitted over the network, and

another 1.1 seconds to be written on a HDD. The total time taken to replicate and commit

a FFmpeg checkpoint to the fail-over image storage thus exceeds the 1-second configured

interval.

hacp does not start the next checkpoint until the on-going one is committed to storage.

As a result, many FFmpeg checkpoints are taken after the configured interval has passed.

The delays result in discrepancies between the configured checkpointing interval (1 second)

and the actual elapsed time between consecutive checkpoints (1.3 seconds on average). If

the fail-over image storage uses a SSD, it takes only 0.6 second on average to store each

checkpoint, and the configured checkpointing frequency of one checkpoint per second can

actually be achieved for FFmpeg. However, SSD does not always meet the I/O demand

of achieving the configured checkpointing frequency. In our experiments, when FFT is

configured to be checkpointed every 1 and 2 seconds, checkpoints are delayed and actually

taken every 1.6 and 2.2 seconds, even when storing on a SSD, since these checkpoints each

59

 0

 10

 20

 30

 40

 50

 60

 70

HPC−C FFT FFmpeg

P
au

se
 ti

m
e

(m
s)

(1 sec, HDD)
(1 sec, SSD)
(2 sec, HDD)
(2 sec, SSD)
(5 sec, HDD)
(5 sec, SSD)

Figure 3.2: The VM pause time incurred for taking an incremental checkpoint. The legend

is given in (configured checkpointing interval, fail-over image storage type).

contain a large number of dirty pages to be stored.

3.5.3 Overheads of VM Protection

HydraVM protection affects the operation of a protected VM, mainly because the VM

must be paused periodically for taking incremental checkpoints. Figure 3.2 shows the

VM pause time incurred for each checkpoint. The pause times are in the order of tens of

milliseconds, and we observed that the time taken to copy dirty pages to a buffer for trans-

mission is the main part. Therefore, pause time increases with the number of dirty pages in

a checkpoint. For each workload, longer pause times are incurred at larger checkpointing

intervals. In the three workloads, FFT incurs the longest pause times, since it has larger

checkpoints than the other two workloads.

Figure 3.3 shows the performance of the workloads running in a protected VM peri-

odically paused and checkpointed throughout the execution of the workloads. Our results

show that HydraVM provides VM protection with a moderate impact on application per-

formance. When checkpointed every 5, 2, and 1 seconds, the execution of HPC-C takes

1–6% longer time to finish comparing to the baseline execution, for which no checkpoints

are taken and no protection is provided. As for FFT, the throughput achieved (operations

completed per minute) drops by 7–22% when protected. FFmpeg takes 12–16% longer

time to finish transcoding the media file under protection.

60

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 5

R
un

tim
e

(s
ec

)

Configured Checkpointing Interval (sec)

(a) HPC-C

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5

O
pe

ra
tio

ns
 /

m
in

Configured Checkpointing Interval (sec)

HDD
SSD

(b) FFT

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 5

R
un

tim
e

(s
ec

)

Configured Checkpointing Interval (sec)

(c) FFmpeg

Figure 3.3: The performance of the workloads when checkpointed periodically. The run-

time of HPC-C without checkpointing (baseline) is 344 seconds. The baseline

throughput of FFT is 6.1 ops/min. The baseline runtime of FFmpeg is 289.5

seconds.

Although when checkpointed at larger intervals, workload execution is paused for a

longer time in each interval, pauses happen less frequently, and hence the overall impact on

workload performance is smaller. Workload overhead increases as checkpointing interval

becomes shorter. Taking checkpoints at shorter intervals provides a higher level of VM

protection, since if a failure occurs, the VM rolls back to a more recent point in time and

loses a smaller amount of completed work. However, this benefit is gained at the cost of

a larger loss of application performance during normal operation, since VM execution is

interrupted more frequently.

HydraVM provides VM protection with efficient resource usages. hacp and harcv, the

daemons responsible for checkpoint replication, use less than 10% of the CPUs in the pro-

tected host and fail-over image storage, respectively. The daemons each need a transmis-

sion buffer to send and receive checkpoints one-by-one. In our experiments, each daemon

uses no more than 80MB of memory, which is enough for transmitting the largest check-

point of the workloads we use. The memory consumption of HydraVM is significantly less

than that required by approaches maintaining in-memory backup VMs, which, in this case,

would use 1G RAM for the backup VM in addition to the transmission buffers.

61

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

HPC−C FFT FFmpeg

B
rin

g−
up

 ti
m

e
(s

ec
) HDD

SSD

Figure 3.4: The time required to bring up a failed VM from a HDD- and a SSD-based

fail-over image storage.

3.5.4 Restoration of a Failed VM

We now evaluate how quickly HydraVM brings a failed VM back up. We ran the three

workloads in a VM in the protection mode of HydraVM; hacp was configured to take

checkpoints of the VM every second. After executing about 50% of each workload and

finishing the last checkpoint in this time period, we forced the VM to stop, to emulate

the occurrence of a failure. HydraVM then switched to the recovery mode, and hart was

invoked to restore the VM based on its fail-over image and a consistent disk state in the

VM disk storage.

All workloads resumed execution correctly in the restored VM after a brief pause, dur-

ing which HydraVM performs slim restore and brings the VM back up. As shown in

Figure 3.4, HydraVM restores a VM from a fail-over image stored on a HDD in less than

2.2 seconds. If the fail-over image is on a SSD, the VM is restored even faster, using less

than 1.5 seconds. In all experiments, we made sure that no data from the fail-over image is

cached in memory prior to VM restoration. All data loaded during slim restore are loaded

from the storage devices, so that we can include I/O time in our measurements.

HydraVM brings up a failed VM quickly by loading a minimal amount of information

from the potentially gigantic fail-over image in the shared storage. In our experiments, less

than 5MB of data out of the 1G fail-over image is loaded for slim restore, as shown in

62

Workload HPC-C FFT FFmpeg

Fail-over image storage HDD SSD HDD SSD HDD SSD

Total data loaded (MB) 4.3 4.3 3.9 3.9 3.3 3.3

Number of page table pages loaded 1083 1083 975 975 823 825

Time to load all page tables (ms) 1342 635 1391 505 996 389

Table 3.2: Amount of data loaded and the loading time incurred during fail-over (slim VM

restore).

Table 3.2. The majority of the data loaded are the VM page tables. The time to load and

restore all page tables constitutes 30–60% of the bring-up times.

We further break down the bring-up time into three stages, in which (1) sufficient mem-

ory is reserved in the restoration host and a container for the VM is constructed, (2) the

page tables, virtual CPU state, and other important data structures of the VM are loaded

from the fail-over image and processed to initialize the VM, and (3) the virtual devices of

the VM are re-connected and the VM is ready to begin execution. Our results show that

on average, stage 1 and stage 3 take 0.4 and 0.2 second to finish, respectively; these times

are independent of the types of device used in the fail-over image storage. The rest of the

bring-up time is spent in stage 2.

This breakdown helps us reason about the fail-over behavior of HA approaches that

use in-memory backup VMs. These approaches perform the tasks in stage 1 when setting

up a backup VM in a dedicated host at the beginning of the protection of a primary VM.

As the primary VM executes, the memory state of the backup, including the data structures

mentioned in stage 2, are repeatedly updated to synchronize with that of the primary. When

the primary VM fails, presumably, only the tasks in stage 3 are left to be completed during

fail-over. Using in-memory backup VMs thus enables very fast fail-over, but at the cost of

making unproductive memory reservation throughout normal VM operations.

63

 0

 50

 100

 150

 200

 250

 300

 350

 400

HDD SSD

R
un

tim
e

(s
ec

)

(a) HPC-C

 0

 1

 2

 3

 4

 5

 6

 7

HDD SSD

O
pe

ra
tio

ns
 /

m
in

No protection
Protected
Restored

(b) FFT

 0

 50

 100

 150

 200

 250

 300

 350

 400

HDD SSD

R
un

tim
e

(s
ec

)

(c) FFmpeg

Figure 3.5: The performance of the workloads under different conditions: no protection

and not checkpointed, protected and configured to be checkpointed every sec-

ond, and restored from a failure that occurs halfway through the workload exe-

cutions.

3.5.5 Operation of a Restored VM

In the experiments described in Section 3.5.4, after the VM was restored from the em-

ulated failure, the last 50% of the workloads executed while odpf supplying the memory

contents of the VM on-demand. All three workloads completed execution correctly.

In HydraVM, the impact of a failure includes not only the extra time required to bring

the failed VM back up, but also the slowdown of VM execution after restoration due to

demand paging. To understand this impact, in Figure 3.5, we compare the performance of

the workloads running under three conditions: (C1) no protection and not checkpointed,

(C2) protected and configured to be checkpointed every second, and (C3) restored from a

failure that occurs halfway through the workload executions. C1 and C2 are failure-free

conditions. In C3, the VM is configured to be checkpointed every second (same protection

as in C2) before failure.

For each workload, comparing the performances measured with and without protection

(conditions C1 vs. C2) tells us the cost of protection, while comparing the performances

measured with and without a failure (conditions C2 vs. C3) reveals the total cost of recover-

ing from a failure in HydraVM. Overall, failure recovery does not incur an undue overhead.

In some cases, the workload performance with a failure (and failure recovery) is better than

64

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250 300 350

N
um

be
r

of
 p

ag
es

 fe
tc

he
d

Workload Runtime (sec)

HPC-C, HDD
HPC-C, SSD

FFT, HDD
FFT, SSD

FFmpeg, HDD
FFmpeg, SSD

Figure 3.6: Number of VM pages fetched to execute the last 50% of the workloads in a

restored VM.

that without a failure (simply under protection), since we did not re-engage protection after

the VM is restored in these experiments. We chose to not re-engage protection, so that

for HPC-C and FFmpeg, we can compare the execution time of the last 50% of the work-

loads running with and without demand paging (conditions C1 vs. C3), to understand the

overhead incurred by the technique.

Recovering from a failure halfway through the execution (condition C3) using a fail-

over image stored on a HDD, HPC-C executes for a total of 360 seconds, 4 seconds longer

than the total runtime measured under protection without a failure (condition C2). Failure

recovery is accomplished at a relatively low cost for HPC-C, mainly because the workload

fetches a small amount of memory data on-demand to finish execution. As shown in Fig-

ure 3.6, during the second half of workload execution, only 44MB of data are fetched from

the fail-over image storage. These fetches concentrate in the first few seconds of the re-

stored execution: 88% of the data are fetched in 6 seconds from a HDD, and more quickly,

in 4 seconds, from a SSD. Comparing the runtime of the second half of the workload under

conditions C1 and C3 (with and without demand fetching) yields a consistent observation

that demand paging incurs a relatively small overhead for HPC-C; fetching from a HDD

and a SSD lengthens the runtime by an additional 7 and 6 seconds, respectively.

The costs of failure recovery are larger for FFmpeg. Without a failure, the workload

65

 8.85e+07

 8.9e+07

 8.95e+07

 9e+07

 9.05e+07

 9.1e+07

 0 20 40 60 80 100 120 140 160 180 200

D
is

k
se

ct
or

 n
um

be
r

Workload Runtime (sec)

Page fetching I/O

Figure 3.7: The storage I/Os incurred to demand fetch VM pages for FFmpeg after it re-

sumes execution in a restored VM. Each dot represents an I/O, and the size of

the dot represents the size of the I/O.

runs for 335 and 337 seconds under protection, using a HDD and a SSD in the fail-over

image storage, respectively. When a failure occurs in the middle of the execution, the

workload spends 15 more seconds to finish execution, if recovering from a fail-over image

on a HDD. The cost of recovery is smaller when a SSD is used in the fail-over image

storage; workload runtime is lengthened by 6 seconds.

These recovery costs result from the relatively large overheads of demand paging in-

curred by FFmpeg. After resuming in the restoration host, FFmpeg fetches a large amount

of memory data, about 460MB, to finish execution. The workload also has a staged use of

VM memory, as can be observed from Figure 3.6. It accesses the working set area-by-area,

and fetches new memory pages at a slower pace than the other two workloads. Page fetch-

ing thus affects the execution of FFmpeg for a longer period of time, leading to increased

overheads.

To gain a further understanding of the storage I/Os incurred for demand paging, we

ran blktrace [33] in the fail-over image storage after the failed VM resumes execution.

Using FFmpeg as an example, Figure 3.7 plots the I/O activities that actually occur on the

storage device (a HDD in this case) to fetch page contents for the restored VM. Each dot

represents an I/O request recorded by blktrace, and the size of the dot represents the size

66

of the request. We found that even though almost 120,000 4K pages are fetched during

the execution of FFmpeg, only 9,000 I/O requests are sent to the device. The I/O pattern

shows substantial spatial locality, and many of the I/Os fetched 512 disk sectors (256KB of

data, 64 4K pages) at a time, as shown by the large dots in the figure. These observations

suggest that the memory references made by the workload have good locality, and that NFS

read-ahead buffering, exploited by odpf, is effective in pre-fetching near-by VM pages.

3.6 Discussions on Alternative Storage Architectures

We have demonstrated the feasibility of the HydraVM approach via a prototype imple-

mentation and its evaluation in a 4-node testbed. In this section, we discuss how HydraVM

may take advantage of large, parallel storage systems to provide HA support for a large

number of VMs.

Flat Datacenter Storage (FDS) [74] is an example of large, parallel storage system that

may benefit HydraVM. FDS provides a shared, centralized permanent storage based on the

disks or flash in hundreds or thousands of commodity storage servers in a cluster. In FDS,

data are logically stored in blobs and accessed in tracts; FDS uses 8MB tracts to amortize

the cost of disk seeks and achieve comparable performances for sequential and random

accesses. FDS strives to distribute the tracts of a blob uniformly across a vast array of

disks. When an FDS client accesses the storage, hundreds or thousands of disks may read

or write data for the client in parallel, and the client achieves the combined throughput of

all participating disks.

RAMCloud [75] is also a storage system characterized by scale and data parallelism.

Different from FDS, RAMCloud provides DRAM storage by unifying the DRAM of hun-

dreds or thousands of storage servers, and uses disks or flash to store replicas of the data

in DRAM. It exploits scale and data parallelism not to serve client requests (those are sat-

isfied quickly by DRAM accesses), but to speed up the recovery of a failed storage server.

It strives to replicate the DRAM data of a server, in units of 8MB log segments, uniformly

67

across thousands of backup disks. When the server fails, the DRAM data can be recovered

by thousands of disks reading their shares of the server’s data replicas in parallel.

Since HydraVM utilizes permanent storage to eliminate backup memory reservation,

below, we primarily use FDS as an example as we discuss how scale and data parallelism

may benefit HydraVM; we will discuss RAMCloud’s techniques where appropriate.

Consider HydraVM using FDS as the shared storage and storing each fail-over image

as a blob. For a VM with 1GB memory, its fail-over image consists of 128 tracts, and

ideally, each tract is stored on a different disk. During protection of the VM, HydraVM

consolidates checkpoints into the fail-over image with a maximum of 128 disks working at

the same time, each updating its share (a tract) of the fail-over image. In theory, even if all

1GB memory of the VM is dirtied and checkpointed, the checkpoint can be stored as fast

as an 8MB tract can be written.

This example illustrates how FDS’s scale and data parallelism may help HydraVM

overcome the intrinsic slowness of permanent storage devices in the protection mode, but

it is simplified in two aspects. First, in reality, deployment of hundreds of disks is expected

to support HA for a large number of VMs for cost-effectiveness; checkpoints of multiple

VMs must contend for disk bandwidth for their storage. Second, HydraVM must guarantee

atomicity for the storage of each checkpoint across multiple disks and storage servers. We

next discuss the two aspects in more detail.

The developers of FDS executed up to 180 concurrent, networked clients accessing an

FDS cluster of 1,033 disks continuously, and observed a peak aggregate storage through-

put of 67 GB/s, roughly 380 MB/s/client; each client has a 10 Gbps network bandwidth

at its disposal. Consider each of these clients associated with the checkpoint stream of a

VM protected by HydraVM. The measured storage throughput of FDS suggests that un-

der this configuration, (1) each protected VM can have about 300MB of checkpoint data

sent and stored in one second; (2) VMs with a writable working set smaller than 300MB

may be checkpointed at least once every second. Using FDS enables HydraVM to store

68

checkpoints quickly and checkpoint VMs frequently, even when many VMs are protected

at the same time. Frequent checkpointing reduces the loss of completed work upon failure.

It also provides the possibility for HydraVM to support network buffering and transpar-

ent recovery of client-facing applications, which are currently unsupported, as discussed in

Section 3.2.3; depending on running applications’ writable working set size, an even larger

FDS cluster or a stage buffer is needed.

To guarantee atomicity of checkpoint storage across multiple FDS disks, HydraVM

may use a few intermediate servers, deployed between the protected hosts and the FDS

cluster. Each protected VM runs its harcv in an intermediate server; one such server can

run the harcv of multiple protected VMs. harcv receives a complete checkpoint from

hacp in a memory buffer, and then writes to the tracts of the checkpoint on the appropriate

FDS disks. It ensures all writes are successful; if any write fails, it retries the operation.

The checkpoint buffer must not become unavailable before the checkpoint is completely

stored. This may be achieved by replicating the intermediate server, or by using a backup

battery in the server; when needed, the battery provides power of the server for checkpoints

to be flushed.

Alternatively, tracts can be stored by a logging approach similar to that in the Log-

structured File System (LFS) [86]; RAMCloud also uses a LFS-like approach to manage

its DRAM and disk storage. This approach writes to a tract by appending the new content

of the tract to storage, rather than overwriting the existing content of the tract. A partially

stored checkpoint does not affect the utility of the fail-over image, so storing each check-

point atomically will not be a concern. However, it is important to keep track of the tracts

constituting the latest consistent fail-over image, which may not always be the latest version

of the tracts. Also, this approach needs to run a garbage collector periodically to reclaim

storage space from tracts that are no longer useful, i.e., those that have newer contents

and are not included in the fail-over image. Garbage-collecting tracts in their entirety can

greatly reduce the collection overhead; if all the data in a tract becomes garbage together,

69

no extra I/Os are needed to discover live data and preserve them before reclaiming space

from the tract. Otherwise, the extra I/Os caused by garbage collection can interfere with

and slow down the storage of new checkpoints.

The recovery mode of HydraVM also benefits from the use of a large, parallel shared

storage. When restoring a failed VM, hart can potentially load a large amount of data

from the VM’s fail-over image into the restoration host in a short amount of time. Thus,

during slim restore, additional VM state (e.g., part of the VM’s working set) can be loaded,

to reduce the need of demand fetching and improve the performance of the restored VM.

As the VM executes, odpf may also pre-fetch more memory pages in parallel. The VM’s

memory space can be populated faster, thus reducing the window during which the VM is

susceptible to performance penalties. Note, however, that as the scale and data parallelism

of the shared storage increase, the speed of storage I/Os may become less of a limiting

factor in VM recovery, but the network bandwidth available to individual restoration hosts

may become a new bottleneck.

3.7 Related Work

Upon detection of a host failure, failed VMs may be restarted automatically [21], but

the runtime state of the VMs is lost upon restoration. To minimize such loss, two types

of approaches have been proposed to keep track of and recover from a recent VM state

in a failure. One records the low-level events, e.g., instructions and interrupts, executed

by a protected (primary) VM, and replays them in a backup VM deterministically in lock-

step [20, 32]. If the primary fails, the backup takes over execution from where the primary

left off. Since the primary and backup must execute the exactly same sequence of instruc-

tions, these approaches require the VMs to have identical configurations. Therefore, they

are not exempt from making unproductive memory reservation.

The other type of approaches replicates VM checkpoints continuously throughout nor-

mal VM operations. Most existing systems replicate checkpoints at fixed time intervals, and

70

buffer the VM network outputs during each interval until the checkpoint of the interval is

fully replicated to and acknowledged by the backup [24, 39, 44, 47]. Alternatively, Kemari

replicates a checkpoint each time before the VM is about to interact with external devices

(e.g., disk and network) [93]. To reduce the application performance degradations caused

by network buffering, RemusDB [69] buffers VM network outputs selectively. Targeting

database applications running in a VM, RemusDB buffers only those network outputs that

carry transaction control messages, e.g., acknowledgements to COMMIT and ABORT requests.

SecondSite [80] extends the use of checkpoint replication beyond a local area network to

synchronize primary and backup VMs connected by Internet links for disaster recovery.

All the above mentioned systems make memory reservation for backup VMs. Hy-

draVM adapts a periodic, incremental checkpointing technique similar to existing systems,

but unlike these systems, trades off main memory with stable storage to provide a cost-

effective HA alternative for long-running computation jobs and cluster applications. There

are other systems that persist VM checkpoints in stable storage, but for different purposes

than HydraVM. VNsnap [57] captures consistent snapshots of a distributed VM environ-

ment, to suspend and later resume the entire VM cluster. The system was evaluated with

much longer intervals between snapshots (e.g., 10 minutes) compared to HydraVM. Since

VNsnap is not designed for HA, the system does not support fast resumption from VM

snapshots. Burtsev et al. implements transparent checkpoints in the Emulab network

testbed, to provide controls over experiment execution without interfering the realism of

experiments [35]. This system does not support fast resumption from VM checkpoints

either, while HydraVM quickly brings up a VM with slim restore.

The proposed slim VM restore technique is built upon the core idea of fast instantiation

of a VM with partially populated memory space. This idea has been applied to different

types of problems. Post-copy VM migration [50] resumes the execution of a migrated

VM in the destination host immediately after shipping the CPU state from the source VM,

without having the entire memory state copied over. As the VM runs in the destination host,

71

memory pages are pulled/pushed from the source VM. Potemkin [95] quickly “forks” new

VMs in single hosts from a reference image and creates private copies of VM pages upon

modification of VM memory; its aim is to implement a large honeyfarm system based on

lightweight VMs. SnowFlock [62] extends the idea of VM fork across machine boundaries.

It creates multiple child VMs based on a condensed parent VM image in a group of hosts.

As the child VMs execute, memory pages are fetched from the parent on-demand. The

focus of SnowFlock is to spread application deployment rapidly, which is most useful in the

area of parallel computations. HydraVM applies a similar technique, however, to address a

completely different problem regarding the resource inefficiency of existing HA solutions.

3.8 Conclusions

In this chapter, we proposed HydraVM, a storage-based, memory-efficient way of

achieving high availability in a virtualized environment. Unlike conventional approaches,

which require twice the memory each protected VM uses, HydraVM requires minimal extra

memory, relieving the tension between reliability and resource-efficiency, two critical op-

erational goals of a virtualized environment. HydraVM maintains the VM state needed by

fail-over in a shared storage, and recovers a failed VM promptly in any host that has access

to the shared storage, allowing any host with available capacity to be used as the backup.

HydraVM complements the HA toolbox currently available to administrators of a virtu-

alized environment with a cost-effective alternative suitable for protecting long-running

computation jobs and cluster applications.

72

CHAPTER IV

Application-Assisted Live Migration of Virtual Machines

with Java Applications

4.1 Introduction

Live migration [38, 73] is to move a running virtual machine (VM) from a physical host

to another with minimal disruption to the execution of the VM. It has been used for load-

balancing [91, 98], fault-tolerance [71, 89], power savings [30, 40, 72], and performance

enhancements [31].

To migrate VMs within a LAN, such as within a datacenter, the primary task is to mi-

grate the contents of VMs’ memory; VM disk contents can be stored in a shared storage.

Most migration tools transfer VM memory by using a pre-copy approach. While a migrat-

ing VM continues to run on the source host, its memory pages are iteratively transferred to

the destination host. All pages are sent in the first iteration, and at each following iteration,

only those pages dirtied during the previous iteration are sent. Ideally, dirty pages should

be transferred faster than new pages get dirtied, and the number of dirty pages pending

transmission should decrease iteratively. When the VM is paused for the last iteration, a

small number of dirty pages remain to be transferred. After this short stop-and-copy, the

VM resumes execution in the destination, and the migration completes.

However, this ideal migration is not always achievable, since the underlying network

73

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25
 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

D
ur

at
io

n
(s

ec
)

R
at

e
(M

bi
t/s

ec
)

Migration iteration

duration
transfer rate
dirtying rate

Figure 4.1: Live migration of a 2GB Xen VM running the Apache Derby database work-

load from SPECjvm2008.

can become a bottleneck. Figure 4.1 shows live migration of a 2GB database Xen VM

over a gigabit Ethernet. Since the database application dirties memory pages much faster

than the pages can be transferred, the number of dirty pages to be transferred does not

decrease iteratively; hence the iterations do not keep becoming shorter. Migration cannot

finish with a short stop-and-copy, but is forced to enter the last iteration after generating

excessive network traffic (a total of 7GB). It incurs a long completion time (66 secs), causes

a noticeable VM downtime (8 secs), and degrades application performance (by over 20%).

To alleviate the network bottlenecking problem during migration and its undesirable

consequences, approaches have been proposed to speed up memory transfer using high-

speed networks [54], slow down memory dirtying by throttling application execution [38],

or reduce the amount of memory contents to be transferred, e.g., by using compression [92].

However, these approaches incur high resource costs or application performance penalties.

The OS’s knowledge can also be utilized to reduce the amount of memory transfer by not

sending clean page cache pages and free pages [60], but the benefit is limited. Page cache

misses may degrade application performance at the destination, and skipping free pages

may only benefit the migration of lightly-loaded VMs.

In this chapter, we propose to reduce the amount of memory transfer by exploiting

application semantics. Specifically, we design application-assisted live migration, which

skips transfer of VM memory pages that need not be migrated for the execution of running

applications at the destination. We build a framework for the proposed approach based on

Xen. Our framework places a paravirtualized stub in the guest VM to enable collaboration

74

between the migration tool and applications in the guest. We ask the applications, which

know best their semantics, to identify areas in their memory that need not be migrated.

Based on the applications’ inputs, we maintain a transfer bitmap that guides the migration

tool to transfer or skip over VM memory pages.

Using the proposed framework, we build JAVMM, which migrates Java VMs—VMs

running various types of Java applications—without transferring garbage1 in Java memory.

Targeting Java applications does not restrict JAVMM’s applicability, since these applica-

tions are nearly ubiquitous; with over 9 million developers worldwide, Java has become

the global standard for web-based content and enterprise software, and runs in 89% of

computers in the U.S.[14]. Java applications are increasingly being deployed and run in

VMs for flexible resource sharing and easy deployment. Various types of Java cloud ser-

vices are being widely used [4], many of which are provisioned based on VMs for elasticity.

To migrate Java VMs fast and with little performance impact is therefore an important task.

In JAVMM, Java Virtual Machine (JVM)2 assists in migration on behalf of Java appli-

cations. Right before a migrating Java VM is paused for the last iteration, the running JVM

performs a garbage collection. After the last iteration is completed, the VM resumes exe-

cution at the destination in a post-collection state: in the Young generation of the Java heap,

only one survivor space may contain live objects, which survived the collection. JAVMM

migrates the surviving objects in the last iteration, and skips transfer of the entire Young

generation throughout migration.

We prototyped JAVMM using HotSpot JVM [7] in the proposed framework, and eval-

uated it in terms of three metrics commonly considered for live migration: the time and

resources used by migration, and the impact of migration on running applications’ per-

formance. Our experimental results show that compared to Xen live migration, which is

agnostic of application semantics, JAVMM can reduce the completion time, network traffic

1i.e., Java objects that are no longer used
2Note the difference between a JVM, the application-level VM that executes Java bytecode, and a Java

VM, a general-purpose VM in which Java applications and their JVMs run.

75

and application downtime caused by Java VM migration, all by more than 90%, when the

running Java application has a high object allocation rate and needs a large Young genera-

tion space, without incurring noticeable performance degradation to the application.

The primary contributions of this chapter are as follows.

• We propose application-assisted live migration, and establish a generic framework to

skip migration of VM memory selectively based on application semantics.

• Using the proposed framework, we build JAVMM to migrate Java VMs skipping over

garbage with JVM’s assistance, without customizing each Java application.

• Via an in-depth evaluation of JAVMM, we demonstrate the utility of application-

assisted live migration.

The remainder of this chapter is organized as follows. Section 4.2 reviews existing

approaches to alleviating network bottleneck during live migration. Section 4.3 presents

our approach, a generic framework for application-assisted live migration. Section 4.4 de-

scribes JAVMM, built based on the proposed framework for efficient migration of Java

VMs. Section 4.5 evaluates JAVMM experimentally. We discuss the applications and pos-

sible extensions of this research in Section 4.6, and conclude the chapter with Section 4.7.

4.2 Related Work

To alleviate network bottlenecking during live migration, approaches have been pro-

posed to send dirty memory pages faster, generate dirty memory pages slower, or send less

data for the dirty memory pages generated.

Huang et al. [54] proposed to transfer memory pages faster using high-speed networks

capable of Remote Direct Memory Access (RDMA) like InfiniBand. The network remains

a potential bottleneck even with high-speed links, though, considering the increasing com-

putation power of individual VMs and the fact that multiple VMs may be migrated at the

same time.

76

Clark et al. [38] proposed to slow down the memory-dirtying rate by moving processes

to a wait queue after they generate more than a certain number of dirty pages. This may

degrade application performance, and as the authors noted, one must be careful not to

throttle interactive services.

Our approach falls in the third category, which transfers less data for the dirty memory

pages generated. Compression [55, 92] and deduplication [41, 42, 99] are popular in this

category, trading CPU for network bandwidth. Our approach skips transfer of selective

memory pages, performing no computations on the pages skipped and incurring a minimal

CPU overhead.

There are also other approaches that skip transfer of selective memory pages, according

to different criteria than ours. Some skip over frequently dirtied pages during live iterations,

but those pages must be transferred in the last iteration [26, 53, 63, 65], risking a long

VM downtime. Page cache pages can be skipped over in all iterations if the storage has

an identical copy of the pages; the contents skipped need to be reproduced [56], or VM

performance may degrade after migration [60]. Post-copy migration skips over all memory

pages and removes the pre-copy stage. To run the VM in the destination, pages are fetched

from the source [50, 51], incurring performance penalties. Free pages can be skipped over

and not fetched upon access [60], by exploiting knowledge of the migrating OS, but only

in lightly-loaded VMs we may find a considerable number of free pages to be skipped.

Our approach exploits knowledge of the migrating applications to skip transfer of se-

lective memory pages. JAVMM skips transfer of garbage in the frequently-dirtied Young

generation of the Java heap. It need not reproduce the contents skipped, and does not de-

grade application performance. Our work is closest to the memory deprotection technique

discussed in RemusDB [69], a VM-based high-availability system for databases. To reduce

system overhead, the authors explored omission of selective memory contents from VM

checkpoints based on application inputs, although data structures to be suitably omitted by

this technique are yet to be identified.

77

4.3 Application-Assisted Live Migration

We take a white-box approach to reducing the amount of memory transfer for efficient

VM live migration: we propose to skip transfer of selective VM memory based on applica-

tion semantics, by exploiting applications’ assistance.

4.3.1 What Memory to Skip Migrating?

Generally, memory contents that are reproducible or not required for correct application

execution need not be transferred during migration; these contents also need no replication

in high-availability systems [69].

Examples of reproducible contents include those recoverable from application logs and

intermediate results that can be recomputed. It may be beneficial to skip migrating these

contents if regenerating them in the destination is faster than transferring them from the

source.

Memory contents not required for correct application execution include caches and

garbage. Caches of various kinds, e.g., web cache and database buffer pool, need not

be migrated if the performance drop caused by empty caches at the destination can be

mitigated or is acceptable. Garbage is memory content that is no longer being used. It is

a good candidate to skip, since in its absence, applications execute correctly and without

performance degradation. Garbage exists in any applications written in languages that

do not deallocate memory explicitly; Java, C# and most scripting languages fall in this

category.

4.3.2 Challenges and Design Principles

To skip migration of selective application memory, the key challenge is to let the mi-

gration tool and running applications collaborate. The migration tool needs to know which

memory pages to skip transferring. For the memory contents not transferred, the applica-

tions need to recover or not access them in the destination host.

78

Traditionally, the migration tool and an application in the guest VM are unaware of the

execution of each other. They do not, and have no existing channel to, communicate. They

also address memory differently: the migration tool transfers VM memory pages based

on Page Frame Numbers (PFNs), i.e., the page numbers in the VM’s contiguous memory

space, while the application executes based on Virtual Addresses (VAs). For the migration

tool and the application to collaborate, the communication gap and semantic gap between

them must be bridged.

We design a framework to enable their collaboration and be able to skip migration

of selective application memory, following three principles; each principle describes the

responsibility of one software component in our framework.

• The guest kernel provides system-level support for bridging the communication gap

and semantic gap between the migration tool and running applications. It coordinates

between the migration tool and the applications as they perform migration collabora-

tively, so that the migration tool need not interact with each application individually.

• A running application decides which areas of its memory need not be migrated, and

informs the migration tool of it. The application should make this decision, since it

knows best the semantics of its memory, e.g., what each memory area is used for and

when the content is needed.

• The migration tool needs to know which memory pages to skip transfer, without in-

corporating application semantics. This way the tool becomes generic (i.e., application-

independent), and can thus be used for different applications without modification.

This also minimizes changes to existing live migration mechanisms.

4.3.3 A Generic Framework

Figure 4.2 provides an overview of our framework, prototyped based on Xen 4.1; our

guest VM runs Linux 3.1. We added a Xen management command to invoke application-

79

Domain 0 Guest VM

Xen

nlsk

App 1

nlskevtchn

skip-over

areas

App 2 App 3

LKM
VA-to-PFN

Transfer bitmap

writeread

nlsk

Comm.

proxy

evtchn

Migration

daemon

/proc

comm.

msgs

Figure 4.2: A generic framework for application-assisted live migration.

assisted live migration. Once invoked, our migration daemon executes. Our migration

daemon is a modified version of Xen’s. It communicates with applications in the guest

through the guest kernel, and skips transfer of memory pages guided by a transfer bitmap.

We provide guest kernel support in a Loadable Kernel Module (LKM).

4.3.3.1 Bridging the Communication Gap

Our LKM serves as a communication proxy between the migration daemon and the

applications in the guest. It interacts with the migration daemon using event channel, the

event notification primitive provided by Xen. A special event channel port is created when

the guest VM is created, through which the migration daemon can communicate with the

LKM throughout the migration process.

The LKM interacts with the applications using netlink sockets, a special socket family

for communication between kernel- and user-space processes. We use netlink because it is

bi-directional, asynchronous and capable of multicasting. Upon loading, the LKM creates

a netlink socket, and associates it with a multicast group, which the applications subscribe

to. The migration daemon communicates with the applications simply by contacting the

LKM, and the LKM multicasts a netlink message to notify all subscriber applications. The

LKM also relays messages from the applications to the migration daemon.

80

4.3.3.2 Bridging the Semantic Gap

The applications identify areas in their memory that the migration daemon can skip

transfer. They specify each skip-over area by a VA range, and pass the VA range to the

LKM via a /proc entry. The LKM finds the PFNs of the skip-over area by page table

walks, while the application continues its normal execution. The LKM may consider a

smaller VA range than that specified by the application. It aligns the start and end VAs of

the specified range to the immediate next and previous page boundaries, respectively, to

ensure pages found in the skip-over area can be skipped by the migration daemon in their

entirety.

4.3.3.3 Skipping Transfer with a Transfer Bitmap

The LKM records the PFNs of the skip-over areas in a transfer bitmap. When transfer-

ring VM memory, the migration daemon examines the transfer bitmap, in addition to the

dirty bitmap maintained by the hypervisor.

The transfer bitmap is created in the guest when the LKM is loaded, and is shared with

the migration daemon when migration begins. It uses one bit per VM memory page (PFN),

based on the same page size used by the dirty bitmap; assuming 4KB pages, the transfer

bitmap uses 32KB per GB of VM memory, incurring a negligible memory overhead. Each

transfer bit is either set (1) or cleared (0). A set transfer bit indicates the page needs to be

migrated; the migration daemon transfers the page if its marked dirty in the dirty bitmap. A

cleared transfer bit indicates migration of the page can be skipped; the migration daemon

does not transfer the page, even if it is marked dirty.

4.3.3.4 Updating the Transfer Bitmap

The transfer bitmap is initialized with all bits set; by default, memory pages are trans-

ferred if they are marked dirty. Figure 4.3 illustrates how the transfer bitmap is updated.

When migration begins, the LKM makes the first bitmap update. It queries the applications

81

LKM

Transfer bitmap

Application

Skip-over area

Last iter

begins

time

Migration

begins

0x4000 0x7fff

First update skip-over area?

0x3b00–0x8aff

0x3b00 0x8aff

shrink

0x4000 0x5fff

0x3b00 0x6aff

0x6b00–0x8aff left

expand

0x3b00 0x9aff

0x4000 0x5fff

Final update

0x4000 0x8fff

skip-over area?

0x3b00–0x9aff

0x3b00 0x9aff

Figure 4.3: An example of transfer bitmap updates.

for skip-over areas. For each area in the applications’ response, it remembers the VA range,

finds the associated PFNs, and clears the corresponding transfer bits. Therefore, pages in

the skip-over areas are not transferred even if they are dirtied.

In parallel with, and after, the first bitmap update, the VM continues to run, and each

skip-over area may expand or shrink, i.e., VA ranges and the associated PFNs may join or

leave the area. Subsequent updates to the transfer bitmap may be needed.

A skip-over area is expected to shrink infrequently and by a small amount during mi-

gration, or the benefit of skipping its migration decreases. When the area shrinks, the

application should notify the LKM of the VA ranges leaving the area. The LKM updates

its memory of the area’s VA range accordingly, and immediately, sets the transfer bits of

the PFNs leaving the area. Since the pages may later get dirtied in a memory area requiring

migration, setting their transfer bits immediately ensures transfer of their dirty contents in

the iteration following the dirtying; this guarantees the correctness of migration.

Given the VA ranges leaving a skip-over area, the LKM does not find the PFNs leaving

the area via page table walks, because the VA ranges may have been freed, in which case the

82

associated PFNs are reclaimed and no longer found in the page tables. The LKM maintains

a cache of PFNs with cleared transfer bits. It queries the cache by the VA ranges leaving

the area to quickly find the PFNs that must have their transfer bits set. The cache uses little

memory: 1MB per GB of skip-over area with 4-byte entries (a 0.1% overhead).

When a skip-over area expands, transfer bitmap updates are not required. Not clearing

the transfer bits of the PFNs joining the area does not affect the correctness of migration,

although the pages may be unnecessarily migrated. To reduce the runtime overhead, the

application does not notify when a skip-over area expands. The LKM does not clear the

transfer bits of the PFNs joining the area until in the final bitmap update, which is performed

right before the last iteration begins. Dirty pages in the expanded space of a skip-over area

will be skipped in the last iteration to reduce VM downtime.

In the final bitmap update, the LKM queries the applications again for skip-over areas.

It compares the VA ranges in the response of the applications with those in its memory. For

any expanded space, it finds the PFNs joining the areas via page table walks, and clears

their transfer bits. For any shrunk space, it sets the appropriate transfer bits based on the

cached PFNs. Immediately after the final bitmap update is completed, the VM is paused

and the last iteration begins. In the short window of the final bitmap update, the skip-over

areas should be prevented from shrinking; this ensures the transfer bits of all the pages

leaving the areas are set.

In our current implementation, if a PFN joins or leaves a skip-over area with no changes

in the area’s VA range, the transfer bitmap is not updated. This happens when a virtual page

in the area has its PFN mapping changed in three possible ways: (1) from null to p, when a

page frame is allocated; (2) from pold to p, when the page is remapped due to page sharing,

compaction and migration (within the VM); and (3) from pold to null, when the page is

swapped out. For (1), migration finishes correctly without clearing the transfer bit of the

allocated page, which joins the skip-over area. For (2) and (3), we assume the absence of

these events in skip-over areas during migration, but the LKM can be extended to update

83

Running application

Create nlsk to interact with LKM

Report skip-over areas

Notify when a skip-over area shrinks

Make sure contents of skip-over areas

are recoverable or unneeded in dst.;

report skip-over areas again

Recover contents of skip-over areas

or consider the areas empty as app

execution continues

Migration daemon

Migration begin; notify LKM

Initialize for VM state transmission

(Use transfer & dirty bitmaps during transmission)

Transfer the 1st iter

Transfer more iters …

Entering the last iter; notify LKM

Pause the VM

Transfer the last iter

Resume VM in dst.; notify LKM

LKM

Initial setup

INITIALIZED:

MIGRATION STARTED:

First transfer bitmap update

More transfer bitmap updates

ENTERING LAST ITER:

Ask apps to be prepared

SUSPENSION READY:

Final transfer bitmap update

Ask migration to pause VM

RESUMED:

Notify apps

Go back to INITIALIZED

skip-over areas?

VA ranges

prep. for suspension!

skip-over areas?

ready for suspension!

VA ranges

VM resumed!

time

VA ranges left

Figure 4.4: The workflow of application-assisted live migration.

the transfer bitmap for these events with further assistance from the guest kernel.

4.3.3.5 Migration Workflow

Figure 4.4 shows the workflow of application-assisted live migration. Our LKM co-

ordinates between the migration daemon and applications in the guest as they collaborate

through different stages of migration. To ease its job of coordination, the LKM transitions

between states of operation based on the messages exchanged with the migration daemon

and the applications, and takes different actions in each state as described next.

Before migration. Once the guest VM is created, the LKM may be loaded in preparation

for possible migration. Upon loading, the LKM sets up the communication proxy and

the transfer bitmap, and then enters the initialized state, ready for migration. If an

application has memory areas that need not be transferred during migration, it creates a

netlink socket as it runs in the VM, to communicate with the LKM and assist in migration.

Migration begins. The migration daemon connects with the LKM once it is started. The

LKM enters the migration started state, and multicasts a netlink message to query

running applications for skip-over areas. Based on the applications’ responses, it performs

84

the first transfer bitmap update. As the VM continues execution, the migration daemon

transfers memory pages based on both the transfer bitmap and the dirty bitmap. The LKM

will be notified by the applications if a skip-over area shrinks, and it updates the transfer

bitmap immediately for the pages leaving the area.

Entering the last iteration. The migration daemon contacts the LKM again before pausing

the VM and entering the last iteration. The LKM multicasts a netlink message,

asking the applications to prepare for VM suspension. This message also queries the ap-

plications for the current VA ranges of the skip-over areas, which are needed by the final

transfer bitmap update.

To prepare for VM suspension, the applications ensure that when the VM resumes

running in the destination, the contents of their skip-over areas, which are not transferred

to the destination, are recoverable or unneeded. For example, they may need to execute to

a known recoverable state, flush caches or collect garbage. Once completing the actions

required, they notify the LKM, passing along the current VA ranges of the skip-over areas.

Knowing that the applications are suspension-ready, the LKM performs the final

transfer bitmap update, and then notifies the migration daemon to suspend the VM and

proceed with the last iteration. The contents of the skip-over areas should remain recover-

able or unneeded until VM suspension is completed.

Migration finishes and VM resumed. After the last iteration finishes, the migration dae-

mon activates the VM at the destination, and notifies the LKM that VM execution has

resumed. The LKM asks the applications to execute recovery logic for their skip-over

areas, or to consider those areas empty, as they continue to run. It then returns to the

initialized state in preparation for the next migration.

4.4 JAVMM: Java-Aware VM Migration

Using our framework for application-assisted live migration, we have designed and

implemented JAVMM, which migrates Java VMs assisted by JVM.

85

In designing JAVMM, we considered skipping transfer of both the JVM code cache

and garbage in the Java heap. The code cache stores native code compiled for performance

enhancements. If it is not migrated, applications can resume running interpreted in the

destination, but we have observed a non-trivial performance drop in such a case. Since the

code cache is small relative to the Java heap, we decided to migrate it as usual, and focus

on skipping the transfer of garbage in the Java heap.

4.4.1 Background on Java Heap Management

As a Java program runs, objects are created in the heap of its JVM. Most implemen-

tations of JVM (e.g., Oracle’s HotSpot and JRockit and IBM’s JVM) use a generational

heap. The remainder of this chapter is presented in the context of HotSpot, based on which

JAVMM is prototyped. The general principles and our design of JAVMM are also applica-

ble to other JVM implementations.

In HotSpot, the heap is divided into Young and Old generations. The Young generation

is further divided into three spaces: Eden and two survivor spaces, From and To. Most

objects are allocated in the Eden. When the Eden gets filled up, JVM performs a minor

garbage collection (GC) to reclaim memory from garbage in the Young generation. Java

(application) threads execute to a Safepoint [6] and pause for a minor GC, so that GC

threads can move objects in the heap in a consistent manner. A minor GC copies live data

in the Eden to the To space. Live data in the From space are either copied to the To space,

or promoted to the Old generation if they have survived a number of minor GCs. At the

end of a minor GC, the Eden is completely empty. The From and To spaces swap roles:

From becomes the one that holds live data, and To becomes empty.

4.4.2 Garbage in Java Heap

To understand Java heap usage, we experiment with the SPECjvm2008 suite [16], a

benchmark suite for measuring the performance of Java runtime environments. We run one

86

Workload Description

derby Apache Derby [1] database with business logic

compiler OpenJDK 7 front-end compiler [13]

xml Apply style sheets to XML documents

sunflow An open-source image rendering system [17]

serial Serialize and deserialize primitives and objects

crypto Sign and verify with cryptographic hashes

scimark Compute the LU factorization of matrices

mpeg MP3 decoding

compress Compression by a modified Lempel-Ziv method

Table 4.1: Description of the SPECjvm2008 workloads used in our experiments.

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400

de
rb

y

co
m

pi
le

r

xm
l

su
nf

lo
w

se
ria

l

cr
yp

to

sc
im

ar
k

m
pe

g

co
m

pr
es

s

S
iz

e
(M

B
)

Old gen
Young gen

(a) Java heap memory usage

 0

 200

 400

 600

 800

 1,000

 1,200

de
rb

y

co
m

pi
le

r

xm
l

su
nf

lo
w

se
ria

l

cr
yp

to

sc
im

ar
k

m
pe

g

co
m

pr
es

s

S
iz

e
(M

B
)

Live data
Garbage

(b) Garbage in a minor GC

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600

de
rb

y

co
m

pi
le

r

xm
l

su
nf

lo
w

se
ria

l

cr
yp

to

sc
im

ar
k

m
pe

g

co
m

pr
es

s

D
ur

at
io

n
(m

s)

(c) Duration of a minor GC

Figure 4.5: Java heap usage and GC behavior of sample workloads from SPECjvm2008

running in a 2GB VM; see Table 4.1 for workload descriptions. The Young

generation of the Java heap is allowed to use at most 1GB memory.

workload from each benchmark category for 10 minutes in a 2GB VM, using HotSpot and

its parallel garbage collector; Table 4.1 describes the workloads used. HotSpot is allowed

to grow the Young generation to the maximum size of 1GB and the Old generation to use

the rest of the VM memory.

Figure 4.5(a) shows the average memory consumption of the Java heap. For 8 of the 9

workloads evaluated, the Young generation grows faster and uses more memory than the

Old generation; up to 98% of the heap memory is consumed by the Young generation. Only

scimark uses more memory in the Old generation, since that workload has more long-lived

than short-lived objects. We observed that for derby, compiler, xml and sunflow, the Young

generation quickly grows to the maximum size of 1GB to accommodate the large number

of objects created by the workloads; these workloads have high object allocation rates.

87

A large portion of the Young generation memory may contain garbage when the lifetime

of the objects is short. For all workloads except scimark, over 97% of the Young generation

memory is garbage collected in a minor GC, as shown in Figure 4.5(b). The amount of

garbage is significant for the four workloads using a 1GB Young generation. We observed

that these workloads fill the Young generation and trigger a minor GC frequently, every

3 seconds or so; each minor GC reclaims almost all of the Young generation memory.

Throughout workload execution, this pattern repeats, and the entire Young generation is

continuously dirtied.

Figure 4.5(c) shows the average time required to collect Young generation garbage by

a minor GC. Our results suggest that it may be faster to collect the garbage than to transfer

them over a bottleneck network link. This applies to all workloads except scimark, which

has exceptionally small amounts of garbage. Even for compiler, which has the longest

GC duration of the workloads, its 950MB of garbage takes 1.5 seconds to be collected,

but would take more than 7 seconds to be transferred over the gigabit Ethernet link in our

testbed. Note, however, that for Old generation garbage, collection may not be faster than

transmission. In our experiments, a full GC can take as long as 4 seconds to collect only

93MB of garbage in the Old generation.

In summary, for a wide range of Java workloads we have made the following observa-

tions.

Observation 1. The Young generation can be large and continuously dirtied, due to the

high object allocation rate of the workload.

Observation 2. A significant portion of the Young generation memory may contain garbage,

due to the workload’s use of short-lived objects.

Observation 3. Collecting Young generation garbage may be faster than sending them

over a bottleneck network link.

88

4.4.3 JAVMM

The Young generation can generate a large number of dirty pages during the migration

of a Java VM, yet many of the dirty pages may contain garbage (Observations 1 and 2).

JAVMM thus skips transfer of the garbage with assistance of JVM, which knows where

garbage objects are located in memory.

Garbage objects are scattered among live data, and their locations keep changing as

objects become unreferenced. It is impractical to keep track of the locations of garbage

objects in order to skip their migration. Instead, JAVMM enforces a minor GC to collect

garbage for efficient migration, since collection may be faster than network transmission

(Observation 3).

Built on the framework described in Section 4.3.3, JAVMM enforces a minor GC only

once during migration, when running applications are notified by the LKM to prepare for

VM suspension. After the enforced GC completes, the VM is suspended. In the Young

generation, the Eden and To spaces are empty, and only the From space may contain live

data, i.e., the data surviving the enforced GC. These live data are the only Young generation

data that will be used when the VM resumes running in the destination.

JAVMM makes sure to transfer these live data in the last iteration, and throughout

migration, it skips transfer of the memory pages in the Young generation, even if they are

dirtied. JAVMM is thus beneficial for migrating Java VMs with a large and frequently-

dirtied Young generation; this typically happens when the running Java applications are

characterized by high object allocation rates.

4.4.3.1 System Overview

In JAVMM, JVM provides all the assistance needed for VM migration on behalf of

Java applications; no modifications to Java applications are required. Figure 4.6 shows

how JAVMM is built based on our framework for application-assisted live migration; our

prototype uses HotSpot JVM (OpenJDK 7) and its parallel garbage collector.

89

Java application

nlsk

LKM VA-to-PFN nlsk

evtchn

get Young gen VA range

enforce a minor GC

TI agent

HotSpot JVM

Garbage collector

(ParallelOldGC)

Young gen shrink

enforced GC finishedcallback

callback

Migration

daemon

Figure 4.6: An overview of JAVMM, which is built on our framework for application-

assisted live migration. This is a zoom-in view of Figure 4.2 with JVM/Java

application being the running application.

We enable JVM to communicate with our LKM and collaborate with the migration

daemon through the LKM. In prototyping JAVMM, we wanted to provide most of the

functionalities required of JVM as pluggable modules, and minimize modifications to the

core HotSpot code. We thus implemented an agent using JVM Tool Interface (TI) [10], a

native programming interface for inspecting and controlling JVM. The TI agent compiles

to a dynamic library to be loaded as Java applications run; it runs in the same OS process as

the JVM/Java applications. JVM interacts with the LKM through the TI agent. When the

functionality required is beyond the current scope of TI, we extend TI with the necessary

modifications to HotSpot.

4.4.3.2 Workflow of JAVMM

Figure 4.7 shows the workflow of JAVMM; it details how JVM accomplishes the actions

required of an application assisting in migration, sketched in the gray boxes of Figure 4.4.

As a Java application runs, our TI agent is loaded. It creates a netlink socket to com-

municate with the LKM.

The agent is notified by the LKM when migration begins, and is queried for skip-over

areas. It obtains the VA range of the Young generation from JVM, and tells the LKM.

Based on the agent’s response, the LKM performs the first transfer bitmap update. It clears

90

TI agent

Create nlsk

LKM

INITIALIZED:

MIGRATION STARTED:

First transfer bitmap update

More transfer bitmap updates

ENTERING LAST ITER:

Ask apps to be prepared

SUSPENSION READY:

Final transfer bitmap update

Ask migration to pause VM

RESUMED:

Notify apps

Go back to INITIALIZED

skip-over areas?

HotSpot

Young gen VA range?

Young gen shrunk

do a minor GC!

Young gen VA range?ready for suspension!

VA range

GC is done!

VM resumed! resume Java threads!

skip-over areas?

prep for suspension!

VA range left

VA range

Figure 4.7: The workflow of JAVMM, with details of JVM’s and our TI agent’s actions

to fulfill the requirements of an application assisting in migration shown in

Figure 4.4.

the transfer bits of the Young generation pages, so the pages will not be transferred even if

they are dirtied.

During migration, the agent notifies the LKM when memory pages leave the Young

generation, so that the transfer bitmap can be updated. In HotSpot, memory pages may be

freed from the Young generation at the end of a GC. We slightly modify HotSpot to notify

when this happens, based on TI’s notification interface of GC events. A callback in our

agent is invoked to pass to the LKM the VA range with memory pages freed, and the LKM

immediately sets the transfer bits of the pages leaving the Young generation.

The agent is notified by the LKM again when migration is about to enter the last itera-

tion, and is asked to prepare for VM suspension. It enforces a minor GC to collect Young

generation garbage; we modify HotSpot to ensure that this GC is not silently ignored.3

As usual, Java threads execute to a Safepoint and pause, and JVM performs a collection.

Once the collection is finished, a callback in our agent is executed; at this time, the Eden and

To spaces are empty, and the Java threads are still paused. Without giving JVM control to

3HotSpot may ignore GC requests when several requests are enqueued at about the same time due to

simultaneous allocation failures in multiple threads—only one of these requests needs to be executed.

91

release the Java threads from the Safepoint and resume their execution, the agent notifies the

LKM that the application is ready for VM suspension. The Java threads are thus prevented

from using the heap, and this ensures the Eden and To spaces remain empty until VM

suspension is completed.

Along with the notification of the application being suspension-ready, the agent passes

to the LKM the current VA range of the Young generation and also that of the occupied

From space, which contains the live data surviving the enforced GC. Based on these in-

formation, the LKM performs the final transfer bitmap update. It considers the occupied

From pages “leaving” the Young generation, and sets their transfer bits, in order to ensure

transfer of live Young generation data in the last iteration.

Once the final transfer bitmap update is completed, the migration daemon suspends the

VM, and finishes migration with the last iteration. When the VM resumes in the destination,

our agent is notified by the LKM. It returns control to JVM, which in turn releases the Java

threads from the Safepoint. The Java application then resumes execution with all live data

available in the destination.

4.5 Evaluation

We now evaluate JAVMM in comparison with Xen VM live migration, which is a tra-

ditional pre-copy approach that is agnostic of the applications running in the migrating

VM.

4.5.1 Experimental Setup

Our evaluation uses both real-life applications and benchmarks from SPECjvm2008 [16],

the same benchmark suite used to profile Java heap usage in Section 4.4.2.

We run each workload for 10 minutes in a VM configured with 2GB memory and 4

vCPUs. Halfway through the workload execution, we migrate the VM, between two HP

Proliant BL465c blades in the same gigabit Ethernet LAN; each blade is equipped with two

92

 0
 200
 400
 600
 800

 1000
 1200

 0 10 20 30 40 50 60T
ra

ns
fe

r
ra

te
 (

M
b/

s)

Elapsed time (sec)

(a) Xen

 0
 200
 400
 600
 800

 1000
 1200

 0 10 20 30 40 50 60T
ra

ns
fe

r
ra

te
 (

M
b/

s)

Elapsed time (sec)

(b) JAVMM

Figure 4.8: Progress of migrating a VM running the compiler workload from

SPECjvm2008. Each box represents a migration iteration; the width shows

the duration and the area shows the amount of traffic sent. In (b), the second

last iteration of JAVMM generates little network traffic while waiting for the

workload to execute to a Safepoint (0.7 sec) and a minor GC to be done (0.1

sec).

 0.0

 0.5

 1.0

 1.5

 2.0

M
em

or
y

(G
B

)

Migration iteration
1 10 20 30

skipped (already dirtied)
transferred

(a) Xen

 0.0

 0.5

 1.0

 1.5

 2.0

M
em

or
y

(G
B

)

Migration iteration
1 11

skipped (young gen)
skipped (already dirtied)
transferred

(b) JAVMM

Figure 4.9: Amount of memory processed when migrating a VM running the compiler

workload from SPECjvm2008. In (b), the 4–10th iterations of JAVMM each

process less than 2MB of dirty memory.

dual-core AMD Opteron 2.2 GHz CPUs and 12GB RAM.

Alongside each workload, we run a custom analyzer that sends out the number of op-

erations completed by the workload once every second. We observe workload throughput

from outside of the VM using a time source that is not affected by temporary suspension of

the VM, which happens before completing migration.

Each experiment is repeated at least three times. Unless otherwise mentioned, we report

the average of the measurements, and show 90% confidence intervals in bar graphs.

4.5.2 Progress of Migration

We begin by analyzing how a Java VM is migrated iteratively by Xen and JAVMM, re-

spectively. We use a VM running the compiler workload from SPECjvm2008 as an exam-

93

ple; see Table 4.1 for the workload description. Figure 4.8 plots the progress of migrating

the VM in an experimental run. We plot each iteration by a box, and show the duration and

the amount of traffic sent by the width and area of the box, respectively.

In the first iteration, Xen and JAVMM perform equally well. They both skip sending

about 500MB of memory, as shown in Figure 4.9. Xen skips over pages that are dirtied

before transmission, since such pages may be sent in the next iteration. Prototyped on Xen,

JAVMM also skips over pages that are already dirtied, and in addition, all Young generation

pages. The workload is using a 512MB Young generation when migrated, and most of the

space is skipped over by both Xen and JAVMM in the first iteration.

Xen and JAVMM start to progress differently from the second iteration. Although they

both have more than 500MB of dirty memory pending transmission in the second iteration,

they transfer different amounts. JAVMM sends only 64MB of the dirty memory, skipping

over both repeatedly dirtied pages and Young generation pages. Xen has to send more than

200MB of the dirty memory, since it can only skip over repeatedly dirtied pages.

Since JAVMM sends less dirty data, it finishes the second iteration faster, during which

less memory gets dirtied. As a result, it has even less dirty data to send in the third iteration.

JAVMM reduces the amount of memory transfer effectively as iterations progress. After 10

iterations, little dirty memory remains to be sent. JAVMM then finishes migration with a

short stop-and-copy at the 11th iteration, using 17 seconds and sending 1.6GB of network

traffic.

However, for Xen, the amount of memory transfer does not decrease over the iterations.

Migration is forced to enter stop-and-copy when it reaches the maximum 30 iterations

allowed by Xen’s default; the stop-and-copy takes long, since over 400MB of dirty memory

remains to be sent. Xen finishes migration taking 58 seconds and sending 6.1GB of network

traffic, i.e., over 3x longer time and more traffic than JAVMM.

94

4.5.3 Performance of Migration

Next, we evaluate JAVMM for workloads with different characteristics of Java heap

usage.

Workload characterization. When profiling sample workloads from SPECjvm2008 in

Section 4.4.2, we found the workloads fall in the following three categories according to

Java heap usage; see Table 4.1 for description of the workloads.

• Category 1. The Young generation quickly grows to the maximum size, since the

workload has a high object allocation rate. The derby, compiler, xml and sunflow

workloads are in this category.

• Category 2. The Young generation grows faster than the Old generation, albeit not

maximally utilized. The workload has a medium object allocation rate. The serial,

crypto, mpeg and compress workloads are in this category.

• Category 3. The workload has a small Young generation and a large Old generation,

since the object allocation rate is low, and most of the workload data are long-lived.

Scimark is the only workload in this category.

Our observations on object allocation rates are consistent with the measurements by

other researchers [90].

We evaluate JAVMM using one workload from each category. For Category 1, which

is the most favorable workload scenario for JAVMM, we evaluate derby; in the workloads

of this category, derby uses the largest Old generation, which JAVMM has to transfer. For

category 2, we evaluate crypto. For category 3, which is the least favorable workload

scenario for JAVMM, we evaluate scimark.

Derby, crypto and scimark are all CPU-intensive workloads. They use up 90% of CPU,

and perform no network I/Os. Table 4.2 shows their experimental settings. While each

workload can use a maximum 1GB Young generation, when migrated, the Young genera-

95

Workload
Max allowed Observed when migrated

Young gen (MB) Young gen (MB) Old gen (MB)

derby 1024 1024 259

crypto 1024 456 18

scimark 1024 128 486

Table 4.2: Workloads with different characteristics of Java heap usage and their experimen-

tal settings.

 0

 10

 20

 30

 40

 50

 60

 70

derby crypto scimark

T
im

e
(s

ec
)

Xen
JAVMM

(a) Total migration time

 0
 1
 2
 3
 4
 5
 6
 7
 8

derby crypto scimark

T
ra

ffi
c

(G
B

)

Xen
JAVMM

(b) Total migration traffic

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

derby crypto scimark

D
ow

nt
im

e
(s

ec
)

Xen
JAVMM

(c) Workload downtime

Figure 4.10: Performance of JAVMM and Xen live migration for workloads with different

characteristics of Java heap usage.

tions of derby, crypto and scimark are using 1GB, 0.4GB and 0.1GB of memory, respec-

tively.

How fast does JAVMM migrate a Java VM? Figure 4.10(a) shows the time required to

migrate the VMs running the three workloads. JAVMM migrates the derby VM fastest,

taking only 12 seconds. Compared to Xen, which takes over a minute to migrate the VM,

JAVMM reduces the migration time by 82%. JAVMM also achieves a 69% reduction of mi-

gration time for the crypto VM. For scimark, JAVMM can skip over little Young generation

memory. It migrates the VM using a comparable amount of time as Xen.

How much resource does JAVMM use for migration? Figure 4.10(b) shows the amount

of network traffic transferred to migrate the VMs. For derby and crypto, JAVMM migrates

the VM sending even less traffic than the VM size, while Xen sends up to 3.5x the VM size

of migration traffic. Compared to Xen, JAVMM reduces migration traffic for derby and

crypto by 84% and 72%, respectively. For scimark, JAVMM achieves a 10% reduction of

migration traffic.

Thanks to the reduced data transfer, JAVMM also uses up to 84% less CPU time than

96

 0

 0.2

 0.4

 0.6

 0.8

 1

 280 300 320 340 360 380 400

O
pe

ra
tio

ns
/s

ec

Workload runtime (sec)

Xen
JAVMM

(a) Derby

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 280 300 320 340 360 380 400

O
pe

ra
tio

ns
/s

ec

Workload runtime (sec)

Xen
JAVMM

(b) Crypto

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 280 300 320 340 360 380 400

O
pe

ra
tio

ns
/s

ec

Workload runtime (sec)

Xen
JAVMM

(c) Scimark

Figure 4.11: Effect of VM migration on the throughput of running application, i.e., the

number of operations completed per second. Migration begins after the appli-

cation runs for 300 seconds.

Xen in migrating the VMs. In these experiments, JAVMM uses at most 1MB of memory

for the transfer bitmap and PFN cache.

How much does JAVMM affect application performance? Figure 4.11 shows the through-

puts of the workloads. For each workload, the VM is migrated after the workload runs for

300 seconds. Using JAVMM, the workload experiences no noticeable throughput degrada-

tion during migration, except the short pause before migration finishes. When migrated by

Xen, the workload can experience an extended downtime.

Figure 4.10(c) shows the workload downtime. The downtime includes the time spent

in the last iteration and the resumption time. The resumption time is required to reconnect

VM devices and activate VM execution in the destination; this time is short, only about

170 ms in our measurements. For JAVMM, the downtime also includes the time required

to finish the enforced GC while the workloads are paused at a Safepoint, as well as the time

required by the final transfer bitmap update; the latter is completed quickly, within 300 µs

in all our experiments.

Derby experiences 1.2 seconds of downtime when the VM is migrated by JAVMM,

83% shorter than the 9-second downtime when the VM is migrated by Xen. Derby dirties

the 1GB Young generation rapidly, but JAVMM can still reduce the amount of memory

transfer iteratively, by skipping transfer of Young generation pages. In the last iteration,

JAVMM sends only 11MB of dirty data, skipping over Young generation garbage, while

97

Workload
Max allowed Observed when migrated

Young gen (MB) Young gen (MB) Old gen (MB)

xml 1536 1536 28

derby 1024 1024 259

compiler 512 512 86

Table 4.3: Workloads with high object allocation rates and their experimental settings.

Xen has over 900MB of dirty data to be sent. JAVMM thus reduces the downtime of derby

significantly compared to Xen, even though it uses 0.9 second to finish the enforced GC; the

GC duration can be further shortened with Java heap fine-tuning or increased parallelism.

For crypto, JAVMM also achieves a 73% shorter downtime than Xen.

However, for scimark, JAVMM imposes a 10% longer downtime than Xen; scimark is

paused for 1.2 and 1.3 seconds when the VM is migrated by Xen and JAVMM, respectively.

For this workload, JAVMM takes time to perform the enforced GC, but the amount of data

to be transferred in the last iteration is not reduced. Most of scimark’s objects are long-

lived. They survive the GC enforced, and must be sent in the last iteration.

Summary. JAVMM is advantageous in migrating the VMs running derby and crypto,

representatives of workloads with non-trivial Young generation sizes and object allocation

rates. Compared to Xen, JAVMM migrates these VMs achieving shorter completion time,

smaller network traffic and shorter downtime. Scimark represents workloads using a small

Young generation and many long-lived objects. Compared to Xen, JAVMM migrates this

VM with a slightly longer downtime, although it achieves comparable, or slightly better

migration time and traffic.

4.5.4 Impact of Young Generation Size

We conducted a second set of experiments for the workloads most favorable for JAVMM,

Category 1 workloads with high object allocation rates. We evaluate the benefit of using

JAVMM for these workloads with varying sizes of Young generation, focusing on the same

three evaluation questions discussed in Section 4.5.3.

98

 0
 10
 20
 30
 40
 50
 60
 70
 80

xml derby compiler

T
im

e
(s

ec
)

Xen
JAVMM

(a) Total migration time

 0
 1
 2
 3
 4
 5
 6
 7
 8

xml derby compiler

T
ra

ffi
c

(G
B

)

Xen
JAVMM

(b) Total migration traffic

 0

 2

 4

 6

 8

 10

 12

 14

xml derby compiler

D
ow

nt
im

e
(s

ec
)

Xen
JAVMM

(c) Workload downtime

Figure 4.12: Performance of JAVMM and Xen live migration for Category 1 workloads

with different size Young generations.

We experimented with derby and two additional workloads, xml and compiler, from

Category 1. All three workloads are CPU-intensive and without network I/Os. We specify

different maximum sizes for the Young generations of the workloads, as shown in Table 4.3.

When migration begins, the Young generations of xml, derby and compiler all reach the

maximum sizes. They are using 1.5GB, 1GB and 0.5GB of memory, namely, 75%, 50%

and 25% of the VM memory, respectively.

Figure 4.12(a) shows the time required to migrate the VMs running the three workloads.

With high object allocation rates, the workloads dirty the entire Young generation space

rapidly. For Xen, the larger the Young generation, the more dirty memory are repeatedly

transferred, and the longer it takes to migrate the VM. On the contrary, JAVMM migrates

the VMs with larger Young generations faster, since more dirty memory are skipped over.

JAVMM thus achieves greater reductions of migration time for the VMs with larger Young

generations, than Xen. For the xml, derby and compiler workloads, JAVMM migrates the

VM using 91%, 82% and 69% less time than Xen, respectively.

A similar trend is observed for the amount of network traffic sent for migrating the

VMs, as shown in Figure 4.12(b). For JAVMM, the larger the Young generation, the less

migration traffic is sent, and it achieves a greater traffic reduction than Xen. JAVMM sends

93% less traffic than Xen to migrate the VM running xml, which has the largest Young

generation of the workloads.

Figure 4.12(c) shows the downtime incurred by the workloads before migration is com-

99

pleted. When the VM is migrated by Xen, the workloads with larger Young generations

incur longer downtimes. A large portion of the Young generation keeps getting dirtied until

the VM is paused for the last iteration, due to the workloads’ high object allocation rates.

Xen has up to 1.5GB of data to send in the last iteration, resulting in up to 13 seconds of

downtime.

For JAVMM, there is not a direct relationship between downtime and the Young gener-

ation size, since downtime also affected by other factors, i.e., the duration of the enforced

GC and the amount of surviving data to be sent in the last iteration. The three workloads

experience about 1.2 seconds of downtime when the VM is migrated by JAVMM, up to

91% shorter than their respective downtimes incurred when migrated by Xen.

4.6 Discussions on Applications and Extensions

When to use JAVMM? JAVMM is most beneficial for the cases which are most problem-

atic to traditional pre-copy approaches—when the VM to be migrated runs Java applica-

tions with large Young generations and high object allocation rates.

In some cases, JAVMM should be used with consideration of the resulting application

downtime. The first is when the application requires long minor GCs, since the duration

of the enforced GC increases downtime. The second is when the application has a high

object survival rate. Many objects may survive the enforced GC and must be transferred

during stop-and-copy. Scimark is such an example. The third is when the application is

read-intensive for which traditional pre-copy approaches can reduce downtime effectively;

the GC enforced by JAVMM is likely to increase downtime.

Use JAVMM for large VMs with fast networks. Our evaluation has shown benefits

of JAVMM by migrating a 2GB VM over a gigabit Ethernet. These benefits remain as

VMs configured with tens or hundreds of GBs of memory are migrated over 10 Gbps or

faster networks, since in such scenarios, the VM processing power, application memory

footprints and memory-dirtying rates likely increase proportionally. As we continue to

100

deploy JAVMM in upgraded environments, the underlying network may remain as much a

bottleneck as in our current testbed.

Use JAVMM with other garbage collectors. While the design of JAVMM is orthogonal to

the choice of garbage collector, we are particularly interested in porting JAVMM to run with

collectors that use a non-contiguous VA range for the Young generation for performance

evaluation and optimization. HotSpot’s garbage-first garbage collector [43] is one such

example.

Support large and multiple applications. The LKM updates the transfer bitmap on ap-

plications’ behalf. It can coordinate concurrent bitmap updates from multiple applications,

and prevent the applications from manipulating others’ memory. While the LKM can notify

a set of applications with multicast, care is needed to collect responses from all of them and

handle any straggler. We are also investigating parallelization of transfer bitmap updates to

handle large skip-over areas efficiently.

4.7 Conclusions

In this chapter, we have proposed application-assisted live migration, skipping transfer

of selective VM memory pages based on application semantics. We have built a generic

framework for the proposed approach, which is then used to build JAVMM, a system that

migrates VMs running Java applications skipping transfer of garbage in Java memory. Our

experimental results have shown that JAVMM can migrate a Java VM with up to more

than 90% less completion time, less network traffic and shorter application downtime than

Xen live VM migration, which is agnostic of application semantics. JAVMM also incurs

a lower CPU cost than Xen live VM migration and a negligible memory overhead. In

JAVMM, JVM is enabled to provide all the assistance needed for migration on behalf of

Java applications; no modifications to Java applications are required by JAVMM for effi-

cient migration of a VM.

101

CHAPTER V

Conclusions

In this thesis, we have explored ways to replicate VMs for HA using resources effi-

ciently, and to migrate VMs fast, with minimal execution disruption and using resources

efficiently. We now summarize the contributions of this thesis and the directions in which

the research of this thesis can be extended.

5.1 Thesis Contributions

To reduce the network traffic of checkpoint replication in a HA system, we have shown

that checkpoint compression can be applied, adapting to the workload types and resource

constraints in the system, by evaluating and comparing the strengths and weaknesses of

different compression methods. To the best of our knowledge, this is the first detailed

evaluation and characterization of checkpoint compression methods in the context of sup-

porting HA, considering gzip, delta and similarity compressions. Based on the evaluation

results, we provide guidelines for their selection and usage.

To reduce the memory requirement of maintaining backup VMs for HA, we have shown

that a memory-efficient HA alternative is feasible, by building HydraVM, a storage-based

HA approach for VMs. HydraVM uses a new combination of well-known system tech-

niques, including incremental VM checkpointing, demand paging and pre-fetching, to

solve the real-world problem of providing resource-efficient HA support for VMs. Our

102

prototype implementation and evaluation of HydraVM demonstrate the applicability of

this solution.

Finally, we have shown the utility of running applications’ assistance in VM live mi-

gration. We have established a generic framework for application-assisted live migration,

which selectively skips transfer of VM memory based on application semantics. Using this

framework, we have built JAVMM, which migrates Java VMs skipping transfer of garbage

in Java memory by leveraging JVM’s assistance. Our evaluation of JAVMM in comparison

with Xen live migration, which is agnostic of applications running in migrating VMs, has

validated the effectiveness of our approach.

5.2 Future Directions

The research in this thesis can be extended in the following directions:

• Hybrid and automatically selected checkpoint compression methods in HA sys-

tems.

Our characterization of compression methods shows that it is useful to combine the

strengths of different compression methods in a hybrid approach. Cully et al. [39]

briefly discussed using gzip and delta compression together to achieve greater reduc-

tions of checkpoint traffic, but our evaluation suggests that combining them could

potentially incur high CPU and memory costs at the same time. We propose to com-

bine a lightweight technique, like similarity compression, with heavyweight ones,

such as gzip. Coarse-grained similarity compression (e.g., based on 1K chunks) can

be used to achieve a meaningful, though not significant, reduction of checkpoint

sizes, at a low computing overhead. The remaining checkpoint data can be com-

pressed greater and faster with gzip. If for some workloads, similarity compression

reduces checkpoint traffic effectively already, gzip need not be performed.

We would also like to develop heuristics that utilize the insights from our evaluation

103

to automate the selection of compression methods according to workload types and

resource constraints, and even to dynamically adjust the selection decisions at run-

time. Such heuristics are especially useful for building an intelligent HA system to

provide VM protection at a large scale using resources efficiently.

• Transparent failure recovery of client-facing applications by a storage-based

HA approach.

It is challenging for a storage-based HA approach like HydraVM to checkpoint a

protected VM frequently like approaches using in-memory backups do and support

network buffering, which in turn enables transparent failure recovery for client-facing

applications running in the VM, since each checkpoint takes much longer to store on

permanent storage devices than in memory. Large, parallel storage systems help

overcome the intrinsic slowness of permanent storage devices, as discussed in Sec-

tion 3.6, but it can be difficult to rely solely on the storage system’s scale and data

parallelism to achieve the kind of checkpointing frequencies required by network

buffering to not incur undue delays on network packets, especially when running ap-

plications have large writable working sets. It would be useful to use a small amount

of memory in a stage buffer, to hold and coalesce part of the VM state (e.g., the most

frequently checkpointed pages) before writing them to storage. This limited use of

memory speeds up checkpoint storage during VM protection, and can also help in

fast VM recovery.

• Exploiting greater intelligence of running applications in VM live migration.

In application-assisted live migration, we have presented a framework for the migra-

tion tool to be informed by running applications and know, for each memory page of

the migrating VM, whether to send or skip the page. We plan to extend this frame-

work so that the migration tool can receive more guidance from running applications

and exploit the greater intelligence therein. The tool can then perform a richer set

104

of operations to reduce the amount of memory transfer for efficient live migration.

For example, the tool can apply compression on the memory pages that are not being

skipped over. This not only reduces memory transfer further, but also uses com-

pression, a CPU-expensive operation, at a lower cost. The transfer bitmap in our

framework can be augmented to have more than one bit for each VM memory page,

and indicate the suitable compression methods to apply before sending the page over

the network.

105

BIBLIOGRAPHY

106

BIBLIOGRAPHY

[1] Apache Derby database in Java. http://db.apache.org/derby.

[2] Basic Compression Library. http://bcl.comli.eu.

[3] The FFmpeg multimedia tool. http://www.ffmpeg.org.

[4] Four Java cloud platforms reviewed. http://www.javaworld.com/article/

2078443/mobile-java/four-java-cloud-platforms-reviewed.html.

[5] GNU zip utility. http://www.gzip.org.

[6] HotSpot glossary of terms. http://openjdk.java.net/groups/hotspot/docs/

HotSpotGlossary.html.

[7] HotSpot virtual machine. http://openjdk.java.net/groups/hotspot/.

[8] The HPC Challenge benchmark. http://icl.cs.utk.edu/hpcc.

[9] Hyper-V server virtualization technical overview. http://download.microsoft.

com/download/A/2/7/A27F60C3-5113-494A-9215-D02A8ABCFD6B/Windows_

Server_2012_R2_Server_Virtualization_White_Paper.pdf.

[10] JVM Tool Interface (TI). http://docs.oracle.com/javase/6/docs/

platform/jvmti/jvmti.html.

[11] Live migration on KVM. http://www.linux-kvm.org/page/Migration.

[12] LVM2 resource page. http://sourceware.org/lvm2.

[13] OpenJDK 7. http://openjdk.java.net/projects/jdk7/.

[14] Popularity of Java applications. http://www.java.com/en/about/.

[15] The RUBiS benchmark. http://rubis.ow2.org.

[16] The SPECjvm2008 benchmark suite. http://www.spec.org/jvm2008.

[17] Sunflow open source rendering system. http://sunflow.sourceforge.net.

[18] A TPC-C-like benchmark of VoltDB. http://community.voltdb.com/node/

134.

107

[19] VMware distributed resource scheduler (DRS). http://www.vmware.com/files/

pdf/VMware-Distributed-Resource-Scheduler-DRS-DS-EN.pdf.

[20] VMware Fault-Tolerance (FT). http://www.vmware.com/products/

fault-tolerance.

[21] VMware High-Availability (HA). http://www.vmware.com/products/vi/vc/

ha.html.

[22] VoltDB in-memory database. http://community.voltdb.com.

[23] zlib compression library. http://zlib.net.

[24] Anurag Agarwal, Dharmesh Shah, Nagaraj Kalmala, Neelakandan Panchaksharam,

Rajeev Bharadhwaj, Sameer Lokray, Srikanth Sm, and Thomas Bean. Method

and apparatus for transactional fault tolerance in a client-server system, Oct. 2009.

Patent, US 7610510.

[25] Samer Al-Kiswany, Dinesh Subhraveti, Prasenjit Sarkar, and Matei Ripeanu. VM-

Flock: Virtual machine co-migration for the cloud. In Proceedings of the 20th Sym-

posium on High Performance Distributed Computing, 2011.

[26] Javanshir Farzin Alamdari and Kamran Zamanifar. A reuse distance based precopy

approach to improve live migration of virtual machines. In Proceedings of the 2nd

IEEE International Conference on Parallel, Distributed and Grid Computing, pages

551–556, 2012.

[27] Ashok Anand, Archit Gupta, Aditya Akella, Srinivasan Seshan, and Scott Shenker.

Packet caches on routers: The implications of universal redundant traffic elimination.

In Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication,

pages 219–230, 2008.

[28] Ashok Anand, Vyas Sekar, and Aditya Akella. SmartRE: An architecture for coordi-

nated network-wide redundancy elimination. In Proceedings of the ACM SIGCOMM

2009 Conference on Data Communication, pages 87–98, 2009.

[29] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter As a Com-

puter: An Introduction to the Design of Warehouse-Scale Machines. Morgan and

Claypool Publishers, 2nd edition, 2013.

[30] Nilton Bila, Eyal de Lara, Kaustubh Joshi, H. Andrés Lagar-Cavilla, Matti Hiltunen,

and Mahadev Satyanarayanan. Jettison: Efficient idle desktop consolidation with

partial VM migration. In Proceedings of the 7th ACM European Conference on

Computer Systems, pages 211–224, 2012.

[31] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic placement of virtual

machines for managing SLA violations. In Proceedings of the 10th IFIP/IEEE In-

ternational Symposium on Integrated Network Management, pages 119–128, 2007.

108

[32] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance. ACM

Transactions on Computer Systems, 14(1):80–107, Feb. 1996.

[33] Alan D. Brunelle. blktrace user guide. http://www.cse.unsw.edu.au/~aaronc/

iosched/doc/blktrace.html.

[34] Anton Burtsev, Mike Hibler, and Jay Lepreau. Aggressive server consolidation

through pageable virtual machines. In Proceedings of the 8th Symposium on Op-

erating Systems Design and Implementation (Poster Session), 2008.

[35] Anton Burtsev, Prashanth Radhakrishnan, Mike Hibler, and Jay Lepreau. Transpar-

ent checkpoints of closed distributed systems in Emulab. In Proceedings of the 4th

ACM European Conference on Computer Systems, pages 173–186, 2009.

[36] B. Callaghan, B. Pavlowski, and P. Staubach. NFS version 3 protocol specification.

Technical report, IETF, 1995. RFC 1813.

[37] Peter M. Chen and Brian D. Noble. When virtual is better than real. In Proceedings

of the 8th Workshop on Hot Topics in Operating Systems, pages 133–138, 2001.

[38] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Cris-

tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machine.

In Proceedings of the 3rd USENIX Symposium on Networked Systems Design and

Implementation, 2005.

[39] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,

and Andrew Warfield. Remus: High availability via asynchronous virtual machine

replication. In Proceedings of the 5th USENIX Symposium on Networked Systems

Design and Implementation, pages 161–174, 2008.

[40] Tathagata Das, Pradeep Padala, Venkata N. Padmanabhan, Ramachandran Ramjee,

and Kang G. Shin. LiteGreen: Saving energy in networked desktops using virtual-

ization. In Proceedings of the USENIX Annual Technical Conference, 2010.

[41] Umesh Deshpande, Brandon Schlinker, Eitan Adler, and Kartik Gopalan. Gang mi-

gration of virtual machines using cluster-wide deduplication. In Proceedings of the

13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

pages 394–401, 2013.

[42] Umesh Deshpande, Xiaoshuang Wang, and Kartik Gopalan. Live gang migration

of virtual machines. In Proceedings of the 20th International Symposium on High

Performance and Distributed Computing, pages 135–146, 2011.

[43] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. Garbage-first

garbage collection. In Proceedings of the 4th International Symposium on Mem-

ory Management, pages 37–48, 2004.

109

[44] Yuyang Du and Hongliang Yu. Paratus: Instantaneous failover via virtual machine

replication. In Proceedings of the 8th International Conference on Grid and Coop-

erative Computing, pages 307–312, 2009.

[45] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and Peter M.

Chen. Execution replay of multiprocessor virtual machines. In Proceedings of the

4th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments, pages 121–130, 2008.

[46] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A

survey of rollback-recovery protocols in message-passing systems. ACM Computer

Survey, 34(3), Sep. 2002.

[47] Balazs Gerofi and Yutaka Ishikawa. RDMA based replication of multiprocessor

virtual machines over high-performance interconnects. In Proceedings of the IEEE

International Conference on Cluster Computing, pages 35–44, 2011.

[48] Balazs Gerofi, Zoltan Vass, and Yutaka Ishikawa. Utilizing memory content simi-

larity for improving the performance of replicated virtual machines. In Proceedings

of the 4th Conference on Utility and Cloud Computing, 2011.

[49] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren,

George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference Engine: Har-

nessing memory redundancy in virtual machines. In Proceedings of the 8th Sympo-

sium on Operating Systems Design and Implementation, pages 309–322, 2008.

[50] Michael Hines and Kartik Gopalan. Post-copy based live virtual machine migra-

tion using adaptive pre-paging and dynamic self-ballooning. In Proceedings of the

2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments, pages 51–60, 2009.

[51] Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi. En-

abling instantaneous relocation of virtual machines with a lightweight VMM exten-

sion. In Proceedings of the 10th IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing, pages 73–83, 2010.

[52] Kai-Yuan Hou, Mustafa Uysal, Arif Merchant, Kang G. Shin, and Sharad Singhal.

HydraVM: Low-cost, transparent high availability for virtual machines. Technical

report, HP Labs, 2011.

[53] Bolin Hu, Zhou Lei, Yu Lei, Dong Xu, and Jiandun Li. A time-series based precopy

approach for live migration of virtual machines. In Proceedings of the 17th IEEE In-

ternational Conference on Parallel and Distributed Systems, pages 947–952, 2011.

[54] Wei Huang, Qi Gao, Jiuxing Liu, and Dhabaleswar K. Panda. High performance

virtual machine migration with RDMA over modern interconnects. In Proceedings

of the 2007 IEEE International Conference on Cluster Computing, pages 11–20,

2007.

110

[55] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. Live virtual ma-

chine migration with adaptive memory compression. In Proceedings of the IEEE

International Conference on Cluster Computing, pages 1–10, 2009.

[56] Changyeon Jo, Erik Gustafsson, Jeongseok Son, and Bernhard Egger. Efficient live

migration of virtual machines using shared storage. In Proceedings of the 9th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,

pages 41–50, 2013.

[57] Ardalan Kangarlou, Patrick Eugster, and Dongyan Xu. VNsnap: Taking snapshots

of virtual networked infrastructures in the cloud. IEEE Transactions on Services

Computing, 5(4), 2012.

[58] Jacob Kloster, Jesper Kristensen, and Arne Mejlholm. On the feasibility of memory

sharing: Content-based page sharing in the Xen virtual machine monitor. Master’s

thesis, Department of Computer Science, Aalborg University, 2006.

[59] Ricardo Koller and Raju Rangaswami. I/O Deduplication: Utilizing content similar-

ity to improve I/O performance. In Proceedings of the 8th Conference on File and

Storage Technologies, 2010.

[60] Akane Koto, Hiroshi Yamada, Kei Ohmura, and Kenji Kono. Towards unobtrusive

VM live migration for cloud computing platforms. In Proceedings of the Asia-Pacific

Workshop on Systems, 2012.

[61] Michael Kozuch and M. Satyanarayanan. Internet suspend/resume. In Proceed-

ings of the Workshop on Mobile Computing Systems and Applications, pages 40–46,

2002.

[62] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scannell,

Philip Patchin, Stephen M. Rumble, Eyal de Lara, Michael Brudno, and Mahadev

Satyanarayanan. SnowFlock: Rapid virtual machine cloning for cloud computing.

In Proceedings of the 4th ACM European Conference on Computer Systems, pages

1–12, 2009.

[63] Zhaobin Liu, Wenyu Qu, Tao Yan, Haitao Li, and Keqiu Li. Hierarchical copy

algorithm for Xen live migration. In Proceedings of International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery, pages 361–364,

2010.

[64] Maohua Lu and Tzi-Cker Chiueh. Fast memory state synchronization for

virtualization-based fault tolerance. In Proceedings of the 39th Conference on De-

pendable Systems and Networks, pages 534–543, 2009.

[65] Fei Ma, Feng Liu, and Zhen Liu. Live virtual machine migration based on improved

pre-copy approach. In IEEE International Conference on Software Engineering and

Service Sciences, pages 230–233, 2010.

111

[66] Richard McDougall and Jennifer Anderson. Virtualization performance: Perspec-

tives and challenges ahead. SIGOPS Operating System Review, 44(4), Dec. 2010.

[67] Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre, Michael J.

Feeley, Norman C. Hutchinson, and Andrew Warfield. Parallax: Virtual disks for

virtual machines. In Proceedings of the 3rd ACM European Conference on Computer

Systems, 2008.

[68] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom.

SFS: Random write considered harmful in solid state drives. In Proceedings of the

10th USENIX conference on File and Storage Technologies, 2012.

[69] Umar Farooq Minhas, Shriram Rajagopalan Brendan Cully, Ashraf Aboulnaga, Ken-

neth Salem, and Andrew Warfield. RemusDB: Transparent high availability for

database systems. PVLDB, 4(11), 2011.

[70] Derek G. Murray, Steven H, and Michael A. Fetterman. Satori: Enlightened page

sharing. In Proceedings of the USENIX Annual Technical Conference, 2009.

[71] Arun Babu Nagarajan, Frank Mueller, Christian Engelmann, and Stephen L. Scott.

Proactive fault tolerance for HPC with Xen virtualization. In Proceedings of the 21st

Annual International Conference on Supercomputing, pages 23–32, 2007.

[72] Ripal Nathuji and Karsten Schwan. VirtualPower: Coordinated power management

in virtualized enterprise systems. In Proceedings of 21st ACM SIGOPS Symposium

on Operating Systems Principles, pages 265–278, 2007.

[73] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration

for virtual machines. In Proceedings of the USENIX Annual Technical Conference,

2005.

[74] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann, Jon Howell,

and Yutaka Suzue. Flat datacenter storage. In Proceedings of the 10th USENIX

Conference on Operating Systems Design and Implementation, pages 1–15, 2012.

[75] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel

Rosenblum. Fast crash recovery in RAMCloud. In Proceedings of the 23rd ACM

SIGOPS Symposium on Operating Systems Principles, pages 29–41, 2011.

[76] Zachary Peterson and Randal Burns. Ext3cow: A time-shifting file system for regu-

latory compliance. ACM Transactions on Storage, 1(2), May 2005.

[77] Dick Pountain. Run-length encoding. Byte, 12(6), 1987.

[78] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage. In

Proceedings of the 1st Conference on File and Storage Technologies, 2002.

[79] M. Rabin. Fingerprinting by random polynomials. Technical report, Harvard Uni-

versity, 1981. TR-15-81.

112

[80] Shriram Rajagopalan, Brendan Cully, Ryan O’Connor, and Andrew Warfield. Sec-

ondSite: Disaster tolerance as a service. In Proceedings of the 8th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, 2012.

[81] Sean Rhea, Russ Cox, and Alex Pesterev. Fast, inexpensive content-addressed stor-

age in Foundation. In Proceedings of the USENIX Annual Technical Conference,

pages 143–156, 2008.

[82] Pierre Riteau, Christine Morin, and Thierry Priol. Shrinker: Improving live migra-

tion of virtual clusters over WANs with distributed data deduplication and content-

based addressing. In Proceedings of the European Conference on Parallel Process-

ing, 2011.

[83] Alan Robertson. Linux-HA heartbeat system design. In Proceedings of the 4th

Annual Linux Showcase & Conference - Volume 4, Oct. 2000.

[84] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-tree filesystem.

ACM Transactions on Storage, 9(3), Aug. 2013.

[85] Ohad Rodeh and Avi Teperman. zFS - a scalable distributed file system using object

disks. In Proceedings of the 20 th IEEE/11 th NASA Goddard Conference on Mass

Storage Systems and Technologies, 2003.

[86] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a

log-structured file system. ACM Transactions on Computer System, 10(1):26–52,

Feb. 1992.

[87] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S. Lam,

and Mendel Rosenblum. Optimizing the migration of virtual computers. In Proceed-

ings of the 5th Symposium on Operating Systems Design and Implementation, pages

377–390, 2002.

[88] Daniel J. Scales, Mike Nelson, and Ganesh Venkitachalam. The design of a practical

system for fault-tolerant virtual machines. SIGOPS Operating System Review, 44(4),

Dec. 2010.

[89] D. P. Scarpazza, P. Mullaney, O. Villa, F. Petrini, V. Tipparaju, D. M. L. Brown,

and J. Nieplocha. Transparent system-level migration of PGAS applications using

Xen on InfiniBand. In Proceedings of the 2007 IEEE International Conference on

Cluster Computing, pages 74–83, 2007.

[90] Kumar Shiv, Kingsum Chow, Yanping Wang, and Dmitry Petrochenko.

SPECjvm2008 performance characterization. In Proceedings of the 2009 SPEC

Benchmark Workshop on Computer Performance Evaluation and Benchmarking,

2009.

[91] Aameek Singh, Madhukar Korupolu, and Dushmanta Mohapatra. Server-storage

virtualization: Integration and load balancing in data centers. In Proceedings of the

2008 ACM/IEEE Conference on Supercomputing, pages 1–12, 2008.

113

[92] Petter Svärd, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. Evaluation of delta

compression techniques for efficient live migration of large virtual machines. In

Proceedings of the 7th Conference on Virtual Execution Environments, pages 111–

120, 2011.

[93] Yoshiaki Tamura, Koji Sato, Seiji Kihara, and Satoshi Moriai. Kemari: Virtual ma-

chine synchronization for fault tolerance. In USENIX Annual Technical Conference

(Poster Session), 2008.

[94] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing cloud com-

puting hardware reliability. In Proceedings of the 1st ACM Symposium on Cloud

Computing, pages 193–204, 2010.

[95] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Sno-

eren, Geoffrey M. Voelker, and Stefan Savage. Scalability, fidelity, and containment

in the potemkin virtual honeyfarm. In Proceedings of the 20th ACM Symposium on

Operating Systems Principles, pages 148–162, 2005.

[96] Carl A. Waldspurger. Memory resource management in VMware ESX server. In

Proceedings of the 5th Symposium on Operating Systems Design and Implementa-

tion, pages 181–194, 2002.

[97] Timothy Wood, K. K. Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe.

CloudNet: Dynamic pooling of cloud resources by live WAN migration of virtual

machines. In Proceedings of the 7th ACM SIGPLAN/SIGOPS International Confer-

ence on Virtual Execution Environments, pages 121–132, 2011.

[98] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. Black-

box and gray-box strategies for virtual machine migration. In Proceedings of the

4th USENIX Conference on Networked Systems Design and Implementation, pages

229–242, 2007.

[99] Xiang Zhang, Zhigang Huo, Jie Ma, and Dan Meng. Exploiting data deduplication to

accelerate live virtual machine migration. In Proceedings of the IEEE International

Conference on Cluster Computing, pages 88–96, 2010.

[100] Xiaoyun Zhu, Don Young, Brian J. Watson, Zhikui Wang, Jerry Rolia, Sharad Sing-

hal, Bret McKee, Chris Hyser, Daniel Gmach, Rob Gardner, Tom Christian, and

Lucy Cherkasova. 1000 Islands: Integrated capacity and workload management for

the next generation data center. In Proceedings of the 2008 International Conference

on Autonomic Computing, 2008.

114

